Loading documents preview...
26-9-2016
CICLOS DE POTENCIAS DE GAS OTTO, BRAYTON Y DIESEL
Alexander Reyna Gomez – INGENIERIA CIVIL IV
CICLO OTTO 1. Concepto: Muchas de las máquinas térmicas que se construyen en la actualidad (motores de camiones, coches, maquinaria, etc.) están provistas de un motor denominado motor de cuatro tiempos. El ciclo Otto es el ciclo termodinámico que se aplica en los motores de combustión interna de encendido provocado (motores de gasolina). Fue inventado por Nicolaus Otto en 1876. Se caracteriza porque en una primera aproximación teórica, todo el calor se aporta a volumen constante. El ciclo de un motor de combustión interno puede definirse como la serie completa de acontecimientos que ocurren antes de que vuelvan a repetirse.
2. Ciclo de 2 vueltas Cigüeñal (4Tiempos): Hay dos tipos de motores que se rigen por el ciclo de Otto, los motores de dos tiempos y los motores de cuatro tiempos. Este último, junto con el motor diésel, es el más utilizado en los automóviles ya que tiene un buen rendimiento y contamina mucho menos que el motor de dos tiempos.
El motor con ciclo de 4 tiempos necesita 4 movimientos de cada pistón, dos hacia arriba y dos hacia abajo (dos revoluciones completas del cigüeñal), para completar dicho ciclo en los tiempos, en el orden en que se reproducen se llaman:
a) Admisión
b) Compresión
c) Explosión o carrera de fuerza
d) Escape o descarga
A. Admisión. – (270º 90º): De 0º del Punto Muerto Superior a 180º Punto Muerto Inferior La primera etapa del ciclo Otto, la de admisión, queda representada. Empieza cuando el pistón está colocado en la parte superior del cilindro. Con la válvula de escape cerrada y la admisión abierta, el pistón se mueve hacia abajo provocando
la admisión al producirse un vació parcial en el interior del cilindro. La presión atmosférica, por ser mayor que la que existe en el interior del cilindro, hace que, entre aire por el carburador, donde se mezcla en proporciones adecuadas con el combustible.
Esta mezcla pasa por el tubo de admisión múltiple al interior del cilindro.
Cuando el pistón llega al punto muerto inferior (PMI) la presión en el interior del cilindro sigue siendo algo menor que la presión atmosférica exterior y la mezcla continúa entrando en el cilindro. La válvula de admisión sigue abierta mientras que el pistón inicia el movimiento hacia arriba hasta que la posición de la leva hace que la válvula se cierre. La distancia que recorre el pistón hacia arriba hasta que cierra la válvula es realmente muy pequeña.
Descripción. El pistón baja con la válvula de admisión abierta, aumentando la cantidad de mezcla (aire + combustible) en la cámara. Esto se modela como una expansión a presión constante (ya que al estar la válvula abierta la presión es igual a la exterior). En el diagrama PV aparece como la línea recta E→A.
B. Compresión. – (270º 90º): De 0º del Punto Muerto Superior a 180º Punto Muerto Inferior
La compresión en un motor de 4 tiempos, sigue inmediatamente la admisión.
Ambas válvulas están cerradas y la mezcla de combustible queda en el cilindro que ahora está cerrada. El pistón al moverse hacia arriba dentro del cilindro comprime la mezcla combustible al terminar esta etapa el pistón ha completado dos movimientos, uno hacia abajo y el otro hacia arriba y el cigüeñal un circulo completo o sea 360º.
Descripción. – El pistón sube comprimiendo la mezcla. Dada la velocidad del proceso se supone que la mezcla no tiene posibilidad de intercambiar calor con el ambiente, por lo que el proceso es adiabático. Se modela como la curva adiabática reversible A→B, aunque en realidad no lo es por la presencia de factores irreversibles como la fricción.
C. Explosión o Carrera de Fuerza. – (270º 90º): De 0º del Punto Muerto Superior a 180º Punto Muerto Inferior Cuando el pistón ha llegado al punto muerto superior (PMS) la mezcla combustible que entró al cilindro durante la admisión ha quedado comprimida. En este momento del ciclo dicha carga combustible se inflama por medio de una chispa producida por la bujía y se verifica la combustión. Debido al calor generado por la combustión, (aproximadamente de 4000 a 4500 ºC igual a 2204 menos 2491ºC). Se expanden los gases y se produce una alta presión en el interior del cilindro. Esta presión actúa en forma “de empuje” contra la cabeza del pistón, obligando a bajar, lo que constituye la trasmisión de la energía al cigüeñal en forma de fuerza de torsión o rotatoria.
Descripción. – La alta temperatura del gas empuja al pistón hacia abajo, realizando trabajo sobre él. De nuevo, por ser un proceso muy rápido se aproxima por una curva adiabática reversible C→D.
D. Escape o Descarga. – (270º 90º): De 0º del Punto Muerto Superior a 180º Punto Muerto Inferior Cuando el pistón se acerca al punto muerto inferior (PMI) la posición que corresponde al fin de la energía, la válvula de escape, se abre disminuyendo la presión en el interior del cilindro. Esta válvula permanece abierta mientras el pistón se mueve hacia arriba, hasta que llega al punto muerto superior (PMS). Cuando el pistón alcanza la posición más alta se cierra la válvula de escape. En la mayoría de los motores la válvula de escape se cierra poco después de alcanzar el punto muerto superior (PMS), antes de que el pistón llegue a la parte superior en la admisión empieza a abrirse la válvula de admisión, esta permite que esté abierta totalmente cuando el pistón baja de nuevo para iniciar la admisión siguiente.
Descripción. – El sistema es realmente abierto, pues intercambia masa con el exterior. No obstante, dado que la cantidad de aire que sale y la que entra es la misma podemos, para el balance energético, suponer que es el mismo aire, que se ha enfriado. Este enfriamiento ocurre en dos fases. Cuando el pistón está en su punto más bajo, el volumen permanece aproximadamente constante y tenemos la isocora D→A. Cuando el pistón empuja el aire hacia el exterior, con la válvula abierta, empleamos la isobara A→E, cerrando el ciclo.
En general, este ciclo se resume a 4 fases o tiempos que se dan en 6 procesos, pero que el ultimo y primer tiempo no se cuentan, ya que estos sirven para darle renovación a los siguientes tiempos. E-A: admisión a presión constante (renovación de la carga). A-B: compresión de los gases e isotrópica. B-C: combustión, aporte de calor a volumen constante. La presión se eleva rápidamente antes de comenzar el tiempo útil. C-D: fuerza, expansión isotrópica o parte del ciclo que entrega trabajo. D-A: Escape, cesión del calor residual al ambiente a volumen constante. A-E: Escape, vaciado de la cámara a presión constante (renovación de la carga.) (isocónica).
3. Eficiencias La eficiencia o rendimiento térmico de un motor de este tipo depende de la relación de compresión, proporción entre los volúmenes máximo y mínimo de la cámara de combustión. Esta proporción suele ser de 8 a 1 hasta 10 a 1 en la mayoría de los motores Otto modernos. Se pueden utilizar proporciones mayores, como de 12 a 1, aumentando así la eficiencia del motor, pero este diseño requiere la utilización de combustibles de alto índice de octanos para evitar la detonación. Una relación de compresión baja no requiere combustible con alto número de octanos para evitar este fenómeno; de la misma manera, una compresión alta requiere un combustible de alto número de octanos, para evitar los efectos de la detonación, es decir, que se produzca una auto ignición del combustible antes de producirse la chispa en la bujía. El rendimiento medio de un buen motor Otto de 4 tiempos es de un 25 a un 30%, inferior al rendimiento alcanzado con motores diésel, que llegan a rendimientos del 30 al 45%, debido precisamente a su mayor relación de compresión.
Tenemos tres tipos:
I.
Eficiencia en función del calor
Al analizar el ciclo Otto ideal, podemos despreciar en el balance los procesos de admisión y de escape a presión constante A→E y E→A, ya que, al ser idénticos y reversibles, en sentido opuesto, todo el calor y el trabajo que se intercambien en uno de ellos, se cancela con un término opuesto en el otro.
II.
Intercambio de calor Trabajo realizado Rendimiento
Eficiencia en función de las temperaturas
La eficiencia depende solamente de la temperatura al inicio y al final del proceso de compresión, y no de la temperatura tras la combustión, o de la cantidad de calor que introduce ésta.
III.
Eficiencia en función de la razón de compresión
La eficiencia teórica de un ciclo Otto depende, por tanto, exclusivamente de la razón de compresión. Para un valor típico de 8 esta eficiencia es del 56.5%.
4. ciclo de Otto ideal
El rendimiento del ciclo de Otto, como el de cualquier otra máquina térmica, viene dado por la relación entre el trabajo total realizado durante el ciclo y el calor suministrado al fluido de trabajo:
5. Ciclo de Otto real En la práctica, ni las transformaciones adiabáticas del ciclo de Otto son adiabáticas (isotrópicas) ni las transformaciones isocoras de la animación anterior tienen lugar a volumen constante. En la siguiente figura se ha representado un esquema del ciclo real de Otto superpuesto con el ideal analizado en las secciones anteriores.
6. Proporción de aire y combustible Esta proporción ha de permanecer lo más uniforme posible, dentro de unos estrechos márgenes de variación, se denomina factor lambda y se sitúa alrededor de 14-15 partes de aire en peso por cada parte de gasolina en peso, estando la mezcla estequiometria aire/gasolina en 14,7:1
7. Control del par motor Se efectúa controlando la cantidad de aire o mezcla carburada que entra al motor, mediante el acelerador. De esta manera ajusta el conductor el par motor a la carga motor. La eficiencia o rendimiento de los motores Otto modernos se ve limitada por varios factores, entre otros, la pérdida de llenado en el proceso de renovación de la carga energía por la fricción y la refrigeración. En el ciclo Otto los motores trabajan en un rango de presiones de combustión de 25 a 30 bares, partiendo de una relación de compresión de 9 a 10, y en los que la relación de aire/combustible (factor lambda), toma valores de 0,9 a 1,1.
Invención del motor de combustión interna El primer inventor, hacia 1862, fue el francés Alphonse Beau de Rochas. El segundo, hacia 1875, fue el alemán doctor Nicolau Augusto Otto. Como ninguno de ellos sabía de la patente del otro hasta que se fabricaron motores en ambos países, hubo un pleito. De Rochas ganó cierta suma de dinero, pero Otto se quedó con la fama: el principio termodinámico del motor de cuatro tiempos se llama aún ciclo de Otto.
CICLO BRAYTON Introducción La mayor parte de los dispositivos que producen potencia operan en ciclos, y el estudio de los ciclos de potencia es una parte interesante e importante de la termodinámica, y precisamente en este escrito trataremos la base para los motores de turbina de gas el Ciclo Brayton. Los ciclos ideales son internamente reversibles, pero, a diferencia del ciclo de Carnot, no es necesario que sean externamente reversibles. Es decir, pueden incluir irreversibilidades externas al sistema como la transferencia de calor debida a una diferencia de temperatura finita. Entonces, la eficiencia térmica de un ciclo ideal, por lo general, es menor que la de un ciclo totalmente reversible que opere entre los mismos límites de temperatura. Sin embargo, aún es considerablemente más alta que la eficiencia térmica de un ciclo real debido a las idealizaciones empleadas.
Las idealizaciones y simplificaciones empleadas en los análisis de los ciclos de potencia, por lo común pueden resumirse del modo siguiente: 1.- El ciclo no implica ninguna fricción. Por lo tanto, el fluido de trabajo no experimenta ninguna reducción de presión cuando fluye en tuberías o dispositivos como los intercambiadores de calor. 2.- Todos los procesos de compresión y expansión se dan en el modo de cuasi equilibrio. 3.- Las tuberías que conectan a los diferentes componentes de un sistema están muy bien aisladas y la transferencia de calor por ellas es despreciable.
Concepto El ciclo Brayton, también conocido como ciclo Joule o ciclo Froude, es un ciclo termodinámico consistente, en su forma más sencilla, en una etapa de compresión adiabática, una etapa de calentamiento isobárico y una expansión adiabática de un fluido termodinámico compresible. Es uno de los ciclos termodinámicos de más amplia aplicación, al ser la base del motor de turbina de gas, por lo que el producto del ciclo puede ir desde un trabajo mecánico que se emplee para la producción de electricidad en los quemadores de gas natural o algún otro aprovechamiento –caso de las industrias de generación eléctrica y de algunos motores terrestres o marinos, respectivamente–, hasta la generación de un empuje en un aereorreactor.
Procesos del Ciclo Brayton I.
Admisión El aire frío y a presión atmosférica entra por la boca de la turbina
II.
Compresor
El aire es comprimido y dirigido hacia la cámara de combustión mediante un compresor (movido por la turbina). Puesto que esta fase es muy rápida, se modela mediante una compresión adiabática A→B. III.
Cámara de combustión
En la cámara, el aire es calentado por la combustión del queroseno. Puesto que la cámara está abierta el aire puede expandirse, por lo que el calentamiento se modela como un proceso isobaro B→C. IV.
Turbina
El aire caliente pasa por la turbina, a la cual mueve. En este paso el aire se expande y se enfría rápidamente, lo que se describe mediante una expansión adiabática C →D. V.
Escape
Por último, el aire enfriado (pero a una temperatura mayor que la inicial) sale al exterior. Técnicamente, este es un ciclo abierto ya que el aire que escapa no es el mismo que entra por la boca de la turbina, pero dado que sí entra en la misma cantidad y a la misma presión, se hace la aproximación de suponer una recirculación. En este modelo el aire de salida simplemente cede calor al ambiente y vuelve a entrar por la boca ya frío. En el diagrama PV esto corresponde a un enfriamiento a presión constante D→A.
Existen motores de turbina de gas en los que el fluido efectivamente recircula y solo el calor es cedido al ambiente. Para estos motores, el modelo del ciclo de Brayton ideal es más aproximado que para los de ciclo abierto.
a)
b)
Eficiencias Se encuentra que la eficiencia de las máquinas de Brayton en ciclo cerrado dependen únicamente de la relación de presiones isentrópicas. Si se aumenta la presión de entrada a la turbina, también se incrementa la temperatura en dicha entrada. La temperatura de entrada a la turbina, con frecuencia, está limitada por la propiedad de los álabes, lo que corresponde a un límite superior práctico en la eficiencia del ciclo. La máquina de Brayton con ciclo cerrado (adición externa de calor) ha recibido una atención considerable para emplearla en sistemas nucleares y, más recientemente, en sistemas de energía solar a temperatura elevadas
Efecto de las eficiencias reales de la turbina y el compresor
Naturalmente las turbinas y los compresores reales no son isentrópicos. Para los ciclos de aire estándar, la eficiencia de cada componente se incluye fácilmente en los análisis. El compresor y la turbina reales tienen misma presión de salida que los aparatos isentrópicos correspondientes (las eficiencias de la turbina y el compresor de Brayton generalmente se dan con respecto a los aparatos isotrópicos y no a los isotérmicos).
Tenemos tres eficiencias comunes en este ciclo, las cuales son:
Eficiencia en función al calor. Eficiencia en función a las temperaturas. Eficiencia en relación a la presión.
Ciclo Brayton con Regeneración
En los motores de las turbinas de gas, la temperatura de los gases de escape que salen de la turbina suelen ser bastante mayor que la temperatura del aire que abandona el compresor. Por consiguiente, el aire de alta presión que sale del compresor puede calentarse transfiriéndole calor de los gases de escape calientes en un intercambiador de calor a contraflujo, el cual se conoce también como un regenerador o recuperador.
diagrama de la máquina de turbina de gas con regenerador
CICLO DIESEL Introducción Un ciclo Diésel ideal es un modelo simplificado de lo que ocurre en un motor diésel. En un motor de esta clase, a diferencia de lo que ocurre en un motor de gasolina la combustión no se produce por la ignición de una chispa en el interior de la cámara. En su lugar, aprovechando las propiedades químicas del gasóleo, el aire es comprimido hasta una temperatura superior a la de auto ignición del gasóleo y el combustible es inyectado a presión en este aire caliente, produciéndose la combustión de la mezcla.
Puesto que sólo se comprime aire, la relación de compresión (cociente entre el volumen en el punto más bajo y el más alto del pistón) puede ser mucho más alta que la de un motor de gasolina (que tiene un límite, por ser indeseable la auto ignición de la mezcla). La relación de compresión de un motor diésel puede oscilar entre 12 y 24, mientras que el de gasolina puede rondar un valor de 8.
Concepto El ciclo del motor diésel lento (en contraposición al ciclo rápido, más aproximado a la realidad) ideal de cuatro tiempos es una idealización del diagrama del indicador de un motor Diésel, en el que se omiten las fases de renovación de la carga., y se asume que el fluido termodinámico que evoluciona es un gas perfecto, en general aire. Además, se acepta que todos los procesos son ideales y reversibles, y que se realizan sobre el mismo fluido. Aunque todo ello lleva a un modelo muy aproximado del comportamiento real del motor, permite al menos extraer una serie de conclusiones cualitativas con respecto a este tipo de motores. No hay que olvidar que los grandes motores marinos y de tracción ferroviaria son del ciclo de 2 tiempos diésel.
Pasos del ciclo Diésel En total son 6 pasos que se requieren para completar este ciclo. Es muy parecido al ciclo de OTTO, ya que dos de sus pasos se obvian manualmente.
a) Admisión E→A El pistón baja con la válvula de admisión abierta, aumentando la cantidad de aire en la cámara. Esto se modela como una expansión a presión constante (ya que al estar la válvula abierta la presión es igual a la exterior). En el diagrama PV aparece como una recta horizontal.
b) Compresión A→B El pistón sube comprimiendo el aire. Dada la velocidad del proceso se supone que el aire no tiene posibilidad de intercambiar calor con el ambiente, por lo que el proceso es adiabático. Se modela como la curva adiabática reversible A→B, aunque en realidad no lo es por la presencia de factores irreversibles como la fricción.
c) Combustión B→C Un poco antes de que el pistón llegue a su punto más alto y continuando hasta un poco después de que empiece a bajar, el inyector introduce el combustible en la cámara. Al ser de mayor duración que la combustión en el ciclo Otto, este paso se modela como una adición de calor a presión constante. Éste es el único paso en el que el ciclo Diesel se diferencia del Otto.
d) Expansión C→D La alta temperatura del gas empuja al pistón hacia abajo, realizando trabajo sobre él. De nuevo, por ser un proceso muy rápido se aproxima por una curva adiabática reversible.
e) Escape D→A y A→E Se abre la válvula de escape y el gas sale al exterior, empujado por el pistón a una temperatura mayor que la inicial, siendo sustituido por la misma cantidad de mezcla fría en la siguiente admisión. El sistema es realmente abierto, pues intercambia masa con el exterior. No obstante, dado que la cantidad de aire que sale y la que entra es la misma podemos, para el balance energético, suponer que es el mismo aire, que se ha enfriado. Este enfriamiento ocurre en dos fases. Cuando el pistón está en su punto más bajo, el volumen permanece aproximadamente constante y tenemos la isócora D→A. Cuando el pistón empuja el aire hacia el exterior, con la válvula abierta, empleamos la isobara A→E, cerrando el ciclo.
En total, el ciclo se compone de dos subidas y dos bajadas del pistón, razón por la que es un ciclo de cuatro tiempos, aunque este nombre se suele reservar para los motores de gasolina.
Comparación con el ciclo Otto Según indicamos en la introducción, el ciclo Diésel ideal se distingue del Otto ideal en la fase de combustión, que en el ciclo Otto se supone a volumen constante y en el Diésel a presión constante. Por ello el rendimiento es diferente.
Si escribimos el rendimiento de un ciclo Diésel en la forma
vemos que la eficiencia de un ciclo Diésel se diferencia de la de un ciclo Otto por el factor entre paréntesis. Este factor siempre mayor que la unidad, por ello, para iguales razones de compresión r