Estructura Cristalina De Los Materiales

  • Uploaded by: Carlos Eduardo Espinosa Ramirez
  • 0
  • 0
  • January 2021
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Estructura Cristalina De Los Materiales as PDF for free.

More details

  • Words: 1,148
  • Pages: 15
Loading documents preview...
Estructura cristalina de los materiales Equipo 1 Franco Jiménez Jacobo Juárez Silva Francisco Javier Espinosa Ramírez Carlos Eduardo

• La estructura cristalina es la forma sólida de cómo se ordenan y empaquetan los átomos, moléculas, o iones. Estos son empaquetados de manera ordenada y con patrones de repetición que se extienden en las tres dimensiones del espacio. La cristalografía es el estudio científico de los cristales y su formación. • El estado cristalino de la materia es el de mayor orden, es decir, donde las correlaciones internas son mayores. Esto se refleja en sus propiedades antrópicas y discontinuas. Suelen aparecer como entidades puras, homogéneas y con formas geométricas definidas (hábito) cuando están bien formados. No obstante, su morfología externa no es suficiente para evaluar la denominada cristalinidad de un material.

Si nos fijamos con detenimiento, en estos gráficos existe siempre una fracción de los mismos que se repite. Asimismo, los cristales, átomos, iones o moléculas se empaquetan y dan lugar a motivos que se repiten del orden de 1 Ángstrom = 10-8 cm; a esta repetitividad, en tres dimensiones, la denominamos red cristalina. El conjunto que se repite, por translación ordenada, genera toda la red (todo el cristal) y la denominamos unidad elemental o celda unidad.

En la estructura cristalina (ordenada) de los materiales inorgánicos, los elementos que se repiten son átomos o iones enlazados entre sí, de manera que generalmente no se distinguen unidades aisladas; estos enlaces proporcionan la estabilidad y dureza del material. En los materiales orgánicos se distinguen claramente unidades moleculares aisladas, caracterizadas por uniones atómicas muy débiles, dentro del cristal. Son materiales más blandos e inestables que los inorgánicos.

• Los metales, como todos los elementos químicos, están formados por átomos. Para muchos propósitos es útil y valido considerar los átomos como esferas rígidas. Así podemos hablar del tamaño de los diferentes elementos refiriéndose a su radio atómico. Los tamaños de los átomos se miden en unidades de Angstrom, un Angstrom es igual a 10^-8 cm, es decir un centímetro contiene 100 millones de Angstrom. En un metal solido, estas esferas o átomos se agrupan en el espacio en arreglos regulares, ordenados, repetitivos, periódicos. Forman estructuras tridimensionales. Grupos de átomos pueden ordenarse para formar planos que poseen distinto arreglo geométrico. Los solidos cristalinos pueden adoptar alguna o algunas de las 14 estructuras posibles, afortunadamente, salvo escasas excepciones, los metales cristalinos en solo tres estructuras: la estructura cubica centrada en el cuerpo, la estructura cubica centrada en las caras y la estructura hexagonal compacta. Por brevedad y comodidad, es nombres en ingles “body centered cubic” (bcc), “face centered cubic” (fcc) y “hexagonal close packed” (hcp). Por ejemplo, el hierro puro puede adoptar dos estructuras diferentes, dependiendo de la temperatura que este sometido, a temperatura ambiente y hasta 910 C, posee estructura bcc, arriba de 910 C y hasta 1394 C adopta estructura fcc, entre 1394 C y 1538 C vuelve a tomar estructura bcc. Por encima de 1538 C, la temperatura de fusión, el hierro pierde su estructura cristalina al pasar al estado líquido. Se dice que el hierro es “polimórfico” o “alotrópico”, por poder adoptar diferentes estructuras cristalinas.

Un gran número de materiales cerámicos poseen estructuras típicas como la estructura del NaCl, de blenda (ZnS) y de fluorita (CaF2). Sin embargo la mayoría de los cerámicos tienen estructuras cristalinas más complicadas y variadas. Entre estas estructuras podríamos destacar las más importantes como son: • Estructura perovskita (CaTiO3). Ejemplo: BaTiO3, en la cual los iones de bario y oxigeno forman una celda unidad cúbica centrada en las caras con los iones bario en los vértices de la celda unidad, y los iones oxido en el centro de las caras, el ion titanio se situará en el centro de la celda unidad coordinado a seis iones oxigeno.

• Estructura del corindón (Al2O3). Es similar a una estructura hexagonal compacta; sin embargo, a cada celda unidad están asociados 12 iones de metal y 18 de oxigeno.

• Estructura de espinela (MgAl2O4). Donde los iones oxigeno forman un retículo cúbico centrado en las caras y los iones metálicos ocupan las posiciones tetraédricas u octaédricas dependiendo del tipo de espinela en particular.

• Estructura de grafito. Tiene una estructura hexagonal compacta.

Todos los materiales sólidos pueden clasificarse de acuerdo a su estructura molecular en cristalinos y amorfos. En los sólidos cristalinos, las moléculas se encuentran ordenadas en las tres dimensiones. Esto es lo que se llama ordenamiento periódico y lo pueden tener los sólidos cristalinos constituidos por moléculas pequeñas. En el caso de los polímeros, las cadenas son muy largas y fácilmente se enmarañan y a demás, en el estado fundido se mueven en un medio muy viscoso, así que no puede esperarse en ellos un orden tan perfecto, pero de todas maneras, algunos polímeros exhiben ordenamiento parcial en regiones llamadas cristalitos. Una sola macromolécula no cabrá en uno de esos cristalitos, así que se dobla sobre ella misma y a demás puede extenderse a lo largo de varios cristalitos.

Se distinguen regiones de dos clases: las cristalinas, en la que las cadenas dobladas varias veces en zigzag están alineadas formando las agrupaciones llamadas cristalitos; y otras regiones amorfas, en la que las cadenas se enmarañan en un completo desorden. La proporción o porcentaje de zonas cristalinas puede ser muy alta, como en el polietileno, en el nylon y en la celulosa. En esos casos puede considerarse que el material contiene una sola fase, que es cristalina, aunque con muchos defectos. En otros polímeros, como el PVC, el grado de cristalinidad es mucho menor y es más razonable considerarlo como sistemas de dos fases, una ordenada, cristalina, embebida en una matriz amorfa. Finalmente hay otros polímeros totalmente amorfos, como es el caso del poliestireno atáctico.

Los no metales comprenden una de las tres categorías de elementos químicos siguiendo una clasificación de acuerdo con las propiedades de enlace e ionización. Se caracterizan por presentar una alta electronegatividad, por lo que es más fácil que ganen electrones a que los pierdan. Los no metales, excepto el hidrógeno, están situados en la tabla periódica de los elementos en el bloque p. De este bloque, excepto los metaloides y, generalmente, gases nobles, se considera que todos son no metales. El hidrógeno normalmente se sitúa encima de los metales alcalinos, pero normalmente se comporta como un no metal. Un no metal suele ser aislante o semiconductor de la electricidad. Los no metales suelen formar enlaces iónicos con los metales, ganando electrones, o enlaces covalentes con otros no metales, compartiendo electrones. Sus óxidos son ácidos.

Los no metales forman la mayor parte de la tierra, especialmente las capas más externas, y los organismos están compuestos en su mayor parte por no metales. Algunos no metales, en condiciones normales, son diatómicos en el estado elemental: hidrógeno (H2), nitrógeno (N2), oxígeno (O2), flúor (F2), cloro (Cl2),bromo (Br2) y yodo (I2).

ING. ELECTROMECÁNICA Mtro. Ing. Artemio Velázquez Villalobos

Related Documents


More Documents from "Manolo Par"

Bass Guitar: Adolescentes
January 2021 1
Practica 2 201o6
February 2021 1
January 2021 3
March 2021 0
February 2021 0