Bioquimica 1 Informe Reconocimiento De Proteinas 1 (1)

  • Uploaded by: angela
  • 0
  • 0
  • February 2021
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Bioquimica 1 Informe Reconocimiento De Proteinas 1 (1) as PDF for free.

More details

  • Words: 3,382
  • Pages: 20
Loading documents preview...
FACULTAD DE CIENCIAS FARMACÉUTICAS Y BIOQUIMICA

“RECONOCIMIENTO DE PROTEÍNAS” CURSO:

bioquímica

DOCENTE: Dr. Herles MENDOZA CESPEDES ALUMNA: MARCELO BONILLA ANGELA

TURNO:

noche

AULA:

2X

LIMA –PERU

2016

I.

INTRODUCCIÓN

Las proteínas son biomoléculas formadas básicamente por carbono, hidrógeno, oxígeno y nitrógeno. Pueden además contener azufre y en algunos tipos de proteínas, fósforo, hierro, magnesio y cobre entre otros elementos. Pueden considerarse polímeros de unas pequeñas moléculas que reciben el nombre de aminoácidos y serían, por tanto, los monómeros unidad. Los aminoácidos están unidos mediante enlaces peptídicos. La unión de un bajo número de aminoácidos da lugar a un péptido; si el número de aminoácidos que forma la molécula no es mayor de 10, se denomina oligopéptido, si es superior a 10 se llama polipéptido y si el número es superior a 50 aminoácidos se habla ya de proteína. Por tanto, las proteínas son cadenas de aminoácidos que se pliegan adquiriendo una estructura tridimensional que les permite llevar a cabo miles de funciones. Las proteínas están codificadas en el material genético de cada organismo, donde se especifica su secuencia de aminoácidos, y luego son sintetizadas por los ribosomas. Las proteínas desempeñan un papel fundamental en los seres vivos y son las biomoléculas más versátiles y más diversas. Realizan una enorme cantidad de funciones diferentes, entre ellas funciones estructurales, enzimáticas, transportadora.

II.

OBJETIVOS

 Identificar a través de pruebas bioquímicas las proteínas existentes en soluciones problemas. III.

FUNDAMENTO TEORICO

Las proteínas son biomoléculas formadas básicamente por carbono, hidrógeno, oxígeno y nitrógeno. Pueden además contener azufre y en algunos tipos de proteínas, fósforo, hierro, magnesio y cobre entre otros elementos. Pueden considerarse polímeros de unas pequeñas moléculas que reciben el nombre de aminoácidos y serían por tanto los monómeros unidad. Los aminoácidos están unidos mediante enlaces peptídicos. La unión de un bajo número de aminoácidos da lugar a un péptido; si el nº de aa. que forma la molécula no es mayor de 10, se denomina oligopéptido, si es superior a 10 se llama polipéptido y si el n: es superior a 50 aa. se habla ya de proteína.

AMINOÁCIDOS Del griego Ammon = dios egipcio cerca de cuyo templo se prepararon por primera vez las sales de amonio a partir de estiércol de camello. Las subunidades (monómeros) que forman las proteínas (polímeros). Cada aminoácido posee por lo menos un grupo funcional amino (básico) y un grupo funcional carboxilo (ácido) y difiere de otros aminoácidos por la composición de su grupo R.

FUNCIONES DE LOS AMINOÁCIDOS 1. L - Alanina: Función: Interviene en el metabolismo de la glucosa. La glucosa es un carbohidrato simple que el organismo utiliza como fuente de energía. 2. L - Arginina: Función: Está implicada en la conservación del equilibrio de nitrógeno y de dióxido de carbono. También tiene una gran importancia en la producción de la Hormona del Crecimiento, directamente involucrada en el crecimiento de los tejidos y músculos y en el mantenimiento y reparación del sistema inmunológico. 3. L - Asparagina: Función: Interviene específicamente en los procesos metabólicos del Sistema Nervioso Central (SNC). 4. Acido L- Aspártico: Función: Es muy importante para la desintoxicación del Hígado y su correcto funcionamiento. El ácido L- Aspártico se combina con otros aminoácidos formando moléculas capaces de absorber toxinas del torrente sanguíneo. 5. L - Citrulina: Función: Interviene específicamente en la eliminación del amoníaco. 6. L - Cistina: Función: También interviene en la desintoxicación, en combinación con los aminoácidos anteriores. La L - Cistina es muy importante en la síntesis de la insulina y también en las reacciones de ciertas moléculas a la insulina. 7. L - Cisteina: Función: Junto con la L- cistina, la L- Cisteina está implicada en la desintoxicación, principalmente como antagonista de los radicales libres. También contribuye a mantener la salud de los cabellos por su elevado contenido de azufre. 8. L - Glutamina: Función: Nutriente cerebral e interviene específicamente en la utilización de la glucosa por el cerebro. 9. Acido L - Glutamínico: Función: Tiene gran importancia en el funcionamiento del Sistema Nervioso Central y actúa como estimulante del sistema inmunológico. 10. L - Glicina: Función: En combinación con muchos otros aminoácidos, es un componente de numerosos tejidos del organismo. 11. L - Histidina: Función: En combinación con la hormona de crecimiento (HGH) y algunos aminoácidos asociados, contribuyen al crecimiento y reparación de los tejidos con un papel específicamente relacionado con el sistema cardio-vascular. 12. L - Serina: Función: Junto con algunos aminoácidos mencionados, interviene en la desintoxicación del organismo, crecimiento muscular, y metabolismo de grasas y ácidos grasos. 13. L - Taurina: Función: Estimula la Hormona del Crecimiento (HGH) en asociación con otros aminoácidos, esta implicada en la regulación de la presión sanguínea, fortalece el músculo cardiaco y vigoriza el sistema nervioso.

14. L - Tirosina: Función: Es un neurotransmisor directo y puede ser muy eficaz en el tratamiento de la depresión, en combinación con otros aminoácidos necesarios. 15. L - Ornitina: Función: Es específico para la hormona del Crecimiento (HGH) en asociación con otros aminoácidos ya mencionados. Al combinarse con la L-Arginina y con carnitina (que se sintetiza en el organismo, la L-Ornitina tiene una importante función en el metabolismo del exceso de grasa corporal. 16. L - Prolina: Función: Está involucrada también en la producción de colágeno y tiene gran importancia en la reparación y mantenimiento del músculo y huesos. Los Ocho (8) Esenciales 17. L - Isoleucina: Función: Junto con la L-Leucina y la Hormona del Crecimiento intervienen en la formación y reparación del tejido muscular. 18. L - Leucina: Función: Junto con la L-Isoleucina y la Hormona del Crecimiento (HGH) interviene con la formación y reparación del tejido muscular. 19. L - Lisina: Función: Es uno de los más importantes aminoácidos porque, en asociación con varios aminoácidos más, interviene en diversas funciones, incluyendo el crecimiento, reparación de tejidos, anticuerpos del sistema inmunológico y síntesis de hormonas. 20. L - Metionina: Función: Colabora en la síntesis de proteínas y constituye el principal limitante en las proteínas de la dieta. El aminoácido limitante determina el porcentaje de alimento que va a utilizarse a nivel celular. 21. L - Fenilalanina: Función: Interviene en la producción del Colágeno, fundamentalmente en la estructura de la piel y el tejido conectivo, y también en la formación de diversas neurohormonas. 22. L - Triptófano: Función: Está implicado en el crecimiento y en la producción hormonal, especialmente en la función de las glándulas de secreción adrenal. También interviene en la síntesis de la serotonina, neurohormona involucrada en la relajación y el sueño. 23. L - Treonina: Función: Junto con la con la L-Metionina y el ácido L- Aspártico ayuda al hígado en sus funciones generales de desintoxicación. 24. L - Valina: Función: Estimula el crecimiento y reparación de los tejidos, el mantenimiento de diversos sistemas y balance de nitrógeno.

EL ENLACE PEPTÍDICO Los péptidos están formados por la unión de aminoácidos mediante un enlace peptídico. Es un enlace covalente que se establece entre el grupo carboxilo de un aa. Y el grupo amino del siguiente, dando lugar al desprendimiento de una molécula de agua.

El enlace peptídico tiene un comportamiento similar al de un enlace doble, es decir, presenta una cierta rigidez que inmoviliza en un plano los átomos que lo forman. COMPORTAMIENTO QUÍMICO En disolución acuosa, los aminoácidos muestran un comportamiento anfótero, es decir pueden ionizarse, dependiendo del pH, como un ácido liberando protones y quedando (-COO'), o como base, los grupos -NH2 captan protones, quedando como (-NH3+), o pueden aparecer como ácido y base a la vez. En este caso los aminoácidos se ionizan doblemente, apareciendo una forma dipolar iónica llamada zwitterion.

ESTRUCTURA PRIMARIA La estructura primaria viene determinada por la secuencia de AA en la cadena proteica, es decir, el número de AA presentes y el orden en que están enlazados. Las posibilidades de estructuración a nivel primario son prácticamente ilimitadas. Como en casi todas las proteínas existen 20 AA diferentes, el número de estructuras posibles viene dado por las variaciones con repetición de 20 elementos tomados de n en n, siendo n el número de AA que componen la molécula proteica. a dipolar iónica llamada zwitterion. Generalmente, el número de AA que forman una proteína oscila entre 80 y 300. Los enlaces que participan en la estructura primaria de una proteína son covalentes: son los enlaces peptídicos. El enlace peptídico es un enlace amida que se forma entre el grupo carboxilo de una AA con el grupo amino de otro, con eliminación de una molécula de agua. Independientemente de la longitud de la cadena polipeptídica, siempre hay un extremo amino terminal y un extremo carboxilo terminal que permanecen intactos. Por convención, la secuencia de una proteína se lee siempre a partir de su extremo amino. Como consecuencia del establecimiento de enlaces peptídicos entre los distintos AA que forman la proteína se origina una cadena principal o "esqueleto" a partir del cual emergen las cadenas laterales de los AA. Los átomos que componen la cadena principal de la proteína son el N del grupo amino (condensado con el AA precedente), el C (a partir del cual emerge la cadena lateral) y el C del grupo carboxilo (que se condensa con el AA siguiente). Por lo tanto, la unidad repetitiva básica que aparece en la cadena principal de una proteína es: (-NH-C -CO-). Como la estructura primaria es la que determina los niveles superiores de organización, el conocimiento de la secuencia de AA es del mayor interés para el estudio de la estructura y función de una proteína. Clásicamente, la

secuenciación de una proteína se realiza mediante métodos químicos. El método más utilizado es el de Edman, que utiliza el fenilisotiocianato para marcar la proteína e iniciar una serie de reacciones cíclicas que permiten identificar cada AA de la secuencia empezando por el extremo amino. Hoy en día esta serie de reacciones las realiza de forma automática un aparato llamado secuenciador de AA.

ESTRUCTURA SECUNDARIA La estructura secundaria es la disposición de la secuencia de aminoácidos en el espacio. Los aa, a medida que van siendo enlazados durante la síntesis de proteínas y gracias a la capacidad de giro de sus enlaces, adquieren una disposición espacial estable, la estructura secundaria. Existen dos tipos de estructura secundaria: 1. La alfa-hélice 2. La lámina beta.

ESTRUCTURA TERCIARIA La estructura terciaria informa sobre la disposición de la estructura secundaria de un polipéptido al plegarse sobre sí misma originando una conformación globular. En definitiva, es la estructura primaria la que determina cuál será la secundaria y por tanto la terciaria. Esta conformación globular facilita la solubilidad en agua y así realizar funciones de transporte, enzimáticas, hormonales, etc. Esta conformación globular se mantiene estable gracias a la existencia de enlaces entre los radicales R de los aminoácidos. Aparecen varios tipos de enlaces: 1. 2. 3. 4.

El puente disulfuro entre los radicales de aminoácidos que tiene azufre. Los puentes de hidrógeno Los puentes eléctricos Las interacciones hifrófobas

ESTRUCTURA CUATERNARIA Esta estructura informa de la unión, mediante enlaces débiles (no covalentes) de varias cadenas polipeptídicas con estructura terciaria, para formar un complejo proteico. Cada una de estas cadenas polipeptídicas recibe el nombre de protómero. El número de protómeros varía desde dos como en la hexoquinasa, cuatro como en la hemoglobina, o muchos como la cápsida del virus de la poliomielitis, que consta de 60 unidades proteícas.

CLASIFICACIÓN DE LAS PROTEÍNAS  HOLOPROTEÍNAS Formadas solamente por aminoácidos  HETEROPROTEÍNAS Formadas por una fracción proteínica y por un grupo no proteínico, que se denomina "grupo prostético

HOLOPROTEINAS

Globulares

Fibrosas

 Prolaminas: Zeína (maíza),gliadina (trigo), hordeína (cebada).  Gluteninas: Glutenina (trigo), orizanina (arroz).  Albúminas:Seroalbúmina (sangre), ovoalbúmina (huevo), lactoalbúmina (leche)  Hormonas: Insulina, hormona del crecimiento, prolactina, tirotropina.  Enzimas: Hidrolasas, Oxidasas, Ligasas, Liasas, Transferasas...etc.

   

Colágenos: en tejidos conjuntivos, cartilaginosos. Queratinas: En formaciones epidérmicas: pelos, uñas, plumas, cuernos. Elastinas: En tendones y vasos sanguíneos. Fibroínas: En hilos de seda, (arañas, insectos)

HETEROPROTEÍNAS

Glucoproteínas

Lipoproteínas

   

Ribonucleasa Mucoproteínas Anticuerpos Hormona luteinizante

De alta, baja y muy baja densidad, que transportan lípidos en la sangre.

Nucleoproteínas

 Nucleosomas de la cromatina  Ribosomas

Cromoproteínas

 Hemoglobina, hemocianina, mioglobina, que transportan oxígeno  Citocromos, que transportan electrones

Estructural Como las Glucoproteínas que forman parte de las membranas. Las histonas que forman parte de los cromosomas El colágeno, del tejido conjuntivo fibroso. La elastina, del tejido conjuntivo elástico. La queratina de la epidermis. Enzimática Son las más numerosas y especializadas. Actúan como biocatalizadores de las reacciones químicas y puedes verlas y estudiarlas con detalle aquí. Hormonal Insulina y glucagón Hormona del crecimiento Calcitonina Hormonas tropas

Defensiva Inmunoglobulina Trombina y fibrinógeno Transporte Hemoglobina Hemocianina Citocromos Reserva Ovoalbúmina, de la clara de huevo Gliadina, del grano de trigo Lactoalbúmina, de la leche

Coagulación de proteínas: Las proteínas, debido al gran tamaño de sus moléculas, forman con el agua soluciones coloidales. Estas soluciones pueden precipitar con formación de coágulos al ser calentadas a temperaturas superiores a los 70°C o al ser tratadas con soluciones salinas, ácidos, alcohol, etc. La coagulación de las proteínas es un proceso irreversible y se debe a su desnaturalización por los agentes indicados, que al actuar sobre la proteína la desordenan por la destrucción de su estructura terciaria y cuaternaria.

Reacción Xantoprotéica: Es debida a la formación de un compuesto aromático nitrado de color amarillo, cuando las proteínas son tratadas con ácido nítrico concentrado. La prueba da resultado positivo en aquellas proteínas con aminoácidos portadores de grupos bencénicos, especialmente en presencia de tirosina. Si una vez realizada la prueba se neutralización un álcali vira a un color anaranjado oscuro.

Reacción de Biuret: La producen los péptidos y las proteínas, pero no los aminoácidos, ya que se debe a la presencia del enlace peptídico (- CO- NH -) que se destruye al liberarse los aminoácidos. Cuando una proteína se pone en contacto con un álcali

concentrado, se forma una sustancia compleja denominada Biuret, de fórmula: Que en contacto con una solución de sulfato cúprico diluida, da una coloración violeta característica. Reacción de los aminoácidos azufrados: Se pone de manifiesto por la formación de un precipitado negruzco de sulfuro de plomo. Se basa esta reacción en la separación mediante un álcali, del azufre de los aminoácidos, el cual al reaccionar con una solución de acetato de plomo, forma el sulfuro de plomo.

REACTIVOS Muestra  Clara de huevo

Material de vidrio  Tubos de ensayo  Gradilla  Varillas de vidrio  Mechero  Vasos de precipitados  Pipetas  Baqueta

    

Reactivos Ácido nítrico concentrado Hidróxido de sodio al 40 % Hidróxido de sodio al 20 % Sulfato cúprico al 1 % Acetato de plomo al 5 %

DESCRIPICON DE LA PRÁCTICA REACCION XANTOPROTEICA:  Poner en el tubo de ensayo 2 a 3ml de solución problema (clara de huevo)

Añadir 1ml de HNO3 concentrado

REACCION DE BIURET:  Poner en un tubo de ensayo 3ml de albumina de huevo

Añadir 2ml de solución hidróxido de sodio al 20 %

Calentar a baño maría a 100 ºC y enfriar en agua fría.

A continuación 4 o 5 gotas de solución de sulfato cúprico diluida al 1%.

REACCION DE LOS AMINOACIDOS AZUFRADOS:  Poner en un tubo de ensayo 2 0 3 ml de albumina de huevo (clara de huevo)

Añadir 2ml de solución hidróxido de sodio al 20 %

Añadir 10 gotas de solución de acetato de plomo al 5%.

Calentar el tubo hasta ebullición.

RESULTADO FINAL PARA RECONOCER PROTEÍNAS

Reacción positiva con alcohol

Reacción positiva con HCL

Reacción de los aminoácidos azufrados

Reacción de xantoproteica Reacción de biuret

V.- RESULTADOS Y DISCUSIÓN REACCION XANTOPROTEICA: en la siguiente reacción al agregar el ácido nítrico concentrado dio una coloración amarrilla

Esta reacción se debe a la formación de un compuesto aromático nitrado de color amarillo, cuando las proteínas son tratadas con ácido nítrico concentrado. Generalmente, se forma primero un precipitado blanco que cambia a amarillo al calentarlo. El color se empieza a tornarse anaranjado cuando la solución se vuelve básica. La prueba da resultado positivo en aquellas proteínas con aminoácidos portadores de grupos bencénicos, tirosina, fenilalanina y triptófano, obteniéndose nitrocompuestos de color amarillo, que se vuelven anaranjados en medio fuertemente alcalino (formación del ácido pirámico o trinitrofenol). En esta prueba se produce la nitración del anillo bencénico presente en dichos aminoácidos. Las manchas amarillas en la piel se causan por el ácido nítrico son el resultado de una reacción xantoprotéica. REACCION DE BIURET

El reactivo de Biuret está formado por una disolución de sulfato de cobre en medio alcalino, este reconoce el enlace peptídico de las proteínas mediante la formación de un complejo de coordinación entre los iones Cu2+ y los pares de electrones no compartidos del nitrógeno que forma parte de los enlaces peptídicos, lo que produce una coloración rojo-violeta

REACCION DE LOS AMINOACIDOS AZUFRADOS Se pone de manifiesto por la formación de un precipitado negruzco de sulfuro de plomo. Se basa esta reacción en la separación mediante un álcali, del azufre de los aminoácidos, el cual al reaccionar con una solución de acetato de plomo, forma el sulfuro de plomo.

VI.- CONCLUSIONES  Las proteínas constituyen una de las moléculas más importantes en el organismo ya que cumplen muchas funciones  Las proteínas están constituidas por aminoácidos por los cuales los métodos se basan en el reconocimiento de los aminoácidos  Al realizar las diferentes pruebas con la albúmina comprobar experimentalmente efectivamente que se una proteína

se pudo trata de

 Las proteínas son sensibles con las sales metálicas pesadas (mercurio, cobre ,plomo) formando precipitados En las reacciones donde se obtuvo precipitación se debió a un cambien el estado físico de la proteína , mientras que en la coagulación se ha producido un cambio en el estado físico y en la estructura química por eso es irreversible

V.- CUESTIONARIO ¿Cómo se manifiesta la desnaturalización de la clara de huevo? La desnaturalización de proteínas se da en la clara de los huevos, que son en gran parte albúminas en agua. En los huevos frescos, la clara es transparente y líquida; pero al cocinarse se torna opaca y blanca, formando una masa sólida intercomunicada. Esa misma desnaturalización puede producirse a través de una desnaturalización química, por ejemplo volcándola en un recipiente con acetona. Desnaturalización irreversible de la proteína de la clara de huevo y pérdida de solubilidad, causadas por la alta temperatura (mientras se la fríe)

¿Cuáles de los tres agentes utilizados tiene mayor poder de desnaturalización? El efecto de la temperatura, cuando la temperatura es elevada aumenta la energía cinética de las moléculas con lo que se desorganiza la envoltura acuosa de las proteínas y, se desnaturalizan.

¿Cómo podríamos saber que una sustancia desconocida es una proteína? Para saber si una sustancia desconocida, es una proteína se utiliza el Reactivo de Biuret es aquel que detecta la presencia de proteínas, péptidos cortos y otros compuestos con dos o más enlaces peptídicos en sustancias de composición desconocida. Está hecho de hidróxido potásico (KOH) y sulfato cúprico (CuSO4), junto con (KNaC4O6·4H2O). El reactivo, de color azul, cambia a violeta en presencia de proteínas, y a rosa cuando se combina con polipéptidos de cadena corta. El Hidróxido de Potasio no participa en la reacción, pero proporciona el medio alcalino necesario para que tenga lugar

¿Qué coloración da la reacción de Biuret? La coloración que presenta es el color violeta, indicando la presencia de proteínas.

¿Una proteína coagulada podría dar la reacción del Biuret? Las proteínas, debido al gran tamaño de sus moléculas, forman con el agua soluciones coloidales. Estas soluciones pueden precipitar con formación de coágulos al ser calentadas a temperaturas superiores a los 70 ªC o al ser tratadas con soluciones salinas, ácidos, alcohol, etc. Si una proteína coagulada podría dar la reacción de Biuret, porque el reactivo reacciona con cualquier proteína, liquida o sólida, por ejemplo cuando haces una cuantificación de proteínas en suero (liquida) o cuando haces una prueba cualitativa en huevos, carne, papas, etc.

¿Si se realiza la reacción del Biuret sobre un aminoácido como la glicina ¿es positiva o negativa? ¿Por qué? La glicina no reaccionó con el reactivo de Biuret porque está en forma libre y no hay enlaces peptídicos con los que pueda reaccionar este reactivo. De esta manera, la glicina dio una prueba negativa. Además en la reacción Xantoprotéica da negativo porque carece de grupos aromáticos.

Related Documents


More Documents from "Yih Libed"