03 Ifptraining_rcm_sem3_booklet

  • Uploaded by: Milah Lalla
  • 0
  • 0
  • February 2021
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View 03 Ifptraining_rcm_sem3_booklet as PDF for free.

More details

  • Words: 13,468
  • Pages: 146
Loading documents preview...
Formation professionnalisante

Reservoir Characterization & Modeling

Semaine 3 Stratigraphy – Sedimentology

Une formation IFP Training pour Sonatrach / IAP

 

Une formation IFP Training pour Sonatrach / IAP

Stratigraphy/Sedimentology on Clastic reservoirs Laurence BOVE

Sonatrach / IAP

Summary Table of content



Basin analysis

Slides 9



Clastic depositional environments and facies



Log responses in clastic sequences

Slides 165



Clastic petrography and diagenesis

Slides 193



Fundamentals of sequence stratigraphy

Slides 249

Slides 49

© 2013 ‐ IFP Training

Sonatrach / IAP

2

Exploration‐Production: stakes and challenges 1. Where are hydrocarbons?    

In reservoirs (naturals or fractured) How did they reach reservoirs? Where are they coming from? (HC generation) Why are they trapped in this place? Sedimentary basin analysis 

2. How to produce them?      

Geological reservoir modeling Quantification of reservoir  characteristics Heterogeneities prediction Reservoir model Productivity prediction  Appraisal well 

Exploration Strategy 

 

Strategy for field development design

© 2013 ‐ IFP Training



Elaboration of « exploration  guides  »: Plays Identification of « Prospects » Uncertainties & risks evaluation  Exploration well: OOIP calculation

3

Sonatrach / IAP

Basin exploration workflow: step 1  Petroleum trilogy  Source rock / Reservoir / Seal extension  Risk and uncertainties → Deliverables • HC index maps for each reservoir • Petroleum system mapping → Hypotheses • Events chart • Potential SR and RR maturity  (kitchen) • Migration episodes and pathways  • Entrapment and timing

4 Petroleum  system  analysis

Sonatrach / IAP

2

Basin  analysis 3 Geochemical  analysis

Stratigraphic  analysis  Relationship between tectonic and  sedimentation  Exploration tools (cores, logs, well correlation)  Biostratigraphy  Sequence stratigraphy  Risk and uncertainties → Deliverables • Basin time calibration • Chronostratigraphic chart (Wheeler) • Stratigraphic basin reconstruction

© 2013 ‐ IFP Training

 Organic indicators (VR, biomarkers, X‐fluo)  Thermochronology (fission tracks, mineralogy)  Rock‐Eval (TOC, HI…)  Risk and uncertainties → Deliverables • Organic matter origin (Kerogene type) • Maturation curve

1 Structural  analysis

 Exploration tools (seismic)  Geodynamics  Risk and uncertainties → Deliverables • Basin geometry calibration • Structural basin reconstruction

4

Exploration techniques & tools

© 2013 ‐ IFP Training

5

Sonatrach / IAP

Basin exploration workflow: step 2

Basin modeling Sequence stratigraphy  framework

• Subsidence mechanisms (back‐ stripping) • Temperature evolution (maturation) • Pressure evolution (compaction) • HC accumulation • Risk and uncertainties

Deliverables • Basin thermal calibration • Kitchen extension maps • Generation timing  • Φ vs. Depth evolution

Deliverables • Maps

Play concept &  definition

• Play definition and mapping (traps) • Prospect definition and evaluation • Migration pathways for each play • Risk and uncertainties

- Play & prospect extension - Field shows distribution

• Volumetrics (OOIP) • Prospect ranking • Yet‐to‐find (explored area) • Economic

Basin evaluation &  Play assessment  strategy © 2013 ‐ IFP Training

Sonatrach / IAP

6

© 2013 ‐ IFP Training

© 2013 ‐ IFP Training

Une formation IFP Training pour Sonatrach / IAP

Clastic reservoirs Basin analysis

Sonatrach / IAP

Basin analysis 

Structural and thermal evolution during burial • • • • •

Earth structure Extensive context Compressive context Transform context Thermal evolution

©  2013 ‐ IFP Training

Sonatrach / IAP

10

Map of sedimentary basins Onshore and Offshore basins

© 2013 ‐ IFP Training

Sonatrach / IAP

11

© 2013 ‐ IFP Training

Basin analysis 

Structural and thermal evolution during burial • • • • •

Earth structure Extensive context Compressive context Transform context Thermal evolution

©  2013 ‐ IFP Training

13

Sonatrach / IAP

Structure of the Earth 

Crust • Lithosphere (10 to 70 km) Granitic crust

Basaltic crust



Mantle

Crust

• Upper mantle: Asthenosphere (700km) • Lower mantle: Mesosphere (2 200 km) 

Core • Outer core (2 200km) • Inner core (1 271 km)

< passive margin >

(LITHOSPHERE)

Mid Oceanic Ridge Atlantic  Ocean

Upper mantle (ASTHENOSPHERE)

Lower mantle (MESOSPHERE)

Subduction > active margin <

Rift

Outer core  

SiAl

Sonatrach / IAP

NiFe

© 2013 ‐ IFP Training

Inner  core 

14

Dynamics of the Earth: convection

© 2013 ‐ IFP Training

Core

15

Sonatrach / IAP

Earthquake activity

© 2013 ‐ IFP Training

Lithospheric plate boundaries = seismicity (in red) Sonatrach / IAP

16

Tectonic plates

Mid oceanic ridge

Earth‐ quakes Volcanoes

Lithospheric plate boundaries: • Divergent (extensional: mid oceanic ridges) • Convergent (compressional: subduction, collision) • Sliding/Shearing (transform, strike‐slip)

© 2013 ‐ IFP Training

Sonatrach / IAP



17

Types of margins and related basins



3 types of crustal stresses • Extensional basins • Compressional basins • Shear basins



3 types of processes • Purely thermal • Lithospheric thickness variation • Loading and unloading

© 2013 ‐ IFP Training

Sonatrach / IAP

18

Types of sedimentary basins



Basins associated with plate divergence Extensional basins • Rift, passive margin (plate divergence, ocean) • Intra‐cratonic basin (intra‐continental, intra‐plate)



Basins associated with plate convergence Compressional basins • Island arc‐type margin (two oceanic plates) • Continental active margin (ocean / continent plates) • Inter‐plate collision (two continental plates)



Basins associated with shearing (sliding movement) Trans‐tensional basins • Pull‐apart basin (trans‐tension, local distension in convergence) © 2013 ‐ IFP Training

Sonatrach / IAP

19

© 2013 ‐ IFP Training

Basin analysis 

Structural and thermal evolution during burial • • • • •

Earth structure Extensive context Compressive context Transform context Thermal evolution

©  2013 ‐ IFP Training

21

Sonatrach / IAP

Rift basin

Rift are areas of crustal extension  and  thinned continental crust. Regions of  rifting are characterized by lithospheric  stretching, high heat flow and volcanic  activity caused by a thermal anomaly  at depth



Rift zones general characteristics: • Heat flow of 90 to 110mW.m‐2 • High levels of earthquake activity  and a dome‐shaped Moho • Normal faults network



Current examples in the Red Sea and in  Ethiopia

© 2013 ‐ IFP Training

Sonatrach / IAP



22

Failed rift basin



Beginning of rifting  mechanisms and stop of  lithospheric stretching caused  by a reducing and cooling of  the thermal anomaly



Rift zones general  characteristics: • Heat flow of 80 to 90mW.m‐2 • A reducing of seismic and  volcanic activity • A normal faults network  covered a disconformity

Failed rift basin



© 2013 ‐ IFP Training

Examples in the North Sea and  in Rhine‐Bresse (France)

23

Sonatrach / IAP

Intra‐cratonic basin



Intra‐cratonic basins are large  depressions in continental  crust. They have a slow and  homogeneous sedimentary  filling



Generally, intra‐cratonic basins: • Have a heat flow near‐normal  (60 to 80mW.m‐2) • Are seismically inactive • Have sediment overlain on  faults and syn‐rift sediments

Sonatrach / IAP

Examples in Paris basin and  Middle‐East

© 2013 ‐ IFP Training



24

Passive margin basin



Beginning of rifting  mechanisms and stop of  lithospheric stretching caused  by a reducing and cooling of  the thermal anomaly



Generally, passive margin  zones: • Have a heat flow near‐normal  (60 to 80mW.m‐2) • Are seismically inactive • Have sediment overlain on  faults and syn‐rift sediments



© 2013 ‐ IFP Training

Sonatrach / IAP

Examples in West Africa and  East South America

25

© 2013 ‐ IFP Training

Basin analysis 

Structural and thermal evolution during burial • • • • •

Earth structure Extensive context Compressive context Transform context Thermal evolution

©  2013 ‐ IFP Training

27

Sonatrach / IAP

Foreland basin Foreland basin 

Foreland basins are the result  of the downward flexing of  the lithosphere in response to  the weight of the adjacent  mountain belt, though many  geological and geodynamic  processes combine to control  their subsequent evolution



Generally, foreland basins: • Have a heat flow near‐normal  (60 to 80mW.m‐2) • Are seismically active



© 2013 ‐ IFP Training

Sonatrach / IAP

Examples in Alps, Himalayan  and Appalachian chains

28

Forearc basin



This basin is located between  the volcanic arc and the  subduction complex



Generally, fore‐arc basins: • Are highly seismic active



Example in Andes, Java and  Sumatra islands

© 2013 ‐ IFP Training

29

Sonatrach / IAP

Oceanic trench basin



Oceanic trenches are the  deeper part of the ocean floor  where lithosphere is in  subduction under another



The age of the oceanic  lithosphere controls the  trench depth



Generally, oceanic trench: • Have a highly seismic activity • Have an associated  accretionary prism



© 2013 ‐ IFP Training

Sonatrach / IAP

Examples in western South  America and eastern Japan

30

Basin analysis 

Structural and thermal evolution during burial • • • • •

Earth structure Extensive context Compressive context Transform context Thermal evolution

©  2013 ‐ IFP Training

31

Sonatrach / IAP

Strike‐slip basin

Trans‐pression



Strike‐slip basins are due to  transform fault movements



If the blocks move away from their  initial position, it is a transtensional movement so there are normal  faults associated to the flower  structure



Symmetrically, transpressional movement induces reverse faults

Trans‐tension

© 2013 ‐ IFP Training

Sonatrach / IAP

32

Basin analysis 

Structural and thermal evolution during burial • • • • •

Earth structure Extensive context Compressive context Transform context Thermal evolution

©  2013 ‐ IFP Training

33

Sonatrach / IAP

Origin of hydrocarbons 

Transformation of Organic Matter (O.M.) from dead fauna or flora



Accumulation & preservation of O.M. • Accumulation in quiet geological environments (lake, delta, sea) • Preservation depends on sediment type & rate, environment energy



Modification of depositional conditions • Burial, compaction, water expulsion • Temperature & pressure increase



Transformation of Kerogen into hydrocarbons • Oil • Gas (methane)

Maturation: chemical transformation, mainly due to temperature (and pressure) increase during burial Sonatrach / IAP

© 2013 ‐ IFP Training

Kerogen: non soluble part of O.M. (i.e. lipids)

34

Origin of Organic Matter



Lipids



Cellulose



Lignine

Type III

Type II

Bacteria

Wood

Algae

© 2013 ‐ IFP Training

Plankton

Type I

Animals = maximum 10% of total generated organic biomass 35

Sonatrach / IAP

Transformation of O.M. & Kerogen 

Diagenesis [< 60°C] Bacterial degradation Immature stage



Catagenesis [from 60 to 120°C] Thermal degradation → Weak chemical bonds breaking

Oil window 

Metagenesis [from 120 to 200°C] Thermal degradation → Strong C–C bonds breaking  (cracking)

Sonatrach / IAP

© 2013 ‐ IFP Training

Gas window

36

Van Krevelen diagram

© 2013 ‐ IFP Training

Sonatrach / IAP

37

Generation & Migration of HC

© 2013 ‐ IFP Training

Sonatrach / IAP

38

Hydrocarbon migration Types of migration: The word “migration” covers all types of displacements of hydrocarbons, from the source rock where they generated to the reservoir rock where they accumulate 

Primary migration • Expulsion of hydrocarbons from source rocks towards adjacent rocks. This migration takes place over very short distances (few centimetres). It depends on the internal overpressure conditions, linked to the volume of HC generated



Secondary migration • Displacement of hydrocarbons after expulsion from the source‐rock, over distances ranging from few meters to several hundred kilometres, until they are trapped • This migration takes place inside permeable conditions (reservoir rocks, open fractures open unconformities…). Migration pathways are complex and specific to each basin, they are mainly driven by pressure decrease. Migration can be lateral and/or vertical

Dysmigration • Hydrocarbon displacement from a “leaking” reservoir to the surface (i.e. seepage)

© 2013 ‐ IFP Training



39

Sonatrach / IAP

Origin of hydrocarbons: summary



Three origins of OM > three different types of Kerogen • Type I: lacustrine (lake algae, bacteria,…) • Type II: marine (zoo‐ & phyto‐plankton, micro‐organisms,…) • Type III: continental (terrestrial vegetation, forests, bacteria…)



Three steps of OM transformation within source rocks • Diagenesis (burial, lithification) • Catagenesis (Kerogen transformation) → ~60°C… • Metagenesis (cooking, cracking) → ~120°C…



Three factors for OM maturation

Sonatrach / IAP

© 2013 ‐ IFP Training

• Temperature (sediments cooking, anoxic conditions, bacterial activity) • Pressure (sediment compaction, water expulsion) • Time (molecular evolution, new atomic combinations – compensates for low T°)

40

Key Points : The petroleum trilogy Source rock Definition

Reservoir rock

Sedimentary rocks rich in  • Porous and permeable rocks OM, mature enough to  • Allow displacement and  generate hydrocarbons hydrocarbon accumulation

• Non‐permeable rocks  (prevent hydrocarbons from  migration) • Plastic rocks (can be  deformed but not fractured)

• Shales or salt rocks (plastic  Clastic rocks (e.g. sandstone) rocks) Carbonate rocks (e.g.  • Very compact sandstones or  limestones (without  limestone) porosity, “tight”) Petrophysical parameters: • Porosity: Φ • Permeability: K • Saturation: S

Lateral extension and layer  continuity are more  important than thickness

© 2013 ‐ IFP Training

• Very fine‐grained rocks  (shales, mudstones,  marls,…) with interbedded • laminations  Lithology • (sediment/OM) • Low permeability (internal  over‐pressure > under‐ compaction) • OM production,  deposition, preservation  Specificity & maturation (process,  parameters,…) • HC generation, expulsion  & migration

Seal rock / Cap rock

41

Sonatrach / IAP

Timing between elements & processes The trap must be available before/during migration

Trap 2. Processes:

Sonatrach / IAP

Source rock

Migration

Migration  pathways

Accumulation and  Preservation 

Reservoir and Seal

© 2013 ‐ IFP Training

1. Elements:

Generation

42

Pretroleum system events chart

400

300

200

Paleozoic

D

M

P

100

Mesozoic

P

TR

J

Geologic Time Scale Cenozoic

K

P

Petroleum System Events

N Rock Units

Reservoir Rock Seal Rock

Elements

Source Rock

Trap Formation Gen/Migration/Accum

Processes

Overburden Rock

Preservation

Magoon and Dow, 1994

Time of expulsion and migration. (Trap must already exist) Sonatrach / IAP

Critical Moment

© 2013 ‐ IFP Training

Critical Moment

43

Cross‐section of a petroleum system

© 2013 ‐ IFP Training

Sonatrach / IAP

44

Map of a petroleum system

Migration pathway

© 2013 ‐ IFP Training

45

Sonatrach / IAP

Petroleum system: Critical steps

Entrapment  Accumulation  Entrapment Preservation

Gas Cap Oil Water

Seal Rock Reservoir Rock

Migration 120° F

Generation

Source Rock

(60°C)

350° F

(120°C) 2480

Sonatrach / IAP

© 2013 ‐ IFP Training

Expulsion

46

Petroleum systems: key points Key points to keep in mind Conditions for the formation of a hydrocarbon field Necessary existence of:



one (or more) mature source rock, one (or more) reservoir rock, one seal rock,



a phase of migration (and pathways),

 

one (or several) traps, …and:



© 2013 ‐ IFP Training

• an adequate timing between trap formation, hydrocarbon generation and migration • sufficient quantities of generated hydrocarbons to feed the trap • preservation of trap integrity throughout geologic times

47

© 2013 ‐ IFP Training

Une formation IFP Training pour Sonatrach / IAP

Clastic reservoirs Clastic depositional environments and facies

Sonatrach / IAP

Clastic depositional  environments and facies 

Fluid flows and related sedimentary processes • Reminders • Bedforms generation • Bedforms boundaries



Depositional environments & Clastic reservoirs geometry (from continental to marine environments) • Sedimentary fill hierarchy • Depositional environments

Sonatrach / IAP

©  2013 ‐ IFP Training

− Fluvial systems & reservoirs geometry – Quality − Coastal / deltaic systems & reservoirs geometry – Quality − Marine systems & reservoirs geometry – Quality

50

Definition of siliciclastic rocks



Siliciclastics are detrital sediments that result from the accumulation of debris from erosion or alteration of existing rocks



The main mineral components are quartz, feldspars, micas and clays



Clastics are classified according to their grain size and shape: • • • •

Conglomerates / Breccias Sandstones Siltstones Shales / Claystones / Clastic muds (Sandy & shaly sediments family) © 2013 ‐ IFP Training

51

Sonatrach / IAP

Textural classification

Example of shale structure (Scanning Eletron Microscope) and composition Claystones

[Shales]

The classification of clastic sedimentary rocks is complex because several variables are involved. Particle size (both average size and range of particles’ sizes), particles composition, cement and matrix must all be taken into consideration



Shales (which consist mostly of clay minerals) are generally further classified on the basis of composition and bedding

Sonatrach / IAP

© 2013 ‐ IFP Training



52

Formation of clastic rocks



Weathering and erosion (of outcropping rocks ) • Chemical weathering (alteration) Agent: rain (+ dissolved CO2) − Solutions − Grains • Mechanical weathering (erosion) Agents: gravity, freeze/thaw, running water, wind, glaciers



Transport (of debris + solutions and colloidal particles) • Agents: − Continental: water (torrents, streams & rivers), wind, ice (glaciers) − Oceanic: currents, waves, tides, gravity flow deposits



Deposition © 2013 ‐ IFP Training

• Progressive decrease of current speed leads to deposition of transported load, with resulting sorting according to grain weight (and size)

53

Sonatrach / IAP

Bedforms characteristics



Bedform generation • Result of interaction of moving fluid on surface sediment • Undulation on non cohesive surface • Downstream migration



Bedform boundaries • Upper bedding surface: constructional structures − Unidirectional current − Oscillatory current • Lower bedding surface: erosional structures (sole marks) − Current marks: produced by erosion du to the current flow » Flute marks » Crescent marks

− Tool marks: objects removed by the current along the surface • Internal bedding − Horizontal stratification − Inclined stratification Sonatrach / IAP

© 2013 ‐ IFP Training

» Groove, Bounce, Brush

54

Clastic depositional  environments and facies 

Fluid flows and related sedimentary processes • Reminders • Bedforms generation • Bedforms boundaries



Depositional environments & Clastic reservoirs geometry (from continental to marine environments) • Sedimentary fill hierarchy • Depositional environments ©  2013 ‐ IFP Training

− Fluvial systems & reservoirs geometry – Quality − Coastal / deltaic systems & reservoirs geometry – Quality − Marine systems & reservoirs geometry – Quality

55

Sonatrach / IAP

Sediment transport



Tractive sediment transport (bedload) • Particles roll or skip on sediment  surface with a low level of suspension • Motion: rolling carpets or turbid clouds • Decreasing of velocity → downstream load deposition Geometry of deposition: oblique laminae



Suspended sediment transport (suspension) • Particles in suspension (partial, continuous or intermittent) in the water depth • Motion: ascending movement due to turbulence • Decrease of turbulence → vertical decantation

Agents: Water, wind, ice…

Sonatrach / IAP

© 2013 ‐ IFP Training

Geometry of deposition: horizontal laminae

56

Clastic depositional processes Cohesive

Non ‐cohesive

Transport in suspension

© 2013 ‐ IFP Training

Hjulstrom’s diagram Evolution of erosion vs deposition with stream (or current) speed and particle size

57

Sonatrach / IAP

Primary sedimentary structures



Formed under influence of same hydrodynamic and/or aerodynamic conditions as entrainment, transport and deposition of sediment particles



We must answer and resolve the following questions: • Which way is up? • Orientation of process that dispersed sediment? • What process was responsible for transportation and deposition of sediment?

© 2013 ‐ IFP Training

Sonatrach / IAP

58

Bedforms vs flow regime Oscillatory flow: waves • Circular motion of particle at water  surface  • Flat orbits at bottom  back and  forth motion of particles • Geometry of deposit: wavy ripples,  plane beds



Unidirectional flow: rivers, wind • Unidirectional downstream motion  of particles   • Deposition depends on grain size  vs. flow velocity • Geometry of deposit: irregular  ripples, plane beds

© 2013 ‐ IFP Training



59

Sonatrach / IAP

Bedforms in unidirectional flow 

Three main factors controlling bedforms in unidirectional currents: • Average flow velocity • Grain size • Water depth

© 2013 ‐ IFP Training

Sonatrach / IAP

60

Constructional bedforms

Bedforms shape vs flow velocity

Intermittent transport

Permanent transport © 2013 ‐ IFP Training

Erosional  bedforms

Lower Flow regime Upper flow regime

61

Sonatrach / IAP

Bedforms in oscillatory flow



Bedforms produced by wave action



Oscillatory flow • Flattening of wave orbits • Back and forth motion creating « lateral » motion along the sea bottom



General characteristics

Sonatrach / IAP

© 2013 ‐ IFP Training

• Symmetrical shape − Waves ripples − Hummocks (Swales) − Subplane beds • Peak or round crests • Straight crests, with bifurcation

62

Bedforms in oscillatory flow



Waves ripples • Develop in velocity of waves between 9 to 90 cm/s • Height: up to 20 cm • Length: up to 1 m

© 2013 ‐ IFP Training

63

Sonatrach / IAP

Bedforms in oscillatory flow 

Hummocky/swaley cross‐stratification (HCS) • Broad undulations, gently dipping − Hummocks / Swales

• • • •

In fine‐grained sandstone, subparallel laminae (lower surface) Wave length: 1 to 5 m Average set thickness: ~25 cm Storm deposits: below fairweather wave base

© 2013 ‐ IFP Training

Sonatrach / IAP

64

Erosional flow features 

Sole marks  Erosional sedimentary structures on sediment surface (preserved by burial) • Scour marks  erosional turbulence • Tool marks  object imprints



Visible as negative moulds on layers base (way‐up criteria)

© 2013 ‐ IFP Training

Sonatrach / IAP

65

Processes velocities

© 2013 ‐ IFP Training

Sonatrach / IAP

66

Sediment maturity Key points to keep in mind

© 2013 ‐ IFP Training

Sonatrach / IAP

67

© 2013 ‐ IFP Training

Clastic depositional  environments and facies 

Fluid flows and related sedimentary processes • Reminders • Bedforms generation • Bedforms boundaries



Depositional environments & Clastic reservoirs geometry (from continental to marine environments) • Sedimentary fill hierarchy • Depositional environments ©  2013 ‐ IFP Training

− Fluvial systems & reservoirs geometry – Quality − Coastal / deltaic systems & reservoirs geometry – Quality − Marine systems & reservoirs geometry – Quality

69

Sonatrach / IAP

Workshop: oscillatory bedforms



Identify depositional environment



Name bedforms



Range dimensions (λ, H, L)



Indicate flow direction



Sketch dynamic process

Sonatrach / IAP

© 2013 ‐ IFP Training

Typical Y‐shaped symmetrical ripples

70

Workshop: constructional bedforms 

Identify depositional environment



Name bedforms



Range dimensions (λ, H, L)



Indicate flow direction



Sketch dynamic process

© 2013 ‐ IFP Training

71

Sonatrach / IAP

Workshop: beach facies analogues 

Identify depositional environment



Name bedforms



Range dimensions (λ, H, L)



Indicate flow direction



Sketch dynamic process

© 2013 ‐ IFP Training

Sonatrach / IAP

72

Workshop: erosional bedforms Flute marks

© 2013 ‐ IFP Training

Load structures Sonatrach / IAP

73

Workshop: erosional bedforms

© 2013 ‐ IFP Training

Sonatrach / IAP

74

Workshop: erosional bedforms

© 2013 ‐ IFP Training

Sonatrach / IAP

75

Workshop: erosional bedforms Crescent

© 2013 ‐ IFP Training

Sonatrach / IAP

76

Workshop: Bioturbation / Way‐up criterium

© 2013 ‐ IFP Training

Sonatrach / IAP

77

Workshop: beach facies analogues

© 2013 ‐ IFP Training

Sonatrach / IAP

78

Workshop: beach facies analogues

© 2013 ‐ IFP Training

Sonatrach / IAP

79

Workshop: beach facies analogues

© 2013 ‐ IFP Training

Sonatrach / IAP

80

Clastic depositional  environments and facies 

Fluid flows and related sedimentary processes • General reminders • Bedforms generation • Bedforms boundaries



Depositional environments & Clastic reservoirs geometry (from continental to marine environments • Sedimentary fill hierarchy • Depositional environments ©  2013 ‐ IFP Training

− Fluvial systems & reservoirs geometry – Quality − Coastal / deltaic systems & reservoirs geometry – Quality − Marine systems & reservoirs geometry – Quality

81

Sonatrach / IAP

Sedimentary fill hierarchy

© 2013 ‐ IFP Training

Jeroen Schokker, Wim Westerhoff & Henk Weerts after Heinz & Aigner, 2003 Sonatrach / IAP

82

How to order the sedimentary pile?

© 2013 ‐ IFP Training

"Facies adjacent to one another in a continuous vertical  sequence also accumulated adjacent to one another laterally"

83

Sonatrach / IAP

How to order the sedimentary pile? Introduction to sedimentary sequences Depositional sequence in respect to Walther's law

© 2013 ‐ IFP Training

Clastic depositional  environments and facies 

Fluid flows and related sedimentary processes • General reminders • Bedforms generation • Bedforms boundaries



Depositional environments & Clastic reservoirs geometry (from continental to marine environments • Sedimentary fill hierarchy • Depositional environments ©  2013 ‐ IFP Training

− Fluvial systems & reservoirs geometry – Quality − Coastal / deltaic systems & reservoirs geometry – Quality − Marine systems & reservoirs geometry – Quality

85

Sonatrach / IAP

Sedimentary depositional environments Continental environments    

Marine environments

Glacial Aeolian Lacustrine Fluvial

 

• Fluvial‐dominated • Wave‐dominated • Tide‐dominated

• Braided • Meandering • Anastomosed 



Continental shelf • Siliciclastic • Carbonatic

Coastal plain  

Slope, canyon Basin • Turbiditic fan • Abyssal plain

© 2013 ‐ IFP Training

Sea level

Sonatrach / IAP

Shoreline (coast/beach) Delta

86

Transfer mechanisms in siliciclastic environments 

© 2013 ‐ IFP Training

87

Sonatrach / IAP

Alluvial fan systems 

Fan‐shaped body • Cone that radiates downslope • Stream channels emerge from valleys • Rather coarse detrital sediments • Poorly sorted



© 2013 ‐ IFP Training

Sonatrach / IAP

Built up by mountain stream • At relief's foot • Change of slope gradient  • Dip of alluvial fan: <10° (3 to  6°) • Length: from few 100 m to  100 km

88

Typical alluvial fan sequence 

Sedimentation • Beds more or less parallel to the surface • Stratification is moderately developed



Deposition mode • Debris flow or mud flow dominated • Extensive masses of mud‐supported coarse‐grained sediment, moving downward • Main channel: in upper fan and mid fan

Massive conglomerates

© 2013 ‐ IFP Training

Coarsening‐up sequence

89

Sonatrach / IAP

Alluvial fans 

Alluvial fans are cone‐shaped piles of sediment formed at the foot of highlands where streams confined by narrow valleys emerge into adjacent lowland. A series of overlapping alluvial fans generates a clastic wedge



There are some differences between alluvial fans in arid and humid climates. Sedimentation on alluvial fans begins where the streams leave their confined valleys and loose some of their transport efficiency



Alluvial fans are composed of two types of sediment: • Stream deposits • Sediment gravity‐flows Current‐transported sediments usually predominate. They are deposited either from ephemeral or perennial water flow in the channel system or, after extreme rain storms, from sheet‐floods inundating large parts of the alluvial fan



Sometimes, gravel is concentrated locally to form sieve deposits (coarse gravel and boulders devoid of finer‐grained matrix). From time to time, large debris flows with a muddy‐sandy matrix reach the proximal and mid‐fan area and bury part of the pre‐ existing, radiating channel system



At their lower end, such debris flows terminate in characteristic lobes, and they often concentrate large boulders and gravel at their outer margin, forming levees. Later, new channels cut into the mass flow deposits and rework and redistribute great proportions of their material

Sonatrach / IAP

© 2013 ‐ IFP Training



90

Fan deltas Coastal alluvial fans prograding into a lake or into the sea form fan deltas. As soon as the streams, carrying a high bed‐load, reach the standing water body, they drop their coarse material at the shore face and in prodelta foresets



The intensity of reworking, sorting, and redeposition, as well as the transport of material along the shoreline, depend on the wave energy and, in marine environments, on the tidal range



In the case of lakes and protected embayments, fan progradation is little influenced by these processes. Gravel and sand accumulate at the mouths of streams until they become unstable from time to time and move as subaqueous debris flows into deeper water. There, they alternate with muddy lake or marine deposits



On high‐energy coasts, some of the coarse material dropped at the river mouth is transported alongshore adjacent beaches where it forms distinctive beach gravel; some sand and gravel is swept by storms into deeper water



Fluctuations in the water level in lakes or the sea affect both the subaerial and subaqueous facies of fan deltas. They are reflected by fluvial terraces and coarse grained river mouth deposits at varying elevations. A lowering of the lake or sea level causes the emergence of delta foresets and the subsequent cutting of fluvial channels into the foresets. These channels are commonly filled later with fluvial deposits

Sonatrach / IAP

© 2013 ‐ IFP Training



91

Exercise: identify environment and name feature 

© 2013 ‐ IFP Training

Sonatrach / IAP

92

Fluvial depositional systems Main characteristics



• Unidirectional flow regime • Transport until flow exists, with decreasing grain size of carried particles • Three types of sediment bedload: − Bedload − Suspended load − Mixed load • Sediments start to deposit when river loses energy or/and is progressively abandoned (progressive decantation) • Typical depositional sequence: basal erosional surface and fining‐upward sequence

Three main types of river (fluvial) systems (according to braided parameters and sinuosity index):



© 2013 ‐ IFP Training

• Braided system • Meandering system • Anastomosed system

93

Sonatrach / IAP

Fluvial depositional settings 

Channel pattern is the combination of • Bedload vs suspended load • Bank stability • Slope gradient • Flow fluctuations

© 2013 ‐ IFP Training

Sonatrach / IAP

94

Transfer mechanisms in siliciclastic environments 

© 2013 ‐ IFP Training

95

Sonatrach / IAP

Braided river systems 

Braided rivers are characterized by high‐sediment load and high velocity



Typical succession of lenticular sorted conglomerates and coarse sandstones

© 2013 ‐ IFP Training

Sonatrach / IAP

96

Typical braided river sequence Braided rivers and its bars

Several erosional channels

Stacked fining‐up sequences

© 2013 ‐ IFP Training

Basal lag deposit

Basal erosional surface 97

Sonatrach / IAP

Examples of basal conglomerates (lag deposit)

Erosion in the flood plain Sonatrach / IAP

© 2013 ‐ IFP Training

Erosional baseline

98

Log responses – Outcrop analogue

© 2013 ‐ IFP Training

Sonatrach / IAP

99

Typical braided river architecture



Gravel‐rich braided  system • Longitudinal bars • Conglomerates  dominant



Sand‐rich braided  system • Transverse bars • Sandstones dominant

© 2013 ‐ IFP Training

Sonatrach / IAP

100

Braided river systems

Braided streams usually consist of several individual channels separated by bars and islands and therefore form a wide, shallow stream bed. Braided rivers develop near areas of high relief, which deliver relatively large amounts of debris, gravel and sand into the fluvial system



From all these characteristics, it can be inferred that braided systems are bed load‐ dominated, they carry and deposit chiefly gravel and sands. Therefore, they consist predominantly of channel and channel‐flank deposits, while silty and muddy floodplain facies are subordinate



Downstream, they often display a progressive decrease in grain size, as well as in bed forms and internal sedimentary structures



The interstices in the gravel are usually later filled with sand during low water periods, but in this system sandy beds are relatively rare in the proximal zone, unless there is little gravel available in the source area. Sandy beds develop best at somewhat higher topography elevations within the braided system next to the active channel system

© 2013 ‐ IFP Training



101

Sonatrach / IAP

Braided river systems Many bars are somewhat graded. Interbedded with the gravels are thin lenses of sand representing deposition in abandoned channels or sand wedges at the edge of bars



In places, one can observe repeated successions of fining‐upward gravel‐sand sequences 1 to 2 m thick, but in general it is difficult to identify the bottoms of former channels and the geometry of their fill. The reason is that the underlying and neighboring sediments also consist largely of gravel



Downstream, the predominantly gravelly beds grade into beds consisting partly of smaller pebbles and sand. In the lower, more active channels, bar gravels dominate, whereas sands and pebbly sands are common at higher topography elevations. In rarely flooded areas, some silt and mud may be deposited and preserved



In the total assemblage, the gravel content varies between 10 and 70 %. As a result of downstream and laterally migrating sand and gravel bars, planar and trough cross‐bedding are the most important internal sedimentary structures



Both the lateral migration and sudden abandonment of channels due to avulsion cause fining‐upward channel fill sequences a few meters thick. Such sequences are considered the most distinctive characteristic feature of this type of braided river deposit

Sonatrach / IAP

© 2013 ‐ IFP Training



102

Braided river architecture: reservoir potential

 

Sonatrach / IAP

High Net‐to‐Gross Immature sediments; early alteration Require top‐seal/structural traps

Sheet‐like geometry Thin shaly interval at the top

© 2013 ‐ IFP Training



103

Transfer mechanisms in siliciclastic environments 

© 2013 ‐ IFP Training

Sonatrach / IAP

104

Typical meandering river sequence

Crevasse splay Point Bar

Coal Fine grained sandstone Organic shale, roots medium coarse to grained sandstone

Fining‐up sequence : point bar Sonatrach / IAP

Meandering river

© 2013 ‐ IFP Training

Erosion

105

Generation of meanders

© 2013 ‐ IFP Training

Sonatrach / IAP

106

Meandring river architecture: reservoir potential

  Sonatrach / IAP

Lower Net‐to‐Gross Sediment more mature Stratigraphic trap potential

Shoe‐lace geometry becoming sheet like Shales frequent in sequence

© 2013 ‐ IFP Training



107

Meandering river systems

© 2013 ‐ IFP Training

Sonatrach / IAP

108

Meandering river systems 

Meandering river systems develop one principal, relatively narrow channel of high sinuosity (> 1.5) and are dominated by mixed load or predominantly suspended load. Their overall sand content often averages 20 to 40 %. If meandering rivers are associated with a wide floodplain, the channel sediments may be restricted to a comparatively narrow zone within the flood basin where they form a meander belt



In a sinuous channel segment, one can distinguish the following morphological features and depositional sub‐environments: − − − − − −

Channels and channel fills Point bars and lateral accretion complexes Chute bars Channel plugs (oxbow lakes) Levee and crevasse splay deposits Alluvial floodplain deposits

• Point bars accumulate on the inner sides of river bends, while on the outer side material from the bank is eroded. In this way, the curvature of the meander tends to become increasingly exaggerated until the river produces short‐cuts, leaving behind abandoned channel segments (oxbow lakes)

© 2013 ‐ IFP Training

• The channel floor is usually covered by lag sediments consisting of the coarsest material transported by the river during peak flood. This channel lag may also contain mud clasts or blocks eroded from the banks. Lag sands and gravel usually accumulate between scour pools and form flat, elongate bars displaying either imbrication of gravel or crudely laminated and planar cross‐bedded gravelly sand

109

Sonatrach / IAP

Meandering river systems Most of the point bar material is eroded from the upstream channel banks. It is deposited in areas of lower velocity turbulence. Because sediment moves up and out of the channel onto the bar, cross sections of point bars often show fining‐upward sequences, with sands on top of channel lags



Similarly, the internal structures grade from horizontal bedding (upper flow regime) to large‐scale and small scale trough cross‐bedding (lower flow regime). The most distinctive feature of point bars is lateral accretion)



Many meandering channels are accompanied by flat ridges sloping away from the channel into the floodplain. These levees are built up during moderate floods which just reach the elevation of the channel ridge. Due to decreasing flow velocity, sand is deposited along the channel ridges, grading into silt somewhat farther away



Locally, channel water may spill over the levees into the floodplain, forming crevasse splays. The fallout of sand and silt usually extends farther into the floodplains than the levees, but such crevasse splays can also contribute to the buildup of the levees



The prevailing internal structures of these sand sheets may resemble those of thin sandy turbidites, showing some grading, horizontal lamination and small‐scale ripple cross‐ bedding. These structures are, however, often mashed or destroyed by the roots of vegetation. Whereas distal crevasse splays become interbedded with floodplain deposits, levee sands of ten tend to be reworked by subsequent channel migration

Sonatrach / IAP

© 2013 ‐ IFP Training



110

Crevasse splay deposits 

Deposits formed during flood period, by break into the channel levees



Cones composed of sand to silty facies



Formed by stacked fining upward thin sequences with small secondary channels at top during peak of flood

© 2013 ‐ IFP Training

111

Sonatrach / IAP

Channel levees deposits

Mississipi



Levees deposits, adjacent to the channel and formed during the flooding period, are:

Sonatrach / IAP

© 2013 ‐ IFP Training

• Wedge deposits of alternating fine sand /silts and mud • Showing parallel to small current ripple laminations

112

Transfer mechanisms in siliciclastic environments 

© 2013 ‐ IFP Training

Sonatrach / IAP

113

Anastomosing river systems 

Develop in • Upstream area or downstream areas • Low sinuosity (less than braided) • Several wandering channels 



Particularities of each channel • Stable banks (not ephemeral) • Fixed by vegetation

© 2013 ‐ IFP Training

Sonatrach / IAP

114

Anastomosing river architecture: reservoir potential



Lower Net‐to‐Gross Sediment more mature

vertical stacked and confined sand bodies encased in mud

© 2013 ‐ IFP Training



115

Sonatrach / IAP

Fluvial architecture and reservoir potential Key points to keep in mind 

River systems • Main reservoirs located in channels and channels belts • Associated reservoirs located in − Levees deposits − Crevasse splays − Floodplains sandstones



Braided system: reservoir bodies • Vertical and lateral stacking, good connection • Geometry: Sheetlike or tabular sandbodies (stacked multistorey infill)



Meandering system: reservoir bodies • Dominant lateral accretion (point bar – levees – crevasse splays) • Geometry: “point bar – clay plug” model, isolated sandbodies

Anastomosing system: reservoir bodies • Dominant vertical aggradation, isolated narrow channels • Geometry: channel fill

Sonatrach / IAP

© 2013 ‐ IFP Training



116

Depositional environment vs reservoir distribution

ELF 1997

© 2013 ‐ IFP Training

Variation of reservoir quality with depositional environment and energy (slope)

117

Sonatrach / IAP

River types vs reservoir distribution

Slims

Williams

Windorah 

© 2013 ‐ IFP Training

Sonatrach / IAP

118

River facies: reservoir potential Fluvial architecture vs reservoir potential Braided Meandering Anastomosed

Sonatrach / IAP

© 2013 ‐ IFP Training

Courtesy of Pr. M. Lopez (U. of Montpellier)

119

© 2013 ‐ IFP Training

Clastic depositional  environments and facies 

Fluid flows and related sedimentary processes • General reminders • Bedforms generation • Bedforms boundaries



Depositional environments & Clastic reservoirs geometry (from continental to marine environments • Sedimentary fill hierarchy • Depositional environments ©  2013 ‐ IFP Training

− Fluvial systems & reservoirs geometry – Quality − Coastal / deltaic systems & reservoirs geometry – Quality − Marine systems & reservoirs geometry – Quality

121

Sonatrach / IAP

Coastal deposits



Coastal environment: river outlet, delta • Continuous quantity of sediments provided by the river • Deposition driven by energy loss (decreasing flow rate, decantation) − From coarse‐grained sand (close to coast and beach) to fine‐grained sand and shales (towards platform and basin) − Continental environment taking over marine environment with time

• Variable distribution of river sediments according to local dominant energy factor (river flow, tidal currents, wave action)

© 2013 ‐ IFP Training

Sonatrach / IAP

122

Clastic depositional environments

© 2013 ‐ IFP Training

123

Sonatrach / IAP

Delta shapes & energy 

Morphological classification of deltas based on delta front shape which reflects: • Relation between the relative importance of rive, tide or wave processes • Sediment supply • Duration in time

Birdfoot

Lobate

Fluvial  dominated

Cuspate

Sonatrach / IAP

Tide  dominated Estuarian

© 2013 ‐ IFP Training

Wave  dominated

124

Delta classifications



© 2013 ‐ IFP Training

Sonatrach / IAP

Delta morphology reflects the relative importance of fluvial, tidal, and wave processes, as well as gradient and sediment supply • River‐dominated deltas occur in microtidal settings with limited wave energy, where delta‐lobe progradation is significant and redistribution of mouth bars is limited • Wave‐dominated deltas are characterized by mouth bars reworked into shore‐ parallel sand bodies and beaches • Tide‐dominated deltas exhibit tidal mudflats and mouth bars that are reworked into elongate sand bodies perpendicular to the shoreline

125

Deltaic environments

© 2013 ‐ IFP Training

Sonatrach / IAP

126

Key points: Fluvial‐dominated deltas



Fluvial‐dominated deltas are primarily controlled by the water density difference between the inflowing river water and the standing water on the basin. Delta – lobe progradation is significant while mouth bar distribution remains limited

Sonatrach / IAP

© 2013 ‐ IFP Training



127

Fluvial‐dominated deltas



Different flow types that determine the distribution of sediment and sedimentary structures formed in the delta are hyperpycnal flow and hypopycnal flow • Hyperpycnal flow produced when the density of the river water entering the basin is greater than the density of the standing water in the ocean basin. This higher density river water will flow below the standing water in the basin because of the difference in density. A zone of mixing occurs along the outer edge of the flow. As the river water flows beneath the standing water, it erodes the previously deposited bottom sediments.

Sonatrach / IAP

© 2013 ‐ IFP Training

• Hypopycnal flow is associated with a lower river water density entering a higher density standing water in the basin. Under these conditions, the river water will flow out over the standing water, gradually depositing the suspended clay portion of the sediment load on the prodelta

128

Key points: Wave‐dominated deltas



© 2013 ‐ IFP Training



Wave‐dominated deltas are primarily influenced by wave energy and action. The common sequence reflects reworked mouth bar into sandbodies and beaches parallel to the shoreline

129

Sonatrach / IAP

Coastal depositional environments Shoreline

Shelf

© 2013 ‐ IFP Training

Sonatrach / IAP

130

Identify features and infer depositional environment

© 2013 ‐ IFP Training

Sonatrach / IAP

131

Identify features and infer depositional environment

© 2013 ‐ IFP Training

Sonatrach / IAP

132

Coastal depositional environments

© 2013 ‐ IFP Training

133

Sonatrach / IAP

Coastal sedimentary features

Swash zone

© 2013 ‐ IFP Training

Sonatrach / IAP

134

Sedimentary features: HCS stratifications

© 2013 ‐ IFP Training

Hummocky cross stratification (HCS) forms during storm events  with combined wave and current activity in shallow seas 

135

Sonatrach / IAP

Key points: Tide‐dominated deltas



Sonatrach / IAP

© 2013 ‐ IFP Training



Tide‐dominated deltas typically occur in locations of large tidal ranges or high tidal current speeds. The sediment supply is over powered by strong tidal currents, the delta tends to be very small Resulting feature of a tide‐dominated delta is that it has many linear structures parallel to the tidal flow and perpendicular to the shore

136

Tidal environments



Tide • • • •

Periodic phenomenon on coastal domain Results from the gravitational attraction (Earth, Moon, Sun) Regular rise and fall of water level in the world’s oceans Effective agent of transport of sediment



Tidal range: vertical amplitude between low tide and high tide



Foreshore: area horizontally alternately covered and uncovered by the tide



Characterization • Particle transport is vigorous and rapid − Bipolar linear current (alternating tidal currents: Flood/Ebb) − Cross‐stratification in opposite directions (herringbone) : Flood / Ebb oscillation

Repeated erosion and creation of tidal channels Difficult conditions for living organisms Flaser, wavy and lenticular beddings Reactivation surface

© 2013 ‐ IFP Training

• • • •

137

Sonatrach / IAP

Tidal influenced bedforms & sedimentary structures 

Tide‐influenced sedimentary structures: • Herringbone cross stratification → bipolar flow directions • Mud‐draped cross strata (quite common): result from alternating bedform migration during high flow velocities with mud drapes deposition during high/low tide slack water • Tidal bundles are characterized by a sand‐mud couplet of varying thickness; tidal bundle sequences consist of bundles that can be related to neap‐spring cycles

Flood

Flood‐ebb tidal deposits

Sonatrach / IAP

© 2013 ‐ IFP Training

Ebb

138

Sedimentary structures in tidal range

© 2013 ‐ IFP Training

Sonatrach / IAP

139

Sedimentary structures: tide‐related laminae

© 2013 ‐ IFP Training

Sonatrach / IAP

140

Sedimentary structures: tide‐related laminae Bundle thickness vs tide cycles

© 2013 ‐ IFP Training

141

Sonatrach / IAP

Summary table: sedimentary features vs environments Depositional energy

Water Zone

Sediment type  (GS)

Backshore

Parallel landward stratifications

High ℮

Swash zone Breaking zone

Sand

Foreshore (Tidal flat)

Lenticular Wavy Flaser

Low → High ℮

High tide (MHW) Low tide (MLW)

Mud Mud/Sand Sand

Sandwaves (trough) Megaripples(tabular) Ripples (sym/asym)

High ℮

Low tide (MLW) Fair weather zone  (MFWB)

Sand (winnowed: clean, rounded & sorted)

Upper offshore

Storm HCS Wavy bedding

Low ℮

Storm weather zone  (MSWB)

Silty/Shaly

Lower offshore

Wavy bedding

Low ℮

Outer shelf

Shaly (burrows)

Deep water [Turbidites]

Massive (no struct.) [Bouma, Stowe,...]

Low ℮ [High ℮ gravity flow]

Slope Basin

Muddy [Sandy/Silty]

Shoreface

Sonatrach / IAP

Laminae

Sedimentary features

© 2013 ‐ IFP Training

Environment

142

Key points : Coastal systems and reservoir potentials Key points to keep in mind 2. Reservoir bodies: Mouth bar, and aggradational channels complexes  located along the distributary:

Limited lateral extension

Fluvial‐ dominated

Wave‐ dominated

Tide‐ dominated

3. Reservoir bodies:

Beach barrier island, very good lateral  continuity, well sorted sandbodies and clay‐free:

Isolated tidal bar, poor continuity and extension. Well sorted sandstone, but lot of clay drapes due to intertidal processes: Discontinuous reservoir

Best reservoir

Sonatrach / IAP

© 2013 ‐ IFP Training

1. Reservoir bodies:

143

© 2013 ‐ IFP Training

Clastic depositional  environments and facies 

Fluid flows and related sedimentary processes • General reminders • Bedforms generation • Bedforms boundaries



Depositional environments & Clastic reservoirs geometry (from continental to marine environments • Sedimentary fill hierarchy • Depositional environments ©  2013 ‐ IFP Training

− Fluvial systems & reservoirs geometry – Quality − Coastal / deltaic systems & reservoirs geometry – Quality − Marine systems & reservoirs geometry – Quality

145

Sonatrach / IAP

Gravity deposits



Continental environment: broken blocks or erosional debris falling down by gravity and/or density–turbulence current



Aquatic environment (lake, open marine) • Mass flow (debris flow, mud flow) − Low amount of water incorporated in sediments − Sedimentation without any sorting (very fast and sudden, almost instantaneous event)

• Density‐turbulence flow

Sonatrach / IAP

© 2013 ‐ IFP Training

− Progressive incorporation of water (turbulent flow or current) − Sediments start to be deposited when flow velocity and related turbulence decrease: coarser grains are deposited first and finer last − One turbidite = one single event − Very good sorting in layers: fining upward sequence with well organized geometry evolution

146

Marine clastic deposits: turbidites

© 2013 ‐ IFP Training

Fluvial vs turbiditic clastics: similar organization of sediments in deeper environments 147

Sonatrach / IAP

Gravity deposits vs. processes & sediment supply Step 3‐ geometries & extend of turbidites 

Step 1‐ Initiation of gravity deposits

Sonatrach / IAP

© 2013 ‐ IFP Training

Step 2 ‐ Processes of  transport &deposition

148

Turbidite system general organization

Cross‐sections: from proximal to distal turbiditic facies

© 2013 ‐ IFP Training

149

Sonatrach / IAP

Turbiditic system organization Upper fan

Middle fan

Turbidite deposits: sedimentary facies and  log responses Lower fan

New lobe

Sonatrach / IAP

© 2013 ‐ IFP Training

Abyssal plain

General upward tendency: coarsening and shallowing upward

150

Turbidites: depositional mechanism

© 2013 ‐ IFP Training

Lab reconstitution of a dynamic gravity flow (mini turbiditic current = avalanche!)

151

Sonatrach / IAP

Bedforms in unidirectional flow 

Three main factors controlling bedforms in unidirectional currents: • Average flow velocity • Grain size • Water depth

© 2013 ‐ IFP Training

Sonatrach / IAP

152

Typical turbidite depositional sequences



Main characteristics • Allochthonous sedimentation • Highly organized from proximal to  distal part • Dominantly controlled by  unidirectional flow • General fining upward sequence • Facies association from channels  to levees and lobes

© 2013 ‐ IFP Training

153

Sonatrach / IAP

Conventional Bouma sequence & field outcrop

Obara turbidites, Spain © 2013 ‐ IFP Training

Sonatrach / IAP

154

Conventional Bouma sequence & field outcrop

© 2013 ‐ IFP Training

St Jean de Luz turbidites ‐ France 

155

Sonatrach / IAP

Deep sea deposits: turbidites

Turbiditic system with midfan/suprafan lobes

Simple turbiditic system without lobes

© 2013 ‐ IFP Training

Abundant sediments reworked from delta Sonatrach / IAP

156

Turbidite outcrop

Courtesy Philippe JOSEPH

© 2013 ‐ IFP Training

Turbiditic sandstones (Mid fan ‐ channel)

157

Sonatrach / IAP

Turbidite outcrop

Stacked channels

Turbiditic sandstones Sonatrach / IAP

© 2013 ‐ IFP Training

Lower fan ‐ lobes

158

Turbidite outcrop 

Sonatrach / IAP

© 2013 ‐ IFP Training

Bouma sequence: Tb and Tc 

159

Sedimentation rate and sea variations

© 2013 ‐ IFP Training

Sonatrach / IAP

160

Fluvial and deltaic sequences

Gamma Ray log responses and depositional deltaic environments

© 2013 ‐ IFP Training

Sonatrach / IAP

161

Sediment maturity

© 2013 ‐ IFP Training

Sonatrach / IAP

162

Clastic reservoirs internal geometry and organization

© 2013 ‐ IFP Training

163

Sonatrach / IAP

Clastics Key points to keep in mind 

Clastic sediments are: • Allochthonous erosional products (weathering, alteration and transportation) • Transported by fluvial water, wind, ice • Deposited in basins



The main depositional process of clastic sediments is progressive decantation due to gradual decay of flow velocity (water or density current), i.e. decreasing transport energy

Fluvial, deltaic and turbiditic depositional sequences are mostly fining‐upward  The evolution of a fluvial system (e.g. meander) involves both erosional and decantation processes 



The development of a delta is mostly due to progradation (if constant sediment supply and sea level)

A turbidite results from a single depositional event (intermittent sediment supply)  The main source of continental sediments is erosion of existing rock (outcrops)  The main source of deep sea deposits is reworking of existing sediments (e.g. delta) 

© 2013 ‐ IFP Training

Sonatrach / IAP

164

Une formation IFP Training pour Sonatrach / IAP

Clastic reservoirs Log responses in clastic sequences

Sonatrach / IAP

Log responses in clastic sequences 

Sedimentological & stratigraphic well log analysis • • • •

Log shapes review Depositional environment review & logs characteristics Parasequences & logs responses Clastic system tracts and logs facies responses

©  2013 ‐ IFP Training

Sonatrach / IAP

166

Sedimentary processes

© 2013 ‐ IFP Training

Sonatrach / IAP

167

Log responses

© 2013 ‐ IFP Training

Sonatrach / IAP

168

Log responses

© 2013 ‐ IFP Training

169 Sonatrach / IAP

© 2013 ‐ IFP Training

Log responses in clastic sequences 

Sedimentological & stratigraphic well log analysis • • • •

Log shapes review Depositional environment review & logs characteristics Parasequences & logs responses Clastic system tracts and logs facies responses

©  2013 ‐ IFP Training

171

Sonatrach / IAP

Typical braided river sequence Braided rivers and related bars

Several erosional channels

Stacked fining‐up sequences Sonatrach / IAP

© 2013 ‐ IFP Training

Basal lag deposit

Basal erosional surface 172

Typical meandering river sequence

Crevasse splay Point bar

Coal Fine grained sandstone Organic shale, roots medium coarse to grained sandstone

Fining‐up sequence: point bar

Meandering river

© 2013 ‐ IFP Training

Erosion

173

Sonatrach / IAP

Typical depositional sequences of fluvial sediments Key points to keep in mind Alluvial fan            

Braided river       

Meandering river    

© 2013 ‐ IFP Training

Sonatrach / IAP

174

Deltaic depositional sequences

© 2013 ‐ IFP Training

175

Sonatrach / IAP

Turbidites sequences 

Main characteristics: • Allochthonous sedimentation • Highly organized from proximal to distal  part • Dominantly controlled by unidirectional  flow • General fining‐upward sequence • Facies association from channels to  levees and lobes

© 2013 ‐ IFP Training

Sonatrach / IAP

176

Clastic sequences Gamma Ray log responses  and depositional environments

© 2013 ‐ IFP Training

Sonatrach / IAP

177

© 2013 ‐ IFP Training

Log responses in clastic sequences 

Sedimentological & stratigraphic well log analysis • • • •

Log shapes review Depositional environment review & logs characteristics Parasequences & logs responses Clastic system tracts and logs facies responses

©  2013 ‐ IFP Training

179

Sonatrach / IAP

Accommodation variations and related sequences PROGRADATIONAL PARASEQUENCE SET

Rate of deposition Rate of accommodation

SP

RES

SP

RES

SP

RES

> 1

RETROGRADATIONAL PARASEQUENCE SET

Rate of deposition Rate of accommodation

< 1

AGGRADATIONAL PARASEQUENCE SET

Rate of deposition

= 1

Coastal plain sandstones And mudstones Sonatrach / IAP

Shallow marine sandstones

© 2013 ‐ IFP Training

Rate of accommodation

Shelf Mudstones

MITCHUM and VAN WAGONER 1991

180

Correlations during progradation time

Basinward

© 2013 ‐ IFP Training

Sonatrach / IAP

181

Correlations during progradation time

© 2013 ‐ IFP Training

Sonatrach / IAP

182

Facies distribution wave or fluvial‐dominated environment

© 2013 ‐ IFP Training

Sonatrach / IAP

183

Facies distribution fluvial or wave‐dominated environment

© 2013 ‐ IFP Training

Sonatrach / IAP

184

Facies distribution shoreline‐dominated environment

© 2013 ‐ IFP Training

Sonatrach / IAP

185

Facies distribution in tidal flat‐dominated environment

© 2013 ‐ IFP Training

Sonatrach / IAP

186

Log responses in clastic sequences 

Sedimentological & stratigraphic well log analysis • • • •

Log shapes review Depositional environment review & logs characteristics Parasequences & logs responses Clastic system tracts and logs facies responses

©  2013 ‐ IFP Training

187

Sonatrach / IAP

188

© 2013 ‐ IFP Training

Sonatrach / IAP

© 2013 ‐ IFP Training

© 2013 ‐ IFP Training

Sonatrach / IAP

189

Sonatrach / IAP

190

Hierarchy of fluvial architectural elements

© 2013 ‐ IFP Training

Sonatrach / IAP

191

© 2013 ‐ IFP Training

Une formation IFP Training pour Sonatrach / IAP

Clastic reservoirs Clastic Petrography & Diagenesis

Sonatrach / IAP

Clastic Petrography &  Diagenesis 

Mineral diagenesis • Definition and processes



Diagenetical analysis • • • •



Effect of compaction on primary porosity Effect of cementation on primary porosity Replacement during diagenesis Fluid dynamics and diagenetical regimes

Heterogeneities

Sonatrach / IAP

©  2013 ‐ IFP Training

• Introduction: heterogeneities in the reservoir • Reservoir heterogeneity features

194

Mineral diagenesis: Definition



All physical, chemical or biological processes at relatively low temperatures (less than 200‐250°C) and pressures (less than 2‐3kbars) that affect a sediment (or a sedimentary rock) after its deposition.



Compaction, dissolution, cementation, mineral replacement are major elementary processes of diagenesis activated by physico‐chemical parameters (pressure, temperature, fluid composition) and/or biological (bacterial activity, bioturbation)

© 2013 ‐ IFP Training

195

Sonatrach / IAP

Why study diagenesis?



To understand: • Transformation mechanisms from sediment to sedimentary rock • Sedimentary basin dynamic • Reservoir quality • Nature and distribution of porosity and permeability • Fluid flow evolution • Extend of oil recovery • Interaction of secondary recovery fluids with the reservoir • Movement or binding of pollutants

© 2013 ‐ IFP Training

Sonatrach / IAP

196

Processes 

Physical • Compaction • Fluid migration • Pressure solution



Chemical • • • • •



Mineral reaction Mineral replacement Cementation Dissolution Organic matter evolution

Geological & climatic



© 2013 ‐ IFP Training

• Original depositional environment • Diagenetic environment • Tectonic setting and basin evolution Etc.

→ All processes are interdependent and cannot be easily separated 197

Sonatrach / IAP

What is lithification? Process which leads to the transformation of a non‐consolidated sediment to a rock.



It implies grain cementation in the sediment but not necessarily burial and compaction (e.g. beachrock)



Lithification is the result of diagenetic processes but diagenesis does not necessarily lead to sediment lithification.

Sonatrach / IAP

© 2013 ‐ IFP Training



198

What type of diagenesis?



Early diagenesis • Changes essentially biochemical • First meters of burying • Early in the history of sediments • Environment in marine, meteoric, salted zone and vadoze zone



Late diagenesis • Slower changes (compaction, dissolution and mineralogical transformations) • Burying diagenesis (pressure, temperature and fluids effects) • Type of rock (carbonates, clays, siliciclastics, etc.) controlled by climate, tectonic and sedimentary contexts © 2013 ‐ IFP Training

Sonatrach / IAP

199

© 2013 ‐ IFP Training

Clastic Petrography &  Diagenesis 

Mineral diagenesis • Definition and processes



Diagenesical analysis • • • •



Effect of compaction on primary porosity Effect of cementation on primary porosity Replacement during diagenesis Fluid dynamics and diagenetic regimes

Heterogeneities ©  2013 ‐ IFP Training

• Introduction: heterogeneities in the reservoir • Reservoir heterogeneity features

201

Sonatrach / IAP

Definition of compaction



All processes which lead to a decreasing of porosity in sediment or sedimentary rock and generate pore fluid eviction

Rearrangement

Cementation

(with volume losses)

(without volume losses)

© 2013 ‐ IFP Training

Sonatrach / IAP

202

Mechanical compaction – 1/2



Occur at shallow burial depth



Reworking of sediments (grain repacking and rearrangement, bioturbation)



« The tightest packing of spheres is rhombohaedral (Φ=25%) while the loosest is cubic (Φ=50%) » Graton & Fraser, 1935

© 2013 ‐ IFP Training

203

Sonatrach / IAP

Mechanical compaction – 2/2 Impact of grain size, roundness and sphericity



Mechanical compaction is generally more effective in mudrocks than sandstones (high water content in shales, rapidly expelled by compaction)

Water



Minerals

Compaction

+

Sonatrach / IAP

© 2013 ‐ IFP Training

Water  loss

Water

Minerals

204

Rearrangement example in siliciclastics

1 mm

© 2013 ‐ IFP Training

Sonatrach / IAP

205

Rearrangement example in carbonates

© 2013 ‐ IFP Training

Sonatrach / IAP

206

Chemical compaction



Mainly achieved by reprecipitation of minerals in remaining pore spaces



Cementation more obvious in coarse clastics than mudrocks



Main process is pressure‐solution

P1

Where Pw = Pore fluid pressure P2

And P1 > P2 > Pw Pw

© 2013 ‐ IFP Training

Reprecipitation of overgrowth forms (dark blue) by  diffusion of silica from the grain contact to the pore  spaces

207

Sonatrach / IAP

Pressure‐solution



Development of sutured contact enhanced by presence of clays • Enhance transport of ions away from site of pressure solution (diffusion network)



Much more difficult to produce pressure‐solution in clean sandstones



In coarse clastic sediments (gravels) • High pressure contacts • Rapid porosity loss early in burial slowing down rapidly



In fine clastic sediments (sandstones & siltstones) • Higher surface area in contact = fewer nucleation sites • Rapid porosity loss at depth © 2013 ‐ IFP Training

Sonatrach / IAP

208

Pressure‐solution mechanisms Major constraint σ1 1. DISSOLUTION

2. DIFFUSION

Grain

Minor constraint σ3 3. OVERGROWTH

© 2013 ‐ IFP Training

209

Sonatrach / IAP

Pressure‐solution in sandstone

Φ

Overgrowth

Φ © 2013 ‐ IFP Training

Sonatrach / IAP

210

Pressure‐solution in carbonate Nummulitic limestone (Eocene, Corsica) Precipitation Diffusion

Dissolution

Awl

Concept

Polarized light

Cathodoluminescence © 2013 ‐ IFP Training

211

Sonatrach / IAP

Pressure‐solution example in sandstone (polarized light)

Ex1 Lum Pola

Ex1 Lum nat

© 2013 ‐ IFP Training

Sonatrach / IAP

212

Pressure‐solution example in sandstone (natural light)

Zoom 2

Zoom 1

© 2013 ‐ IFP Training

213

Sonatrach / IAP

Pressure‐solution example in sandstone (natural light)

Zoom 1

© 2013 ‐ IFP Training

Dissolution Sonatrach / IAP

214

Pressure‐solution example in sandstone (natural light)

Precipitation

500 µm

© 2013 ‐ IFP Training

Zoom 2

215

Sonatrach / IAP

Mineralogical dissolution example (Natural light)

© 2013 ‐ IFP Training

Potassic feldspar (FK) dissolution Sonatrach / IAP

216

Clastic Petrography &  Diagenesis 

Mineral diagenesis • Definition and processes



Diagenesical analysis • • • •



Effect of compaction on primary porosity Effect of cementation on primary porosity Replacement during diagenesis Fluid dynamics and diagenetic regimes

Heterogeneities ©  2013 ‐ IFP Training

• Introduction: heterogeneities in the reservoir • Reservoir heterogeneity features

217

Sonatrach / IAP

Cementation parameters – 1/2



An allogenic cementation occur during deposition



An authigenic cementation grown in situ during diagenesis



There is rarely sufficient material in the rock to account for all cements present



Degree of supersaturation of the pore fluid, example in silica • High level, soluble forms precipitate: opal and chalcedony form thin crusts and mosaics on grains • Low level: quartz precipitates (because low solubility) and slowly forms monocrystalline overgrowths



Other common cements:

Sonatrach / IAP

Carbonates (calcite, dolomite) Silicates (quartz, opal, potassic & sodic feldpars) Clay minerals (kaolin, illite, chlorite…) Sulphates (gypsum, anhydrite…) Oxides (haematite…)

© 2013 ‐ IFP Training

• • • • •

218

Cementation parameters – 2/2



From fluids to cement formation: • Water salinity • Dissolution of soluble rock • Groundwater percolation • Shales expulsion • Mineral and organic reaction



Cement precipitation depends on the nucleation



A slow kinetic or an inhibitor presence can explain the no‐precipitation

© 2013 ‐ IFP Training

219

Sonatrach / IAP

Sources of silica cement 

During early diagenesis: • Skeletal remains of diatoms and radiolaria • Quartz dust abraded during transportation



During late diagenesis: • Mainly pressure‐solution

© 2013 ‐ IFP Training

Radiolaria Diatom Sonatrach / IAP

220

Cementation in sandstone reservoir (Brent)

Uncemented sandstone

Diagenetic front

Cemented sandstone  (calcitic cement) © 2013 ‐ IFP Training

221

Sonatrach / IAP

Sources of kaolin cement



Alteration and mineral recombination in porosity

Sonatrach / IAP

Quartz

Porosity

Quartz

Kaolin cement

© 2013 ‐ IFP Training

Kaolin cement

222

Clastic Petrography &  Diagenesis 

Mineral diagenesis • Definition and processes



Diagenesical analysis • • • •



Effect of compaction on primary porosity Effect of cementation on primary porosity Replacement during diagenesis Fluid dynamics and diagenetic regimes

Heterogeneities ©  2013 ‐ IFP Training

• Introduction: heterogeneities in the reservoir • Reservoir heterogeneity features

223

Sonatrach / IAP

Moldic dissolution



Initial presence of a shell, rock fragment or grain. Then, micritization by bacteria. Progression from outside to inside



Second step, dissolution of cement but not the micrite (more stable). The shape is preserved. Sparitic precipitation in the cavity

© 2013 ‐ IFP Training

Sonatrach / IAP

224

Pseudomorph forms 



Replacement of a preexisting mineral by an other one

© 2013 ‐ IFP Training

From halite (cubic crystal) to a “cubic” calcite  (normally trigonal – hexagonal scalenohedral)

225

Sonatrach / IAP

Recrystallization  

Sometimes, it is difficult to distinguish cementation and recrystallization



Change in crystal shape / orientation without compositional change



The orientation of the first  crystal (as seed) govern the  direction in which further  crystals grows



Major effect of temperature

© 2013 ‐ IFP Training

How to reset all information… Sonatrach / IAP

226

Clastic Petrography &  Diagenesis 

Mineral diagenesis • Definition and processes



Diagenesical analysis • • • •



Effect of compaction on primary porosity Effect of cementation on primary porosity Replacement during diagenesis Fluid dynamics and diagenetic regimes

Heterogeneities ©  2013 ‐ IFP Training

• Introduction: heterogeneities in the reservoir • Reservoir heterogeneity features

227

Sonatrach / IAP

Near‐surface sandstone diagenesis



Particularly occurs in semi‐arid climates • Water table very low • Sediments are oxygenated for long period • Sparse vegetation (= rapid erosion) • Immature sediment producing (high amount of unstable minerals like feldspars, amphiboles…)



Processes of activation near surface • Clay infiltration (clay percolation through water) • Intrastratal mineral dissolution (partial or complete dissolution of instable minerals) • Replacement • Authigenic mineral growth (hydroxydes…) © 2013 ‐ IFP Training

Sonatrach / IAP

228

Subsurface sandstone diagenesis



Sandstone horizons correspond to fluid pathways especially for fluids from compacting mudstones



Fluids carry dissolved ions (potential cements)



Clays flatten to form a matrix (=permeability decreasing)



Effect of the fluids composition, temperature and pressure

© 2013 ‐ IFP Training

229

Sonatrach / IAP

Diagenesis and reservoir quality Key points to keep in mind 

Diagenesis have a strong impact on reservoir quality



Generally, the quality of clastic reservoirs decrease with diagenesis by compaction and cementation



Whereas in carbonate reservoirs, the quality can be also reduced or improved by physical, chemical or biological processes (dissolution, dolomitization…)



The main parameters of reservoir quality affected by diagenesis are the porosity and the permeability

© 2013 ‐ IFP Training

Sonatrach / IAP

230

Clastic Petrography &  Diagenesis 

Mineral diagenesis • Definition and processes



Diagenesical analysis • • • •



Effect of compaction on primary porosity Effect of cementation on primary porosity Replacement during diagenesis Fluid dynamics and diagenetic regimes

Heterogeneities ©  2013 ‐ IFP Training

• Introduction: heterogeneities in the reservoir • Reservoir heterogeneity features

231

Sonatrach / IAP

Reservoir heterogeneities: Summary



Introduction: heterogeneities in the reservoir • • • •



Homogeneous / heterogeneous reservoirs Reservoir heterogeneity concepts Classification of reservoir heterogeneities Impact of reservoir heterogeneity on hydrocarbon recovery

Reservoir heterogeneity features • Scale of reservoir heterogeneities • Small‐scale observation and analysis • Large‐scale observation and analysis © 2013 ‐ IFP Training

Sonatrach / IAP

232

Homogeneous vs. Heterogeneous reservoir

Heterogeneous reservoir (Faults, Unconformities, Layers, Facies,   Diagenesis, Fractures, Super K,…)

Heterogeneity: spatial variation of rock physical properties that affect fluid flow

© 2013 ‐ IFP Training

Homogeneous reservoir

233

Sonatrach / IAP

Reservoir heterogeneity: concepts – 1/2



To build a consistent and relevant model: • All variations in the reservoir quality must be analyzed and classified in a manner that the main heterogeneities main are clearly highlighted • For a given study, all heterogeneities that can affect fluid flow are considered as key heterogeneities

Key heterogeneities have to be absolutely described in the geological model © 2013 ‐ IFP Training

Sonatrach / IAP

234

Reservoir heterogeneity: concepts – 2/2



Reservoir heterogeneities • All relevant factors affecting the dynamic behavior of the field • Small‐ to large‐scale geologic features • From static reservoir characterization (significant or not) • From dynamic reservoir characterization (significant)



Basic principle • Identify the smallest element that will impact production

© 2013 ‐ IFP Training

Reservoir heterogeneities characterization calls for the cooperation between all professionals involved in the study (i.e. from geophysicists to reservoir engineers)

235

Sonatrach / IAP

Classification of heterogeneities in reservoirs – 1/2 Classification

Weber classification (1986) « How heterogeneitiy affect oil recovery »

Heterogeneity range A: Structural

1 to 3

B: Stratigraphic

1 to 3

C: Diagenetic

1 to 3

D: Depositional

1 to 3

E: Depositional

1 to 3 1 to 3

G: Structural

1 to 3

Sonatrach / IAP

1 ‐ major heterogeneity 2 ‐ intermediate heterogeneity 3 ‐ negligible heterogeneity Classification objective: highlight  most significant heterogeneities.

© 2013 ‐ IFP Training

F: Diagenetic

Prior to the modeling phase, it is  necessary to perform a synthesis  of heterogeneity types, for each  item, taking into account their  impact on fluid flow, using the  following scale:

236

Classification of heterogeneities in reservoirs – 2/2 Impact on recovery

© 2013 ‐ IFP Training

Sonatrach / IAP

237

© 2013 ‐ IFP Training

Clastic Petrography &  Diagenesis 

Mineral diagenesis • Definfition and processes



Diagenesical analysis • • • •



Effect of compaction on primary porosity Effect of cementation on primary porosity Replacement during diagenesis Fluid dynamics and diagenetic regimes

Heterogeneities ©  2013 ‐ IFP Training

• Introduction: heterogeneities in the reservoir • Reservoir heterogeneity features

239

Sonatrach / IAP

Scale of reservoir heterogeneities Grain

Obervation scales:

Lamination

Bed

< 1 mm

Formation

Field

< 1 cm Small ...

< 1 m

Relative  scales:

Intermediate ...

< 1000 m

Large ...

> 1000 m

Very large ...

Heterogeneities and investigation tools do not always have the same scale…  Sonatrach / IAP

© 2013 ‐ IFP Training

(from Krause and Collins, 1984)

240

Small scale heterogeneities Example of laminations and cross‐beddings



Micro scale: related to a mixture of  different pore types and geometries  (textural features)



Macro scale: often related to  laminations and cross‐beddings  (depositional features: energy) © 2013 ‐ IFP Training

241

Sonatrach / IAP

Large‐scale heterogeneities (1/5) 

Faults • Juxtaposition of reservoir units and low permeability units • Clay smearing (injection of clay into the fault plane) • Cataclasis: sand grains crushing (breccia) • Diagenesis (fault‐related): cementation due to fluid circulation and precipitation creating hydraulic seals

© 2013 ‐ IFP Training

Cataclasis: silicification Sonatrach / IAP

242

Large‐scale heterogeneities (2/5) Genetic unit boundaries → represent stratigraphic discontinuities (isolated bar, channel…)

© 2013 ‐ IFP Training

243

Sonatrach / IAP

Large‐scale heterogeneities (3/5) Diagenesis

DOLOMITE

(power line cable)

Dolomitization front

Bedding

LIMESTONE

Sonatrach / IAP

Scale

5 m

© 2013 ‐ IFP Training

0

244

Large‐scale heterogeneities (4/5) Both shale baffles and permeability streaks Lateral extension linked with depositional environment e.g. Hassi‐Messaoud reservoir (silts)

© 2013 ‐ IFP Training

245

Sonatrach / IAP

Large‐scale heterogeneities (5/5) Seeping fractures

© 2013 ‐ IFP Training

Sonatrach / IAP

246

Reservoir characterization and modeling Key points to keep in mind 

To build a consistent and relevant model for an integrated study: • All reservoir heterogeneities must be identified and classified (main ones highlighted) • All heterogeneities that can impact fluid flow are considered as major heterogeneities • Even the smallest elements that can affect production need to be identified and modeled • The geological model must take into account all significant heterogeneities • Characterization of reservoir heterogeneities calls for integrated multi‐ disciplinary approach (cooperation and team work) © 2013 ‐ IFP Training

Sonatrach / IAP

247

© 2013 ‐ IFP Training

Une formation IFP Training pour Sonatrach / IAP

Clastic reservoirs Fundamentals of sequence stratigraphy

Sonatrach / IAP

Fundamentals of sequence  stratigraphy 

Introduction to sequence stratigraphy • • • • • •

General introduction Accommodation definition Relative sea level and space available Dynamic points Sequence development Parasequence/genetic sequence ©  2013 ‐ IFP Training

Sonatrach / IAP

250

Sequence stratigraphy: Introduction Sequence stratigraphy is based on the application of the systematic subdivision of the section by well defined surfaces



These surfaces are used to provide a frame work to the interpretation of the depositional settings of the sedimentary section



This interpretation is then used to predict the extent and character of the component sedimentary facies



Integrated method with all the exploration tools (geology, geophysics, palynology, geochemistry…) • Relation between geological layers in a chronostratigraphic understanding • Basic sedimentary unit: depositional sequence



Characteristics of a depositional sequence • Bounded by their unconformities and their correlative conformities • Composed by systems tracts



Each system tract • Bounded by physical surface • Composed of elementary « unit » (genetic unit or parasequence)

Sonatrach / IAP

© 2013 ‐ IFP Training



251

© 2013 ‐ IFP Training

Fundamentals of sequence  stratigraphy 

Introduction to sequence stratigraphy • • • • • •

General introduction Accommodation definition Relative sea level and space available Dynamic points Sequence development Parasequence/genetic sequence ©  2013 ‐ IFP Training

253

Sonatrach / IAP

Accommodation definition 

Sediment is deposited in the space  between the seafloor and base level  (sea level or graded stream profile)  which is called accommodation



The way a basin fills with sediment  and the stratal patterns that result  depend upon how much space is  available for the sediment to fill and  how rapidly new space is added



Accommodation may vary as both  the upper and lower boundaries of   this space move up or down

© 2013 ‐ IFP Training

Sonatrach / IAP

254

Fundamentals of sequence  stratigraphy 

Introduction to sequence stratigraphy • • • • • •

General introduction Accommodation definition Relative sea level and space available Dynamic points Sequence development Parasequence/genetic sequence ©  2013 ‐ IFP Training

255

Sonatrach / IAP

Relative  sea level vs space availability  

Eustacy refers only to the position  of the sea surface with reference  to a fixed datum, such as the  center of the earth, and is  therefore independent from local  factors



Relative sea level incorporates  local subsidence by referring to  the position of the sea surface  with respect to a datum at or near  the seafloor

Sonatrach / IAP

© 2013 ‐ IFP Training

 To discern the rate at which new  space is added, both relative  eustacy fluctuation rate combined  with subsidence rate must be  considered

256

Accommodation & Equilibrium point Equilibrium point   : Rate of subsidence = Rate of eustatic change  A platform is divided into two parts separated by an equilibrium point Basinward of    : • Rate of subsidence  > Rate of eustatic fall • Creation of a new  space added • Area of relative sea  level rise



Landward of    : • Rate of subsidence  < Rate of eustatic fall • No creation of new space added • Area of relative sea level fall

Sonatrach / IAP

© 2013 ‐ IFP Training



257

© 2013 ‐ IFP Training

Fundamentals of sequence  stratigraphy 

Introduction to sequence stratigraphy • • • • • •

General introduction Accommodation definition Relative sea level and space available Dynamic points Sequence development Parasequence/genetic sequence ©  2013 ‐ IFP Training

259

Sonatrach / IAP

Specific dynamic points 

Inflection points of the eustatic curve • Point F: maximum rate of sea level fall

F

R

− Minimum rate of creation of new space added

• Point R: maximum rate of sea level rise − Maximum rate of creation of new space added 

Depositional dynamic on the shelf at these  specific inflection points of the eustatic curve • Point F: minimum deposit of sediment − Maximum erosional phenomenon

Point R

• Point R: transgression and development of 

Point F

Sonatrach / IAP

© 2013 ‐ IFP Training

− a condensed  section  − Maximum drowning of the basin over the shelf − Location of the maximum flooding surface:  MFS

260

Theorical sequence: the Exxon “slug”

© 2013 ‐ IFP Training

Sonatrach / IAP

261

© 2013 ‐ IFP Training

Fundamentals of sequence  stratigraphy 

Introduction to sequence stratigraphy • • • • • •

General introduction Accommodation definition Relative sea level and space available Dynamic points Sequence development Parasequence/genetic sequence ©  2013 ‐ IFP Training

263

Sonatrach / IAP

Sequence stratigraphy 1

3

2

4

© 2013 ‐ IFP Training

Sonatrach / IAP

264

Sequence stratigraphy 5

© 2013 ‐ IFP Training

Sonatrach / IAP

265

Key surfaces in sequence stratigraphy

© 2013 ‐ IFP Training

In Kendall (2004) Sonatrach / IAP

266

Sedimentation rate and sea variations 

Sequence are subdivided by • Maximum Flooding Surfaces (MFS) • Transgressive Surfaces (TS) • Sequence Boundaries (SB)



Arrangement of vertical succession or stacking patterns of unconfined sheets • Prograde (step seaward) • Retrograde (step landward) • Aggrade (build vertically)



Sheets and unconfined lobes containing • Non‐amalgamated bodies



Incised topographic fill

Sonatrach / IAP

© 2013 ‐ IFP Training

• Amalgamated, multi‐storied bodies (e.g. incised valleys) • Within unconfined lobes

267

Theorical sequence: “Exxon Slug”

© 2013 ‐ IFP Training

Sonatrach / IAP

268

Systems tract synthesis 

Sequence stratigraphy is based on the application of the systematic subdivision of the section by well defined surfaces



These surfaces are used to provide a frame work to the interpretation of the depositional settings of the sedimentary section



This interpretation is then is used to predict the extent and character of the component sedimentary facies

© 2013 ‐ IFP Training

269

Sonatrach / IAP

Lowstand‐fan systems tract 

Lowstand fans are deposited during rapid eustatic falls which exceed the rate of subsidence at the shelf edge



Sediment bypasses the shelf and is deposited directly on the slope and in the basin in the form of point‐sourced submarine fans. This figure illustrates geologic, geographic, and eustatic conditions conducive to the formation of these deposits



The systems tract is bounded below and above by discontinuities



Internally, lowstand fans are characterized by mounded facies and may be extensively sand prone. These mounds are commonly excellent reservoirs

© 2013 ‐ IFP Training

Sonatrach / IAP

270

Lowstand‐wedge systems tract 

The lowstand‐wedge systems tract begins to form during the latter part of a rapid eustatic fall as lowstand‐fan deposition ends. Deposition is initiated when the rate of eustatic fall is again equal to subsidence at the shelf edge



This interval is characterized by resumption of a slow rise of relative sea level at the shelf edge



Deltaic deposition is localized in the upper parts of canyons or embayments cut into the shelf during rapid eustatic falls



The base of this systems tract is an unconformity. The top grades either into a transgressive depositional sequence or is a condensed section, if transgressive deposits are absent or not observed.

© 2013 ‐ IFP Training

271

Sonatrach / IAP

Transgressive systems tract 

When the rate of new shelf space added exceeds the rate of sediment supply, transgression occurs. The timing of this event depends on sediment supply and rate of eustatic rise, but it will usually occur on the rising limb of the eustatic curve when the rate of addition of new shelf space increases rapidly prior to the eustatic rise inflection point



During transgression, only pelagic or hemipelagic deposition occurs on the starved shelf and basin, generating a starved or condensed section there



Of all the systems tract types, the transgressive systems tract is the most sensitive to variations of sediment supply, and its occurrence is therefore the most difficult to predict

© 2013 ‐ IFP Training

Sonatrach / IAP

272

Highstand systems tract 

The highstand systems tract is deposited during the eustatic highstand, defined as the interval between the eustatic rise and fall inflection points. This interval is characterized by a slowly decreasing relative rise of sea level as the rate of eustatic change gradually decreases



An unconformity defines the upper surface, and a condensed section marks the lower limits of this systems tract



Reservoir facies are associated primarily with prograding beach and aggrading fluvial depositional systems. Organic‐rich facies with source potential may develop on the toes and delta plains of progradational units

© 2013 ‐ IFP Training

273

Sonatrach / IAP

Shelf‐margin systems tract 

The shelf‐margin systems tract is a regressive stratigraphic unit overlying a highstand deposit and is usually deposited following the inflection point on a gentle eustatic fall



This interval is characterized by a progressive increase in the rate of relative rise of sea level. The shelf margin systems tract is deposited on the outer part of the shelf and is marked by an abrupt basinward shift of coastal onlap at its base



The base of this systems tract is an erosional unconformity or its correlative conformity, whereas the top either grades into a transgressive systems tract or is a condensed section. The basal unconformity on the shelf is usually marked by paralic/deltaic sediments overlying fluvial deposits

© 2013 ‐ IFP Training

Sonatrach / IAP

274

Fundamentals of sequence  stratigraphy 

Introduction to sequence stratigraphy • • • • • •

General introduction Accommodation definition Relative sea level and space available Dynamic points Sequence development Parasequence/genetic sequence ©  2013 ‐ IFP Training

275

Sonatrach / IAP

How to order the sedimentary pile?

Sonatrach / IAP

© 2013 ‐ IFP Training

"Facies adjacent to one another in a
continuous vertical sequence  also
accumulated adjacent to one another
laterally"

276

Sedimentation rate and sea variations

© 2013 ‐ IFP Training

277

Sonatrach / IAP

Introduction to sedimentary sequences Depositional sequence in respect to Walther's law

© 2013 ‐ IFP Training

Sonatrach / IAP

278

Parasequence: depositional processes in system tracts Progradagradation (Advancing) Retrogradation (Backstepping)

• Elementary deposition sequence (building block) • Thickness : few meters to few tens of meters • Bounded by isochrons (2 successives times surfaces)

Elementary cycles of variations accomodation Influenced by allocyclic parameters (external parameter of the basin)

© 2013 ‐ IFP Training

Parasequence or Genetic units :

279

Sonatrach / IAP

The genetic sequence

Sonatrach / IAP

The genetic sequences are short term  depositional sequences (1 Ma) regrouping  orders of cyclicity lower than the 4th order



They are limited by two maximum flooding  surfaces or by two condensed intervals, and  there thicknesses vary from a few  decimeters to few meters



They record a cycle of variation of the  depositional environment, interpreted as  transgression and regression



The genetic sequences are deducted from   essentially sedimentological but none  geometric observations. They are recognized  by drilling or on outcrops

© 2013 ‐ IFP Training

P. Homewood,  P. Mauriaud, F. Lafont 2001



280

The genetic sequence

© 2013 ‐ IFP Training

P. Homewood,  P. Mauriaud, F. Lafont 2001 281

Sonatrach / IAP

The genetic sequence

© 2013 ‐ IFP Training

P. Homewood,  P. Mauriaud, F. Lafont 2001 Sonatrach / IAP

282

Definition and example 

Chronostratigraphy is the branch of stratigraphy that studies the absolute age of rock strata



Chronostratigraphy is based upon deriving geochronological data for rock units, both directly and by inference



Objectives of chronostratigraphy: • Determine the ages  of strata • Demonstrate the  geographic extend  of strata • Confirm the  sequence  stratigraphy  interpretations © 2013 ‐ IFP Training

283

Sonatrach / IAP

Definition and example 

Combination between paleontology and stratigraphy. In oil and gas industry, biostratigraphy corresponds to the study from rock samples (core and cuttings) of microfossils (pollens, spores, nannofossils, diatoms and foraminifera)



The objectives of biostratigraphy are to: • Determine the  age (relative or  absolute) of strata • Study the  paleo‐environment  during deposition  and its evolution • Make correlations  between layers  containing the same fossil population © 2013 ‐ IFP Training

Sonatrach / IAP

284

THANK YOU FOR YOUR ATTENTION,

©  2013 ‐ IFP Training

285

Sonatrach / IAP

286

© 2013 ‐ IFP Training

Sonatrach / IAP

 

Related Documents

#03
March 2021 0
03
March 2021 0
03 - Bestiary.pdf
January 2021 2
Ramani 03
January 2021 0
Problem 03
February 2021 1

More Documents from "Valdemor Lagan"