Evapotranspiration 2016

  • Uploaded by: edo saputra
  • 0
  • 0
  • February 2021
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Evapotranspiration 2016 as PDF for free.

More details

  • Words: 2,614
  • Pages: 70
Loading documents preview...
EVAPOTRANSPIRATION Returning water to the atmosphere

EVAPOTRANSPIRATION (ET) 

Composed of two subprocesses 





Evaporation occurs on surfaces of open water or from vegetation and ground surfaces. Transpiration is the removal of water from the soil by plant roots, transported through the plant into the leaves and evaporated from the leaf’s stomata.

Typically combined in mass balance equations because the components are difficult to partition. Evapotranspiration Evaporation Open Water

Soil

Vegetation Surfaces

Transpiration Plants

POTENTIAL VS. ACTUAL ET Potential ET (PET) is the amount of evaporation that will occur if an unlimited amount of water is available.  Actual ET (AET) is the actual amount of evaporation that occurs when water is limited. For large areas can use a mass balance approach to calculate (Eq. 4.5). 

SOME DEFINITIONS 







Saturation vapor pressure (es)is the vapor pressure at which a liquid-vapor system is in a state of equilibrium. It increases exponentially with temperature (Fig. 4.11). Actual vapor pressure (ed)is the amount of pressure the water vapor in the air exerts on the surface it contacts (Eq. 4.7). Vapor pressure deficit (es-ed) is the difference between saturation and actual vapor pressures. The book presents three ways to determine the vapor pressure deficit. Relative humidity is the ratio of the amount of water present in the air to the amount required for saturation of the air at the same dry bump temperature and barometric pressure, expressed as a percentage.

EVAPORATION o o

o

o

Phase change of water from a liquid to a gas. Latent heat of vaporization is the energy needed by a molecule to penetrate the water surface (540 cal/g of water evaporated at 100°C. Rate of evaporation is driven by the vapor pressure deficit. Function of: 1. The ability of air to hold water based on air temperature and relative humidity. 2. The energy in the water largely based on temperature. Net evaporation ceases when the air has reached the saturation vapor pressure. • For evaporation to continue, some mechanism is needed to remove water vapor from the air above the evaporating surface (wind).

EVAPORATION FROM OPEN WATER Gives good estimation of PET rates.  Effected by 4 (minor) factors: 

1. 2. 3. 4.



Barometric pressure Dissolved matter Shape, site and situation of evaporating body. Relative depth of evaporating body.

Monthly evaporation from lakes or reservoirs can be calculated using the formula developed by Meyer, based on Dalton’s law. (Eq. 4.17)

EVAPORATION FROM BARE SOIL o

o

Similar to open water evaporation when soil is saturated. Divided into two stages. 

Stage 1: Soil is at or near saturation

Evaporation is controlled by heat energy  Approximately 90% of maximum PET 



Stage 2: Falling stage  Surface

starts to dry and evaporation occurs below the soil

surface.  Controlled by soil properties rather than weather conditions.

EVAPORATION FROM VEGETATIVE SURFACES Interception is the water retained on plant surfaces during and after precipitation.  10 to 25% of annual precipitation is intercepted.  Plant transpiration is reduced by the amount of intercepted water to be evaporated. 

TRANSPIRATION 



Transpiration is the loss of water in the form of vapor from plants Factors that affect transpiration rates  Type of plant  Wind  Plant Available Water: the portion of water in a soil that can readily be absorbed by plant roots. Amount of water released between field capacity (amount of water remaining in the soil after gravitation flow has stopped) and wilting point (amount of water in the soil at 15 bars of suction).

TRANSPIRATION RATIO & CONSUMPTIVE USE 

Transpiration ratio is the ratio of the weight of water transpired to the dry weight of the plant.  



Measure of how efficiently crops use water. Examples: Alfalfa (900), Wheat (500), Corn (350)

Consumptive Use is the amount of water needed to grow a crop (ET requirement + water stored in plant tissues).

MEASURING EVAPORATION AND ET 

Several methods     

Evaporation Pans PET Gages-acts as surrogates for plants Soil Water Depletion Lysimeters Energy Balance and Mass transfer-measure average gradient of water vapor above the canopy.

PAN EVAPORATION   

Oldest / simplest method to measure evaporation Measure water depths in a pan U.S. Weather Bureau has standard Class A pan     

Cylindrical container made of galvanized steel 10 inches deep and 48 inches in diameter Pan placed on a 6 inch wooden platform Site should be flat and free of obstructions Water filled to 8 inches deep 



Refill when water drops to 7 inches deep

Water level measurements made using a hook gage 

Measurements to 0.01 inch

DETERMINING PAN FACTORS 

Etr=kp Epan



Lake evaporation 



Typically taken as 70% of pan evaporation

PET 

Pan evaporation times a coefficient ranging from 0.6 to > 1.0.

PAN EVAPORATION / EXAMPLE PROBLEM 

Given:

Set

up below with a class A pan Average wind speed = 4.3 km/hr to the east Average relative humidity = 67% Measured water change in pan on July 1 = 7.5 mm

200 m Class A Pan

N

200 m Turfgrass (4 in.)

PAN EVAPORATION / EXAMPLE PROBLEM 

Required: 



Calculate the PET for July 1

Solution:    

Fetch = Wind speed = Set up = Kp =



PET = Kp x depth change =



PET =

PAN EVAPORATION ESTIMATES FOR TEXAS

LYSIMETERS 

Allow an area to be isolated from the rest of the field while carefully measuring the individual components of the water balance.  

Weighing Non-weighingmeasure drainage from the bottom

ESTIMATING ET SCS Blaney-Criddle Method   



Estimates seasonal AET. Can be used for monthly estimates if monthly crop coefficients are locally available (Table 4.8) Assumes mean monthly air temperature and annual day time hours can be used as an substitute for solar radiation to estimate the energy received by the crop. Monthly consumptive factor (f)

f 



tp 100

Where t is the mean monthly air temperature in °F and p is the mean monthly percentage of annual daytime hours (Table 4.6).



Definisi Evaporasi : proses pertukaran (transfer) menjadi molekul uap air di atmosfir dari air permukaan bebas (free water surface),muka tanah atau air yang tertahan diatas permukaan bangunan atau tanaman.

1.

Interface evaporation : suatu proses pertukaran air dipermukaan menjadi uap air di permukaan ( interface ) yang besarnya tergantung dari energi dalam yang tersimpan ( strored energy )

2. Vertical vapor transfer : suatu pemindahan lapisan udara yang jenuh uap air dari interface ke lapisan diatasnya, dan ini kalau memungkinkan proses penguapan akan berjalan terus. Transfer ini dipengaruhi oleh kecepatan angin, topografi dan iklim lokal.





Soil evaporation: penguapan yg tjd dr permuk tnh tanpa ada tanaman di atasnya (bare soil) Transpirasi : Suatu penguapan yang terjadi dari tanaman melalaui sel stomata pada daun





Evapotranspirasi : Suatu kejadian bersama– sama antara evaporasi dan transpirasi Potensial evapotranspirasi ( PET ): Evapotranspirasi dari tanaman bila memperoleh air (dari hujan atau irigasi) yang cukup untuk pertumbuhanya yang optimum



Actual evapotranspirasi (EAT) : Evapotranspirasi dari tanaman dibawah cukup untuk pertumbuhanya karena air yang diberikan kurang.

 MENGHITUNG

EVAPORASI

Didalam analisa mendapatkan besarnya evaporasi dibedah menjadi dua yaitu evaporasi dari permukaan air bebas dan evaporasi dari permukaaan tanah.



Pada dasarnya evaporasi terjadi karena perbedaan tekanan uap dari udara pada permukaan air dan dari udara diatasnya. Perumusan dasarnya (Dalton) : E = C ( ew – ea ) f (u) ………………………………..(5.1.) f (u) = fungsi kecepatan angin E = evaporasi dari permukaan air (open water). C = koefisien tergantung dari tekanan barometer. U = kecepatan angin. ew = tekanan uap jenuh muka air danau. ea = tekanan uap udara diatasnya.



Persamaan empiris Seperti disebutkan diatas bahwa besarnya evaporasi sangat dipengaruhi kecepatan angin . Evaporasi permukaan air bebas perumusan empirisnya dibedakan dua kejadian :

a). Bila temperatur permukaan air sama dengan temperatur permukaan udara : Ea = C (es – ea) (f (u)…………..(5.2) Dimana : Ea = evaporasi dari muka air (open water) untuk temperatur udara dan air yang sama toC dlm mm/hari. C = konstante empiris. es = tekanan uap jenuh udara toC (mmHg). ea = tekanan uap sesungguhnya udara diatasnya (mmHg). u = kecepatan angin pada ketinggian standard. Dari pers. (5.2) diperoleh pers. Empiris :

Ea = 0,35 (es - ea) (0,5 + 0,54 U2)...............(5.3) Dimana : U2 = kecepatan angin dalam m/dt pada ketinggian 2m Ea = dalam mm/hari.

(b). Bila temperatur udara dan permukaan air berbeda, perumusan yang dipakai sama dengan pers.(5.2) : Eo = C (es’- ea) f ( u )...............(5.4) Dimana : es’ = tekanan uap jenuh dalam lapisan batas antara udara dan air, yang mempunyai temperatur ts’dan tidak sama dengan temperatur air atau udara.

Eo = 0,645(ew - ea) (1 + 0,25 U6)……………(5.5). Dimana : Eo = Evaporasi di danau (mm/hari). ew = tekanan uap jenuh pada temperatur tw untuk muka air danau (mmHg). ea = tekanan uap air sesungguhnya (mmHg). U6 = kecepatan angin (m/dt) pada ketinggian 6m diatas permukaan.

Perhitungan evaporasi dengan cara ini disebut juga dengan cara storage aquation approach, yaitu dengan menarik suatu keseimbangan yang tetap pada semua air yang masuk dan meninggalkan daerah aliran (catchment/drainage basin).

 Perubahan

storage dalam daerah aliran air, salah satunya adalah danau atau air tanah (aquifer).  Perbedaan dalam aliran air tanah yang masuk dan keluar dari daerah aliran.  Karena evaporasi dan transpirasi.

E = P + Si + GWo – So + ∆S……………(5.6) Dimana : E = Evaporasi. P = total presipitasi. Si = surface inflow (kalau ada). GWo = ground water out flow. So = surface out flow. ∆S = perubahan storage di permukaan dan dibawah permukaan (sub surface)

 Besarnya

evaporasi dapat diukur dilapangan dengan memasang alat pengukur evaporasi yaitu atmometer atau pan evaporasi.  Atmometer : alat pengukuran evaporasi yang kecil yang biasa dipakai dalam stasiun meteorolgi.

. Ada tiga atmometer yaitu : * Tipe Piche * Tipe Livingstone * Tipe Bellani Banyak jenis pan yang dipakai diantaranya adalah : * Class A Pan Evaporation * Sunkan pan dengan tipe Colorado * Young dan BPI * Floating pan Ada tiga kondisi kejadian perubahan muka air didalam Pan yaitu : a). Bila air turun standard ukur dan pada hari itu tidak terjadi hujan. b). Bila muka air turun dari standard ukur dan pada hari itu terjadi hujan

c). Bila muka air naik dari standard ukur dan pada hari itu terjadi hujan. Gerakan perubahan uap air diudara (removal vapour) agar proses evaporasi dapat kontinue, dapat dirumuskan sebagai berikut : K – β – б (ts’- t)……………(5.19) Eo (es’- ea) 5.2.2. Evaporasi dari permukaan tanah. 5.2.2.1 Dengan membandingkan evaporasi permukaan air bebas. Harga E0 dari perhitungan cara Penman dapat dibandingkan dengan besar evaporasi permukaan tanah, turved soil atau bare soil (ET atau EB) yang dapat ditulis dalam persamaan sebagai berikut : EB Eo

= … (… < 1)……………(5.29)

5.2.2.2 Pengukuran dengan Lysimeter. Lysimeter adalah alat yang dipakai untuk mengukur evaporasi dari permukaan tanah secara langsung. Bila pemberian air irigasi diadakan maka persamaan menjadi sebagai berikut : P + I = Et + O ± ∆ S dimana : I = air irigasi Et = evapotranspirasi ∆S = perubahan storago

5.3. MENGHITUNG TRANSPIRASI Besarnya transpirasi tergantung dari penyinaran matahari, temperatur, kelembaban, angin, tersedianya air dan fase pertumbuhan tanaman. Pengukuran air akibat transpirasi dapat diketahui dengan cara mengukur berat pot dengan tanaman dan air setiap waktu tertentu. Selisih bacaan berat antara dua waktu akan menunjukkan besarnya transpirasi dari suatu tanaman.

5.4. MENGHITUNG EVAPOTRANSPIRASI 5.4.1. Perumusan evapotranspirasi dari Thornthwaite. j = ( tn ) 1.514……………(5.32) 5 dimana : j = heat index bulanan tn = temperatur rata-rata bulanan (0C) Temperatur rata-rata t0 diberikan dengan perumusan : AET = PET x DT mm…………..(5.36) 360 dimana : D = jumlah hari dalam satu bulan T = jumlah rata-rata jam siang dalam satu bulan Perumusan Thronthwaite telah diuji dan disederhanakan oleh Serra untuk persamaan (5.32 dan 5.35) menjadi sebagai berikut : j = 0,09 th1,5……………(5.37) dan a = 0,016 J + 0,5……………(5.38)

5.4.2. Perumusan evapotranspirasi dari Blanney Criddle. Blanney Criddle mengemukakan perumusan untuk menghitungkan besarnya potensi evatranspirasi yang dihubungkan dengan temperatur rata-rata bulanan, prosentase penyinaran matahari bulanan dalam setahun dan koefisien pertumbuhan tanaman. Cara ini menggunakan perumusan sebagai berikut : U = k . f …………..(5.39) 100 dan f = t x p ……………(5.40) dimana : U = evapotranspirasi bulanan (in) k = koefisien pemakaian air konsumtif (empiris) f = faktor pemakaian air konsumtif t = temperatur rata-rata bulanan ( 0F) p = persentase jam siang hari bulanan dalam setahun (tabel 5.4).

5.4.3. perumusan evapotranspirasi dari Ture, Langbein dan Wundt. dapat dirumuskan sebagai berikut : P = Ē + Ō – Ī ……………(5.43) dimana : P = rata2 hujan tahunan. Ē = rata2 evapotranspirasi tahunan. Ō = rata2 autflow tahunan. Ī = rata2 inflow tahunan. Maka menurut ture : E= P . 0,9 + p2 L2 5.4.4. Perumusan evapotranspirasi dari Parman. Perumusan dapat ditulis sebagai berikut : PET = k . E0…………..(5.46) dimana : k = koefisien tanaman bulanan (tabel 5.5)

5.5. CONSUMPTIVE USE. Penggunaan konsumtif (consumtive use) adalah evapotranspirasi dari suatu daerah yang ditumbuhi tanaman, biasanya dipakai dalam hubungannya dengan pertanian yaitu untuk menghitung besarnya kebutuhan air irigasi, penggunaan konsumtif (c.u) sama besarnya dengan PET, kekurangan moisture tanah (soil moisture deficiency). Besarnya C.U. tergantung dari berbagai faktor seperti iklim supplay moisture tanah, macam dan umur tanaman yang tumbuh, macam tanah dan cara pengarapan. Keperluan air untuk tanaman ada optimumnya, yaitu banyaknya air yang harus diberikan untuk mendapatkan hasil yang tertinggi.

MONTHLY PERCENTAGE OF DAYTIME HOURS, P

BLANEY-CRIDDLE EQUATION U is the seasonal consumptive use in in/season  K is the seasonal consumptive use coefficient for a crop with a normal growing season (Table 4.7) 

n

U  K  fi i 1

SEASONAL CONSUMPTIVE USE FACTORS 

Mean monthly temperatures are available on the web at a variety of places. For example

http://cdiac.esd.ornl.gov/r3d/ushcn/statem ean.html http://www.weatherbase.com/

PET ESTIMATION METHODS Simple models require measurement of only 1 weather variable  Temperature methods 

 

Relates PET rates to air temperature Thornthwaite Method (good only for east-central U.S.)  Requires

average monthly air temperature  Latitude which is related to the length of day



Radiation methods  

Relates PET rates to solar radiation Jensen-Haise method

PENMAN METHODS 

Penman equations 

Equations to account for energy required to sustain evaporation  Solar

radiation  % sunshine  Humidity  Wind



Long equations with many variables (Eqn. 4.30)  Problems

 Complex

equation  Need to keep units consistent  Need lots of data as inputs

PET IN TEXAS Daily PET (MM) January

Daily PET (MM) August

DAILY EVAPORATION IN BELGIUM

Daily evapotranspiration (mm/day). June 26, 1996.

LONG TERM WATER BALANCES Basic equation for a control volume:  I - O = S  Inputs – Outputs = Change in Storage

Control volumes in hydrology

 Pond, cultivated field, subdivision, watershed, river basin, etc.

Example1: Control volume is a pond  Inputs (I)  precipitation, runoff, water pumped in  Outputs (O)  Discharges, seepage losses, evaporation  Change in Storage S)  Change in volume of water stored in pond

LONG TERM WATER BALANCES Example 2: Control volume is a vegetated plot   

Inputs: precipitation, irrigation Outputs: evapotranspiration (ET), infiltration, runoff S = change in volume of water stored in the soil profile

 2 conditions exist for vegetated plots 1. 2.

If the soil profile is kept very wet ET is maximized. If the soil profile dries naturally ET is limited by available water in the soil profile

BAEN 460 AND AGSM 335 

Homework 3

Related Documents

Evapotranspiration 2016
February 2021 1
Lecture Evapotranspiration
February 2021 1
Calcomania 2016
February 2021 0
Glucidos 2016
March 2021 0
Pir 2016
March 2021 0
Hidatidosis 2016
February 2021 1

More Documents from "julio"