Ac Machines (transformers)

  • Uploaded by: Kristine Picardal
  • 0
  • 0
  • January 2021
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Ac Machines (transformers) as PDF for free.

More details

  • Words: 4,658
  • Pages: 21
Loading documents preview...
Board Exam Problems on AC MACHINES (Transformers)

1. The high-voltage coil of a transformer is wound with 700 turns of wire, and the lowvoltage coil is wound with 292 turns. When used as a step-up transformer (the lowvoltage coil is used as the primary), the load current is 10.5 A. Find the load component of the primary current. A. 43.5 A B. 4.38 A C. 25.18 A D. 2.518 A Solution: 𝑁𝑝 𝑁𝑠

=

𝐼𝑝 =

𝐼𝑠 𝐼𝑝 𝐼𝑠 𝑁𝑠 𝑁𝑝

=

(700)(10.5) 292

ο‚· 𝑰𝒑 = πŸπŸ“. πŸπŸ• π‘¨π’Žπ’‘π’†π’“π’†π’” REE – May 2008 2. A transformer has a primary winding of 2, 000 turns and of 2, 400 Volts and current of 8.66 βˆ’ 𝑗5 Ampere with an impedance 𝑍2 connected across the secondary winding. If the secondary winding has 500 turns, what is the value of the secondary current? A. 20 βˆ’ 𝑗34.64 𝐴 B. πŸ‘πŸ’. πŸ”πŸ’ βˆ’ π’‹πŸπŸŽ 𝑨 C. 34.64 + 𝑗20 𝐴 D. 20 + 𝑗34.64 𝐴 Solution: 𝑁𝑝 𝑁𝑠

=

𝐼𝑝 =

𝐼𝑠 𝐼𝑝 𝐼𝑠 𝑁𝑠 𝑁𝑝

ο‚·

=

(8.66βˆ’π‘—5)(2,000) 500

𝑰𝒑 = πŸ‘πŸ’. πŸ”πŸ’ βˆ’ π’‹πŸπŸŽ π‘¨π’Žπ’‘π’†π’“π’†π’”

3. A 120 V to 27.5 V, 400 Hz step-down transformer is to be operated at 60 Hz. What is the highest safe input voltage? A. 200 V B. 400 V C. 120 V D. 18 V Solution: 𝐸1 𝐸2

=

𝐸2 =

𝑓1 𝑓2 𝐸1 𝑓2 𝑓1

=

(120)(60) 400

ο‚· π‘¬πŸ = πŸπŸ– 𝑽𝒐𝒍𝒕𝒔 REE – September 2011 4. When a welding transformer is used in a resistance welding, it will A. step up voltage B. step down voltage C. step up current D. step down current βˆ— π‘π‘œπ‘‘π‘’: 𝐼𝑛 π‘Ž 𝑀𝑒𝑙𝑑𝑖𝑛𝑔 π‘‘π‘Ÿπ‘Žπ‘›π‘ π‘“π‘œπ‘Ÿπ‘šπ‘’π‘Ÿ, π‘Ž β„Žπ‘–π‘”β„Ž π‘£π‘Žπ‘™π‘’π‘’ π‘œπ‘“ π‘π‘’π‘Ÿπ‘Ÿπ‘’π‘›π‘‘ 𝑖𝑠 𝑛𝑒𝑒𝑑𝑒𝑑 π‘‘π‘œ π‘šπ‘’π‘™π‘‘ π‘’π‘Žπ‘ π‘–π‘™π‘¦ π‘‘β„Žπ‘’ π‘–π‘Ÿπ‘œπ‘›.

5. A 4, 600/230 V, 60 Hz step-down transformer has core dimension of 76.2 mm by 111.8 mm. A maximum flux density of 0.93 π‘Šπ‘/π‘š2 is to be used. Assuming 9 percent loss of area due to stacking factor of laminations, calculate the primary and secondary turns required. A. 2, 395 and 120 B. 120 and 2, 395 C. 2, 180 and 109 D. 109 and 2, 180 Solution:

𝐴𝑒𝑓𝑓 = (1 βˆ’ 0.09)(76.2 π‘šπ‘š Γ— 111.8 π‘šπ‘š) 𝐴𝑒𝑓𝑓 = 7, 752.436π‘šπ‘š2 (

1π‘š 1,000 π‘šπ‘š βˆ’3 2

ο‚· 𝐴𝑒𝑓𝑓 = 7.752 Γ— 10 βˆ…π‘š = π›½π‘š 𝐴𝑒𝑓𝑓 βˆ…π‘š = (0.93

π‘Šπ‘ π‘š2

)

2

π‘š

) (7.752 Γ— 10βˆ’3 π‘š2 )

ο‚· βˆ…π‘š = 7.209 π‘šπ‘Šπ‘ πΈπ‘Ÿπ‘šπ‘  = 4.44π‘“βˆ…π‘ 𝑁𝑝 =

πΈπ‘Ÿπ‘šπ‘  4.44π‘“βˆ…

=

4,600 (4.44)(60)(7.209Γ—10βˆ’3 )

ο‚· 𝑡𝒑 = 𝟐, πŸ‘πŸ—πŸ“ 𝒕𝒖𝒓𝒏𝒔 𝑁𝑠 =

πΈπ‘Ÿπ‘šπ‘  4.44π‘“βˆ…

=

230 (4.44)(60)(7.209Γ—10βˆ’3 )

ο‚· 𝑡𝒔 = 𝟏𝟐𝟎 𝒕𝒖𝒓𝒏𝒔 REE – October 1997 6. A small single-phase transformer has 10.2 watts no-load loss. The core has a volume of 750 cubic cm. The maximum flux density is 10, 000 gauss and the hysteresis constant of the core is 5 Γ— 10βˆ’4 , using the Steinmetz law to find the hysteresis, determine the eddy current loss. A. 4.55 Watts B. 5.55 Watts C. 3.55 Watts D. 2.55 Watts Solution: βˆ— π‘†π‘‘π‘’π‘–π‘›π‘šπ‘’π‘›π‘‘π‘§ π‘™π‘Žπ‘€

π‘ƒβ„Ž 𝛼 π›½π‘š 1.6 βˆ— π‘˜β„Ž = (5 Γ— 10βˆ’4 )(750) ο‚· π‘˜β„Ž = 0.375 π‘ƒβ„Ž = (0.375)(60)(10, 000)1.6 ο‚· π‘ƒβ„Ž = 5.652 π‘Šπ‘Žπ‘‘π‘‘π‘  𝑃𝑒 = 𝑃𝑖𝑛 βˆ’ π‘ƒβ„Ž 𝑃𝑒 = 10.2 βˆ’ 5.652 ο‚· 𝑷𝒆 = πŸ’. πŸ“πŸ’πŸ– 𝑾𝒂𝒕𝒕𝒔

π‘‘π‘¦π‘›π‘’βˆ’π‘π‘š 𝑠𝑒𝑐

(

1𝑁 105 𝑑𝑦𝑛𝑒

)(

1π‘š 100 π‘π‘š

)

REE – September 2006 7. The primary of transformer has 200 turns and is excited by a 240 V, 60 Hz source. What is the maximum value of the core flux? A. 4.04 mWb B. 4.40 mWb C. 4.13 mWb D. 4.32 mWb Solution:

βˆ…π‘š =

𝐸

240

4.44𝑓𝑁

= (4.44)(60)(200)

ο‚· βˆ…π’Ž = πŸ’. πŸ“πŸŽ π’Žπ‘Ύπ’ƒ REE – September 2008 8. A transformer is rated 1 kVA, 220/110 V, 60 Hz. Because of an emergency this transformer has to be used on a 50 Hz system. If the flux density in the transformer core is to be kept the same as at 60 Hz and 220 V, what is the kilovolt-ampere rating at 50 Hz. A. 0.890 kVA B. 0.833 kVA C. 0.909 kVA D. 0.871 kVA Solution:

𝑆𝛼𝑓 𝑆1 𝑆2

𝑓1

=

𝑆2 =

𝑓2 𝑆1 𝑓2 𝑓1

=

(1)(50) 60

ο‚· π‘ΊπŸ = 𝟎. πŸ–πŸ‘πŸ‘ π’Œπ‘½π‘¨ 9. A single-phase transformer has a no-load power input of 250 Watts, when supplied at 250 V, 50 Hz has a p.f of 0.25. What is the magnetizing component of the no-load current? A. 4.00 A B. 3.87 A C. 1.00 A D. none of these Solution:

𝑆=

𝑃 𝑝.𝑓

=

250 0.25

ο‚· 𝑆 = 1, 000 𝑉𝐴 𝑝𝑓 = π‘π‘œπ‘  βˆ’1 0.25 ο‚· 𝑝𝑓 = 75.52Β° 𝑆 = 𝑉𝐼 𝐼=

1,000∠75.52 250

= 4∠75.52Β° π΄π‘šπ‘π‘’π‘Ÿπ‘’π‘ 

ο‚· 𝐼 = 1 + 𝑗 3.873 π΄π‘šπ‘π‘’π‘Ÿπ‘’π‘  ο‚· π‘°π’Ž = πŸ‘. πŸ–πŸ•πŸ‘ π‘¨π’Žπ’‘π’†π’“π’†π’”

REE – September 2011 10. A 4, 400 V, 60 Hz transformer has a core loss of 840 Watts, of which one-third is eddy current loss. What is the core loss when the x’former is connected to a 4, 600 V, 50 Hz source? A. 977 Watts B. 907 Watts C. 927 Watts D. 944 Watts Solution: 1 3

π‘ƒπ‘π‘œπ‘Ÿπ‘’ = 𝑃𝑒𝑑𝑑𝑦 1

𝑃𝑒1 = (840) 3

ο‚· 𝑃𝑒1 = 280 π‘Šπ‘Žπ‘‘π‘‘π‘  π‘ƒπ‘π‘œπ‘Ÿπ‘’ = π‘ƒβ„Ž + 𝑃𝑒 π‘ƒβ„Ž1 = 840 βˆ’ 280 ο‚· π‘ƒβ„Ž1 = 560 π‘Šπ‘Žπ‘‘π‘‘π‘  𝑃𝑒2

=

𝑃𝑒1

π‘˜2 (𝐸2 )2 π‘˜1 (𝐸1 )2 4,6002

𝑃𝑒2 = 280 (

4,4402

)

ο‚· 𝑃𝑒2 = 306.033 π‘Šπ‘Žπ‘‘π‘‘π‘  1.6

π‘ƒβ„Ž2 π‘ƒβ„Ž1

=

𝐸 π‘˜2 ( 20.6 ) 𝑓 2 𝐸1 1.6 π‘˜1 ( 0.6 ) 𝑓1

π‘ƒβ„Ž2 = 560 [

4,6001.6 ) 500.6 4,4001.6 ( ) 600.6

(

]

ο‚· π‘ƒβ„Ž2 = 670.788 π‘Šπ‘Žπ‘‘π‘‘π‘  π‘ƒπ‘π‘œπ‘Ÿπ‘’2 = π‘ƒβ„Ž2 + 𝑃𝑒2 = 670.788 + 306.033 ο‚· π‘·π’„π’π’“π’†πŸ = πŸ—πŸ•πŸ”. πŸ–πŸπŸ 𝑾𝒂𝒕𝒕𝒔 REE – September 2004 11. In an ideal transformer, what is the efficiency? A. 100% B. 90% C. 80%

D. 70%

12. A 100 kVA distribution transformer has a full-load copper loss of 1, 180 Watts. For what kilowatt load, at a power factor of 0.71, will the copper losses in the transformer be 1, 500 Watts? A. 90.25 B. 71 C. 112.75 D. 80.05 Solution: π‘ƒπ‘π‘’βˆ’π‘Žπ‘›π‘¦ 2 2

π‘ƒπ‘π‘’βˆ’πΉπΏ 𝑃

𝑆=

1,500 1,180

(

=(

π‘†π‘Žπ‘›π‘¦ π‘†π‘Ÿπ‘Žπ‘‘π‘’π‘‘

)

2

𝑝.𝑓

=(

πΎπ‘Šπ‘™π‘œπ‘Žπ‘‘ /0.71 2 100

πΎπ‘Šπ‘™π‘œπ‘Žπ‘‘ 2 0.71

)

) = 1002 (

1,500 1,180

)

πΎπ‘Šπ‘™π‘œπ‘Žπ‘‘ = √(0.71)2 (100)2 (

1,500 1,180

)

ο‚· 𝑲𝑾𝒍𝒐𝒂𝒅 = πŸ–πŸŽ. πŸŽπŸ“πŸŽ π’Œπ‘Ύ 13. Given a 10-kVA transformer with full-load losses amounting to 70 Watts in the iron and 140 Watts in the copper. Calculate the efficiency at half-load unity power factor. A. 98.62% B. 97.97% C. 97.28% D. 97.94% Solution: 𝑃𝐢𝑒 𝐻𝐿 𝑃𝐢𝑒 𝐹𝐿

=(

𝑃𝐢𝑒 𝐻𝐿 =

𝑆𝐻𝐿 2 𝑆𝐹𝐿

)

140(52 ) 102

ο‚· 𝑃𝐢𝑒 𝐻𝐿 = 35 π‘Šπ‘Žπ‘‘π‘‘π‘  Ι³ 𝐻𝐿 =

π‘ƒπ‘œ 𝐻𝐿 π‘ƒπ‘œ 𝐻𝐿+π‘ƒπ‘π‘œπ‘Ÿπ‘’ +𝑃𝐢𝑒 𝐻𝐿

Γ— 100% =

5,000 5,000+35

Γ— 100%

ο‚· Ι³ 𝑯𝑳 = πŸ—πŸ•. πŸ—πŸ’% REE – April 2004 14. Instrument transformers are used in indicating and metering and with protective devices, they are used for . A. measuring B. detecting C. relaying D. sensing REE – September 2003 15. What type of transformer bank is used to convert 2-phase to 3-phase power? A. open-delta B. scott-T C. wye-delta D. delta-wye

16. A 100-kVA 2, 400/240-Volt 60 cycle transformer has the following constants: π‘Ÿπ‘ = 0.42 Ω, 𝑋𝑝 = 0.72 Ω; π‘Ÿπ‘  = 0.0038 Ω, 𝑋𝑠 = 0.0068 Ω. What is the equivalent impedance in primary terms? A. 0.016 Ω B. 1.612 Ω C. 0.161 Ω D. 16.12 Ω Solution:

𝑍𝑒 𝑝 = (π‘Ÿπ‘ + π‘Ž2 π‘Ÿπ‘  ) + 𝑗(𝑋𝑝 + π‘Ž2 𝑋𝑠 ) π‘Ž=

𝑉𝑝 𝑉𝑠

=

2,400 240

ο‚· π‘Ž = 10 𝑍𝑒 𝑝 = (0.42) + (102 )(0.0038) + 𝑗(0.72) + (10)2 (0.0068) 𝑍𝑒 𝑝 = 0.8 + 𝑗1.4 = 1.61∠60.26Β° ο‚· |𝒁𝒆 𝒑 | = 𝟏. πŸ”πŸ π’π’‰π’Žπ’” 17. Calculate the all-day efficiency of a 100-kVA transformer operating under the following conditions: 6 hours on a load of 50 kW at 0.73 power factor; 3 hours on a load of 90 kW at 0.82 power factor; 15 hours with no load on secondary. The iron loss is 1, 000 Watts and the full-load copper loss is 1, 060 Watts. A. 96.31% B. 94.87% C. 95.33% D. 95.29% Solution: π‘ƒπ‘œπ‘’π‘‘ = (50, 000)(6) + (90, 000)(3) + (0)(15) ο‚· π‘ƒπ‘œπ‘’π‘‘ = 570 π‘˜π‘Šβ„Žπ‘Ÿ π‘ƒπ‘π‘œπ‘Ÿπ‘’ = (1, 000)(24) ο‚· π‘ƒπ‘π‘œπ‘Ÿπ‘’ = 24 π‘˜π‘Šβ„Žπ‘Ÿ 𝑃𝐢𝑒 1 𝑃𝐢𝑒 𝐹𝐿

π‘˜π‘‰π΄

2

= (π‘˜π‘‰π΄ 1 ) 𝐹𝐿

𝑃𝐢𝑒 1 = 1, 060 (

50/0.73 2 100

)

ο‚· 𝑃𝐢𝑒 1 = 497.279 π‘Šπ‘Žπ‘‘π‘‘π‘  𝑃𝐢𝑒 2 = 1, 060 (

90/0.82 2 100

)

ο‚· 𝑃𝐢𝑒 2 = 1, 276.919 π‘Šπ‘Žπ‘‘π‘‘π‘  ο‚· 𝑃𝐢𝑒 3 = 0 π‘Šπ‘Žπ‘‘π‘‘π‘  𝑃𝐢𝑒 π‘‘π‘œπ‘‘π‘Žπ‘™ = 𝑃𝐢𝑒 1 (6) + 𝑃𝐢𝑒 2 (3) + 𝑃𝐢𝑒 3 (15) 𝑃𝐢𝑒 π‘‘π‘œπ‘‘π‘Žπ‘™ = (487.279)(6) + (1, 276.919)(3) + (0)(15) ο‚· 𝑃𝐢𝑒 π‘‘π‘œπ‘‘π‘Žπ‘™ = 6.814 π‘˜π‘Šβ„Žπ‘Ÿ Ι³π‘Žπ‘™π‘™ π‘‘π‘Žπ‘¦ =

π‘ƒπ‘œπ‘’π‘‘ π‘ƒπ‘œπ‘’π‘‘ +π‘ƒπ‘π‘œπ‘Ÿπ‘’+𝑃𝐢𝑒

Γ— 100% =

570 570+24+6.814

Γ— 100%

ο‚· ɳ𝒂𝒍𝒍 π’…π’‚π’š = πŸ—πŸ’. πŸ–πŸ•% REE – September 2005 18. A 50-kVA, single-phase transformer has 96% efficiency when it operates at full-load unity power factor for 8 hours per day. What is the all-day efficiency of the transformer if the copper loss is 60% of full-load losses? A. 92% B. 90% C. 89.5% D. 93% Solution:

0.96 =

50

50+π‘ƒπ‘™π‘œπ‘ π‘ π‘’π‘  𝐹𝐿 50 π‘ƒπ‘™π‘œπ‘ π‘ π‘’π‘  𝐹𝐿 = βˆ’ 50 0.96

ο‚· π‘ƒπ‘™π‘œπ‘ π‘ π‘’π‘  𝐹𝐿 = 2.083 π‘˜π‘Š 𝑃𝐢𝑒 𝐹𝐿 = (0.6)(2, 083) ο‚· 𝑃𝐢𝑒 𝐹𝐿 = 1, 249.8 π‘Š π‘ƒπ‘π‘œπ‘Ÿπ‘’ = π‘ƒπ‘™π‘œπ‘ π‘  + 𝑃𝐢𝑒 𝐹𝐿 = 2, 083 βˆ’ 1, 249.8 ο‚· π‘ƒπ‘π‘œπ‘Ÿπ‘’ = 833.2 π‘Šπ‘Žπ‘‘π‘‘π‘  π‘ƒπ‘œπ‘’π‘‘ π‘‘π‘œπ‘‘π‘Žπ‘™ = (50 π‘˜π‘‰π΄)(1.0)(8) ο‚· π‘ƒπ‘œπ‘’π‘‘ π‘‘π‘œπ‘‘π‘Žπ‘™ = 400π‘˜π‘Šβ„Žπ‘Ÿ π‘ƒπ‘π‘œπ‘Ÿπ‘’ π‘‘π‘œπ‘‘π‘Žπ‘™ = (833.2)(24) ο‚· π‘ƒπ‘œπ‘’π‘‘ π‘‘π‘œπ‘‘π‘Žπ‘™ = 19.997 π‘˜π‘Šβ„Žπ‘Ÿ 𝑃𝐢𝑒 π‘‘π‘œπ‘‘π‘Žπ‘™ = (1, 249.8)(8) ο‚· 𝑃𝐢𝑒 π‘‘π‘œπ‘‘π‘Žπ‘™ = 9.998 π‘˜π‘Šβ„Žπ‘Ÿ Ι³π‘Žπ‘™π‘™ π‘‘π‘Žπ‘¦ =

400 400+19.997+9.998

Γ— 100%

ο‚· ɳ𝒂𝒍𝒍 π’…π’‚π’š = πŸ—πŸ‘. 𝟎𝟐% Asst. EE – October 1991 19. A 10 kVA, 2, 400/240 V, single-phase transformer has the following resistances and leakage reactances; π‘Ÿπ‘ = 3 Ω π‘Ÿπ‘  = 0.03 Ω 𝑋𝑝 = 15 Ω 𝑋𝑠 = 0.15 Ω Find the primary voltage required to produce 240 V at the secondary terminals at full-load, when the load power factor is 0.8 lagging. A. 2, 400 V B. 2, 496.5 V C. 2, 348 V D. 2, 445.5 V Solution:

π‘Ž=

2,400 240

ο‚· π‘Ž = 10

π‘Žπ‘‰π‘  = 10(240) ο‚· π‘Žπ‘‰π‘  = 2, 400 𝐼𝑑 =

10,000 βˆ π‘π‘œπ‘  βˆ’1 (0.8) 2,400

ο‚· 𝐼𝑑 = 4.17 ∠ βˆ’ 36.87Β° π΄π‘šπ‘π‘’π‘Ÿπ‘’π‘  𝑍𝑒 𝑝 = [3 + (10)2 (0.03)] + 𝑗[15 + (10)2 (0.15)] ο‚· 𝑍𝑒 𝑝 = 6 + 𝑗30 π‘œβ„Žπ‘šπ‘  𝑉𝑝 = 𝐼𝑑 𝑍𝑒 𝑝 + π‘Žπ‘‰π‘  𝑉𝑝 = (4.17 ∠ βˆ’ 36.87)(6 + 𝑗30 ) + 2, 400 𝑉𝑝 = 2, 496.526 ∠1.95Β° π‘‰π‘œπ‘™π‘‘π‘  ο‚· |𝑽𝒑 | = 𝟐, πŸ’πŸ—πŸ”. πŸ“πŸπŸ” 𝑽𝒐𝒍𝒕𝒔 20. A 500 kVA, single-phase, 13, 200/2, 400 Volts transformer has 4% reactance and 1% resistance. The leakage reactance and resistance of the high voltage (primary) winding are 6.34 Ω and 1.83 Ω, respectively. The core loss under rated condition is 1, 800 Watts. Calculate the leakage reactance and resistance of the low voltage (secondary) winding. A. 7.56 Ω and 1.66 Ω B. 13.69 Ω and 3.42 Ω C. 0.25 Ω and 0.055 Ω D. 13.9 Ω and 3.48 Ω Solution:

𝑍𝑏 =

(𝑉𝑏 )2 𝑆𝑏

=

(13,200)2 500,000

ο‚· 𝑍𝑏 = 348.48 π‘œβ„Žπ‘šπ‘  𝑅𝑒 𝑝 = 𝑅𝑝𝑒 π‘π‘π‘Žπ‘ π‘’ = (0.01)(348.48) ο‚· 𝑅𝑒 𝑝 = 3.4848 π‘œβ„Žπ‘šπ‘  𝑋𝑒 𝑝 = 𝑋𝑝𝑒 π‘π‘π‘Žπ‘ π‘’ = (0.04)(348.48) ο‚· 𝑋𝑒 𝑝 = 13.9392 π‘œβ„Žπ‘šπ‘  π‘Ÿπ‘’π‘“π‘’π‘Ÿπ‘Ÿπ‘’π‘‘ π‘‘π‘œ π‘π‘Ÿπ‘–π‘šπ‘Žπ‘Ÿπ‘¦ 𝑅𝑒 𝑝 = π‘Ÿπ‘ + π‘Ž2 π‘Ÿπ‘  π‘Ž=

13,200 2,400

ο‚· π‘Ž = 5.5 π‘Ÿπ‘  =

𝑅𝑒 𝑝 βˆ’π‘Ÿπ‘ π‘Ž2

=

3.4848βˆ’1.83 5.52

ο‚· 𝒓𝒔 = 𝟎. πŸŽπŸ“πŸ“ 𝑋𝑒 𝑝 = 𝑋𝑝 + π‘Ž2 𝑋𝑠

𝑋𝑠 =

𝑋𝑒 π‘βˆ’π‘‹π‘ π‘Ž2

=

13.9392βˆ’6.34 5.52

ο‚· 𝑿𝒔 = 𝟎. πŸπŸ“πŸ π’π’‰π’Žπ’” 21. In Problem No.20, calculate the %V.R and efficiency of the transformer at full-load, 0.85 p.f. lagging and 2, 400 Volts. A. 4% and 97.8% B. 6% and 95.4% C. 5% and 96.8% D. 3% and 98.4% Solution: π‘Ÿπ‘ π‘Ž2

1.83

=

5.52 π‘Ÿπ‘

ο‚· 𝑋𝑝 π‘Ž2

= ο‚·

π‘Ž2 6.34 5.52 𝑋𝑝

= 0.0605 π‘œβ„Žπ‘šπ‘ 

= 0.21 π‘œβ„Žπ‘šπ‘ 

π‘Ž2 βˆ’1

πœƒ = π‘π‘œπ‘  (0.85) ο‚· πœƒ = 31.79Β° 𝐼𝑇 =

500,000 βˆ βˆ’31.79Β° 2,400

ο‚· 𝐼𝑇 = 208.33 ∠ βˆ’ 31.79Β° 𝑍𝑒 𝑠 = (

π‘Ÿπ‘ π‘Ž2

+ π‘Ÿπ‘  ) + 𝑗 (

𝑋𝑝 π‘Ž2

+ 𝑋𝑠 ) = (0.0605 + 0.055) + 𝑗(0.21 + 0.25)

ο‚· 𝑍𝑒 𝑠 = 0.1155 + 𝑗0.46 Ω 𝑉𝑝 = 𝐼𝑇 𝑍𝑒 𝑠 + 𝑉𝑠 𝑉𝑝 = (208.33 ∠ βˆ’ 31.79Β°)(0.1155 + 𝑗0.46) + 2, 400 ο‚· 𝑉𝑝 = 2, 471.89 ∠1.6Β° π‘‰π‘œπ‘™π‘‘π‘  %𝑉𝑅 =

2,471.89βˆ’2,400 2,400

Γ— 100

ο‚· %𝑽𝑹 = πŸ‘% π‘ƒπ‘œπ‘’π‘‘ = (500 π‘˜π‘‰π΄)(0.85) ο‚· π‘ƒπ‘œπ‘’π‘‘ = 425 π‘˜π‘Š ο‚· π‘ƒπ‘π‘œπ‘Ÿπ‘’ = 1, 800 π‘Š 𝑃𝑐𝑒 = 𝐼𝑇 2 𝑅𝑇 = (208.33)2 (0.1155) ο‚· 𝑃𝑐𝑒 = 5, 012.86 π‘Š Ι³=

425,000 425,000+1,800+5,012.86

ο‚· Ι³ = πŸ—πŸ– %

Γ— 100

22. An 11, 000/230 V, 150 kVA, single-phase, 50 Hz transformer has a core loss of 1.4 kW and a full-load copper loss of 1.6 kW. What is the value of maximum efficiency at unity p.f? A. 98.17% B. 98.04% C. 97.22% D. 97.64% Solution:

𝑃𝑐𝑒 π‘šπ‘Žπ‘₯ = π‘ƒπ‘π‘œπ‘Ÿπ‘’ ο‚· 𝑃𝑐𝑒 π‘šπ‘Žπ‘₯ = 1, 400 π‘Š 𝑃𝑐𝑒 π‘šπ‘Žπ‘₯ 𝑃𝑐𝑒 𝐹𝐿

=(

π‘˜π‘‰π΄π‘šπ‘Žπ‘₯ 2 π‘˜π‘‰π΄πΉπΏ

)

π‘˜π‘‰π΄π‘šπ‘Žπ‘₯ = √(1502 ) (

1,400 1,600

)

ο‚· π‘˜π‘‰π΄π‘šπ‘Žπ‘₯ = 140.31 π‘˜π‘‰π΄ π‘˜π‘Šπ‘šπ‘Žπ‘₯ = π‘˜π‘‰π΄π‘šπ‘Žπ‘₯ (𝑝. 𝑓) = (140.31)(1.0) ο‚· π‘˜π‘Šπ‘šπ‘Žπ‘₯ = 140.13 π‘˜π‘Š Ι³=

140.13 140.13+2(1.4)

Γ— 100

ο‚· Ι³ = πŸ—πŸ–. πŸŽπŸ’ % 23. A 300-kVA, single-phase transformer is designed to have a resistance of 1.5% and maximum efficiency occurs at a load of 173.2 kVA. Find its efficiency when supplying full-load at 0.8 p.f. lagging at normal voltage and frequency. A. 97.56% B. 96.38% C. 98.76% D. 95.89% Solution:

π‘Ÿπ‘.𝑒 =

𝑃𝑐𝑒 𝐹𝐿 𝑆𝐹𝐿

𝑃𝑐𝑒 𝐹𝐿 = π‘Ÿπ‘.𝑒 𝑆𝐹𝐿 = (0.015)(300, 000) ο‚· 𝑃𝑐𝑒 𝐹𝐿 = 4, 500 π‘Šπ‘Žπ‘‘π‘‘π‘  𝑃𝑐𝑒 π‘šπ‘Žπ‘₯ 4,500

=(

173.2 2 300

)

ο‚· 𝑃𝑐𝑒 π‘šπ‘Žπ‘₯ = 1, 499.91 π‘Šπ‘Žπ‘‘π‘‘π‘  𝑃𝑐𝑒 π‘šπ‘Žπ‘₯ = π‘ƒπ‘π‘œπ‘Ÿπ‘’ ɳ𝐹𝐿 =

π‘ƒπ‘œπ‘’π‘‘ π‘ƒπ‘œπ‘’π‘‘ +π‘ƒπ‘π‘œπ‘Ÿπ‘’ +𝑃𝑐𝑒 𝐹𝐿

300(0.8)

Γ— 100 = (300)(0.8)+1.5+4.5 Γ— 100

ο‚· ɳ𝑭𝑳 = πŸ—πŸ•. πŸ“πŸ” %

REE – September 2002 24. A 20 kV/7.87 kV autotransformer has 200 A current in the common winding. What is the secondary line current? A. 143.52 B. 200 C. 56.48 D. 329 Solution: 𝐼𝑐 𝐼𝑝

=π‘Žβˆ’1

π‘Ž=

20,000 7,870

ο‚· π‘Ž = 2.54 200 𝐼𝑝

= 2.54 βˆ’ 1

ο‚· 𝐼𝑝 = 129.76 π΄π‘šπ‘π‘’π‘Ÿπ‘’π‘  𝐼𝑠 = 𝐼𝑝 + 𝐼𝑐 = 129.76 + 200 ο‚· 𝑰𝒔 = πŸ‘πŸπŸ—. πŸ•πŸ” π‘¨π’Žπ’‘π’†π’“π’†π’” 25. An autotransformer is adjusted for an output voltage of 85.3 Volts when operated from a 117 Volts line. The variable power load draws 3.63 kW at unity power factor at this setting. Determine the transformed power and the connected power from the source to the load. A. 980 Watts and 2, 650 Watts B. 1, 343 Watts and 2, 287 Watts C. 1, 815 Watts and 1, 815 Watts D. 1, 210 Watts and 2, 420 Watts Solution:

π‘Ž=

117 85.3

ο‚· π‘Ž = 1.37 1

1

π‘Ž

1.37

π‘ƒπ‘‘π‘Ÿπ‘Žπ‘›π‘  = 𝑃𝑖𝑛 (1 βˆ’ ) = (3, 630) (1 βˆ’

)

ο‚· 𝑷𝒕𝒓𝒂𝒏𝒔 = πŸ—πŸ–πŸŽ. πŸ‘πŸ” 𝑾𝒂𝒕𝒕𝒔 π‘ƒπ‘π‘œπ‘› =

𝑃𝑖𝑛 π‘Ž

=

3,630 1.37

ο‚· 𝑷𝒄𝒐𝒏 = 𝟐, πŸ”πŸ’πŸ—. πŸ”πŸ’ 𝑾𝒂𝒕𝒕𝒔 REE – April 2006 26. What would happen if you connect a transformer to a dc circuit with a voltage of 20% of nameplate ratings after a steady state condition is reached? A. No voltage is registered at the secondary B. Rated no-load current flows to the secondary C. primary current is equal to voltage over equivalent primary impedance D. Voltage is established at secondary

27. A short-circuit test was performed upon a 10 kVA, 2, 300/230-Volt transformer with the following results: 𝐸𝑠𝑐 = 137 π‘‰π‘œπ‘™π‘‘π‘ ; 𝑃𝑠𝑐 = 192 π‘Šπ‘Žπ‘‘π‘‘π‘ ; 𝐼𝑠𝑐 = 4.34 π΄π‘šπ‘π‘’π‘Ÿπ‘’π‘ . Calculate in secondary terms the transformer equivalent. A. 29.88 Ω B. 2.988 Ω C. 0.2988 Ω D. 298.8 Ω Solution:

𝑅=

𝑃𝑠𝑐

ο‚·

𝑍=

=

𝐼𝑠𝑐 2

192 4.34 2

𝑅 = 10.19 Ω 𝐸𝑠𝑐 𝐼𝑠𝑐

ο‚·

=

137 4.34

𝑍 = 31.57 Ω

𝑋 = βˆšπ‘ 2 βˆ’ 𝑅 2 = √31.572 βˆ’ 10.192

ο‚· 𝑿 = πŸπŸ—. πŸ–πŸ– Ω REE – April 2007 28. A transformer is rated 500 kVA, 4, 800/480 V, 60 Hz when it is operated as a conventional two winding transformer. This transformer is to be used as a 5280/4800 V stepdown autotransformer in a power distribution system. In the autotransformer, what is the transformer rating when used in this manner? A. 5 MVA B. 6 MVA C. 5.5 MVA D. 6.5 MVA Solution: 𝑆

500,000

𝐼𝑝 = 𝑉 =

4,800

𝑝

ο‚·

𝐼𝑝 = 104.17 π΄π‘šπ‘π‘’π‘Ÿπ‘’π‘  𝑆

500,000

𝑠

4,80

𝐼𝑠 = 𝑉 =

ο‚· 𝐼𝑠 = 1, 041.7 π΄π‘šπ‘π‘’π‘Ÿπ‘’π‘  𝐼𝑝 β€² = 𝐼𝑠 ο‚· 𝐼𝑝 β€² = 1, 041.7 π΄π‘šπ‘π‘’π‘Ÿπ‘’π‘  𝑆 = 𝑉𝑝 ′𝐼𝑝 β€² = (5, 280)(1, 041.7)

ο‚· 𝑺 = πŸ“. πŸ“ 𝑴𝑽𝑨 REE – September 2008 29. Two identical transformers bank on open delta serve a balanced three-phase load of 26 kVA at 240 V, 60 Hz. What is the minimum size of each in kVA needed to serve this load? A. 25 B. 10 C. 30 D. 15 Solution: π‘†βˆ… π‘Ÿπ‘Žπ‘‘π‘’π‘‘ =

π‘†βˆ… π‘™π‘œπ‘Žπ‘‘ (√3)

=

26,000 √3

ο‚· π‘Ίβˆ… 𝒓𝒂𝒕𝒆𝒅 = πŸπŸ“ π’Œπ‘½π‘¨

30. Two single-phase, 100 kVA transformers are connected in V (open delta) bank supplying a balanced three-phase load. If the balanced three-phase load is 135 kW at 0.82 p.f lagging and 0.823 efficiency, determine the overload kVA on each transformer. A. 10.5 B. 5.5 C. 15.5 D. 20.5 Solution:

𝑆𝐿 =

𝑃 𝑝.𝑓

=

135,000 0.82

ο‚· 𝑆𝐿 = 164.634 π‘˜π‘‰π΄ Ι³=

π‘ƒπ‘œπ‘’π‘‘ 𝑃𝑖𝑛 135

𝑃𝑖𝑛 =

0.823

ο‚· 𝑃𝑖𝑛 = 164.034 π‘˜π‘Š 𝑆𝑖𝑛 =

𝑃𝑖𝑛 𝑝.𝑓

=

164.034 π‘˜π‘Š 0.82

ο‚· 𝑆𝑖𝑛 = 200.041 π‘˜π‘‰π΄ π‘†βˆ… =

𝑆𝑖𝑛 √3

=

200.041 √3

ο‚· π‘†βˆ… = 115.494 π‘˜π‘‰π΄ ο‚· π‘†βˆ… π‘Ÿπ‘Žπ‘‘π‘’π‘‘ = 100 π‘˜π‘‰π΄ 𝑆𝑂.𝐿 = π‘†πΏβˆ… βˆ’ π‘†βˆ…π‘Ÿπ‘Žπ‘‘π‘’π‘‘ = 115.494 βˆ’ 100 ο‚· 𝑺𝑢.𝑳 = πŸπŸ“. πŸ’πŸ—πŸ’ π’Œπ‘½π‘¨ 31. In problem No. 30, determine the p.f of each transformer secondary. A. 0.820 lagging and 0.820 lagging B. 0.996 lagging and 0.424 leading C. 0.996 lagging and 0.424 lagging D. 0.410 lagging and 0.410 lagging Solution:

πœƒ = π‘π‘œπ‘  βˆ’1 (0.82) ο‚· πœƒ = 34.92Β° 𝑝. 𝑓1 = π‘π‘œ 𝑠(30 + πœƒ) = π‘π‘œ 𝑠(30 + 34.92) ο‚· 𝒑. π’‡πŸ = 𝟎. πŸ’πŸπŸ’ π’π’‚π’ˆπ’ˆπ’Šπ’π’ˆ 𝑝. 𝑓2 = π‘π‘œ 𝑠(30 βˆ’ πœƒ) = π‘π‘œ 𝑠(30 βˆ’ 34.92) ο‚· 𝒑. π’‡πŸ = 𝟎. πŸ—πŸ—πŸ” π’π’‚π’ˆπ’ˆπ’Šπ’π’ˆ REE – April 2005 32. What is the normal secondary circuit current of a current transformer? A. 15 A B. 20 A C. 5 A D. 10 A

33. In Problem No.30, what is the minimum size in kVAR of a capacitor bank to be connected across the load so that each transformer is loaded 96% of its rated capacity? A. 87 kVAR B. 114 kVAR C. 27 kVAR D. 66 kVAR Solution:

π‘†βˆ… = (0.96)(π‘†βˆ…π‘Ÿπ‘Žπ‘‘π‘’π‘‘ ) = (0.96)(100) ο‚· π‘†βˆ… = 96 π‘˜π‘‰π΄ ο‚· 𝑃𝑇 = 164.034 π‘˜π‘Š ο‚· 𝑆 = 200.041 π‘˜π‘‰π΄ 𝑄 = βˆšπ‘† 2 βˆ’ 𝑃𝑇 2 = √(200.041)2 βˆ’ (164.034)2 ο‚· 𝑄 = 114.5 π‘˜π‘‰π΄π‘… 𝑆𝑛𝑒𝑀 = (96 π‘˜π‘‰π΄)(√3) ο‚· 𝑆𝑛𝑒𝑀 = 166.277 π‘˜π‘‰π΄ 𝑆 = 𝑃2 + 𝑄2 2

𝑄 = βˆšπ‘†π‘›π‘’π‘€ 2 βˆ’ 𝑃𝑇 2 = √(166.277)2 βˆ’ (164.034)2 ο‚· 𝑸 = πŸπŸ•. 𝟐𝟐 π’Œπ‘½π‘¨π‘Ή 34. A polarity test is performed upon a 1, 150/115 V transformer. If the input voltage is 116, calculate the voltmeter reading if the polarity is subtractive. A. 127.6 V B. 106 V C. 126 V D. 104.4 V Solution: π‘ π‘’π‘π‘‘π‘Ÿπ‘Žπ‘π‘‘π‘–π‘£π‘’ π‘Ž=

1,150

ο‚·

115

π‘Ž = 10

π‘‰π‘Ÿπ‘’π‘Žπ‘‘π‘–π‘›π‘” = 116 βˆ’ ο‚·

116 10

π‘½π’“π’†π’‚π’…π’Šπ’π’ˆ = πŸπŸŽπŸ’. πŸ’ 𝑽𝒐𝒍𝒕𝒔

35. A 20:1 potential transformer is used with a 150-V voltmeter. If the instrument deflection is 118 Volts, calculate the line voltage. A. 3, 000 V B. 2, 850 V C. 2, 360 V D. 2, 242 V Solution:

π‘Ž= 20 1

=

𝑉𝐿 π‘‰π‘Ÿπ‘’π‘Žπ‘‘π‘–π‘›π‘” 𝑉𝐿 118

ο‚· 𝑽𝑳 = 𝟐, πŸ‘πŸ”πŸŽ 𝑽𝒐𝒍𝒕𝒔

REE –September 2010 36. A three-phase wye-delta connected, 50 MVA, 345/34.5 kV transformer is protected by differential protection. The current transformer on the high side for differential protection is 150:5. What is the current on the secondary side of CT’s? A. 3.83 A B. 2.53 A C. 4.50 A D. 4.83 A Solution: 𝑆

πΌβˆ… 𝑝 =

=

3π‘‰βˆ…π‘

50,000,000 3(

345,000 ) √3

ο‚· πΌβˆ… 𝑝 = 83.67 π΄π‘šπ‘π‘’π‘Ÿπ‘’π‘  𝑠𝑖𝑛𝑐𝑒 𝑀𝑦𝑒 βˆ’ π‘π‘œπ‘›π‘›π‘’π‘π‘‘π‘–π‘œπ‘› πΌβˆ… 𝑝 = 𝐼𝐿 𝑝 ο‚· 𝐼𝐢𝑇 𝑝 = 𝐼𝐢𝑇 𝑝 = 83.67 π΄π‘šπ‘π‘’π‘Ÿπ‘’π‘  𝐿

π‘Ž= 150 5

𝐼𝑝 𝐼𝑠

=

=

βˆ…

𝑁𝑝

𝑁𝑠 83.67 𝐼𝐢𝑇 𝑠

βˆ…

𝐼𝐢𝑇 𝑠 =

(83.67)(5) 150

βˆ…

ο‚· 𝐼𝐢𝑇 𝑠 = 2.789 π΄π‘šπ‘π‘’π‘Ÿπ‘’π‘  βˆ…

𝐼𝐢𝑇 𝑠𝑒𝑐 = √3 (2.789) ο‚· 𝑰π‘ͺ𝑻 𝒔𝒆𝒄 = πŸ’. πŸ–πŸ‘πŸ π‘¨π’Žπ’‘π’†π’“π’†π’” REE – October 2000 37. The CT ratio and PT ratio used to protect a line are 240 and 2,000, respectively. If the impedance of each line is 10 Ω, what is the relay impedance to protect the line from fault? A. 83.33 ohms B. 1.2 ohms C. 48, 000 ohms D. 12 ohms Solution:

π‘π‘Ÿ =

π‘ƒπ‘‡π‘Ÿ πΆπ‘‡π‘Ÿ

=

2,000 240

ο‚· π‘π‘Ÿ = 8.33 π‘œβ„Žπ‘šπ‘  π‘π‘Ÿ =

𝑍𝑙𝑖𝑛𝑒

π‘π‘Ÿπ‘’π‘™π‘Žπ‘¦ 10 π‘π‘Ÿπ‘’π‘™π‘Žπ‘¦ = 8.33

ο‚· π’π’“π’†π’π’‚π’š = 𝟏. 𝟐 π’π’‰π’Žπ’”

38. Two transformers 1 and 2 are connected in parallel supplying a common load of 120 kVA. Transformer 1 is rated 50 kVA, 7, 620/240-V single-phase and has an equivalent impedance of 8.5 Ω while transformer 2 is rated 75 kVA, 7, 620/240-V single-phase and has an equivalent impedance of 5.1 Ω. The two transformers operate with the same power factors. What is the kVA load of each transformer? A. 48 & 72 B. 45 & 75 C. 42 & 78 D. 40 & 80 Solution: 𝑍𝑒 1 𝑍𝑒 2 8.5 5.1

= =

𝑆2 𝑆1 𝑆2 𝑆1

ο‚· 𝑆2 = 1.67𝑆1 β†’ π‘’π‘žβ€²π‘› 1 ο‚· 𝑆𝐿 = 𝑆1 + 𝑆2 β†’ π‘’π‘žβ€² 𝑛 2 𝑆𝑒𝑏𝑠𝑑𝑖𝑑𝑒𝑑𝑒 π‘’π‘žβ€™π‘› 1 𝑖𝑛 2 120 = 𝑆1 + 1.67𝑆1 ο‚· π‘ΊπŸ = πŸ’πŸ’. πŸ—πŸ’ π’Œπ‘½π‘¨ 𝑆2 = 1.67(44.94) ο‚· π‘ΊπŸ = πŸ•πŸ“. πŸŽπŸ“ π’Œπ‘½π‘¨ 39. Two single-phase transformers are connected in parallel at no-load. One has a turns ratio of 5, 000/440 and rating of 200 kVA, the other has a ratio of 5, 000/480 and rating of 350 kVA the leakage reactance of each is 3.5%. The no-load circulating current is . A. 207 A B. 702 A C. 720 A D. 270 A Solution:

π‘‹π‘π‘Žπ‘ π‘’1 =

(π‘‰π‘π‘Žπ‘ π‘’1 )

2

=

π‘†π‘π‘Žπ‘ π‘’1

(440)2 200,000

ο‚· π‘‹π‘π‘Žπ‘ π‘’1 = 0.968 Ω π‘‹π‘π‘Žπ‘ π‘’2 =

(π‘‰π‘π‘Žπ‘ π‘’2 ) π‘†π‘π‘Žπ‘ π‘’2

2

=

(480)2 350,000

ο‚· π‘‹π‘π‘Žπ‘ π‘’2 = 0.658 Ω π‘‹π‘’βˆ’π‘ 1 = 𝑋𝑒 π‘‹π‘π‘Žπ‘ π‘’1 = (0.035)(0.968) ο‚· π‘Ώπ’†βˆ’π’”πŸ = 𝟎. πŸŽπŸ‘πŸ‘πŸ— Ω π‘‹π‘’βˆ’π‘ 2 = 𝑋𝑒 π‘‹π‘π‘Žπ‘ π‘’2 = (0.035)(0.658) ο‚· π‘Ώπ’†βˆ’π’”πŸ = 𝟎. πŸŽπŸπŸ‘ Ω

REE – October 1997 40. A power transformer rated 50, 000 kVA, 34.5/13.8 kV is connected Y-grounded primary and delta on the secondary. Determine the full load phase current at the secondary side. A. 2, 092 A B. 1, 725 A C. 1, 449 A D. 1, 208 A Solution: 𝑆 = √3 𝑉𝐿 𝐼𝐿 50,000,000

𝐼𝐿 𝑝 =

(34,500)(√3)

ο‚· 𝐼𝐿 𝑝 = 836.74 π΄π‘šπ‘π‘’π‘Ÿπ‘’π‘  𝐼𝐿 𝑝 = πΌβˆ… 𝑝 𝑉𝑝 𝑉𝑠

𝐼

= 𝐼𝑠

𝑝

πΌβˆ… 𝑠 =

(34,500)(836.74) 13,800 (√3)

ο‚·

𝑰𝒔 βˆ… = 𝟏, πŸπŸŽπŸ•. πŸ•πŸ‘ π‘¨π’Žπ’‘π’†π’“π’†π’”

π‘Žπ‘›π‘œπ‘‘β„Žπ‘’π‘Ÿ π‘ π‘œπ‘™π‘’π‘‘π‘–π‘œπ‘›: 𝐼𝐿 𝑠 = ( ο‚· πΌβˆ… 𝑠 = ο‚·

50,000,000 √3) (13,800)

𝐼𝐿 𝑠 = 2, 091.849 𝐼𝐿 𝑠 2,091.849 √3

=

π΄π‘šπ‘π‘’π‘Ÿπ‘’π‘ 

√3

π‘°βˆ… 𝒔 = 𝟏, πŸπŸŽπŸ•. πŸ•πŸ‘ π‘¨π’Žπ’‘π’†π’“π’†π’”

REE – April 2006 41. A 2, 000 kW, 2, 400-V, 75% p.f load is to be supplied from a 34, 5000-V, 3-phase line through a single bank of transformers. Give the primary and secondary line currents in amperes for the wye-wye connections. A. 50/700 B. 48/650 C. 60/800 D. 45/642 Solution: π‘Œ βˆ’ βˆ† πΆπ‘œπ‘›π‘›π‘’π‘π‘‘π‘–π‘œπ‘›

𝐼𝐿 𝑝 = [

βˆ— 2 π‘€π‘Š βˆ π‘π‘œπ‘  βˆ’1 (0.75) 0.75 √3 (34,500)

]

𝐼𝐿 𝑝 = 44.626∠44.41Β° ο‚·

𝑰𝑳 𝒑 = πŸ’πŸ’. πŸ”πŸπŸ” π‘¨π’Žπ’‘π’†π’“π’†π’” βˆ— 2 π‘€π‘Š βˆ π‘π‘œπ‘  βˆ’1 (0.75) 0.75

𝐼𝐿 𝑠 = [

√3 (2,400)

]

𝐼𝐿 𝑠 = 641.5∠44.41Β° ο‚·

𝑰𝑳 𝒔 = πŸ”πŸ’πŸ. πŸ“ π‘¨π’Žπ’‘π’†π’“π’†π’”

REE – April 2005 42. A 3, 000 kVA, 2, 400 V, 75% power factor load is to be supplied from a 34, 500-V, three-phase line through a single bank of transformers. What is the voltage rating of each transformer if the connection is wye-wye? A. 20, 000/1, 380 B. 18, 500/1, 350 C. 18, 000/1, 850 D. 19, 000/1, 350 Solution:

π‘‰βˆ… 𝑝 = ο‚·

34,500 √3

π‘½βˆ… 𝒑 = πŸπŸ—, πŸ—πŸπŸ–. πŸ“πŸ–πŸ’ 𝑽𝒐𝒍𝒕𝒔

π‘‰βˆ… 𝑠 = ο‚·

2,400 √3

π‘½βˆ… 𝒔 = 𝟏, πŸ‘πŸ–πŸ“. πŸ”πŸ’πŸ 𝑽𝒐𝒍𝒕𝒔

REE – March 1998 43. A 13.8 kV/480 V, 10 MVA three-phase transformer has 5% impedance. What is the impedance in ohms referred to the primary? A. 0.952 ohm B. 0.03 ohm C. 5.125 ohm D. 9.01 ohm Solution:

𝑍𝑝𝑒 = 𝑍𝑏 =

π‘π‘Žπ‘π‘‘π‘’π‘Žπ‘™

𝑍𝑏 (𝑉𝑏 )2 𝑆𝑏

=

(13,800)2 10,000,000

ο‚·

𝑍𝑒 𝑝

𝑍𝑏 = 19.044 π‘œβ„Žπ‘šπ‘  = 𝑍𝑝𝑒 𝑍𝑏 = (0.05)(19.044)

ο‚·

𝒁𝒆 𝒑 = 𝟎. πŸ—πŸ“πŸ π’π’‰π’Žπ’”

REE – May 2009 44. A three-phase transformer is rated 15 MVA, 69/13.2 kV has a series impedance of 5%. What is the new per unit impedance if the system study requires a 100 MVA base and 67 kV base? A. 0.354 B. 0.347 C. 0.372 D. 0.333 Solution 𝑆

𝑉

π‘†π‘œ

𝑉𝑁

𝑍𝑝𝑒 𝑛𝑒𝑀 = 𝑍𝑝𝑒 π‘œπ‘™π‘‘ ( 𝑛 ) ( π‘œ ) 𝑍𝑝𝑒 𝑛𝑒𝑀 = (0.05) ( ο‚· 𝒁𝒑𝒖

π’π’†π’˜

100 15

2

69 2

)( )

= 𝟎. πŸ‘πŸ“πŸ’

67

REE – April 2004 45. A transformer rated 2, 000 kVA, 34, 500/240 volts has 5.75% impedance. What is the per unit impedance? A. 0.0635 B. 0.0656 C. 0.0575 D. 34.2 Solution:

𝑍𝑝𝑒 = 57.5% ο‚· ∴ 𝑍𝑝𝑒 = 0.0575 46. Three 5:1 transformers are connected in delta-wye to step up the voltage at the beginning of a 13, 200-Volt three-phase transmission line. Calculate the line voltage on the high side of the transformers. A. 114, 300 V B. 66, 000 V C. 132, 000 V D. 198, 000 V Solution: 5 1

=

π‘‰βˆ… 2 π‘‰βˆ… 1

=

π‘‰βˆ… 2 13,200 𝑉

π‘‰βˆ… 2 = π‘Žπ‘‰π‘ π‘‰βˆ… 2 = (5)(13, 200) ο‚· π‘‰βˆ… 2 = 66, 000 π‘‰π‘œπ‘™π‘‘π‘  𝑉𝐿 = √3 π‘‰βˆ… 2 = √3 (66, 000) ο‚· 𝑽𝑳 = πŸπŸπŸ’, πŸ‘πŸπŸ“. πŸ‘πŸ“πŸ‘ 𝑽𝒐𝒍𝒕𝒔 47. A 150 kVA, 2, 400/480-V, three-phase transformer with an equivalent impedance of 4%is connected to an infinite bus and without load. If a three-phase fault occurs at the secondary terminals, the fault current in amperes is . A. 4, 512 A B. 3, 908 A C. 7, 815 A D. 1, 504 A Solution: 3 βˆ… π‘“π‘Žπ‘’π‘™π‘‘ π‘œπ‘› π‘‘β„Žπ‘’ π‘ π‘’π‘π‘œπ‘›π‘‘π‘Žπ‘Ÿπ‘¦ π‘‘π‘’π‘Ÿπ‘šπ‘–π‘›π‘Žπ‘™π‘ 

𝐼𝐹 3βˆ… = 𝐼𝐹 3βˆ… =

𝑆𝐡 √3 𝑉𝐡 𝑋𝑝𝑒 150,000 √3 (480)(0.04)

ο‚· 𝑰𝑭 πŸ‘βˆ… = πŸ’, πŸ“πŸπŸŽ. πŸ“πŸ’πŸ— π‘¨π’Žπ’‘π’†π’“π’†π’”

48. Transformer 1 is in parallel with Transformer 2 Transformer 1 Transformer 2 150 kVA, single-phase 300 kVA, single-phase 6, 600/240 V 6, 600/240 V π‘π‘’βˆ’π‘ 1 = 0.02425∠62.9Β° Ω π‘π‘’βˆ’π‘ 2 = 0.01067∠62.9Β° Ω Determine the maximum kVA load the bank can carry without overloading any of the two transformers, assuming that the two transformers operate at the same power factors. A. 450 kVA B. 432 kVA C. 420 kVA D. 412 kVA Solution:

𝑆1 + 𝑆2 = π‘†π‘™π‘œπ‘Žπ‘‘ πΆπ‘Žπ‘ π‘’ 𝐼: 𝑇1 @ 150 π‘˜π‘‰π΄ π‘π‘’βˆ’π‘ 1 π‘π‘’βˆ’π‘ 2 π‘π‘’βˆ’π‘ 1 π‘π‘’βˆ’π‘ 2

ο‚·

= =

𝑆2 𝑆1 0.02425∠62.9Β°

0.01067∠62.9Β° π‘π‘’βˆ’π‘ 1 π‘π‘’βˆ’π‘ 2

2.273 =

= 2.273

𝑆2 𝑆1

𝑆2 = 2.273 (150, 000) ο‚· 𝑆2 = 340.95 π‘˜π‘‰π΄ ο‚· ∴ π‘œπ‘£π‘’π‘Ÿπ‘™π‘œπ‘Žπ‘‘ π‘Žπ‘‘ 𝑇2 πΆπ‘Žπ‘ π‘’ 𝐼𝐼: 𝑇2 @ 300 π‘˜π‘‰π΄

𝑆1 =

300,000 2.273

ο‚· 𝑆1 = 131.984 π‘˜π‘‰π΄ π‘†π‘™π‘œπ‘Žπ‘‘ = 𝑆1 + 𝑆2 = (131.984) + (300) ο‚· 𝑺𝒍𝒐𝒂𝒅 = πŸ’πŸ‘πŸ. πŸ—πŸ–πŸ π’Œπ‘½π‘¨

Related Documents

Transformers
January 2021 1
Combat Machines
January 2021 1
Ac
February 2021 2

More Documents from "Wiki Boys"