Choppi

  • Uploaded by: Sarah Sanchez
  • 0
  • 0
  • February 2021
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Choppi as PDF for free.

More details

  • Words: 3,057
  • Pages: 12
Loading documents preview...
Pagsanjan, Sylvester S. Martinez, Marah Faye F. ChE 520L 8:30-11:30 TTh 1. A mixture of helium and nitrogen gas is contained in a pipe at 298K at 1 atm total pressure which is constant throughout. At one end of the pipe at point 1 and the partial pressure Pa, 1 of He is 0.60 atm and at the other end 0.2m, Pa,2=0.20 atm. Calculate the flux of the He. At steady state, Dab of the He-N2 mixture is 0.687x10 -4 m2/s. a. 7.7892 x 10-5 b. 6.1122 x 10-5

c. 5.6194 x 10-6

d. 4.8910 x 10-6

Solution: 𝐷𝑣 (𝑃 βˆ’ 𝑃𝐴1 ) βˆ†π‘§π‘…π‘‡ 𝐴2 0.687π‘₯10βˆ’4 π‘š 2 (0.20 βˆ’ 0.60)π‘Žπ‘‘π‘š 𝑠 𝐽𝐴 = βˆ’ 𝐿 βˆ’ π‘Žπ‘‘π‘š 1π‘š 3 0.2π‘š(0.08205 π‘šπ‘œπ‘™ βˆ’ 𝐾 (298𝐾)(1000𝐿 ) 5.6194π‘₯10 βˆ’9 π‘šπ‘œπ‘™ 1π‘˜π‘šπ‘œπ‘™ 𝐽𝐴 = ( ) π‘š2 βˆ’ 𝑠 1000π‘šπ‘œπ‘™ πŸ“. πŸ”πŸπŸ—πŸ’π’™πŸπŸŽβˆ’πŸ” π’Œπ’Žπ’π’ 𝑱𝑨 = π’ŽπŸ βˆ™ 𝒔 𝐽𝐴 = βˆ’

2. An Arnold cell is used to measure the diffusivity of acetone in air at 20Β°C and 100 kPa pressure. At time= 0, the liquid acetone surface is 1.10 cm from the top of the tube and after 8 hours of operation, the liquid surface drops to 2.05 cm. if the concentration of acetone in air that flows over the top of the tube is zero, what is the diffusivity of acetone in air? At 20Β°C, the vapor pressure of acetone is 24 kPa and density is 790 kg/m 3. a. 6.2737 x 10-6 b. 5.4518 x 10-6

c. 6.2737 x 10-5 d. 5.4518 x 10-5

Solution: Assume PA2=0 58.08π‘˜π‘” π‘˜π‘šπ‘œπ‘™ 𝑍𝐹 βˆ’ π‘π‘œ (𝜌𝐴 𝑅𝑇(𝑃𝑇 βˆ’ 𝑃𝐴 )𝐿 𝑑𝐹 = ( ) 2 𝑀𝐴 𝐷𝑉 𝑃𝑇 (𝑃𝐴1 βˆ’ 𝑃𝐴2 ) (100 βˆ’ 0) βˆ’ (100 βˆ’ 24) (𝑃𝑇 βˆ’ 𝑃𝐴 )𝐿 = = 87.4518 100 βˆ’ 0 ) ln ( 100 βˆ’ 24 2 2.05 1.10 2 ( ) βˆ’ ( ) 100 (790(8.314)(293.15)(87.4518)) 8(3600𝑠 ) = 100 2 58.08(𝐷𝑉 )(100)(24) βˆ’πŸ” 𝟐 πŸ”. πŸπŸ•πŸ“πŸ–π’™πŸπŸŽ π’Ž 𝑫𝑽 = 𝒔 𝑀𝐴 =

3. An ethanol-water solution in the form of a stagnant film 2.0 mm thick at 293K is in contact at one surface with an organic solvent in which ethanol is soluble and water is insoluble. In point 1, the concentration of ethanol is 16.8 wt% and the solution density is 972.8 kg/m3. At point 2, the concentration of ethanol is 6.8 wt% and the solution density is 988.1 kg/m3. The diffusivity of ethanol is 0.740x10-9 m2/s. Calculate the steady-state flux of ethanol. a. 8.9553 x 10-7 b. 8.5993 x 10-7

c. 8.3959 x 10-7 d. 8.9355 x 10-7

Pagsanjan, Sylvester S. Martinez, Marah Faye F. ChE 520L 8:30-11:30 TTh Solution: 𝐷𝐴𝐡 πΆπ‘Žπ‘£π‘’ 1 βˆ’ 𝑋𝐴2 ln ( ) βˆ†π‘§ 1 βˆ’ 𝑋𝐴1 𝜌 𝜌 πΆπ‘Žπ‘£π‘’ = ( ) + ( ) 𝑀 1 𝑀 2 100 π‘˜π‘” 𝑀1 = = 20.0526 16.8 83.2 π‘˜π‘šπ‘œπ‘™ 46.07 + 18 100 π‘˜π‘” 𝑀2 = = 10.7780 6.8 93.2 π‘˜π‘šπ‘œπ‘™ + 46.07 18 972.8 988.1 + 18.7880 π‘˜π‘šπ‘œπ‘™ 20.0526 πΆπ‘Žπ‘£π‘’ = = 50.5905 3 2 π‘š 6.8 46.07 𝑋𝐴2 = = 0.0277 6.8 93.2 + 46.07 18 16.8 46.07 𝑋𝐴1 = = 0.0731 16.8 83.2 + 46.07 18 0.740π‘₯10βˆ’9 (50.5905) 1 βˆ’ 0.0277 𝑁𝐴 = ln ( ) 0.002 1 βˆ’ 0.0731 πŸ–. πŸ—πŸ“πŸŽπŸ—π’™πŸπŸŽβˆ’πŸ• π’Œπ’Žπ’π’ 𝑡𝑨 = π’ŽπŸ βˆ™ 𝒔 𝑁𝐴 =

4. An adiabatic saturator is going to treat air having a temperature of 40Β°C and 20% relative humidity and after which, the treated air will be treated to 70Β°C having a 60% relative humidity. Determine the kilograms of water absorbed in the saturation if given 100 kg/hr of entering dry air. a. 0.1491 b. 12.9011 c. 1.8910 d. 13.0900 Solution: From Psychrometric Chart 40℃ & 20%𝑅𝐻 ; 𝐻 = 0.0092 (8.07131βˆ’

1730.63

π‘˜π‘” 𝐻2 𝑂 π‘˜π‘” π‘‘π‘Ž )

233.426+70 = 233.1733 π‘šπ‘šπ»π‘” 𝑃𝐴 °𝐻20 = 10 𝑃𝐴 0.60 = ; 𝑃 = 139.9040 π‘šπ‘šπ»π‘” 233.17333 𝐴 139.9040 18 π‘˜π‘” 𝐻2 𝑂 𝐻= ( ) = 0.1400 760 βˆ’ 139.9040 29 π‘˜π‘” π‘‘π‘Ž 𝐻2 𝑂 π‘Žπ‘π‘ π‘œπ‘Ÿπ‘π‘’π‘‘ = (0.1400 βˆ’ 0.0092)(100) π’Œπ’ˆ = πŸπŸ‘. πŸŽπŸ–πŸ‘πŸ– 𝒉𝒓

Pagsanjan, Sylvester S. Martinez, Marah Faye F. ChE 520L 8:30-11:30 TTh 5. 2000 ft3 per hour of air at 110 F, saturated with vapor, is to be dehumidified. Part of the air is sent through a unit where it is cooled and some water condensed. The air leaves the unit saturated at 60 F. It is then remixed with air which by-passed the unit. The final air contains 0.02 lb H2O/ lb da. Determine the lbs dry air bypassed per lb of dry air sent to the dehumidifier. a. 0.1189 b. 0.2308 c. 0.1109 d. 0.2981 Solution:

0.0588π‘€π‘‘π‘Ž 3 π‘€π‘‘π‘Ž 𝑓𝑑 + 𝑓𝑑 3 62.3 0.0704 π‘€π‘‘π‘Ž = 140.80 𝑙𝑏; 𝑀𝐻20 = 8.2790 𝑙𝑏 𝐷2 π‘π‘Žπ‘™: 140.80 = 𝐷2𝐸 𝐻2 𝑂 π‘π‘Žπ‘™: 8.2790 = 𝑀𝑐 + 0.02𝐷2𝐸 𝑀𝑐 = 5.463 𝑙𝑏 π‘Žπ‘Ÿπ‘œπ‘’π‘›π‘‘ π‘‘π‘’β„Žπ‘’π‘šπ‘–π‘‘π‘–π‘“π‘–π‘’π‘Ÿ: 𝐻2 𝑂 π‘π‘Žπ‘™: 𝑀𝐡 = 5.463 + 𝑀𝐷 𝑀𝐡 𝑀𝐷 = 0.0580 0.0110 𝑀𝐡 = 6.7202 𝑙𝑏; 𝑀𝐷 = 1.2572 𝑙𝑏 𝐴𝐡 = 114.2891 𝑙𝑏; 𝐴𝐷 = 114.2891 𝑙𝑏 𝐴𝐴 = 140.80 βˆ’ 114.2891 = 26.5109 𝑙𝑏𝑠 𝑨𝑨 = 𝟎. πŸπŸ‘πŸπŸŽ 𝑨𝑩 2000𝑓𝑑 2 =

6. Water is to be cooled in a packed tower from 330 to 295 K by means of air flowing counter currently. The liquid flows at the rate of 275 cm3/m2 s and the air at 0.7 m3/m2 s. The entering air has a temperature of 295 K and a humidity of 20%. Calculate the required height of tower and the condition of the air leaving at the top. The whole of the resistance to heat and mass transfer can be considered as being within the gas phase and the product of the mass transfer coefficient and the transfer surface per unit volume of column had may be taken as 0.2 s -1. a. 1m b. 1.5m c. 2m d. 2.75m Solution:

Pagsanjan, Sylvester S. Martinez, Marah Faye F. ChE 520L 8:30-11:30 TTh π΄π‘ π‘ π‘’π‘šπ‘’: π‘˜π½ 1.003π‘˜π½ 2.006π‘˜π½ ; πΆπ‘π‘‘π‘Ž = ; 𝐢𝑝𝐻2𝑂 = π‘˜π‘” π‘˜π‘” βˆ™ 𝐾 π‘˜π‘” βˆ™ 𝐾 π‘˜π‘” 𝐻2 𝑂 π‘˜π‘šπ‘œπ‘™ 𝐻2 𝑂 𝐻@295𝐾 & 20%𝑅𝐻 = 0.003 = 0.005 π‘˜π‘” π‘‘π‘Ž π‘˜π‘šπ‘œπ‘™ π‘‘π‘Ž π‘˜π‘” πœŒπ‘Žπ‘–π‘Ÿ @295𝐾 = 1.198 3 π‘š 𝐿𝐻 π‘œπ‘“ 𝐻2 𝑂 = 24.95

𝐻𝑖𝑛𝑙𝑒𝑑 = 1.003(295 βˆ’ 273) + .003(2495 + 2.006(295 βˆ’ 273)) = 29.68

π‘˜π½ π‘˜π‘”

0.697π‘š 3 π‘š2 βˆ™ 𝑠 0.835π‘˜π‘” πΉπ‘™π‘œπ‘€ π‘œπ‘“ π‘‘π‘Ž 𝑖𝑛 π‘šπ‘Žπ‘ π‘  = 0.697(1.198) = π‘š2 βˆ™ 𝑠 0.275π‘˜π‘” πΉπ‘™π‘œπ‘€ π‘œπ‘“ π‘‘π‘Ž 𝑖𝑛 π‘€π‘Žπ‘‘π‘’π‘Ÿ = 275π‘₯10βˆ’6 (1600) = π‘š2 βˆ™ 𝑠 4.18 π‘†π‘™π‘œπ‘π‘’ = 0.275 ( ) = 1.38 0.835 π‘˜π½ πΆπ‘œπ‘œπ‘Ÿπ‘‘π‘–π‘›π‘Žπ‘‘π‘’π‘ : 𝑇1 = 295𝐾; 𝐻𝐺1 = 29.7 π‘˜π‘” π‘’π‘›π‘‘β„Žπ‘Žπ‘™π‘β„Žπ‘¦ βˆ’ π‘‘π‘’π‘šπ‘π‘’π‘Ÿπ‘Žπ‘‘π‘’π‘Ÿπ‘’ π‘‘π‘–π‘Žπ‘”π‘Ÿπ‘Žπ‘š π‘†π‘™π‘œπ‘π‘’ = 1.38 2𝑝𝑑(29.7,295) π‘‘π‘œπ‘ π‘π‘œπ‘–π‘›π‘‘ π‘˜π½ 𝑇2 = 330𝐾; 𝐻𝐺2 = 78.5 π‘˜π‘” 𝐻𝐺2 𝑑𝐻𝐺 𝐺 β„Žπ‘’π‘–π‘”β„Žπ‘‘ π‘œπ‘“ π‘π‘Žπ‘π‘˜π‘–π‘›π‘” = 𝑍 = ∫ ( ) 𝐻𝐺1 𝐢𝐻𝐹 βˆ’ 𝐻𝐺 β„Žπ·π‘ŽπœŒ 0.573 (0.835) = = 1.997π‘š = 𝟐. πŸŽπ’Ž 0.2(1.198) πΉπ‘™π‘œπ‘€ π‘œπ‘“ π‘‘π‘Ž = (1 βˆ’ .005)(0.7) =

7. During an experiment conducted on the drying of copra, it was found out that copra dries at a rate proportional to its free moisture content and losses 60% of its free moisture in 2 hours. How many hours will it take to lose 90% under the same drying condition? a. 1.7612 hrs b. 12.0000 hrs c. 2.6712 hrs d. 5.0259 hrs Solutinon: 𝑙𝑒𝑑 𝑀 = 𝐻2 𝑂 @ π‘Žπ‘›π‘¦ π‘‘π‘–π‘šπ‘’ 𝑑 π‘€π‘œ = π‘œπ‘Ÿπ‘–π‘”π‘–π‘›π‘Žπ‘™ π‘Žπ‘šπ‘œπ‘’π‘›π‘‘ 𝑑𝑀 𝛼𝑀 𝑑𝑑 𝑑𝑀 βˆ’ = π‘˜π‘€ 𝑑𝑑 log(𝑀) = βˆ’π‘˜π‘‘ + 𝑐 𝑀 = π‘€π‘œ @ 𝑑 = π‘‘π‘œ log 𝑀 = βˆ’π‘˜π‘‘ + π‘™π‘œπ‘”π‘€π‘œ 𝑀 log = βˆ’π‘˜π‘‘ 𝑏𝑒𝑑 𝑀 = 0.40π‘€π‘œ @𝑑 = 2β„Žπ‘Ÿπ‘  π‘€π‘œ

Pagsanjan, Sylvester S. Martinez, Marah Faye F. ChE 520L 8:30-11:30 TTh 0.40π‘€π‘œ 0.199 = βˆ’π‘˜(2β„Žπ‘Ÿπ‘ ); π‘˜ = π‘€π‘œ β„Žπ‘Ÿπ‘  𝑀 0.199 log = π‘€π‘œ β„Žπ‘Ÿπ‘ (βˆ’π‘‘) 𝑀 = 0.10π‘€π‘œ π‘‘π‘™π‘œπ‘”(0.90) log(0.10) = βˆ’ 2 𝒕 = πŸ“. πŸŽπŸπŸ“πŸ— 𝒉𝒓𝒔 log

8. A piece of canvass dries in the open air at a rate approximately proportional to its moisture content, if a sheet hung to dry, the wind losses half of its free moisture content in an hour, when will it have loss 99% of its moisture assuming that conditions remain constant. a. 1.4427 hrs b. 4.4455 hrs c. 6.6439 hrs d. 10.9012 hrs Solution: 𝑙𝑒𝑑 𝑀 = 𝐻2 𝑂 @ π‘Žπ‘›π‘¦ π‘‘π‘–π‘šπ‘’ 𝑑 π‘€π‘œ = π‘œπ‘Ÿπ‘–π‘”π‘–π‘›π‘Žπ‘™ π‘Žπ‘šπ‘œπ‘’π‘›π‘‘ 𝑑𝑀 𝛼𝑀 𝑑𝑑 𝑑𝑀 βˆ’ = π‘˜π‘€ 𝑑𝑑 log(𝑀) = βˆ’π‘˜π‘‘ + 𝑐 𝑀 = π‘€π‘œ @ 𝑑 = π‘‘π‘œ log 𝑀 = βˆ’π‘˜π‘‘ + π‘™π‘œπ‘”π‘€π‘œ 𝑀 log = βˆ’π‘˜π‘‘ 𝑏𝑒𝑑 𝑀 = 0.5π‘€π‘œ @𝑑 = 1β„Žπ‘Ÿ π‘€π‘œ 𝑀 log ( )=π‘˜ 2π‘€π‘œ 𝑀 log ( ) = log(2) π‘₯ (βˆ’π‘‘) π‘€π‘œ 1 𝑀 = (1 βˆ’ 99%)π‘€π‘œ = 𝑀 100 π‘œ 1 log ( ) = βˆ’π‘‘π‘™π‘œπ‘”(2) 100 𝒕 = πŸ”. πŸ”πŸ’πŸ‘πŸ—π’‰π’“π’” 9. It is desired to recover 95% of the SO2 contained in waste flue gas with 5% SO2 and 95% air in a packed tower having a cross-sectional of 0.093m2. The absorbing liquid is water and is allowed to flow counter with the gas flow. How much minimum water rate(kg/hr) is needed? Assume 20Β°C temperature and entering gas rate is 1.36kg/min. a. 1173.9006 b. 1093.3075 c. 1035.7812 d. 1170.3260

Pagsanjan, Sylvester S. Martinez, Marah Faye F. ChE 520L 8:30-11:30 TTh Solution:

π‘Œπ‘ = 0.05; π‘‹π‘Ž = 0 0.05(0.05) π‘Œπ‘Ž = = 0.0026 0.05(0.05) + 0.95 @20℃; 𝑃𝑏 = 38 π‘šπ‘šπ»π‘” π‘˜π‘” 𝑆𝑂2 𝐢 = 0.6846 100 π‘˜π‘” 𝐻2 𝑂 0.6846 64 π‘‹π‘βˆ— = = 0.00192 0.6846 100 + 64 18 1.36(60) π‘˜π‘šπ‘œπ‘™ 𝑉= = 2.6537 0.05(64) + 0.95(29) β„Žπ‘Ÿ π‘˜π‘šπ‘œπ‘™ 𝑉 β€² = 0.95(2.6537) = 2.521 β„Žπ‘Ÿ 0.05 0.0026 0.00192 2.521 ( βˆ’ ) = 𝐿′ min ( ) 0.95 1 βˆ’ 0.0026 1 βˆ’ 0.00192 π‘˜π‘šπ‘œπ‘™ π’Œπ’ˆ 𝐿′ π‘šπ‘–π‘› = 65.5575 = πŸπŸπŸ–πŸŽ. πŸŽπŸ‘ β„Žπ‘Ÿ 𝒉𝒓 10. Sulfur dioxide is to be absorbed into water in a plate column. The feed gas (20%mol SO2) is to be scrubbed to 2mole% SO2. Water flow rate is 6,000 kg/hr.m2. The inlet air flow rate is 150 kg air/hr.m2. Tower temperature is 293 K. Find the number of theoretical plates. a. 1 b. 3 c. 2 d. 4

Pagsanjan, Sylvester S. Martinez, Marah Faye F. ChE 520L 8:30-11:30 TTh Solution:

π‘Œπ‘Ž = 0.02: π‘Œπ‘ = 0.2; π‘Œπ‘Žβˆ— = 0 150 π‘˜π‘šπ‘œπ‘™ 𝑉= = 6.4655 ( ) 0.8 29 β„Žπ‘Ÿβˆ’π‘š 2 6000 π‘˜π‘šπ‘œπ‘™ 𝐿= = 333.3333 18 β„Žπ‘Ÿ βˆ’ π‘š 2 0.2 0.02 𝑋𝐷 0.8(6.4655) ( βˆ’ ) = 333.3333 ( ) 0.8 0.98 1 βˆ’ 𝑋𝐷 𝑋𝐷 = 0.00285 𝐢 π‘˜π‘”π‘†π‘‚2 64 0.00285 = ; 𝐢 = 1.0162 𝐢 100 100 π‘˜π‘”π»2 𝑂 64 + 18 𝑃𝐴 = 60.0692π‘šπ‘šπ»π‘” 𝑃𝐴 𝑋𝑏 60.0692 π‘Œπ‘ = = = 0.0790 𝑃𝑇 760 0.02 log (0.2 βˆ’ 0.079) 𝑁= = 2.1858~πŸ‘π’•π’“π’‚π’šπ’” 0.079 log (0.2 βˆ’ 0.02)

11. Given that the Henry's Law constant for carbon dioxide in water at 25Β°C is 1.6 x 10-5 kPa (mole fraction)-1, calculate the percentage solubility by weight of carbon dioxide in water under these conditions and at a partial pressure of carbon dioxide of 200 kPa above the water. a. 78% b. 69% c. 31% d. 22% Solution: 1.6π‘₯10 βˆ’5 π‘šπ‘œπ‘™ 𝐾𝐻 = 𝐿 βˆ™ π‘˜π‘ƒπ‘Ž 𝑃°𝐢02 = 200π‘˜π‘ƒπ‘Ž

Pagsanjan, Sylvester S. Martinez, Marah Faye F. ChE 520L 8:30-11:30 TTh (200) (44)(100%) 1.6π‘₯10βˆ’5 % = πŸ‘πŸ% %=

12. Determine the % error if the Antoine equation is used to estimate the normal boiling point of benzene. From literature value, the normal boiling point of benzene is 353.26 K. a. 100% b. 10% c. 1% d. 0.01% Solution: Using Antoine’s eqn: log(760 π‘šπ‘šπ»π‘”) = 15.9008 βˆ’

2788.51 βˆ’52.36 + 𝑇

𝑇 = 353.3 𝐾 353.26 βˆ’ 353.3 (100) %π‘’π‘Ÿπ‘Ÿπ‘œπ‘Ÿ = 353.26 𝟎. 𝟎𝟏% 13. A mixture of 40 mol% benzene and 60% toluene are distilled in a column to give a product of 98% benzene and a waste containing 5% benzene. For a relative volatility of 2.4, calculate the minimum number of plates if the mixture is fed at its boiling point. a. 61290 b. 61541 c. 18901 d. 1.5500 Solution: log ( π‘π‘šπ‘–π‘› =

0.98(1 βˆ’ 0.05) ) 0.05(1 βˆ’ 0.98) log(2.4)

𝑁 = 7.8087 π‘…π·π‘šπ‘–π‘› 0.98 βˆ’ 0.4 2.4(0.4) = π‘€β„Žπ‘’π‘Ÿπ‘’ 𝑦 β€² = = 0.6154 β€² π‘…π·π‘šπ‘–π‘› + 1 0.98 βˆ’ 𝑦 1 + 1.4(0.4) π‘…π·π‘šπ‘–π‘› 0.98 βˆ’ 0.4 = = 𝟏. πŸ“πŸ“πŸŽπŸ’ π‘…π·π‘šπ‘–π‘› + 1 0.98 βˆ’ 0.6154 14. Tung meal containing 55 weight % oil is to be extracted at a rate of 4000 lb/h using n-hexane containing 5 weight % oil as solvent. A countercurrent multi-stage extraction sytem is to be used. The meal retains 2 lbs of solvent per lb of oil-free meal. The residual charge contains 0.11 lb oil per lb of oil-free meal while the product is composed of 15 weight % oil. Determine the number of ideal stages. a. 2.2417 b. 3.1205 c. 2.0890 d. 3.7811 Solution:

Pagsanjan, Sylvester S. Martinez, Marah Faye F. ChE 520L 8:30-11:30 TTh

0.15 = π‘‹π‘Ž = 0.1765 0.85 0.05 π‘Œπ‘ = = 0.0526 0.95 0.11 𝑙𝑏 π‘œπ‘–π‘™ 𝑙𝑏 π‘œπ‘–π‘™ π‘“π‘Ÿπ‘’π‘’ 𝑋𝑏 = π‘Œπ‘Β° = = 0.055 2 𝑙𝑏 π‘ π‘œπ‘™π‘£π‘’π‘›π‘‘ 𝑙𝑏 π‘œπ‘–π‘™ βˆ’ π‘“π‘Ÿπ‘’π‘’ π‘Žπ‘Ÿπ‘œπ‘’π‘›π‘‘ 𝑒π‘₯π‘‘π‘Ÿπ‘Žπ‘π‘‘π‘œπ‘Ÿ 1: 𝑉𝑏′ = π‘‰π‘Žβ€² = 0.95(𝑉𝑏) = 0.95(22.417) 𝑙𝑏 = 21 296.15 β„Ž π‘Œπ‘ŽΒ° =

𝑇𝑀𝐡: πΏπ‘Ž + 𝑉𝑏 = 𝐿𝑏 + π‘‰π‘Ž 4000 + 𝑉𝑏 = 𝐿𝑏 + π‘‰π‘Ž 𝑂𝑖𝑙 π΅π‘Žπ‘™π‘Žπ‘›π‘π‘’: 0.55(4000) + 0.05𝑉𝑏 = 0.11(0.45)(4000) + 0.15π‘‰π‘Ž π‘†π‘œπ‘™π‘£π‘’π‘›π‘‘ π΅π‘Žπ‘™π‘Žπ‘›π‘π‘’: 0 + 0.95𝑉𝑏 = 0.85π‘‰π‘Ž + 2(0.45)(4000) 𝑙𝑏 𝑙𝑏 𝑙𝑏 π‘‰π‘Ž = 20 819 ; 𝑉𝑏 = 22 417 ; 𝐿𝑏 = 5 598 β„Žπ‘Ÿ β„Žπ‘Ÿ β„Žπ‘Ÿ 15 (0.45)(4000)(2) + 0.15(21296.15) π‘†π‘œπ‘™π‘’π‘‘π‘’ π‘π‘Žπ‘™: 0.55(4000) + π‘Œπ‘Ž(21296.15) = 85 π‘Œπ‘Ž = 0.0732 0.0526 βˆ’ 0.055 ln (0.0732 βˆ’ 0.1765 ) π‘βˆ’1= ; 𝑡 = πŸ‘. πŸπŸπŸ—πŸ— 0.0526 βˆ’ 0.0732 ln ( 0.055 βˆ’ 0.1765 ) 15. Roasted copper containing the copper as CuSO4 is to be extracted in a countercurrent stage extractor. Each hour a charge consisting of 10 tons of inert solids, 1.2 tons of copper sulfate, and 0.5 ton of water is to be treated. The strong solution produced is to consist of 90 percent water and 10% CuSO4 by weight. The recovery of CuSO4 is to be 98% of that in the ore. Pure water is to be used as the fresh solvent. After each 1 ton of inert solids retains 2 tons of water plus the copper sulfate dissolved in that water. Equilibrium is attained in each stage. How many stages are required? a. 10 b. 9 c. 8 d. 7 Solution:

Pagsanjan, Sylvester S. Martinez, Marah Faye F. ChE 520L 8:30-11:30 TTh

(1.2 + 0.5) + 𝑉𝑏′ =

2 π‘‘π‘œπ‘› π‘ π‘œπ‘™π‘’π‘‘π‘–π‘œπ‘› (10 π‘‘π‘œπ‘› π‘ π‘œπ‘™π‘–π‘‘ ) + 𝑉1 π‘‘π‘œπ‘› π‘ π‘œπ‘™π‘–π‘‘

0.98(1.2) = 11.76 π‘‘π‘œπ‘›π‘ ; 𝑉𝑏 = 30.06 π‘‘π‘œπ‘›π‘  = π‘‰π‘Ž 0.10 𝐢𝑒𝑆𝑂4 π‘π‘Žπ‘™π‘Žπ‘›π‘π‘’ (π‘Žπ‘Ÿπ‘œπ‘’π‘›π‘‘ π‘ π‘‘π‘Žπ‘”π‘’ 1) 1.2 + π‘Œπ‘Žπ‘‰π‘Ž = 0.10(11.76) + 0.1(2 βˆ— 10) π‘Œπ‘Ž = 0.0657 0 βˆ’ 0.0012 ) ln ( 0.0657 βˆ’ 0.1 + 1 𝑁= 0 βˆ’ 0.0657 ln (0.0012 βˆ’ 0.1) 𝑡 = πŸ—. πŸπŸπŸ•πŸ• π’”π’•π’‚π’ˆπ’†π’” 𝑏𝑒𝑑 𝑉1 =

16. We wish to extract nicotine from water using kerosene. If we have 100 lb of a 2% nicotine solution extracted once with 200 lb of kerosene, what percentage will be extracted? Equilibrium data: Y=0.90X a. 65.8900% b. 64.7500% c. 65.9800% d. 64.5700% Solution:

π‘π‘–π‘π‘œπ‘‘π‘–π‘›π‘’ π‘π‘Žπ‘™: 0.02(100) + 0 = π‘›π‘–π‘π‘œπ‘‘π‘–π‘›π‘’ 𝑖𝑛 π‘Ÿπ‘Žπ‘“π‘“π‘–π‘›π‘Žπ‘‘π‘’ + π‘›π‘–π‘π‘œπ‘‘π‘–π‘›π‘’ 𝑖𝑛 𝑒π‘₯π‘‘π‘Ÿπ‘Žπ‘π‘‘ 2 + 0 = π‘₯ (0.98)(100) + π‘Œ(200)

Pagsanjan, Sylvester S. Martinez, Marah Faye F. ChE 520L 8:30-11:30 TTh 𝑏𝑒𝑑 π‘Œ = 0.90π‘₯ π‘Œ π‘›π‘–π‘π‘œπ‘‘π‘–π‘›π‘’ (0.98)(100) + π‘Œ(200); π‘Œ = 6.4748π‘₯10 βˆ’3 π‘˜π‘” 2= 0.9 π‘˜π‘” π‘˜π‘’π‘Ÿπ‘œπ‘ π‘’π‘›π‘’ π‘›π‘–π‘π‘œπ‘‘π‘–π‘›π‘’ 𝑒π‘₯π‘‘π‘Ÿπ‘Žπ‘π‘‘π‘’π‘‘ = 0.0062(200) = 1.295π‘˜π‘” 1.295π‘˜π‘” (100) = πŸ”πŸ’. πŸ•πŸ“ % %π‘›π‘–π‘π‘œπ‘‘π‘–π‘›π‘’ 𝑒π‘₯π‘‘π‘Ÿπ‘Žπ‘π‘‘π‘’π‘‘ = 2 17. An aqueous waste stream containing 3.25% by weight phenol is to be extracted with one-third its volume of methylene chloride to produce a raffinate without more than 0.2% phenol. How many stages are required? a. 6 b. 5 c. 4 d. 3 Solution: 3.25(100) 3.36 π‘β„Žπ‘’π‘›π‘œπ‘™ = 96.75 100 π‘€π‘Žπ‘‘π‘’π‘Ÿ 0.2(100) 0.2 π‘β„Žπ‘’π‘›π‘œπ‘™ 𝑋𝑅 = = 99.8 100 π‘€π‘Žπ‘‘π‘’π‘Ÿ π‘Žπ‘šπ‘œπ‘’π‘›π‘‘ π‘œπ‘“ π‘β„Žπ‘’π‘›π‘œπ‘™ π‘‘π‘œ 𝑏𝑒 π‘Ÿπ‘’π‘šπ‘œπ‘£π‘’π‘‘: 3.36 βˆ’ 0.2 = 3.16 π‘”π‘Ÿπ‘Žπ‘šπ‘  𝑀𝑠 1 1.31 = ( ) = 0.451 𝑀𝐹 3 1 βˆ’ 0.0325 3.16 π‘β„Žπ‘’π‘›π‘œπ‘™ 𝑦𝐸 = = 7.01𝑔 0.451 100𝑔 π‘šπ‘’π‘‘β„Žπ‘¦π‘™ π‘β„Žπ‘™π‘œπ‘Ÿπ‘–π‘‘π‘’ 3.36(0.451 βˆ’ 0.2) log ( ( ) 0.2 0.451 βˆ’ 3.36) 𝑁= + 1 = πŸ‘. πŸ—πŸ–πŸ—πŸ“ π’”π’•π’‚π’ˆπ’†π’” log(0.451) 𝑋𝐹 =

18. A plate and frame filter press is used to filter a compressible sludge (S = 0.45) at 50 psia for 2 hours. Washing is done at 30 psia with wash water equal to 10% of the filtrate volume collected. The washing time is a. 127 min b. 136 min c. 156 min d. 178 min Solution: 𝑉 2 = π‘˜π‘‘ = π‘˜ (2) 𝑉 2 = 2π‘˜ 0.1 1 1 = ( ) 𝑑𝑀 4 4 60π‘šπ‘–π‘› 1 βˆ’ 0.45 𝑑𝑀 = 1.6β„Žπ‘Ÿπ‘  ( )( ) β„Žπ‘Ÿ 0.45 π’•π’˜ = πŸπŸπŸ• π’Žπ’Šπ’π’” 19. A dilute slurry contains small solid food particles having a diameter of 5 x 10-2 mm which are to be removed by centrifuging. The particle density is 1050 kg/m3 and the solution density is 1000kg/m3. The viscosity of the liquid is 1.2 cP.A 60mm diameter bowl that is 100 mm deep operated at 50Hz gives a 25mm thick liquid layer. Calculate the expected flowrate in L/s just to remove these particles. a. 0.29 b. 0.11 c. 0.90 d. 0.34 Solution:

Pagsanjan, Sylvester S. Martinez, Marah Faye F. ChE 520L 8:30-11:30 TTh πœ‹π·2𝑝 𝑏(πœŒπ‘ βˆ’ 𝜌)𝑀 2 (π‘Ÿ 22 βˆ’ π‘Ÿ 21 ) 2π‘Ÿ 18πœ‡ ln (π‘Ÿ βˆ’2π‘Ÿ ) 1 2 πœ‹(0.00005)2 (0.1)(1050 βˆ’ 1000)(100πœ‹ 2 )(0.03)2 π‘ž= 18 (0.0012) ln(2) 2.9π‘₯10βˆ’4 π‘š 3 = 𝟎. πŸπŸ—π‘³/𝒔 𝑠 π‘ž=

20. Find the width of an apron conveyor without skirts whose capacity is 56 tons per hour at a speed of 50 fpm handling solids with average density of 50 pound per cubic foot. a. 36 in b. 42 in c. 48 in d. 54 in Solution: π‘‘π‘œπ‘›π‘  β„Žπ‘Ÿ 𝑙𝑏 πœŒπ‘π‘’π‘™π‘˜ = 50 3 𝑓𝑑 𝑆 = 50 π‘“π‘π‘š 𝑇 = 56

Belt Width 30 inches 36 inches 42 inches

50 lb/ft3 79 115 165 79 π‘‘π‘œπ‘›π‘  ) = 39.5 100 β„Žπ‘Ÿ 115 π‘‘π‘œπ‘›π‘  max π‘π‘Žπ‘36 = 50 ( ) = 57.5 100 β„Žπ‘Ÿ 165 π‘‘π‘œπ‘›π‘  max π‘π‘Žπ‘42 = 50 ( ) = 82.5 100 β„Žπ‘Ÿ max π‘π‘Žπ‘30 = 50 (

With 57.5 tons/hr being the maximum capacity closest to the given capacity, the width of the conveyor is 36 inches.

Related Documents

Choppi
February 2021 2

More Documents from "Sarah Sanchez"

Choppi
February 2021 2
Finals Notes
January 2021 1
January 2021 4
Rapport Tp Assembleur
January 2021 2