Failure Analysis And Prevention

  • Uploaded by: Dome Stoi
  • 0
  • 0
  • March 2021
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Failure Analysis And Prevention as PDF for free.

More details

  • Words: 385,655
  • Pages: 76
Loading documents preview...
© 2002 ASM International. All Rights Reserved. ASM Handbook Volume 11: Failure Analysis and Prevention (#06072G)

www.asminternational.org

Index A Abiotic corrosion corrosion products in pipeline excavations and laboratory soil box tests . . . . . . . . . . . . . . . . . . .887 corrosion rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .887 Above-ground storage tank, corrosion failure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 753–754 Abrasion as damage mechanism on failure wheel . . . . . . . .349 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1061 as rolling contact fatigue failure mode of thermal spray cermet and ceramic coatings . . . . . . . .951 Abrasive cutoff machine . . . . . . . . . . . . . . . . . . . . . . . . .501 Abrasive cutting . . . . . . . . . . . . . . . . . . . . . . .501–502, 503 Abrasive erosion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .997 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .997 mechanical seals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .997 Abrasive hardness . . . . . . . . . . . . . . . . . . . . . . . . . . 911, 913 Abrasive wear . . . . . .32–33, 337, 902, 906–920, 966 categories or types of . . . . . . . . . . . . . . . . . . . . . . . . . . .907 causes of . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .902 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .407 of continuous unidirectional fiber reinforced polymers (FRP) . . . . . . . . . . . . .1029, 1032, 1033 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .907, 1061 erosion-corrosion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .908 of fabric-reinforced polymer composites . . . . . . . . . . . . . . . . . . . . . . . . .1033–1035 failure analysis, procedural sequence . . . . . 914–915 fracture toughness effect . . . . . . . . . . . . . . . . . . . . . . . .913 gouging abrasion . . . . . . . . . . . . . . . 907–908, 919–920 grinding abrasion . . . . . . . . . . . . . . . . . . . . .908, 991–992 hardness effect . . . . . . . . . . . . . . . . . 911, 913, 919–920 high-stress abrasion . . . . . . . . . . . . . . . . . .908, 919, 920 impact velocity effect . . . . . . . . . . . . . . . . . . . . . . . . . . .912 in impact wear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .966 impingement angle effect . . . . . . . . . . . . . . . . . . . . . . .912 jaw-type rock crusher wear plates . . . . . . . . 915, 916 low-stress abrasion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .908 and lubricant failure . . . . . . . . . . . . . . . . . . . . . . . . . . . . .411 in martensitic steels, wear mode identification . . . . . . . . . . . . . . . . . . . . . . . . . 919–920 material changes for mitigation of . . . . . . . . . . . . . .407 material property effects . . . . . . . . . . . . . . . . . . 912–913 mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 909–914 particle size effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .911 percentage of wear failures . . . . . . . . . . . . . . . . . . . . .407 of polymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1022 of refractory or ceramic linings . . . . . . . . . . . . . . . . .803 of reinforced polymers . . . . . . . . . . . . . . . . . .1029–1035 scratching abrasion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .908 service conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .412 of short-fiber reinforced polymers . . . . 1030, 1031– 1033 sliding abrasion . . . . . . . . . . . . . . . . . . . . . . . . . . . 908–909 subcategories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .902 surface hardness increases for mitigation . . . . . .407 of thermal sprayed coatings . . . . . . . . . . . . . . . . . . . .950 three-body . . . . . . . . . . . . . . . . . 907, 908–909, 947, 949 two-body . . . . . . . . . . . . . . . . . . . . . . . 907, 908–909, 947 wear rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .912 Abrasive-wheel cutting, to section specimens . . .501 ABS. See Acrylonitrile-butadiene-styrene. Absolute maximum shear stress in three dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .464

Absorber tubes in air-conditioning unit, stresscorrosion cracking . . . . . . . . . . . . . . . . . . . . . . . . .855 Absorption bands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .438 Accelerated corrosion tests . . . . . . . . . . .406–407, 752 Accelerating voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .525 Accident definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 definition, in commercial aviation . . . . . . . . . . . . . . . 60 Accident investigation, testing evidence in a laboratory setting . . . . . . . . . . . . . . . . . . . . 374–375 Accident reconstruction . . . . . . . . . . . . . . . . . . . . 371–379 background information . . . . . . . . . . . . . . . . . . . . . . . .373 codes and standards referenced . . . . . . . . . . . . . . . . .372 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .371 documentation of evidence . . . . . . . . . . . . . . . . . . . . .372 elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 372–376 facts related to the accident . . . . . . . . . . . . . . . . . . . . .372 interdisciplinary nature . . . . . . . . . . . . . . . . . . . . . . . . . .371 investigation of the accident scene . . . . . . . 373–374 motor vehicle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .377 preservation of evidence . . . . . . . . . . . . . . . . . . . . . . . .372 references available . . . . . . . . . . . . . . . . . . . . . . . 371–372 testing of hypotheses . . . . . . . . . . . . . . . . . . . . . . 375–376 types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .371 visual documentation of accident scene . . . . . . . .373 witness interviews . . . . . . . . . . . . . . . . . . . . . . . . . 372–373 Accumulation stage, of cavitation erosion . . . . . 1003 Accuracy, of probability of failure estimate . . . . . .261 Acetabular sockets for hip joints, wear failures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1025 Acetal abrasive wear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1030 creep modulus vs. temperature . . . . . . . . . . . . . . . . .652 impact wear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .970 specific wear rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1020 Acetate, damaging effect of trace levels . . . . . . . . . .883 Acetate tape, for replicas . . . . . . . . . . . . . . . . . . . . . . . . .394 Acetic acid causing intergranular corrosion in sensitized austenitic stainless steels . . . . . . . . . . . . . . . . . .779 environment causing stress-corrosion cracking of nickel and nickel-base alloys . . . . . . . . . . . . . .848 Acetic acid anhydride mixture, causing intergranular corrosion in sensitized austenitic stainless steels . . . . . . . . . . . . . . . . . . . . . . . . . . . . .779 Acetone solvent-induced cracking of polycarbonate metalframed ophthalmic lenses . . . . . . . . . . . 653–654 use in surface replica production . . . . . . . . . 520, 522 ACI. See Alloy Casting Institute. Acicular phases, in aluminum alloy castings . . . .152 Acid cleaning, as hydrogen source for hydrogen embrittlement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .819 Acid cleaning corrosion, as damage mechanism for boiler tubing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .347 Acid cleaning damage, as boiler tube damage mechanism on failure wheel . . . . . . . . . . . . . . .350 Acid producers, microbially-induced corrosion morphology products, and deposits . . . . . . .888 Acid-producing bacteria (APB) . . . . . 753, 882, 883, 885 identification basis for microbially-induced corrosion site . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .887 in microbially-induced corrosion of stainless steels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .890 viable cell counts, method used for inspection, growth and activity assays . . . . . . . . . . . . . . . .893

Acoustic-emission inspection description, advantages and limitations . . . . . . . .396 to detect ring crack initiation in bearing balls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .957 for failure analysis and investigation . . . . . . . . . . .396 Acquisition Reform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .274 Acquittal, by composition verification . . . . . . . . . . .429 Acrylic resins as corrosion-resistant coatings . . . . . . . . . . . . . . . . . .758 for mounting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .503 Acrylonitrile-butadiene-styrene (ABS) abrasive wear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1030 brittle fracture of protective covers . .449–450, 452 distortion from inclusion in handle . . . . . . . 447, 449 ductile fracture behavior . . . . . . . . . . . . . . . . . . . . . . . .655 embrittlement of grips . . . . . . . . . . . . . . . . . . . . 447, 448 notch sensitivity and brittle fractures . . . . . . . . . . .657 parabolic markings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .659 Activation energy, and thermomechanical fatigue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 739, 740 Active metal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .750 Active region . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .750 Additives, for lubricants . . . . . . . . . . . . . . . . . . . . . . . . . .411 Adenosine triphosphate (ATP), to investigate microbial populations . . . . . . . . . . . . . . . . . . . . . .893 Adherent packing material, as casting defect . . .109 Adhesion, as damage mechanism on failure wheel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .349 Adhesive tape residue . . . . . . . . . . . . . . . . . . . . . . . . . . . .436 Adhesive wear . . . . . . . . . . . 32–33, 337, 408, 909, 966 coatings and surface finishes for mitigation of . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .408 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1061 dynamic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .408 of fabric reinforced composites . . . . . . . . . . . . . . . 1040 of hybrid composites . . . . . . . . . . . . . . . . . . . .1040–1041 in impact wear . . . . . . . . . . . . . . . . . . . . . . . . . . . . 966, 967 and lubricant failure . . . . . . . . . . . . . . . . . . . . . . . . . . . . .411 lubrication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .408 material changes for mitigation of . . . . . . . . . . . . . .408 mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .902 of particulate-filled composites . .1035, 1036–1037 percentage of wear failures . . . . . . . . . . . . . . . . . . . . .407 of reinforced polymers . . . . . . . . . . .1034, 1035–1041 of short fiber reinforced polymers . . . . .1035, 1036, 1037–1038 of unidirectional FRP composites . . . . . .1038–1040 Adiabatic, definition . . . . . . . . . . . . . . . . . . . . . .1061–1062 Adiabatic heating, as root cause of forgings defects, rationale, resolution, and corrective action . . . . . . . . . . . . . . . . . . . . . . 327, 329, 330, 331 Adiabatic mode of wear, of polymers . . . . . . . . . 1024 Adiabatic shear . . . . . . . . . . . . . 599, 600, 621–622, 943 in ductile overload failures . . . . . . . . . . . . . . . 672–673 Adiabatic shear bands (ASB) . . . 982, 984, 985, 987 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1062 Adipic acid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .769 Adjacent surface discoloration, macroscale fractographic implication . . . . . . . . . . . . . . . . . .560 Admiralty B brass, intergranular corrosion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 784, 785 Admiralty brass galvanic series in seawater . . . . . . . . . . . . . . . . . . . . . .762 stress-corrosion cracking with microbially-induced corrosion of condenser tubing . . . . . . . . . . . . .890 Adsorption-enhanced plasticity . . . . . . . . . . . . . . . . .826 Advanced ceramics. See also Engineering ceramics; Technical ceramics. . . . . . . . . . . . . . . . . . . . . . . . .800

© 2002 ASM International. All Rights Reserved. ASM Handbook Volume 11: Failure Analysis and Prevention (#06072G)

Advanced gas-cooled reactor (AGR), high pressure effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .930 Advanced mean value method (AMV) . . . 250, 255, 257–258 AMVⳭ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .258 Aeolian vibrations . . . . . . . . . . . . . . . . . . . . . . . . . . 335, 337 Aerated aqueous NH3 in aqueous solution, causing stress-corrosion cracking in copper alloys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .831 Aeration of water, to prevent cavitation erosion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .999 AerMet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .100 spalling resistance . . . . . . . . . . . . . . . . . . . . . . . . . 987–988 Aerobic bacteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . 753, 754 AES. See Auger electron spectroscopy. Aesthetics, as criteria for materials selection . . . . . . 32 AF. See Aramid fibers. AFGROW (computer software program) . . . . . .283 Age, definition in reliability-centered maintenance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 Aging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .403 of polymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .444 room-temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .690 of rubber . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .405 and stress rupture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .734 Aging reactions, as mechanism for hightemperature corrosion . . . . . . . . . . . . . . . . . . . . .874 AGR. See Advanced gas-cooled reactor. Air corroding by stress-corrosion cracking . . . . . . . . .833 still, heat transfer rate of quenching medium . .210 Airbag safety . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 Air bubbles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .116 Air-conditioning absorber tubes, stress-corrosion cracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .855 Air cooling, to minimize cracking . . . . . . . . . . . . . . . .199 Aircraft. See also Helicopter. brittle fracture of F-111 wing box . . . . . . . . 228, 231 compressor disks, fatigue failure . . . .264–265, 266 fatigue management by U.S. Air Force . . 269–270 fuel tanks, microbially-induced corrosion of aluminum alloys . . . . . . . . . . . . . . . . . . . . . . . . . . .891 inventory showing abnormal conditions present at failure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394–395 overhaul intervals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 rotor fatigue failure, titanium . . . . . . . .264–265, 266 sensor cable for jet engine . . . . . . . . . . . . . . . . . . . . . . . 13 torque link bolt on fixed-nose landing gear, fatigue failure . . . . . . . . . . . . . . . . . . . . . . . . 283–284 wing slat track of steel, distortion failure . . . . 1052 Aircraft, specific types Airbus Industrie A-300, reliability-centered maintenance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 Boeing 707, reliability-centered maintenance . . . 66 Boeing 747, reliability-centered maintenance . . . 61 Concorde, reliability-centered maintenance . . . . . 61 Douglas DC-8, reliability-centered maintenance . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60, 61 Douglas DC-10, reliability-centered maintenance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 Lockheed TriStar 1011, reliability-centered maintenance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 P-51 Mustangs, reliability-centered maintenance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 Aircraft actuator barrel lug, stress-corrosion cracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .852 Aircraft actuators, brittle fracture of aluminum alloy castings . . . . . . . . . . . . . . . . . . .150–151, 152 Aircraft attachment bolt, stress-corrosion cracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .848 Aircraft flight simulators . . . . . . . . . . . . . . . . . . . . . . . .377 Aircraft freshwater tanks, pitting corrosion . . . 773– 774 Aircraft fuel-control lever, defect-related failure, cold shut in casting . . . . . . . . . . . . . . . . . . . . . . . .120 Aircraft hinge bracket, stress-corrosion cracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 851, 852 Aircraft lug forging, stress-corrosion cracking . .852 Aircraft nuts on wings, hydrogen embrittlement . . . . . . . . . . . . . . . . . . . . . . . . 811, 812 Aircraft strap-type clamp, stress-corrosion cracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 828, 829 Aircraft Structural Integrity Program (ASIP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231, 274

Aircraft undercarriage leg forgings, stresscorrosion cracking . . . . . . . . . . . . . . . . . . . 852–853 Air-hardening tool steel, wear failure of chopper knife . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 512, 513 Airline/Manufacturer Maintenance Program Planning Document (MSG-2) . . . . . . . . . . . . . 61 Air plasma sprayed coating . . . . . . . . . . . . . . . 951, 954 Air plasma spraying (APS) coating material, thickness, roughness, and average hardness . . . . . . . . . . . . . . . . . . . . . . . . . . .950 coatings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 951, 954 contact stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .950 rolling contact fatigue life, ⳯106 cycles . . . . . . .950 rolling contact fatigue tester . . . . . . . . . . . . . . . . . . . .950 substrate material and hardness . . . . . . . . . . . . . . . . .950 Alclad aluminum coatings, for corrosion resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .764 Alcohol as addition to prevent freezing . . . . . . . . . . . . . . . . .894 stress-corrosion cracking . . . . . . . . . . . . .857, 858–859 Alkali halides, fracture mechanism maps, general shifts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .571 Alkalis, corroding technical ceramics . . . . . . . 804, 805 Alkyd resins, as corrosion-resistant coatings . . . . .758 All-beta titanium alloys, workability behavior . . . 98 Alligatoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .874 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1062 Alligator skin. See Orange peel. Allowable equivalent stress . . . . . . . . . . . . . . . . . . . . . .490 Allowable stress, as design parameter . . . . . . . . . . . .229 Alloy Casting Institute CF-8, corrosion of castings . . . . . . . . . . . . . . . . . . . . .146 Alloy depletion, promoting cracking . . . . . . . . . . . . .215 Alloy segregation, effect on fatigue strength . . . 719– 720 Alloy steels brittle fracture of ski chair lift grip components . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10, 11 centrifugal casting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .132 compatibility with various manufacturing processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 liquid metal induced embrittlement . . . . . . 863, 864, 865–866 mitigating adhesive wear . . . . . . . . . . . . . . . . . . . . . . .408 notched tension test . . . . . . . . . . . . . . . . . . . . . . . . . . . . .634 reheat-quenched carburized . . . . . . . . . . . . . . . . . . . . .217 solid metal induced embrittlement . . . . . . . . . . . . . .865 spalling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .978 temper embrittlement . . . . . . . . . . . . . . . . . . . . . . . . . . .195 tempering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .195 Almen strip, to determine peening parameters . . .222 Alpha alumina formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .877 melting point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .877 Alpha-beta titanium alloys crystallographic texture, effect on fracture path and fracture toughness . . . . . . . . . . . . . . . . . . . . .564 dual fracture modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . .578 flow localization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 phase morphology, effect on fracture path and fracture toughness . . . . . . . . . . . . . . . . . . . . . . . . .564 stress intensity range effect on fatigue fracture mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .578 workability behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 Alpha (␣)-brasses environment systems exhibiting stress-corrosion cracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .832 stress-corrosion cracking . . . . . . . . . . . . . . . . . . . . . . . .835 Alpha-phase, and embrittlement . . . . . . . . . . . . 692–693 Alpha-titanium alloys, workability behavior . . . . . 98 Alternating stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .700 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .277 Alumina (Al2O3) . . . . . . . . . . . . . . . . . . . . . . .800, 803, 804 for abrasive particles for cutting wheels . . . . . . . .502 brittle fracture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .669 cavitation erosion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1003 content effect in refractory coatings . . . . . . . . . . . .878 corrosion resistance to fused salts, alkalis, and low-melting oxides . . . . . . . . . . . . . . . . . . . . . . . .805 corrosion resistance to various hot gases . . . . . . .805 density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .960 elastic modulus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .960 erosion rate of ceramics with different grain sizes in ion-exchanged water . . . . . . . . . . . . . . . . . . 1007

www.asminternational.org

Index / 1091 failure mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .960 fretting wear of flat . . . . . . . . . . . . . . . . . . . . . . . . . . . . .929 hardness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .960 intergranular fracture . . . . . . . . . . . . . . . . . . . . . . . . . . . .666 mixed with liquid epoxy for mounting resin . . .504 refractoriness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .804 thermal etching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .363 as thermally sprayed coating material . . . . . . . . . . . . . . 949–950, 951, 952, 953 toughness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .960 transgranular fracture . . . . . . . . . . . . . . . . . . . . . . . . . . .666 Alumina refractories . . . . . . . . . . . . . . . . . . . . . . . . . . . . .800 Alumina scale-forming alloys, carburization resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .869 Aluminates, formation in steel ingot . . . . . . . . . . . . . . 88 Aluminides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1016 chrome-modified . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .877 chromium-silicon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .877 as high-temperature coatings resisting corrosion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 876–877 substituted for Stellite to lower weight modified by additions . . . . . . . . . . . . . . . . . . . . . . . . . . .877 Aluminizing, to prevent fretting damage . . . . . . . . .933 Alumino-silicate refractories . . . . . . . . . . . . . . . . . . . .800 Aluminum as addition, effect on grain size . . . . . . . . . . . . . . . .431 addition increasing solubility of manganese sulfides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .117 addition to nickel alloys and sulfidation resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .870 bond energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .650 causing liquid or solid metal induced embrittlement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .862 cavitation erosion evaluation . . . . . . . . . . . . . . . . . 1008 cavitation erosion, incubation time . . . . . . . . . . . 1004 cavitation erosion in seawater . . . . . . . . . . . . . . . . . .793 commercially pure, velocity-affected corrosion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .788 compatibility with various manufacturing processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 content effect on graphitization . . . . . . . . . . . . . . . . .693 content effect on nitridation susceptibility . . . . .870 content effect on sigma-phase embrittlement . .693 in deposits from microbially-induced corrosion sites in stainless steel cooling water systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .889 effect on low-alloy steel castings . . . . . . . . . 144, 145 effect on time-to-fracture of copper by stresscorrosion cracking in ammoniacal atmosphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .853 erosive wear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 995, 996 fatigue fracture at low stacking fault energy . . .578 forging, fatigue fracture showing striations . . . .635 fretting wear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .930 galvanic corrosion . . . . . . . . . . . . . . . . . . . . . . . . . 766–767 gas causing porosity in . . . . . . . . . . . . . . . . . . . . . . . . . .115 hydrogen damage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .817 liquid embrittlers of . . . . . . . . . . . . . . . . . . . . . . . . . . . . .646 maximum erosion rate dependence in cavitation erosion on combined parameter . . . . . . . . . 1016 microbially-induced corrosion . . . . . . .889, 890–891 as molten metal corrodent . . . . . . . . . . . . . . . . 873, 874 oxide film for fretting corrosion resistance . . . . .928 as protective layer for chromium steels in hydrogen sulfide attack . . . . . . . . . . . . . . . . . . . .146 removed from alloys by selective leaching . . . . .785 standard emf series value . . . . . . . . . . . . . . . . . . . . . . .763 structural component material behavior . . . . . . . .282 Aluminum alloys anodic dissolution . . . . . . . . . . . . . . . . . . . . . . . . . 647, 648 anodized to prevent fretting damage . . . . . . . . . . .934 atmospheric stress-corrosion cracking . . . . 641–642 brittle fracture of aircraft actuators . .150–151, 152 casting defects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149–152 casting corrosion resistance . . . . . . . . . . . . . . . . . . . . . . . . . .150 dimple-rupture fracture . . . . . . . . . . . . . . . . . . . . . . .673 ductile fracture . . . . . . . . . . . . . . . . . . . . . . . . . 151–152 cavitation erosion in seawater . . . . . . . . . . . . . . . . . .793 centrifugal casting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .132 compatibility with various manufacturing processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 conductivity tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .403

© 2002 ASM International. All Rights Reserved. ASM Handbook Volume 11: Failure Analysis and Prevention (#06072G)

www.asminternational.org

1092 / Index

Aluminum alloys (continued) creep onset temperature . . . . . . . . . . . . . . . . . . . . . . . . .729 critical section thicknesses . . . . . . . . . . . . . . . . . . . . . .477 defects in forgings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 die casting . . . . . . . . . . . . . . . . . . . . . . . . . . . .125, 126, 150 die casting demands on molds . . . . . . . . . . . . 127, 129 dimple size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .595 dispersoids, effect on fracture path and fracture toughness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .564 in dissimilar metal pair, fretting damage . . . . . 928– 929 distortion failures of side rails of extension ladders . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1048–1049 ductile fatigue failures . . . . . . . . . . . . . . . . . . . . 522, 524 ductile fracture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .522 ductile fracture vs. intergranular fracture process regions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .549 elastic crack-tip opening displacement . . . 244–245 electron beam welding . . . . . . . . . . . . . . . . . . . . 189–190 environment systems exhibiting stress-corrosion cracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .832 fast overload fracture . . . . . . . . . . . . . . . . . . . . . . . . . . .634 fatigue crack initiation . . . . . . . . . . . . . . . . . . . . . . . . . .577 fatigue failure showing striations . . . . . . . . . 634, 635 fatigue fracture, cracking direction . . . . . . . 630, 633 fatigue life . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .718 fatigue striations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .708 fibering, effect on fracture path and fracture toughness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .564 galvanic corrosion . . . . . . . . . . . . . . . . . . . . . . . . . 766–767 galvanic corrosion of helicopter tail rotor . . . . . .766 galvanic series in seawater . . . . . . . . . . . . . . . . . . . . . .762 gas porosity . . . . . . . . . . . . . . . . . . . . . . . . . .127, 128, 129 gravity casting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149–150 high strength, causes of stress-corrosion cracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .831 hydrogen damage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .817 hydrogen embrittlement . . . . . . . . 646–647, 648, 813 impact wear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .967 impact wear coefficient values . . . . . . . . . . . . . . . . . .971 intergranular corrosion . . . . . . . . . . . . . . . . . . . . 778, 784 intergranular fracture . . . . . . . . . . . . . . . . . . . . . . 647, 648 intergranular fracture of forging . . . . . . . . . . 641, 642 intergranular stress-corrosion cracking . . . 648, 852 intergranular stress-corrosion cracking and hydrogen embrittlement . . . . . . . .646–647, 648 large particles, effect on fracture path and fracture toughness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .564 liquid metal induced embrittlement . . . . . . 862, 863, 864 localized corrosion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .767 mercury-induced failures . . . . . . . . . . . . . . . . . . . . . . .862 microbially-induced corrosion . . . . . . . . . . . . 890–891 microporosity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .112 no cyclic strain softening . . . . . . . . . . . . . . . . . . . . . 1056 no debonding for second-phase particles . . . . . . .592 notch sensitivity vs. notch radius . . . . . . . . . . . . . . .278 permanent-mold casting material . . . . . . . . . . . . . . .124 pitting corrosion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .775 as sacrificial anodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . .756 second phases in fracture surfaces . . . . . . . . . . . . . .608 semisolid casting and defects . . . . . . . . . . . . . . . . . . .127 shrinkage porosity . . . . . . . . . . . . . . . . . . . .127, 128, 129 squeeze casting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .129 stress-corrosion cracking . . . . . . 825, 832, 833, 834, 835, 836, 850–853 substances in atmospheric environments causing stress-corrosion cracking . . . . . . . . . . . . . . . . . .832 weldment hot cracking . . . . . . . . . . . . . . . . . . . . . . . . . .179 weldment inclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . .172 weldment porosity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .171 workability behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 Aluminum alloys, specific types 319-T5 brittle torsion fracture . . . . . . . . . . . . . . . . . . 607, 610 384-F cold shut in pressure die casting . . . . . . . . . . . . .126 413-F cold shut in pressure die casting . . . . . . . . . . . . .126 518 composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .125 718 fatigue striations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .709

1xxx series (Al) stress-corrosion cracking resistance rating . . .850 1100 ductile fracture (unnotched bar) . . . . . . . . . . . . . .599 intergranular corrosion . . . . . . . . . . . . . . . . . . . . . . .784 for nitric acid storage and shipping containers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .770 1100-O erosive wear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .996 as reference material for cavitation erosion testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1008, 1009 2xxx series, intergranular corrosion . . . . . . . . . . . . .784 2xxx series (Al-Cu-Mg) intergranular corrosion . . . . . . . . . . . . . . . . . . . . . . .784 stress-corrosion cracking resistance rating . . .850 2xxx series (Al-Cu-Mg-Si) stress-corrosion cracking resistance rating . . .850 2011-T3 impact wear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .967 2014 fatigue striations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .709 intergranular corrosion . . . . . . . . . . . . . . . . . . . . . . .784 particle spacing correlated with dimple size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .596 stress-corrosion cracking . . . . . . . . . . . . . . . 851–852 2014-T6 overload failures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .678 stress-corrosion cracking . . . . . . . . . . . . . . . 851–853 2014-T652 corrosion fatigue failure of helicopter tail rotor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .766 2017 for “icebox” rivets . . . . . . . . . . . . . . . . . . . . . . . . . . . .684 stress-corrosion cracking . . . . . . . . . . . . . . . 851–852 2024 fatigue striations . . . . . . . . . . . . . . . . . . . . . . . . 354, 355 for “icebox” rivets . . . . . . . . . . . . . . . . . . . . . . . . . . . .684 intergranular corrosion . . . . . . . . . . . . . . . . . . . . . . .784 particle spacing correlated with dimple size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .596 replica technique for fracture profile generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .539 strain-rate sensitivity . . . . . . . . . . . . . . . . . . . 601, 605 2024-O strain-rate sensitivity . . . . . . . . . . . . . . . . . . . 601, 605 2024-T3 ductile fatigue failure . . . . . . . . . . . . . . . . . . . 522, 524 fatigue crack growth of circular penetration in pressurized fuselage . . . . . . . . . . . .279, 284–286 fatigue fracture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .707 plane stress and fracture toughness of sheet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .279 2024-T4 S-N curve for bar . . . . . . . . . . . . . . . . . . . . . . . . . . . . .277 2024-T431 stress-corrosion cracking . . . . . . . . . . . . . . . . . . . . .830 2024-T6 stress-corrosion cracking . . . . . . . . . . . . . . . 851–852 2024-T62 stress-corrosion cracking . . . . . . . . . . . . . . . 851–852 2024-T851 stress-corrosion cracking . . . . . . . . . . . . . . . 851–852 2219-T87 microbially-induced corrosion . . . . . . . . . . . . . . .891 3xxx series (Al-Mn-Mg) stress-corrosion cracking resistance rating . . .850 3003 for nitric acid storage and shipping containers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .770 5xxx alloys intergranular corrosion evaluation tests and acceptance criteria . . . . . . . . . . . . . . . . . . . . . . . . .781 5xxx series (Al-Mg) stress-corrosion cracking resistance rating . . .850 5xxx series (Al-Mg-Mn) stress-corrosion cracking resistance rating . . .850 5xxx series (MnAl6) intergranular corrosion . . . . . . . . . . . . . . . . . . . . . . .784 5083 intergranular corrosion . . . . . . . . . . . . . . . . . . . . . . .778 microstructure after sensitization . . . . . . . . . . . .778 stretch zone width correlation with fracture toughness, elastic modulus normalized . . .584

5183 liquid metal induced embrittlement . . . . . . . . . .864 5356 liquid metal induced embrittlement . . . . . . . . . .863 6xxx series crystallographic fatigue . . . . . . . . . . . . . . . . 636–637 intergranular corrosion . . . . . . . . . . . . . . . . . . . . . . .784 6xxx series (Al-Mg-Si) stress-corrosion cracking resistance rating . . .850 6061 erosion rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1005 erosion rate in mineral oil . . . . . . . . . . . . . . . . . . 1007 liquid metal induced embrittlement . . . . . . . . . .863 microbially-induced corrosion . . . . . . . . . . . . . . .891 particle spacing correlated with dimple size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .596 6061 composite, alumina-particle reinforced microbially-induced corrosion . . . . . . . . . . . . . . .891 6061-T6 diffuse and local necking, tensile fractures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 601, 606 ductile torsion fracture with shear dimples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 607, 611 as reference material for cavitation erosion testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1009 shrinkage gap between specimen and mount . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 503, 505 stress-corrosion cracking . . . . . . . . . . . . . . . 851–852 weldment with embedded SiC grinding abrasives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .506 6061-T651 stress-corrosion cracking . . . . . . . . . . . . . . . 851–852 6063-T6 distortion failure . . . . . . . . . . . . . . . . . . . . . .1048–1049 6151 particle spacing correlated with dimple size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .596 6351-T6 liquid metal induced embrittlement . . . . . . . . . .864 7xxx series intergranular corrosion . . . . . . . . . . . . . . . . . . . . . . .784 7xxx series (Al-Zn-Mg) stress-corrosion cracking resistance rating . . .850 7xxx series (Al-Zn-Mg-Cu) stress-corrosion cracking resistance rating . . .850 7050 area fraction of unrecrystallized vs. recrystallized regions . . . . . . . . . . . . . . . . . . . . . .549 stretch zone boundaries in fracture surface, roughness, and fractal dimension . . . 552–553 vertical-section serial sectioning . . . . . . . 553, 554 7075 hydrogen damage . . . . . . . . . . . . . . . . . . . . . . . . . . . . .816 intergranular corrosion . . . . . . . . . . . . . . . . . . . . . . .784 microbially-induced corrosion . . . . . . . . . . . . . . .891 particle spacing correlated with dimple size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .596 7075-T6 crack initiation in unnotched specimens . . . . 602, 607 fatigue-fracture zones . . . . . . . . . . . . . . . . . . . . . . . .710 prestraining in torsion effect on fracture . . . 620– 621 stress-corrosion cracking . . . . . . . . . .828, 832, 852 7075-T651 intergranular fracture . . . . . . . . . . . . . . . . . . . . . . . . .646 7075-T7 stress-corrosion cracking . . . . . . . . . . . . . . . . . . . . .832 7075-T73 fatigue fracture of forging, beach marks present . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .707 7079 particle spacing correlated with dimple size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .596 7079-T651 mud cracks on intergranular fracture surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .564 A356 brittle fracture . . . . . . . . . . . . . . . . . . . . .150–151, 152 brittle torsion fracture . . . . . . . . . . . . . . . . . . 607, 610 dimples in tensile fracture surface . . . . . . . . . . .550 fatigue striations . . . . . . . . . . . . . . . . . . . . . . . . 550, 551 fraction of fracture profile length through Si particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .543

© 2002 ASM International. All Rights Reserved. ASM Handbook Volume 11: Failure Analysis and Prevention (#06072G)

shrinkage porosity in fracture . . . . . . . . . . 608, 613 A356-T6 fatigue failure . . . . . . . . . . . . . . . . . . . . . . . . . . . 286–287 Wallner lines on fracture surfaces . . . . . 369, 370 A356-T61 hot tears . . . . . . . . . . . . . . . . . . . . . . . . . . .150–151, 152 A357-T6 repair welding effect on yield strength . . . . . .152 A360 composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .125 A380 composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .125 dimple size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 595, 597 microvoid coalescence . . . . . . . . . . . . . . . . . 593, 594 A383 composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .125 A384 composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .125 A413 composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .125 ductile fracture . . . . . . . . . . . . . . . . . . . . . . . . . 151–152 A2017 as substrate material for thermally sprayed coatings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .950 Al-Cu erosion rate in distilled water . . . . . . . . . . . . . . 1006 Al-2Cu erosion rate in distilled water . . . . . . . . . . . . . . 1006 Al-2Cu (PH) erosion rate in distilled water . . . . . . . . . . . . . . 1006 Al-4Cu erosion rate in distilled water . . . . . . . . . . . . . . 1006 stress-corrosion cracking . . . . . . . . . . . . . . . . . . . . .826 Al-4.2Cu dimpled intergranular fracture . . . . . . . . . 643, 644 Al-Mg erosion rate in distilled water . . . . . . . . . . . . . . 1006 Al-3Mg erosion rate in distilled water . . . . . . . . . . . . . . 1006 Al-4.4Mg alloy weldment incomplete fusion and inadequate penetration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .178 Al-5Mg erosion rate in distilled water . . . . . . . . . . . . . . 1006 Al-9Mg erosion rate in distilled water . . . . . . . . . . . . . . 1006 Al-6Zn erosion rate in distilled water . . . . . . . . . . . . . . 1006 B390 composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .125 LM6M (BS1490) tensile test results . . . . . . . . . . . . . . . . . . . . . . . . . . . . .153 Aluminum anodizing, for corrosion resistance . .759 Aluminum brasses galvanic series in seawater . . . . . . . . . . . . . . . . . . . . . .762 intergranular corrosion . . . . . . . . . . . . . . . . . . . . . . . . . .784 microbially-induced corrosion . . . . . . . . . . . . . . . . . .890 Aluminum bronze dealuminification . . . . . . . . . . . . . . . . . . . . .787–788, 789 environments subjecting alloy to selective leaching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .785 galvanic series in seawater . . . . . . . . . . . . . . . . . . . . . .762 Aluminum-killed steels . . . . . . . . . . . . . . . . . . . . . . . . . . .690 and intergranular fracture . . . . . . . . . . . . . . . . . . . . . . .646 Aluminum-lithium alloy, void nucleation without particle debonding . . . . . . . . . . . . . . . . . . . . . . . . .593 Aluminum-lithium alloy metal matrix composite, number density of processing defects . . . . 548, 549 Aluminum-magnesium alloys intergranular corrosion and stress-corrosion cracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .779 Lu¨ders lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .101 Aluminum-magnesium-zinc alloys dimpled intergranular fracture . . . . . . . . . . . . . . . . . .643 precipitate-free zone . . . . . . . . . . . . . . . . . . . . . . . . . . . .576 Aluminum nitride embrittlement cause in low-alloy steel castings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .145 inhibiting grain growth . . . . . . . . . . . . . . . . . . . . . . . . .218 segregation to grain boundaries . . . . . . . . . . . . . . . .353 Aluminum oxide, generated by aluminide intermetallics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .876

Aluminum oxide scale . . . . . . . . . . . . . . . . . . . . . . . . . . . .870 Aluminum oxide-titanium oxide (Al2O3-TiO3), as thermally sprayed coating material . . . . . . . .950 Aluminum pigmented coating . . . . . . . . . . . . . . . . . . .841 Aluminum-silicon alloys ductile microvoid coalescence fracture . . . 593, 594 second phases effects . . . . . . . . . . . . . . . . . . . . . . . . . . .118 Aluminum-zinc alloy coatings, for corrosion resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .759 Aluminum-zinc-magnesium alloy, fretting wear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .930 Aluminum-zinc-magnesium-copper alloys particles, effect on fracture path and fracture toughness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .564 precipitates, effect on fracture path and fracture toughness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .564 Ambient, definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1062 American Law Institute clarification of “unreasonably dangerous” . . . . . . . 72 defect definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 American Petroleum Institute (API). See also Standards and specifications, specific types. . . . . . . . . . . . . . . . . . . . . . . 251, 265, 266, 267 materials selection guide for hydrogen service at elevated temperatures . . . . . . . . . . . . . . . . . . . . . .816 American Railway Engineering and Maintenanceof-Way Association (AREMA) . . . . 978, 980 alloy 9260 B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 987, 988 specifications of sledge hammer heads . . . 978, 980 American Society for Testing and Materials (ASTM). See also Standards and specifications, specific types. Committee E-30 on forensic sciences . . . . . . . . . .327 Subcommittee E-30-05 on forensic engineering sciences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .327 American Society of Mechanical Engineers (ASME), Boiler and Pressure Vessel Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20, 48, 274 Amine cracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .839 Amines, stress-corrosion cracking . . . . . . . . . . 833, 839 Aminolysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .439 of polymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .439 Ammonia (NH3) bond energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .650 causing stress-corrosion cracking of carbon steel boiler downwind . . . . . . . . . . . . . . . . . . . . . . . . . . .405 as damaging substance in atmospheric environments for stress-corrosion cracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .832 environment for nitridation attack . . . . . . . . . . . . . .869 and stress-corrosion cracking 823, 824, 829, 831, 832, 833, 839, 853–856 Ammoniacal copper sulfate solution, stresscorrosion cracking . . . . . . . . . . . . . . . . . . . . . . . . .853 Ammonium bisulfite, as oxygen scavenger, and sulfate-reducing bacteria nutrient . . . . . . . . .885 Ammonium nitrate, and stress-corrosion cracking . . . . . . . . . . . . . . . . . . . . . . . . .828, 839, 841 Ammonium salts in aqueous solutions, causing stress-corrosion cracking in copper alloys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .831 Amorphous iron sulfide, as corrosion products in pipeline excavations and laboratory soil box tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .887 Amorphous polymers, chemical absorption . . . . .796 Amorphous resins glass transition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .441 thermogram of . . . . . . . . . . . . . . . . . . . . . . . . . . 443, 444 Amplitude, effect on cavitation erosion . . . . . . . . 1010 Amplitude of slip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .926 AMV. See Advanced mean value method. Anaerobic bacteria corrosion cell, schematic diagram . . . . . . . . . . . . . .882 pH potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .881 redox potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .881 Anaerobic methanogens . . . . . . . . . . . . . . . . . . . . . . . . . .889 Anaerobic microbially-induced corrosion corrosion products in pipeline excavations and laboratory soil box tests . . . . . . . . . . . . . . . . . . .887 corrosion rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .887 Analyzing of data . . . . . . . . . . . . . . . . . . . . . . . . . . . 334, 339 Anchor link, fatigue failure . . . . . . . . . . . . . . . . . 133–134 Anderson-Darling test . . . . . . . . . . . . . . . . . . . . . . . . . . . .253

www.asminternational.org

Index / 1093 Angle of contact, impact wear of ceramics . . . . . .969 Angle of impingement, of slurry particles 990–991 Angle of incidence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .518 Angular orientation distribution function . . . . . .545 Animation, computer-generated . . . . . . . . . . . . . . . . .379 Anisotropic material, elastic constants for . . . . . . .467 Anisotropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 and directionality effect in manufacturing . . . . . 615, 617 of fracture profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .542 of fracture surface . . . . . . . . . . . . . . . . . . . . . . . . . 545, 546 texture effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 680–681 Annealed steel, notch sensitivity vs. notch radius . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .278 Annealing twin, definition . . . . . . . . . . . . . . . . . . . . . . 1062 Annulus of slant fracture . . . . . . . . . . . . . . . . . . . . . . . .597 Anode, definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1062 Anodic corrosion inhibitors . . . . . . . . . . . . . . . . . . . . . .771 Anodic depolarization . . . . . . . . . . . . . . . . . . . . . . . . . . . .882 Anodic dissolution, of aluminum alloys . . . . 647, 648 Anodic dissolution (stress-corrosion cracking), controlling factors . . . . . . . . . . . . . . . . . . . . . . . . .811 Anodic hard coating, defects resulting from . . . . . . 81 Anodic inhibitors . . . . . . . . . . . . . . . . . . . . . . . . . . . 757–758 Anodic polarization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .882 Anodic protection . . . . . . . . . . . . . . . . . . . . . . . . . . . 755–757 to prevent stress-corrosion cracking . . . . . . . . . . . .838 Anodic reaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 749, 750 Anodizing to prevent fretting damage . . . . . . . . . . . . . . . . . . . . . .934 Anthropometrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 Antichills . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .119 to prevent hot cracks . . . . . . . . . . . . . . . . . . . . . . . . . . . .119 Antifriction bearings contact fatigue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 722–723 on nylon/polyethylene, wear failure . . . 1025, 1026 Antimony as alloying species in metal, causing accelerated cracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .831 as alloying species in metal, causing stresscorrosion cracking in copper alloys (in presence of aerated aqueous NH3) . . . . . . . .831 as alloying species in metal, causing stresscorrosion cracking in stainless steels (in presence of Cl–) . . . . . . . . . . . . . . . . . . . . . . . . . . . .831 content effect on temper embrittlement . . 691, 692 effect on rupture ductility . . . . . . . . . . . . . . . . . . . . . . .736 effect on time-to-fracture of copper by stresscorrosion cracking in ammoniacal atmosphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .853 as embrittling impurity in low-alloy steel castings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144, 145 as grain-boundary embrittler . . . . . . . . . . . . . . . . . . . .646 grain-boundary segregation and intergranular brittle fracture . . . . . . . . . . . . . . . . . . . . . . . . 643, 645 as ions in aqueous solutions, causing accelerated hydrogen entry . . . . . . . . . . . . . . . . . . . . . . . . . . . . .831 as ions in aqueous solutions, causing hydrogeninduced cracking . . . . . . . . . . . . . . . . . . . . . . . . . . .831 as ions in aqueous solutions, causing stresscorrosion cracking in high-strength steels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .831 as molten metal corrodent . . . . . . . . . . . . . . . . . . . . . .873 x-ray elemental composition map made with electron microprobe . . . . . . . . . . . . . . . . . . . . . . .865 Antimony compounds, as damaging substance in atmospheric environments for stress-corrosion cracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .832 Antioxidants, as additives to polymers . . . . 441, 798, 800, 801, 806 AOD. See Argon-oxygen decarburization refining process. “AOL” vertical testing apparatus, description of rolling contact fatigue test method . . . . . . . .944 APB. See Acid-producing bacteria. Aperture, in photography . . . . . . . . . . . . . . . . . . . . . . . . .421 API. See American Petroleum Institute. Apollo spacecraft, stress-corrosion cracking of pressure vessels . . . . . . . . . . . . . . . . . . . . . . 857–858 Apparent fracture toughness . . . . . . . . . . . . . . . . . . . .279 Appliance housings, environmental stress cracking of polycarbonate/PET . . . . . . . . . . .450–451, 453

© 2002 ASM International. All Rights Reserved. ASM Handbook Volume 11: Failure Analysis and Prevention (#06072G)

www.asminternational.org

1094 / Index

Application-life diagram . . . . . . . . . . . . . . . . . . . . . . . . 6, 8 effects of increasing the severity of the service condition of rotor blades . . . . . . . . . . . . . . .13, 15 effects of manufacturing-caused surface discontinuities on service life . . . . . . . . . . . . . . 13 Applied load, and real area of contact . . . . . . . . . . . .926 Applied stresses, analysis of . . . . . . . . . . . . . . . . 461–475 Applied torque . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .469 Appropriate task, definition in reliability-centered maintenance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 APS. See Air plasma spraying. Aqueous electrolytes, causing fretting wear . . . 930– 931 Aramid fibers (AF) as filler for nylon promoting wear resistance . . . . . . . . . . . . . . . . . . . . . . . . . . .1025–1026 in phenolic resin composites . . . . . . . . . . . 1022, 1023 for polymer reinforcement . . . . . . 1032, 1033–1034, 1038, 1039, 1040, 1041 Arc blow weldment inclusion cause . . . . . . . . . . . . . . . . . . . . . . .173 weldment porosity cause . . . . . . . . . . . . . . . . . . . . . . . .171 Arc burns (arc strikes), in weldments . . . . . . . . . . .169 Arc gouging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232–233 Archard-type wear law . . . . . . . . . . . . . . . . . . . . 971, 973 Arc strikes (arc burns) surface feature as cause for rejection . . . . . . . . . . .156 in weldments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .169 AREMA. See American Railway Engineers and Maintenance-of-Way Association. Argon, bond energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .650 Argon-oxygen decarburization (AOD) refining process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .780 Arrest lines (marks). See also Beach marks; Rib marks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .707 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1062 Arrhenius factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .300 Arsenic as alloying species in metal, causing accelerated cracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .831 as alloying species in metal, causing stresscorrosion cracking in copper alloys (in presence of aerated aqueous NH3) . . . . . . . .831 as alloying species in metal, causing stresscorrosion cracking in stainless steels (in presence of Cl–) . . . . . . . . . . . . . . . . . . . . . . . . . . . .831 content effect on temper embrittlement . . . . . . . .691 effect on rupture ductility . . . . . . . . . . . . . . . . . . . . . . .736 effect on time-to-fracture of copper by stresscorrosion cracking in ammoniacal atmosphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .853 as embrittling impurity in low-alloy steel castings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144, 145 as grain-boundary embrittler . . . . . . . . . . . . . . . . . . . .646 grain-boundary segregation and brittle fracture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 643, 645 as ions in aqueous solutions, causing accelerated hydrogen entry . . . . . . . . . . . . . . . . . . . . . . . . . . . . .831 as ions in aqueous solutions, causing hydrogeninduced cracking . . . . . . . . . . . . . . . . . . . . . . . . . . .831 as ions in aqueous solutions, causing stresscorrosion cracking in high-strength steels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .831 Arsenic compounds, as damaging substance in atmospheric environments for stress-corrosion cracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .832 Artifacts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .589 leading to false conclusions . . . . . . . . . . . . . . . . . . . .335 mud cracks, microscale fractographic implication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .560 tire tracks, microscale fractographic implication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .560 Artificial aging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .403 ASB. See Adiabatic shear band. As-cast products, segregation present . . . . . . 429, 430 Ashby deformation maps . . . . . . . . . . . . . . . . . . 684, 685 ASIP. See Aircraft Structural Integrity Program. ASME. See American Society of Mechanical Engineers. Aspect ratio and incomplete fusion and incomplete penetration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .178 of reinforcement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1036

Asperity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 408, 925 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1062 elastic deformation of . . . . . . . . . . . . . . . . . . . . . . . . . . .927 Asperity height, average . . . . . . . . . . . . . . .538, 542, 549 Asphaltic materials, as corrosion-resistant coatings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .758 Assembly, and tensile residual stresses . . . . . . . . . . .830 Assembly at factory/installation at site, manufacturing/installation anomalies . . . . . . 12 ASTM. See American Society for Testing and Materials. Atmosphere endothermic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .214 as stress-corrosion cracking cause . . .832, 833, 856 Atmosphere control, and distortion . . 201–202, 204, 205 Atomic-absorption spectroscopy . . . . .404, 413, 430 Atomic binding energies . . . . . . . . . . . . . . . . . . . 530, 531 Atomic force microscopy . . . . . . . . . . . . . .539, 551, 561 as fractography technique . . . . . . . . . . . . . . . . . . . . . . .662 for three-dimensional surface maps . . . . . . . . . . . .565 Atomic number contrast, by scanning electron microscope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .499 ATP. See Adenosine triphosphate. ATR. See Attenuated total reflectance. Attenuated total reflectance (ATR) . . . . . . . . . . . . .438 property derived from polymer analysis . . . . . . . .359 Attenuation stage, of cavitation erosion . . . . . . .1004, 1006, 1007 Auger analysis to detect intergranular fracture . . . . . . . . . . . . . . . . . .401 of hydrogen embrittlement . . . . . . . . . . . . . . . . . . . . . .431 for impurity presence detection . . . . . . . . . . . . . . . . .820 Auger electron . . . . . . . . . . . . . . . . . . . . . . . . .357, 529, 530 Auger electron peaks . . . . . . . . . . . . . . . . . . . . . . . . . . . . .529 Auger electron spectrometer . . . . . . . . . . . . . . . . . . . .404 Auger-electron spectrometry, of corrosion products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .406 Auger electron spectroscopy (AES) . . . . . . 357, 358, 527, 528, 529–530 adapted to running conducting and semiconducting material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 529, 530 analysis depth and area . . . . . . . . . . . . . . . . . . . . . . . . .527 atomic concentrations 1.5 nm sputter removed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .532 detection limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .527 ease of use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .527 features of technique . . . . . . . . . . . . . . . . . . . . . . . . . . . .527 information evaluated . . . . . . . . . . . . . . . . . . . . . . . . . . .527 of inorganic insulating materials . . . . . . . . . . . . . . . .530 of intergranular fracture surfaces . . . . . . . . . 644–645 map of calcium contamination on stainless steel surface . . . . . . . . . . . . . . . . . . . . . . . . . .528, 530, 534 properties measured . . . . . . . . . . . . . . . . . . . . . . . . . . . . .446 property derived from polymer analysis . . . . . . . .359 of solid metal induced embrittlement . . . . . . . . . . .862 of stainless steel sample, SEM surface photo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 528, 534 to study intergranular brittle fracture in pure iron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .643 for submicrometer particle analysis . . . . . . . . . . . .530 surface contaminants . . . . . . . . . . . . . . . . . . . . . . . . . . . .528 survey spectrum of stainless steel . . .528, 530, 534 use in failure analysis . . . . . . . . . . . . . . . . . . . . . . . . . . .446 Auger line scans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .530 Auger maps . . . . . . . . . . . . . . . . . . . . . . 528, 529, 530, 534 Auger microscope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .561 Austempering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212–213 and distortion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .207 and overload failure . . . . . . . . . . . . . . . . . . . . . . . . . . . . .681 Austenite . . . . . . . . . . . . . . . . . . . . . . . . . 192, 193, 194, 195 atomic volume of ferrous alloys . . . . . . . . . . . . . . . .194 crystal structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .193 untransformed, volume of . . . . . . . . . . . . . . . . . . . . . .211 volume changes of carbon steels due to phase transformation . . . . . . . . . . . . . . . . . . . . . . . 194, 195 Austenitic alloys, creep onset temperature . . . . . . .729 Austenitic manganese steel brittle fracture of cast chain link . . . . .146–147, 148 casting defects . . . . . . . . . . . . . . . . . . 146–147, 148, 149 microstructure, epsilon martensite with decarburization . . . . . . . . . . . . . . . . . . . . . . 509, 510 Austenitic nickel cast irons cavitation erosion in seawater . . . . . . . . . . . . . . . . . .793

galvanic series in seawater . . . . . . . . . . . . . . . . . . . . . .762 Austenitization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201, 204 effect on grain size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .219 of entire hammer head . . . . . . . . . . . . . . . . . . . . . . . . . .978 optimal time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .201 powder metallurgy die of tool steel . . . . . . 510, 511 of tool steel punch, heat treatment failure . . . . . 509, 510 of tool steel roll, heat treatment failure . . .509–510, 511 Austenitizing temperature . . . . . . 192, 193, 201, 204 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .192 and heat-treatment-related failure . . . . . . . . . 510–511 indicating heat treatment effect on grain size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .217–218, 219 and overaustenitized tool steel . . . . . . . . . . . . 510, 511 and quench cracking . . . . . . . . . . . . . . . . . . . . . . 201, 204 Autocatalytic corrosion cells . . . . . . . . . . . . . . . . . . . . .769 Autographic drafting methods . . . . . . . . . . . . . . . . . . . 29 Automatic digital image analysis . . . . . . . . . . . . . . . .539 Automotive sleeves, embrittlement of PBT resin . . . . . . . . . . . . . . . . . . . . . . . 448–449, 451, 452 Automotive valve spring, distortion failure . . . . . . . . . . . . . . . . . . .1050–1051 Auto-oxidative cross-linked resins, as corrosionresistant coatings . . . . . . . . . . . . . . . . . . . . . . . . . . .758 AutoSteve computer simulation system, failure modes and effects analysis . . . . . . . . . . . . . . . . . 58 Availability, effect on materials selections . . . . 33–34 Average lineal vertical section profile roughness parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .550 Average normal stress, definition . . . . . . . . . . 461–462 Average shear stress, definition . . . . . . . . . . . . . . . . . .462 Average true striation spacing along global crack growth direction . . . . . . . . . . . . . . . . . . . . . . . . . .551 Average value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .252 Axial, definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1062 Axial compression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .469 Axial distance, measurement to determine fretting wear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .932 Axial shrinkage, as casting defect . . . . . . . . . . . . . . . .106 Axial strain. See also Shear strain. definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1062 Axial stress distribution beneath notch root of notched-bar specimen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .597 and smearing of fracture surface . . . . . . . . . 607, 610 of thin-walled pressure vessels . . . . . . . . . . . . . . . . .471 Axisymmetric threaded connection . . . . . . . . . . . . .383 Axle fatigue failure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .562 rear, of automobiles, load conditions . . . . . . . . . . .710 Axle housing, fatigue fracture . . . . . . . . . . . . . . . . . . . .119

B Babbitt metal copper precipitation of bearings in locomotive axle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .366–367, 368 lining of bronze cylinder of friction bearing of locomotive drive axle, overheating . . 335–336 liquid metal induced embrittlement . . . . . . . 865, 866 Background data assembly, in failure analysis . . . . . . . . . . . . . . . . . . . . . . . . .333, 334–335 Backing bar, unspliced, hydrogen cracking . . . . . .183 Backing piece left on, surface feature as cause for rejection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .156 Backofen equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .623 Backofen’s model for fracture from holes . . . . . .592 Backscattered electron imaging . . . . . . . . . . . . . . . . .432 Backscattered electrons (BSE) . . . . . . . . . . . . 518–519 Backscatter electron mode . . . . . . . . . . . . . . . . . . . . . . .432 Backup subsystems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 Bacterial numbers (acid-producing bacteria), factors correlating with sulfate-reducing bacteria (SRB) numbers for buried pipeline sites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .886 Baddeleyite formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .877 melting point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .877

© 2002 ASM International. All Rights Reserved. ASM Handbook Volume 11: Failure Analysis and Prevention (#06072G)

Bainite in bands with tempered martensite . . . . . . . 219, 220 lower, formation at quenching . . . . . . . . . . . . . . . . . .207 lower, in high-temperature transformation products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .215 nonuniform quenching effects after tempering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208, 210 as transformational product in steel . . . . . 192, 195, 196 upper, formation at quenching . . . . . . . . . . . . . . . . . .207 upper, in high-temperature transformation products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .215 Bakelite, for mounting metallographic specimens . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .502 Ballistic impact wear apparatus . . . . . . . . . . . . . . . . .970 Ball-on-ring flexure test . . . . . . . . . . . . . . . . . . . . . . . . . .666 Ball-peen hammers, spalling analysis . . . . . .975–978, 983, 986 Ball-rod testing apparatus (Federal-Mogul), description of rolling contact fatigue test method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .944 Banded structure, definition . . . . . . . . . . . . . . . . . . . 1062 Banding . . . . . . . . . . . . . . . . . . . . .219, 582, 584, 612, 681 with chemical segregation in ingots . . . . . . . . . 83–84 effect on fatigue strength . . . . . . . . . . . . . . . . . . . . . . .720 and hydrogen embrittlement . . . . . . . . . . . . . . . . . . . .815 Band width, crack-growth . . . . . . . . . . . . . . . . . . . . . . .660 Bar forging defect, pipe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 seam defect in rolled bar forging . . . . . . . . . . . .93, 94 Barker v Lull (California Supreme Court decision) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 “Barn door” characteristic . . . . . . . . . . . . . . . . . . . . . . . 65 Barreling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .603, 604, 622 Base material ceramics, analysis of . . . . . . . . . . . . . . . . . . . . . . . . . . . .359 intermetallics, analysis of . . . . . . . . . . . . . . . . . . . . . . .359 metals, analysis of . . . . . . . . . . . . . . . . . . . . . . . . 358–359 polymers, analysis of . . . . . . . . . . . . . . . . . . . . . 358, 359 Basicity/acidity ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . .801 Basic refractories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .800 Batch quench system, nonuniform quenching . . 208, 210 Bates-Clark approximation . . . . . . . . . . . . . . . . 584–585 Batteries, prevention approach for corrosion in industrial facilities . . . . . . . . . . . . . . . . . . . . . . . . .893 Bauschinger effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .689 bcc. See Body-centered cubic materials. BEA. See Boundary-element analysis. Beach marks. See also Arrest lines; Rib marks. . . . . 337, 352, 397, 480–481, 579–580, 581, 628, 629, 633 absent in rotating bending test of axle . . . . . . . . . .627 in casting fracture . . . . . . . . . . . . . . . . . . . . . . . . . 608, 613 characteristic of many fatigue-fracture surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .633 characteristic patterns in cylindrical components . . . . . . . . . . . . . . . . . . . . . . . . . . 632, 633 and cold shut in truck equalizer beams . . . 122, 123 in corrosion-fatigue fractures of wires . . . . 774–775 vs. crack arrest lines . . . . . . . . . . . . . . . . . . . . . . . . . . . .568 curvature direction . . . . . . . . . . . . . . . . . . . . . . . . 631, 633 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1062 on ductile iron stuffing box . . . . . . . . . .136–137, 138 and fatigue crack propagation . . . . . . 707, 710, 711, 712, 713 as fatigue damage mode . . . . . . . . . . . . . . . . . . . . . . . .344 in fatigue fracture . . .175, 176, 177, 576, 577, 627, 718 formation aided by corrosion . . . . . . . . . . . . . . . . . . .635 in fractured connecting end of steel rod . . . . .85, 86 with galvanic corrosion of helicopter tail rotor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .766 identifying fracture origins . . . . . . . . . . . . . . . 631, 633 indicative of fatigue . . . . . . . . . . . . . . . . . . . . . . . . . . . . .559 at intermediate stress intensity range . . . . . . . . . . .579 linked to component service history . . . . . . . . . . . .633 not caused by fatigue . . . . . . . . . . . . . . . . . . . . . 634, 635 from oxidation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 707, 708 on polymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .368 presence and visibility . . . . . . . . . . . . . . . . . . . . . . . . . .561 from reversed bending fatigue . . . . . . . . . . . . 630, 633 sources for . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .579

stress concentration effect . . . . . . . . . . . . . . . . . . . . . .716 from stress-corrosion cracking . . . . . . .631, 633, 708 from torsional stresses . . . . . . . . . . . . . . . . . . . . . . . . . .714 in welded cast steel crosshead of industrial compressor . . . . . . . . . . . . . . . . . . . . . . . . . . . 153, 154 Bead reinforcement, surface feature as cause for rejection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .156 Bead strings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .615 Beam analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .380 Beams curved, stresses on . . . . . . . . . . . . . . . . . . . . . . . . 470–471 internal forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 469–470 loading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 469–470 round, stress analysis . . . . . . . . . . . . . . . . . . . . . . . . . . .474 stress analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 469–471 Beam shear stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .470 Bearing life . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .945 Bearing raceway contact fatigue macropitted . . . . . . . . . . . . . . . . . . . . .724 fatigue spall in rolling-element bearings . . . . . . .941 Bearings antifriction, contact fatigue in . . . . . . . . . . . . 722–723 cavitation erosion . . . . . . . . . . . . . . . .1003, 1004, 1007 electrical discharge and arcing . . . . . . . . . . . . . . . . . .352 life prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .945 liquid metal induced embrittlement . . . . . . . 865, 866 wear damage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 356–357 Beggiatoa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .890 Bell-and-spigot joints, aqueduct weldment failures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .169 Belleville washers, distortion failure of stainless steels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1052 Bending alternating (reversed) . . . . . . . . . . . . . . . . . . . . . 711–712 of ceramics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 666–667 as damage mechanism on failure wheel . . . . . . . .349 reversed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .712 rotational . . . . . . . . . . . . . . . . . . . . . . . . . . . . .712–713, 714 unidirectional . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 710–711 Bending failures, in fractures . . . .604–606, 608, 609, 610 Bending fatigue strength, of ground surfaces . . .221 Bending loading, initiation sites . . . . . . . . . . . . . . . . . . . 82 Bending moment, of beam . . . . . . . . . . . . . . . . . 469–470 Bending stresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .474 Bend tests, to locate fracture origin . . . . . . . . . . . . . .662 Bent annealing twins . . . . . . . . . . . . . . . . . . . . . . . . . . . . .561 and plastic deformation . . . . . . . . . . . . . . . . . . . 569, 570 Benzene, and stress-corrosion cracking . . . . . . . . . . .859 Benzotriazole, as corrosion inhibitor . . . . . . . . . . . . .853 Berg-Gurson model . . . . . . . . . . . . . . . . . . . . . . . . 623–624 Beryllium cleavage plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .574 galvanic series in seawater . . . . . . . . . . . . . . . . . . . . . .762 workability behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 Beryllium alloys, corrosion resistance to microbially-induced corrosion . . . . . . . . . . . . .893 Best-replacement-interval algorithms . . . . . . . . . . . . 69 Beta-CoAl coatings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .876 Beta distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .253 Beta factors . . . . . . . . . . . . . . . . . . . . . . . . . . . .239, 276, 285 and crack geometry . . . . . . . . . . . . . . . . . . . . . . . 279–280 Beta-FeAl coatings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .876 Beta-NiAl coatings . . . . . . . . . . . . . . . . . . . . . . . . . . 876–877 Bevel-groove welds, vs. fillet welds . . . . . . . . 162, 163 Biaxial flexure, magnesium fluoride disks 662, 663 Biaxial stress ratios, permitting no necking local or diffuse necking . . . . . . . . . . . . . . . . . . . . . . . . . . . .621 Biaxial tension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .465 Bicycle handlebar stem, fatigue fracture . . . . 13, 14, 15 Bifurcation. See also Crack bifurcation. definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1062 Binding energies . . . . . . . . . . . . . . . . . . . . . . .530, 531, 535 Binocular stereo microscopy, for macroscopic examination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .353 Binomial distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . .260 Bins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .260 Biocides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .894 to prevent and control microbially-induced corrosion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .894 targeted . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 885, 886 Biodegradation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .881

www.asminternational.org

Index / 1095 Biofouling. See also Biological corrosion. . . . . . . . 751, 768, 791, 834, 881–894 copper-base alloys resistant to . . . . . . . . . . . . . . . . . .890 Biological assays, to analyze microbially-induced corrosion deposits . . . . . . . . . . . . . . . . . . . . . . . . .892 Biological corrosion. See also Biofouling; Microbially induced or influenced corrosion. . . . . . . . . . . . . 751, 768, 791, 881–894 and hydrostatic testing environment . . . . . . . . . . . .834 Biomass, method used for inspection, growth and activity assays . . . . . . . . . . . . . . . . . . . . . . . . . . . . .893 Biot number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .214 Bird-strike testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .325 Biscuit, in pressure die castings . . . . . . . . . . . . . . . . . . .126 Bismuth as alloying species in metal, causing accelerated cracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .831 as alloying species in metal, causing stresscorrosion cracking in copper alloys (in presence of aerated aqueous NH3) . . . . . . . .831 as alloying species in metal, causing stresscorrosion cracking in stainless steels (in presence of Cl–) . . . . . . . . . . . . . . . . . . . . . . . . . . . .831 cleavage fracture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .589 as embrittling agent . . . . . . . . . . . . . . . . . . . . . . . 691, 862 as ions in aqueous solutions, causing accelerated hydrogen entry in high-strength steels . . . .831 as ions in aqueous solutions, causing hydrogeninduced cracking in high-strength steels . .831 as ions in aqueous solutions, causing stresscorrosion cracking in high-strength steels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .831 liquid, environment causing stress-corrosion cracking of nickel and nickel-base alloys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .848 as molten metal corrodent . . . . . . . . . . . . . . . . . . . . . .873 Bitmap digital camera file format . . . . . . . . . . . . . . .420 Bituminous resins, as corrosion-resistant coatings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .758 Black, finely divided iron (II) sulfides, as corrosion products in pipeline excavations and laboratory soil box tests . . . . . . . . . . . . . . . . . . .887 Blacking inclusions, as casting defect . . . . . . . . . . . .111 Blacking scab, as casting defect . . . . . . . . . . . . . . . . . .109 Black refractories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .800 Black spots, as casting defect . . . . . . . . . . . . . . . . . . . . .112 Blade alloys, microstructure . . . . . . . . . . . . . . . . . . . . . .739 Blind shrinkage, as casting defect . . . . . . . . . . . . . . . .106 Blistering. See also Fisheyes. . . . . . . . . . . . . . . . 695, 696 of aluminum alloys . . . . . . . . . . . . . . . . . . . . . . . . . . . . .647 as discontinuity in semisolid casting . . . . . 127, 131 as flaw in rolled bars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 of forgings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 hydrogen-induced . . . . . . . . . . . . . . . . . . . .814–815, 816 in ingots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .83, 87, 90 microbial involvement . . . . . . . . . . . . . . . . . . . . . . . . . .884 of pressure die castings . . . . . . . . . . . . . . . . . . . . . . . . .127 in squeeze casting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .130 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 Blocksim (computer software program) . . . . . . . .267 Block tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .701 Block-type stress spectrum . . . . . . . . . . . . . . . . 280, 281 Blocky ferrite, and distortion failure of gas-nitrided drive-gear assembly . . . . . . . . . . . . . . . . . . . . . 1055 “Blood” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .922 Blowholes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 adjacent to inserts, chills, chaplets, etc., as casting defect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .106 in corner as casting defect . . . . . . . . . . . . . . . . . . . . . .106 in malleable irons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .140 slag, as casting defect . . . . . . . . . . . . . . . . . . . . . . . . . . .106 in weldments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171, 187 Blow molding extrusion compatibility with various materials . . 33 injection compatibility with various materials . . 33 Blue brittleness causes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .690 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1062 effect in ferrous alloys . . . . . . . . . . . . . . . . . . . . . . . . . .690 effect on overload failures . . . . . . . . . . . . . . . . 690–691 steels susceptible . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .690 temperature for weldments . . . . . . . . . . . . . . . . . . . . .161

© 2002 ASM International. All Rights Reserved. ASM Handbook Volume 11: Failure Analysis and Prevention (#06072G)

www.asminternational.org

1096 / Index

Body-centered-cubic (bcc) materials cracking by a ductile mechanism . . . . . . . . . . . . . . .611 deformation behavior (Ashby) maps . . . . . 684, 685 deformation twinning . . . . . . . . . . . . . . . . . . . . . . . . . . .589 ductile-to-brittle transition . . . . . . . . . . . . . . . . . . . . . .684 ductility reduction in ductile-brittle transition temperature region . . . . . . . . . . . . . . . . . . . . . . . . .599 flow strength . . . . . . . . . . . . . . . . . . . . . . . . . . . .1049–1050 hydrogen embrittlement and intergranular fractures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .647 overload failures . . . . . . . . . . . . . . . . . . . . .678–679, 680 temperature effect on toughness and ductility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 684, 685 tongues and deformation twinning . . . . . . . . . . . . .590 yield strength vs. temperature . . . . . . . . . . . . . . . . . .569 Boiler feedwater tubes, uniform corrosion . . . . . .768 Boiler plate, creep-induced rupture . . . . . . . . . 733, 735 Boiler tubes corrosion fatigue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .634 damage mechanisms (EPRI) . . . . . . . . . . . . . . . . . . . .347 damage mechanisms failure wheel . . . . . . . 349, 350 life assessments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .305 maximum metal temperatures for materials . . . 304, 305 pitting damage mechanism . . . . . . . . . . . . . . . 343–344 pitting damage mode . . . . . . . . . . . . . . . . . . . . . . . . . . . .344 Boiler waterwall, damage mechanisms . . . . 347, 348 Boil scab, as casting defect . . . . . . . . . . . . . . . . . . . . . . .109 Bolted joints, crevice corrosion . . . . . . . . . . . . . . . . . . .775 Bolt hole, brittle fracture by, steel grain storage bin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .616, 618, 619 Bolts from diesel engine connecting rod, stress-corrosion cracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .352 fatigue fracture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 631, 633 root-cause analysis of failure . . . . . . . . . . . . . . . . . . . . . 6 unidirectional fatigue fracture . . . . . . . . . . . . . . . . . .711 Bonding between atoms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .568 effect on overload failures . . . . . . . . . . . . . . . . 678–679 Bonds, covalent, and thermal degradation . . 797, 798 Bone screw, gas porosity failure . . . . . . . . . . . . 115, 116 Borax-nitrite, as inhibitor . . . . . . . . . . . . . . . . . . . . . . . .757 Borescope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .421 Boron as addition to nickel aluminide coatings . . . . . . .878 content effect on stress-relief embrittlement . . .691 Boron-carbide-reinforced aluminum composites, microbially-induced corrosion . . . . . . . . . . . . .891 Boron-containing alloy, torsional fatigue failure of coil springs . . . . . . . . . . . . . . . . . . . . . . . . . . . 630, 633 Boron nitride (BN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .800 formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .877 hot pressed, corrosion resistance to fused salts, alkalis, and low-melting oxides . . . . . . . . . . .805 hot pressed, corrosion resistance to various hot gases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .805 melting point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .877 refractoriness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .805 Boroscopic examination . . . . . . . . . . . . . . . . . . . . . . . . . .345 Boudouard reaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .869 Boundary-element analysis (BEA) . . . . . . . . . . . . . .461 Bounding methods . . . . . . . . . . . . . . . . . . . . . . . . . . 262–263 Box-Behnken design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .258 Box counting method . . . . . . . . . . . . . . . . . . . . . . . . . . . . .544 Brace, elevated temperature failure . . . . . . . . . . . . . . .320 Brackets brittle overload fracture of cast steel . . . . . 683–684 embrittlement of polycarbonate . . . . . . . . . . . 446, 447 Bragg’s law, to calculate d-spacing . . . . . . . . . . . . . . .484 Brainstorming, in failure investigation . . . 326, 327 Brake design of low-loading trailer . . . . . . . . . . . . . . 46 Branching. See also Stress-corrosion cracking, branching. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .875 of fracture surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .664 Brasses. See also Copper alloys. corrosion resistance to microbially-induced corrosion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .890 dezincification, and chemical analysis . . . . . . . . . .430 environments subjecting alloy to selective leaching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .785 intergranular stress-corrosion cracking . . . 521, 524 mercury-induced embrittlement . . . . . . . . . . 864–865 microbially-induced corrosion . . . . . . . . . . . . . . . . . .890

as molten metal corrodent . . . . . . . . . . . . . . . . . . . . . .873 stress-corrosion cracking . . . . . . 823, 825, 832, 835, 836, 837, 853, 854, 875 stress-corrosion cracking due to microbiallyinduced corrosion, in condenser . . . . . . . . . . .887 Breach of warranty, as legal theory for products liability lawsuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 Breakage (cold), as casting defect . . . . . . . . . . . . . . . .107 Breaking stress. See Rupture stress. Break wave markings, not caused by fatigue . . . .635 Bright-field illumination, of light microscope fractographs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .499 Brinell hardness number (HB) definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1062 of quenched and tempered low-alloy steel . . . . .980 Brinell hardness test, definition . . . . . . . . . . . . . . . . 1062 Brinelling. See also False brinelling. definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1062 failures by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 Brine tank, crevice corrosion . . . . . . . . . . . . . . . . . . . . .776 British Standards Institute (BSI). See Standards and specifications, specific types. Brittle, definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1062 Brittle alloys, angle of impact in corrosive wear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .991 Brittle cleavage, as pleonasm . . . . . . . . . . . . . . . . . . . . . . 5 Brittle crack propagation, definition . . . . . . . . . . 1062 Brittle erosion behavior, definition . . . . . . . . . . . . 1062 Brittle fracture . . . . . . . . . . . . . . . . . . . . . . . . 17, 18, 19, 20 abnormal conditions present . . . . . . . . . . . . . . . . . . . .394 aircraft F-111 wing box of high-strength steel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228, 231 of alloy steel ski chair lift grip components . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10, 11 of austenitic manganese steel chain link . . . . . . . . . . . . . . . . . . . . . . .146–147, 148 bending failure . . . . . . . . . . . . 604–606, 608, 609, 610 by bolt hole in grain storage bin . . . . .616, 618, 619 brackets of cast steel . . . . . . . . . . . . . . . . . . . . . . 683–684 of cast materials . . . . . . . . . . . . . . . . 608, 612, 613, 614 of ceramics due to processing defects . . . . 669–670 cleavage as mechanism . . . . . . . . . . . . . . . . . . . . . . . . .587 compression failure . . . . . . . . . . . . . . . . . . . . . . . . . . . . .604 of cone-crusher frame of cast iron . . . . . . . . 682–683 cylindrical specimens in tension . . . . .598, 601, 602 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1062 distinguishing characteristics at different scales of observation . . . . . . . . . . . . . . . . . . . . . . . . . . . 671, 672 distinguishing characteristics by scale of observation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .672 energy expenditure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .565 fast, with spalling of forged roll . . . . . . . . . . 629, 632 gas turbine hot-gas casing of stainless steel . . . 363, 364 glass plate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .662 glass, rod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .664 glazed porcelain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .670 high-manganese carbon steel lawn mower blades . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 681, 682 on hoop plane of pressure vessel . . . . . . . . . . . . . . .471 initiation and propagation, microscale details . . . . . . . . . . . . . . . . . . . . . 611–613, 616, 617 initiation site and roughness consideration . . . . . . . . . . . . . . . . . . . . . . . . . 562–563 intergranular . . . . . . . . . . . . . . . . . . . . . . . . . .522, 675–677 of jacket for transportation assemblies of PET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 451–453 by light microscopy . . . . . . . . . . . . . . . . . . . . . . . 498, 499 linear elastic fracture mechanics design approach for avoiding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .230 loading types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 in low-carbon steel, microstructure . . . . . . . 498, 499 macroscale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .559 macroscale and microscale appearances . . . . 598–609, 610, 611, 612, 613 macroscopic fracture surfaces . . . . . . . . . . . . 566–568 manganese bronze worm gear . . . . . . . . . . . . . . . . . .676 from manufacturing imperfections 613–616, 617, 618, 619 material properties related to . . . . . . . . . . . . . . . . . . . . 36 material selection criteria . . . . . . . . . . . . . . . . . . . . . . . . 35 metallographic examination . . . . . . . . . . . . . . . . . . . .402 microscale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .559

mild carbon steel . . . . . . . . . . . . . . . . . . . . . . . . . . 521, 523 as mode of fracture . . . . . . . . . . . . . . . . . . . . . . . 400–401 molasses tank failures . . . . . . . . . . . . . . . .228, 229, 230 nickel-plated carbon steel . . . . . . . . . . . . . . . . . 499, 500 notched specimens . . . . . . . . . . . . . . . . . . .602–603, 607 of nylon hinges . . . . . . . . . . . . . . . . . . . . . . . . . . . . 457–459 operating temperatures . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 overload failures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .674 of polyacetal latch assemblies . . . . . . . . . . . . 454–456 polycarbonate electrical switch housing . . . . . . 456– 457, 458 of polyethylene gas pipe . . . . . . . . . . . . . . . . . . . . . . . .659 in polymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 656–657 polyvinyl chloride water-filter housing . . . . . . . . .660 pressure vessels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .181 pressurized cylindrical section . . . . . . . . . . . . . . . . . .475 prismatic specimens in tension . . . . . 601–603, 605, 606, 607 rail car couplers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .349 reduction in area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .565 round beam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .474 silicon nitride rod . . . . . . . . . . . . . . . . . . . . . . . . . 666–667 soda-lime glass . . . . . . . . . . . . . . . . . . . . . . . . . . . . 521, 523 steel plate from oil storage tank . . . . . . . . . . 352–353 of steel pump impeller from nuclear plant . . . . 152, 153 steel shaft . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352, 353 steel, with manganese sulfide inclusions . . . .89, 91 near stress raisers . . . . . . . . . . . . . . 609–611, 614, 615 stress types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 structural steel ships . . . . . . . . . . . . . . . . . . . . . . 685–686 temper-embrittled steel . . . . . . . . . . . . . . . . . . . . . . . . . .522 “thick-lipped” (macroscale) . . . . . . . . . . . . . . . . . . . . .471 of tool steel medical device . . . . . . . . . . . . . . . 677, 678 torsion loading . . . . . . . . . . . . . . . . . 606–608, 610, 611 transgranular . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .522 triggered by incomplete fusion and inadequate penetration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .178 unnotched specimens . . . . 599, 600, 601–602, 606, 607 of valve seats of resulfurized steel . . . . . . . . . . . . .677 welded cooling tower pipe of steel . . . . . . . 168–169 of welded crosshead of industrial compressor . . . . . . . . . . . . . . . . . . . . . . . . . . . 153–154 welded elbow assembly of stainless steel . . . . . . . . . . . . . . . . . . . . . . . . 163–164 welded gas-turbine inner-combustion-chamber case assembly of nickel-base alloy . . 164, 165 welded headers for superheated water, steel pipes and elbows . . . . . . . . . . . . . . . . . . . . . . . . . . . 165–166 of welded steel . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178, 180 of welded steel shaft for amusement ride . . . . . . . . . . . . . . . . .175–176, 177 welded water-wall tube of steel . . . . . . . . . . . 176, 177 weldment of direct-current motor armature . . . 181, 182 weldment of steel railway tank car . . . . . . . . . . . . .161 of weldments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158, 161 Brittle materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 erosive wear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 995, 997 failure criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .473 loaded in pure compression . . . . . . . . . . . . . . . . . . . . .469 tensile loading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .468 in torsion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .469 Brittleness, definition . . . . . . . . . . . . . . . . . . . . . . . . . . . 1062 Brittle overload characteristics of failure mode . . . . . . . . . . . . . . . . . .345 examination methods . . . . . . . . . . . . . . . . . . . . . . . . . . .345 examination methods used and surface magnification possible . . . . . . . . . . . . . . . . . . . . .672 Brittle overload failures . . . . . . . . . . . . . . . . . . . . . . . . . .674 of zinc alloy snowthrower adapters . . . . . . . . . . . .683 Brittle overload fracture . . . . . . . . . . . . . . . . . . . 579, 581 of cast iron cone-crusher frame . . . . . . . . . . . 682–683 Brittle striations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 708, 709 Brittle structure, as defect resulting from heat treatment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 Brittle-to-ductile fracture transition . . . . . . 612, 616 Brittle torsion fracture . . . . . . . . . . . . . . . . . . . . . 561, 562 Brittle transgranular fracture. See also Cleavage fracture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 572–574 Bromide ions, stress-corrosion cracking . . . . . . . . . .857

© 2002 ASM International. All Rights Reserved. ASM Handbook Volume 11: Failure Analysis and Prevention (#06072G)

Bronze. See also Copper alloys. corrosion resistance to microbially-induced corrosion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .890 fretting damage on steel . . . . . . . . . . . . . . . . . . . . . . . .933 liquid metal induced embrittlement . . . . . .862, 864– 865 maximum erosion rate dependence in cavitation erosion on combined parameter . . . . . . . . . 1016 mercury induced liquid metal embrittlement . . 862, 864–865 as molten metal corrodent . . . . . . . . . . . . . . . . . . . . . .873 BSE. See Backscattered electrons. Bubbles, in ceramics . . . . . . . . . . . . . . . . . . .665, 669, 670 Buckle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .101 as casting defects . . . . . . . . . . . . . . . . . . . . . . . . . 108, 120 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .104, 1062 from mold-wall deficiencies . . . . . . . . . . . . . . . . . . . .119 Buckling . . . . . . . . . . . . . . . . . . . . .343, 347, 559, 603, 689 with bending failure . . . . . . . . . . . . . . . . . . . . . . . . . . . . .605 causing service failures of welds . . . . . . . . . . . . . . .156 as damage mechanism . . . . . . . . . . . . . . . . . . . . . . . . . .349 as damage mechanism on failure wheel . . . . . . . .349 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1062 in distortion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1048 loading types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 material properties related to . . . . . . . . . . . . . . . . . . . . 36 material selection criteria . . . . . . . . . . . . . . . . . . . . . . . . 35 operating temperatures . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 of sheet metal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100–101 stress types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 and waves of detachment in elastomers . . . . . . 1022 Bulging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .603 Bulk failure, as rolling contact fatigue failure mode of thermal spray cermet and ceramic coatings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .951 Bulk forming, cracking . . . . . . . . . . . . . . . . . 99–100, 101 Bulk materials, chemical analysis for verification . . . . . . . . . . . . . . . . . . . . . . . . . . 429–432 Bulk modulus. See Bulk modulus of elasticity. Bulk modulus of elasticity (K), definition . . . . . . . . . . . . . . . . . . . . . . . . . . .1062–1063 Bulk working . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .96, 97 cracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99–100, 101 Bull’s-eye ferrite . . . . . . . . . . . . . . . . . . . . . . . . . . . . 677, 682 Bump check. See Percussion cone. Burner cans for gas turbine engines elevated temperatures for applications . . . . . . . . .729 materials used . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .729 Burn in, as casting defect . . . . . . . . . . . . . . . . . . . . . . . . .108 Burning. See also Grain-boundary liquation; Overheating. . . . . . . . . . . . . . . . . . . . .201, 204, 720 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .201, 1063 effect on overload failures . . . . . . . . . . . . . . . . . . . . . .695 of forgings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .92, 96 of grain boundaries, as defect resulting from heat treatment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 and intergranular fracture of steels . . . . . . . . . . . . .646 Burnishing, and distortion failure of spool-type hydraulic valve . . . . . . . . . . . . . . . . . . . . . . . . . . 1053 Burn on, as casting defect . . . . . . . . . . . . . . . . . . . . . . . .108 Burn-through, in weldments . . . . . . . . . . . . . . . . . . . . .170 Burrs, in nodular iron . . . . . . . . . . . . . . . . . . . . . . . 139, 140 Bursts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 central, in forgings . . . . . . . . . . . . . . . . . . . . . . .93–94, 95 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .190 as discontinuity for forgings . . . . . . . . . . . . . . . . . . . . . . 9 in forgings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .91, 94, 95 in ingots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 internal, in forgings . . . . . . . . . . . . . . . . . . . . . . . . . . 93–94 as root cause of forgings defects, rationale, resolution, and corrective action . . . 327, 329, 330, 331 in weldments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .190 Bushings, quenching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .207 Butterfly bruise. See Percussion cone. Butterfly valve, failure in manufacturing plant cooling water system . . . . . . . . . . . . . . . . . . . . . . . . 5 Butterfly wings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .943 “Butter” repair technique . . . . . . . . . . . . . . . . . . . . . . .181 Butt joints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .161–162, 164 Butt welds, weldment porosity . . . . . . . . . . . . . . . . . . .172 Butyl rubber as sealant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 wear resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1022

C CAA. See Corrective Action Assessment chart. CAD. See Computer-aided design. Cadmium causing liquid metal induced embrittlement . . . 863, 864, 865, 866 causing solid metal induced embrittlement . . . . 865, 866 as embrittling metal . . . . . . . . . . . . . . . . . . . . . . . . . . . . .862 galvanic series in seawater . . . . . . . . . . . . . . . . . . . . . .762 liquid, causing stress-corrosion cracking in titanium alloys at various temperatures . . .857 as liquid embrittler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .646 as molten metal corrodent . . . . . . . . . . . . . . . . . . . . . .873 solid, causing stress-corrosion cracking in titanium alloys at various temperatures . . . . . . . . . . . . .857 standard emf series value . . . . . . . . . . . . . . . . . . . . . . .763 Cadmium plating, hydrogen embrittlement of plated wing nuts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 811, 812 Caking, of refractory walls . . . . . . . . . . . . . . . . . . . . . . .803 Calcia formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .877 melting point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .877 Calcite scale, and microbially-induced corrosion of stainless steels . . . . . . . . . . . . . . . . . . . . . . . . . . . . .889 Calcium carbonate scale . . . . . . . . . . . . . . . . . . . . . . . . .886 Calcium chloride, stress-corrosion cracking . . . . .849 Calcium ladle additions . . . . . . . . . . . . . . . . . . . . . . . . . .584 CaO/SiO2 ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .801 Calrel (computer software program) . . . . . . . . . . .267 Cambridge Engineering Selector (materials selection software) . . . . . . . . . . . . . . . . . . . . . . . . . 45 Cameras accessories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .420 bodies used in failure analysis photography . . . .419 digital . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 420–421 flashes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 419–420 lenses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .419 for on-site investigation . . . . . . . . . . . . . . . . . . . . . . . . .394 to record experimental stress analysis . . . . . . . . . .397 Camshaft, grinding cracks in gray iron . . . . . . . . . .221 Cantilever beam analysis . . . . . . . . . . . . . . . . . . . . . . . .382 Cantilever beams, distortion failure of stainless steel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1049 Cantilever curl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .666 Capped steels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .690 Cap screws, hydrogen embrittlement . . . . . . . 696–697 Carbide coalescence, of steel alloys used for gas turbine tubes and piping . . . . . . . . . . . . . 291–292 Carbide coarsening, of turbine blades . . . . . . . . . . .291 Carbide inclusions, in weldments . . . . . . . . . . 172–174 Carbide overaging, of nickel-base superalloys used for gas turbine blades . . . . . . . . . . . . . . . . 294–295 Carbide precipitation and cold forming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .101 of nickel-base superalloys used for gas turbine blades . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294, 295 in stainless steel hot gas casing . . . . . . . . . . . 363, 364 Carbides in austenitic manganese steel castings . . . . 147, 148 of beta-NiAl coatings . . . . . . . . . . . . . . . . . . . . . . . . . . .876 in cast stainless steel with intergranular corrosion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149, 150 effect on properties . . . . . . . . . . . . . . . . . .216–217, 218 effect on stress rupture . . . . . . . . . . . . . . . . . . . . 735, 736 formation . . . . . . . . . . . . . . . . . . . . . . . . . . . . .216, 217, 218 forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .216, 217, 218 geometric models . . . . . . . . . . . . . . . . . . . . . . . . . 216, 217 with high-temperature corrosion of nickel alloy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .870 as inclusions, and debonding . . . . . . . . . . . . . 571, 572 in overload failures . . . . . . . . . . . . . . . . . . . . . . . . . . . . .683 in power plant piping and tubing microstructures . . . . . . . . . . . . . . . . . . . . . . . . . . . . .305 rounded, effect on ductility . . . . . . . . . . . . . . . . . . . . .682 weld-interface, in friction welding . . . . . . . . . . . . . .189 Carbide segregation, of twistdrill material . . . . . . . 73 Carbide spheroidization, of steel alloys used for gas turbine tubes and piping . . .291–292, 293 Carbide stabilizers, in cast irons . . . . . . . . . . . . . . . . .139

www.asminternational.org

Index / 1097 Carbon content effect on distortion with quenching . . 199– 200, 205 content effect on quench cracking . . . . . . . . . . . . . .694 content effect on retained austenite formation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210, 212 content effect on sigma-phase embrittlement . .693 content effect on stress-corrosion cracking in nitrate solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . .839 content in intergranular fracture surfaces of carburized steels . . . . . . . . . . . . . . . . . . . . . 644–645 content needed to offset shrinkage and porosity in ductile iron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .141 depletion on steel surface . . . . . . . . . . . . . . . . . . . . . . .430 diamond, bond energy . . . . . . . . . . . . . . . . . . . . . . . . . .650 effect on weldment hot cracking . . . . . . . . . 184–185 enhancing embrittlement . . . . . . . . . . . . . . . . . . . . . . . .691 films, lustrous, as casting defects . . . . . . . . . . . . . . .112 grain-boundary segregation causing intergranular stress-corrosion cracking . . . . . . . . . . . . . . . . . .647 and hot corrosion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .872 removed from alloys by selective leaching . . . . .785 stress-corrosion cracking . . . . . . . . . . . . . . . . . . 838–843 Carbonate ions in aqueous solutions, causing stress-corrosion cracking in carbon steel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .831 Carbonates, stress-corrosion cracking . . . . . . . . . . . .840 Carbon diffusion, effect on chemical analysis . . .430 Carbon dioxide (CO2) plus moisture, as damaging substance in atmospheric environments for stress-corrosion cracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .832 stress-corrosion cracking . . . . . . . . . . . . . . . . . . . . . . . .840 Carbon dioxide sand molding, in shape-casting processes classification scheme . . . . . . . . . . .124 Carbon equivalent (CE) . . . . . . . . . . . . . . . . . . . . . . . . . .137 and carbon flotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . .139 effect on quench cracking . . . . . . . . . . . . . . . . 208, 211 equation for . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .211 to solve hydrogen cold cracking . . . . . . . . . . . . . . . .183 Carbon evaporation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .522 Carbon fibers (CF) as filler for nylon promoting wear resistance . . . . . . . . . . . . . . . . . . . . . . . . . . .1025–1026 in phenolic resin composites . . . . . . . . . . . . . . . . . . 1023 for polymer reinforcement . . . . . . 1031, 1032, 1033, 1034, 1038, 1039, 1040, 1041 Carbon flotation definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1063 in gray iron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .139 of nodular iron crankshaft . . . . . . . . . . . . . . . . 139, 140 Carbonitrides, with high-temperature corrosion of nickel alloy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .870 Carbonitriding, and hydrogen embrittlement . . . .818 Carbon-manganese steels cavitation erosion resistance . . . . . . . . . . . . . . . . . . 1013 clad with erosion-resistant alloys by fusion welding or explosive bonding . . . . . . . . . . . 1016 failure assessment curve . . . . . . . . . . . . . . . . . . . . . . . .248 failure assessment diagrams . . . . . . . . . . . . . . . . . . . .244 three-dimensional fracture surface reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .553 weldment hydrogen cracking . . . . . . . . . . . . . . . . . . .183 weldment inclusions . . . . . . . . . . . . . . . . . . . . . . 173, 176 weldment lamellar tearing . . . . . . . . . . . . . . . . 181, 182 weldment porosity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .170 Carbon-molybdenum steels composition of castings . . . . . . . . . . . . . . . . . . . . . . . . .145 mechanical properties of castings . . . . . . . . 144, 145 Carbon monoxide (CO), plus moisture, as damaging substance in atmospheric environments for stress-corrosion cracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .832 Carbon monoxide-carbon dioxide-water (COCO2-H2O) gas, causing stress-corrosion cracking in carbon steel . . . . . . . . . . . . . . . . . . .831 Carbon-nitrogen interaction, as mechanism for high-temperature corrosion . . . . . . . . . . . . . . . .870 Carbon pickup, and intergranular corrosion . . . . 781, 783 Carbon potential, variation with dewpoint . . . . . .216 Carbon residue buildup . . . . . . . . . . . . . . . . . . . . . . . . . .436 Carbon saturation (SC) . . . . . . . . . . . . . . . . . . . . 134, 137

© 2002 ASM International. All Rights Reserved. ASM Handbook Volume 11: Failure Analysis and Prevention (#06072G)

www.asminternational.org

1098 / Index

Carbon steels carbide changes with elevated temperature . . 291– 292, 293 casting defects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .142 causes of stress-corrosion cracking . . . . . . . . . . . . .831 cavitation erosion . . . . . . . . . . . . . . . . . . . . . . .1013–1014 cavitation erosion in seawater . . . . . . . . . . . . . . . . . .793 centrifugal casting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .132 chloridation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .873 compatibility with various manufacturing processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 copper-induced liquid metal induced embrittlement . . . . . . . . . . . . . . . . . . . . . . . . 367, 369 crevice corrosion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .776 crystallographic fatigue . . . . . . . . . . . . . . . . . . . . . . . . .637 ductile fracture of tapered-ring sprocket locking device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9, 10 environment systems exhibiting stress-corrosion cracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .832 fretting wear low after shot peening . . . . . . . . . . . .928 fretting wear of connecting rod . . . . . . . . . . . . . . . . .928 fretting wear of cylinder . . . . . . . . . . . . . . . . . . . . . . . .930 intergranular fracture . . . . . . . . . . . . . . . . .500–501, 502 intergranular stress-corrosion cracking of weldment in sulfur recovery unit . . . . 840–841 liquid metal induced embrittlement . . . . . . .500–501, 502, 865–866 maximum metal temperatures for high-temperature boiler tube materials . . . . . . . . . . . . . . . . . . . . . . .304 microbially-induced corrosion in oilfield waters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .884 microstructure, tensile test fracture of casting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .509 microstructure using replicating tape, reinforcing rod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 513, 514 mitigating adhesive wear . . . . . . . . . . . . . . . . . . . . . . .408 nickel-plated fractures, light micrographs . . . . . 499, 500 pitting corrosion of pipe . . . . . . . . . . . . . . . . . . 356, 357 retained austenite volume fraction . . . . . . . . . . . . . .364 solid metal induced embrittlement . . . . . . . . . . . . . .865 spalling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .978, 980, 981 strength-hardness correlation . . . . . . . . . . . . . 980, 981 substances in atmospheric environments causing stress-corrosion cracking . . . . . . . . . . . . . . . . . .832 tensile testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .509 uniform corrosion of boiler feedwater tubes . . .768 weldment discontinuities in World War II Liberty ships . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .156 weldment underfill . . . . . . . . . . . . . . . . . . . . . . . . 175, 177 workability behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 Carborundum formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .877 melting point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .877 Carburization in cast irons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .139 as defect resulting from heat treatment . . . . . . . . . . 81 effect on bulk composition verification . . . 429, 430 effect on overload failures . . . . . . . . . . . . . . . . . . . . . .688 of forgings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 of low-alloy steel castings . . . . . . . . . . . . . . . . . . . . . .146 as mechanism for high-temperature corrosion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 868, 869 of valve seats, intergranular brittle fracture . . . .677 variables affecting rate . . . . . . . . . . . . . . . . . . . . . . . . . .868 Carburized steels, intergranular fatigue . . . . 644–645 Carburizing defects resulting from . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 distortion due to residual stresses or fatigue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1053–1054 and hydrogen embrittlement . . . . . . . . . . . . . . . . . . . .818 to prevent fretting damage . . . . . . . . . . . . . . . . 133, 934 to reduce stresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .717 of track wheel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 510, 511 Cartridge brass, grain size effect . . . . . . . . . . 598, 601 Case crushing . . . . . . . . . . . . . . . . . . . . 413, 723, 725–726 contact fatigue terminology . . . . . . . . . . . . . . . . . . . . .722 Case debonding, in squeeze casting . . . . . . . . . . . . . .131 Case depth, as distortion failure factor . . . . . . . . . 1053 Case hardening and fatigue initiation . . . . . . . . . . . . . . . . . . . . . . . . . . . .627 microcracking tendency . . . . . . . . . . . . . . . . . . . . . . . . .218 by shot peening . . . . . . . . . . . . . . . . . . . . . . . . . . . 221–222 for stress reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .717

Case history, in failure analysis . . . . . . . . . . . . . . . . . .337 Casing of ship service turbine generator, load diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .742 Casings, for ship service turbine generator . . . . . 741– 745 Casting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103–154 aluminum, minimum web thickness . . . . . . . . . . . . . 32 cast iron, minimum web thickness . . . . . . . . . . . . . . 32 characteristics of processes . . . . . . . . . . . . . . . . . . . . .124 classification of processes . . . . . . . . . . . . . . . . . . . . . .124 design and defect-related failures . . . . . . . . .133–137, 138 progressive solidification . . . . . . . . . . . . . . . . . . . . .134 discontinuities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103–104 fractured, as casting defect . . . . . . . . . . . . . . . . . . . . .110 imperfection classification scheme (ICFTA) . . . . . . . . . . . . . . . . . . . . . . . . .104, 105–112 permanent-mold methods . . . . . . . . . . . . . . . . . 123–124 specification and design . . . . . . . . . . . . . . . . . . . . . . . . .103 Casting defects in aluminum alloys . . . . . . . . . . . . . . . . . . . . . . . . 149–152 austenitic manganese steels . . . . 146–147, 148, 149 of austenitic steels . . . . . . . . . . . . . 146–147, 148, 149 in carbon steels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .142 cavities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104, 106 classification . . . . . . . . . . . . . . . . . . . . . . . . . .104, 105–112 corrosion-resistant steels . . . . . . . . . . . . .147–149, 150 defective surface . . . . . . . . . . . . . . . . . . . . .104, 107–109 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .103 discontinuities . . . . . . . . . . . . . . . . . . 104, 107, 120–131 in ductile iron . . . . . . . . . . . . . . . . . . . . . . . .141–142, 143 Hadfield steels . . . . . . . . . . . . . . . . . . 146–147, 148, 149 inclusions . . . . . . . . . . . . 104, 111–112, 116–117, 118 incomplete casting . . . . . . . . . . . . . . . . . . .104, 109–110 incorrect dimensions or shape . . . . . . .104, 110–111 in low-alloy steels . . . . . . . . . . . . . . . . . . . . . . . . . 142–146 malleable irons . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140–141 metallic projections . . . . . . . . . . . . 104, 105, 119–120 oxide films . . . . . . . . . . . . . . . . . . . . . . . . . . .117–118, 119 in pressure die casting . . . . 126–127, 128, 129, 130 of stainless steels, austenitic . . . 146–147, 148, 149 in steels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .142–149, 150 structural anomalies . . . . . . . . . . . . . . . . . .104, 111–112 from welding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152–154 Casting distortion, as casting defect . . . . . . . . . . . . .111 Casting/molding, compatibility with various materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Casting process, as root cause of forgings, defects, rationale, resolution, and corrective action . . . . . . . . . . . . . . . . . . . . . . 327, 329, 330, 331 Castings brittle overload failure of zinc alloy . . . . . . . . . . . .683 brittle overload fracture of steel brackets . . . . . 683– 684 dendritic solidification microstructural features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .608 discontinuities, types of . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 distortion due to residual stresses . . . . . . . . . . . . . 1053 fatigue crack initiation . . . . . . . . . . . . . . . . . . . . . . . . . .577 fatigue strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .112 fracture appearances . . . . . . . . . . . 608, 612, 613, 614 manufacturing imperfections . . . . . . . . . . . . . . . . . . .614 rework of . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152–154 sand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .119 Casting shrinkage. See also Liquid shrinkage; Shrinkage cavity; Solidification shrinkage; and Solid shrinkage. definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1063 Casting stresses, in gray iron crankcases . . .135–136, 137, 138 Casting temperature, as root cause of forgings defects, rationale, resolution, and corrective action . . . . . . . . . . . . . . . . . . . . . . 327, 329, 330, 331 Cast irons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .137 casting defects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .137 cavitation erosion in seawater . . . . . . . . . . . . . . . . . .793 cavitation erosion of suction bell of water pump . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .999 cleavage cracking of graphite . . . . . . . . . . . . . . . . . . .608 compatibility with various manufacturing processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137–139 corrosion failure of Yankee dryer . . . . . . . . 387–388

galvanic series in seawater . . . . . . . . . . . . . . . . . . . . . .762 gases causing porosity in . . . . . . . . . . . . . . . . . . . . . . .115 graphite corrosion . . . . . . . . . . . . . . 786–787, 788, 789 high-silicon, as impressed-current anodes . . . . . .756 impact wear failure of valve seating . . . . . . 972–973 inert gas flushing for gas removal . . . . . . . . . . . . . .115 macroscale details minimal in fractures . . 608, 612 microstructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137–139 mixed-mode cracking of impeller . . . . . . . . . . . . . .677 Cast irons, specific types ASTM grade 60-45-10 dimple-rupture fracture . . . . . . . . . . . . . . . . . . . . . . .673 fatigue fracture of stuffing box . . . .136–137, 138 ASTM grade 65-40-10, ductile fracture . . . . . . . .641 ASTM grade 80-55-06 brittle overload fracture of cone-crusher frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 682–683 intergranular fracture . . . . . . . . . . . . . . . . . . . . . . . . .641 transgranular fracture by cleavage . . . . . . . . . . .641 ASTM grade 100-70-03, mixed-mode cracking of impeller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .677 ASTM A 47, grade 35018, impingement corrosion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .792 ASTM A 48, grade 20, cold sheet failure in paperdrier head . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .121 ASTM A 159, grade G 1800, cold shut failure in paper-drier head . . . . . . . . . . . . . . . . . . . . . 121, 122 ASTM A 602, grade M 7002, fatigue failures of rocker lever of diesel engines . . . . . . . 140, 141 D4018, fracture surface roughness . . . . . . . . . . . . .546 D5506, fracture surface roughness . . . . . . . . . . . . .546 G3000 grade, transgranular cleavage of truck transmission housing . . . . . . . . . . . . . . . . 675, 676 G3500, crack propagation martensite corrosion after grinding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .221 GG25, cavitation erosion, incubation time . . . 1004 GGL NiCuCr15 6 2, shrinkage porosity of pump impeller . . . . . . . . . . . . . . . . . . . . . . . . .114–115, 116 GGL NiCuCr 15 6 3, recommended material for pump impellers . . . . . . . . . . . . . . . . . . . . . . . . . . . .115 MIL-I-11466, grade D 7003, fatigue failure of piston for a gun-recoil mechanism . .141–142, 143 Cast stainless steels, intergranular corrosion . . . . .780 Cast stainless steels, specific types alloy 20, cast, galvanic series in seawater . . . . . .762 CA-6NM cavitation erosion . . . . . . . . . . . . . . . . . . . . 1013, 1014 erosion rate in vibratory cavitation . . . . . . . . 1016 for high-head pumps . . . . . . . . . . . . . . . . . . . . . . . 1013 CA-15 for high-head pumps . . . . . . . . . . . . . . . . . . . . . . . 1013 weld repair of impeller vane, cavitation erosion . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1016–1017 CD-4MCu, hot tears and cracks in castings . . . .148 CF-3, intergranular corrosion . . . . . . . . . . . . . . . . . . .780 CF-3M, intergranular corrosion . . . . . . . . . . . . . . . . .780 CF-8 microstructure . . . . . . . . . . . . . . . . . . . . . . . . . . 147–148 for smaller hydroturbines and pumps . . . . . . 1013 CF-8M erosive wear of pump impeller . . . . . . . . . . . . . . .999 intergranular corrosion . . . . . . . . . . . . . . . . . . . . . . .149 stress-corrosion cracking . . . . . . . . . . . . . . . . . . . . .845 CFR-8M, microstructure . . . . . . . . . . . . . . . . . . 147–148 CN-7M hot tears and cracks in castings . . . . . . . . . . . . . .148 intergranular corrosion . . . . . . . . . . . . . . . . . . . . . . .780 18Cr-10Ni-3.2Mo, intergranular corrosion of neck fitting . . . . . . . . . . . . . . . . . . . . . . . . 149, 150 GX CrNiMo18 10 cavitation erosion, incubation time . . . . . . . . . . . . . . . . . . . . . . . . . . 1004 GX CrNiMoCu25 6, cavitation erosion, incubation time . . . . . . . . . . . . . . . . . . . . . . . . . . 1004 Cast steels casting defects . . . . . . . . . . . . . . . . . . . . . . . .142–149, 150 cold shut in truck equalizer beam . . . . . . . . 122–123 Catastrophic oxidation, of low-alloy steel castings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .146 Catastrophic wear, definition . . . . . . . . . . . . . . . . . . 1063 Cathode, definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1063 Cathode sputtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .807 Cathodic depolarization . . . . . . . . . . . . . . .882, 883, 892

© 2002 ASM International. All Rights Reserved. ASM Handbook Volume 11: Failure Analysis and Prevention (#06072G)

Cathodic inhibitors . . . . . . . . . . . . . . . . . . . . . . . . . 757–758 Cathodic poisons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .812 Cathodic polarization . . . . . . . . . . . . . . . . . . . . . . . . . . . .882 Cathodic protection . . . . . . . . . . . . . . . . . . .755–757, 764 as corrosion prevention method in industrial facilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .893 for graphitic corrosion . . . . . . . . . . . . . . . . . . . . . . . . . .787 and hydrogen embrittlement of high-strength steels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .813 in low-velocity water systems . . . . . . . . . . . . . . . . . .789 to resist corrosive wear . . . . . . . . . . . . . . . . . . . . . . . . .992 for resisting microbially induced corrosion . . . . . . . . . . . . . 754–755, 885, 893–894 and stress-corrosion cracking . . 824–825, 838, 839 Cathodic reaction . . . . . . . . . . . . . . . . . . . . . .749, 750, 770 Cause, root. See Root cause. Cause, simple physical . . . . . . . . . . . . . . . . . . . . . . . . . . . .316 Cause-and-effect analysis . . . . . . . . . . . . . . . . . . . . .14, 16 Caustic cleaning, as hydrogen source for hydrogen embrittlement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .819 Caustic corrosion, as damage mechanism on failure wheel . . . . . . . . . . . . . . . . . . . . . . . . . . .349 Caustic cracking, definition . . . . . . . . . . . . . . . . . . . . 1063 Caustic embrittlement. See also Caustic cracking; Sodium hydroxide. . . . . . . . . . . . . . . . . . . . 337, 873 loading types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 material selection criteria . . . . . . . . . . . . . . . . . . . . . . . . 35 operating temperatures . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 stress types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Caustic gouging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344, 873 as boiler tube damage mechanism on failure wheel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .350 characteristics of boiler waterwall damage mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . 347, 348 Cavitation . . . . . . . 409, 755, 791, 792–793, 831, 997, 999–1000, 1013–1014 in bearings . . . . . . . . . . . . . . . . 1003, 1004–1005, 1007 brittle failure mechanism . . . . . . . . . . . . . . 1002, 1003 of cast iron pump impeller . . . . . . . . . . .114–115, 116 cause . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .995 in centrifugal pumps . . . . . . . . . . . . .1004, 1005, 1007 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . .409, 1002 clearance reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 1007 creep behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .731 as damage mechanism on failure wheel . . . . . . . .349 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .409, 1063 design changes for mitigation of . . . . . . . .409, 1007 ductile failure mechanism . . . . . . . . . . . . . .1002–1003 failure analysis . . . . . . . . . . . . . . . . . . . . . . . . . .1002–1004 in gear boxes . . . . . . . . . . . . . . . . . . . . . . . . . . . 1004, 1005 incidence of . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1002 industry examples of failure . . . . .1003, 1004–1005 laser surface modification for resistance . . . . . . . . . . . . . . . . . . . .1006–1007, 1008 and lubricant failure . . . . . . . . . . . . . . . . . . . . . . . . . . . . .411 manifestations . . . . . . . . . . . . . . . . . . . . . . . . . . .1013–1014 material changes for mitigation of . . . . . . . . . . . . . .409 mechanisms causing . . . . . . . . . . . . . . . . . . . . . . . . . . 1002 by microjets . . . . . . . . 1002, 1003, 1004, 1006, 1013 of permanent-mold castings . . . . . . . . . . . . . . . . . . . .125 of polymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .651 from power-generation plant processes . . . . . . . . .996 relative resistance scales . . . . . . . . . . . . . . . . . . . . . . 1010 resistance of materials . . . . . . . . . . .1005–1007, 1008 resistance of metals and alloys . .1004, 1005, 1006 resistance of metals in seawater rated . . . . . . . . . .793 by shock waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1002 sodium chromate addition to cooling water for resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .793 stages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1003–1004 tests for evaluation of . . . . . . . . . . . .1006, 1007–1010 variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .902, 1010 vibration reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1007 Cavitation corrosion. See Cavitation. Cavitation damage. See Cavitation. Cavitation erosion. See Cavitation. Cavitation pitting. See Cavitation. Cavities as casting defects . . . . . . . . . . . . . . . . . . . . . . . . . 104, 106 rounded-type (r-type) . . . . . . . . . . . . . . . . . . . . . . . . . . .734 wedge type (w-type) . . . . . . . . . . . . . . . . . . . . . . . . . . . .734 Cavity shrinkage as discontinuity for castings . . . . . . . . . . . . . . . . . . . . . . 9

as discontinuity for forgings . . . . . . . . . . . . . . . . . . . . . . 9 CBED. See Convergent-beam electron diffraction technique. CCT. See Continuous cooling transformation diagrams. CDF. See Cumulative distribution function. CE. See Carbon equivalent. CEGB R6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .244 Cell numbers of microorganisms, method used for inspection, growth, and activity assays . . .893 Cellulose acetate characteristics of engineering polymers . . . . . . . .359 replica of glazed electrical porcelain insulator fracture surface . . . . . . . . . . . . . . . . . . . . . . 663, 664 use in surface replica production . . . . . . . . . 520, 522 Cellulose acetate replicas . . . . . . . . . . . . . . . . . . . . . . . .354 Cellulose acetate tape, for replicating fracture surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397–398 Cementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .766 Cementite atomic volume of ferrous alloys . . . . . . . . . . . . . . . .194 as transformational product in steel . . . . . 192, 193, 194 Cement sand molding, in shape-casting processes classification scheme . . . . . . . . . . . . . . . . . . . . . .124 Center defects, in weldments . . . . . . . . . . . . . . . . . . . . .188 Centerline cracks, in weldments . . . . . . . . . . . . . . . . .158 Centerline pipe, as discontinuity for forgings . . . . . . 9 Centerline segregation, in squeeze casting . . . . . .130 Centerline shrinkage. See also Shrinkage porosity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82–83 as casting defect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .106 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1063 in ingots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86–87 Center-of-gravity method . . . . . . . . . . . . . . . . . . . . . . . .487 Central bursts, as discontinuity for extrusions and drawn products . . . . . . . . . . . . . . . . . . . 9, 511, 512 Central composite design . . . . . . . . . . . . . . . . . . . . . . . .258 Central geometry fibrous zone, in ductile fracture . . . . . . . . . . . . . . . 598–600, 602, 603, 604 Central limit theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . .253 Centrifugal casting . . . . . . . . . . . . . . . . . . . . . . . . . 131–133 mold types used . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .132 in shape-casting processes classification scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .124 Centrifugal pumps, cavitation . . . . 1004, 1005, 1007, 1013 Centroidal axis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .471 Ceramic filters, to reduce inclusions . . . . . . . . . . . . .117 Ceramic molding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .123 and surface finish of casting . . . . . . . . . . . . . . . . . . . .120 Ceramics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .662–670, 800 abrasive wear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 911, 913 as base material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .359 brittle fracture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .663 cavitation . . . . . . . . . . . . . . . . . . . . . . . . .1003, 1006, 1007 centrifugal casting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .132 ceramographic etching . . . . . . . . . . . . . . . . . . . . 362–363 comprehensive stresses . . . . . . . . . . . . . . . . . . . . . . . . .959 crack branching . . . . . . . . . . . . . . . . . . . . . . . . . . . 369–370 crack patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .369 crack propagation testing . . . . . . . . . . . . . . . . . . . . . . .959 cutting of . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .362 cyclic fatigue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .959 evaluation in failure analysis . . . . . . . . . . . . . 369–370 examination of . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362–367 fracture features surrounding fracture origin . . .369 fracture mechanics . . . . . . . . . . . . . . . . . . . . . . . . 958–959 fracture modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 665–667 grinding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362, 363 as high-temperature coatings resisting corrosion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 877–878 high-toughness, fracture toughness measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .666 impact wear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 968–970 for impressed-current anodes . . . . . . . . . . . . . . . . . . .756 microcracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .582 mounting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .362 polishing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362, 363 rollers, microchipping wear mode . . . . . . . . . . . . . .958 rolling-contact fatigue of . . . . . . . . . . . . . . . . . . 957–963 salt melt etching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .362 spalling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .961

www.asminternational.org

Index / 1099 thermal etching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .362 wear particle size related to coefficient of friction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .958 Ceramics, specific types GS-44 silicon nitride, impact wear . . . . . . . . . . . . .969 NBD-200, balls impacting sintered reactionbonded silicon nitride . . . . . . . . . . . . . . . . . . . . . .969 SN220M silicon nitride, impact wear . . . . . . . . . .969 Ceramic shell investment molding . . . . . . . . . . . . . .123 Ceramic slurry molding, in shape-casting processes classification scheme . . . . . . . . . . . . . . . . . . . . . .124 Ceramographic etching . . . . . . . . . . . . . . . . . . . . 362–363 Ceria, addition improving oxidation resistance . .868 Cermets, as coatings . . . . . . . . 949–950, 951, 952, 953 Ceroxides, as casting defect . . . . . . . . . . . . . . . . . . . . . .111 CF. See Carbon fibers. Chafing fatigue. See also Fretting. definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1063 Chain branching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .568 Chain graphitization . . . . . . . . . . . . . . . . . . . . . . . . . . . . .693 Chain link, brittle fracture of austenitic manganese steel . . . . . . . . . . . . . . . . .146–147, 148 Chain of commerce . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 Chain of evidence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .340 Chain scission . . . . . . . . . . . . . . . . . . . . 444, 569, 797, 798 of polyethylene terephthalate . . . . . . . . . . . . . . . . . . .452 Chalcocite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .890 Chalk, brittle torsion fracture . . . . . . . . . . . . . . . 561, 562 Chamfer angles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .978 Chamfers, of nail and ball-peen hammers . . . . . . .978 Channeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .407 Chaplet cold shut, as casting defect . . . . . . . . . . . . . .107 Chaplet, unfused, as casting defect . . . . . . . . . . . . . .107 Charcoal-regeneration kiln, sulfidation . . . 871, 872 Charge correction method . . . . . . . . . . . . . . . . . . . . . . .531 Charging, of sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .521 Charpy (impact) test (Charpy V-notch test) . . . . . . . . . . . . . . . . . . .301, 684, 692 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1063 for polymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .445 of stainless steel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .500 of weldments . . . . . . . . . . . . . . . . . . . 161, 179–180, 783 Charpy V-notch bar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .604 Charpy V-notch impact energy . . . . . . 604–606, 608, 609, 610 of cast carbon-molybdenum steels . . . . . . . . . . . . . .145 and tempered-martensite embrittlement . . . . . . . .692 Charpy V-notch upper-shelf energies, of shapecontrolled steel with inclusions . . . . . . . .89, 90 Check cracks, in weldments . . . . . . . . . . . . . . . . . . . . . .158 Chelates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .768 Chemical analysis . . . . . . . . . . . . . . . . . . . . .403–404, 522 of brass, dezincification effect . . . . . . . . . . . . . . . . . .430 bulk composition verification . . . . . . . . . . . . . 429–432 calibration with similarly composed material . .429 carburization effect . . . . . . . . . . . . . . . . . . . . . . . . 429, 430 of casting defect fracture due to cold shut . . . . .121 of cast steel of equalizer beams . . . . . . . . . . . . . . . .122 chemist selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .431 of corrosion products . . . . . . . . . . . . . . . . . . . . . . . . . . .406 corrosion reactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .430 economy test methods . . . . . . . . . . . . . . . . . . . . 429, 430 in failure analysis . . . . . . . . . . . . . . . . . . . . . . . . . 334, 337 hydrogen analysis . . . . . . . . . . . . . . . . . . . . . . . . . 429, 431 of metals in failure analysis . . . . . . . . . . . . . . 429–436 of microbially induced corrosion deposits . . . . . .892 microchemical analysis . . . . . . . . . . . . . .429, 432–436 for microscopic examination of fracture surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .399 qualitative chemical tests used in materials identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .431 referee test methods . . . . . . . . . . . . . . . . . .429, 430–431 specimen handling information . . . . . . . . . . . . . . . . .436 spot-check test kits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .431 for stress-corrosion cracking . . . . . . . . . . . . . . 837–838 of worn surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .413 Chemical attack, of polymers . . . . . . . . . . . . . . . . . . . .439 Chemical bond molding, and surface finish of casting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .120 Chemical characterization of surfaces, evaluation techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .527 Chemical composition, as root cause of forgings defects, rationale, resolution, and corrective action . . . . . . . . . . . . . . . . . . . . . . 327, 329, 330, 331

© 2002 ASM International. All Rights Reserved. ASM Handbook Volume 11: Failure Analysis and Prevention (#06072G)

www.asminternational.org

1100 / Index

Chemical corrosion, prevention, to fracture surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .397 Chemical invasion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .802 Chemical segregation of forging die of tool steel . . . . . . . . . . . . . . . . . . . . . . . 85 of ingots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .82, 83–86 Chemical-setting ceramic linings, as corrosionresistant linings . . . . . . . . . . . . . . . . . . . . . . 758–759 Chemical splash protection . . . . . . . . . . . . . . . . 653–654 Chemical storage vessel, distortion of high-density polyethylene . . . . . . . . . . . . . . . . . . . . . . . . . 453–454 Chemical treatment, as corrosion prevention method in industrial facilities . . . . . . . . . . . . .893 Chemical vapor deposition (CVD) . . . . . . . . . . . . . .759 of aluminide coatings . . . . . . . . . . . . . . . . . . . . . . . . . . .877 coating material, thickness, and hardness . . . . . .949 coatings and rolling-contact fatigue . . . . . . . . . . . .949 coatings for structural ceramics . . . . . . . . . . . . . . . . .807 contact stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .949 fatigue life . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .949 vs. physical vapor deposition for coatings . . . . .945 to prevent fretting damage . . . . . . . . . . . . . . . . . . . . . .934 rolling contact fatigue tester . . . . . . . . . . . . . . . . . . . .949 substrate material and hardness . . . . . . . . . . . . . . . . .949 surface roughness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .949 Chemical wear mechanisms . . . . . . . . . . . . . . . 902, 903 Chem Sage computer code . . . . . . . . . . . . . . . . . . . . . .801 Chevron cracking . . . . . . . . . . . . . . . . . . . . . . . . . . . 183, 561 of extrusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 511, 512 in forgings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .93–94, 95 Chevron pattern (chevron marks) . . 395, 397, 561, 562, 601, 605 by bolt hole fracture of grain storage bin . . . . . 616, 618, 619 with brittle fracture . . . . . . . . . . . . . . . . . . . . . . . 400, 674 in casting fractures . . . . . . . . . . . . . . . . . . .608, 610, 612 vs. crack arrest lines . . . . . . . . . . . . . . . . . . . . . . . . . . . .568 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1063 in fast-fracture zone . . . . . . . . . . . . . . . . . . . . . . . 708, 709 of fatigue failure . . . . . . . . . . . . . . . . . . . . . . . . . . 630, 633 in fatigue fracture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .576 near fibrous zone . . . . . . . . . . . . . . . . . . . . . . . . . . 601, 605 as flaw in rolled bars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 near fracture origin . . . . . . . . . . . . . . . . . . . . . . . . 398, 399 macroscale fractographic implication . . . . . . . . . . .560 and shrinkage porosity and manufacturing flaw . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .614 v (chi) geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .485 v (chi) goniometer geometry . . . . . . . . . . . . . . . . . . . . .485 Chill casting, for chemical analysis specimens . .430 Chill(s) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113, 119 to accelerate cooling of casting heavy sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .134 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1063 formation in gray iron . . . . . . . . . . . . . . . . . . . . . . . . . .139 to prevent hot cracks . . . . . . . . . . . . . . . . . . . . . . . . . . . .119 Chip (lamellar structure) . . . . . . . . . . . . . . . . . . . . . . . . . 81 as flaw in rolled bars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 Chipping, of hammers . . . . . . . . . . . . . . . . . . . . . . . . . . . .978 Chisels, striking/struck tool specifications . . . . . . . .987 Chi-Square test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .253 Chloridation as mechanism for high-temperature corrosion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 872, 873 molten salts involvement . . . . . . . . . . . . . . . . . . . . . . .874 of nickel alloys of charcoal-regeneration kiln . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .871 Chloride ions, role in pitting corrosion of stainless steel tubes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 772, 773 Chlorides degrading nylon filtration unit . . . . . . . . . . . . . . . . . .456 effect on microbially induced corrosion attack on weldments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .888 effect on refractories . . . . . . . . . . . . . . . . . . . . . . . . . . . .803 exposure causing corrosion of stainless steels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .755 and hot corrosion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .872 inducing pitting corrosion . . . . . . . . . . . . . . . . . . . . . .771 Chloride salts as agent involved with hot corrosion . . . . . . . . . . .871 hot dry causing stress-corrosion cracking . . . . . . . . . . . .857 causing stress-corrosion cracking in titanium alloys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .857

Chlorides plus moisture, as damaging substance in atmospheric environments for stress-corrosion cracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .832 Chloride stress-corrosion cracking . . 366, 490, 755, 823–827, 829, 830, 832–835, 840–852, 856– 857 of austenitic stainless steels . . . . . . . . . . . . . . . . . . . . .812 holding tank coupling . . . . . . . . . . . . . . . . . . . . . . . . 37–38 resistance of corrosion-resistant castings . . . . . . .148 of stainless steels . . . . . . . . . . . . . . . . . . . . .340–341, 816 with thermal insulation of pipes . . . . . . . . . . 776–777 transgranular, of austenitic stainless steels . . . . .638 Chlorinated diphenyl, causing stress-corrosion cracking in titanium alloys . . . . . . . . . . . . . . . .857 Chlorinated products, removed as antifoulant in marine paints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .894 Chlorinated rubbers, as corrosion-resistant coatings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .758 Chlorinated solvents, stress-corrosion cracking . . . . . . . . . . . . . . . . . . . . . . . . .857, 858–859 Chlorine as biocidal agent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .894 bond energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .650 causing stress-corrosion cracking in titanium alloys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .857 in deposits from microbially induced corrosion sites in stainless steel cooling water systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .889 as surface contaminant on powder-free gloves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .528 Chloroprene rubber, characteristics of engineering polymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .359 Chopper knife, wear failure . . . . . . . . . . . . . . . . 512, 513 Chord modulus. See also Modulus of elasticity. definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1063 Chromate conversion coatings, for corrosion resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .759 Chromates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 771, 992 as inhibitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .757 removed as antifoulant in marine paints . . . . . . . .894 toxic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .801 Chrome . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 803, 804 Chromia content effect in refractory coatings . . . . . . . . . . . .878 formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .877 melting point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .877 Chromia scale-formers, carburization resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .869 Chromic acid causing intergranular corrosion in sensitized austenitic stainless steels . . . . . . . . . . . . . . . . . .779 environment causing stress-corrosion cracking of nickel and nickel-base alloys . . . . . . . . . . . . . .848 Chromic anodizing, for corrosion resistance . . . .759 Chromic oxide formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .877 melting point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .877 Chromites, alkali . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .801 Chromium as addition to aluminide coatings . . . . . . . . . 877, 878 cavitation erosion, incubation time . . . . . . . . . . . 1004 content effect on alloy steel temper embrittlement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .195 content effect on internal oxidation . . . . . . . . . . . .214 content effect on low-alloy steel carburization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .146 depletion, and high-temperature corrosion . . . . .870 in deposits from microbially induced corrosion sites in stainless steel cooling water systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .889 in dissimilar metal pair fretting damage . . . . . . . .928 enhancing embrittlement . . . . . . . . . . . . . . . . . . . . . . . .691 forming dispersoids to slow down crack growth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .646 fretting wear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 930, 934 microsegregation susceptibility . . . . . . . . . . . . . . . . .219 oxidation potential in endothermic gas . . . . . . . . .214 oxide film for fretting corrosion resistance . . . . .928 qualitative chemical testing for materials identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .431 removed from alloys by selective leaching . . . . .785 to stabilize carbides in low-alloy steel castings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145, 146

standard emf series value . . . . . . . . . . . . . . . . . . . . . . .763 Chromium alloy steels, austempering . . . . . . . . . . . .207 Chromium carbides . . . . . . . . . . . . . . . . . . . . . . . . 735, 783 Chromium carbide-titanium carbide, as chemical vapor deposition coating material . . . . . . . . .949 Chromium-molybdenum steels spalling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .978 stress-rupture (creep) failure of steam pipe . . . .365 Chromium-molybdenum-vanadium steels, elevated temperatures for engineering applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .729 Chromium-nickel alloys, sigma-phase embrittlement . . . . . . . . . . . . . . . . . . . . . . . . 512, 513 Chromium nitride (CrN) . . . . . . . . . . . . . . . . . . . . . . . . .945 coatings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 945–946 elevated temperatures and stability . . . . . . . . . . . . .868 layer on well-passivated stainless steel surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .535 as physical vapor deposition coating material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .946 precipitation of . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .692 Chromium oxide, passivation layer . . . . . . . . . . . . . .536 Chromium oxide scale . . . . . . . . . . . . . . . . . . . . . . . . . . .870 Chromium oxide-silicon oxide-titanium oxide, as thermally sprayed coating material . . . . . . . .950 Chromium plating for cavitation erosion resistance . . . . . . . 1006, 1008 erosion rate of metallic coatings in 3% NaCl aqueous solution, various thicknesses . . . 1008 Chromium steel (12%), liquid-droplet erosion resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1015 Chromizing, to prevent fretting damage . . . . . . . . .933 Chuck jaw, microstructure of replica . . . . . . . 513–514 CID. See Commercial Item Description. Circuit diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .376 Circular crack, initiation and propagation measured by finite-element method . . . . . . . . . . . . . . . . . .957 Circumferential ridging . . . . . . . . . . . . . . . . . . . . 598, 599 Citrate, stress-corrosion cracking . . . . . . . . . . . . . . . . .853 Citric acid, corrosion of stainless steel valve in vending machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Citrobacter freundii . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .884 Cladding of carbon-manganese steels with erosion-resistant alloys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1016 to resist corrosive wear . . . . . . . . . . . . . . . . . . . . . . . . .992 Cladosporium resinae . . . . . . . . . . . . . . . . . . . . . . . . . . . .891 Clamp-off, as casting defect . . . . . . . . . . . . . . . . . . . . . .108 Clamshell marks. See also Beach marks. . . 352, 707 Classical beam theory . . . . . . . . . . . . . . . . . . . . . . . . . . . .382 Classical design, and distortion failures . . . . . . . .1047, 1048 Classical ripening equation . . . . . . . . . . . . . . . . . . . . . .740 Classical stereological relationship, to measure area fraction of fracture mechanisms . . . . . . . . . . .549 Classical theory of elasticity . . . . . . . . . . . . . . . . . . . . .380 Clay, factors correlating with sulfate-reducing bacteria (SRB) numbers for buried pipeline sites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .886 Clay sand molding, in shape-casting processes classification scheme . . . . . . . . . . . . . . . . . . . . . .124 Cleaning as corrosion prevention method in industrial facilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .893 excessive, as casting defect . . . . . . . . . . . . . . . . . . . . .109 and fatigue strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . .720 of fractured surfaces . . . . . . . . . . . . . . . . . . . . . . 397–398 in preliminary laboratory examination . . . . . . . . .406 prior to microfractography . . . . . . . . . . .353–354, 355 Cleaning/finishing, manufacturing/installation anomalies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Cleaning solution, retained, causing pitting corrosion of stainless steel tanks . . . . 773–774 Clean-room gloves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .528 Cleavage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 588, 641 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1063 facet size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 612, 616 and fracture at or near stress raisers . . . . . . . . . . . .609 ideal or perfect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .588 transgranular . . . . . . . . . . . . . . . . . . . . . . . . .674–674, 676 Cleavage crack associated with deformation twinning in metals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .572

© 2002 ASM International. All Rights Reserved. ASM Handbook Volume 11: Failure Analysis and Prevention (#06072G)

of casting fractures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .608 characteristic features . . . . . . . . . . . . . . . . . . . . . . . . . . .612 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1063 subsurface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 499, 500 Cleavage crack nucleus . . . . . . . . . . . . . . . . . . . . . . . . . .589 Cleavage facets, in stress-corrosion cracking . . . 835, 836 Cleavage fracture. See also Brittle transgranular fracture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18, 20 with brittle fracture . . . . . . . . . . . . . . . . . . . . . . . . . . . . .400 indications on surface . . . . . . . . . . . . . . . . . . . . . . . . . . .561 indicative of brittle fracture . . . . . . . . . . . . . . . . . . . . .559 in low-carbon steel, microstructure . . . . . . . 498, 499 Cleavage plane . . . . . . . . . . . . . . . . . . . 573–574, 579, 590 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1063 Cleavage plane families . . . . . . . . . . . . . . . . . . . . . . . . . .574 Cleavage plane multiplicity . . . . . . . . . . . . . . . . . . . . . .574 Cleavage system multiplicity . . . . . . . . . . . . . . . . . . . .679 Cleavage with ductile tear ridges. See Quasicleavage fracture. Clevis connectors for pontoons . . . . . . . . . . . . 113, 114 CLM. See Constant load method. Closed die forging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 compatibility with various materials . . . . . . . . . . . . . 33 Closed-form equations . . . . . . . . . . . . . . . . . . . . . . . . . . .382 Clostridium acetobutylicum . . . . . . . . . . . . . . . . . . . . .884 CLSM. See Confocal laser scanning microscopy. CMOD. See Crack mouth opening displacement. CO. See Carbon monoxide. Coal ash corrosion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .874 Coal gasification, causing corrosive wear . . . . . . . .990 Coal particle corrosion, as damage mechanism for boiler tubing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .347 Coal particle erosion . . . . . . . . . . . . . . . . . . . . . . . . . . . . .876 as boiler tube damage mechanism on failure wheel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .350 Coal tar enamels, as corrosion-resistant coating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .769 Coal tar-epoxy resins, as corrosion-resistant coating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 769, 776 Coal tars, as corrosion-resistant coating . . . . . . . . . .758 Coarse hackle. See Fatigue striation; Striation. Coating(s) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .338 adhesive wear mitigation . . . . . . . . . . . . . . . . . . . . . . .408 application inspections . . . . . . . . . . . . . . . . . . . . . . . . . .758 for cavitation erosion resistance . . . . . . . . . . . . . . 1006 cement-lined pipe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .408 ceramic impact wear . . . . . . . . . . . . . . . . . . . . . . 969–970 chromium plating . . . . . . . . . . . . . . . . . . . . . . 1006, 1008 cobalt-base alloy flame, arc, or HVOF deposits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .408 as corrosion prevention method in industrial facilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .893 diffusion for adhesive wear mitigation . . . . . . . . .408 electroless nickel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .408 fluffy oxide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .146 governing penetration of refractories and structural ceramics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .806 hard chrome . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .408 hardfacing alloy weld overlay . . . . . . . . . . . . . . . . . .407 high-velocity oxyfuel (HVOF) ceramics . . . . . . .407 metallic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .759 to minimize hot corrosion susceptibility . . . . . . .873 for molds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120, 125 nonmetallic, for corrosion protection . . . . . 758–759 photoelastic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 396–397 to prevent fretting wear . . . . . . . . . . . . . . . . . . . 933–934 as protection from corrosion . . . . . . . . . . . . . . . . . . . .405 protective from high-temperature corrosion . . 876– 878 protective, to resist microbially-induced corrosion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 885, 893 remaining coating life . . . . . . . . . . . . . . . . . . . . . . . . . . .298 removal before x-ray diffraction residual stress analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .490 role in hydrogen embrittlement . . . . . . . . . . . . . . . . .820 and stress-corrosion cracking . . . . . . . . . . . . . . . . . . .834 for structural ceramics, governing oxidation . . .807 tungsten carbide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .408 on weldments . . . . . . . . . . . . . . . . . . . . . . . .187, 188, 190 Coating degradation as elevated-temperature failure in gas turbines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .289

of nickel-base superalloys used for gas turbine blades . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .294 Coating evaluations . . . . . . . . . . . . . . . . . . . . . . . . 289, 298 life assessment technique for elevated-temperature exposure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .240 Coating life, prediction, for gas turbine blades . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303–304 COATLIFE computer program, . . . . . . . . . . . . . . . .304 Cobalt cavitation erosion, incubation time . . . . . . . . . . . 1004 maximum erosion rate dependence in cavitation erosion on combined parameter . . . . . . . . . 1016 qualitative chemical testing for materials indentification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .431 removed from alloys by selective leaching . . . . .785 standard emf series value . . . . . . . . . . . . . . . . . . . . . . .763 Cobalt aluminides, as high-temperature coatings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .876 Cobalt-base alloys centrifugal casting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .132 erosive wear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .997, 1016 fatigue fracture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .578 galvanic corrosion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .767 Cobalt-base alloys, specific type Co-Cr-Mo-C crystallographic fatigue . . . . . . . . . . . . . . . . . . . . . .636 ECY-768/x-45 turbine blade, vane, and nozzle land-based applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .296 FSX-414 turbine blade, vane, and nozzle land-based applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .296 S-816 oxidation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .869 Stellite cavitation erosion in seawater . . . . . . . . . . . . . . . .793 erosive wear . . . . . . . . . . . . . . . . . . . . 997, 1005, 1006 inserts to combat liquid-droplet impingement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .409 as overlays to resists liquid impingement erosion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61, 998 Stellite 6 (ST-6) erosion rate in vibratory cavitation . . . . . . . . 1016 Stellite 6B cavitation erosion evaluation . . . . . . . . . . . . . . . 1008 liquid-droplet erosion . . . . . . . . . . . . . . . 1015, 1016 plating brazed on stainless steel steam turbine blade . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .998 Stellite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 erosion rate in vibratory cavitation . . . . . . . . 1016 Cobalt-base heat-resisting alloys creep onset temperature . . . . . . . . . . . . . . . . . . . . . . . . .729 for hot gas turbine engine components . . . . . . . . .296 Cobalt-base superalloys. See Superalloys. Cobalt-chromium binary alloys, sulfidation resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .870 Cobalt-chromium-molybdenum alloys, gas porosity failure in bone screw . . . . . . . . . . . . . . . . 115, 116 Cobalt-iron-molybdenum-silicon-boron alloys, fretting wear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .928 Cobalt-tungsten carbide, abrasive wear . . . 915–916 Cobalt-tungsten-chromium alloys, environments subjecting alloy to selective leaching . . . . .785 “Cocoa” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .922 Cocodiamine, as biocidal agent . . . . . . . . . . . . . . . . . . .894 COD. See Crack opening displacement. Codes, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 385, 386 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 effect on materials selection . . . . . . . . . . . . . . . . . . . . . 34 Coefficient of expansion, relationship with various failure modes . . . . . . . . . . . . . . . . . . . . . . . . . . .35, 36 Coefficient of friction . . . . . . . . . . . . . . . . . . . . . . . . . . . 1022 Coefficient of thermal expansion definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 442–443 of PET jacket of transportation assemblies . . . . .452 of polymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 442–443 and thermal shock of ceramics . . . . . . . . . . . . . . . . .667 Coefficient of variation (COV) 251, 256, 265, 266 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .252 Cognitive reasoning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .375 Coherency, degree of . . . . . . . . . . . . . . . . . . . . . . . . . . . . .592 Coherent boundaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . .683 Coherent domains, in iron alloys . . . . . . . . . . . . . . . .495

www.asminternational.org

Index / 1101 Cohesive wear, definition . . . . . . . . . . . . . . . . . . . . . . . 1022 Coil springs decarburization failure of spring steel . . . . 509, 510 heat treatment effects on residual stress . . 494–495 residual stress versus depth . . . . . . . . . . . . . . . . . . . . .494 torsional fatigue failure of boron-containing alloy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 630, 633 Cold box resin sand molding, in shape-casting processes classification scheme . . . . . . . . . . .124 Cold chamber die casting . . . . . . . . . . . . . . . . . . 125, 126 in shape-casting processes classification scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .124 Cold cracking . . . . . . . . . . . . . . . . . . . . . . . . . .686, 698–699 of weldments . . 167, 170, 179, 181–183, 184, 186, 187, 698–699 Cold die quenching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .213 Cold forging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .82, 96, 97 Cold forming . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97, 101–102 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 grain size variation in thin-section products . . . .102 imperfections causing fractures . . . . . . . . . . . . . . . . .615 Cold heading, compatibility with various materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Cold laps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .595 as casting defect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .107 in corrosion-resistant casting . . . . . . . . . . . . . . . . . . .147 in squeeze casting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .130 Cold rolling, minimum web thickness . . . . . . . . . . . . . 32 Cold shot as casting defect . . . . . . . . . . . . . . . . . . . . . . . . . . . 111, 120 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .104, 1063 Cold shut . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81, 614 in aircraft fuel-control lever . . . . . . . . . . . . . . . . . . . .120 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .104, 1063 as casting defect . . . . . . . . . . . . . . . . . . . . . .107, 120–123 as discontinuity for castings . . . . . . . . . . . . . . . . . . . . . . 9 as discontinuity in semisolid casting . . . . . 127, 131 in forgings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 in gray iron paper-drier head . . . . . . . .120–122, 123 in permanent-mold castings . . . . . . . . . . . . . . . 124, 125 in pressure die castings . . . . . . . . . . . . . . . . . . . 126, 127 in weldments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .190 Cold tearing, as casting defect . . . . . . . . . . . . . . . . . . .107 Cold working . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99, 561 and alpha-phase formation . . . . . . . . . . . . . . . . . . . . . .693 effects on manufactured components . . . . . . . . . . .494 metallurgical defects in cast or wrought grain structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 for stress reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .717 Collaborative Testing Service, “round robin” programs of chemical analysis . . . . . . . . . . . .431 Collapse ratio . . . . . . . . . . . . . . . . . . . . 240, 241, 243, 244 definition, fundamental . . . . . . . . . . . . . . . . . . . . . . . . .248 Collision cascade . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .533 Colorimetry, of worn surfaces . . . . . . . . . . . . . . . . . . . .413 Color photography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .419 to preserve evidence of damage . . . . . . . . . . . . . . . .335 Columbium, addition to control intergranular corrosion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .875 Columnar structure, definition . . . . . . . . . . . . . . . . . 1063 Combing Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .332 Combustion analysis . . . . . . . . . . . . 404, 430, 431, 432 Comet (DeHavilland) aircraft failures . . . 228, 231, 239 Comet tailing, from improper polishing . . . . . . . . . .506 Commercial alloys, substances in atmospheric environments causing stress-corrosion cracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .832 Commercial cap screw, distortion failure . . . . . . 1054 Commercial Item Description (CID) . . . . . . . . . . . .986 Commercial software tools, usefulness for larger scale investigations . . . . . . . . . . . . . . . . . . . . . . . .320 Commodity-grade steels, hydrogen embrittlement . . . . . . . . . . . . . . . . . . . . . . . . 818–822 Common cause failures . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 Comparison specimen . . . . . . . . . . . . . . . . . . . . . . . . . . . .319 Compass method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .544 Complete deflection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .382 Complex oxide inclusions, in weldments . . 172–174 Complex stresses, effect on fatigue strength . . . . .717 Component failure simulation testing . . . . . . . . . .419 Component life expended, definition and description . . . . . . . . . . .227 expending of . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .289

© 2002 ASM International. All Rights Reserved. ASM Handbook Volume 11: Failure Analysis and Prevention (#06072G)

www.asminternational.org

1102 / Index

Component proof testing . . . . . . . . . . . . . . . . . . . . . . . .403 Component-simulation testing, in thermomechanical fatigue . . . . . . . . . . . . . . . . .741 Composite material, definition . . . . . . . . . . . . . . . . . 1063 Composites. See also Fiber reinforced polymers; Hybrid composites; Polymers. fatigue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 638–639 fretting wear versus fiber orientation angle . . . .192 Composition of cast carbon-molybdenum steels . . . . . . . . . . . . . .145 of low-alloy steels, and failures in castings . . 144– 145 Composition depth profiling . . . . . . . . . . . . . . . . . . . . .530 Compound impact wear . . .965, 966, 967, 968, 970 Compression definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1063 of shaft, stress analysis . . . . . . . . . . . . . . . . . . . 468, 469 Compression curl . . . . . . . . . . . . . . . . . . . . . . . . . . . 605, 609 Compression residual stress, calculation of . . . .283 Compression strength, as criteria for materials selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Compressive strength, definition . . . . . . . . . . . . . . . 1063 Compressive stress in ceramics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .959 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1063 to retard or prevent stress-corrosion cracking . .490 Compressive yield strength, relationship with various failure modes . . . . . . . . . . . . . . . . . . .35, 36 Compressor blade, failure analysis . . . . . . . . . . .13, 14 Compressor rotor, failure analysis of . . . . . . . . . . . . . 13 Compressor rotor drive shaft, failure analysis . . 13, 14 Compressor wheels of helicopter jet engines, liquid metal induced embrittlement . . . . . . . . 865, 866 Computer-aided design (CAD) software . . . . . . . .381 Computer expert systems . . . . . . . . . . . . . . . . . . . . . . . . . 35 Computer modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .371 Computer programs commercially available simulation software . . .379 for crack growth assessment . . . . . . . . . . . . . . . . . . . .283 for probability analysis . . . . . . . . . . . . . . . . . . . . . . . . .267 for reliability-centered maintenance . . . . . . . . . . . . . 69 for simulating motor vehicle accidents . . . . . . . . .377 Computer simulation, solidification program . . . .134 Concentration cell(s), . . . . . . . . . . . . . . . . . . . . . . . 887, 889 in aluminum alloys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .891 of copper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .890 creation by alteration of surface environments . . . . . . . . . . . . . . . . . . . . . . . . . 883–884 Concentration cell corrosion, . . . . . . . . . . . . . . . . . . . .579 Concentration gradients, . . . . . . . . . . . . . . . . . . . . . . . . .338 Concentric fibrous marks . . . . . . . . . . . . . . . . . . . . . . . .397 Conceptual design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 design review investigation . . . . . . . . . . . . . . . . . . . . . . 44 Conceptual design reviews, . . . . . . . . . . . . . . . . . . . 75–76 Conceptual tools, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .320 Conchoidal fracture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .107 Conchoidal marks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .707 Concrete, binder destruction by environmental agents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .405 Condenser, stress-corrosion cracking due to microbially induced corrosion, in brass . . .887 Condenser lens, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .517 Condenser tubing microbially induced corrosion of copper alloy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .890 microbially induced corrosion of stainless steels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .881 stress-corrosion cracking initiated by microbially induced corrosion in admiralty brass . . . . . .890 Conditional probability of failure, definition in reliability-centered maintenance . . . . . . . . . . . . 62 Condition-monitoring algorithms . . . . . . . . . . . . . . . . 69 Condition/remaining life assessments . . . . . . . . . . .296 Conductivity testing, of aluminum alloys . . . . . . . .403 Cone crack, from ring crack . . . . . . . . . . . . . . . . . . . . . .957 Cone-crusher frame, brittle overload fracture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 682–683 Confidence intervals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .261 Configuration design (embodiment) . . . . . . . . . . . . . . . . . 25, 27, 31, 33

Confirmation bias . . . . . . . . . . . . . . . . . . . . . . . . . . 317, 321 Confocal laser scanning microscopy (CLSM) . .539 Confocal scanning microscopy . . . . . . . . . . . . . . . . . .539 Connectors for pontoons, shrinkage porosity of low-alloy steel . . . . . . . . . . . . . . . . . . . . . . . 113, 114 Constant amplitude cyclic loading spectrum . . .491 Constant amplitude loading cycle . . . . . . . . . 276–277 Constant-life diagram . . . . . . . . . . . . . . . . . . . . . . 700, 701 Constant load method (CLM), . . . . . . . . . . . . . . . . . .361 Constant strain hardening exponent . . . . . . . . . . . .467 Constant strength coefficient . . . . . . . . . . . . . . . . . . . .467 Constant-stress testing . . . . . . . . . . . . . . . . . . . . . . . . . . .729 Constraint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .566–567, 589 Constraint factor (X) . . . . . . . . . . . . . . . . . . . . . . . 245, 283 for one-dimensional crack models . . . . . . . . . . . . . .283 for two-dimensional crack models . . . . . . . . . . . . . .283 Consumable wheel for abrasive cutting . . . . . . . .502 Consumer complaints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 Contact analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .383 Contact fatigue . . . . . . . . . . . . . . . . . . 722–726, 906, 922 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1063 material properties related to . . . . . . . . . . . . . . . . . . . . 36 micropitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 724–725 modes and controlling factors . . . . . . . . . . . . . . . . . .725 Contact-finger retainers, stress-corrosion cracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 828–830 Contact geometry, operational variations . . . . . . . .902 Contact pressure, of abrasive wear . . . . . . . . . . . . . .911 Contact stress (Hertzian) . . . . . . . 467–468, 943–944 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1064 effect on abrasion rating of metallic wear materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .911 effect on impact wear failures . . . . . . . . . . . . 967–968 and fracture from manufacturing imperfections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .614 operational variations . . . . . . . . . . . . . . . . . . . . . . . . . . .902 and stress intensity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .481 Contamination of nylon couplings . . . . . . . . . . . . . . . . . . . . . . . . 448, 450 of polymers . . . . . . . . . . . . . . . . . . . . . . . . . .439, 448, 450 Contamination line technique . . . . . . . . . . . . . . . . . . .540 Continuous cooling transformation (CCT) diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192, 193 interpretation of, in failure analysis . . . . . . . . . . . .322 Continuous fiber reinforced composites . . . . . . 1028 Continuous Improvement . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Continuous network carbides . . . . . . . . . . . . . . . . . . .216 Continuous random variable . . . . . . . . . . . . . . . . . . . .252 Continuous unidirectional fiber reinforced polymers (FRP), abrasive wear . . . . . . . . .1029, 1032, 1033 Continuum mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . .581 ductile plastic flow modeling . . . . . . . . . . . . . . . . . . .617 macroscopic and microscopic . . . . . . . . . . . . . . . . . .561 models for fractures . . . . . . . . . . . . . . . . . . . . . . . . . . . . .581 Contraction hindered as casting defect . . . . . . . . . . . . . . . . . . . . . .110 irregular as casting defect . . . . . . . . . . . . . . . . . . . . . . .110 Contributing factors, of failure modes, instantaneous and progressive . . . . . . . . . . . . .345 Controlled-current method, electrochemical testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 407, 752 Controlled-potential method . . . . . . . . . . . . . . . . . . . . .752 electrochemical tests Controlled wear, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18–19 Control part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .319 Convergent-beam electron diffraction technique (CBED), in failure analysis . . . . . . . . . . . . . . .338 Conversion coatings, for corrosion resistance . . .759 Conveyers, vertical lift for mail-sorting facilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Coolant for grinding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .505 use with strain gages used to monitor sectioning samples prior to XRD analysis . . . . . . . . . . . .489 water soluble, stress-corrosion cracking . . . . . . . .848 Cooling power, of quenchants . . . . . . . . . . . . . . . . . . . .206 Cooling systems, prevention approach for corrosion in industrial facilities . . . . . . . . . . . . . . . . . . . . . .893 Cooling tower pipe, fatigue fracture of welded steel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168–169 Cooling towers, prevention approach for corrosion in industrial facilities . . . . . . . . . . . . . . . . . . . . . .893

Cooling water systems, microbially induced corrosion diagnosis factors . . . . . . . . . . 887, 888 Cope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .104 Cope defects, casting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .108 Cope spall, as casting defect . . . . . . . . . . . . . . . . . . . . . .109 Copper causing liquid metal induced embrittlement . . . 865, 866 causing liquid or solid metal induced embrittlement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .862 cavitation erosion, incubation time . . . . . . . . . . . 1004 compatibility with various manufacturing processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 corrosion-fatigue cracks . . . . . . . . . . . . . . . . . . . . . . . .721 corrosion resistance to microbially induced corrosion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .890 in dissimilar metal pair, fretting damage . . . . . . .928 effect on rupture ductility . . . . . . . . . . . . . . . . . . . . . . .736 effect on time-to-fracture of copper by stresscorrosion cracking in ammoniacal atmosphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .853 electrolytic tough pitch, fatigue fracture showing striations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .635 electrolytic tough pitch, intergranular fatigue . .637 as embrittling metal . . . . . . . . . . . . . . . . . . . . . . . . . . . . .862 erosion rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1005 erosion rate in mineral oil . . . . . . . . . . . . . . . . . . . . 1007 erosion wear of waterline pipe . . . . . . . . . . . . . . . . .999 fretting damage of rod in electrical contacts . . .926 fretting wear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .930 galvanic corrosion . . . . . . . . . . . . . . . . . . . . . . . . . 762, 767 galvanic series in seawater . . . . . . . . . . . . . . . . . . . . . .762 gas causing porosity in . . . . . . . . . . . . . . . . . . . . . . . . . .115 hardness vs. amplitude of slip in fretting . . . . . . .928 helical tensile fracture . . . . . . . . . . . . . . . . . . . . 561, 562 high-purity, fracture mechanism by void nucleation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .593 hydrogen damage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .817 impact wear coefficient values . . . . . . . . . . . . . . . . . .971 liquid embrittlers of . . . . . . . . . . . . . . . . . . . . . . . . . . . . .646 local and diffuse necking . . . . . . . . . . . . . . . . . 597, 599 manganese bronze, decohesive rupture of worm gear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .676 maximum erosion rate dependence in cavitation erosion on combined parameter . . . . . . . . . 1016 as molten metal corrodent . . . . . . . . . . . . . . . . . . . . . .873 oxidation potential in endothermic gas . . . . . . . . .214 oxygen-free, high-conductivity wavy slip . . . . . 580, 581 phosphorus-deoxidized, stress-corrosion cracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .855 pitting corrosion of heat exchanger tube . . . . . . 356, 357 pure, stress-corrosion cracking . . . . . . . . . . . 831, 832 qualitative chemical testing for materials identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .431 removed from alloys by selective leaching . . . . .785 standard emf series value . . . . . . . . . . . . . . . . . . . . . . .763 stress-corrosion cracking . . . . . . . . . . . . . . . . . . 853–856 uniform corrosion . . . . . . . . . . . . . . . . . . . . . . . . . 768–769 x-ray elemental composition map made with electron microprobe . . . . . . . . . . . . . . . . . . . . . . .865 Copper alloys causes of stress-corrosion cracking . . . . . . . . . . . . .831 cavitation erosion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1003 centrifugal casting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .132 compatibility with various manufacturing processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 corrosion-fatigue cracks . . . . . . . . . . . . . . . . . . . . . . . .721 corrosion resistance to microbially induced corrosion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .890 dezincification of tube from water supply . . . . . 786, 787 die casting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125, 126 erosion-corrosion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .791 galvanic corrosion . . . . . . . . . . . . . . . . . . . . . . . . . 762, 767 hydrogen damage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .817 intergranular corrosion . . . . . . . . . . . . . . . . . . . . 784–785 liquid metal induced embrittlement . . . . . .862, 864– 865 permanent-mold casting material . . . . . . . . . . . . . . .124 squeeze casting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .129 stress-corrosion cracking . . 828–830, 832, 853–856

© 2002 ASM International. All Rights Reserved. ASM Handbook Volume 11: Failure Analysis and Prevention (#06072G)

substances in atmospheric environments causing stress-corrosion cracking . . . . . . . . . . . . . . . . . .832 uniform corrosion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .767 Copper alloys (in presence of aerated aqueous NH3), causes of stress-corrosion cracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .831 Copper alloys, specific types C10200 overheating and burning effects on forgings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 C11000 overheating and burning effects on forgings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 C22000 liquid metal induced embrittlement . . . . . .862, 864– 865 C23000 dezincification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .786 stress-corrosion cracking . . . . . . . . . . . . . . . . . . . . .854 C26000 corrosion fatigue . . . . . . . . . . . . . . . . . . . . . . . 836, 837 C26000 dezincification . . . . . . . . . . . . . . . . . . . . .785, 786, 787 intergranular corrosion . . . . . . . . . . . . . . . . . . . . . . .784 stress-corrosion cracking . . . . . . . . . . . . . . . 836, 837 C26800 stress-corrosion cracking . . . . . . . . . . . . . . . . . . . . .832 C27000 stress-corrosion cracking . . . . . . . . . . . . . . . . . . . . .854 C28000 dezincification of tubes . . . . . . . . . . . . . . . . . 786, 787 C44300 dezincification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .786 C44300 stress-corrosion cracking . . . . . . . . . . . . . . . 855–856 C46400 stress-corrosion cracking . . . . . . . . . . . . . . . 854–855 C64700 stress-corrosion cracking . . . . . . . . . . . . . . . . . . . . .829 C65500 stress-corrosion cracking of contact-finger retainers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 828–830 C68700 dezincification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .786 C68700 microbially induced corrosion of power stations condenser tubing . . . . . . . . . . . . . . . . . . . . . . . . . . .890 C68700 velocity-affected corrosion . . . . . . . . . . . . . . . . . . .791 C70600 microbially induced corrosion of condenser tubing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .890 cavitation erosion in seawater . . . . . . . . . . . . . . . .793 denickelification . . . . . . . . . . . . . . . . . . . . . . . . 788, 789 impingement erosion of tube . . . . . . . . . . . . . . . . .999 microbially induced corrosion of power station condenser tubing . . . . . . . . . . . . . . . . . . . . . . . . . . .890 C71500 velocity-affected corrosion . . . . . . . . . . . . . . . . . . .791 C85800 composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .125 C87800 composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .125 C87900 composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .125 C92200 cavitation erosion in seawater . . . . . . . . . . . . . . . .793 C92300 cavitation erosion in seawater . . . . . . . . . . . . . . . .793 C95500 cavitation erosion in seawater . . . . . . . . . . . . . . . .793 C95700 cavitation erosion in seawater . . . . . . . . . . . . . . . .793 G CuAl9NiFe, cavitation erosion . . . . . . . . . . . . . 1004 Cu-2Al erosion rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1005 Cu-6Al erosion rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1005 Cu-9Al erosion rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1005 Cu-9Al-3Ni-2Fe erosion rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1005 Cu-9Al-5Ni-4Fe

erosion rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1005 Cu-10Al-5Ni-5Fe erosion rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1005 Cu-25Au dealloying of noble metals . . . . . . . . . . . . . 788, 790 Cu-41Mn-Al-Fe erosion rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1005 Cu-3Sn-3Pb erosion rate in mineral oil . . . . . . . . . . . . . . . . . . 1007 Cu-20%Zn polishing with pitting damage . . . . . . . . . . . . . . .506 Cu-30Zn erosion rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1005 Cu-35Zn-3Pb erosion rate in mineral oil . . . . . . . . . . . . . . . . . . 1007 Cu-38Zn-2Pb erosion rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1005 70Cu-30Ni erosion-corrosion of tube . . . . . . . . . . . . . . . . . . . . .353 galvanic series in seawater . . . . . . . . . . . . . . . . . . .762 stress-corrosion cracking . . . . . . . . . . . . . . . . . . . . .856 80Cu-20Ni galvanic series in seawater . . . . . . . . . . . . . . . . . . .762 90Cu-10Ni galvanic series in seawater . . . . . . . . . . . . . . . . . . .762 weldment underfill . . . . . . . . . . . . . . . . . . . . . 175, 177 80Cu-20Zn (brass) annealed plastic deformation . . . . . . . . . . . . . . . . .570 cold worked plastic deformation . . . . . . . . . . . . .570 92Cu-8Zn microbially induced corrosion of piping . . . . .890 Copper checking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .866 Copper-copper sulfate-sulfuric acid test, to evaluate intergranular corrosion in stainless steels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .779 Copper electroplating, of fracture surfaces for fracture profiles . . . . . . . . . . . . . . . . . . . . . . 539, 540 Copper fluoride (CuF2), as filler for nylon promoting wear resistance . . . . . . . . . . . . . . . 1025 Copper inclusions, in weldments . . . . . . . . . . . 172–174 Copper in some acids, removed from alloys by selective leaching . . . . . . . . . . . . . . . . . . . . . . . . . .785 Copper-lead phase diagram . . . . . . . . . . . . . . . 367, 368 Copper-nickel alloys corrosion resistance to microbially induced corrosion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .890 denickelification . . . . . . . . . . . . . . . . . . . . . . . . . . . 788, 789 environments subjecting alloy to selective leaching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .785 weldments porosity . . . . . . . . . . . . . . . . . . . . . . . . . . . . .170 Copper-nickel-chromium-molybdenum alloys, fretting wear of orthopedic implants . . . . . .931 Copper oxide (CuO), as filler for nylon promoting wear resistance . . . . . . . . . . . . . . . . . . . . 1025, 1026 Copper salts, removed as antifoulant in marine paints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .894 Copper silicon, hardness vs. amplitude of slip in fretting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .928 Copper sponge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .750 Copper steels, accelerated cracking, causes of stress-corrosion cracking . . . . . . . . . . . . . . . . . .831 Copper sulfate carbonate . . . . . . . . . . . . . . . . . . . . . . . .890 Copper sulfides as corrosion products in microbially induced corrosion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .890 as filler for nylon promotion wear resistance . . . . . . . . . . . . . . . . . . . . . . . . . . 1025, 1026 Copystand, photographic . . . . . . . . . . . . . . . . . . . . . . . . .419 Core broken or crushed, as casting defect . . . . . . . . . . . .105 raised, as casting defect . . . . . . . . . . . . . . . . . . . . . . . . .105 shifted, as casting defect . . . . . . . . . . . . . . . . . . . . . . . .111 Core shrinkage, as casting defect . . . . . . . . . . . . . . . .106 Corner blowholes, as casting defect . . . . . . . . . . . . . .106 Corner joints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .162 Corner scab, as casting defect . . . . . . . . . . . . . . . . . . . .105 Corner shrinkage, as casting defect . . . . . . . . . . . . .106 Corner thinning, and cold forming . . . . . . . . . . . . . .102 Cornstarch slurry, causing intergranular corrosion in sensitized austenitic stainless steels . . . .779 Correction factor for stress-intensity factor . . . . . . . . . . . . . . . . . . . . . . . .234 Correction factors, for test data . . . . . . . . . . . . . . . . .702

www.asminternational.org

Index / 1103 Corrective action tests for . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .407 Corrective Action Assessment (CAA) chart . . . .328 Corrective Action Tree . . . . . . . . . . . . . . . . . . . . . . . . . . .331 Corrosion. See also Cavitation; Chloride stresscorrosion cracking; Corrosion failure(s); Corrosion fatigue; Crevice corrosion; Denickelification; Dezincification; Erosioncorrosion; Exfoliation; Filiform corrosion; Fretting corrosion; Galvanic corrosion; General corrosion; Graphitic corrosion; Impingement attack; Interdendritic corrosion; Intergranular corrosion; Internal oxidation; Oxidation; Parting; Pitting; Poultice corrosion; Rust; Selective leaching; Straycurrent corrosion; Stress-corrosion cracking; Sulfide stress cracking. . . . . . . . . . . . . . . . . .18, 20 by acetic acid . . . . . . . . . . . . . . . . . . . . . . . .749, 482–783 alloy composition changes for control of . . . . . .755 annual cost in U.S. (1998) . . . . . . . . . . . . . . . . . . . . . .749 anodic protection . . . . . . . . . . . . . . . . . . . . . . . . . . 755–757 aqueous . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .768 atmospheric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .768 by brine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .776, 788, 815 and brittle fractures . . . . . . . . . . . . . . . . . . . . . . . . . . . . .523 cathodic protection . . . . . . . . . . . . . . . . . . . . . . . . 755–757 causing service failures of weld . . . . . . . . . . . . . . . .156 of ceramics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .370 characteristics of failure mode . . . . . . . . . . . . . . . . . .345 by citric acid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 781–782 classification of related failure . . . . . . . . . . . . 355–356 and cold forming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .102 conversion coatings for resistance to . . . . . . . . . . .759 crater corrosion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .777 by cupric sulfate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .781 damage features . . . . . . . . . . . . . . . . . . . . . . . . . . . 354–356 as damage mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .347 data incompleteness or inconsistency . . . . . . . . . .753 data on Internet web sites . . . . . . . . . . . . . . . . . . . . . . .753 dealloying . . . . . . . . . . . . . . . . . . . . . . 768, 785, 788, 790 dealuminification . . . . . . . . . . . . . . . . . . . . .787, 788, 789 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18, 405, 1064 denickelification . . . . . . . . . . . . . . . . . . . . . . . . . . . 788, 789 design considerations . . . . . . . . . . . . . . . .232, 755, 756 desiliconification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .788 destannification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .788 dezincification . . . . . . . . . . . . . . . . . . . . . . . .785–786, 787 of dissimilar metals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 effect on chemical analysis results . . . . . . . . . . . . .430 effect on fracture surface and failure analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .335 effect on x-ray diffraction residual stress measurement . . . . . . . . . . . . . . . . . . . . . . . . . 486–487 electrochemical nature of . . . . . . . . . . . . . . . . . . . . . . .749 environmental conditions . . . . . . . . . . . . . . . . . . . . . . .755 environmental control . . . . . . . . . . . . . . . . . . . . . . . . . . .755 as environment contributing to damage mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . 347–348 examination methods . . . . . . . . . . . . . . . . . . . . . . . . . . .345 factors affecting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .405 by ferric chloride . . . . . . . . . . . . . . . . . . . . . . . . . . 788, 790 by ferric sulfate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .781 by formic acid . . . . . . . . . . . . . . . . . . . . . . . .749, 782–783 forms of, basic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .355 galvanic protection . . . . . . . . . . . . . . . . . . .755–757, 764 general . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .761 graphitic corrosion . . . . . . . . . . . . . 786–787, 788, 789 by “Green Death” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .775 by hot gases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 804, 805 by hydrochloric acid . . . . . .749, 750, 769, 770, 781 by hydrofluoric acid . . . . . . . . . . . . . . . . . . . . . . . 749, 815 by hydrogen sulfide . . . . . . . . . . . . . . . . . . . . . . . . . . . . .815 by hydrogen sulfide gas . . . . . . . . . . . . . . . . . . . . . . . . .755 inhibitor use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 757–758 intergranular, as casting defect . . . . . . . . . . . . . . . . .107 by iron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .769 as life-limiting factor . . . . . . . . . . . . . . . . . . . . . . . . . . . .234 liquid-metals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .768 by lithium hydride . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .788 localized . . . . . . . .751, 755, 756, 763, 764, 767, 781 material properties related to . . . . . . . . . . . . . . . . . . . . 36 metallic, forms of . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .405 microbial involvement in . . . . . . . . . . . . . . . . . 881–882

© 2002 ASM International. All Rights Reserved. ASM Handbook Volume 11: Failure Analysis and Prevention (#06072G)

www.asminternational.org

1104 / Index

Corrosion (continued) by molten salts . . . . . . . . . . . . . . . . . . . . . . .768, 804, 805 monetary loss in U.S. annually due to . . . . . . . . . .325 by nitric acid . . . . . . . . . . . . . .769, 770, 780, 781, 784 of nonmetallic materials . . . . . . . . . . . . . . . . . . . . . . . .405 by oxalic acid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 780, 781 ozone treatment for microbially induced corrosion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .755 pH control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .755 by phosphoric acid . . . . . . . . . . . . . . . . . . .749, 781–782 preventive techniques . . . . . . . . . . . . . . . . . . . . . . . . . . .751 processing/fabrication operations effect . . . . . . . .405 product layering effect . . . . . . . . . . . . . . . . . . . . . . . . . .752 qualitative energy-dispersive spectrometry microchemical analysis . . . . . . . . . . . . . . . . . . . .435 rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 752–753 root cause resulting in . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 scale buildup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .754 by sweater . . . . . . . . . . . 776, 777, 787, 788–793, 812 by sodium chloride (brine) . . . . . . . . . . . . . . . . 776, 788 by soil containing sulfates . . . . . . . . . . . . . . . . 787, 788 splash-zone corrosion . . . . . . . . . . . . . . . . . . . . . . . . . . .776 stray-current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .768 by sulfuric acid . . . . . . . . . . . .749, 757, 769, 770, 780 surface modification for resistance to . . . . 759–760 testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .752 transgranular . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .761 of turbine blades . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .296 types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 752–753 uniform . . . . . . . . . 751, 755, 761, 765–766, 767–771 velocity-affected . . . . . . . . . . . . . . . . . . . . .761, 788–793 by water . . 772, 773–774, 784, 786, 787, 788–793, 812 of weldments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156–157 Yankee dryer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 387–388 Corrosion allowances . . . . . . . . . . . . . . . . . . . . . . . . . . . . .232 Corrosion-assisted fatigue, driven by two environments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .348 Corrosion-assisted high-cycle fatigue, stainless steel gas turbine blades . . . . . . . . . . . . . . . . . . . .341 Corrosion cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .882 Corrosion failures . . . . . . . . . . . . . . . . . . . . . . . . . . 749–760 aboveground storage tank . . . . . . . . . . . . . . . . . 753–754 aircraft freshwater tanks of stainless steel . . . . . .773 analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .405, 751–755 buried pipelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .754 documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 751, 752 elbow of pipe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .792 in failure analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .337 feedwater pressure tube . . . . . . . . . . . . . . . . . . . 788, 789 heat exchanger tubes of stainless steel . . . . . . . . .777 helicopter tail rotor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .766 pipe for fire protection system water supply . . 787, 788 piping of fire-sprinkler system on ferry . .789–790, 791 preventive measures for metals . . . . . . . . . . . 755–760 reboiler bypass duct damper . . . . . . . . . . . . . . . . . . . .775 saw cutting vs. torch cutting . . . . . . . . . . . . . . . . . . . .751 ship hull . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .778 storm sewer piping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .753 valve in soda-dispensing system . . . . . . . . . . 781–782 wastewater tunnel structure . . . . . . . . . . . . . . . . . . . . .755 of weld in wastewater vaporizer . . . . . . . . . . 782–783 wires in electrostatic precipitator at paper plant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 774–775 Corrosion fatigue . . . . . 337, 347, 490–491, 634–635, 875–876 of boiler tube . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .634 causing service failures of welds . . . . . . . . . . . . . . .156 of copper alloys . . . . . . . . . . . . . . . . . . . . . . . . . . . 836, 837 and cyclic stresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .831 as damage mechanism on failure wheel . . . . . . . .349 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1064 and fatigue fractures . . . . . . . . . . . 721–722, 774–775 fireside, as damage mechanism for boiler tubing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .347 loading types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 material properties related to . . . . . . . . . . . . . . . . . . . . 36 material selection criteria . . . . . . . . . . . . . . . . . . . . . . . . 35 microbial involvement . . . . . . . . . . . . . . . . . . . . . . . . . .884 operating temperatures . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 resulting in fatigue damage mode . . . . . . . . . . . . . .344 stainless steel wires around insulators in wet scrubbing systems . . . . . . . . . . . . . . . . . . . 340–341

of steam-turbine blade . . . . . . . . . . . . . . . . . . . . 774–755 stress types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 waterside, as damage mechanism for boiler tubing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .347 wires in electrostatic precipitator in paper plant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 774–775 Corrosion inhibitor(s) . . . . . . . . . . . 750, 757–758, 768 in aqueous environment . . . . . . . . . . . . . . . . . . . . . . . . .812 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .750 effect on microbially induced corrosion . . . . . . . .885 factors affecting systems . . . . . . . . . . . . . . . . . . . . . . . .758 in low-velocity water system . . . . . . . . . . . . . . . . . . .788 in lubricants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .410 to resist corrosive wear . . . . . . . . . . . . . . . . . . . . . . . . .992 silicate-type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .777 for stress-corrosion cracking . . . . . . . . . . . . . . 838–839 for working fluids, to prevent stress-corrosion cracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .833 Corrosion jacking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .387 Corrosion potential, as electrochemical monitoring method used for microbially induced corrosion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .892 Corrosion products, chemical analysis of . . . . . . .406 Corrosion resistance as criteria for materials selection . . . . . . . . . . . . . . . . 32 specification in purchase agreement . . . . . . . . . . . .344 Corrosion-resistant castings, defects . . . . . .147–149, 150 Corrosion-resistant steels centrifugal casting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .132 stress-corrosion cracking . . . . . . . . . . . . . . . . . . . . . . . .833 Corrosion testing . . . . . . . . . . . . . . . . . . . . . . . . . . . 406–407 types of . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .752 Corrosive wear . . . . . . . . . . . . . . . . . . . . . 32–33, 989–993 cathodic protection for resistance to . . . . . . . . . . . .992 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 409–410 claddings for resistance to . . . . . . . . . . . . . . . . . . . . . .992 by coal gasification . . . . . . . . . . . . . . . . . . . . . . . . . . . . .990 corrosion inhibitors for resistance to . . . . . . . . . . .992 by crushing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 989–990 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .989, 1064 design of wear-resistant slurry pumps for control of . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 992–993 environmental factors . . . . . . . . . . . . . . . . . . . . . . . . . . .990 by grinding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 989–990 from grinding, impact and three-body abrasivecorrosive wear . . . . . . . . . . . . . . . . . . . . . . . 991–992 hard facings for resistance to . . . . . . . . . . . . . . . . . . .992 by high-temperature processes . . . . . . . . . . . . . . . . . .990 liners for resistance to . . . . . . . . . . . . . . . . . . . . . . . . . .992 materials selection for resistance to . . . . . . . . . . . .992 patching with welds for resistance to . . . . . . . . . . .992 by power-generation plant processes . . . . . . . . . . .990 products, and mass transfer of oxygen . . . . . . . . .991 by sliding wear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .989 slurry conditioning for resistance to . . . . . . . . . . . .992 slurry handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .989 slurry parameters for resistance to . . . . . . . . . . . . . .992 solution conditioning for resistance to . . . . . . . . . .992 surface treatment for resistance to . . . . . . . . . . . . . .992 two-body, slurry particle impingement on . . . . 990– 991 Corundum formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .877 melting point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .877 Cost effect on materials selection . . . . . . . . . . . . . . . . . . . . . 34 of modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .377 Cost/benefit analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Cottrell’s model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .589 Coulomb-Mohr fracture criteria . . . . . . . . . . . . . . . .473 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1064 Coulomb-Mohr model . . . . . . . . . . . . . . . . . . . . . . . . . . .565 Counting frame . . . . . . . . . . . . . . . . . . . . . . . .548, 549, 550 Couple action . . . . . . . . . . . . . . . . . . . . . . . . . .761, 762, 763 Coupling nuts, stress-corrosion cracking . . . 851–852 Couplings, embrittlement of nylon . . . . . . . . . 448, 450 Coupon tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .238 COV. See Coefficient of variation. Covalent bond, bond energy in various materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .650 Cover-coat enamels, as corrosion-resistant coatings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .758

Covers, brittle fracture of acrylonitrile-butadienestyrene resins . . . . . . . . . . . . . . . . . . .449–450, 452 CP. See Cathodic protection. Crack(s) abusive grinding as cause . . . . . . . . . . . .511–512, 513 in bulk working . . . . . . . . . . . . . . . . . . . . . . . 99–100, 101 in cold forging, classification scheme by Greek letters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 cold, in weldments . .158, 170, 179, 181–183, 184, 186, 187 cold, surface feature as cause for rejection . . . . .156 corrosion-fatigue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .721 in corrosion-resistant castings . . . . . . . . . . . . . . . . . .148 crater, surface feature as cause for rejection . . .156 crater, in weldments . . . . . . . . . . . . . . . . . . . . . . . 184, 190 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1064 die-contact surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .100 ductile, nucleation . . . . . . . . . . . . . . 591–593, 594, 595 in forgings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 as flaw in rolled bars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 grain-corner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 575, 734 growth strain localization effect . . . . . . . . . . 622–623 hook, in weldments . . . . . . . . . . . . . . . . . . . . . . . . . . . . .191 hot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .691 hot, in weldments . . .158, 170, 179, 184–185, 186, 188, 190 hot-shortness, in weldments . . . . . . . . . . . . . . . . . . . .189 hot, surface feature as cause for rejection . . . . . .156 hydrogen-induced, in weldments . . 170, 179, 181– 183, 184 in ingots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .83, 90 initiation, strain localization effect . . . . . . . 622–623 internal, in forgings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 liquation, in weldments . . . . . . . . . . . . . . . . . . . 170, 184 longitudinal, surface feature as cause for rejection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .156 nucleation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .589 nucleation, and twinning . . . . . . . . . . . . . . . . . . 590–591 in permanent-mold castings . . . . . . . . . . . . . . . . . . . . .124 promoted by alloy depletion . . . . . . . . . . . . . . . . . . . .215 quench, and component design . . . . . .198–199, 203 and quenchant severity effect . . . . . . . . . . . . . 205–206 quench, in weldments . . . . . . . . . . . . . . . . . . . . . . . . . . .187 in reaustenitized zones of forging . . . . . . . . 511, 512 restraint, in weldments . . . . . . . . . . . . . . . . . . . . . . . . . .188 selective quenching for suppression of . . . 213, 214 solidification, in weldments . . . . . . . . . . . . . . . 170, 184 stress-relief, in weldments . . . . . . . . . . . . . . . . . . . . . .184 subcritical . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .478 subsurface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219, 220 surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .219 through-wall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .231 transverse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 612, 617 transverse, surface feature as cause for rejection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .156 triple point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 575, 734 with volume changes during phase transformations . . . . . . . . . . . . . . . . . . . . . . 196, 200 wedge “w-type” . . . . . . . . . . . . . . . . . . . . . . . . . . . 575, 734 as welding defect of castings . . . . . . . . . . . . . . . . . . .152 in weldments . . 158, 169, 170, 179, 181–184, 186, 187, 191 at weld toe, surface feature as cause for rejection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .156 W-shape fronts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .716 Cracking, as damage mechanism for boiler tubing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .347 Crack-arrest of corrosion-resistant castings . . . . . . . . . . . . . . . . . .148 of polymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .659 Crack arrest lines . . . . . . . . . . . . . . . 566–568, 612–613 in corrosion-fatigue fractures of wires . . . . 774–775 macroscale fractographic implication . . . . . . . . . . .560 of polymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 659, 660 Crack arrest marks . . . . . . . . . . . . . . . . . . . . . . . . 567–568 in casting fractures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .610 of polymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .659 Crack arrest profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Crack bifurcation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .561 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1064 factors causing change . . . . . . . . . . . . . . . . . . . . . . . . . .562 Crack blunting . . . . . . . . . . . . . .566, 567, 581, 584, 611 Crack branching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .397

© 2002 ASM International. All Rights Reserved. ASM Handbook Volume 11: Failure Analysis and Prevention (#06072G)

of polymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .658 in stress-corrosion cracking . . . 835, 843, 844, 845, 846, 852, 856 Crack closure stress intensity (Kcl) . . . . . . . . . . . . . .542 Crack curvature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .574 Crack deflection, measure of . . . . . . . . . . . . . . . . . . . . .545 Crack extension. See also Crack length (a) or depth; Effective crack size; and Physical crack size definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1064 Crack extension force, definition . . . . . . . . . . . . . . 1064 Crack fronts, shape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .633 Crack growth computer software programs . . . . . . . . . . . . . . . . . . . .283 creep behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .733 Crack growth rate . . . . . . . . . . . . . . . . . . . . .279, 480–481 for aircraft wing . . . . . . . . . . . . . . . . . . . . . . . . . . . 237, 238 calculation of . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .283 of circular penetration in aluminum pressurized fuselage . . . . . . . . . . . . . . . . . . . . . . . . .279, 285, 286 determination of . . . . . . . . . . . . . . . . . . . . . . . . . . . 235–238 predicted vs. measured . . . . . . . . . . . . . . . . . . . . 237, 238 Crack growth velocity . . . . . . . . . . . . . . . . . . . . . . . . . . 1032 Cracking from hydride formation, metals affected and conditions for . . . . . . . . . . . . . . . . . . . . . . . . .809 Cracking from precipitation of internal gaseous hydrogen, metals affected and conditions for . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .809 Crack initiation cold shut in gray iron paper-drier head . . . . . . . . .122 at inner edge of lubrication hole of stuffing box . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .137 modeling with fracture mechanics . . .581–582, 583 Crack length (a) or depth . . . . . . . . . . . . . . . . . . . . . . . .476 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1064 Crack mouth displacement range . . . . . . . . . . . . . . .743 Crack mouth opening displacement (CMOD). See Crack tip opening displacement (CTOD). Crack on surface, tightly closed, macroscale fractographic implication . . . . . . . . . . . . . . . . . .560 Crack opening displacement (COD). See Crack tip opening displacement (CTOD). Crack plane orientation and growth system, definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1064 Crack promoters, defects as . . . . . . . . . . . . . . . . . . . . .104 Crack propagation . . . . . . . . . . . . . . . . . . . . . . . . . 522, 659 in ceramics, testing of . . . . . . . . . . . . . . . . . . . . . . . . . .959 in polymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 654–655 Crack size (a) See also Crack length (a) or depth. definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1064 Crack size at occurrence of overload . . . . . . . . . . .283 Crack tip, stress concentration . . . . . . . . . . . . . . . . . . .581 Crack tip blunting . . . . . . . . . . . . . . . 567, 611, 612, 616 in casting fractures . . . . . . . . . . . . . . . . . . . . . . . . 611, 614 Crack tip opening displacement (CTOD) . . . . . 243, 244, 246 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1064 and lineal profile roughness parameter . . . . . . . . .541 relation to fracture toughness . . . . . . . . . . . . . 567, 584 residual compressive stress effect . . . . . . . . . . . . . .496 Crack tip opening displacement (CTOD) design curve method . . . . . . .160, 283, 479, 480, 481 Crack-tip plane strain, definition . . . . . . . . . . . . . . 1064 Crack tip shielding effect . . . . . . . . . . . . . . . . . . . . . . . .959 Crack-tip stress-intensity factor . . . . . . . . . . . . . . . . .703 Crack tunneling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 567–568 Crankcases, casting stresses in gray iron . . .135–136, 137, 138 Crank pin, fatigue failure . . . . . . . . . . . . . . . . . . . . . . . . .628 Crankshafts cavitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1007 fatigue fracture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .352 misalignment as abnormal condition . . . . . . . . . . .394 quench cracking from nonuniform quenching . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208, 210 CRASH (computer program), for analyzing motor vehicle accidents . . . . . . . . . . . . . . . . . . . . . . . . . . .377 Crater cracks, in weldments . . . . . . . . . .158, 184, 190 Craters, in weldments . . . . . . . . . . . . . . . . . . . . . . 169, 190 Craze . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .651 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .656 formation of . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 568, 569 Craze fibrils . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .652 Craze yielding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .656

leading to brittle fractures . . . . . . . . . . . . . . . . 656, 657 Crazing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .651, 652, 653 crack formation from . . . . . . . . . . . . . . . . . . . . . 656–657 leading to brittle fractures . . . . . . . . . . . . . . . . . . . . . .656 of polyacetal latch assemblies . . . . . . . . . . . . . . . . . .455 as polymer failure mechanism . . . . . . .367–368, 369 solvents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 652–653 Creep . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .347 in boiler plate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 733, 735 as boiler tube damage mechanism on failure wheel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .350 bulk behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 728–730 and carbon-nitrogen interaction with hightemperature corrosion . . . . . . . . . . . . . . . . . . . . .870 causing cracking of glaze oxide layer in fretting wear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .931 cavitation damage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .731 characteristics of failure mode . . . . . . . . . . . . . . . . . .345 crack growth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .733 cyclic frequency under fluctuating stress . . . . . . .718 damage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 731, 732 damage level correlation with life fraction consumed . . . . . . . . . . . . . . . . . . . . . . . . . . . . 731, 732 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .234, 1064 effect on fracture mechanics analysis of turbine casing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .744 as elevated-temperature failure in gas turbines . . . . . . . . . . . . . . . . . . . 289, 290–291, 296 examination methods used and surface magnification possible . . . . . . . . . . . . . . . 345, 672 of gas turbine components . . . . . . . . . . . . . . . . 297, 298 high-temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .876 influencing intergranular fracture . . . . . . . . . 642, 645 intergranular brittle fracture . . . . . . . . . . . . . . . . . . . .675 loading types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 location on failure wheel . . . . . . . . . . . . . . . . . . . . . . .349 material properties related to . . . . . . . . . . . . . . . . . . . . 36 material selection criteria . . . . . . . . . . . . . . . . . . . . . . . . 35 metallographic examiniation of damage . . . . . . . .365 microstructural changes . . . . . . . . . . . . . . . . . . . 730–731 mold, as casting defect . . . . . . . . . . . . . . . . . . . . . . . . . .111 nitride strengthening . . . . . . . . . . . . . . . . . . . . . . . . . . . .730 nonclassical behavior . . . . . . . . . . . . . . . . . . . . . . . . . . .730 operating temperatures . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 and overload failures . . . . . . . . . . . . . . . . . . . . . . . . . . . .682 oxide strengthening . . . . . . . . . . . . . . . . . . . . . . . . . . . . .730 of polycarbonate switch housing . . . . . . . . . . . . . . .457 in polymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .367 primary or transient . . . . . . . . . . . . . . . . . . . . . . . . . . . . .730 replication methods for assessment of . . . . 731, 732 secondary or steady-state . . . . . . . . . . . . . . . . . . . . . . .730 stages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .729 steady-state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .729 stress types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 temperatures for onset in select alloy groups . .729 tertiary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 730, 733 turbine vane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .728 Creep cavitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .240 Creep cavitation damage assessment . . . . . 289, 298 life assessment technique for elevated-temperature exposure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .240 of power plant piping and tubing . . . .304, 305–306 Creep cracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .728 elastic-plastic fracture mechanics concepts used . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .478 Creep damage and folds of fracture surface . . . . . . . . . . . . . . . . . . . .545 of nickel-base superalloys used for gas turbine blades . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .294 Creep deformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .728 stages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .729 Creep embrittlement effect on overload failures . . . . . . . . . . . . . . . . . . . . . .695 of superheater tube . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .695 Creep failure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .728 avoidance methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .729 Creep fatigue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 736–737 Creep fatigue interaction as damage mechanism on failure wheel . . . . . . . .349 resulting in fatigue damage mode . . . . . . . . . . . . . .344 Creep fracture profile . . . . . . . . . . . . . . . . . . . . . . 542, 543 Creep life fraction consumed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .240

www.asminternational.org

Index / 1105 remaining determination of . . . . . . . . . . . . . . . . . . . . .298 Creep rate. See also Minimum creep rate. definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1064 relationship with various failure modes . . . . .35, 36 Creep-rupture embrittlement . . . . . . . . . . . . . . . . . . .736 Creep rupture strength definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1064 environmental stress cracking effect . . . . . . . . . . . .797 polyethylene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .798 Creep strain, definition . . . . . . . . . . . . . . . . . . . . . . . . . 1064 Creep strength, definition . . . . . . . . . . . . . . . . . . . . . . 1064 Creep stress, definition . . . . . . . . . . . . . . . . . . . . . . . . . 1064 Creep testing, of polymers . . . . . . . . . . . . . . . . . . . . . . .446 Crevice corrosion . . . . .337, 751, 755, 761, 763, 765, 770, 771, 775–777, 876 brine tank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .776 as damage mechanism on failure wheel . . . . . . . .349 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1064 failure reduction measures . . . . . . . . . . . . . . . . . . . . . .777 features observed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .356 heat exchanger tubes . . . . . . . . . . . . . . . . . . . . . . . . . . . .777 implant materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .777 from microbially induced corrosion . . . . . 883, 884, 887, 889 solid deposits effects . . . . . . . . . . . . . . . . . . . . . . . . . . . .777 under thermal insulation . . . . . . . . . . . . . . . . . . 776–777 tray deck . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 775–776 tube in piping system . . . . . . . . . . . . . . . . . . . . . . . . . . .776 Cristobalite formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .877 melting point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .877 Critical amplitude . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .925 Critical cooling rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .193 Critical crack length . . . . . . . . . . . . . . . . . . . . . . . . . . . . .279 of circular penetration in aluminum pressurized fuselage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279, 285 prediction of . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .477 Critical crack size . . . . . . . . . . . . . . . . . . . . .233, 478, 657 Critical design review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 Critical excitation energy (Ec) . . . . . . . . . . . . . . . . . . .519 Critical excitation voltage of the x-ray . . . . . . . . .520 Critical flange crack depth . . . . . . . . . . . . . . . . 248–249 Critical flaw size . . . . . . . . . . . . . . . . . 475, 478, 595, 686 computation of . . . . . . . . . . . . . . . . . . . . . . . . . . . . 401, 705 Critical groove size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .913 Critical item list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 Critical normal stress law . . . . . . . . . . . . . . . . . 587–588 Critical resolved shear stress law . . . . . . . . . . . . . . .588 Critical shear stress law . . . . . . . . . . . . . . . . . . . . . . . . .588 Critical stress-crack size . . . . . . . . . . . . . . . . . . . 246, 247 Critical stress intensity . . . . . . . . . . . . . . . . . . . . . 478, 686 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .401 factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .478 Critical stress regions . . . . . . . . . . . . . . . . . . . . . . . . . . . .474 Critical thickness . . . . . . . . . . . . . . . . . . . . . . . . . . . 603, 607 Cross-correlation method . . . . . . . . . . . . . . . . . . . . . . . .487 Cross direction. See Transverse direction. Crosshead of industrial compressor, brittle fracture of cast steel . . . . . . . . . . . . . . . . . . . . . . . . . . 153–154 Cross-linked polymer, swelling . . . . . . . . . . . . . . . . . .796 Cross-linked thermosetting coatings, as corrosionresistant coatings . . . . . . . . . . . . . . . . . . . . . . . . . . .758 Cross linking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .568 and overload failures . . . . . . . . . . . . . . . . . . . . . . . . . . . .679 of PET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .452 in polymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .444 in thermoplastics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .359 Cross-sectional method (CSM) . . . . . . . . . . . . . . . . . .361 Crow’s feet, as casting defect . . . . . . . . . . . . . . . . . . . . .108 Crush as casting defect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .105 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1064 Crushing, causing corrosive wear . . . . . . . . . . 989–990 Cryogenic applications . . . . . . . . . . . . . . . . . . . . . . . . . . .684 Cryogenic temperatures effect on fretting wear . . . . . . . . . . . . . . . . . . . . 931–932 and overload failures . . . . . . . . . . . . . . . . . . . . . . 684–685 Crystal Ball (computer program), . . . . . . . . . . . . . .267 Crystal lattices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .376 Crystalline fracture. See also Granular fracture. in brittle fracture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .400 Crystalline inclusions, in ceramics . . . . . . . . . . . . . . .669 Crystalline polymers, chemical absorption . . . . . .796

© 2002 ASM International. All Rights Reserved. ASM Handbook Volume 11: Failure Analysis and Prevention (#06072G)

www.asminternational.org

1106 / Index

Crystallinity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .568 level of . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .441 Crystallites, in iron alloys . . . . . . . . . . . . . . . . . . . . . . . .495 Crystallization, of polymers . . . . . . . . . . . . . . . . . . . . . .650 Crystallization temperature, of polymeric materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .569 Crystallographic cleavage . . . . . . . . . . . . .674–675, 676 Crystallographic fatigue . . . . . . . . . . . . . . . . . . . . . . . . .579 in fatigue fractures . . . . . . . . . . . . . . . . . . . . . . . 636–-637 Crystal structure effect on fracture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .568 effect on stress-corrosion cracking . . . . . . . . . . . . .832 and overload failure . . . . . . . . . . . . . . . . . . . . . . . 678–679 of steel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193, 194 CSM. See Cross-sectional method. C-source code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .267 CTE. See Coefficient of thermal expansion. CTOD. See Crack tip opening displacement. Cumulative damage, definition . . . . . . . . . . . . . . . . 1064 Cumulative distribution function (CDF) 255, 266 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .252 estimation of . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260–261 Cup-and-cone fracture. See also Cup fracture. definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1064 Cup fracture (cup-and-cone fracture) . . . 398, 473, 598–599, 602 changes in strain path . . . . . . . . . . . . . . . . . . . . . 620–621 ductile overload failures . . . . . . . . . . . . . . . . . . 671, 672 Cupping, definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1064 Cupric oxide, fretting wear . . . . . . . . . . . . . . . . . . . . . . .934 Cupric sulfate, intergranular corrosion evaluation test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .781 Cupronickel alloys, microbially induced corrosion . . . . . . . . . . . . . . . . . .890 Curve-fitting equations, phenomenological . . . . .479 Customer focus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Cut definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1064 from mold-wall deficiencies . . . . . . . . . . . . . . . . . . . .119 Cutting . . . . . . . . . . . . . . . . . . . . . . . . . . . 910, 912, 913, 914 of ceramics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .362 Cutting wear, of ductile alloys . . . . . . . . . . . . . . . . . . .991 CVD. See Chemical vapor deposition. CVN. See Charpy V-notch testing. Cycle, whole, definition . . . . . . . . . . . . . . . . . . . . . 280–281 Cycles of interest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .255 Cycles to failure, for toque link bolt of aircraft fixed-nose landing gear . . . . . . . . . . . . . . . . . . . .284 Cycle summation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .585 Cyclic brittle cleavage . . . . . . . . . . . . . . . . . . . . . . 579, 580 Cyclic ductile decohesion (crystallographic fatigue) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .579 Cyclic fatigue life, of semicrystalline thermoplastics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1024 Cyclic loading definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1064 and fatigue failure . . . . . . . . . . . . . . . . . . . . . . . . . 334–335 Cyclic reverse bending, and fatigue crack initiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 576, 577 Cyclic strain accumulation, as distortion failure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1055–1056 Cyclic strain resistance . . . . . . . . . . . . . . . . . . . . . . . . . 1016 Cyclic stresses, and stress-corrosion cracking . . . .831 Cyclic stress resistance . . . . . . . . . . . . . . . . . . . . . . . . . 1016 Cylinder blocks, casting stress related failure . . 134– 135, 136 Cylinder head, of gray iron, cracking due to microporosity . . . . . . . . . . . . . . . . . . . . . . . . 112–113 Cylinder-to-ball testing apparatus description of rolling contact fatigue test method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .944 Cylinder-to cylinder testing apparatus, description of rolling contact fatigue test method . . . . .944

D Dag (conductive solution) . . . . . . . . . . . . . . . . . . . . . . . .521 Damage, definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .289 Damage distributions post-inspection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .272

pre-inspection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .272 probability of detection influence . . . . . . . . . . . . . . .272 Damage levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .270 Damage mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .582 Damage mechanisms(s) for boiler tubing . . . . . . . . . . . . . . . . . . . . . . . . . . . 347, 350 categorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347–349 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .343 primary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346–347 secondary, categories . . . . . . . . . . . . . . . . . . . . . 346–347 Damage mode(s) corrosion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .347 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .343 distortion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .347 fracture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .347 identification chart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .345 wear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .347 Damage modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .582 Damage nucleating conditions . . . . . . . . . . . . . . . . . . .270 Damage tolerance . . . . . . . . . . . . . . . . . . . . .239, 281–282 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231, 270 Damage-tolerance analysis . . . . . . . . . . . . . . . . . . . . . . .244 Damage-tolerance approach . . . 270–273, 274, 281– 282, 286 to assess circular penetration in pressurized fuselage . . . . . . . . . . . . . . . . . . . . . . . . .279, 284–286 to life assessment . . . . . . . . . . . . . . . . . . . . . . . . . 270, 271 Damage tolerant design design methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . .700 principal testing data description . . . . . . . . . . . . . . .700 Danger, definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 Dark-field illumination, of light microscope fractographs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .499 Dart penetration test, for polymers . . . . . . . . . . . . . .445 DARWIN (computer software program) . . . . . . 264, 265, 267 Data, collection, and samples . . . . . . . . . . . . . . . 393–394 DBTT. See Ductile-brittle transition temperature. Dead-metal zone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 Deaeration, of pipes to resist corrosive wear . . . .992 Dealloying. See also Dealuminification; Decarburization; Denickelification; Desiliconification; Destannification; Dezincification; Graphitic corrosion; and Selective leaching. . . . . . . . . 768, 785, 788, 790 as damage mechanisms on failure wheel . . . . . . .349 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1064 Dealuminification . . . . . . . . . . . . . . . . . . . . . .787–788, 789 Debonding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 591–592 at matrix-particle interface . . . . . . . . . . . . . . . . 591–592 of refractories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .801 Debye-Scherrer powder camera . . . . . . . . . . . . . . . . .358 Decarburization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342, 809 in austenitic manganese steel . . . . . . . . . . . . . 509, 510 in cast irons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .139 causing distortion failure . . . . . . . . . . . . . . . .1051–1052 and cold shut in equalizer beams of truck . . . . . 122, 123 as defect resulting from heat treatment . . . . . . . . . . 81 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .215, 1065 depth of . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215–216 and distortion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203–204 effect on fatigue strength . . . . . . . . . . . . . . . . . . . . . . .719 effect on steel properties . . . . . . . . . . . . . . . . . . 215–216 and forging defects . . . . . . . . . . . . . . . . . . . . . . . . . . .93, 94 of forgings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97, 509 in hot crack vs. hot tear . . . . . . . . . . . . . . . . . . . . . . . . .104 of hot tear of sand-cast steel axle housing . . . . .119 with hydrogen attack of steel alloys for gas turbines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293, 294 hydrogen effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .816 of malleable iron . . . . . . . . . . . . . . . . . . . . . . . . . . 140, 141 metallographic examination . . . . . . . . . . . . . . . . . . . .364 and overload failures . . . . . . . . . . . . . . . . . . . . . . . 68, 688 and oxidation causing distortion . . . . . . . . . . 202, 204 partial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215, 216 partial, in alloy steel coil spring . . . . . . . . . . 509, 510 quench-cracking propensity . . . . . . . . . . . . . . . . . . . . .199 and residual stress in hardened steels . . . . . . . . . .493 of steel valve springs . . . . . . . . . . . . . . . . . . . . . . . .87, 88 and stress corrosion cracking . . . . . . . . . . . . . . . . . . .839 Decision logic diagrams, to guide users ofreliability centered maintenance processes . . . . . . . .67, 68

Decohesion, critical total stress for . . . . . . . . . . . . . . .623 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1065 Decohesion theory . . . . . . . . . . . . . . . . . . . . . . . . . . 809, 810 Decohesive rupture . . . . . . . . . . . . . . . . . . . .642, 675–676 of worm gear of manganese bronze . . . . . . . . . . . .676 Decohesive separation . . . . . . . . . . . . . . . . . . . . . . . . . . . .642 Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 in conceptual design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 functional . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 physical . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Deep traps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .820 Defect(s) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 473–474 in ceramics . . . . . . . . . . . . . . . . . . . . . . . . . . .665, 669–670 definition . . . . . . . . . . . . . . . . . . . . 5, 72, 103, 269, 1065 design, criteria for . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 and failure criterion . . . . . . . . . . . . . . . . . . . . . . . . . . . . .473 in forgings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90–97 initial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .481 manufacturing, criteria for . . . . . . . . . . . . . . . . . . . . . . . 72 marketing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 material or mechanical, life-limiting . . . . . 231, 232 surface cracks in ceramics . . . . . . . . . . . . . . . . 957–958 of weldments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157–159 Defect cavity enhancement as root cause of forgings defects, rationale, resolution, and corrective action . . . 327, 329, 330, 331 Defective, definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 Defective coating (tear-dropping), as casting defect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .109 Defective surface, as casting defects in ICFTA classification scheme . . . . . . . . . . .104, 107–109 Defect-related failure (casting), definition . . . . . . .103 Defendant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 “Defense in depth” philosophy . . . . . . . . . . . . . . . . . .273 Definition of the problem . . . . . . . . . . . . . . . . . . . . . . . . . 43 Definition review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 Deformability index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .683 Deformation Ashby maps of unalloyed annealed metals . . . . 684, 685 beam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .470 bulk, rolling-contact fatigue, coating failure . . 953, 954 and cold forming limitations . . . . . . . . . . . . . . . . . . . .101 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1047, 1065 design as cause . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1057 and ductile fracture . . . . . . . . . . . . . . . . . . . . . . . . . . . . .400 and fracture mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .400 of gas-nitrided drive-gear assembly . . . .1054–1055 of grain by cold forming . . . . . . . . . . . . . . . . . . 101–102 with high-temperature creep in gas turbines . . .290 interligament . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 623–624 localized, in torsion . . . . . . . . . . . . . . . . . . . . . . . . . . . . .606 mechanisms of . . . . . . . . . . . . . . . . . 587–595, 596, 597 motor vehicle steering and suspension parts 1056 and overload failures . . . . . . . . . . . . . . . . . . . . . . . . . . . .680 plastic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 966, 967 hardening by shot peening . . . . . . . . . . . . . 221, 222 in fracture mechanics . . . . . . . . . . . . . . . . . . . . . . . . .231 as polymer failure mechanism . . . . . . . . . . . . . . .367 of steel cooling without transformation . . . . . 194, 197 and stress field . . . . . . . . . . . . . . . . . . . . . . . . . . 477, 478 plastic and fracture . . . . . . . . . . . . . . . . . . . . . . . . 568–572 of polyacetal latch assemblies . . . . . . . . . . . . . . . . . .455 preceding brittle fracture in weldments . . . . . . . .156 primary processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 problems of . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 related to other failure types . . . . . . . . . . . .1056–1057 of shotgun barrel of steel . . . . . . . . . . . . . . . . . . . . . 1051 with strain localization . . . . . . . . . . . . . . . . . . . . 622–623 tensile loading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .468 thermal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .383 torsion bars, ductile material . . . . . . . . . . . . . . . . . . . .469 viscoplastic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 568–569 and workability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .96, 97 work transformed to heat generation . . . . . . . . . . .620 and wreckage analysis . . . . . . . . . . . . . . . . . . . . . . . . . .395 Deformation bands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .561 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1065 Deformation curve. See Stress-strain diagram.

© 2002 ASM International. All Rights Reserved. ASM Handbook Volume 11: Failure Analysis and Prevention (#06072G)

Deformation failures, shotgun barrel, bulging of . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1051 Deformation plasticity failure assessment diagram (DPFAD) . . . . . . . . . . . . . . . . . . . . . . . .241, 243, 244 Deformation twinning. See also Mechanical twin (deformation twin); and Neumann bands. . . . . . . . . . . . . . . . .561, 563, 587, 588, 589 and crack nucleation . . . . . . . . . . . . . . . . . . . . . . 590–591 in crystals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 589–591 and fracture at or near stress raisers . . . . . . . . . . . .609 in metals . . . . . . . . . . . . . . . . . . . . . . . . 569, 570, 571–572 and overload failure . . . . . . . . . . . . . . . . . . . . . . . 680, 689 Deformation wear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .996 of brittle alloys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .991 mechanisms of . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .996 Deformation zone . . . . . . . . . . . . . . . . . . . . . .965–966, 967 Deformed mold, as casting defect . . . . . . . . . . . . . . . .111 Deformed pattern, as casting defect . . . . . . . . . . . . .111 Degradation of polymers . . . . . . . . . . . . . . . . . . . . 439, 441, 442, 444 and structural deficiencies of pressure vessels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .240 Degradation time, determination of . . . . . . . . 235–238 Degree of coherency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .592 Degree of order, effect on overload failures . . . 678– 679 Degree of sensitization (DOS), to measure intergranular stress-corrosion cracking of austenitic stainless steels . . . . . . . . . . . . . . . . . .647 Delamination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 599, 603 of ceramics in impact wear . . . . . . . . . . . . . . . 968–969 of cermet and ceramic coatings . . . . . .951, 952, 953 in impact wear . . . . . . . . . . . . . . . . . . . . . . .966, 967, 970 large-scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .599 as rolling contact fatigue failure mode of thermal spray cermet and ceramic coatings . . . . . . . .951 in weldments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .158 Delamination failure in rolling-contact fatigue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 960–962 Delamination of interface . . . . . . . . . . . . . . . . . . . . . . . .528 Delamination theory . . . . . . . . . . . . . . . . . . .966–967, 970 Delayed adhesion failure . . . . . . . . . . . . . . . . . . . . . . . . .785 Delayed cracking . . . . . . . . . . . . . . . . 181, 183, 815, 838 Delayed failure. See also Internal reversible hydrogen embrittlement. . . . . . . . . . . . . . . . . . . .810 Delta ferrite transformation to sigma in Cr-Ni alloy . . . 512, 513 transformed to sigma phase . . . . . . . . . . . . . . . 500, 501 DK. See Stress intensity factor range. Dendrite in castings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .614 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1065 of post-EDM tool steel mold . . . . . . . . . . . . . 512, 513 Dendrite arms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .113 in ingots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 Dendritic segregation in austenitic manganese steel castings . . . . . . . . . .147 in cast steel equalizer beams with cold shut . . 122, 123 Dendritic solidification, in casting fractures . . . . 608, 613 Denickelification. See also Selective leaching. . . 788, 789 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1065 feedwater pressure tube . . . . . . . . . . . . . . . . . . . 788, 789 Denitrifiers, in cooling systems drawing on natural waters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .889 Dense-zone magnesia formation theory . . . . . . . .801 Density as criteria for materials selection . . . . . . . . . . . . . . . . 32 of engineering ceramics and bearing steel . . . . .960 Denuded zones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .576 Deoxidation, of castings to control nonmetallic inclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .117 Department of Defense (DoD) commercial aviation preventive maintenance report requested . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 documents, information on anticipated human errors in using products . . . . . . . . . . . . . . . . . . . . 75 specification and standards, policies and procedures, internet availability . . . . . . . . . . .274 Depletion. See also Selective leaching. definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1065

Deposit attack. See Poultice corrosion. Deposit corrosion. See Poultice corrosion Deposits, providing examination information . . . .354 Depressions, in weldments . . . . . . . . . . . . . . . . . . . . . . . .169 Depth of field, definition . . . . . . . . . . . . . . . . . . . . . . . . . .516 Depth profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .530 Descriptor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Design adequacy, proof of . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 anticipating errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 as cause of distortion or deformation . . . . . . . . . 1057 corrosion allowances . . . . . . . . . . . . . . . . . . . . . . . . . . . .232 for corrosion control . . . . . . . . . . . . . . . . . . . . . . 755, 756 damage tolerance approach . . . . 231, 237, 238–239 defects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 deficiences as root causes of failure . . . . . . . . . . . .7–9 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 elevated-temperature concerns . . . . . . . . . . . . 231–232 and failure modes and effects analysis . . . . . . 51–52 human factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74–75 and in-service failure investigation structural aging, and fitness-for-service . . . . . . . . 228, 229 leak-before-break approach . . . . . . . . . . . . . . . . . . . . .231 objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 of polycarbonate switch housing . . . . . . . . . . . . . . .457 to prevent fretting wear . . . . . . . . . . . . . . . . . . . . . . . . .933 preventing galvanic action . . . . . . . . . . . . . . . . 764, 765 reliability approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . .231 safe-life approach . . . . . . . . . . . . . . . . . . . . . . . . . 231, 238 strength-of-materials approach . . . . . . . . . . . . 230–231 uniform corrosion prevention . . . . . . . . . . . . . . . . . . .771 upper limit, defined . . . . . . . . . . . . . . . . . . . . . . . . . . . 1047 usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .233 Design Assessment of Reliability with Inspection (DARWIN) . . . . . . . . . . . . . . . . . . . . .264, 265, 267 Design-based failure analyses . . . . . . . . . . . . . . . . . . .380 Design codes, for pressure vessels . . . . . . . . . . . . . . . .229 Design constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30, 31 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Design deficiency, as root cause resulting in failures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Design environment . . . . . . . . . . . . . . . . . . . . . . . . . . . 29–30 Designer/manufacturer, determining necessary directions and warnings . . . . . . . . . . . . . . . . . . . . 72 Design factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256–257 Design-induced stress concentrators . . . . . . . . . . . .336 Design life . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .702 of components in power industry . . . . . . . . . . . . . . .229 Design objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Design of experiments (DOE) techniques, for RSM basic concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . .258 Design of wear-resistant slurry pumps, to control corrosive wear . . . . . . . . . . . . . . . . . . . . . . . 992–993 Design-related failure (casting), definition . . . . . .103 Design review . . . . . . . . . . . . . . . . . . . . . . . 75–76, 386, 686 analysis of engineering design process . . . . . . 42–43 communication problems of global design teams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 conceptual design investigation . . . . . . . . . . . . . . . . . . 44 detail design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 embodiment design issues . . . . . . . . . . . . . . . . . . . 44–46 external influences . . . . . . . . . . . . . . . . . . . . . . . . . . . 47–48 ISO 9001 requirements for . . . . . . . . . . . . . . . . . . . . . . 40 life-cycle issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 management influences . . . . . . . . . . . . . . . . . . . . . . 46–47 preliminary investigation . . . . . . . . . . . . . . . . . . . . . . . . 42 and probability of injury . . . . . . . . . . . . . . . . . . . . . . . . . 77 task clarification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43–44 time and money constraints . . . . . . . . . . . . . . . . . . . . . . 47 transportation issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 Design review board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 Design review checklists . . . . . . . . . . . . . . . . . . . . . . . . . . 76 Design specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Design stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .477 Design teams, cross-functional . . . . . . . . . . . . . . . . . . . . 47 Design usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .233 Design value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .251 Desiliconification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .788 Desired performance, definition in reliabilitycentered maintenance . . . . . . . . . . . . . . . . . . . . . . . 62 Dessicants, to preserve fracture surfaces . . . . . . . . .397 Destannification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .788 Destructive evaluation, guidelines, for monitoring turbine operation . . . . . . . . . . . . . . . . . . . . . 297–298

www.asminternational.org

Index / 1107 Destructive pitting, contact fatigue terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .722 Destructive testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .316 and accident invesigation . . . . . . . . . . . . . . . . . 374–375 competence requirements . . . . . . . . . . . . . . . . . . . . . . .316 purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .375 significance of . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .316 Desulfovibrio gigas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .884 Detailed design . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25, 31–34 materials information required . . . . . . . . . . . . . . . . . . . 31 Detailed fault analysis . . . . . . . . . . . . . . . . . . . . . . . . .53, 55 Detailed software fault analysis . . . . . . . . . . . . . . . . . . 55 Deterministic approach, to life assessment . . . . . .274 Deterministic model, definition . . . . . . . . . . . . . . . . . .376 Detonation-gun (D-gun) coating material, thickness, roughness, and average hardness . . . . . . . . . . . . . . . . . . . . . . . . . . .950 contact stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .950 rolling contact fatigue life . . . . . . . . . . . . . . . . . . . . . .950 rolling contact fatigue tester . . . . . . . . . . . . . . . . . . . .950 substrate materials and hardness . . . . . . . . . . . . . . . .950 Deviatoric stress, definition . . . . . . . . . . . . . . . . . . . . 1065 Deviatoric stress tensors . . . . . . . . . . . . . . . . . . . . . . . . .482 Dewpoint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .216 Dezincification. See also Selective leaching. . . . 785– 786, 787 of brass effect on chemical analysis . . . . . . . . . . . .430 of copper alloy tube sheets in air compressor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .855 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1065 of tube from water supply system . . . . . . . . 786, 787 Diallyl phthalate, for mounting . . . . . . . . . . . . 502, 504 Diamond cycle, of thermomechanical fatigue . . . .738 Diamond-like carbon (DLC), . . . . . . . . . . . . . . . . . . . .945 coatings . . . . . . . . . . . . . . . . . . . . 945–946, 947, 948–949 as physical vapor deposition coating material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .946 Diamond-like hydrocarbon (DLHC/DLC) for coatings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 948–949 as physical vapor deposition coating material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .946 Diamond pyramid hardness test. See Vickers hardness test. DIC. See Differential interference contrast. Die(s) cracking due to abusive grinding . . . .511–512, 513 heat-checked, as casting defect . . . . . . . . . . . . . . . . .105 hydrogen flaking of forging die . . . . . . . . . . . . .88, 89 liquid metal induced embrittlement . . . . . . . . . . . . .865 Die casting. See also Pressure die casting. . . . . . . .124 aluminum alloy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .150 characteristics of process . . . . . . . . . . . . . . . . . . . . . . .124 compatibility with various materials . . . . . . . . . . . . . 33 minimum web thickness for various metals . . . . . 32 in shape-casting processes classification scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .124 in weldments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .188 Die-contact surface cracking . . . . . . . . . . . . . . . . . . . .100 Die design, and pessure die casting . . . . . . . . . . . . . . .126 Die erosion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127, 130 as casting defect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .108 Die quenching system . . . . . . . . . . . . . . . . . . . . . . 197, 201 Diesel engine bearing, wear failure . . . . . . . . . . .18, 20 Diesel fuel injection control sleeve, ductile fracture of stainless steel . . . . . . . . . . . . . . . . . . . . . . . . 12–13 Diethanolamine (DEA) solution, stress-corrosion cracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .839 Differential interference contrast (DIC) . . . . . . . 503, 505, 513, 514 Differential scanning calorimetry . . . . . . . . . . . . . . .438 acrylonitrile-butadiene-styrene protective covers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 449, 452 of nylon couplings . . . . . . . . . . . . . . . . . . . . . . . . 448, 450 of nylon hinges . . . . . . . . . . . . . . . . . . . . . . . . . . . . 458–459 of nylon wire clips . . . . . . . . . . . . . . . . . . . . . . . . 447, 449 of polyacetal latch assemblies . . . . . . . . . . . . . . . . . .455 of polybutylene terephthalate automotive sleeves . . . . . . . . . . . . . . . . . . . . 448–449, 451, 452 of polycarbonate/PET appliance housings . . . . . 450, 453 of polycarbonate switch housing . . . . . . . . . . . . . . .457 of polyethylene chemical storage vessel 453, 454 of polyethylene terephthalate jacket, transportation assemblies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .452

© 2002 ASM International. All Rights Reserved. ASM Handbook Volume 11: Failure Analysis and Prevention (#06072G)

www.asminternational.org

1108 / Index

Differential scanning calorimetry (continued) for polymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 439–441 properties measured . . . . . . . . . . . . . . . . . . . . . . . . . . . . .446 property derived from polymer analysis . . . . . . . .359 use in failure analysis . . . . . . . . . . . . . . . . . . . . . . . . . . .446 Differential thermal analysis (DTA), property derived from polymer analysis . . . . . . . . . . . .359 Differential thermal contraction stresses, minimized with sigma phase . . . . . . . . . . . . . .292 Diffraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .338 Diffractometer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338, 358 Diffuse neck . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .596 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1065 Diffuse necking . . . . . . . . . . . . . . . . . . 597, 599, 601–602 Diffusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .965 Diffusion aluminide coatings . . . . . . . . . . . . . . 876–877 Diffusion coatings for hot corrosion resistance of turbine blades . .294 to mitigate adhesive wear . . . . . . . . . . . . . . . . . . . . . . .408 thermal-mechanical fatigue life . . . . . . . . . . . . . . . . .302 Digenite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .890 Digital image analysis . . . . . . . . . . . . . . . . . . . . . . 538, 553 to measure area fraction of fracture mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .549 Digital image processing . . . . . . . . . . . . . . . . . . . . . . . . .553 Digital photography . . . . . . . . . . . . . 420–421, 425–426 for capturing fluorescent indications under ultraviolet light . . . . . . . . . . . . . . . . . . . . . . . . . . . .425 Digital scanners . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 420–421 Dilatometry, to measure volume expansion of polymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .443 Dilute solution viscosity, property derived from polymer analysis . . . . . . . . . . . . . . . . . . . . . . . . . . .359 Diminishing return, point of, on investments . . . . . 5 Dimpled fracture regions, number density of dimples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 549–550 Dimpled fracture surface, microscale fractographic implication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .560 Dimpled intergranular fracture . . . . . . . . . . . 643–644 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .642 Dimpled rupture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .571 of sprocket locking device . . . . . . . . . . . . . . . . . . . . 9, 10 without void nucleation in alloys deforming by planar slip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .593 Dimple-rupture failures . . . . . . . . . . . . . . . . . . . . . . . . . .673 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1065 Dimples average area of . . . . . . . . . . . . . . . . . . . . . . . . . . . . 549–550 average perimeter of . . . . . . . . . . . . . . . . . . . . . . . . . . . .550 average width of . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .550 indicating ductile fracture . . . . . . . . . . . . . . . . . . . . . . .591 shape of . . . . . . . . . . . . . . . . . . . . . . . . 549, 571, 593–595 size . . . . . . . . . . . . . . . . . . . . . . . . 549, 593–595, 596, 597 Dioctyl adipate, as plasticizer . . . . . . . . . . . . . . 448, 451 Dip coat spall, as casting defect . . . . . . . . . . . . . . . . . .109 Diphenyl carbonate, as breakdown product in polycarbonate decomposition . . . . . . . 446, 447 Dip slides, to investigate microbial populations . .893 Direct-comparison method . . . . . . . . . . . . . . . . . . . . . .338 Direct injection die casting . . . . . . . . . . . . . . . . 125, 126 Directionability, effect in manufacturing imperfection . . . . . . . . . . . . . . . . . . . . . . . . . 615, 617 Directionally solidifed alloys . . . . . . . . . . . . . . . . . . . . .682 for gas turbine components . . . . . . . . . . . . . . . . . . . . .296 Directional solidification . . . . . . . . . . . . . . . . . . . . . . . . .113 of centrifugal castings . . . . . . . . . . . . . . . . . . . . . . . . . .132 and metal penetration . . . . . . . . . . . . . . . . . . . . . 119–120 Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 Dirty steels, quench cracking . . . . . . . . . . . . . . . . . . . . .199 Discharge, as cavitation mechanism . . . . . .1004–1005 Disclaimers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 Discoloration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .354 Discontinuity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .104 as casting defect . . . . . . . . . . . . . . . . 104, 107, 120–131 as damage mechanism for boiler tubing . . . . . . . .347 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . .103, 104, 269 weld, definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .157 Discrete bands, of fast overload fatigue fracture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .634 Discrete random variable . . . . . . . . . . . . . . . . . . . . . . . .252 Dishing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .197 Disk attrition mill wear plates, abrasive wear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 916–919 Disk cutters, abrasive wear . . . . . . . . . . . . . . . . . 918, 919

Dislocation, in iron alloys from cold working . . . .495 Dislocation density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .336 Dislocation models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .588 Dislocation motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .588 and plastic deformation . . . . . . . . . . . . . . . . . . . . . . . . .679 Dislocation pileup . . . . . . . . . . . . . . . . . . . . . .592, 593, 679 Dislocation theory . . . . . . . . . . . . . . . 561, 581, 588, 617 model for ductile fracture . . . . . . . . . . . . . . . . . . . . . . .623 Dispersed shrinkage, as casting defect . . . . . . . . . . .106 Dispersed white iron (II) carbonate, as corrosion products in pipeline excavations and laboratory soil box tests . . . . . . . . . . . . . . . . . . .887 Dispersion-strengthening processes . . . . . . . . . . . . .682 Dissimilar metals, galvanic corrosion . . . . 405, 764, 765 Dissimilar metal welds, as boilder tube damage mechanism on failure wheel . . . . . . . . . . . . . . .350 Dissimilar metal weld stress rupture, as damage mechanism for boiler tubing . . . . . . . . . . . . . .347 Dissolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . .800, 801, 802 direct . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .802 factors governing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .806 indirect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .802 mass-transport controlled . . . . . . . . . . . . . . . . . . . . . . .802 per unit area at a given temperature . . . . . . . . . . . .802 phase-boundary controlled . . . . . . . . . . . . . . . . . . . . . .802 slag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .803 Distillation/nesslerization method . . . . . . . . . . . . . . .856 Distorted casting, as casting defect . . . . . . . . . . . . . .110 Distortion amount of . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1049 austempering effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . .207 buckling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1048 carbon content effect . . . . . . . . . . . . . . . . .199–200, 205 classification of distortion-sensitive shapes . . . 202, 205 complex stress states . . . . . . . . . . . . . . . . . . . . . . . . . . 1050 component design effect . . 197–199, 201, 202, 203 from component support and loading . . . . 202, 205 creep . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1048, 1050 as damage mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .347 and decarburization . . . . . . . . . . . . . . . . . . . . . . . 203–204 decarburization effect on spiral power spring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1051–1052 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1047, 1065 elastic or plastic, as failure mechanisms . . . . 1049– 1050, 1052, 1055–1056 as failure category . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 failure, description of . . . . . . . . . . . . . . . . . . . . . . . . . 1047 failures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1050–1057 and grain size effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . .218 heating and atmosphere control . . . . 201–202, 204, 205 of high-density polyethylene chemical storage vessel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 453–454 inelastic cyclic buckling . . . . . . . . . . . . . . . . . . . . . . 1056 localized . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1050 machining material removal as cause . . . . 205, 209 macrothermal, of printed circuit boards . . . . . . . .385 materials/process design effects . . . . 196–205, 206, 207, 208, 209 microsegregation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .219 nonmetallic inclusions as cause . . . . . .205, 207, 208 one-dimensional . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .208 in permanent-mold castings . . . . . . . . . . . . . . . . . . . . .124 of pinion shafts from improper loading . . 202, 205 press and plug quenching . . . . . . . . . . . . . . . . . . . . . . .213 from prior surface condition . . . 202–204, 206, 207 quenchant flow direction effect . . . . . . . . . . . 208, 211 and quenchant severity effect . . . . . . . .205–206, 207 quench distortion and cracking . . . . . .208–210, 211 and quench system design . . . . . . . . . . .196–197, 201 ratcheting as . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1055–1056 during reheating and quenching, metallurgical sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195–196 residual stress effects . . . . . . . . . . . . . . . . . . .1052–1053 and retained austenite content . . . . . . . . . . . . . . . . . .201 root causes resulting in . . . . . . . . . . . . . . . . . . . . . . . . . . 18 safe loads calculated . . . . . . . . . . . . . . . . . . . . . . . . . . 1048 safety factors . . . . . . . . . . . . . . . . . . . . . . . . . . . .1048–1049 selective quenching for suppression of . . . 213, 214 service conditions of automotive valve spring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1050–1051

shape, defined . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1047 shape, of sheet metal . . . . . . . . . . . . . . . . . . . . . . . . . . . .101 size, defined . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1047 steel grade/condition selection . . . . . . .199–200, 205 strain rate effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1049 stress raisers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1050 and stress ratios from overloding . . . . . . . . . . . . . 1047 submicroscopic, detectable by x-ray diffraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .396 temperature effect . . . . . . . . . 1049–1050, 1051–1052 tempering, temperature dependence of yield strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195, 199 and thermal stress . . . . . . . . . . . . . . . . . . . . . . . . . 206–207 transformer housing . . . . . . . . . . . . . . . . . . . . . . . . . . . . .384 two-dimensional . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .208 of tube support plate (U-tube) . . . . . . . . . . . . 388–389 visible, macroscale fractographic implication . .560 warpage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1052–1053 welded inlet header . . . . . . . . . . . . . . . . . . . . . . . . . . . . .167 in weldments . . . . . . . . . . . . . . . . . . . . . . . . .156, 160, 169 Distortion energy theory . . . . . . . . . . . . . . . . . . . . . . . . .482 Distortion failure . . . . . . . . . . . . . .17, 1047, 1050–1057 aircraft-wing slat track . . . . . . . . . . . . . . . . . . . . . . . . 1052 analysis of . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1054–1055 of automotive valve spring . . . . . . . . . . . . .1050–1051 cantilever beams of stainless steel . . . . . . . . . . . . 1049 commercial cap screw . . . . . . . . . . . . . . . . . . . . . . . . 1054 creep behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .731 of extension ladders by overloading side rails . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1048–1049 of gas-nitrided drive-gear assembly of steel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1054–1055 of hold-down clamps of steel . . . . . . . . . . . . . . . . . 1052 small volute springs of Inconel . . . . . . . . . . . . . . . 1054 special types of . . . . . . . . . . . . . . . . . . . . . . . . . .1055–1056 specifications, failure to meet . . . . . . . . . . .1051–1054 specifications incorrect . . . . . . . . . . . . . . . . . .1050–1051 spool-type hydraulic valve of steel . . . . .1053–1054 stainless steel Belleville washers . . . . . . . . . . . . . 1052 Distortion-sensitive shapes, classification of . . . 202, 205 Djurleite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .890 DLC. See Diamond-like carbon. DLHC/DLC. See Diamond-like hydrocarbon. DMA. See Dynamic mechanical analysis. Documentation of dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .395 failure analysis report preparation and writing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 414–416 field failure report sheet or checklist . . . . . . . . . . .393 of metallurgical samples . . . . . . . . . . . . . . . . . . . . . . . .360 photographic records . . . . . . . . . . . . . . . . . . . . . . . . . . . .394 service history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .394 specifications and drawings . . . . . . . . . . . . . . . . . . . . .393 DoD. See Department of Defense. DOD. See Domestic object damage. Doloma . . . . . . . . . . . . . . . . . . . . . . . . . . . 800, 801, 803–804 Dolomite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 803–804 Domestic object damage (DOD), of gas turbine superalloys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .292 Dong’s solutions, to clean steel fracture surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 354, 355 DOS. See Degree of sensitization. Double integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .382 Double shear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .472 Downshock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .667 Downtime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 costs of . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .228 DPFAD. See Deformation plasticity failure assessment diagram. Drag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .104 Drag marks, in pressure die casting . . . . . . . . . . . . . .126 Draw as casting defect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .108 corner, as casting defect . . . . . . . . . . . . . . . . . . . . . . . .106 Draw die insert, heat-treatment-related failure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 510–511 Drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 Draw marks, deformed, macroscale fractographic implication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .560 Drawn products, discontinuities, types of . . . . . . . . . 9 Drill bits for electronic circuit board, abrasive wear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 915–916

© 2002 ASM International. All Rights Reserved. ASM Handbook Volume 11: Failure Analysis and Prevention (#06072G)

Drilling, and fatigue strength . . . . . . . . . . . . . . . . . . . . .720 Drive-gear assembly, distortion failure of steel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1054–1055 Drive shaft, fatigue fracture by rotating bending . . . . . . . . . . . . . . . . . . . . . . . . .712–713, 714 Driving gear, of nylon, wear failure . . . . . . . . . . . . 1026 Droplet erosion, variables . . . . . . . . . . . . . . . . . . . . . . . .902 Drops, from mold-wall deficiencies . . . . . . . . . . . . . .119 Drop-weight testing . . . . . . . . . . . . . . . . . . . . . . . . 684, 685 on shell plate in weldment failure . . . . . . . . . . . . . .161 Dross (flux) inclusions in aluminum alloy castings . . . . . . . . . . . . . . . . . . . . .149 as casting defect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .111 in permanent-mold castings . . . . . . . . . . . . . . . . . . . . .124 Dry sand molding, in shape-casting processes classification scheme . . . . . . . . . . . . . . . . . . . . . .124 DSC. See Differential scanning calorimetry. DS. See Directional-solidification alloys. d-spacing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .484–485, 487 DTA. See Differential thermal analysis. Dual-dimple size . . . . . . . . . . . . . . . . . . . . . . . . . . . . 592, 595 Ductile, definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1065 Ductile alloys, angle of impact in corrosive wear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .991 Ductile/brittle fracture, mild carbon steel . . . . . . 522, 524 Ductile-brittle transition temperature (DBTT) and brittle fracture . . . . . . . . . . . . . . . . . . .234, 521, 523 and cryogenic applications . . . . . . . . . . . . . . . . . . . . . .684 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1065 and ductile rupture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .563 and ductility reduction . . . . . . . . . . . . . . . . . . . . . . . . . .599 grain size effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .598 increased by neutron embrittlement . . . . . . . . . . . .697 to investigate brittle fracture of low-carbon steel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .403 of polymeric materials . . . . . . . . . . . . . . . . . . . . . . . . . .569 if rail car couplers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .349 related to fitness-for-purpose analysis . . . . . . . . . .178 strain rate effect on ductility . . . . . . . . . . . . . . . . . . . .600 and strain rate sensitivity of notched specimens . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .606 temper embrittlement effect . . . . . . . . . . . . . . . . . . . .691 weldment intergranular corrosion example . . . . .783 of weldments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .161 Ductile crack propagation, definition . . . . . . . . . . 1065 Ductile erosion behavior, definition . . . . . . . . . . . . 1065 Ductile fracture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18, 20 aluminum alloys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .522 bending failure . . . . . . . . . . . . 604–606, 608, 609, 610 in bulk deformation processing . . . . . . . . . . . . . . . . . . 97 of cast materials . . . . . . . . . . . . . . . . 608, 612, 613, 614 compression failure . . . . . . . . . . . . . . . . . .603–604, 608 cylindrical specimens in tension . . . . .598, 601, 602 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1065 dislocation theory model . . . . . . . . . . . . . . . . . . . . . . . .623 distinguishing characteristics at different scales of observation . . . . . . . . . . . . . . . . . . . . . . . . . . . 671, 672 distinguishing characeristics by scale of observation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .672 energy expenditure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .565 high density polyethylene . . . . . . . . . . . . . . . . . . . . . . .797 on inclined plane through wall of pressure vessel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .471 initiation and propagation, microscale details . . . . . . . . . . . . . . . . . . . . . 611–613, 616, 617 loading types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 low-carbon steel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .353 macroscale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 473, 559 macroscale and microscale appearances . . . . . . 598– 609, 610, 611, 612, 613 macroscopic fracture surfaces . . . . . . . . . . . . 566–568 from manufacturing imperfections 613–616, 617, 618, 619 material selection criteria . . . . . . . . . . . . . . . . . . . . . . . . 35 microscale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .559 and microvoid coalescence . . . .571, 591–595, 596, 597 mild carbon steel . . . . . . . . . . . . . . . 521, 522, 523, 524 as mode of fracture . . . . . . . . . . . . . . . . . . . . . . . . . . . . .400 nickel-plated carbon steel . . . . . . . . . . . . . . . . . 499, 500 notched specimens . . . . . . . . . . . . . . . . . . .602–603, 607 operating temperatures . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

overstress, dimpled fracture . . . . . . . . . . . . . . . . . . . .522 polyethylene pipe . . . . . . . . . . . . . . . . . . . . . . . . . 659, 660 in polymers . . . . . . . . . . . . . . . . . . . . . 655–656, 659, 660 pressurized cylindrical section . . . . . . . . . . . . . . . . . .475 prismatic specimens in tension . . . . . 601–603, 605, 606, 607 pure tearing on maximum normal stress plane model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 623, 624 reduction in area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .565 round beam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .474 stainless steel diesel fuel injection control sleeves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12–13 steel lifting eye . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36, 37 steel tapered-ring sprocket locking device . . . 9, 10 near stress raisers . . . . . . . . . . . . . . 609–611, 614, 615 stress types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 torsion loading . . . . . . . . . . . . . . . . . 606–608, 610, 611 in torsion microscale shear elliptical dimples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 607, 611 unnotched specimens . . . . 599, 600, 601–602, 606, 607 Ductile Fracture Handbook . . . . . . . . . . . . . . . . . . . . . .246 Ductile iron brittle overload fracture of cone-crushed frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 682–683 casting defects . . . . . . . . . . . . . . . . . . . . . . . .141–142, 143 casting stress related failures in cylinder blocks . . . . . . . . . . . . . . . . . . . . . . . . . . .134–135, 136 centrifugal casting . . . . . . . . . . . . . . . . . . . . . . . . . 132, 133 fatigue fracture . . . . . . . . . . . . . . . . . . . . . . .136–137, 138 gas porosity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .115 graphite content effect . . . . . . . . . . . . . . . . . . . . . . . . . .138 inclusions causing failures, tire-mold castings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117, 118 mixed-mode cracking of impeller . . . . . . . . . . . . . .677 notch sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .133 tensile and yield strength vs. nodularity . . 141, 142 uniform corrosion . . . . . . . . . . . . . . . . . . . . . . . . . 767, 768 Ductile material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 erosive wear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 995–997 failure stress criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . .473 overloaded in compression . . . . . . . . . . . . . . . . . . . . .469 tensile loading and necking . . . . . . . . . . . . . . . . . . . . .468 in torsion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .469 Ductile overload fracture . . . . . . . . . . . . .671–674, 675 characteristics of failure mode . . . . . . . . . . . . . . . . . .345 examination methods . . . . . . . . . . . . . . . . . . . . . . . . . . .345 examination methods used and surface magnification possible . . . . . . . . . . . . . . . . . . . . .672 of screws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 673–674 wire of stainless steel . . . . . . . . . . . . . . . . . . . . . . . . . . .674 Ductile plastic flow, modeling of . . . . . . . . . . . 617–624 Ductile striations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 708, 709 Ductile tearing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 623, 624 assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .246 pure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .593 Ductility. See also Deformation, plastic. definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1065 fracture affecting . . . . . . . . . . 595–598, 599, 600, 601 geometric limits of . . . . . . . . 595–597, 598, 599, 600 materials factors affecting . . . . . . . . . . .597–598, 601 and overload failures in crystalline materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 679–680 relationship with various failure modes . . . . .35, 36 strain rate effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .680 tempering effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .195 trade-off with overall strength, wear resistance and deformation resistance . . . . . . . . . . . . . . . . . . . . . . 21 Ductility-dip cracking, in weldments . . . . . . . . . . . .184 Dugdale method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .283 Dugdale’s strip-yield model . . . . . . . . . . . . . . . . . . . . . .245 Duplex slip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .589 Dusts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .801, 803, 841 Dye-penetrant inspection. See Liquid pentrant inspection. Dynamic, definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1065 Dynamic failure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46–47 Dynamic impact analyses . . . . . . . . . . . . . . . . . . 385–386 Dynamic mechanical analysis (DMA) of high-density polyethylene chemical storage vessel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .454 of polymers . . . . . . . . . . . . . . . . . . . . . . . . . .443–444, 445 properties measured . . . . . . . . . . . . . . . . . . . . . . . . . . . . .446

www.asminternational.org

Index / 1109 property derived from polymer analysis . . . . . . . .359 use in failure analysis . . . . . . . . . . . . . . . . . . . . . . . . . . .446 Dynamic recrystallization . . . . . . . . . . . . . . . . . . . 98, 601 and intergranular creep fracture . . . . . . . . . . . . . . . .575 and stress-rupture ductility . . . . . . . . . . . . . . . . . . . . . .733 and stress-rupture fractures . . . . . . . . . . . . . . . . . . . . .734 Dynamic vibration analyses . . . . . . . . . . . . . . . . . . . . .385

E EAC. See Environmentally assisted cracking. Early shakeout As casting defect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .110 Ears . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 614–615 EBSD. See Electron backscatter diffraction technique. EBSP. See Electron backscattered pattern. Eccentricity definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .471 Economic consequences of failure modes . . . . 66–67 Economic value analysis (EVA) . . . . . . . . . . . 263, 264 Economy test method tin impurity detection . . . . . . . . . . . . . . . . . . . . . . . . . . .429 ECT. See Equicohesive temperature. Eddy-current inspection of aluminum pressurized fuselage . . . . . . . . . . . . . .286 of corrosion surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . .752 description, advantages and limitations 270, 395, 396 detectable crack length possible . . . . . . . . . . . . . . . .281 of evaporator tubes with stress-corrosion cracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 845, 846 for failure analysis and investigation . . . . . 395, 396 flaw size range with 90% probability of detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .272 of forgings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .270 in preliminary laboratory examination . . . . . . . . .406 uses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .270 Edge cracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .667 as discontinuity for extrusions and drawn products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 as discontinuity for plate and sheet . . . . . . . . . . . . . . . 9 thermal-shock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .667 Edge dislocations . . . . . . . . . . . . . . . . . . . . . . . . . . . 588–589 Edge effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .548 Edge joints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .162 Edge preservation of metallographic specimens . . . . . . . . . . . . . . 503–505 Edge retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .362 nickel plating, electroless . . . . . . . . . . . . . . . . . 503, 504 Edge tensile stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .467 Edge-to-edge impact . . . . . . . .977, 978, 979, 980, 981 surface impae . . . . . . . . . . . . . . . . . . . . . . . .966, 978, 979 EDM. See Electrical discharge machining. EDS. See Energy-dispersive spectroscopy. ED-SMAC (computer program) for analyzing motor vehicle accidents . . . . . . . . . .377 Effective crack size (ae) definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1065 Effective net-section stress . . . . . . . . . . . . . . . . . . . . . . .245 Effective strain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .618 Effective stress. See also von Mises stress. . . . . . 465, 618 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1065 Effective stress ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .283 Effective temperature over TMF cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . 739, 740 EFMA. See Elastic fracture mechanics analysis Eigenvalues of stress tensor . . . . . . . . . . . . . . . . . . . . . .482 Eigenvectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .482 Elastic buckling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .559 Elastic constants. See also Bulk modulus of elasticity; Modulus of elasticity; Poisson’s ratio; and Shear modulus definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1065 impingement corrosion of malleable iron . . . . . .792 Electrical as environment contributing to damage mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . 347–348

© 2002 ASM International. All Rights Reserved. ASM Handbook Volume 11: Failure Analysis and Prevention (#06072G)

www.asminternational.org

1110 / Index

Electrical conductivity as criteria for materials selection . . . . . . . . . . . . . . . . 32 Electrical discharge . . . . . . . . . . . . . . . . . . . . . . . . 352, 354 Electrical discharge machining (EDM) . . . 512, 513 compatibility with various materials . . . . . . . . . . . . . 33 and fatigue strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . .720 Electrical isolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .764 Electrical porcelain fracture markings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .665 Electrical porcelain insulator fracture markings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .664 replica, fracture surface . . . . . . . . . . . . . . . . . . . 663, 664 Electrical resistance as electrochemical monitoring method used for microbially induced corrosion . . . . . . . . . . . . .892 Electrical resistance heating . . . . . . . . . . . . . . . . . . . . .186 Electrical resistance strain gages to monitor strain relaxation during sectioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .489 Electrical switch housing brittle fracture of polycarbonate . . . . .456–457, 458 Electric motor driven pump or compressor failures root-cause analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Electric Power Research Institute (EPRI) damage mechanism categorization . . . . . . . . . . . . .347 reliability-centered maintenance applications . . . 61 Electrochemical corrosion tests . . . . . 406, 407, 752, 771, 813 Electrochemical etching as ceramographic etching procedure . . . . . 362, 363 Electrochemical impedance spectroscopy as electrochemical monitoring method used for microbially induced corrosion . . . . . . . . . . . . .892 Electrochemical machining compatibility with various materials . . . . . . . . . . . . . 33 and fatigue strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . .720 to remove surface oxides . . . . . . . . . . . . . . . . . . . . . . .215 Electrochemical monitoring methods of microbially induced corrosion conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 891–892 Electrochemical noise as electrochemical monitoring method used for microbially induced corrosion . . . . . . . . . . . . .892 Electrochemical potential for hydrogen environmental embrittlement . . . . 811, 812 relationship with various failure modes . . . . .35, 36 Electrochemical potentiokinetic reactivation (EPR) technique . . . . . . . . . . . . . . .647, 779, 780 Electrochemical reactions . . . . . . . . . . . . . . . . . . . . . . . .749 Electrochemical relaxation as electrochemical monitoring method used for microbially induced corrosion . . . . . . . . . . . . .892 Electrochemical theory stress-corrosion crack propagation . . . . . . . . . . . . .826 Electrode pickup in weldments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .187 Electrodeposition of coatings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .759 to prevent fretting damage . . . . . . . . . . . . . . . . . . . . . .934 Electrode potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .750 Electrodes and shelf unmelted, in ingot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 Electrodischarge machining distortion due to residual stresses . . . . . . . . . . . . . 1053 Electrogas welding failure origins related to . . . . . . . . . . . . . . . . . . . . . . . .186 Electroless nickel plating and fatigue strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . .720 to preserve brittle and ductile fractures in low alloy steels . . . . . . . . . . . . . . . . . . . . . . . . . . . 337, 340 Electroless plating for edge retention in metallographic examination . . . . . . . . . . . . . . . . . . . . .362, 503, 504 Electrolyte, alteration of . . . . . . . . . . . . . . . . . . . . . . . . . .764 Electrolytic cleaning defects resulting from . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 Electrolytic coatings of fracture surfaces for fracture profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 539, 540 Electrolytic etching as ceramographic etching procedure . . . . . . . . . . .362

Electrolytic plating for edge retention in metallographic examination . . . . . . . . . . . . . . . . . . . . . . . . . . 503, 504 Electrolytic polishing and fatigue strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . .720 Electromagnetic inspection. See Eddy-current inspection. Electromagnetic pumps to fill castings, avoiding oxide films . . . . . . . . . . . .118 Electromotive force (emf) . . . . . . . . . . . . . . . . . . 755, 762 Electron acceptor . . . . . . . . . . . . . . . . . . . . . .881, 882, 883 Electron backscatter diffraction (EBSD) technique . . . . . . . . . . . . . . . . . . . . . . .538, 551, 553 Electron backscattered pattern (EBSP) . . . . . . . .520 Electron beam physical vapor deposition of thermal barrier coatings . . . . . . . . . . . . . . . . . . . . . .877 Electron beam welding failure origins related to . . . . . . . . . . . . . . . . . . 189–190 Electronic computer-aided design constructs . . . 29 Electron diffraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .404 of corrosion products . . . . . . . . . . . . . . . . . . . . . . . . . . .406 of worn surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .413 Electron fractography to assess temper embrittlement . . . . . . . . . . . . . . . . .691 of low-alloy steel casting defects . . . . . . . . . . . . . . .143 Electronic circuit board, drill bits with abrasive wear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 915–916 Electron-microprobe analyzer . . . . . . . . . . . . . . . . . . .404 Electron microscopy in preliminary laboratory examination . . . . . . . . .406 Electron probe microanalysis (EPMA) . . 357, 358, 359 of corrosion products . . . . . . . . . . . . . . . . . . . . . . . . . . .406 in failure analysis . . . . . . . . . . . . . . . . . . . .334, 337, 338 of liquid metal induced embrittlement . . . . . . . . . .866 of low-alloy steel castings . . . . . . . . . . . . . . . . . . . . . .145 or worn surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .413 Electron spectrometer . . . . . . . . . . . . . . . . . . . . . . 529, 530 Electron spectroscopy of solid metal induced embrittlement . . . . . . . . . . .862 Electron spectroscopy for chemical analysis (ESCA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .527 for polymeric analysis . . . . . . . . . . . . . . . . . . . . . . . . . .446 Electroplating of aluminide coatings . . . . . . . . . . . . . . . . . . . . . . . . . . .877 of coatings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .759 defects resulting from . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 galvanized coatings and intergranular corrosion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .785 and hydrogen embrittlement . . . . . . . . . . . . . . . . . . . .696 as hydrogen source for hydrogen embrittlement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .819 and hydrogen stress cracking . . . . . . . . . . . . . 811, 812 role in hydrogen embrittlement . . . . . . . . . . . . . . . . .820 Electrophoresis sputtering of aluminide coatings . . . . . . . . . . . . . . . . . . . . . . . . . . .877 Electropolishing to remove surface oxides . . . . . . . . . . . . . . . . . . . . . . .215 of surface before x-ray diffraction for stress measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .487 and x-ray diffraction peak integral breadth . . . . .495 Electroslag-remelted alloys inclusions in ingot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 Electroslag welding failure origins related to . . . . . . . . . . . . . . . . . . . . . . . .186 Electrostatic precipitation at paper plant, wires pitting corrosion . . . . . . . . . . . . . . . . . . . . . . . . . . . 774–775 Elemental analysis, for microsegregation . . . . . . . .219 Elemental sensitivity factors . . . . . . . . . . . . . . . . . . . . .531 Elemental sulfur as corrosion products in pipeline excavations and laboratory soil box tests . . . . . . . . . . . . . . . . . . .887 Elephant skin as casting defect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .108 Elevated temperature. See High temperature. Ellingham diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .801 Elongation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .732 of cast carbon-molybdenum steels . . . . . . . . . . . . . .145 as criteria for materials selection . . . . . . . . . . . . . . . . 32 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1065 of quenched and tempered low-alloy steel . . . . .980 tensile loading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .468 total . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 732, 733 true . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 732, 733

uniform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .732 Embedded scab as flaw in rolled bars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 Embedded scale as flaw in rolled bars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 Embedding prevention by coating abrasive paper . . . . . . . . . . .506 of SiC grinding paper abrasive in soft metals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 505–506 Embodiment design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Embrittled material at stress raisers as defect resulting from anodic hard coating . . . . 81 as defect resulting from carburizing . . . . . . . . . . . . . 81 as defect resulting from nitriding . . . . . . . . . . . . . . . . 81 as defect resulting from surface hardening . . . . . . 81 Embrittlement and brittle fractures . . . . . . . . . . . . . . . . . . . . . . . . . . . . .523 contribution to overload failures . . . . . . . . . . 689–690 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1065 of gas turbine blades . . . . . . . . . . . . . . . . . . . . . . . . . . . .300 emf. See Electromotive force. emf series of metals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .763 Emission spectroscopy of corrosion products . . . . . . . . . . . . . . . . . . . . . . . . . . .406 Empirical observation method for x-ray diffraction measurement location selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .488 Emulsifiers as addition to disperse microbially induced corrosion deposits . . . . . . . . . . . . . . . . . . . . . . . . .894 End-effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55, 196, 201 End grain definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1065 End-grain attack definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1065 Endothermic atmosphere (endogas) . . . . . . . . . . . .214 End points of life prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .229 Endurance limit . . . . . . . . . . . . . . . . . . . . . . .276–277, 702 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1065–1066 and high-cycle fatigue . . . . . . . . . . . . . . . . . . . . . . . . . .493 Energy absorbed in ductile and brittle fractures . . . . . . . .657 Energy absorption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .566 of brittle vs. ductile fractures . . . . . . . . . . . . . . . . . . .565 Energy density to fracture sample size effect on bending failure . . . . . 606, 610 Energy dispersive spectrometers (EDS) . . 520, 522 Energy-dispersive spectrometry microchemical analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 432–435 Energy-dispersive spectroscopy (EDS) . . 322, 345, 357–359, 404, 527, 530, 561 of alloy steel ski chair lift grip components . . . . . 11 of aluminum alloy castings . . . . . . . . . . . . . . . . . . . . .152 analysis depth and area . . . . . . . . . . . . . . . . . . . . . . . . .527 to analyze acrylonitrile-butadiene-styrene handle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .447 of copper alloy tube with dezincification . . . . . . 786, 787 of corrosion products . . . . . . . . . . . . . . . . . . . . . . . . . . .406 of corrosion surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . .752 of cracks in locomotive axle . . . . . . . . . . . . . . 367, 368 of crevice corrosion on stainless steel tube . . . . .776 detecting elements heavier than beryllium . . . . .530 to detect intergranular fracture . . . . . . . . . . . . . . . . . .401 detection limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .527 ease of use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .527 to evaluate corrosion surfaces . . . . . . . . . . . . 753, 754 in failure analysis . . . . . . . . . . . . . . . . . . . . . . . . . 336, 337 information evaluated . . . . . . . . . . . . . . . . . . . . . . . . . . .527 of liquid metal induced embrittlement . . . . . . . . . .866 of liquid metal induced embrittlement by cadmium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 863, 865 of liquid metal induced embrittlement by mercury . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .865 of nickel alloy showing high-temperature corrosion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 871, 872 of nylon filtration unit . . . . . . . . . . . . . . . . . . . . . . . . . .456 properties measured . . . . . . . . . . . . . . . . . . . . . . . . . . . . .446 of solid metal induced embrittlement . . . . 862, 863, 865 of steam turbine rotor disc with stress-corrosion cracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .842

© 2002 ASM International. All Rights Reserved. ASM Handbook Volume 11: Failure Analysis and Prevention (#06072G)

for stress-corrosion cracking . . . . . . . . . . . . . . . . . . . .837 of tension springs with overload failure . . . . . . . .689 use in failure analysis . . . . . . . . . . . . . . . . . . . . . . . . . . .446 of wear damage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .412 of welded cast steel crosshead . . . . . . . . . . . . . . . . . .153 of worn surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .413 of zinc-induced liquid metal induced embrittlement in stainless steel . . . . . . 367, 369 Energy-dispersive x-ray microprobe analysis of hot tears in brittle fracture of aircraft actuators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150, 152 Energy-dispersive x-ray spectrometry detectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357, 358 Energy-dispersive x-ray spectroscopes (EDS) for microscopic examination of fracture surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .399 Energy dissipation rate of polymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .658 Engineering ceramics . . . . . . . . . . . . . . . . . . . . . . . . . . . 800. See also Advanced ceramics; Technical ceramics. Engineering design process . . . . . . . . . 25, 41–42, 386 Engineering failure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 context of . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40–41 Engineering materials evolution timeline . . . . . . . . . . . . . . . . . . . . . . . . . . . .29, 30 Engine Structural Integrity Program (ENSIP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .274 Enhanced plastic flow theory . . . . . . . . . . . . . . 809, 810 ENSIP. See USAF Engine Structural Integrity Program. Enterobacter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .891 Entrapped mold materials inclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .116 Environment(s) causing intergranular corrosion in sensitized austenitic stainless steels . . . . . . . . . . . . . . . . . . . . . . . .779 corrosion prevention . . . . . . . . . . . . . . . . . . . . . . . . . . . .755 corrosive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .721 effect on corrosive wear . . . . . . . . . . . . . . . . . . . . . . . .990 effect on polymer performance . . . . . . . . . . . 796–799 effect on polymer wear failures . . . . . . . .1024–1025 for galvanic series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .763 humidity and zinc alloy intergranular corrosion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .785 operating and nonoperating as life-limiting factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .233 operational variations . . . . . . . . . . . . . . . . . . . . . . . . . . .902 for stress corrosion cracking . . .832–836, 838–840, 843–844, 848–849, 853, 856, 857 testing, and stress-corrosion cracking . . . . . . . . . .834 Environmental consequences definition in reliability-centered maintenance . . . 62 for failure mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 Environmental cracking definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .875 as mechanism for high-temperature corrosion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 875–876 Environmental effects fatigue crack propagation . . . . . . . . . . . . . . . . . . . . . . .704 Environmental impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Environmentally assisted corrosion . . . . . . . . . . . . .893 Environmentally assisted cracking (EAC) See also Stress-corrosion cracking. . . . . . . . . . . . 490–491 microbial involvement . . . . . . . . . . . . . . . . . . . . . . . . . .884 polycarbonate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .654 Environmentally assisted sustained load cracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .563 fracture mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . .563 Environmentally induced embrittlement effect on overload failures . . . . . . . . . . . . . . . . 695–699 Environmentally induced loads . . . . . . . . . . . . . . . . . .280 Environmental stress cracking (ESC) . . . . . . . . . . .799 physical characteristics of failures . . . . . . . . . . . . . .797 of polycarbonate/PET appliance housings . . . . 450– 451, 453 of polymers . . . . . . . . . 439, 443, 653, 657, 796, 797 reagents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .797 Enzyme activity method used for inspection, growth, and activity assays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .893 EP. See Epoxy polymer. EPFM. See Elastic-plastic fracture mechanics. EPMA. See Electron probe microanalysis.

Epoxy (EP) abrasive wear . . . . . . . 1030, 1032, 1033, 1034–1035 adhesive wear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1040 brittle fracture behavior . . . . . . . . . . . . . . . . . . . . . . . . .656 chemical changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .650 coatings and stress-corrosion cracking . . . . . . . . .841 for cold-mounting materials . . . . . . . . . . . . . . . . . . . .503 as corrosion-resistant coatings . . . . . . . . . . . . 758, 769 crack propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .654 for mounting metallographic specimens . . . . . . . 502, 503, 504, 505 specific wear rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1023 for surface replicas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .522 Epoxy-copper-aluminum composite abrasive wear . . . . . . . . . . . . . . . . . . . . . . . . . . . 1029, 1030 Epoxy esters as corrosion-resistant coatings . . . . . . . . . . . . . . . . . .758 Epoxy, high-performance structural, for linings or coatings for reinforced concrete . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .755 Epoxy-phenolics as corrosion-resistant coating . . . . . . . . . . . . . . . . . . .769 EPR. See Electrochemical potentiokinetic reactivation technique. EPRI. See Electric Power Research Institute. EPRI Boiler Tube Failure Metallurgical Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .349 EPRI/GE handbook . . . . . . . . . . . . . . . . . . . . . . . . 244, 246 EPRI/GE model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .244 EPS. See Extracellular polysaccharides. Epsilon-carbides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .735 Epsilon martensite in austenitic manganese steel . . . . . . . . . . . . . 509, 510 Equalizer beams of truck cold shut in cast steel . . . . . . . . . . . . . . . . . . . . . 122–123 Equicohesive temperature (ECT) . . . .575, 641, 734 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .686 and grain boundary strength . . . . . . . . . . . . . . . . . . . .680 Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .463 Equivalent stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .465 Equivalent temperatures estimation of . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .240 Erosion. See also Erosion-corrosion; Erosion rate; Erosive wear; Flow-assisted corrosion. causes of . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .902 cut, or wash, as casting defects . . . . . . . . . . . . . . . . .105 damage manifestation . . . . . . . . . . . . . . . . . . . . . . . . . . .901 as damage mechanism on failure wheel . . . . . . . .349 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .995, 1066 of die casting dies . . . . . . . . . . . . . . . . . . . . . . . . . 127, 130 percentage of wear failures . . . . . . . . . . . . . . . . . . . . .407 subcategories of . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .902 zinc die casting nozzle . . . . . . . . . . . . . . . . . . . . 127, 130 Erosion-corrosion. See also Erosion; Erosion rate; Erosive wear; and Flow-assisted corrosion. . . . . . .751, 755, 769, 771, 791, 908, 997–999 damage features . . . . . . . . . . . . . . . . . . . . . . . . . . . 356–357 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .998, 1066 features observed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .356 as mechanism of high-temperature corrosion . .876 occurrence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .995 of steam turbines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .990 of tube of cupronickel . . . . . . . . . . . . . . . . . . . . . . . . . .353 use of terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .998 Erosion rate . . . . . . . . . . . . . . . . . . . . . . . . . . . .995, 996, 997 of brittle materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .997 corrosion effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .996 Erosion scab as casting defect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .109 Erosive wear See also Erosion; Erosion-corrosion; Erosion rate; and Flow-assisted corrosion. 407–408, 906, 910–913, 995–999 aluminum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 995, 996 brittle materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . 995, 997 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .407 of ductile materials . . . . . . . . . . . . . . . . . . . . . . . . 995–997 equipment affected by . . . . . . . . . . . . . . . . . . . . . . . . . .995 examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 997–1000 flow condition changes for mitigation . . . . 407–408 by fly ash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .997 glass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .995 hydrodynamic intensity . . . . . . . . . . . . . . . . . . . . . . . . .998 impact angle effect . . . . . . . . . . . . . . . . . . . . . . . . 995–996

www.asminternational.org

Index / 1111 industries affected by . . . . . . . . . . . . . . . . . . . . . . . . . . .995 material changes for mitigation . . . . . . . . . . . . . . . . .408 mechanisms of . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .995 oxidation effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .997 particle shape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .996 volume-loss rate versus time curves . . . . . . . . . . . .995 ESC. See Environmental stress cracking. ESCA. See Electron spectroscopy for chemical analysis. Escape depth of the electron . . . . . . . . . . . . . . . . . . . . .529 Etching electrolytic, of metallographic specimens . . . . . 500, 501, 503, 504, 505, 506, 507, 509, 510, 511, 512, 513, 514 of fractured castings . . . . . . . . . . . . . . . . . . . . . . . . . . . .608 of worn surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .413 Etch pits definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1066 Etch polishing as ceramographic etching procedure . . . . . . . . . . .362 Ethyl alcohol causing stress-corrosion cracking in titanium alloys at various temperatures . . . . . . . . . . . . .857 Ethylene-pyrolysis furnaces . . . . . . . . . . . . . . . . . . . . . .870 European Maintenance Systems Guide . . . . . . . . . . 61 Eutectic melting effect on fatigue strength . . . . . . . . . . . . . . . . . . . . . . .719 EVA. See Economic value analysis. Evaluation intervals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .297 Evaporation coating . . . . . . . . . . . . . . . . . . . . . . . . 521, 522 Evaporation of interference layers as ceramographic etching procedure . . . . . . . . . . .362 Evaporator tubes stress-corrosion cracking . . . . . . . . . . . . . . . . . . 845, 846 EVD. See Extreme value distribution. Event and causal factor analysis charting . . .14, 15 Event tree method . . . . . . . . . . . . . . . . . . . . . . . . . . 262, 267 Evident failure definition in reliability-centered maintenance . . . 62 Evident failure modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 Evident function definition in reliability-centered maintenance . . . 62 Evolved gas analysis of polymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .442 Examination. See also Nondestructive examination (NDE). of ceramic materials . . . . . . . . . . . . . . . . . . . . . . 362–367 corrosion failures . . . . . . . . . . . . . . . . . . . . . . . . . . 751–752 of corrosion fatigue fracture-surface deposits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 721–722 cracking sequence . . . . . . . . . . . . . . . . . . . . . . . . . 351–352 documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .351 edge retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .362 of fractures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 499–501 macroscopic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351–353 macroscopic, for stress-corrosion cracking . . . . .352 of metallographic sections . . . . . . . . . . . . . . . . 363, 364 microchemical analysis procedures . . . . . . . 357–358 microfractography . . . . . . . . . . . . . . . . . . . . . . . . . 353–354 microstructural analysis and interpretation . . . 363– 367 of microstructures . . . . . . . . . . . . . . 509–512, 513, 514 on-site . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405–406 overload fractures in laboratory . . . . . . . . . . . . . . . .699 rub marks, scores, and indentations . . . . . . . . . . . .354 for stress-corrosion cracking on-site . . . . . . . . . . . .835 visual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351–352 of weldment failures . . . . . . . . . . . . . . . . . . . . . . . . . . . .159 Excessive bead concavity surface feature as cause for rejection . . . . . . . . . . .156 Excessive bead convexity surface feature as cause for rejection . . . . . . . . . . .156 Excessive case thickness as defect resulting from anodic hard coating . . . . 81 as defect resulting from carburizing . . . . . . . . . . . . . 81 as defect resulting from nitriding . . . . . . . . . . . . . . . . 81 as defect resulting from surface hardening . . . . . . 81 Excessive grain growth as defect resulting from heat treatment . . . . . . . . . . 81 Excessive indentation in weldments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .187 Excessive metal penetration into space between sand grains from mold-wall deficiencies . . . . . . . . . . . . . . . . . . . .119

© 2002 ASM International. All Rights Reserved. ASM Handbook Volume 11: Failure Analysis and Prevention (#06072G)

www.asminternational.org

1112 / Index

Excessive mismatch at weld joint surface feature as cause for rejection . . . . . . . . . . .156 Excessive reinforcement in weldments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .169 Excessive ferrite in cast irons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .139 Excitation energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .519 Executive decision trees . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Exemplar component . . . . . . . . . . . . . . . . .319, 402, 403 Exfoliation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .754, 779, 831 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1066 Exogenous inclusions . . . . . . . . . . . . . . . . . . . . . . . 116, 117 Exothermic atmosphere (endogas) . . . . . . . . . . . . . .216 Expansion, scabs as casting defect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .109 Expansion formed (explosive-loading) tubing cleavage cracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .572 Expected value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .252 Expendable-mold casting processes and defect-related failures . . . . . . . . . . . . . . . . . . . . . .123 Expendable pattern casting in shape-casting processes classification scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .124 Experimental stress analysis description, advantages and limitations . . 396–397 for failure analysis and investigations . . . . 396–397 Expert witness for twist drill of high-speed steel . . . . . . . . . . . . . . . . 74 Explosive bonding to clad carbon-manganese steels with erosionresistant alloys . . . . . . . . . . . . . . . . . . . . . . . . . . . 1016 Exponential distribution . . . . . . . . . . . . . . . . . . . 253, 260 Extension ladders side rails distortion of aluminum alloys . . . . . 1048– 1049 Extensometer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .702 Extent of reentrant regions (folds) of fracture surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .545 External and longitudinal crack characteristics and crack growth mechanism . . .100 classification scheme by Greek letters . . . . . . . . . . . 99 External loads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .276 External mixing crack characteristics and crack growth mechanism . . .100 classification scheme by Greek letters . . . . . . . . . . . 99 External pipelines prevention approach for corrosion in industrial facilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .893 External shearing crack characteristics and crack growth mechanism . . .100 classification scheme by Greek letters . . . . . . . . . . . 99 External shrinkage as casting defect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .106 Extracellular polysaccharides (EPS) . . . . . . 883, 884 as binding agents for copper ions in microbially induced corrosion . . . . . . . . . . . . . . . . . . . . . . . . . .890 Extraction replica . . . . . . . . . . . . . . . . . . . . . . . . . . 520, 522 Extreme value distribution (EVD) . . .253, 254, 265 Extrusion(s) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 central bursting (chevron cracking) . . . . . . . 511, 512 discontinuities, types of . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 fretting and surface tears . . . . . . . . . . . . . . . . . . . . . . . .924 imperfections causing fractures . . . . . . . . . . . . . . . . .615 plastic buckling of aluminum alloys . . . .1048–1049 Extrusion debonding in squeeze casting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .131 Extrusion molding of nylon parts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1025 Extrusion segregation in squeeze casting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .129 Extrusion-type defects in forgings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .92, 93 Eyebolt stress concentration at . . . . . . . . . . . . . . . . . . . . . . . . . .472 Eye connectors for pontoons . . . . . . . . . . . . . . 113, 114 Eye protection federal and state regulations . . . . . . . . . . . . . . . . . . . . . 74

F FAA Advisory Circulars . . . . . . . . . . . . . . . . . . . . . . . . .274 availability on Internet . . . . . . . . . . . . . . . . . . . . . . . . . .274

Fabric as polymer reinforcement . . . . . . . . . . . . . . .1033–1035 Fabricability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Fabrication characteristics as criteria for materials selection . . . . . . . . . . . . . . . . 32 Fabric-reinforced polymer composites abrasive wear . . . . . . . . . . . . . . . . . . . . . . . . . . . .1033–1035 adhesive wear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1040 FAC. See Failure assessment curve. Face-centered cubic (fcc) materials cleavage fracture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .589 deformation behavior (Ashby) map . . . . . . 684, 685 ductile-to-brittle transition . . . . . . . . . . . . . . . . . . . . . .684 flow strength . . . . . . . . . . . . . . . . . . . . . . . . . . . .1049–1050 fracture mechanism maps, general shifts . . . . . . .571 hydrogen embrittlement and intergranular fractures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .647 incomplete fusion fractures . . . . . . . . . . . . . . . . . . . . .644 overload failures . . . . . . . . . . . . . . . . . . . . .678–679, 680 temperature effect on toughness and ductility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 684, 685 tensile elongation increase as temperature decreases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .596 transgranular cleavage with environmentallyassisted cracking . . . . . . . . . . . . . . . . . . . . . . . . . . .674 yield strength vs. temperature . . . . . . . . . . . . . . . . . .569 Faceted fracture surface microscale fractographic implication . . . . . . . . . . .560 Factorial design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .258 Factor-of-safety approaches . . . . . . . . . . . . . . . . . . . . .241 FAD. See Failure assessment diagram. Failed part, use of term . . . . . . . . . . . . . . . . . . . . . . . . . . .317 Fail-safe design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 Fail-safe methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .231 Failsafe Network, Inc., Operation Failsafe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316, 332 five “Ps” to be documented and recorded to freeze evidence at failure scene . . . . . . . . . . . . . . . . . .327 Failsafe system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .332 Fail safety . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .231 Failure(s) categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17–19, 20 cause levels defined by Failsafe Network . . . . . .316 causes of . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56, 324 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5, 324, 1066 definition, for failure investigator . . . . . . . . . . . . . . .227 definition, industrial . . . . . . . . . . . . . . . . . . . . . . . . . . . . .227 effects of . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .333 of expected performance . . . . . . . . . . . . . . . . . . . . . . . .324 factors causing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .333 frequency of causes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 functional . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .324 historic structural of 20th century, and impact on life assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . .228 time distribution of . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Failure analysis. See also Failure investigation. . . 3– 23, 315–323 abnormal conditions present . . . . . . . . . . . . . . 394–395 analyzing of data . . . . . . . . . . . . . . . . . . . . . . . . . . 334, 339 approaches . . . . . . . . . . . . . . . . . . . . . . . . . . .316–317, 333 background data assembly . . . . . . . . . . .333, 334–335 of cavitation erosion . . . . . . . . . . . . . . . . . . . .1002–1004 of ceramics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369–370 checklist and report for a simple part . . . . . . . . . .319 chemical analysis . . . . . . . . . . . . . . . . . . . . . . . . . 334, 337 codes of ethics for engineers . . . . . . . . . . . . . 322–323 communication skills development . . . . . . . . . . . . .321 complexity categories . . . . . . . . . . . . . . . . . . . . . . . . . . .318 convergent-beam electron diffraction technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .338 definition . . . . . . . . . . . . . . . . . . . . . .6, 24, 315, 371, 418 depth and scope of . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .317 design as cause . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7–9 and design inadequacies identified . . . . . . . . . . . . . . 24 design review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .386 dye-penetrant inspection . . . . . . . . . . . . . . . . . . . . . . . .336 education and training importance . . .315–316, 318 electron microprobe analysis . . . . . . . .334, 337, 338 electron microscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . .338 energy-dispersive microscopy . . . . . . . . . . . . 336, 337 error avoidance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318–319 feedback to product evolution . . . . . . . . . . . . . . .20, 22

following the Federal Rules of Evidence . . . . . . .393 follow-up on recommendations . . . . . .334, 340–341 formulating conclusions . . . . . . . . . . . . . . . . . . 413–414 fractography . . . . . . . . . . . . . . . . . . . . 333, 334, 335, 337 fracture mechanics analysis . . . . . . . . . . . . . .15, 16–17 fracture mechanics application . . . . . . . . . . . . . . . . .401 fracture mechanics use . . . . . . . . . . . . . . . . . . . . . . . . . .480 guidelines for conducting an investigation . . . 416– 417 interdisciplinary approach . . . . . . . . . . . . . . . . . . . . . .319 knowledge requirements for analysts . . . . . 322–323 laboratory investigations . . . . . . . . . . . . . . . . . . . . .15, 16 light microscopy . . . . . . . . . . . . . . . 336, 337, 338, 339 of liquid metal induced embrittlement . . . . 862–863 litigation projects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .319 logical approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 macroetching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .337 macroscopic examination . . . . . . . . . . . .334, 335, 336 magnetic-particle inspection . . . . . . . . . . . . . . . . . . . .336 manufacturing/installation defects . . . . . . . . . . . 11–13 material defects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–11 mechanical properties, determination . . . .334, 337– 338 metallographic examination . . . . . . . . .334, 336, 338 metallography, macrofractography, and microfractography skills . . . . . . . . . . . . . . . . . . .322 microfractography . . . . . . . . .333, 337, 338, 339, 340 microhardness testing . . . . . . . . . . . . . . . . . . . . . 334, 338 objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317–318 open-mind/open-toolbox approach . .319–320, 322 people interviews . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15–16 physical causes and time of occurrence . . . . . . . .318 pitfalls in investigations . . . . . . . . . . . . . . . . . . . . . . . . .319 planning and preparation . . . . . . . . . . . . . . . . . 318–321 of polymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367–369 practices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321–323 preservation of evidence . . . . . . . . . . . . .334, 339–340 preservation of fracture surfaces . . . . . . . . . . 397–398 principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316–317 procedures . . . . . . . . . . . . . . . . . . . . . . 321–323, 333–341 questions to be asked . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 radiography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .336 relation to design and production of a component . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 replication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .337 report preparation . . . . . . . . . . . . . . . . . . . . . . . . . 334, 339 report preparation and writing . . . . . . . . . . . . 414–416 reports required during detailed design . . . . . . . . . . 31 root-cause . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .318 root-cause analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6, 7 scanning Auger microprobe analysis . . . . . . . . . . .337 scanning electron microscopy 336, 337, 338, 339 scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318–319 selection of appropriate approach . . . . . . . . . . . . . .317 service life anomalies . . . . . . . . . . . . . . . . . . . .13, 14, 15 simulation testing . . . . . . . . . . . . . . . . . . . .334, 338–339 of solid metal induced embrittlement . . . . . 862–863 sources of input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 stages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .393 steps in investigation . . . . . . . . . . . . . . . . . . . . . . 437, 438 steps in performing . . . . . . . . . . . . . . . . . . . . . . . 333–334 steps in process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .343 stress analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15, 16 structured decision-making and problemsolving methods for larger scale investigations . . . . . . . . . . . . . . . . . . . . . . . . 319, 320 test protocol example . . . . . . . . . . . . . . . . . . . . . . . . . . .321 T-junction procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . .395 transmission electron microscopy . . .337, 338, 339 ultrasonic examination . . . . . . . . . . . . . . . . . . . . . . . . . .336 visual examination . . . . . . . . . . . . . . . . . . .333, 335–337 wavelength-dispersive analysis . . . . . . . . . . . . . . . . .338 wreckage analysis . . . . . . . . . . . . . . . . . . . . . . . . . 394–395 x-ray diffraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .337 x-ray techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . 334, 338 Failure analysis report, . . . . . . . . . . . . . . . . . . . . 415–416 Failure assessment (interpolation formula) . . . . .243 Failure assessment curve (FAC) . . . . . .243, 244–246 Failure assessment diagram (FAD) . . 241, 243–249, 266, 267, 480 construction improvements . . . . . . . . . . . . . . . . . . . . .246 for weldments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .160 Failure assessment point (FAP) . . . . . . . . . . . . . . . . . . . . . 243, 244, 245, 248

© 2002 ASM International. All Rights Reserved. ASM Handbook Volume 11: Failure Analysis and Prevention (#06072G)

Failure cascades . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 Failure consequences definition in reliability-centered maintenance . . . 62 Failure criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .289 Failure development period. See P-F interval. Failure effect definition in reliability-centered maintenance . . . 62 Failure investigation. See also Failure analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324–332 benefits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .325 corrective actions . . . . . . . . . . . . . . . . . . . . . . . . . 328, 331 definition in reliability-centered maintenance . . . 62 documentation . . . . . . . . . . . . .327, 328, 329, 330, 331 eyewitness statements . . . . . . . . . . . . . . . . . . . . . 326, 327 failure mode assessment chart . . . . . . . . . . . . 328, 329 field investigation kit contents . . . . . . . . . . . . . . . . . .326 five “Ps” at failure scene . . . . . . . . . . . . . . . . . . . . . . . .327 investigator, role of . . . . . . . . . . . . . . . . . . . . . . . 234–238 Kepner-Tregoe (KT) method . . . . . . . . . . . . . . . . . . .331 Operation Failsafe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .332 PROACT software . . . . . . . . . . . . . . . . . . . . . . . . 331–332 problems and mistakes . . . . . . . . . . . . . . . . . . . . . . . . . .331 problem-solving process, four-step . . . . . . . . . . . . .325 purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .325 root-cause analysis . . . . . . . . . . . . . . . . . . . . . . . . 327–328 specifications (ASTM) relevant to . . . . . . . . . . . . . .327 statistics kept in searchable database . . . . . . . . . . .325 steps to organization of . . . . . . . . . . . . . . . . . . . 325–331 Technical Plan for Resolution chart . . . . . . 328, 330 Failure management policy definition in reliability-centered maintenance . . . 62 Failure mechanisms . . . . . . . . . . . . . . . . . . . . . . . . 235, 386 determination of . . . . . . . . . . . . . . . . . . . . . . . . . . . 235, 393 time-dependent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .386 Failure mode(s) . . . . . . . . . . . . . . . . . . . . . . . . . . . .61, 63–64 definition in reliability-centered maintenance . . . 62 effect, and criticality analysis . . . . . . . . . . . . . . . . . . . . 27 of engineering ceramics and bearing steel . . . . .960 relationships with material properties . . . . . . . . . . . 36 of rolling-contact fatigue . . . . . . . . . . . . . . . . . . 960–963 Failure Mode Assessment (FMA) chart 328, 329, 331 Failure model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254–255 Failure Mode/Mechanism Distributions 1997 (FMD 97) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 Failure modes and effects analysis (FMEA) . . . . 19, 27, 45, 50–59, 76, 332 automation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57–58 corrective action recommendation . . . . . . . . . . . 55–56 detailed fault analysis . . . . . . . . . . . . . . . . . . . . . . . .53, 55 to determine physical causes and time of occurrence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .318 development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 failure cause model . . . . . . . . . . . . . . . . . . . . . .56–57, 58 failure consequences identified . . . . . . . . . . . . . . . . . . 55 and failure modes, effects, and criticality analysis compared . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 failure types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 fault equivalence . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56, 58 foreseeable manner of defects . . . . . . . . . . . . . . . . . . . 72 functional fault analysis . . . . . . . . . . . . . 54, 55, 56, 58 ground rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 interface failure mode analysis . . . . . . . . . . . . . .56, 58 interface fault analysis . . . . . . . . . . . . . . . . . . . . . . . 54–55 iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 library materials to be developed for . . . . . . . . . . . . 54 logistics support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 maintainability engineering . . . . . . . . . . . . . . . . . . . . . . 52 manufacturing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 planning for . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 process methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 process overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50–53 project management . . . . . . . . . . . . . . . . . . . . . . . . . . 52–53 ranking and classification system for failures . . . 55 reliability engineering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 role in design process . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 schedule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 stop valve of hot water heater . . . . . . . . . . . . . . . 51–53 system hazard analyses . . . . . . . . . . . . . . . . . . . . . . . . . . 52 systems engineering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 tailored to meet reliability-centered maintenance goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62–64 testing capability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

usefulness for larger scale investigations . . . . . . .320 worksheets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .50, 53 Failure modes, effects, and criticality analysis (FMECA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .50, 76 Failure origins in arc welds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169–191 determination of . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .234 related to arc welding methods . . . . . . . . . . . 185–186 Failure prevention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19–22 corrective actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 effort prioritization . . . . . . . . . . . . . . . . . . . . . . . . . . .19, 20 failure modes and effects analysis . . . . . . . . . . . . . . . 19 industry associations standardizing corretive actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 by materials selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 performance specification . . . . . . . . . . . . . . . . . . . . . . . . 19 thorough periodic field inspections, of ski chair lift grip components . . . . . . . . . . . . . . . . . . . . . . . .10, 11 properties of materials for consideration . . . . . . . . 21 safety factors and reliability . . . . . . . . . . . . . . . . . 20–21 Failure prevention and analysis, education and communication importance . . . . . . . . . . . . . . . .333 Failure simulation testing . . . . . . . . . . . . . . . . . . . . . . . .419 Failure strain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1032 Failure structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .243 Failure wheels . . . . . . . . . . . . . . . . . . . . . . . . . .347, 348, 349 usefulness for larger scale investigations . . . . . . .320 Falling slag damage as boiler tube damage mechanism on failure wheel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .350 as damage mechanism for boiler tubing . . . . . . . .347 Falling slag erosion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .876 Falling weight impact test, for polymers . . . . . . . .445 False Brinelling. See also Brinelling. . . . . . . 922, 923 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1066 in rolling-element bearings . . . . . . . . . . . . . . . 935–936 and true Brinelling compared . . . . . . . . . . . . . 935, 936 Fan marks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .612 in cleavage fractures . . . . . . . . . . . . . . . . . . . . . . 572, 573 near fracture origin . . . . . . . . . . . . . . . . . . . . . . . . 398, 399 Fan pattern microscale fractographic implication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .560 Fan shafts fatigue failure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 705–706 fatigue life prediction . . . . . . . . . . . . . . . . . . . . . 705–706 FAP. See Failure assessment point. Faraday’s Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 763, 764 Fastener nuts, liquid metal induced embrittlement . . . . . . . . . . . . . . . . . . . . . . . . 863, 865 Fast fracture, region of . . . . . . . . . . . . . . . . . . . . . . . . . . .479 Fast overload fracture, characteristic patterns in cylindrical components . . . . . . . . . . . . . . 632, 633 Fatigue. See also Contact fatigue; Corrosion fatigue; Creep fatigue; Crystallographic fatigue; Fatigue failure; High cycle fatigue; Highgrowth-rate fatigue; Intergranular fatigue; Low-cycle fatigue; Peeling fatigue; Stresscorrosion fatigue; Subcase fatigue; Thermal fatigue; Ultimate strength; Yield strength. cantilever loading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .710 causing service failures of welds . . . . . . . . . . . . . . .156 characteristics of failure mode . . . . . . . . . . . . . . . . . .345 of composites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 638–639 contact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 722–726 crack center of curvature direction . . . . . . . 631, 633 crack growth rates . . . . . . . . . . . . . . . . . . . . . . . . 702–704 crack-growth threshold . . . . . . . . . . . . . . . . . . . 703–704 crack initiation . . . . . . . . . . . . . . . . . 576, 577–578, 706 crack initiation, macroscopic appearances . . . . 627, 628, 629, 631–633 crack-initiation, threshold . . . . . . 703–704, 716–717 crack propagation . . . 577–580, 629–633, 702–704, 708–709 environmentally assisted . . . . . . . . . . . . . . . . . . . . .704 knowledge required for failure analyst . . . . . .322 threshold . . . . . . . . . . . . . . . . . . . . . . . . . . .542, 703–704 weldments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .163 cyclic loading, subcritical cracking . . . . . . . 478–479 as damage mechanism . . . . . . . . . . . . . . . . . . . . . . . . . .344 as damage mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .344 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .628, 1066 effect of elevated temperature . . . . . . . . . . . . . . . . . .718 effect of load frequency . . . . . . . . . . . . . . . . . . . . . . . . .718

www.asminternational.org

Index / 1113 effect of material condition . . . . . . . . . . . . . . . 718–721 from elevated temperatures in gas turbines . . . 291, 292, 296 examination methods . . . . . . . . . . . . . . . . . . . . . 345, 672 features mistaken for . . . . . . . . . . . . . . . . . . . . . . 634, 635 final fracture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .630 final overload fracture . . . . . . . . . . . . . . .632, 633–634 fractography of . . . . . . . . . . . . . . . . . . . . . . . . . . . . 627–639 fracture mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . .563 fractures . . . . . . . . . . . . . . . . . . . . . . . . 576–581, 582, 583 in high-temperature environments . . . . . . . . . . . . . .875 influencing intergranular fracture . . . . . . . . . . . . . . .642 initiation . . . . . . . . . . . . . . . . . . . 627, 628–629, 631–633 initiation, driving force . . . . . . . . . . . . . . . . . . . . . . . . .631 intergranular . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 644–645 microscopic features mistaken for . . . . . . . . 637–638 microstructural features associated with . . . . . . . .563 multiple-site damage . . . . . . . . . . . . . . . . .228, 235, 236 notch factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .716 notch sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .716 of polymers . . . . . . . . . . . . . . . 368, 638–637, 654, 655 processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 628–630 reversed bending, shaft . . . . . . . . . . . . . . . . . . . . . . . . .712 rods subjected to torsion . . . . . . . . . . . . . . . . . . 630, 633 rotational bending shaft . . . . . . . . . . . . . .712–713, 714 shaft of steel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 579, 581 stages of process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .706 subcase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .723, 725–726 subsurface crack initiation by rolling contact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 628, 632 suburface fractures shown by metallographic examination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .366 subsurface initiation . . . . . . . . . . . . . . . . . .627, 628, 632 surface crack initiation, sliding plus rolling contact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 628, 632 surface magnification possible . . . . . . . . . . . . . . . . . .672 surfaces from crack growth . . . . . . . . . . . . . . . . . . . . .562 torsional, shafts . . . . . . . . . . . . . . . . . . . . . . . . . . . 713–715 unidirectional bending . . . . . . . . . . . . . . . . . . . . 710–711 unidirectional bending bolt . . . . . . . . . . . . . . . . . . . . .711 weldment low-carbon steel plate . . . .171–172, 173 of weldments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .156 in weldments, and joint design . . . . . . . . . . . 163–167 Fatigue crack growth rate, da/dN. See also Paris Law. and crack propagation . . . . . . . . . . . . . . . . . . . . 577, 578 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1066 at intermediate stress intensity range . . . . . 584–585 temperature effect in gas turbines . . . . . . . . . . . . . .291 variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .276 Fatigue cracking and cold forming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .102 in corrosive environment . . . . . . . . . . . . . . . . . . . . . . .721 of knuckle pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 720, 721 propagation direction . . . . . . . . . . . . . . . . . . . . . . . . . . .401 with shot peening . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .222 stress concentration effect . . . . . . . . . . . . . . . . . . . . . .716 Fatigue/damage-tolerance life assessment . . . . . 237, 239 Fatigue failure of aircraft compressor disks . . . . . . . . .264–265, 266 aircraft F-111 wing box . . . . . . . . . . . . . . . . . . . 228, 231 alternating (reversed) bending, stationary shaft . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 711–712 of axle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .562 and casting design . . . . . . . . . . . . . . . . . . . . . . . . 133–134 of connecting end of forged rod . . . . . . . . . . . . . 85–86 damage tolerance criterion . . . . . . . . . . . . . . . . . . . . . .702 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1066 design-life methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . .700 of ductile iron piston of gun-recoil mechanism . . . . . . . . . . . . . . . . . . . . . .141–142, 143 effect of loading . . . . . . . . . . . . . . . . . . . . . . . . . . . 708–710 effect of stress concentrations . . . . . . . . . . . . 715–717 fan shafts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 705–706 fatigue crack growth rates . . . . . . . . . . . . . . . . 702–704 finite-life criterion (e-N curves) . . . . . . . . . . . . . . . .702 gas turbine blades . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .346 infinite-life criterion (S-N curves) . . . . . . . . 700–702 influencing variables . . . . . . . . . . . . . . . . . . . . . . . . . . . .700 long-life . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 576–577 mean stress effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .700 origins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 627, 628

© 2002 ASM International. All Rights Reserved. ASM Handbook Volume 11: Failure Analysis and Prevention (#06072G)

www.asminternational.org

1114 / Index

Fatigue failure (continued) pin in guy wire of Loran tower . . . . . . . . . . . 334–335 polycarbonate plumbing fixtures . . . . . . . . . . . . . . . .659 polyvinyl chloride, pipe . . . . . . . . . . . . . . . . . . . . . . . . .524 of Rene´ 80 turbine blades . . . . . . . . . . . . . . . . . . . . . .739 of solenoid valve of stainless steel . . . . . . . 235–238 stage II striations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .522 in steel valve springs . . . . . . . . . . . . . . . . . . . . . . . . .87, 88 welded cooling tower pipe of steel . . . . . . . 168–169 welded headers for superheated water, steel pipes and elbows . . . . . . . . . . . . . . . . . . . . . . . . . . . 165–166 of welded steel shaft for amusement ride . . . . 175– 176, 177 welded tubular posts in carrier vehicle of steel . . . . . . . . . . . . . . . . . . . . . . . . . . . . .173–174, 176 welded water-wall tube of steel . . . . . . . . . . . 176, 177 weldments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163–167 wing skin spar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232, 233 of wire clips . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 447, 449 Fatigue fracture . . . . . . . . . . . . . . . . . 576–581, 582, 583 bolt by unidirectional bending . . . . . . . . . . . . . . . . . .711 characteristics . . . . . . . . . . . . . . . . . . . . . . . .706–708, 709 of ductile iron stuffing box . . . . . . . . . .136–137, 138 factors needed for beach marks presence . . . . . .633 features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .627 final fracture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 708, 709 gear tooth of steel . . . . . . . . . . . . . . . . . . . . . . . . . 366, 367 gray iron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 523, 524 growth mechanisms . . . . . . . . . . . . . . . . . . . . . . . 578, 579 at high stress intensity range . . . 580–281, 583, 578 at low stress intensity range . . . . . . . . . . . . . . . . . . . .578 macroscopic appearance . . 627, 628, 629, 630–635 maraging steels . . . . . . . . . . . . . . . . . . . . . . . . . . . . 523, 524 of medium-carbon steel heavy-duty axle housing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .119 microfractography used for examination . . . . . . 354, 355 microscopic appearance in metals . . . . . . . . 635–638 reversed bending . . . . . . . . . . . . . . . . . . . . . . . . . . 576, 577 of shaft . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 707–711 shaft from tube-bending machine . . . . . . . . . . . . . . .711 of stainless steel . . . . . . . . . . . . . . . . . . . . . . . . . . . 523, 524 of stainless steel mixer blade . . . . . . . . . . . . . . . . . . .8–9 steel roller with banding . . . . . . . . . . . . . . . . . . . . . . . .720 thermal fatigue . . . . . . . . . . . . . . . . . . . . . . . . . . . . 736–737 of valve springs of steel . . . . . . . . . . . . . . . . . . . . .87, 88 wires in electrostatic precipitator at paper plant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 774–775 Fatigue life . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .718 cyclic frequency under fluctuating stress . . . . . . .718 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1066 macropitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .723 oxide film effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .117 prediction of . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 704–706 reduced by cracks caused by wear . . . . . . . . . . . . .901 residual stress effect . . . . . . . . . . . . . . . . . . . . . . . . . . . .491 of torque link bolt on fixed-nose landing gear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .284 Fatigue-life assessment . . . . . . . . . . . . . . . . . . . . . 276–287 damage-tolerance approach . . . . . . . . . . . . . . . 281–282 safe-life approach . . . . . . . . . . . . . . . . . . . . . . . . . 281–282 Fatigue limit (endurance limit) . . . . . . 700, 701, 702, 703 alloying element effects . . . . . . . . . . . . . . . . . . . . . . . . .718 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1066 and high-cycle fatigue . . . . . . . . . . . . . . . . . . . . . . . . . .493 Fatigue notch factor . . . . . . . . 276, 277–278, 286, 716 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1066 of torque link bolt material . . . . . . . . . . . . . . . . . . . . .284 Fatigue notch sensitivity definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .716, 1066 Fatigue origins, located using low magnifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . .630 Fatigue properties, relationship with various failure modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35, 36 Fatigue ratio, definition . . . . . . . . . . . . . . . . . . . . . . . . . 1066 Fatigue strength alloy segregation effect . . . . . . . . . . . . . . . . . . . 719–720 banding effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .720 of castings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .112 and cavitation resistance . . . . . . . . . . . . . . . . . . . . . . 1005 cold working effect . . . . . . . . . . . . . . . . . . . . . . . 718–719 as criteria for materials selection . . . . . . . . . . . . . . . . 32 decarburization effect . . . . . . . . . . . . . . . . . . . . . . . . . . .719

definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1066 effect of heat treatments . . . . . . . . . . . . . . . . . . 718–719 eutectic melting effect . . . . . . . . . . . . . . . . . . . . . . . . . .719 flakes effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .720 gas porosity effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .719 inclusions effect . . . . . . . . . . . . . . . . . . . . . . . . . . . 718, 719 internal bursts effect . . . . . . . . . . . . . . . . . . . . . . . . . . . .719 manufacturing processes effect on . . . . . . . . 720–721 and microcracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .218 overheating effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .719 quench crack effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . .719 shrinkage porosity effect . . . . . . . . . . . . . . . . . . . . . . . .719 Fatigue strength coefficient, in liquid-impact erosion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1016 Fatigue striations . . . . .237, 239, 346, 480–481, 580, 582, 634–636 counts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .480 cyclic brittle cleavage . . . . . . . . . . . . . . . . . . . . . 579, 581 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1066 and fatigue crack propagation . . . . . . . . . . . . 708, 709 indicative of fatigue . . . . . . . . . . . . . . . . . . . . . . . . . . . . .559 in initial propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . .707 and intergranular fatigue . . . . . . . . . . . . . . . . . . . . . . . .644 at intermediate stress intensity range . . . . . . . . . . .579 on polymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .368 presence and visibility . . . . . . . . . . . . . . . . . . . . . . . . . .561 spacing estimation in fracture surfaces . . . .17, 481, 550–551, 585 in stainless steel solenoid valve . . . . . . . . . . 235–238 Fatigue testing of ductile iron pistons . . . . . . . . . . . . . . . . . . . . . . . . . . .142 of polymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 445–446 Fatigue wear contact fatigue terminology . . . . . . . . . . . . . . . . . . . . .722 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1066 FATT. See Fracture appearance transition temperature. Fatty acid methyl ester analysis, to investigate mirobial populations . . . . . . . . . . . . . . . . . . . . . . .893 Fault equivalence . . . . . . . . . . . . . . . . . . . . . . . . . .50, 56, 58 Fault equivalent failure modes . . . . . . . . . . . . . . . . . . . 56 Fault hazard analysis (FHA) . . . . . . . . . . . . . . . . .27, 76 Fault Identifier Number (FIN) . . . . . . . . . . . . . . . . . . . 56 Fault system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 Fault-tolerant systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 Fault-tree analysis (FTA) . . . . 14–15, 27, 50, 56–58, 76, 262, 263, 267, 327, 328, 331 symbols used in construction of . . . . . . . . . . . . . . . . . 57 foreseeable manner of defects . . . . . . . . . . . . . . . . . . . 72 usefulness for larger scale investigations . . . . . . .320 FEA. See Finite-element analysis method. Feature exposure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .421 Federal Aviation Administration, AC 33.14 circular, titanium rotor design and fracture probability . . . . . . . . . . . . . . . . . . . . . . . . . . . 264, 266 Federal Rules of Evidence . . . . . . . . . . . . . . . . . . . . . . .393 Feedwater pressure tube, denickelification . . . . . 788, 789 Ferric chloride . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .750 causing intergranular corrosion in sensitized austenitic stainless steels . . . . . . . . . . . . . . . . . .779 intergranular corrosion evaluation test . . . . . . . . .781 Ferricyanide tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .886 Ferrite atomic volume of ferrous alloys . . . . . . . . . . . . . . . .194 in cast irons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .139 in cast steel equalizer beams with cold shut . . 122, 123 in corrosion-resistant castings . . . . . . . . . . . . 147–148 crystal structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .193 in gray iron paper-drier head with cold shut . . 121, 122 as transformational product in steel . . . . . 192, 193, 194, 195, 196 Ferrite and carbides atomic volume of ferrous alloys . . . . . . . . . . . . . . . .194 volume changes of carbon steels due to phase transformation . . . . . . . . . . . . . . . . . . . . . . . 194, 195 Ferrite bands, in steel lifting eye . . . . . . . . . . . . . . . . . . 37 Ferrite caps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139, 140 Ferrite fingers in forgings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91–92 in ingots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

Ferrite stringers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 615, 681 Ferroalloys, as source causing gas porosity in cast irons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .115 Ferrous carbonate, formation in microbially induced corrosion . . . . . . . . . . . . . . . . . . . . . . . . . .882 Ferrules for electric fuses, stress-corrosion cracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .854 FFS. See Fitness-for-service practice. FHA. See Fault hazard analysis. Fiber, definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1066 Fibering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .584, 612, 681 from stringers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .582 Fiber-optic illuminator, as light source for viewing crazes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .652 Fiber-optic lighting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .353 Fiber-reinforced composite, definition . . . . . . . . . 1066 Fiber-reinforced polymers (FRP). See also Polymers. . . . . . . . . . . . . . . . . . . . . . . . . . 1029, 1030 in dissimilar metal pair, fretting damage . . . . . 928– 929 Fiber stress, definition . . . . . . . . . . . . . . . . . . . . . . . . . . 1066 Fibrils . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .651 and crazing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 656–657 Fibrous fracture, definition . . . . . . . . . . . . . . . . . . . . . 1066 Fibrous overload fracture . . . . . . . . . . . . . . . . . . . . . . . .634 Fibrous structure, definition . . . . . . . . . . . . . . . . . . . 1066 Field composition checkers . . . . . . . . . . . . . . . . . . . . . .429 Field emission microscope, higher resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 524–525 Field failure report sheet or checklist . . . . . . . . . .393 Field inspection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .371 Field investigation kit, contents of . . . . . . . . . . . . . .326 Field metallography . . . . . . . . . . . . . . . . . . .345, 513–514 Filament burnout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .522 Filiform corrosion, definition . . . . . . . . . . . . . . . . . . 1066 Fillet scab, as casting defect . . . . . . . . . . . . . . . . . . . . . .105 Fillet shape, in weldments . . . . . . . . . . . . . . . . . . . . . . . .169 Fillet shrinkage, as casting defect . . . . . . . . . . . . . . . .106 Fillet vein, as casting defect . . . . . . . . . . . . . . . . . . . . . .105 Fillet welds bevel-groove welds . . . . . . . . . . . . . . . . . . . . . . . 162, 163 weldment porosity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .172 Fill-flash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .421 Film carbides . . . . . . . . . . . . . . . . . . . . . . . . . .216, 217, 218 removed by grinding . . . . . . . . . . . . . . . . . . . . . . . . . . . .220 Filming amine, as corrosion inhibitor . . . . . . . . . . . .885 Film photography . . . . . . . . . . . . . . . . . . . . .420, 425–426 Filtering processes, as root cause of forgings defects, rationale, resolution, and corrective action . . . . . . . . . . . . . . . . . . . . . . 327, 329, 330, 331 Filters, for failure analysis photography . . . . . . . . . .412 Filtration unit, environmental stress cracking of nylon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 456, 457 FIN. See Fault Indentifier Number. Final design reviews . . . . . . . . . . . . . . . . . . . . . . . . . . . 75–76 Final fast fracture, of stress-corrosion cracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .836 Final fast overload fracture zone . . . . . . . . . . . . . . . .628 Fine-grained steels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .218 Fine grinding, guidelines for semiautomatic preparation of structural ceramics . . . . . . . . .362 Fine polishing, guidelines for semiautomatic preparation of structural ceramics . . . . . . . . .362 Fingerprint residue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .436 and stress-corrosion cracking . . . . . . . .834, 858–859 Finishing characteristics, as criteria for materials selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Finite-element analysis (FEA) . . . . . 16, 27, 28, 377– 379, 380, 461, 561 of chip package and PCB designs . . . . . . . . . . . . . .385 to compute local stresses for Monte Carlo sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .258 computer software program . . . . . . . . . . . . . . . . . . . . .283 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .380 to determine stresses on ship’s service turbine generator casing . . . . . . . . . . . . . . . . . . . . . . . . . . .741 development of . . . . . . . . . . . . . . . . . . . . . . . . . . . . 380–381 to evaluation net-section instability failures . . . .401 general-purpose software programs . . . . . . . . . . . .381 of pressure vessel hatch cover . . . . . . . . . . . . . . . . . .286 to quantify stres state of U-tube failure . . 388–389 for stress analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .399 for stress origins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .467

© 2002 ASM International. All Rights Reserved. ASM Handbook Volume 11: Failure Analysis and Prevention (#06072G)

structural analysis techniques . . . . . . . . . . . . . . . . . . .381 for x-ray diffraction measurement location selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 488, 489 Finite element model in failure analysis . . . . . . . . . . . . . . . . . . . . . . . . . 380–389 of hot corrosion of gas turbine last-stage bucket . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .872 of stress concentrations in still cargo tiedown sockets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .496 Finite-element program . . . . . . . . . . . . . . . . . . . . . . . . . .267 Finite width magnification factor . . . . . . . . . 705–706 Finned tube in generator air cooler unit, stresscorrosion cracking . . . . . . . . . . . . . . . . . . . 855–856 Finning, as casting defect . . . . . . . . . . . . . . . . . . . . . . . . .105 Fins as casting defect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .105 in forgings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 in ingots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 Fire, effect on fracture surface and failure analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .335 Fireclays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 803, 804 Fire cracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 697–698 Fire damage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .347 Fireside corrosion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .874 of boiler tubes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .305 of tubing, superheater and reheater . .309, 347, 350 of waterwall tubes . . . . . . . . . . . . . . . . . . . . . . . . 347, 350 Fireside corrosion fatigue as boiler tube damage mechanism on failure wheel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .350 as damage mechanism . . . . . . . . . . . . . . . . . . . . 349, 350 Fireside dew point corrosion, as boiler tube damage mechanism on failure wheel . . . . . . . . . . . . . . .350 Fireside oxidation as boiler tube damage mechanism on failure wheel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .350 as damage mechanism for boiler tubing . . . . . . . .347 Fireside wastage, as damage mechanism for boiler tubing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .347 First-order bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .262 First-order reliability method (FORM) . . . . . . . . .257 First-passage problem . . . . . . . . . . . . . . . . . . . . . . . . . . . .262 First-second-order reliability method . . . . . . . . . . .250 Fishbone diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14, 16 Fisheye. See also Flake. . . . . . . . . . . 404, 811, 814, 815 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .179, 1066 from hydrogen impurity in low-alloy steel castings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .145 in weldments . . . . . . . . . . . . . . 169, 179–180, 181, 182 Fishmouth fracture, definition . . . . . . . . . . . . . . . . . 1066 Fit, of product or system, definition . . . . . . . . . . . . . . . . 4 Fitness-for-purpose analysis . . . . . . . . . . . . . . . . . . . . .171 of incomplete fusion and incomplete penetration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .178 for weldments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .158 Fitness for service (FFS) analysis . . 157, 239, 240– 241 API 579, for pressure vessels . . . . . . . .265, 266, 267 safety check . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .266 500 to 700 ⬚C embrittlement, definition . . . . . . . 1061 Fitting rust . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 922, 935 Five whys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14–15 Flake(s). See also Fisheye. . . . . . . . 197, 811, 814, 815 contact fatigue terminology . . . . . . . . . . . . . . . . . . . . .722 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1066 as discontinuity for forgings . . . . . . . . . . . . . . . . . . . . . . 9 as discontinuity for plate and sheet . . . . . . . . . . . . . . . 9 effect on fatigue strength . . . . . . . . . . . . . . . . . . . . . . .720 Flake carbides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216, 218 Flame cutting effect on residual stresses . . . . . . . . . . . . . . . . . . . . 84–85 to remove fracture specimens . . . . . . . . . . . . . . . . . . .398 to section specimens . . . . . . . . . . . . . . . . . . . . . . . . . . . .501 Flame hardening, to reduce stresses . . . . . . . . . . . . .717 Flame impingement, of tool steel powder metallurgy die . . . . . . . . . . . . . . . . . . . . . . . . 510, 511 Flame system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 Flanged compression test . . . . . . . . . . . . . . . . . . . . . . . . . 99 Flanges, failure assessment diagrams . . . . . . . 248–249 Flange-to-pipe assembly, fatigue fracture of steel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165–166 Flash geometry, of forgings . . . . . . . . . . . . . . . . . . . . . . . 92 Flash photography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .419

Flash temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1028 Flash welding, failure origins related to . . . . 187, 188 Flaskless resin sand molding, in shape-casting processes classification scheme . . . . . . . . . . .124 Flat-face tensile fractures . . . . . . . . . . . . . . . . . . 596–597 Flat fracture on fracture surface, macroscale fractographic implication . . . . . . . . . . . . . . . . . .560 Flat-washer testing apparatus, description of rolling contact fatigue test method . . . . . . . .944 Flaw definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5, 269 in ingots, surface from preliminary reduction . . . 83 machining of ceramics . . . . . . . . . . . . . . . . . . . . 668–669 manufacturing, vs. manufacturing imperfection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346–347 welding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346–347 in wrought products . . . . . . . . . . . . . . . . . . . . . . . . . . 81–82 Flaw aspect ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .705 Flaw response approach, to life assessment . . . . .271 Flaw shape factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .705 Flaw size, inspectable . . . . . . . . . . . . . . . . . . . . . . . 270, 273 Flexural testing, of polymers . . . . . . . . . . . . . . . . . . . . .445 Flight-by-flight stress spectrum . . . . . . . . . . . . . . . . .280 Flight profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .280 Flight simulation software . . . . . . . . . . . . . . . . . . . . . . .377 Floodlighting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .419 Flow. See also Creep; Plastic deformation; Yield. definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1066 Flow-assisted corrosion. See also Erosioncorrosion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .348 Flow gases, abrasive erosion by fly ash . . . . . . . . . .997 Flow-induced vibration, causing vibration fatigue cracks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .875 Flow instability, as cavitation mechanism . . . . . .1003, 1005 Flow lines definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1067 as discontinuity in semisolid casting . . . . . 127–129 Flow localization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 Flow marks, as casting defect . . . . . . . . . . . . . . . . . . . .108 Flow softening . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 Flow strength, definition . . . . . . . . . . . . . . . . . . . . . . . . 1049 Flow stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .245 of extra-hard hammers . . . . . . . . . . . . . . . . . . . . . . . . . .981 and necking . . . . . . . . . . . . . . . . . . . . . . . . . .618, 619–620 and strain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 600–601 Flow-through defects, in forgings . . . . . . . . .92–93, 94 Flow-through slurry test . . . . . . . . . . . . . . . . . . . . . . . . .990 Fluid flow, in pressure die castings . . . . . . . . . 126, 127 Fluidity, of slag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .801 Fluidized bed, heat transfer rate of quenching medium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .210 Fluidside corrosion, as damage mechanism for boiler tubing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .347 Fluorescence analysis, in failure analysis . . . . . . . .338 Fluorescent magnetic-particle inspection, to study surface condition of castings . . . . . . . . . . . . . .120 Fluorescent penetrant inspection automated inspection installation . . . . . . . . . . . . . . .271 of silicon nitride bearing balls . . . . . . . . . . . . . . . . . .957 ultraviolet lighting use . . . . . . . . . . . . . . . . . . . . . . . . . .425 Fluoride, stress-corrosion cracking . . . . . . . . . 834, 856 Fluoride ions, causing stress-corrosion cracking in sensitized austenitic stainless steel . . . . . . . .831 Fluorinated hydrocarbons, stress-corrosion cracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .857 Fluorocarbon coatings . . . . . . . . . . . . . . . . . . . . . . . . . . .841 Fluoropolymers, impact wear . . . . . . . . . . . . . . . . . . . .970 Fluosilicic acid, environment causing stresscorrosion cracking of nickel and nickel-base alloys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .848 Flutes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 613, 918 microscale fractographic implication . . . . . . . . . . .560 on transgranular fracture surface, microscale fractographic implication . . . . . . . . . . . . . . . . . .560 Fluting, definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1067 Flux cored arc welding failure origins related to . . . . . . . . . . . . . . . . . . . . . . . .185 weldment includions . . . . . . . . . . . . . . . . . . . . . . . . . . . .172 Fluxes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .801 and weldment inclusions . . . . . . . . . . . . . . . . . . 172, 173 in weldments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185–186 Flux inclusions, as casting defect . . . . . . . . . . . . . . . . .111

www.asminternational.org

Index / 1115 Fly ash corrosion, as damage mechanism for boiler tubing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .347 Fly ash erosion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .876 as boiler tube damage mechanism on failure wheel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .350 Flywheel method, of welding . . . . . . . . . . . . . . . . . . . .189 FMA. See Failure Mode Assessment chart. FMEA. See Failure modes and effects analysis. FMECA. See Failure modes, effects, and criticality analysis. Focus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .517 FOD. See Foreign object damage. Fog quenching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .213 Fold definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1067 as discontinuity in semisolid casting . . . . . . . . . . .127 in forgings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 of fracture surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .545 F-111 Aircraft No. 94 failure . . . 228, 231, 232, 239 Foreign object damage (FOD) . . . . . . . . . . . . . . . . . . .300 of gas turbine superalloys . . . . . . . . . . . . . . . . . . . . . . .292 of turbine blades . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .296 Foreign object debris, as root cause of forgings defects, rationale, resolution, and corrective action . . . . . . . . . . . . . . . . . . . . . . 327, 329, 330, 331 Foreseeability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 Forge burst, as distortion factor . . . . . . . . . . . . . . . . . .205 Forged lug, stress-corrosion cracking . . . . . . . . . . . .828 Forging aluminum, minimum web thickness . . . . . . . . . . . . . 32 and imperfections causing fractures . . . . . .614–615, 617 magnesium, minimum web thickness . . . . . . . . . . . 32 microstructure, cracking in reaustenitized zones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 511, 512 pitman arm with material quality problem . . . . .509 steel, minimum web thickness . . . . . . . . . . . . . . . . . . . 32 Forging/bulk forming, compatibility with various materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Forging bursts, in ingot . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 Forging folds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 614, 617 Forging load, of forgings . . . . . . . . . . . . . . . . . . . . . . . . . . 92 Forging process, as root cause of forgings defects, rationale, resolution, and corrective action . . . . . . . . . . . . . . . . . . . . . . 327, 329, 330, 331 Forgings anisotropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94–95 defects in . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90–97 discontinuities, types of . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 fatigue propagation . . . . . . . . . . . . . . . . . . . . . . . 629, 632 grain flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94–95 heating control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 thermal effects and heat treatment . . . . . . . . . . . 95–97 Forging strain direction, as root cause of forgings defects, rationale, resolution, and corrective action . . . . . . . . . . . . . . . . . . . . . . 327, 329, 330, 331 Forging strain rate, as root cause of forgings defects, rationale, resolution, and corrective action . . . . . . . . . . . . . . . . . . . . . . 327, 329, 330, 331 Forging temperatures, as root cause of forgings defects, rationale, resolution, and corrective action . . . . . . . . . . . . . . . . . . . . . . 327, 329, 330, 331 FORM. See First-order reliability method. Form, of product or system . . . . . . . . . . . . . . . . . . . . . . . . . 4 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Formal numerical unfolding procedure . . . . . . . .546 FORM analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257, 265 Forman equation . . . . . . . . . . . . . . . . . . . . . . . . . . . 279, 286 Formic acid, causing intergranular corrosion in sensitized austenitic stainless steels . . . . . . .779 Forming, compatibility with various materials . . . . 33 FORM process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .266 FORM/SORM analysis . . . . . . . . . . . . . . . . . . . . 257–258 FORTRAN routines, for random variable generation and statistical functions . . . . . . . . . . . . . . . . . . . .267 Fouling condition monitoring . . . . . . . . . . . . . . 891, 892 400–500 ⬚C (750–930 ⬚F) embrittlement causes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .690 effect in ferrous alloys . . . . . . . . . . . . . . . . . . . . . . . . . .690 effect on overload failures . . . . . . . . . . . . . . . . . . . . . .692 steels susceptible . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .690 475 ⬚C (885 ⬚F) embrittlement. See also 400 to 500 ⬚C (750 to 930 ⬚F) embrittlement. . . . . . . . . .692 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1061

© 2002 ASM International. All Rights Reserved. ASM Handbook Volume 11: Failure Analysis and Prevention (#06072G)

www.asminternational.org

1116 / Index

Fourier space methods . . . . . . . . . . . . . . . . . . . . . . . . . . .495 Fourier transform infrared (spectroscopy) (FTIR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .527 analysis depth and area . . . . . . . . . . . . . . . . . . . . . . . . .527 detection limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .527 ease of use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .527 information evaluated . . . . . . . . . . . . . . . . . . . . . . . . . . .527 infrared spectrum of plasticized plastic obtained . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .797 of lubricants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .413 of nylon hinges . . . . . . . . . . . . . . . . . . . . . . . . . . . . 458, 459 of polybutadiene . . . . . . . . . . . . . . . . . . . . . . . . . . 447, 449 of polycarbonate ophthalmic lenses . . . . . . . . . . . .654 of polymeric materials . . . . . . . . . . . . . . . . . . . . 437–439 properties measured . . . . . . . . . . . . . . . . . . . . . . . . . . . . .446 property derived from polymer analysis . . . . . . . .359 use in failure analysis . . . . . . . . . . . . . . . . . . . . . . . . . . .446 Four-point bend testing . . . . . . . . . . . . . . . . . . . . 486, 666 for determining x-ray elastic constants . . . . . . . . .486 before x-ray diffraction residual stress analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .490 Fractal dimension (Ds) . . . . . . . . . . . . . . . . . . . . . . . . . . .547 Fractal dimension of fracture profile . . . . . . . . . . .544 Fractal dimension of the line (D) . . . . . . . . . . 543, 544 Fractal dimension of the surfaces (Ds) . . . . 543–545 Fractional creep life consumed . . . . . . . . . . . . . . . . . .240 Fractional factorial design . . . . . . . . . . . . . . . . . . . . . . .258 Fraction of fracture profile length through a phase or constituent of interest (Pf) . . . . 538, 543 Fractography . . . . . . . . . . . . . . . . . . . . 320, 353–354, 499 of alloy steel ski chair lift grip components . . . . . 11 of ceramics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .370 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . 559, 662, 1067 development of . . . . . . . . . . . . . . . . . . . . . . . . . . . . 559–561 of elevated-temperature fractures of piping and tubing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .289 to establish fatigue striation spacing or crack arrest profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 to examine cracks in service-run gas turbine blades . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .344 in failure analysis . . . . . . . . . 333, 334, 335, 337–340 of fatigue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 627–639 of fracture features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .397 of fracture surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 knowledge required for failure analysts . . . . . . . .322 for life assessment purposes . . . . . . . . . . . . . . . . . . . .233 macroscale features . . . . . . . . . . . . . . . . . . . . . . . 559, 560 of metal-induced embrittlement . . . . . . . . . . . . . . . .865 microscale features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .559 of multiple-site damage . . . . . . . . . . . . . . . . . . . 235, 236 of pin in guy wire of toran tower . . . . . . . . . 334–335 of polymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .655 providing crack size for final fracture . . . . . . . . . .480 purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .559 quantitative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 538–554 to reveal dimpled intergranular fractures . . . . . . .644 scanning electron microscopy application . . . . 522– 523 scanning electron microscopy for failure analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 of spalling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 982–985 of stainless steel solenoid valve cracks . . . 235–238 to study weldments . . . . . . . . . . . . . . . . . . . . . . . . . . . . .160 techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 662–664 temperature effect on ductility of steel . . .605–606, 609 of thrust reverser aluminum fitting . . . . . . . 237, 239 of welded cast steel crosshead . . . . . . . . . . . . . . . . . .153 Fracture. See also Crack; Fracture origin. analysis, steps in . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .393 conchoidal, as casting defect . . . . . . . . . . . . . . . . . . .107 crack arrest marking . . . . . . . . . . . . . . . . . . . . . . . . . . . .659 as damage mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .347 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1067 as failure category . . . . . . . . . . . . . . . . . . . . . . . . . . . 17–18 features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 657–659 hackle region . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .658 macroscopic features . . . . . . . . . . . 559, 560, 561–563 mechanisms of . . . . . . . . . . . . . . . . . 587–595, 596, 597 microscale features . . . . . . . . 559, 560, 563–564, 565 mirror zone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 657–658

mist region . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .658 mixed-mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .473 modeling with fracture mechanics . . . . . . . . 581–585 modes for polymers . . . . . . . . . . . . . . . . . . . . . . . 655–657 parabolic markings . . . . . . . . . . . . . . . . . . . . . . . . 659–660 path influenced by microstructure . . . . . . . . . . . . . .564 process types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .559 rib markings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .659 rock candy, as casting defect . . . . . . . . . . . . . . . . . . .107 root cause resulting in . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 secondary cracks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .398 of sheet metal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .100 surface selection and preservation . . . . . . . . 397–398 Wallner lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 657, 658 Fracture appearance transition temperature (FATT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .685 Fracture assessment, in weldments . . . . . . . . . . . . . .160 Fracture locus concept . . . . . . . . . . . . . . . . . . . . . . . . . . .100 Fracture markings . . . . . . . . . . . . . . . . . . . . . . . . . 664–665 of ceramics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 664–665 Fracture mechanics. See also Linear elastic fracture mechanics. . . . . .15–17, 27, 28, 230, 270–271, 379, 474–482, 561, 686–687 to analyze rolling-contact fatigue . . . . . . . . . 958–959 application to fractography . . . . . . . . . . . . . . . . . . . . .482 of casing of ship service turbine generator . . . 742– 743 concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 475–476 conditions for structural failure . . . . . . . . . . . . . . . . .475 of crack growth (monotonic loads) . . . . . . . 582–584 crack-growth rates under cyclic loading . . . . . . . .703 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1067 development of . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 in failure analysis . . . . . . . . . . . 16–17, 322, 401, 480 linear elastic fracture mechanics . . . . . . . . . . 475–478 methodology for pressure vessel hatch cover design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .287 software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .379 subcritical . . . . . . . . . . . . . . . . . . . . . . . . . . . .478–479, 480 variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278–280 Fracture mechanism maps . . . . . . . . . . . .569, 570–571 Fracture mirror . . . . . . . . . . . . . . . . . 370, 664, 666–667 Fracture mode index . . . . . . . . . . . . . . . . . . . . . . . . . . . . .543 Fracture modes . . . . . . . . . . . . . . . . . . 400–401, 665–667 Fracture origin . . . . . . . 657, 658, 662–663, 664, 667 of ceramics . . . . . . . . . . . . . . . . . . . . . . . . . . .657, 667–670 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 657, 662 failure analysis for investigation . . . . . . . . . . . . . . . .397 and fracture toughness . . . . . . . . . . . . . . . . . . . . . . . . . .666 of polymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .659 from sequence of fractures determined . . . . . . . . .395 thermal shock in ceramics . . . . . . . . . . . . . . . . . . . . . .667 in weldments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160, 161 Fracture path through different constituents or phases, fraction of . . . . . . . . . . . . . . . . . . . . . . . . .538 Fracture profile . . . . . . . . . . . . . . . . . . . . . . . .500, 538, 552 angular orientation distribution . . . . . . . . . . . . . . . . .542 correlated with microstructure . . . . . . . . . . . . . . . . . .543 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .539 digitization of . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 539, 540 fractal characteristics . . . . . . . . . . . . . . . . . . . . . . 543–545 generated from fracture of tensile test specimen of low-alloy steel . . . . . . . . . . . . . . . . . . . . . . . 539, 540 generated from fracture of tensile test specimen of metal-matrix composite . . . . . . . . . . . . . . 539, 540 geometric attributes estimation . . . . . . . . . . . 540–545 metallographic technique for generation of . . . .539 nondestructive generation methods . . . . . . . 539–540 orientation distribution function . . . . . . . . . . . . . . . .542 overlaps, extent of . . . . . . . . . . . . . . . . . . . . . . . . 542–543 replica technique for generation of . . . . . . . . . . . . .539 roughness parameters . . . . . . . . . . . . . . . . . . . . . 541–542 Fracture profilometry, definition . . . . . . . . . . . . . . . .538 Fracture ratio . . . . . . . . . . . . . . .240, 241, 243, 244, 246 Fracture strength, definition . . . . . . . . . . . . . . . . . . . 1049 Fracture stress, definition . . . . . . . . . . . . . . . . . . . . . . 1067 Fracture surfaces(s) . . . . . . . . . . . . . . . . . . . . . . . . 566–568 anisotropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 538, 541 area fraction of features . . . . . . . . . . . . . . . . . . . . . . . . .548 crystallography electron backscatter diffraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .553 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1067 discoloration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .560

fatigue striation spacing estimation . . . . . . . 550–551 feature average size and shape . . . . . . . . . . . 549–550 final-fracture zone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .708 fractal behavior of . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .547 fractal dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .538 information interpreted from . . . . . . . . .561–564, 565 orientation, macroscale fractographic implication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .560 reflectivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .560 roughness . . . . . . . . . . . . . . . . . . . . . . . . . . . . .538, 560, 562 roughness parameter . . . . . . . . . . . . . . . . . . . . . . 547, 548 of stress-corrosion cracking . . . . . . . . . .835–836, 837 three-dimensional reconstruction . . . . . . . . . 551–554 Fracture surface photography diffuse lighting . . . . . . . . . . . . . . . . . . . . . . . . . . . . 422, 424 fiber optic lighting . . . . . . . . . . . . . . . . . . .422, 423, 424 fluorescent lighting . . . . . . . . . . . . . . . . . . .422, 423, 424 ring lighting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 422, 423 side lighting . . . . . . . . . . . . . . . . . . . . . . . . . .421–422, 423 tent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 422, 427 ultraviolet lighting . . . . . . . . . . . . . . . . . . . . . . . . 422, 425 Fracture surface topography analysis (FRASTA) using confocal scanning microscopy . . . 551, 553 Fracture test, definition . . . . . . . . . . . . . . . . . . . . . . . . . 1067 Fracture toughness. See also Crack extension force; Crack tip opening displacement (CTOD); Jintegral; Stress-intensity factor. . . . . .278–279, 478, 686 and abrasive wear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .913 conditions for . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .566 as criteria for materials selection . . . . . . . . . . . . . . . . 32 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1067 and fracture origins . . . . . . . . . . . . . . . . . . . . . . . . . . . . .666 influenced by microstructure . . . . . . . . . . . . . . 476, 564 Irwin’s expression for . . . . . . . . . . . . . . . . . . . . . . . . . . .582 and residual stress effect on crack-growth rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .490 vs. section thickness . . . . . . . . . . . . . . . . . . . . . . . . . . . .401 specification in purchase agreement . . . . . . . . . . . .344 strain rate effect . . . . . . . . . . . . . . . . . . . . . . . . . . . 680, 681 tempering effect . . . . . . . . . . . . . . . . . . . . . . . . . . . 195, 200 Fracture toughness tests, to determine constraint factor X . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .245 Fragmentation . . . . . . . . . . . . . . . . . . . 910, 912, 913, 914 of ingot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 Frame averaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .517 Francis turbine, cavitation erosion . . . . . . . . . . . . . 1013 FRASTA. See Fracture surface topography analysis using confocal scanning microscopy. Free-body diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .468 Free carbides, formation of . . . . . . . . . . . . . . . . . . . . . . .216 Free enthalpy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 801, 805 Free ferrite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .583 in cast irons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .139 with decarburization of steel spring . . . . . . . . . . . .510 of hardened alloy steel coil spring . . . . . . . . 509, 510 Free-machining steel electroless nickel plating of mounted specimen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 503–504 intergranular corrosion . . . . . . . . . . . . . . . . . . . . 781–782 Free-surface cracking . . . . . . . . . . . . . . . . . . 99–100, 101 Free-surface fracture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 workability diagram for . . . . . . . . . . . . . . . . . . . . . . . . .100 working limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .100 Free surfaces, fatigue fracture initiation . . . . . . . . . .631 Free volume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .651 of polymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .651 Freezing, gross gas evolution in molds . . . . . . . . . . .116 Freon, and stress-corrosion cracking . . . . . . . . . . . . .859 Frequency effect on cavitation erosion . . . . . . . . . . . . . . . . . . . 1010 of fretting wear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .926 Frequency diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .260 Fretting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357, 909 alumina oxide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .929 of aluminum sheets in stacks . . . . . . . . . . . . . . . . . . .923 in aluminum-steel riveted joint . . . . . . . . . . . 922–923 amplitude of slip . . . . . . . . . . . . . . . . . . . . .924–925, 926 aqueous electrolytes effect . . . . . . . . . . . . . . . . 930–931 of bearings of automobiles . . . . . . . . . . . . . . . . . . . . . .923 cathodic protection effect on steel ropes . . . . . . .931 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 408–409

© 2002 ASM International. All Rights Reserved. ASM Handbook Volume 11: Failure Analysis and Prevention (#06072G)

of cobalt-iron-molybdenum-silicon-boron alloy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .928 contact resistance vs. number of cycles . . . . . . . .933 with corrosion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .922 crossed-cylinder arrangement . . . . . . . .927, 931, 932 damage, fatigue crack at a rivet hole . . . . . . . . . . .923 damage incurred . . . . . . . . . . . . . . . . . . . . . . . . . . 922–923 as damage mechanism on failure wheel . . . . . . . .349 debris effect on wear . . . . . . . . . . . . . . . . . . . . . . . . . . . .929 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .922, 1067 delamination in region produced by metal-to-metal contact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .933 of electrical contacts . . . . . . . . . . . . . . . . . . . . . . . . . . . .923 environmental effects . . . . . . . . . . . . . . . . . . . . . 929–932 as fatigue failure origin . . . . . . . . . . . . . . . . . . . . . . . . .706 gold plating for separable connectors . . . . . . . . . .926 hardness vs. amplitude of slip . . . . . . . . . . . . . . . . . .928 high-purity aluminum cylinder . . . . . . . . . . . . . . . . .924 high-temperature effect . . . . . . . . . . . . . . . . . . . 931–932 humidity effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .930 impact fretting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .927 iron-chromium-nickel-tungsten amorphous alloy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .930 iron-silicon-boron alloy . . . . . . . . . . . . . . . . . . . . . . . . .928 locked-coil track strand wire rope construction . . . . . . . . . . . . . . . . . . . . . . . . . . 923, 924 low-temperature effect . . . . . . . . . . . . . . . . . . . . 931–932 material properties related to . . . . . . . . . . . . . . . . . . . . 36 material selection to reduce effect of . . . . . . . . . . .928 measurement of wear . . . . . . . . . . . . . . . . . . . . . . . . . . .932 in mechanical components . . . . . . . . . . . . . . . . 922–924 mild steel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .926 orthopedic devices . . . . . . . . 924, 930, 931, 934–935 oxide debris . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .933 in oxidizing or nonoxidizing materials . . . . . . . . .922 percentage of wear failures . . . . . . . . . . . . . . . . . . . . .407 of polymer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .929 prevention of damage due to . . . . . . . . . . . . . 933–934 procedures for minimization of . . . . . . . . . . . 408–409 and pyrophoric fretting debris . . . . . . . . . . . . . . . . . .923 in rolling-element bearings . . . . . . . . . . . . . . . 935–937 shot peening of steel reducing friction coefficient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .927 sintered alumina . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .929 sites for . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .922 specific wear rate vs. amplitude of slip . . . . . . . . .925 and stacking fault energy . . . . . . . . . . . . . . . . . . . . . . .928 of steam and gas turbines . . . . . . . . . . . . . . . . . . . . . . .923 in steam generators and heat exchangers . . . . . . .923 of titanium alloy, ion implantation effect . . . . . . .931 vacuum effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .930 vibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .927 wear failures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 922–937 wear mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . 932–933 wear scar depth vs. compressive and tensile residual stresses . . . . . . . . . . . . . . . . . . . . . . . . . . . .928 zirconia oxide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .929 Fretting corrosion. See also Fretting. definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .922, 1067 Fretting damage, damage manifestation . . . . . . . . .901 Fretting fatigue . . . . . . . . . . . . . . . . . . . . . . . .559, 922, 928 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1067 Fretting wear. See also Fretting. . . . . . . . . . . . . . . . . .909 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .922 modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .903 of polymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1023 Friction, in elastomeric wear mechanism . . . . . .1021, 1023 Frictional heat, effect on railroad rails . . . . . 512, 514 Friction coefficient . . . . . . . . . . . . . . . . . . . . . . . 1036, 1038 for rolling-contact fatigue . . . . . . . . . . . . . . . . . 944–945 and wear particle size . . . . . . . . . . . . . . . . . . . . . . . . . . .958 Friction oxidation. See Fretting. Friction welding, failure origins related to . . . . . 188– 189 Frosting, contact fatigue terminology . . . . . . . . . . . .722 FRP. See Fiber-reinforced polymers. FTA. See Fault-tree analysis. FTIR. See Fourier transform infrared spectroscopy. Fugacity, of molten salts . . . . . . . . . . . . . . . . . . . . . . . . . .801 Full-mold sand casting, in shape-casting processes classification scheme . . . . . . . . . . . . . . . . . . . . . .124 Full-profile methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .487

Full-scale testing of components . . . . . . . . . . . . . . . .238 Fuming nitric acid causing stress-corrosion cracking in high-strength aluminum alloys . . . . . . . . . . . . . . .831 pure titanium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .831 Function definition in reliability-centered maintenance . . . 62 definition, of product or system . . . . . . . . . . . . . . . . . . 4 loss of, as failure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Functional block diagrams . . . . . . . . . . . . . . . . . . . . . . . 69 Functional ceramics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .800 Functional failure . . . . . . . . . . . . . . . . . . . . . . . . . .62, 63, 70 definition in reliability-centered maintenance . . . 62 Functional failure mode models . . . . . . . . . . . . . . . . . . 54 Functional fault analysis . . . . . . . . . . . . . 54, 55, 56, 58 Fungal mycelia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .891 Furan, as corrosion-resistant coating . . . . . . . . . . . . .769 Furnace atmosphere, tool steel heat treatment failure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 510, 511 Furnaces distortion related to heating and atmosphere control . . . . . . . . . . . . . . . . . . . . . 201–202, 204, 205 ethylene-pyrolysis, and corrosion . . . . . . . . . . . . . . .870 glass-melting, refractories for . . . . . . . . . . . . . . . . . . .804 hydrogen-reformer, and carbon deposits . . . . . . .870 Furrows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .953 Fused chloride salt causing stress-corrosion cracking in titanium alloys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .831 zirconium alloys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .831 Fused salts, corroding technical ceramics . . 804, 805 Fuse-holder clips, liquid metal induced embrittlement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .865 Fusion. See also Incomplete fusion. as casting defect, during heat treatment . . . . . . . .110 as welding defect of castings, lack of . . . . . . . . . .152 in weldments, incomplete . . . . . . . . . . . . . . . . . 167–168 in weldments, lack of . . . . . . . . . . . . . . . . . . . . . . . . . . .157 Fusion-line cracks, in weldments . . . . . . . . . . . . . . . .158 Fusion welding to clad carbon-manganese steels with erosionresistant alloys . . . . . . . . . . . . . . . . . . . . . . . . . . . 1016 role in embrittlement and overload failures . . 698– 699

G Galling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .559, 901, 909 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .408, 1067 from incompatibility of metals in sliding wear . . . 7 in pressure die casting . . . . . . . . . . . . . . . . . . . . . . . . . .126 Gallionella . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .889 Gallium as embrittling metal . . . . . . . . . . . . . . . . . . . . . . . . . . . . .862 as liquid embrittler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .646 Galvanic cell . . . . . . . . . . . . . . . . . . . . . . . . . . .761, 762, 768 Galvanic character, as criteria for materials selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Galvanic corrosion . . . 337, 755, 761–767, 768, 777 contributing factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . .766 as defect resulting from electroplating . . . . . . . . . . 81 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1067 features observed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .356 helicopter tail rotor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .766 materials properties related to . . . . . . . . . . . . . . . . . . . 36 prediction from polarization behavior . . . . . . . . . .764 of water pipe joint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .356 Galvanic corrosion cell, as electrochemical monitoring method of microbially induced corrosion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .892 Galvanic couple . . . . . . . . . . . . . . . . . . 763, 766, 767, 859 and grinding in corrosive wear . . . . . . . . . . . . . . . . .992 and intergranular stress-corrosion cracking . . . .648 between minerals and grinding media . . . . . . . . . .990 sulfate-reducing bacteria involvement . . . . 882, 883 Galvanic currents measurement screening tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .765 Galvanic protection . . . . . . . . . . . . . . . . . . .755–757, 764 from corrosion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .405

www.asminternational.org

Index / 1117 Galvanic series of metals and alloys in seawater . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 762–763 Galvanized steel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .764 for corrosion resistance . . . . . . . . . . . . . . . . . . . . . . . . .759 intergranular corrosion . . . . . . . . . . . . . . . . . . . . . . . . . .785 intermetallic compound embrittlement . . . . . . . . .694 Galvanodynamic polarization . . . . . . . . . . . . . . . . . . .407 Galvanostatic polarization . . . . . . . . . . . . . . . . . . . . . . .407 Gamma function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .253 Gamma-irradiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1024 Gamma-prime formation . . . . . . . . . . . . . . . . . . . . . . . .346 of turbine blades . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .291 Gamma-prime overaging, of nickel-base superalloys used for gas turbine blades . . 294, 295 Gamma-prime phase, of gas turbine blades, microstructure examined . . . . . . . . . . . . . . . . . .298 Gamma-prime precipitation in nickel-base superalloy casting for gas turbines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .365 of nickel-base superalloys used for gas turbine blades . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .294 Gamma-prime structures, in gas turbine blades, roots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346, 347 Gangue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .412 Gas, as discontinuity for castings . . . . . . . . . . . . . . . . . . . 9 Gas carburizing carbides formed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .216 and intergranular fractures . . . . . . . . . . . . . . . . . . . . . .645 Gas chromatography (GC) analysis . . . . . . 404, 797 to analyze microbially induced corrosion deposits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .892 of corrosion products . . . . . . . . . . . . . . . . . . . . . . . . . . .406 for polymeric analysis . . . . . . . . . . . . . . . . . . . . . . . . . .446 Gas chromatography mass spectroscopy (GC/ MS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .797 for polymeric analysis . . . . . . . . . . . . . . . . . . . . . . . . . .446 Gaseous chlorine, causing stress-corrosion cracking in high-strength, low-alloy steels . . . . . . . . . .831 Gaseous hydrogen, causing stress-corrosion cracking in steels . . . . . . . . . . . . . . . . . . . . . . . . . .831 Gaseous hydrogen bromide (HBr), causing stresscorrosion cracking in high-strength, low-alloy steels (rapid crack growth) . . . . . . . . . . . . . . . .831 Gaseous hydrogen chloride (HCl), causing stresscorrosion cracking in high-strength, low-alloy steels (rapid crack growth) . . . . . . . . . . . . . . . .831 Gaseous iodine, causing stress-corrosion cracking in zirconium alloys . . . . . . . . . . . . . . . . . . . . . . . . . . .831 Gaseous water, causing stress-corrosion cracking in high-strength aluminum alloys . . . . . . . . . . . .831 Gaseous water-oxygen-hydrogen (H2O-O2-H2), causing stress-corrosion cracking in highstrength uranium alloys . . . . . . . . . . . . . . . . . . . .831 Gas hole(s). See also Gas porosity. causes during casting solidification . . . . . . . . . . . . .115 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1067 Gas internal pipelines, prevention approach for corrosion in industrial facilities . . . . . . . . . . .893 Gas lens collect body, of welding torch . . . . . . . . . .783 Gas metal arc welding failure origins related to . . . . . . . . . . . . . . . . . . . . . . . .185 porosity in weldments . . . . . . . . . . . . . . . . . . . . 170, 171 weldment inadequate penetration . . . . . . . . . . . . . . .177 weldment inclusions . . . . . . . . . . . . . . . . . . . . . . 172, 173 weldment incomplete fusion and inadequate penetration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .178 weldment underfill . . . . . . . . . . . . . . . . . . . . . . . . 175, 177 Gas porosity. See also Porosity. . . . . . . . . . . . . 115, 116 in aluminum alloy castings . . . . . . . . . . . . . . . . . . . . .149 in castings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .614 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .104, 1067 as discontinuity in semisolid casting . . . . . 128, 131 effect on fatigue strength . . . . . . . . . . . . . . . . . . . . . . .719 in magnesium alloys . . . . . . . . . . . . . . . . . . . . . . 549, 550 in pressure die castings . . . . . . . . 126–127, 128, 129 subsurface feature as cause for rejection . . . . . . .156 surface feature as cause for rejection . . . . . . . . . . .156 in weldments . . . . . . . . . . . . . . . . . . . . . . . . .170, 186, 189 Gas runs, as casting defect . . . . . . . . . . . . . . . . . . . . . . .107 Gas tungsten arc welding failure origins related to . . . . . . . . . . . . . . . . . . . . . . . .186 and intergranular corrosion of welds . . . . . 782–783

© 2002 ASM International. All Rights Reserved. ASM Handbook Volume 11: Failure Analysis and Prevention (#06072G)

www.asminternational.org

1118 / Index

Gas tungsten arc welding (continued) nickel alloy with alloy steel . . . . . . . . . . . . . . 167–168 stainless steel elbow assembly, brittle fracture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163–164 weldment inclusions . . . . . . . . . . . . . . . . . . . . . . 172, 173 Gas turbine blades coating life prediction . . . . . . . . . . . . . . . . . . . . . 303–304 elevated temperatures for applications . . . . . . . . .729 intergranular stress-corrosion cracking of U-700 nickel alloy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .647 life assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295–296 life assessment methods for elevated-temperature failures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289–311 low-cycle fatigue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .344 materials used . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .729 remaining life assessment . . . . . . . . . . . .238, 239–240 Gas turbine components, land-based alloys used for blades, vanes, and nozzles . . . . . . . . . . . . . . . . .296 Gas turbine engines brittle fracture of hot-gas casing . . . . . . . . . . 363, 364 component operating conditions . . . . . . . . . . . . . . . .296 microstructure of casting with gamma-prime particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .365 Gas-turbine inner-combustion-chamber case assembly, brittle fracture of welded nickelbase alloy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164, 165 Gas turbine last-stage bucket, high-temperature corrosion of Udimet 500 . . . . . . . . . . . . . . . . . .872 Gas turbine piping, life assessment methods for elevated temperature failures . . . . . . . . 289–311 Gas turbines, elevated-temperature life-limiting failure mechanisms . . . . . . . . . . . . . . . . . . 289–291 Gas turbine transition duct, high-temperature corrosion of IN-617 panel . . . . . . . . . . . . . . . . .870 Gas turbine tubing and piping embrittlement . . . . . . . . . . . . . . . . . . . . . . . . . . . . .289 life assessment methods for elevated-temperature failures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289–311 Gate broken casting at, as casting defect . . . . . . . . . . . . .110 number effect on shrinkage porosity . . . . . . . . . . .113 Gate valve stem, forging defect . . . . . . . . . . . . . . . . . .235 Gating and cold shut prevention . . . . . . . . . . . . . . . . . . . . . . . .123 and shrinkage porosity . . . . . . . . . . . . . . . . . . . . . . . . . .113 GC. See Gas chromatography. GC/MS. See Gas chromatography mass spectroscopy. GDS. See Glow discharge spectrophotometer; Glow discharge spectroscopy. Gear(s) axle, of automobiles, load conditions . . . . . . . . . . .710 cavitation erosion . . . . . . . . . . . . . . . . . . . . . . 1004, 1005 contact fatigue, macropitted . . . . . . . . . . . . . . 723, 724 contact fatigue terminology . . . . . . . . . . . . . . . . . . . . .722 in-service load effects on residual stress . . . . . . .494 liquid metal induced embrittlement . . . . . . . . . . . . .865 micropitting (frosting) failure . . . . . . . . . . . . . . . . . . .724 power-transmission . . . . . . . . . . . . . . . . . . . . . . . . . . . . .981 quench selection to reduce distortion . . . . . . . . . . .207 residual stress effect on tooth pitch diameter . .494 stress range of fatigue limits . . . . . . . . . . . . . . . . . . . .491 worm, decohesive rupture of manganese bronze . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .676 Gearboxes, cavitation erosion . . . . . . . . . . . 1004, 1005 Gear socket assembly, liquid metal induced embrittlement . . . . . . . . . . . . . . . . . . . . . . . . 864, 865 Gear teeth contact fatigue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .722 distortion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198, 202 fatigue fracture in steel . . . . . . . . . . . . . . . . . . . 366, 367 hardness testing . . . . . . . . . . . . . . . . . . . . . . . . . . . 360, 361 macropitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .723 microsegregation in microstructure . . . . . . . . . . . . .219 rolling-contact fatigue . . . . . . . . . . . . . . . . . . . . . 942–943 subcase fatigue . . . . . . . . . . . . . . . . . . . . . . . . . . . . 723, 725 subsurface fatigue crack formed by rolling contact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 628, 632 Gear wheels of polyoxymethylene, wear failure . . . . . . . . . . . 1026 small spur, grinding cracks . . . . . . . . . . . . . . . . . . . . .221 Gel permeation chromatography (GPC) of PET jacket of transportation assemblies . . . . .452 of polymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 444–445

properties measured . . . . . . . . . . . . . . . . . . . . . . . . . . . . .446 property derived from polymer analysis . . . . . . . .359 use in failure analysis . . . . . . . . . . . . . . . . . . . . . . . . . . .446 General attack, features observed . . . . . . . . . . . . . . . .356 General corrosion. See also Uniform corrosion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337, 347 as damage mechanism on failure wheel . . . . . . . .349 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1067 Generalized Willenborg Model . . . . . . . . . . . . . . . . . .283 General oxidation, of low-alloy steel castings . . .145 Geological studies, of soil or abrasive minerals in wear failures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .413 Geometrical features, retirement-for-cause inspection system probability of detection curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .272 Geometrical imperfections, of weldments . . . . . . .158 Geometric correction factor . . . . . . . . . . . . . . . . . . . . .476 for fracture toughness . . . . . . . . . . . . . . . .582, 583, 585 Geometric factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .477 Geometric stress raisers contact fatigue mode and controlling factors . . .725 and fatigue initiation . . . . . . . . . . . . . . . . . . . . . . . . . . . .631 Gerber’s law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .701 Gerber’s parabola . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .701 mean stress effect on alternating stress amplitude . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .701 Germanium as embrittling agent . . . . . . . . . . . . . . . . . . . . . . . . . . . . .691 as grain-boundary embrittler . . . . . . . . . . . . . . . . . . . .646 Glancing impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . 977–978 Glass brittle fracture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .664 centrifugal casting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .132 as corrosion-resistant coating . . . . . . . . . . . . . 758, 769 erosive wear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .995 fretting wear of microscope slide . . . . . . . . . . . . . . .929 indentation and impact damage . . . . . . . . . . . 667–668 Glass coatings, as corrosion-resistant coatings . . .758 Glass fibers, for polymer reinforcement . . . . . . . .1025, 1026, 1030, 1031, 1032, 1033, 1038, 1040 Glass plate brittle fracture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .662 thermal shock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .667 Glass transition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .444 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .441 Glass transition temperature and cryogenic applications . . . . . . . . . . . . . . . . . . . . . .684 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .441 effect on polymeric materials . . . . . . . . . . . . . 568, 569 glassy thermoplastic mechanical instability . . 1023 of polycarbonate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .457 of polymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 798, 799 Glassy polymer, modulus vs. temperature . . . . . . . .799 Glassy thermoplastics, wear failures . . . . . . . . . . . 1023 Glazed ceramics, processing defects as fracture origins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .670 Glazed porcelain, brittle fracture . . . . . . . . . . . . . . . . .670 Glaze oxide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .931 Glazing to affect penetration of refractories and structural ceramics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .806 contact fatigue terminology . . . . . . . . . . . . . . . . . . . . .722 Glide. See Slip. Glissile dislocations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .589 Global design teams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 Gloves clean room . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .528 powder-free . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .528 Glow discharge spectroscopy . . . . . . . . . . . . . . 430, 431 Glow discharge spectrophotometer (GDS), specimen size requirement . . . . . . . . . . . . . . . .430 Glutaraldehyde, as biocidal agent . . . . . . . . . . . . . . . .894 GNU Scientific Library . . . . . . . . . . . . . . . . . . . . . . . . . .267 Goethite, as corrosion products in pipeline excavations and laboratory soil box tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .887 Gold as embrittling metal . . . . . . . . . . . . . . . . . . . . . . . . . . . . .862 fretting wear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .934 galvanic corrosion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .767 standard emf series value . . . . . . . . . . . . . . . . . . . . . . .763 Gold alloys electrodeposited to prevent fretting damage . . . .934

environments subjecting alloy to selective leaching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .785 Gold plating, for adhesive wear mitigation . . . . . .408 Gold sponge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 788, 790 Goniometer alignment . . . . . . . . . . . . . . . . . . . . . . . . . . .485 Goodman relation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .700 Gouges, visible, macroscale fractographic implication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .560 Gouging abrasion . . . . . . . . . . . . . . . . 907–908, 919–920 GPC. See Gel permeation chromatography. Grain definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1067 shape change . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .561 Grain boundary, definition . . . . . . . . . . . . . . . . . . . . . 1067 Grain-boundary corrosion. See Intergranular corrosion; Corrosion and interdendritic corrosion. Grain-boundary denudation. See also Precipitatefree zone (PFZ). definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1067 Grain-boundary liquation, definition . . . . . . . . . . 1067 Grain-boundary segregation, of nickel-base superalloys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .874 Grain-boundary separations, in stainless steel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 523, 524 Grain-boundary strengthening, of nickel-base superalloys used for gas turbine blades . . .294 Grain-boundary triple points . . . . . . . . . . . . . . . . . . . .593 Grain-corner cracks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .575 Grain flow, definition . . . . . . . . . . . . . . . . . . . . . . . . . . . 1067 Grain growth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .338 composition effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .218 effect of cold forming . . . . . . . . . . . . . . . . . . . . . . . . . . .102 of electroslag welds . . . . . . . . . . . . . . . . . . . . . . . . . . . . .186 Grain pullout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .962 Grain refinement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .218 Grain shape, cold forming effect . . . . . . . . . . . 101–102 Grain size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .217–218, 219 characterization comparison (ASTM) . . . . . . . . . .218 cold forming effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .102 effect on ductile-brittle transition temperature of mild steel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 684, 685 effect on ductility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .598 effect on internal oxidation . . . . . . . . . . . . . . . . . . . . .215 effect on overload failures . . . . . . . . . . .680, 681–682 and fatigue crack propagation . . . . . . . . . . . . . . . . . .630 larger, effect on fracture path and fracture toughness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .564 Grain storage bin, brittle fracture by bolt hole . . . . . . . . . . . . . . . . . . . . . . . . . . . . .616, 618, 619 Granular fracture. See also Fibrous fracture; Silky fracture. definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1067 Graphite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137–138 and galvanic corrosion . . . . . . . . . . . . . . . . . . . . 762, 766 galvanic series in seawater . . . . . . . . . . . . . . . . . . . . . .762 in gray iron paper-drier head . . . . . . . . . . . . . 121–122 for impressed-current anodes . . . . . . . . . . . . . . . . . . .756 nodularity of . . . . . . . . . . . . . . . . . . . . . . . . .141–142, 143 non-nodular . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141, 142 normal flake . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135, 137 type B rosette . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135, 137 type D in gray iron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .139 vermicular . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142, 143 Graphite flakes on cast iron fracture surfaces . . . . . . . . . . . . . . . . . . .608 in truck transmission housing . . . . . . . . . . . . . 675, 676 Graphite corrosion . . . . . . . . . . . . . . 786–787, 788, 789 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1067 of pipe for fire protection system water supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 787, 788 Graphitization. See also Graphite corrosion. . . . 695, 874 as aging reaction causing corrosion . . . . . . . . . . . .874 as boiler tube damage mechanism on failure wheel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .350 causes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .690 as damage mechanism for boiler tubing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .347 on failure wheel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .349 of DLHC film during rolling contact fatigue test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .949 effect in ferrous alloys . . . . . . . . . . . . . . . . . . . . . . . . . .690

© 2002 ASM International. All Rights Reserved. ASM Handbook Volume 11: Failure Analysis and Prevention (#06072G)

effect on overload failures . . . . . . . . . . . . . . . . 693–694 vs. graphitic corrosion . . . . . . . . . . . . . . . . . . . . . . . . . .787 in situ, and creep . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .730 of steel alloys used for gas turbine tubes and piping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292, 293 steels susceptible . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .690 Gravity casting of aluminum alloys . . . . . . . . . . . . . . . . . . . . . . . 149–150 in shape-casting processes classification scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .124 Gravity die casting . . . . . . . . . . . . . . . . . . . . . . . . . 124–125 in shape-casting processes classification scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .124 Gray iron abrasive wear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 916–919 casting stresses fracture in crankcases . . . .135–136, 137, 138 centrifugal casting . . . . . . . . . . . . . . . . . . . . . . . . . 132, 133 cold shut in paper-drier head . . . . . . . .120–122, 123 cracking due to microporosity, cylinder head . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112–113 environments subjecting alloy to selective leaching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .785 fatigue fracture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 523, 524 fatigue indistinguishable macroscopically from overload fracture . . . . . . . . . . . . . . . . . . . . . . . . . . .633 fracture loaded in bending . . . . . . . . . . . . . . . . . . . . . . 608, 612 loaded in tension . . . . . . . . . . . . . . . . . . . . . . . 608, 612 graphitic corrosion of pipe . . . . . . . . . . . . . . . . 787, 788 grinding cracks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .221 hypereutectic, permanent-mold casting material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .124 microstructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .139 mold-wall deficiencies . . . . . . . . . . . . . . . . . . . . . . . . . .120 notch sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .133 transgranular cleavage . . . . . . . . . . . . . . . . . . . . 675, 676 Gray staining, contact fatigue terminology . . . . . .722 Greases, as lubricants . . . . . . . . . . . . . . . . . . . . . . . 410, 411 “Green Death” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .775 Green rot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .868 Green sand casting, characteristics of process . . .124 Green sand molding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .123 in shape-casting processes classification scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .124 and surface finish of casting . . . . . . . . . . . . . . . . . . . .120 Greigite, as corrosion products in pipeline excavations and laboratory soil box tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .887 GRI. See Gas Research Institute. Griffith equation, plasticity-based . . . . . . . . . . . . . . .740 Griffith’s criterion for brittle fracture . . . . . . . . . .588 Griffith’s model for brittle fracture . . . . . . . . . . . . .588 Grinding abusive, and tempering of die . . . . . . .511–512, 513 burn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .152, 220, 221 causing corrosive wear . . . . . . . . . . . . . . . . . . . . 989–990 of ceramics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362, 363 distortion due to residual stresses . . . . . . . . . . . . . 1053 effect on tensile residual-stress field . . . . . . . . . . . .491 and fatigue strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . .720 grit sizes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .505 guidelines for semiautomatic preparation of structural ceramics . . . . . . . . . . . . . . . . . . . . . . . . .362 in metallographic examination . . . . . 503, 504, 505– 506 planar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 506, 507 pressure-sensitive-adhesive (PSA)-backed SiC grinding paper . . . . . . . . . . . . . . . . . . . . . . . . . . . . .505 to remove surface oxides . . . . . . . . . . . . . . . . . . . . . . .215 to remove undesired metallurgical products . . . .220 temperature distribution within surface . . . . . . . . .220 Grinding abrasion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .908 Grinding burns . . . . . . . . . . . . . . . . . . . . . . . .152, 220, 221 Grinding cracks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221, 720 in camshaft of gray iron . . . . . . . . . . . . . . . . . . . . . . . .221 as defect resulting from machining . . . . . . . . . . . . . . 81 Grinding marks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .953 Grinding plates, adhesive wear . . . . . . . . . . . . 916–919 Grinding wear. See Abrasive wear. Grips, embrittlement of acrylonitrile-butadienestyrene resins . . . . . . . . . . . . . . . . . . . . . . . . 447, 448 Grit sizes, for grinding . . . . . . . . . . . . . . . . . . . . . . . . . . .505

Grooves, microscale fractographic implication . . .560 Grooving wear. See Abrasive wear. Grossmann number . . . . . . . . . . . . . . . . . . .206, 209, 210 Gross yielding loading types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 material properties related to . . . . . . . . . . . . . . . . . . . . 36 material selection criteria . . . . . . . . . . . . . . . . . . . . . . . . 35 operating temperatures . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 stress types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Ground-coat enamels, as corrosion-resistant coatings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .758 Growth twin. See Annealing twin. Gull wings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 665, 666 Gunite application method . . . . . . . . . . . . . . . . . . . . . .759 Gun-recoil mechanism, piston of, fatigue fracture . . . . . . . . . . . . . . . . . . . . . . . . . .141–142, 143 Guy wires, fatigue failure . . . . . . . . . . . . . . . . . . 334–335

H Hackle (glassy materials, ceramics). See also Mist hackle; Shear hackle; Twist hackle; and Wake hackle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .370 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1067 Hackle lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 657, 658 Hackle marks (ceramics, glassy materials) . . . . .573 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1067 in polycarbonate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .457 on polyethylene chemical storage vessel . . . . . . .453 Hackle region, in polymers . . . . . . . . . . . . . . . . . 657, 658 Hadfield steels casting defects . . . . . . . . . . . . . . . . . . 146, 147, 148, 149 maximum erosion rate dependence in cavitation erosion on combined parameter . . . . . . . . . 1016 Hafnium, content effect in refractory coatings . . .878 Hafnium nitride coatings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 945–946 as physical vapor deposition coating material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .946 Haigh diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 700, 701 Hairline crack. See Flake. Half-penny crack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .667 Halide ions, stress-corrosion cracking . . . . . . . . . . . .833 Halides in aqueous solutions, causing stress-corrosion cracking in austenitic stainless steels . . . . . .831 in aqueous solutions, causing stress-corrosion cracking in high-strength aluminum alloys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .831 in aqueous solutions, causing stress-corrosion cracking in high-strength steels . . . . . . . . . . .831 Hall-Petch relationship . . . . . . . . . . . . . . . . . . . . . . . . . . .598 Halophiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .881 Halos. See also Fisheye. . . . . . . . . . . . . . . . . . . . . . . . . . .404 Hammer impact tester (HIT) . . 976, 977–978, 986– 987 Hammers ball-peen . . . . . . . . . . . . 975–978, 979, 983, 985, 986 double-face . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .986 extra-hard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .981 nail . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .978, 979, 986 sledge . . . . . . . . . . . . . . . . . . . . . . . . . . . 976, 977, 981, 987 spalling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 975–978 Stanley “rim-tempered” . . . . . . . . . . . . . . . . . . . . . . . . .978 striking/struck tool specifications . . . . . . . . . . . . . . .987 tinner’s-setting . . . . . . . . . . . . . . . . . . . . . . .978, 979, 986 Hammer weeks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .978 Hanawalt method, in failure analysis . . . . . . . . . . . .338 Handbook: Maintenance Evaluation and Program Development (MSG-1) . . . . . . . . . . . . . . . . . . . . . 61 Hand Tools Institute . . . . . . . . . . . . . . . . . . . . . . . . 978, 980 Hard alpha defect . . . . . . . . . . . . . . . . . . . . . . . . . . 264, 265 Hard-coating anodizing, for corrosion resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .759 Hardenability, as criteria for materials selection . . 32 Hardenable steel, tempering . . . . . . . . . . . . . . . . 195, 199 Hardened steels, and residual stress effects . . . . . .493 Hard facings, to resist corrosive wear . . . . . . . . . . . .992 Hardness abrasive wear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 919–920

www.asminternational.org

Index / 1119 of cast carbon-molybdenum steels . . . . . . . . . . . . . .145 as criteria for materials selection . . . . . . . . . . . . . . . . 32 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1067–1068 effect on abrasive wear . . . . . . . . . . . . . . . . . . . 911, 913 of engineering ceramics and bearing steel . . . . .960 relationship with various failure modes . . . . .35, 36 Hardness testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289, 821 in failure analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .402 life assessment technique for elevated-temperature exposure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .240 by microindentation and nanoindentation methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 360–361 of power plant piping and tubing . . . . . . . . . 304–305 of worn surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .413 Hard spots, as casting defects . . . . . . . . . . . . . . . . . . . .112 Hard steel, impact wear coefficient values . . . . . . .971 Harm, definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 Hartmann lines. See Lu¨ders lines. Hat cracks, of weldments . . . . . . . . . . . . . . . . . . . . . . . . .158 Hazard definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .48, 72 legal distinction from risk and danger . . . . . . . . . . . 72 Hazard analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45, 76 foreseeable manner of defects . . . . . . . . . . . . . . . . . . . 72 Hazardous material, disposal of . . . . . . . . . . . . . . . . . . 16 HAZ burning. See Liquation cracking. HAZ cracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .695 HB. See Brinell hardness number. HCF. See High-cycle fatigue. HDPE. See High-density polyethylene. Heat, as degradation source for polymers . . 653–654 Heat-affected zone definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1068 size and metallographic examination . . . . . . . . . . .402 of steel mold for centrifugal casting . . . . . . . . . . . .132 Heat-checked die, as casting defect . . . . . . . . . . . . . .105 Heat checking. See also Thermal fatigue cracking. in permanent-mold castings . . . . . . . . . . . . . . . 124, 125 in pressure die castings . . . . . . . . . . . . . . . . . . . 127, 130 Heat-damage discoloration assessment . . . . . . . . .240 Heat-deflection temperature . . . . . . . . . . . . . . . . . . . . .443 Heater tube, stress rupture . . . . . . . . . . . . . . . . . . 733, 734 Heat exchanges, impact fretting . . . . . . . . . . . . . . . . . .927 Heat exchangers, prevention approach for corrosion in industrial facilities . . . . . . . . . . . . . . . . . . . . . .893 Heat exchanger tubes crevice corrosion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .777 erosive wear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .998 pitting corrosion of copper . . . . . . . . . . . . . . . . 356, 357 pitting corrosion of stainless steel . . . . . . . . . . . . . .356 Heat flow, in pressure die castings . . . . . . . . . . 126, 127 Heathcote slip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .941 Heating control, and distortion . . 201–202, 204, 205 Heat-resistant materials, characteristics of engineering polymers . . . . . . . . . . . . . . . . . . . . . .359 Heat-resistant steels centrifugal castings . . . . . . . . . . . . . . . . . . . . . . . . . . . . .132 creep embrittlement . . . . . . . . . . . . . . . . . . . . . . . . . . . . .695 Heat-resisting alloys, creep onset temperature . . .729 Heat-resisting chromium-nickel alloys, sigmaphase embrittlement . . . . . . . . . . . . . . . . . 512, 513 Heat tinting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 887–888 Heat treatment defects resulting from . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 effects on residual stresses . . . . . . . . . . . . . . . . 494–495 hydrogen as protective atmosphere, as hydrogen source for hydrogen embrittlement . . . . . . . .819 manufacturing/installation anomalies . . . . . . . . . . . . 12 minimum recommended material removal to prevent surface seam and nonmetallic stringer problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204, 206 as root cause of forgings defects, rationale, resolution, and corrective action . . . 327, 329, 330, 331 temperature effect on residual stress of iron alloys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .495 Heavy-duty axle housing, fatigue fracture . . . . . . .119 Heavy phosphate (manganese phosphate) coatings, for corrosion resistance . . . . . . . . . . . . . . . . . . . .759 Heavy striking tools, striking/struck tool specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .987 Helical spring, torsional fatigue failure of boroncontaining alloy . . . . . . . . . . . . . . . . . . . . . . 630, 633

© 2002 ASM International. All Rights Reserved. ASM Handbook Volume 11: Failure Analysis and Prevention (#06072G)

www.asminternational.org

1120 / Index

Helical tensile fracture . . . . . . . . . . . . . . . . . . . . . 561, 562 Helicopter main rotor bolt, forging defects from nonmetallic inclusions in steel . . . . .89–90, 91 Helicopter rotors, liquid-droplet erosion resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1015 Helicopter tail rotor, galvanic corrosion . . . . . . . . .766 Helium, heat transfer rate of quenching medium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .210 Hematite, as corrosion products in pipeline excavations and laboratory soil box tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .887 Herringbone pattern. See Chevron pattern. Herringbone porosity, in weldments . . . . . . . . . . . . .171 Hertzian cones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .668 Hertzian crack. See Percussion cone. Hertzian fracture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .910 theory of . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .957 Hertzian impact site, in glass . . . . . . . . . . . . . . . . . . . .668 Hertzian stress. See Contact (Hertzian) stress. Hertzian theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .467 Hertz theory of elastic contact . . . . . . . . . . . . . . . . . .957 Heuristic stress-analysis skill . . . . . . . . . . . . . . . . . . . .322 Hexagonal close-packed materials ductility reduction in ductile-brittle transition temperature region . . . . . . . . . . . . . . . . . . . . . . . . .599 cleavage fracture . . . . . . . . . . . . . . . . . . . . .587, 589, 590 overload failures . . . . . . . . . . . . . . . . . . . . .678–679, 680 temperature effect on toughness and ductility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 684–685 HIC. See Hydrogen-induced cracking. Hidden consequences of failure modes . . . . . . . . . . 67 Hidden consequences of hidden failures . . . . . . . . . 70 Hidden failure, definition in reliability-centered maintenance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 Hidden function, definition in reliability-centered maintenance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 High-activity aluminide coatings . . . . . . . . . . 876–877 High-alloy irons, centrifugal casting . . . . . . . . . . . . .132 High-alloy steels, tempering . . . . . . . . . . . . . . . . . . . . . .195 High-carbon steels distortion failure of automotive valve spring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1050–1051 environments subjecting alloy to selective leaching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .785 mitigating abrasive wear . . . . . . . . . . . . . . . . . . . . . . . .407 tempering and retained austenite . . . . . . . . . . . . . . .195 High-chromium alloy steel, erosive wear . . . . . . . .997 High-chromium stainless steels, workability behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 High-chromium white cast iron, mitigating erosive wear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .408 High-cycle fatigue (HCF) . . . . . . . . . . . . .491–192, 709 as damage mechanism on failure wheel . . . . . . . .349 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1068 as elevated-temperature failure in gas turbines . . . . . . . . . . . . . . . . . . . . . . . . .289, 291, 296 fatigue life . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .718 and fatigue limit (endurance limit) . . . . . . . . . . . . .493 and intergranular fracture . . . . . . . . . . . . . . . . . . . . . . .644 loading types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 material properties related to . . . . . . . . . . . . . . . . . . . . 36 material selection criteria . . . . . . . . . . . . . . . . . . . . . . . . 35 operating temperatures . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 and residual stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .493 stainless steel gas turbine blades . . . . . . . . . . . . . . .341 stress types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 weldment porosity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .171 High-density polyethylene (HDPE) abrasive wear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1030 creep modulus vs. temperature . . . . . . . . . . . . . . . . .652 distortion of chemical storage vessel . . . . . 453–454 ductile fracture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .797 specific wear rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1020 High-electron-emission . . . . . . . . . . . . . . . . . . . . . . . . . . .518 High-frequency induction welding, failure origins related to . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .191 High-frequency vibratory tests, for evaluating cavitation erosion . . . . . . . . . . . . . . . . . . . . . . . . 1006 High-growth-rate fatigue . . . . . . . . . . . . . . . . . . 637, 638 High homologous temperature (TH) . . . . . . 564, 569 High-impact polystyrene (HIPS) ductile fracture behavior . . . . . . . . . . . . . . . . . . . . . . . .655 notch sensitivity and brittle fractures . . . . . . . . . . .657

High-magnification optical microscopy, as fractography technique . . . . . . . . . . . . . . . . . . . .662 High-manganese steels . . . . . . . . . . . . . . . . . . . . . 681, 682 overaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .694 High-molecular-weight amines . . . . . . . . . . . . . . . . . .750 High-molecular-weight polymers fracture resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .652 thermal degradation . . . . . . . . . . . . . . . . . . . . . . . 797–798 High-nickel alloys causes of stress-corrosion cracking . . . . . . . . . . . . .831 environments subjecting alloy to selective leaching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .785 environment systems exhibiting stress-corrosion cracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .832 stress-corrosion cracking . . . . . . . . . . . . . . . . . . . . . . . .823 High-pressure die casting, in shape-casting processes classification scheme . . . . . . . . . . .124 High-pressure impact mechanism, as cavitation mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1005 High pressure molding defect, casting . . . . . . . . . .108 High-silicon alloys, case debonding . . . . . . . . . . . . . .131 High-silicon cast irons, for impressed-current anodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .756 High-spatial-resolution secondary electron micrographs . . . . . . . . . . . . . . . . . . . . . . . . . 528, 530 High-speed digital videocamera . . . . . . . . . . . . . . . . .427 High-speed four-ball testing apparatus, description of rolling contact fatigue test method . . . . .944 High-speed steel as chemical vapor deposition substrate material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .949 as physical vapor deposition substrate material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .946 tempering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .195 High-speed videography . . . . . . . . . . . . . . . . . . . . . . . . .424 High-strength and temperature-resistant materials, characteristics of engineering polymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .359 High-strength low-alloy (HSLA) steels . . . 246–247 causes of stress-corrosion cracking . . . . . . . . . . . . .831 ductile crack nucleation . . . . . . . . . . . . . . . . . . . . . . . . .591 rapid crack growth, causes of stress-corrosion cracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .831 stress-relief embrittlement . . . . . . . . . . . . . . . . . . . . . .691 tempered-martensite embrittlement . . . . . . . . . . . . .692 High-strength steels accelerated hydrogen entry, causes of stresscorrosion cracking . . . . . . . . . . . . . . . . . . . . . . . . .831 accelerated hydrogen-induced cracking, causes of stress-corrosion cracking . . . . . . . . . . . . . . . . . .831 brittle fracture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228, 231 causes of stress-corrosion cracking . . . . . . . . . . . . .831 ductile crack nucleation . . . . . . . . . . . . . . . . . . . . . . . . .591 ductile overload fracture . . . . . . . . . . . . . . . . . . 673–674 environment systems exhibiting stress-corrosion cracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .832 hydrogen content effect . . . . . . . . . . . . . . . . . . . . . . . . . . 87 hydrogen embrittlement . . . . . . . . 646, 647, 812, 813 hydrogen-induced cracking, causes of stresscorrosion cracking . . . . . . . . . . . . . . . . . . . . . . . . .831 initiation sites for cracking, causes of stresscorrosion cracking . . . . . . . . . . . . . . . . . . . . . . . . .831 stress-corrosion cracking . . . . . . . 646, 832, 833, 835 High-stress abrasion . . . . . . . . . . . . . . . . . . .908, 919, 920 High-stress/low-cycle rolling-contact fatigue, network carbide concentration effect . . . . . .216 High temperature, effect on fatigue strength . . . .718 High-temperature corrosion in low-alloy steel castings . . . . . . . . . . . . . . . . 145–146 of nickel alloys . . . . . . . . . . . . . . . . . . . . . . .870, 871, 872 of Udimet 500 gas turbine last-stage bucket . . .872 High-temperature corrosion-related failures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 868–878 aging reactions as mechanism . . . . . . . . . . . . 874–875 Babbitt metal, lining of bronze cylinder of friction bearing of locomotive drive axle . . . . 335–336 brace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .320 carbon-nitrogen interaction as mechanism . . . . .870 carburization as mechanism . . . . . . . . . . . . . . 868, 869 chloridation as mechanism . . . . . . . . . . . . . . . . 872, 873 environmental cracking as mechanism . . . 875–876 environments for . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .868 erosion-corrosion as mechanism of . . . . . . . . . . . . .876

factors affecting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .868 hot corrosion as mechanism . . . . . . . . . . . . . . 871–873 hydrogen interactions as mechanism . . . . . . . . . . .873 mechanisms induced by molten salts or metals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .868 metal dusting as mechanism . . . . . . . . . . . . . . 868–869 by molten metal corrosion as mechanism . . . . 873– 874 molten salts as mechanism . . . . . . . . . . . . . . . . . . . . . .874 nitridation as mechanism . . . . . . . . . . . . . . . . . 869–870 overload failures affected by . . . . . . . . . . . . . . . . . . .686 oxidation mechanism . . . . . . . . . . . . . . . . . . . . . 868, 869 protective coatings for resistance . . . . . . . . . 876–878 stress-rupture failures as mechanism of . . . . . . . .876 sulfidation as mechanism . . . . . . . . . . . . . . . . . 870–871 High-temperature crack growth methods . . . . . .289 life assessment technique for elevated-temperature exposure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .240 of power plant piping and tubing . . . .304, 309–310 High-temperature creep . . . . . . . . . . . . . . . . . . . . . . . . .343 of gas turbine components . . . . . . . . . . . . . . . . 290–291 High-temperature curing silicones, as corrosionresistant coatings . . . . . . . . . . . . . . . . . . . . . . . . . . .758 High-temperature life assessment . . . .238, 239–240 High-temperature oxidation . . . . . . . . . . . . . . . . . . . . . . 18 High-temperature processes, causing corrosive wear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .990 High-temperature service, design considerations . . . . . . . . . . . . . . . . . . . . . . . . 231–232 High-temperature transformation products (HTTP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .215 High-velocity flow tests, for evaluating cavitation erosion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1006 High-velocity oxyfuel (HVOF) coating material, thickness, roughness, and average hardness . . . . . . . . . . . . . . . .950, 951, 954 contact stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .950 rolling contact fatigue life . . . . . . . . . . . . . . . . . . . . . .950 rolling contact fatigue tester . . . . . . . . . . . . . . . . . . . .950 substrate material and hardness . . . . . . . . . . . . . . . . .950 tungsten carbide coatings to minimize liquiddroplet impingement damage . . . . . . . . . . . . . .409 Hildebrand solubility parameter . . . . . . . . . . 796–797 Hill criterion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 461, 473 Hill’s anisotropic yield criterion . . . . . . . . . . . 597, 602 Hill yield criterion, definition . . . . . . . . . . . . . . . . . . 1068 Hindered contraction, as casting defect . . . . . . . . .110 Hinges, brittle fracture of nylon . . . . . . . . . . . . 457–459 HIP. See Hot isostatic pressing. HIPS. See High-impact polystyrene. Histograms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .260 History, failures and impact on life assessment methodologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . .228 HIT. See Hammer impact tester. Hit/miss approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .271 to life assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .271 HK. See Knoop hardness number. Hold-down clamps, distortion failure of steel . . 1052 Holding tank coupling, stress-corrosion cracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Hold time, in thermomechanical fatigue . . . . . . . . .744 Hold-time fatigue, as damage mechanism on failure wheel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .349 Hole drilling for measuring and studying residual stresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1053 with strain gages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .467 Holidays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .769 in galvanic corrosion . . . . . . . . . . . . . . . . . . . . . . . . . . . .762 “Holloman behavior.” See Strain hardening/strainhardening exponent. Holloman relationship . . . . . . . . . . . . . . . . .617–618, 619 Holographic interferometry, to measure fretting wear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .932 Holography, in preliminary laboratory examination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .406 Homogenization to eliminate microsegregation in ingots . . . . . . . . . 83 of ingot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 prior to hot working . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 Homologous temperature . . . . . . . . . . . . .569, 570, 571 Honing, to remove surface oxides . . . . . . . . . . . . . . . .215 Hook, service condition failure, sigma-phase embrittlement . . . . . . . . . . . . . . . . . . . . . . . . 512, 513

© 2002 ASM International. All Rights Reserved. ASM Handbook Volume 11: Failure Analysis and Prevention (#06072G)

Hook cracks, in weldments . . . . . . . . . . . . . . . . . . . . . . .191 Hooke’s law. See also Modulus of elasticity. definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1068 for homogenous and isotropic material . . . . . . . . .467 Hoop stress distribution beneath notch root of notched-bar specimen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .597 of thin-walled pressure vessels . . . . . . . . . . . . . . . . .471 Hoppers on trucks, stress-corrosion cracking . . .841 Horizontal spectrometers . . . . . . . . . . . . . . . . . . . . . . . .338 Hot box resin sand molding, in shape-casting processes classification scheme . . . . . . . . . . .124 Hot chamber die casting . . . . . . . . . . . . . . . . . . . 125–126 in shape-casting processes classification scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .124 Hot corrosion location on failure wheel . . . . . . . . . . . . . . . . . . . . . . .349 as mechanism for high-temperature corrosion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 871–873 molten salts involvement . . . . . . . . . . . . . . . . . . . . . . .874 of nickel-base superalloys used for gas turbine blades . . . . . . . . . . . . . . . . . . . . . . . . . . .294, 295, 296 overlay coatings for resistance to . . . . . . . . . . . . . . .877 of thermal barrier coatings . . . . . . . . . . . . . . . . . . . . . .877 of turbine blades . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .291 type 1, high-temperature hot corrosion . . . 871–872 type 2, low-temperature . . . . . . . . . . . . . . . . . . . . . . . . .872 Hot crack. See also Hot shortness; Solidification shrinkage crack. . . . . . . . . . . 118–119, 686, 691 as casting defect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .107 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104, 118 in pressure die castings . . . . . . . . . . . . . . . . . . . 126–127 in tube weldment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .698 in weldment . . . . 170, 179, 184–185, 186, 188, 190 Hot-dip coatings, for corrosion resistance . . . . . . .759 Hot-dip galvanizing and liquid metal induced embrittlement . . . . . . . .866 and strain-age embrittlement . . . . . . . . . . . . . . . . . . . .690 Hot dry chloride salts, stress-corrosion cracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .857 Hot extrusion, compatibility with various materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Hot-face temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . .803 Hot forging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 Hot gas corrosion resistance . . . . . . . . . . . . . . . . . . . . .803 Hot gases, corrosion of technical ceramics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 804, 805 Hot isostatically pressed silicon nitride, ring crack initiation load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .957 Hot isostatic pressing of gas turbine blades, and weakened structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .346 to rejuvenate turbine blades after creep void formation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .299 Hot pressed silicon nitride brittle fracture due to defect . . . . . . . . . . . . . . 669–670 rolling-contact fatigue studies . . . . . . . . . . . . . . . . . .959 Hot rolling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 minimum web thickness . . . . . . . . . . . . . . . . . . . . . . . . . 32 Hot-salt cracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .857 Hot short, as root cause of forgings defects, rationale, resolution, and corrective action . . . . . . . . . . . . . . . . . . . . . . 327, 329, 330, 331 Hot shortness. See also Hot cracking. . . 98, 118–119 in weldments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .189 Hot strength, definition . . . . . . . . . . . . . . . . . . . . . . . . . . .119 Hot tear. See also Liquation cracking. . . . . . 82, 117– 119, 595 in aluminum alloy castings . . . . 149, 150, 151, 152 as casting defect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .107 in corrosion-resistant castings . . . . . . . . . . . . 147, 148 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . 104, 118, 1068 as discontinuity in semisolid casting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128, 131 and fatigue fracture . . . . . . . . . . . . . . . . . . . . . . . . . . . . .119 in forgings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 of permanent-mold castings . . . . . . . . . . . . . . . . . . . .125 in squeeze casting . . . . . . . . . . . . . . . . . . . . . . . . . 130–131 in weldments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .189 Hot torsion failure, locomotive drive axle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335–336 Hot-wall effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .770 Hot-wall failures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .770

Hot water heaters failure modes and effects analysis, of stop valve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50–53 relief valve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 Hot working . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 to correct segregation in ingots . . . . . . . . . . . . . . . . . . 83 metallurgical defects in cast or wrought grain structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 and plastic deformation . . . . . . . . . . . . . . . . . . . . . . . . . . 97 Housings from electrical appliance, environmental stress cracking of polycarbonate/PET . . . 450– 451, 453 HR. See Rockwell hardness number. HSc. See Scleroscope hardness number. HSd. See Scleroscope hardness number. HSe factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1031 HSLA. See High-strength low-alloy steels. HTTP. See High-temperature transformation products. Huey test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .773 Human error, definition . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 Human factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . .74–75, 76 Humidity causing fretting wear . . . . . . . . . . . . . . . . . . . . . . . . . . . .930 causing stress-corrosion cracking . . . 826–827, 830, 850, 856 effect on polymer wear failures . . . . . . . . . . . . . . 1025 HV. See Vickers hardness number. HVOF. See High-velocity oxyfuel. Hybrid ball bearings, rolling-contact fatigue . . . .959 Hybrid composites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1029 adhesive wear . . . . . . . . . . . . . . . . . . . . . . . . . . .1040–1041 Hydraulic-pressure propagation crack paths . .723 Hydride formation . . . . . . . . . . . . . . . . . . . . .809, 814, 816 Hydrocarbon contamination . . . . . . . . . . . . . . . . . . . . .436 Hydrochloric acid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .749 stress-corrosion cracking . . . . . . . . . . . . . . . . . . 838, 857 20%, intergranular corrosion evaluation test . . .781 Hydrodynamic intensity, and erosive wear . . . . . .998 Hydrodynamic mass transport, reaction with refractories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .878 Hydrofluoric acid, causing stress-corrosion cracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 779, 838 Hydroforming, of diesel fuel injection control sleeve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Hydrogen as cause of gas porosity in metals . . . . . . . . . . . . . .115 content effect on delayed hydrogen stress cracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .819 content effect on ingots . . . . . . . . . . . . . . . . . .87–88, 89 detection of, and hydrogen embrittlement . . . . . 429, 431 effect on mechanical properties . . . . . . . . . . . . . . . . .404 entrapment in weldment and porosity . . . 170, 171, 183 grain-boundary absorption and intergranular fracture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .645 heat transfer rate of quenching medium . . . . . . . .210 high content as defect in ingot . . . . . . . . . . . . . . . . . . . 83 as impurity for low-alloy steel castings . . 144, 145 permeation and enhancement due to microbial involvement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .884 pick up reduced in welded joints . . . . . . . . . . . . . . .167 presence effect on microcracking . . . . . . . . . . . . . . .218 standard emf series value . . . . . . . . . . . . . . . . . . . . . . .763 Hydrogenase assay, to investigate microbial populations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .893 Hydrogenase enzyme, activity assessed in microbially-induced corrosion . . . . . . . 892, 893 Hydrogen attack . . . . . . . . . . . . . . . . . 695–696, 815–816 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .809 metals affected and conditions for . . . . . . . . . . . . . .809 pipe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .816 of steel alloys used for gas turbine tubes and piping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293–294 Hydrogen blistering, definition . . . . . . . . . . . . . . . . . 1068 Hydrogen bond, bond energy in various materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .650 Hydrogen charging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .696 Hydrogen chloride, causing stress-corrosion cracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 857, 859 Hydrogen content, as root cause of forgings defects, rationale, resolution, and corrective action . . . . . . . . . . . . . . . . . . . . . . 327, 329, 330, 331

www.asminternational.org

Index / 1121 Hydrogen cracks, in weldments . . . . . . . . . . . . . . . . . .157 Hydrogen damage . . . . . . . . . . . . . . . . . . . . .344, 751, 873 aluminum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .817 aluminum alloys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .817 as boiler tube damage mechanism on failure wheel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .350 characteristics of boiler waterwall damage mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . 347, 348 copper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .817 copper alloys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .817 as damage mechanism on failure wheel . . . . . . . .349 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1068 effect on overload failures . . . . . . . . . . . . . . . . 695–697 fracture origins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .813 fracture surface deposits . . . . . . . . . . . . . . . . . . . . . . . .813 hydride formation as cause of cracking . . . . . . . .816 laboratory tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . 813–814 manifestation of . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .807 mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .809 of nickel alloys . . . . . . . . . . . . . . . . . . . . . . . . . . . . 816–817 of precision bolt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .816 of stainless steels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .816 tantalum and tantalum alloys . . . . . . . . . . . . . . . . . . .818 thorium and thorium alloys . . . . . . . . . . . . . . . . . . . . .818 titanium and titanium alloys . . . . . . . . . . . . . . 817–818 types of . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .809 uranium and uranium alloys . . . . . . . . . . . . . . . . . . . .818 zirconium and zirconium alloys . . . . . . . . . . . . . . . .818 Hydrogen embrittlement. See also Hydrogeninduced delayed cracking. . . . . 343, 522, 810– 811, 816 of aluminum alloys . . . . . . . . . . . . . . . . . .646–647, 648 analysis of . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 818–822 aqueous environment . . . . . . . . . . . . . . . . . . . . . . . . . . .812 of cap screws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 696–697 causes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .690 in commodity-grade steels . . . . . . . . . . . . . . . . 818–822 controlling factors . . . . . . . . . . . . . . . . . . . . . . . . . 811–812 as defect resulting from electroplating . . . . . . . . . . 81 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1068 detection of hydrogen in steels . . . . . . . . . . . 429, 431 diagnosis of . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 820–822 early-service fractures . . . . . . . . . . . . . . . . . . . . . 818–819 effect in ferrous alloys . . . . . . . . . . . . . . . . . . . . . . . . . .690 effect on overload failures . . . . . . . . . . . . . . . . 695–697 environmental . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 811–813 environments containing hydrogen sulfide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 812–813 factors affecting delayed hydrogen stress cracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 819–820 from high moisture content in furnace . . . . . . . . .202 hydrogen reaction embrittlement . . . . . . . . . 814–816 hydrogen stress cracking . . . . . . . . . . . . . . . . . . 810–811 influencing intergranular fracture . . 642, 645, 646– 647 of ingots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 and intergranular stress-corrosion cracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 646–647 internal reversible . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .810 of iron aluminide coatings . . . . . . . . . . . . . . . . . . . . . .878 loading types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 material properties related to . . . . . . . . . . . . . . . . . . . . 36 material selection criteria . . . . . . . . . . . . . . . . . . . . . . . . 35 metals affected and conditions for . . . . . . . . . . . . . .809 mushroom-head closure . . . . . . . . . . . . . . . . . . . 813, 814 of nickel alloys . . . . . . . . . . . . . . . . . . . . . . . . . . . . 816–817 nuts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 811, 812 operating temperatures . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 preservice fractures . . . . . . . . . . . . . . . . . . . . . . . 818–819 refinery vessel plate . . . . . . . . . . . . . . . . . . . . . . . 814, 815 steels susceptible . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .690 with stress-corrosion cracking . . . . . . . . . . . . 837, 846 stress types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 temperature dependence . . . . . . . . . . . . . . . . . . . . . . . .811 tensile ductility loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . .810 threshold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .563 types of . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .810 in weldments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169, 179 Hydrogen environmental embrittlement . . 811–813 Hydrogen evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .749 Hydrogen flakes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .294 in ingots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .87, 88, 89

© 2002 ASM International. All Rights Reserved. ASM Handbook Volume 11: Failure Analysis and Prevention (#06072G)

www.asminternational.org

1122 / Index

Hydrogen gas (H2) environment causing stress-corrosion cracking of nickel and nickel-base alloys . . . . . . . . . . . . . .848 hydrogen embrittlement of storage containers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .813 Hydrogen-induced blistering . . . 809, 814–815, 839 metals affected and conditions for . . . . . . . . . . . . . .809 Hydrogen-induced cold cracking, of weldments . . . . . . . . . . . . . . . . . . . . . . .181–183, 184 Hydrogen-induced cracking (HIC) . . . . . . . . . . . . . .884 causing service failures of welds . . . . . . . . . . . . . . .156 as defect resulting from welding . . . . . . . . . . . . . . . . 81 in low-carbon steel pipeline . . . . . . . . . . . . . . . . . . . .366 of welded castings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .153 Hydrogen-induced cracks, in weldments . . . . . . . 170, 179, 181–183, 184 Hydrogen-induced delayed cracking. See also Hydrogen embrittlement; Static fatigue. definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1068 Hydrogen interactions, as mechanism for hightemperature corrosion . . . . . . . . . . . . . . . . . . . . .873 Hydrogen porosity in aluminum alloy castings . . . . . . . . . . . . . . . . . . . . .149 as root cause of forgings defects, rationale, resolution, and corrective action . . . 327, 329, 330, 331 Hydrogen pressure theory . . . . . . . . . . . . . . . . . 809–810 Hydrogen reaction embrittlement . . . . . . . . . 814–816 Hydrogen-reformer furnace . . . . . . . . . . . . . . . 869, 870 Hydrogen stress cracking . . . . . . . . . . . . . . . . . . . . . . . .839 nuts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 811, 812 similarity to metal-induced embrittlement . . . . . .861 and stress-corrosion cracking . . . . . . . . . . . . . . . . . . .847 Hydrogen sulfide cracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .697 as damaging substance in atmospheric environments for stress-corrosion cracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .832 effect on crack growth rates . . . . . . . . . . . . . . . . . . . .884 gas, causing stress-corrosion cracking in highstrength low-alloys steels . . . . . . . . . . . . . . . . . .831 in microbially-induced corrosion of stainless steels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .890 Hydrolysis, of polymers . . . .439, 444, 456, 797, 798 Hydroperoxy radical . . . . . . . . . . . . . . . . . . . . . . . . . . . . .798 Hydrostatic modulus. See Bulk modulus of elasticity. Hydrostatic pressure . . . . . . . . . . . . . . . . . . . . . . . 194, 196 Hydrostatic stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .466 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1068 Hydrostatic stress tensors . . . . . . . . . . . . . . . . . . . . . . . .482 Hydrostatic testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .834 for stress-corrosion cracking . . . . . . . . . . . . . . . . . . . .827 Hydrotesting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .834 of zinc-primed stainless steel piping . . . . . . . . . . .866 Hypereutectic irons, graphite formation . . . . . . . . .137 Hypereutectoid steels, retained austenite role in delayed cracking . . . . . . . . . . . . . . . . . . . . . . . . . . .364 Hypochlorites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .773 Hypoeutectic irons, carbide formation . . . . . . . . . . .137

I I-beam, chemical segregation as failure cause . . . . 84 “Icebox” rivets, aerospace applications . . . . . . . . .684 ICP. See Inductively coupled photospectroscopy; Inductively coupled plasma testing. Identification marking, effect on fatigue strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .721 IDL (computer software program) . . . . . . . . . . . . . .267 IF. See Incomplete fusion. IG fracture. See Intergranular fracture. IG stress-corrosion cracking. See Intergranular stress-corrosion cracking. Image analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .538 Image manipulation software packages . . . . . . . .539 Image processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .551 Image resolution, in digital photography . . . . . . . . . . . . . . . . . . . . . . . . 420–421 Impact as damage mechanism on failure wheel . . . . . . . .349

effect on ceramics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .370 Impact analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 385–386 Impact bruise. See Percussion cone. Impact damage, in ceramics . . . . . . . . . . . . . . . 667–668 Impact energy as criteria for materials selection . . . . . . . . . . . . . . . . 32 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1068 relationship with various failure modes . . . . .35, 36 Impact extrusion, compatibility with various materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Impact fatigue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .922 Impact load, definition . . . . . . . . . . . . . . . . . . . . . . . . . . 1068 Impact modifiers effect on nylon 6/6 performance variation . . . . .447 in polymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .459 Impact motion, operational variations . . . . . . . . . . .902 Impact strength. See Impact energy. Impact testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .684 of gas turbine components . . . . . . . . . . . . . . . . 300–301 of notched specimens . . . . . . . . . . . . . . . . . . . . . . . . . . .605 of polymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .445 Impact wear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 965–973 angle of contact for ceramics . . . . . . . . . . . . . . . . . . .969 automotive engine inlet valve and seat wear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 971–973 of ceramic coatings . . . . . . . . . . . . . . . . . . . . . . . 969–970 of ceramics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 968–970 coefficient, nondimensional . . . . . . . . . . . . . . . . . . . . .971 compound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .965 contact stress influence . . . . . . . . . . . . . . . . . . . 967–968 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .965 lubrication effect . . . . . . . . . . . . . . . . . . . . . . . . . . 967–968 mechanisms of material removal . . . . . . . . . 966–967 modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .971 modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .965 normal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .965 normal stress influence on ceramics . . . . . . . . . . . .969 percussive impact of large bodies . . . . . . . . . . . . . .971 of polymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .970 relative humidity influence on ceramics . . . . . . . .969 residual stresses from machining . . . . . . . . . . . . . . .969 of sintered reaction-bonded silicon nitrides . . . .969 sliding velocity influence . . . . . . . . . . . . . . . . . 967–968 tangential stress and shear influence on ceramics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .969 testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 970–971 wear debris . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 968–969 Impeller, mixed-mode cracking of ductile iron . . .677 Impeller vane, cavitation erosion . . . . . . . . .1016–1017 Imperfection(s) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 473–474 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . 103, 269, 1068 geometric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 473–474 material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 473–474 Impingement, particle size . . . . . . . . . . . . . . . . . . . . . . .995 Impingement angle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .912 Impingement attack. See also Erosioncorrosion. . . . . . . . . . . . . . . . . . . . . . . .755, 791–792 copper alloy tube . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .999 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1068 elbow of pipe of malleable iron . . . . . . . . . . . . . . . .792 Impingement jet tests, for evaluating cavitation erosion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1006 Importance sampling . . . . . . . . . . . . . . . . . . . . . . . 250, 262 computer software programs . . . . . . . . . . . . . . . . . . . .267 in gas turbine rotor damage tolerance analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .264 Impressed-current protection . . . . . . . .755, 756, 757 Improper structure, as defect resulting from welding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 Impurity inclusions . . . . . . . . . . . . . . . . . . . . . . . . . 683–684 content effect on hydrogen embrittlement . . . . . .820 IMSL (computer software program) . . . . . . . . . . .267 Inadequate penetration (IP) (lack of penetration) subsurface feature as cause for rejection . . . . . . .156 in weldments . . 169, 170, 171, 174, 176–178, 179, 180, 186, 187, 190 Incinerator liner, sulfidation of nickel alloy . . . 870– 871 Incipient melting definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1068 of tool steel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 502, 503 Inclined ball-on-disk testing apparatus, description of rolling contact fatigue test method . . . . .944

Inclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120, 338 in Al-Li metal-matrix composite . . . . . . . . . 548, 549 blacking, as casting defect . . . . . . . . . . . . . . . . . . . . . .111 in corrosion-resistant castings . . . . . . . . . . . . . . . . . .147 and debonding in metals . . . . . . . . . . . . .571, 572, 628 as defect resulting from welding . . . . . . . . . . . . . . . . 81 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .104, 1068 detection by ultrasonic inspection . . . . . . . . . . . . . .396 as discontinuity for castings . . . . . . . . . . . . . . . . . . . . . . 9 as discontinuity for forgings . . . . . . . . . . . . . . . . . . . . . . 9 dross . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .116 dross (flux), as casting defect . . . . . . . . . . . . . . . . . . .111 in ductile fracture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .591 effect on fatigue strength . . . . . . . . . . . . . . . . . . . . . . .719 entrapped mold materials . . . . . . . . . . . . . . . . . . . . . . .116 as flaw in rolled bars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 flux, as casting defect . . . . . . . . . . . . . . . . . . . . . . . . . . .111 and fracture markings . . . . . . . . . . . . . . . . . . . . . . . . . . .665 fracture modeling by continuum mechanics . . . .581 as fracture origin . . . . . . . . . . . . . . . . . . . . . . . . . . 662–663 intentional . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .682 and intergranular fracture . . . . . . . . . . . . . . . . . . . . . . .564 and macropitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .723 metallic, as casting defect . . . . . . . . . . . . . . . . . . . . . . .111 nitrides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116, 117 nonmetallic, in ingot . . . . . . . . . . . . . . . . . . . . .88–90, 91 nonmetallic, in twistdrill . . . . . . . . . . . . . . . . . . . . . . . . . 73 origin, contact fatigue mode and controlling factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .725 in overload failures . . . . . . . . . . . . . . . . . . . . . . . 683–684 oxides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .112, 116, 117 of polybutadiene in acrylonitrile-butadiene-styrene resin handle . . . . . . . . . . . . . . . . . . . . . . . . . . 447, 449 refractories . . . . . . . . . . . . . . . . . . . . . . . . . . .111, 116–117 sand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .111, 116–117 silicate, in stainless steels . . . . . . . . . . . . . . . . . 509, 510 slag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .111, 116–117 solid particles in ceramics . . . . . . . . . . .665, 669–670 subsurface feature as cause for rejection . . . . . . .156 sulfides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116, 117 in weldments . . 169, 171, 172–174, 175, 176, 186, 187, 189, 190 Inclusion shape-control methods . . . . . . . . . . . . . . . . . 89 Inclusions or structural anomalies, as casting defects in ICFTA classification scheme . . 104, 111–112, 116–117, 118 Incoherent boundaries . . . . . . . . . . . . . . . . . . . . . . . . . . .683 Incomplete casting, as casting defects in ICFTA classification scheme . . . . . . . . . . .104, 109–110 Incomplete fusion (IF) (formerly lack of fusion) subsurface feature as cause for rejection . . . . . . .156 in weldments . . 169, 170, 171, 174, 176–178, 179, 180, 185, 186, 188, 190 Incorrect dimensions or shape, as casting defects in ICFTA classification scheme . . .104, 110–111 Incubation stage, of cavitation erosion . . . . . . . . . 1003 Indentation or impact, contact damage of ceramics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 667–668 Indentations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .354 Indigenous inclusions . . . . . . . . . . . . . . . . . . . . . . . 116, 117 Indirect examination . . . . . . . . . . . . . . . . . . . . . . . 498–499 Indium as embrittling metal . . . . . . . . . . . . . . . . . . . . . . . . . . . . .862 as liquid embrittler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .646 as molten metal corrodent . . . . . . . . . . . . . . . . . . . . . .873 Induction hardening and fatigue initiation . . . . . . . . . . . . . . . . . . . . . . 627, 632 to minimize warping . . . . . . . . . . . . . . . . . . . . . . . . . . 1053 Induction period . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .971 Inductively coupled photospectroscopy (ICP), of lubricants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .413 Inductively coupled plasma spectrometer, for wet chemical analysis . . . . . . . . . . . . . . . . . . . . . . . . . .431 Inductively coupled plasma (ICP) testing . . . . 431– 432 Industrial refractories, definition . . . . . . . . . . . . . . . .800 Inelastic cyclic buckling, as distortion failure 1056 Inert gas flushing, to remove gases from cast iron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .115 Inert gas sputtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .530 Inertia, polar moment of . . . . . . . . . . . . . . . . . . . . . . . . .469 Infrared spectrophotometry, of corrosion products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .406

© 2002 ASM International. All Rights Reserved. ASM Handbook Volume 11: Failure Analysis and Prevention (#06072G)

Infrared (IR) spectroscopy . . . . . . . . . . . . . . . . . . . . . .404 property derived from polymer analysis . . . . . . . .359 Infrared spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .438 Ingot defects from . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82–90 nonmetallic inclusions . . . . . . . . . . . . . . . . . . .88–90, 91 Ingot drop speed, as root cause of forgings defects, rationale, resolution, and corrective action . . . . . . . . . . . . . . . . . . . . . . 327, 329, 330, 331 Ingot pipe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82–83 Initial capability, definition in reliability-centered maintenance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 Initial crack size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .255 Initial examination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .371 Initial flaw size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .281 Initial pitting, contact fatigue terminology . . . . . . .722 Injection molding and brittle fracture of PVC water-filter housing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .660 compatibility with various materials . . . . . . . . . . . . . 33 Injury, probability of . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 Inlet valve recession . . . . . . . . . . . . . . . . . . . . . . . . 972, 973 Inoculation process, for ductile iron . . . . . . . . . . . . .138 Inorganic glass, brittle fracture behavior . . . . . . . . .656 Inquiry engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .332 Insert cold shut, as casting defect . . . . . . . . . . . . . . . .107 Inserts, to prevent fretting damage . . . . . . . . . . . . . . .934 In-service inspection (ISI) . . . . . . . . . . . . . . . . . 273, 274 Inspectable flaw size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .273 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .270 Inspection. See also Inspection interval. to benchmark time span over which cracking occurred . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .627 of coating application . . . . . . . . . . . . . . . . . . . . . . . . . . .758 in-service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273, 274 manufacturing/installation anomalies . . . . . . . . . . . . 12 metric of . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .270 preservice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .273 of sites susceptible to velocity affected corrosion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .791 for uniform corrosion . . . . . . . . . . . . . . . . . . . . . 770–771 of wastewater tunnel structure . . . . . . . . . . . . . . . . . .755 Inspection interval. See also Inspection. . . . . . . . . .273 for aluminum pressurized fuselage . . . . . . . 285–286 determination of . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .281 ways to increase . . . . . . . . . . . . . . . . . . . . . . . . . . . 273, 274 Inspection pigs, for stress-corrosion cracking in pipelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .840 Inspection programs periodic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21–22 U.S. government-required . . . . . . . . . . . . . . . . . . . . . . . 22 Instantaneous crack size . . . . . . . . . . . . . . . . . . . . . . . . .283 Instant film photography . . . . . . . . . . . . . . . . . . 425–426 Insulating materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .800 Integrated product development (IPD) team concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27, 29 Intensive quenching . . . . . . . . . . . . . . . . . . . . . . . . 213–214 Interaction volume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .520 Interactive digital image analysis . . . . . . . . . . . . . . .539 Interactive image analysis . . . . . . . . . . . . . . . . . . . . . . .543 Interactive model generation . . . . . . . . . . . . . . . . . . . .381 Intercrystalline. See Intergranular. Interdendritic corrosion. See also Corrosion. definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1068 Interdiffusion between coating and substrate, and corrosion resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .875 between thin films . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .530 Interface, definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1068 Interface failure mode analysis . . . . . . . . . . . . . . .56, 58 Interface fault analysis . . . . . . . . . . . . . . . . . . . . . . . . 54–55 Interface with other design software . . . . . . . . . . . .381 Interference color fringes, in polymers . . . . . . . . . .657 Interference contrast, as ceramographic etching procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .362 Interference fringes . . . . . . . . . . . . . . . . . . . . . . . . 539–540 at fracture origin on brittle fracture surface . . . .657 Interferometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 539–540 Intergranular, definition . . . . . . . . . . . . . . . . . . . . . . . . 1068 Intergranular brittle fracture . . . . . . . . . . . . . . . . . . .677 causes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 642–643 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .642 examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .643

of valve seats of resulfurized steel . . . . . . . . . . . . .677 Intergranular carbides . . . . . . . . . . . . . . . . . . . . . 216, 217 Intergranular corrosion. See also Interdendritic corrosion. . . . . . . . . . . . . 337, 751, 761, 777–785 and aging reactions at high temperatures . . . . . 874– 875 of aluminum alloys . . . . . . . . . . . . . . . . . . . . . . . . . . . . .784 as casting defect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .107 of chromium-bearing corrosion-resistant castings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .148 of copper alloys . . . . . . . . . . . . . . . . . . . . . . . . . . . 784–785 in corrosion-resistant castings . . . . . . .148–149, 150 as damage mechanism on failure wheel . . . . . . . .349 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1068 magnesium alloys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .784 and manganese sulfide stringer-type inclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .782 of nickel alloys . . . . . . . . . . . . . . . . . . . . . . . . . . . . 783–784 polarization behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . .778 ship hull . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .778 stainless steels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 777–783 test methods . . . . . . . . . . . . . . . . . . . . . . . . . .779, 780, 781 valve in soda-dispensing system . . . . . . . . . . 781–782 of weld in wastewater vaporizer . . . . . . . . . . 782–783 of zinc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .785 Intergranular cracking definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1068 of gas turbine blades . . . . . . . . . . . . . . . . . . . . . . . . . . . .302 from hydrogen in nickel-base alloys . . . . . . . . . . .873 with stress-corrosion cracking . . . . . . . . . . . . . . . . . .825 Intergranular creep . . . . . . . . . . . . . . . . . . . . . . . . 575–576 Intergranular creep fracture . . .566, 571, 575–576, 733–734 rounded “r-type” cracking . . . . . . . . . . . . . . . . . . . . . .575 wedge “w-type” cracking . . . . . . . . . . . . . . . . . . . . . . .575 Intergranular embrittlement, indicative of brittle fracture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .559 Intergranular fatigue . . . . . . . . . . . . . . . . . .637, 644–645 in carburized steels . . . . . . . . . . . . . . . . . . . . . . . . 644–645 Intergranular fissuring, with hydrogen attack of steel alloys for gas turbines . . . . . . . . . 293, 294 Intergranular (IG) fracture. See also Transgranular fracture. . . . . . . . . . . . . . . 343, 574–576, 641–649 alumina . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .666 in bending with ductile fracture . . . . . . . . . . . . . . . .605 brittle, causes of . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .401 in brittle fracture . . . . . . . . . . . . . . . . . . . . . . . . . . 400–401 of carbon steel . . . . . . . . . . . . . . . . . . . . . . .500–501, 502 causes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 645, 646 of ceramics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .666 classifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 641–642 creep damage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .733 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1068 dimples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .564 examples (situations) . . . . . . . . . . . . . . . . . . . . . . . . . . . .645 factors causing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 564, 576 grain-boundary precipitates effect . . . . . . . . . . . . . .645 grain boundary weakening or embrittlement mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .641 with hydrogen embrittlement . . . . . . . . . . . . . 813, 814 impurity-induced . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .646 indication of . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .561 mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .642 nickel-baseprecipitation-hardening alloy . . . . . . .338 overload failure . . . . . . . . . . . . . . . . . . . . . . . . . . . 675–677 preferential cracking near grain boundaries . . . .564 quench cracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .694 situations for . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .575 of steam generator tube of nickel alloy . . 648–649 of steels due to grain-boundary precipitates . . 645– 646 stress rupture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .734 with tempered-martensite embrittlement . . . . . . .692 and temper embrittlement . . . . . . . . . . . . . . . . . 691–692 Intergranular networks . . . . . . . . . . . . . . . . . . . . 138–139 Intergranular (IG) stress-corrosion cracking . . . . . . . . . . . . . . . . . . . . . . . .522, 647–648 of aluminum alloys . . . . . . . . . . . . . . . . . . . . . . . . . . . . .852 brass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 521, 524 conditions for . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .647 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1068 EPR technique for susceptibility evaluation . . . .779 of gas turbine blades of nickel alloy . . . . . . . . . . .647

www.asminternational.org

Index / 1123 hoppers on trucks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .841 microbial involvement . . . . . . . . . . . . . . . . . . . . 884, 888 of nickel alloys . . . . . . . . . . . . . . . . . . . . . . . . . . . . 849, 850 of U-tubes of steam generator . . . . . . . . . . . . 388–389 welded pipe in Kamyr continuous pulp digester . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .840 weldment in sulfur recovery unit . . . . . . . . . 840–841 Intergranular with dimpled grain boundaries, microscale fractographic implication . . . . . .560 Intergranular with smooth grain boundaries, microscale fractographic implication . . . . . .560 Interim design reviews . . . . . . . . . . . . . . . . . . . . . . . . 75–76 Intermetallic(s) in aluminum alloy castings . . . . . . . . . . . . . . . . . . . . .150 in austenitic manganese steel castings . . . . 147, 149 as base material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .359 in corrosion-resistant castings . . . . . . . . . . . . . . . . . .149 as high-temperature coatings resisting corrosion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .878 phase precipitation effect on stress rupture . . . 734– 735 Intermetallic compound embrittlement causes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .690 effect in ferrous alloys . . . . . . . . . . . . . . . . . . . . . . . . . .690 effect on overload failures . . . . . . . . . . . . . . . . . . . . . .694 steels susceptible . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .690 Internal and longitudinal crack characteristics and crack growth mechanism . . .100 classification scheme by Greek letters . . . . . . . . . . . 99 Internal and transverse crack characteristics and crack growth mechanism . . .100 classification scheme by Greek letters . . . . . . . . . . . 99 Internal bursts effect on fatigue strength . . . . . . . . . . . . . . . . . . . . . . .719 in ingot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 Internal concavity, in weldments . . . . . . . . . . . . . . . . .170 Internal crack in drawing characteristics and crack growth mechanism . . .100 classification scheme by Greek letters . . . . . . . . . . . 99 Internal crack in extrusion characteristics and crack growth mechanism . . .100 classification scheme by Greek letters . . . . . . . . . . . 99 Internal crack in two directional extrusion characteristics and crack growth mechanism . . .100 classification scheme by Greek letters . . . . . . . . . . . 99 Internal crack in two directional free extrusion characteristics and crack growth mechanism . . .100 classification scheme by Greek letters . . . . . . . . . . . 99 Internal deposit buildup, as boiler tube damage mechanism on failure wheel . . . . . . . . . . . . . . .350 Internal deposit/corrosion product buildup, as damage mechanism for boiler tubing . . . . .347 Internal fractographic techniques . . . . . . . . . . . . . . .538 Internal loads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .276 Internal mixing crack, classification scheme by Greek letters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 Internal oxidation definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1068–1069 in forging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .509 maximum acceptable depth for carburized gear relative to case depth . . . . . . . . . . . . . . . . . . . . . .215 removed by grinding . . . . . . . . . . . . . . . . . . . . . . . . . . . .220 Internal pipelines, prevention approach for corrosion in industrial facilities . . . . . . . . . . .893 Internal pressure, of thin-walled pressure vessels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .471 Internal quantitative fractography . . . . . . . . 538–539 Internal reversible hydrogen embrittlement . . .810 Internal shrinkage, as casting defect . . . . . . . . . . . .106 Internal state variables-based predictive fracture models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .538 Internal sweating, as casting defect . . . . . . . . . . . . . .111 The International Journal of Pressure Vessels and Piping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .243 International Maritime Organization, banning of tributyl-tin as antifoulant in marine paints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .894 International Organization for Standardization (ISO) 9000 registration procedures . . . . .322 International Organization for Standardization (ISO) 9001 registration . . . . . . . . . . . . . . . . . . . . 40 Internet web sites, corrosion data . . . . . . . . . . . . . . . .752 Interrupted pour, as casting defect . . . . . . . . . . . . . .107

© 2002 ASM International. All Rights Reserved. ASM Handbook Volume 11: Failure Analysis and Prevention (#06072G)

www.asminternational.org

1124 / Index

Interrupted quenching . . . . . . . . . . . . . . . .212–213, 214 Interstitial elements, and stress-corrosion cracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .832 Interstitial-free steels . . . . . . . . . . . . . . . . . . . . . . . . . . . . .690 Interval tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .701 Intracrystalline. See Transgranular. Intrinsic viscosity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .452 of PET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .452 Intrinsic viscosity testing, of PET jacket . . . . . . . .452 Invasive penetration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .800 Invention, vs. design concept . . . . . . . . . . . . . . . . . . . . . . 44 Inventory, of parts at failure or wreckage . . . . . . . .394 Inverse chill, in cast irons . . . . . . . . . . . . . . . . . . . . . . . . .139 Inverse function method . . . . . . . . . . . . . . . . . . . . . . . . .259 Inverse rule of mixtures (IROM) . . . . . .1029, 1030, 1040 Investigation of failures . . . . . . . . . . . . . . . . . . . . 234–238 on-site . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 393–394 Investment casting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .132 characteristics of process . . . . . . . . . . . . . . . . . . . . . . .124 compatibility with various materials . . . . . . . . . . . . . 33 steel, minimum web thickness . . . . . . . . . . . . . . . . . . . 32 Inward diffusion, of coatings for gas turbine blades . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303, 304 Iodide ions, stress-corrosion cracking . . . . . . . . . . . .857 Ion beam deposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .946 coating material, thickness, roughness, and hardness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .946 contact stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .946 rolling contact fatigue life, ⳯ 106 cycles . . . . . .946 rolling contact fatigue tester . . . . . . . . . . . . . . . . . . . .946 substrate material and hardness . . . . . . . . . . . . . . . . .946 Ion etching, as ceramographic etching procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .362 Ionic bond, bond energy in various materials . . . .650 Ionic sputtering coating material, thickness, roughness, and hardness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .946 contact stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .946 rolling contact fatigue life ⳯ 106 cycles . . . . . . .946 rolling contact fatigue tester . . . . . . . . . . . . . . . . . . . .946 substrate material and hardness . . . . . . . . . . . . . . . . .946 Ion implantation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .759 to prevent fretting damage . . . . . . . . . . . . . . . . 933, 934 Ion-microprobe analysis, of corrosion products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .406 Ion-microprobe analyzer . . . . . . . . . . . . . . . . . . . . . . . . .404 Ion plating coating material, thickness, roughness, and hardness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .946 contact stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .946 magnetron sputtering . . . . . . . . . . . . . . . . . . . . . . . . . . . .946 to prevent fretting damage . . . . . . . . . . . . . . . . . . . . . .934 rolling contact fatigue life . . . . . . . . . . . . . . . . . . . . . .946 rolling contact fatigue tester . . . . . . . . . . . . . . . . . . . .946 substrate material and hardness . . . . . . . . . . . . . . . . .946 Ion transfer, and galvanic corrosion . . . . . . 765, 766 IP. See Incomplete penetration. IPD. See Integrated product development team concept. IR. See Infrared spectroscopy. Iridium, cleavage fracture . . . . . . . . . . . . . . . . . . . . . . . .589 IROM. See Inverse rule of mixtures. Iron bond energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .650 casting imperfections . . . . . . . . . . . . . . . . . . . . . . . . . . .104 cavitation erosion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1003 cavitation erosion, incubation time . . . . . . . . . . . 1004 cleavage of fractures . . . . . . . . . . . . . . . . . . . . . . 572, 573 contaminant particles . . . . . . . . . . . . . . . . . . . . . . . . . . .525 content effect on nitridation susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . 869–870 in deposits from microbially-induced corrosion sites in stainless steel cooling water systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .889 in dissimilar metal pair, fretting damage . . . . . . .928 erosion rate in mineral oil . . . . . . . . . . . . . . . . . . . . 1007 fretting wear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .930 galvanic corrosion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .767 maximum erosion rate dependence in cavitation erosion on combined parameter . . . . . . . . . 1016 metal penetration in castings . . . . . . . . . . . . . 119–120 microbially-induced corrosion, failure analysis of . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 885–887

oxidation potential in endothermic gas . . . . . . . . .214 qualitative chemical testing for materials identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .431 removed from alloys by selective leaching . . . . .785 standard emf series value . . . . . . . . . . . . . . . . . . . . . . .763 tongues on fracture surface . . . . . . . . . . . . . . . 572, 590 uniform corrosion . . . . . . . . . . . . . . . . . . . . . . . . . 769, 770 x-ray elemental composition map made with electron microprobe . . . . . . . . . . . . . . . . . . . . . . .865 Iron aluminides, as high-temperature coatings resisting corrosion . . . . . . . . . . . . . . . . . . 876, 878 Iron-base alloys creep onset temperature . . . . . . . . . . . . . . . . . . . . . . . . .729 die casting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125, 126 heat treatment temperature effect on residual stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .495 metal dusting attack . . . . . . . . . . . . . . . . . . . . . . . . . . . . .869 Iron-base heat-resisting alloys cold forming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .101 oxidation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .869 for warm gas turbine engine components . . . . . .296 Iron-carbon carbides . . . . . . . . . . . . . . . . . . . . . . . . . . . . .735 Iron-chromium alloys environments subjecting alloy to selective leaching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .785 stress-corrosion cracking . . . . . . . . . . . . . . . . . . . . . . . .823 Iron-chromium-molybdenum alloys, cleavage cracking at mechanical twins . . . . . . . . . . . . . .572 Iron-chromium-nickel alloys (caustic cracking), causes of stress-corrosion cracking . . . . . . .831 Iron-chromium-nickel-tungsten amorphous alloy, fretting wear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .930 Iron containing sulfur, workability behavior . . . . . 98 Iron-molybdenum alloys, twinning . . . . . . . . . . . . . .589 Iron-nickel-base heat-resisting alloys, for warm gas turbine engine components . . . . . . . . . . . . . . . .296 Iron-nickel-base superalloys. See Superalloys. Iron oxides, as corrosion products in pipeline excavations and laboratory soil box tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .887 Iron oxidizers, in cooling systems drawing on natural waters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .889 Iron-oxidizing bacteria . . . . . . . . . . . . . . . . . . . . . 884, 889 mechanism and indicators for microbially-induced corrosion scenario . . . . . . . . . . . . . . . . . . . . . . . . .889 Iron phosphate coatings . . . . . . . . . . . . . . . . . . . . . . . . . .822 for corrosion resistance . . . . . . . . . . . . . . . . . . . . . . . . .759 Iron reducers, in cooling systems drawing on natural waters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .889 Iron-silicon-boron alloys, fretting wear . . . . . . . . . .928 Iron sulfide in black microbially-induced corrosion products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .887 galvanic couple with sulfate reducing bacteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 882, 883 Iron sulfide/sulfate-reducing bacteria, microbiallyinduced corrosion under disbonded polyolefin tape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .887 Iron sulfides, as corrosion products in pipeline excavations and laboratory soil box tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .887 Irregular contraction, as casting defect . . . . . . . . .110 ISI. See In-service inspection. ISO. See International Organization for Standards. Isoelectric point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .931 ISO 9000 International Standards for Quality Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 Isopropyl alcohol, stress-corrosion cracking . . . 858– 859 Isotactic polypropylene, functioning both as fiber and as plastic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .650 Isothermal cooling curves, interpretation of, in failure analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . .322 Isothermal diagram, and carbide formation . . . . 735, 736 Isothermal heat dissipation . . . . . . . . . . . . . . . . . . . . 1020 Isothermal mode of wear, of polymers . . . . . . . . 1024 Isothermal ratcheting . . . . . . . . . . . . . . . . . . . . . . . . . . 1056 Isothermal transformation diagrams. See also Time-temperature-transformation diagrams. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192–193 Iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 guided . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Izod test definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1069 for polymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .445

J Jack cylinder, mixed-mode fracture of steel . . . 687– 688 Jaws castings, shrinkage porosity failure . . . . . . . . .114 Jaw-type rock crusher wear plates, abrasive wear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 915, 916 Jet-engine turbine blade, creep behavior . . . . . . . .731 Jet erosion, variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .902 Jet pump beams, stress-corrosion cracking . . . . . .850 Jewelry-striking die, heat-treatment-related failure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 510, 511 J-integral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .244, 246, 476 criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .243 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1069 method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 479–480 Joint(s) crevice corrosion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .775 types of . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161–162 welded, defects and discontinuities . . . . . . . . . . . . .157 Joint design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .162 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .161 Joint flash, as casting defect . . . . . . . . . . . . . . . . . . . . . .105 JPEG digital camera file format . . . . . . . . . . . . . . . .420 J-R curve. See R-curve.

K K. See also Bulk modulus of elasticity; Stressintensity factor. definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1074 Kc. See also Plane-stress fracture toughness. definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1074 KI. See also Opening mode of deformation. definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1074 KIc. See also Plane-strain fracture toughness. definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1074 KId, definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1074 KI stress-corrosion cracking, definition . . . . . . . 1074 Kmat. See Linear elastic fracture toughness. KQ, definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1074 Kt. See Stress-concentration factor. Kth, definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1074 KII, definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1074 KIII, definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1074 Kepner Tregoe (KT) method . . . . . . . . . . . . . . . . . . . .331 usefulness for larger scaled investigations . . . . .320 Keyhole effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .186 Key variable standard operating procedures (KVSOP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .807 Killed steels, hydrogen embrittlement . . . . . . . . . . . .815 Kiln, high-temperature corrosion of nickel alloys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 871, 872 Kirchoff’s Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .763 Kish graphite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .139 Kish tracks, as casting defect . . . . . . . . . . . . . . . . . . . . .112 Kitagawa diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .703 Klebsiella . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .891 K-level electron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .530 KLL Auger electron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .530 Knee . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .656 Knifeline attack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .780 Knoop hardness number (HK), definition . . . . 1069 Knoop hardness test, definition . . . . . . . . . . . . . . . . 1069 Knoop indenter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 360, 361 Knoop microindentation hardness testing . . . . . 360, 361 Knuckle pin, fatigue cracking . . . . . . . . . . . . . . 720, 721 Koistinen and Marburger equation . . . . . . . . . . . . .211 Kolmogorov-Smirnov test . . . . . . . . . . . . . . . . . . . . . . . .253 Koshal (linear) design . . . . . . . . . . . . . . . . . . . . . . . . . . . .258 Kraft liquor, stress-corrosion cracking . . . . . . . . . . .840 KT. See Kepner-Tregoe method.

© 2002 ASM International. All Rights Reserved. ASM Handbook Volume 11: Failure Analysis and Prevention (#06072G)

KVSOP. See Key variable standard operating procedure. K-zone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 580–581

L Laboratory portable, components of . . . . . . . . . . . . . . . . . . . . . . . .394 preliminary examination procedures . . . . . . . . . . . .406 Laboratory investigations, for failure analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15, 16 Lack of fusion (LOF). See also Incomplete fusion. in weldments . . 169, 170, 171, 174, 176–178, 179, 180 Lack of penetration (LOP). See also Incomplete penetration. in weldments . . 169, 170, 171, 174, 176–178, 179, 180 Lactic acid, causing intergranular corrosion in sensitized austenitic stainless steels . . . . . . .779 Ladder fiberglass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74–75 human factors and liability . . . . . . . . . . . . . . . . . . 74–75 Ladle analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .430 Ladle calcium treatments, effect on fracture toughness of steel . . . . . . . . . . . . . . . . . . . . . . . . . .477 Lambda crack characteristics and crack growth mechanism . . .100 workability behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 Lamellar tears . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .682 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .179 in weldments . . 157, 158, 161, 167, 169, 170, 171, 173, 180–181, 182 Lamination(s) definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1069 as discontinuity for plate and sheet . . . . . . . . . . . . . . . 9 in ingot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .83, 90 radiographic inspection not used . . . . . . . . . . . . . . .396 Lance. See Fatigue striation; Striation. Laning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .997 Lanthanum, addition improving oxidation resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .868 Lanthanum hexaboride, as electron source for scanning electron microscopy . . . . . . 516, 517, 521, 524 Lap(s) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81, 82, 615 as casting defects . . . . . . . . . . . . . . . . . . . . . . . . . 108, 123 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1069 as discontinuity for forgings . . . . . . . . . . . . . . . . . . . . . . 9 as discontinuity in semisolid casting . . . . . . . . . . .127 distortion from stress raisers . . . . . . . . .204–205, 207 as flaw in rolled bars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 in forging of ski chair lift grip components . . . . 10, 11 in forgings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .91, 92, 93 in ingots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 Lap joints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .162, 163, 164 Large-grained regions, in ceramics . . . . . . . . . . . . . .669 Larson-Miller parameter (LMP) . . . . 298, 299–300, 301, 732 for boiler tube characterization . . . . . . . . . . . . . . . . .305 Laser beam welding, failure origins related to . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190–191 Laser confocal scanning microscopy . . . . . . 551, 553 Laser profilometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .539 Laser surface modification, for cavitation erosion resistance . . . . . . . . . . . . . . . . . . . .1006–1007, 1008 Laser surface processing . . . . . . . . . . . . . . . . . . . 759, 760 Latch assemblies, brittle fracture of polyacetal . . . . . . . . . . . . . . . . . . . . . . . . . . . . 454–456 Lath martensite, microcracking . . . . . . . . . . . . . . . . . .218 Laves phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .734 formation at elevated temperatures . . . . . . . . . . . . .874 Lawn mower blades, brittle fracture of lawn mower blades . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 681–682 Law of normal tension . . . . . . . . . . . . . . . . . . . . . . . . . . .664 LCF. See Low-cycle fatigue. Leaching. See Selective leaching. Lead in base metal, and weldment porosity . . . . . . . . . .170

causing liquid metal induced embrittlement . . 865– 866 as embrittling metal . . . . . . . . . . . . . . . . . . . . . . . . . . . . .862 galvanic corrosion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .767 galvanic series in seawater . . . . . . . . . . . . . . . . . . . . . .762 and hot corrosion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .872 liquid, environment causing stress-corrosion cracking of nickel and nickel-base alloys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .848 polishing with embedding damage . . . . . . . 506, 507 qualitative chemical testing for materials identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .431 standard emf series value . . . . . . . . . . . . . . . . . . . . . . .763 sulfuric acid corrosion . . . . . . . . . . . . . . . . . . . . . . . . . .770 uniform corrosion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .768 x-ray elemental composition map made with electron microprobe . . . . . . . . . . . . . . . . . . . . . . .865 Lead alloys die casting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .125 for impressed-current anodes . . . . . . . . . . . . . . . . . . .756 Lead chloride/iron chloride, causing chloridation of carbon steel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .873 Lead ions in aqueous solutions, causing stresscorrosion cracking in high-nickel alloys . .831 Lead print technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . .337 Lead time to failure. See P-F interval. Lead-tin solders, as molten metal corrodent . . . . .873 Leaf spring, fatigue fracture . . . . . . . . . . . . . . . . . . . . . .430 Leakage failures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .337 Leak-before-break concept . . . . . . . . . . . . . . . . 161, 231 Leakers, as casting defect . . . . . . . . . . . . . . . . . . . . . . . . .106 Least-squares estimators . . . . . . . . . . . . . . . . . . . . . . . . .254 Leathery polymer, modulus vs. temperature . . . . .799 Ledges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .519 LEFM. See Linear elastic fracture mechanics. Leg, of weldment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162, 163 Length measured . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .543 yardstick . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 543, 547 Lepidocrosite, as corrosion products in pipeline excavations and laboratory soil box tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .887 Levels of indenture . . . . . . . . . . . . . . . . . . . . . . . . . . . .51, 52 Levels of resolution, engineering design process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41, 42 LFR. See Life fraction rule. Liberty warships. See World War II Liberty ships. Life definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227, 289 limiting factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232–234 requirements effects on detailed design . . . . . . . . . 33 Life assessment elevated temperature exposure . . . . . . .238, 239–240 elevated-temperature failure mechanisms . . . . 289– 310 fatigue/damage-tolerance . . . . . . . . . . . . . . . . . 237, 239 fitness for service . . . . . . . . . . . . . . . . . . . . . . . . . 240–241 historic structural failures’ impact on . . . . . . . . . .228 model validation . . . . . . . . . . . . . . . . . . . . . . . . . . 237, 238 probabilistic analyses . . . . . . . . . . . . . . . . . . . . . 241–242 strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . .269–270, 271 Life-cycle considerations . . . . . . . . . . . . . . . . . . . . . .31, 48 Life-cycle management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Life expectancy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .325 Life-fraction rule (LFR) . . . . . . . . 240, 289, 298–299 life assessment technique for elevated-temperature exposure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .240 of power plant piping and tubing . . . .304, 306–308 for reheater and superheater tubing . . . . . . . . . . . . .309 Lifting eye, failure analysis . . . . . . . . . . . . . . . . . . .36, 37 Light, as degradation source for polymers 653–654 Light-beam profile technique . . . . . . . . . . . . . . . . . . . .540 Lighting, in photography . . . . . . . . . . . . . . . . . . . . . . . .421 backlighting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .421 copystand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .421 direct, then oblique of wreckage or failure . . . . .395 fiber optic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353, 421 flash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .421 fracture surface . . . . . . . . . . . . . . . . . . . . . . .421–425, 426 macrophotography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .425 natural . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .421 Light microscope bright-filled illumination . . . . . . . . . . . . . . . . . . . . . . . .499

www.asminternational.org

Index / 1125 capabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .499 dark-field illumination . . . . . . . . . . . . . . . . . . . . . . . . . .499 depth-of-field limitation . . . . . . . . . . . . . . . . . . . . . . . . .499 for fine-structure examination and identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .499 as indispensable tool for failure analyst . . 498, 499 Light microscopy in failure analysis . . . . . . . . . . . . . . 336, 337, 338, 339 as fractography technique . . . . . . . . . . . . . . . . . . . . . . .662 of microstructures . . . . . . . . . . . . . . 509–512, 513, 514 nickel plating to enhance edge retention of fractures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 499, 500 in preliminary laboratory examination . . . . . . . . .406 purposes for use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .498 of taper sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .501 of wear damage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .412 Light optical microscope, for macroscopic examination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .353 Light profile microscopy . . . . . . . . . . . . . . . . . . . 539, 540 Lime formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .877 melting point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .877 Limit analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 474–475 and distortion failures . . . . . . . . . . . . . . . . . . .1047–1048 Limit state . . . . . . . . 252, 254–255, 256, 257, 262, 266 Limit state function . . . . . . . . . . . . . . . . . . . . . . . . 256–257 Limit theorems lower bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 474–475 upper bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 474–475 Lineal average dimple size . . . . . . . . . . . . . . . . . . . . . . .550 Lineal profile roughness parameter (RL) . . . . . . 541, 543, 544 Lineal vertical section profile roughness parameter . . . . . . . . . . . . . . . . . . . . . .544, 545–546 Linear congruential random number generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .260 Linear-damage law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .701 Linear elastic behavior . . . . . . . . . . . . . . . . . . . . . 655–656 Linear elastic fracture . . . . . . . . . . . . . . . . . . . . . . . . . . .243 Linear elastic fracture mechanics (LEFM). See also Stress-intensity factor. . . . 230, 246, 475– 478, 480, 686–687 brittle fracture criterion in tensile crack opening mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .656 conditions for analysis . . . . . . . . . . . . . . . . . . . . . . . . . .401 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1069 Linear elastic fracture toughness (Kmat), of the component . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .243 Linear elastic stress intensity factor (KI) . . . . . . 245, 246 Linear fracture path preference index Qi . . . . . .543 Linear polarization resistance, as electrochemical monitoring method used for microbiallyinduced corrosion . . . . . . . . . . . . . . . . . . . . . . . . . .892 Linear profile roughness parameter using length of non-overlapped portion of vertical section fracture profile . . . . . . . . . . . . . . . . . . .547 Linear rule of mixtures (LROM) . . . . . .1029, 1030, 1040 Linear sliding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1023 Linear superposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . .478 Linear wear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1021 of polymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1021 Line broadening, of x-ray diffraction . . . . . . . . . . . .495 Line-pipe steels, hydrogen embrittlement . . . . . . . .815 Liners, to resist corrosive wear . . . . . . . . . . . . . . . . . . .992 Line scans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .532 Linings elastomer in slurry piping . . . . . . . . . . . . . . . . . . . . . . .408 nonmetallic, for corrosion protection . . . . . 758–759 rubber in slurry piping . . . . . . . . . . . . . . . . . . . . . . . . . .408 Liquation cracks subsurface feature as cause for rejection . . . . . . .156 in weldments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170,184 Liquid corrosion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .803 Liquid-droplet erosion . . . . . . . . . . . .1013, 1014–1015 manifestations of . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1015 Liquid-droplet impingement characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .409 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .409 material changes for mitigation of . . . . . . . . . . . . . .409 procedure for mitigation of . . . . . . . . . . . . . . . . . . . . .409 Liquid-droplet impingement testing . . . . . . . . . . . . . . . . 1007, 1008–1009, 1010

© 2002 ASM International. All Rights Reserved. ASM Handbook Volume 11: Failure Analysis and Prevention (#06072G)

www.asminternational.org

1126 / Index

Liquid hand soap, stress-corrosion cracking . . . 858– 859 Liquid impact erosion . . . . . . . . .997–998, 1013–1017 damage mitigation and repair . . . . . . . . . . .1016–1017 fatigue as failure mode . . . . . . . . . . . . . . . . . . . . . . . . 1015 materials selection for resistance . . . . . . .1015–1016 Liquid impingement erosion . . . . . . . . . . . . . . . 997–998 cause . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .995 stainless steel steam turbine blade . . . . . . . . . . . . . .998 Liquid metal embrittlement. See Liquid metal induced embrittlement. Liquid-metal forging. See Squeeze casting. Liquid-metal-induced embrittlement (formerly liquid-metal embrittlement) (LMIE) . . . . 18, 366, 694, 697–698, 751, 873–874 of alloy steel and cadmium . . . . . . . . . .863, 864, 865 alloy steel and copper . . . . . . . . . . . . . . . . . . . . . 865, 866 alloy steel and lead . . . . . . . . . . . . . . . . . . . . . . . . 865–866 alloy steel and zinc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .866 aluminum-mercury . . . . . . . . . . . . . . . . . . . . . . . . 863–864 of carbon steel . . . . . . . . . . . . . . . . . . . . . . .500–501, 502 of carbon steel and cadmium . . . . . . . . . . . . . . . . . . .865 carbon steel and copper . . . . . . . . . . . . . . . . . . . 865, 866 carbon steel and lead . . . . . . . . . . . . . . . . . . . . . . 865–866 carbon steel and zinc . . . . . . . . . . . . . . . . . . . . . . . . . . . .866 causes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .690 copper alloy rupture discs . . . . . . . . . . .862, 864–865 copper-induced in carbon steel . . . . . . . . . . . 367, 369 copper-mercury . . . . . . . . . . . . . . . . . . . . . .862, 864–865 as damage mechanism on failure wheel . . . . . . . .349 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .861, 1069 effect in ferrous alloys . . . . . . . . . . . . . . . . . . . . . . . . . .690 effect on overload failures . . . . . . . . . . . . . . . . 697–698 failure analysis of . . . . . . . . . . . . . . . . . . . . . . . . . 862–863 forms of . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .861 influencing intergranular fracture . . . . . . . . . 642, 645 and intergranular fracture . . . . . . . . . . . . . . . . . 645, 646 of locomotive axle . . . . . . . . . . . . . . . . . . .366–367, 368 metals shown to cause . . . . . . . . . . . . . . . . . . . . . . . . . .862 service failures . . . . . . . . . . . . . . . . . . . . . . .862, 863–866 similarity to stress-corrosion cracking . . . . . . . . . .861 stainless steel and copper . . . . . . . . . . . . . . . . . . . . . . .866 stainless steel and zinc . . . . . . . . . . . . . . . . . . . . . . . . . .866 steels susceptible . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .690 subcritical crack growth rate . . . . . . . . . . . . . . . . . . . .861 titanium-cadmium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .866 trough . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .861 zinc-induced, in stainless steel . . . . . . . . . . . . 367, 369 Liquid-penetrant inspection contaminating surface . . . . . . . . . . . . . . . . . . . . . . . . . . .751 of corrosion surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . .752 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .270 description, advantages and limitations . . 395–396 to detect pores in castings . . . . . . . . . . . . . . . . . . . . . .104 for failure analysis and investigation . . . .336, 395– 396 of fatigued brittle fracture of forged rod . . . .85, 86 flaw size range with 90% probability of detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .272 limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .270 of liquid metal induced embrittlement . . . . . . . . . .866 in preliminary laboratory examination . . . . . . . . .406 residues from testing affecting accident investigation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .374 of secondary cracks in fractured surfaces . . . . . .398 of solid metal induced embrittlement . . . . . . . . . . .865 of stainless steel solenoid valve cracks . . . 235, 236 of steel repair welded pump impellers . . . . . . . . .153 for stress-corrosion cracking . . . . . . . . . . . . . . . . . . . .837 to study defects in malleable irons . . . . . . . . . . . . .140 to study surface condition of castings . . . . . . . . . .120 uses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .270 of welded inlet header . . . . . . . . . . . . . . . . . . . . . . . . . .166 of weldment microfissures . . . . . . . . . . . . . . . . . . . . . .180 of weldments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .159 weldment undercuts . . . . . . . . . . . . . . . . . . . . . . . . . . . . .186 Liquid shrinkage, definition . . . . . . . . . . . . . . . . . . . . 1069 Lithium as embrittling metal . . . . . . . . . . . . . . . . . . . . . . . . . . . . .862 as liquid embrittler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .646 liquid, environment causing stress-corrosion cracking of nickel and nickel-base alloys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .848

as molten metal corrodent . . . . . . . . . . . . . . . . . . . . . .873 Lithium hydroxides (LiOH) causing stress-corrosion cracking in carbon steels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .831 causing stress-corrosion cracking in Fe-Cr-Ni alloys (caustic cracking) . . . . . . . . . . . . . . . . . . .831 Litigation evidence destruction . . . . . . . . . . . . . . . . . . . . . . . . . . . .393 mishandling of failed material . . . . . . . . . . . . . . . . . .340 sectioning of fracture surface as evidence . . . . . .398 L-level electron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .530 LMIE. See Liquid metal induced embrittlement. LMP. See Larson-Miller parameter. Load and resistance factor design (LRFD) . . . . .250 Load cycles, increment of . . . . . . . . . . . . . . . . . . . . . . . . .585 Load distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . 467–468 Load factor exceedance diagram . . . . . . . . . . 280–281 Loading external and internal . . . . . . . . . . . . . . . . . . . . . . . . . . . .276 in-plane shear (mode II) . . . . . . . . . . . . . . . . . . . . . . . .574 mechanical, and overload failures . . . . . . . . . . . . . .686 modes of . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .278 opening mode (mode I) . . . . . . . . . . . . . . . . . . . . . . . . .574 operational variations . . . . . . . . . . . . . . . . . . . . . . . . . . .902 reversed or partially reversed bending . .576, 577– 578 rotating bending . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .577 strain path changes . . . . . . . . . . . . . . . . . . . . . . . . 620–621 torsional . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 713–715 types of . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Loading mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .276 Loading rate, effect on fracture . . . . . . . . . . . . . . . . . .568 Load path, change in truck kingpin assembly . . 45 Load variation method (LVM) . . . . . . . . . . . . . . . . . .361 Local effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 Localized chemistry variation, as root cause of forgings defects, rationale, resolution, and corrective action . . . . . . . . . . 327, 329, 330, 331 Localized corrosion from aging reactions . . . . . . . . . . . . . . . . . . . . . . . . . . . .874 and grinding, role in . . . . . . . . . . . . . . . . . . . . . . . . . . . .992 stainless steel sheet . . . . . . . . . . . . . . . . . .528, 530, 534 Localized overheating, of steel mold for centrifugal castings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .133 Local necking . . . . . . . . . . . . . . . 597, 599, 601–602, 621 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1069 Local strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .581 Local stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .581 Locomotive axle, liquid metal embrittlement . . 366– 367, 368 Locomotive drive axle, Babbitt metal lining of bronze cylinder of friction bearing, overheating . . . . . . . . . . . . . . . . . . . . . . . . . . 335–336 LOF. See Lack of fusion. Logic gates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56, 57 Logistics support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 Lognormal distribution . . . . . . . . . . . . . . .252, 253, 265 Lognormal format . . . . . . . . . . . . . . . . . . . . . . . . . . 256, 257 Longitudinal cracks, in weldments . . . . . . . . . . . . . .158 Longitudinal direction. See also Normal direction; Transverse direction. definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1069 Long-life regime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .702 Long-term overheating (creep rupture), as damage mechanism for boiler tubing . . . . . . . . . . . . . .347 Loose metal, of sheet metal . . . . . . . . . . . . . . . . . . . . . . .101 LOP. See Lack of penetration. Loran signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .335 Loran tower . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339–340 pin in guy wire, fatigue failure . . . . . . . . . . . 334–335 Loss modulus . . . . . . . . . . . . . . . . . . . . . . . . . .443, 444, 445 Lost foam casting, characteristics of process . . . .124 Lost wax slurry casting, in shape-castings processes classification scheme . . . . . . . . . . . . . . . . . . . . . .124 Low-activity aluminide coatings . . . . . . . . . . . . . . . . .876 Low-alloy quenched-and-tempered steel abrasive wear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 915, 916 gouging abrasion resistance . . . . . . . . . . . . . . . . . . . . .908 Low-alloy steels aluminum nitride embrittlement in castings . . . .145 casting defects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140–146 casting failures due to composition . . . . . . . 144–145 cavitation erosion in seawater . . . . . . . . . . . . . . . . . .793

connector casting, shrinkage porosity effect . . 113, 114 creep onset temperature . . . . . . . . . . . . . . . . . . . . . . . . .729 ductile crack nucleation . . . . . . . . . . . . . . . . . . . . . . . . .591 fatigue failure, shear lips and chevron marks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 630, 633 fractal dimension of . . . . . . . . . . . . . . . . . . . . . . . . . . . . .547 fracture profile generation . . . . . . . . . . . . . . . . 539, 540 galvanic series in seawater . . . . . . . . . . . . . . . . . . . . . .762 strength-hardness correlation . . . . . . . . . . . . . 980, 981 stress-corrosion cracking . . . . . . . . . . . . . . . . . . 838–843 workability behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 Low-angle boundary. See Grain boundary. Low-angle light scattering, property derived from polymer analysis . . . . . . . . . . . . . . . . . . . . . . . . . . .359 Low-carbon steel carbide changes with elevated temperature . . 291– 292, 293 carbon potential vs. dewpoint . . . . . . . . . . . . . . . . . .216 ductile fracture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .353 galvanic series in seawater . . . . . . . . . . . . . . . . . . . . . .762 hydrogen-induced cracking in pipeline . . . . . . . . .366 nickel-plate fractures, light micrograph . . 499, 500 quasi-cleavage fracture . . . . . . . . . . . . . .607–608, 611 quenched-and-tempered, cleavage fracture microstructure . . . . . . . . . . . . . . . . . . . . . . . . 498, 499 rolling and fractures resulting . . . . . . . . . . . . 615, 617 unstable rapid fracture . . . . . . . . . . . . . . . . . . . . . . . . . .679 weldment fatigue fracture in plate . . .171–172, 173 Low-cycle fatigue (LCF) . . . . . . . . . . . . . .491–492, 709 as damage mechanism on failure wheel . . . . . . . .349 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1069 as elevated-temperature failure in gas turbines . . . . . . . . . . . . . . . . . . . . . . . . .289, 291, 296 fatigue fracture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .577 fatigue life . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .718 of gas turbine blades . . . . . . . . . . . . . . . . . . . . . . . . . . . .346 intergranular fracture as mechanism . . . . . . . . . . . .644 loading types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 material properties related to . . . . . . . . . . . . . . . . . . . . 36 material selection criteria . . . . . . . . . . . . . . . . . . . . . . . . 35 nickel-base superalloy service-run gas turbine blades . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .344 operating temperatures . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 stress-types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 and thermal fatigue . . . . . . . . . . . . . . . . . . . . . . . . . . . . .736 Low-density polyethylene (LDPE), isothermal transfer wear behavior . . . . . . . . . . . . . . . . . . . 1024 Low-electron-emission . . . . . . . . . . . . . . . . . . . . . . . . . . .518 Low-hardenability steels, quenching medium . . .207 Low-magnification optical microscopy, as fractography technique . . . . . . . . . . . . . . . . . . . .662 Low-melting-point phases . . . . . . . . . . . . . . . . . . . . . . . . . 99 Low-nutrient bacteria . . . . . . . . . . . . . . . . . . . . . . 753, 754 Low-power optical microscopy, to examine wear scars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .902 Low pressure casting, in shape-casting processes classification scheme . . . . . . . . . . . . . . . . . . . . . .124 Low-pressure die casting, in shape-casting processes classification scheme . . . . . . . . . . .124 Low-pressure microscope . . . . . . . . . . . . . . . . . . . . . . . .524 Low-strength steels, causes of stress-corrosion cracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .831 Low-stress abrasion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .908 Low temperature (dew point) fireside corrosion, as damage mechanism for boiler tubing . . . . .347 LRFD. See Load and resistance factor design. LROM. See Linear rule of mixtures. Lubricants. See also Lubrication. . . . . . . . . . . 410–411 additives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .411 and adhesive wear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .909 analysis in wear failures . . . . . . . . . . . . . . . . . . . . . . . .412 binders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 410–411 biodegradation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .881 contamination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .411 with corrosion inhibitors . . . . . . . . . . . . . . . . . . . . . . . .410 effect on polymer wear failures . . . . . . . .1024–1025 effect on reinforced polymers . . 1028, 1031, 1036, 1038 extreme-pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .411 failures due to . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 410–411 filtration or absorption devices . . . . . . . . . . . . . . . . .411 functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .410

© 2002 ASM International. All Rights Reserved. ASM Handbook Volume 11: Failure Analysis and Prevention (#06072G)

greases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 410, 411 of high-strength screws, ductile overload failure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 673–674 incompatibility for polycarbonate/PET appliance housings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 450–451 micropitting role . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .724 oils . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 410–411 oxidation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .410 for polymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1035 to prevent fretting damage . . . . . . . . . . . . . . . . . . . . . .934 prevention of failures . . . . . . . . . . . . . . . . . . . . . . . . . . .411 as protection against and encouragement for microbial growth . . . . . . . . . . . . . . . . . . . . . . . . . . .885 as protection from corrosion . . . . . . . . . . . . . . . . . . . .405 for rolling-element bearings . . . . . . . . . . . . . . 945, 946 saponification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .411 solid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .410 stress-corrosion cracking . . . . . . . . . . . . . . . . . . . . . . . .834 transition temperatures . . . . . . . . . . . . . . . . . . . . . . . . . .411 viscosity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .411 Lubricating efficiency factors . . . . . . . . . . . . . . . . . 1038 Lubrication. See also Lubricants. and adhesive wear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .408 boundary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .410 to combat abrasive wear . . . . . . . . . . . . . . . . . . . . . . . .407 dry film (solid-film) . . . . . . . . . . . . . . . . . . . . . . . . . . . . .410 effect on impact wear . . . . . . . . . . . . . . . . . . . . . 967–968 elastohydrodynamic . . . . . . . . . . . . . . . . . . . . . . . . . . . . .410 hydrodynamic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .410 hydrostatic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .410 modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .410 operational variations . . . . . . . . . . . . . . . . . . . . . . . . . . .902 thin-film . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .410 Lubrication breakdown, as damage mechanism on failure wheel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .349 Lubricity, as criteria for materials selection . . . . . . . 32 Lu¨ders lines (bands) . . . . . . . . . . . . . 101, 620, 622, 690 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1069 Lug forged, stress-corrosion cracking failure . . . . . . .828 stress-corrosion cracking . . . . . . . . . . . . . . . . . . . . . . . .852 Lundberg-Palmgren, theory . . . . . . . . . . . . . . . . 944, 945 Lustrous carbon films, as casting defect . . . . . . . . .112 LVM. See Load variation method.

M Machine rod, fatigue fracture . . . . . . . . . . . . . . 631, 633 Machining causing distortion . . . . . . . . . . . . . . . . . . . . . . . . . 205, 209 of ceramics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .370 compatibility with various materials . . . . . . . . . . . . . 33 defects resulting from . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 distortion due to residual stresses . . . . . . . . . . . . . 1053 distortion from stress raisers . . . . . . . . .204–205, 206 and fatigue strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . .720 and fracture origins of ceramics . . . . . . . . . . 668–669 as root cause of forgings defects, rationale, resolution, and corrective action . . . 327, 329, 330, 331 Machining coolant, as root cause of forgings defects, rationale, resolution, and corrective action . . . . . . . . . . . . . . . . . . . . . . 327, 329, 330, 331 Machining feeds, as root cause of forgings defects, rationale, resolution, and corrective action . . . . . . . . . . . . . . . . . . . . . . 327, 329, 330, 331 Machining from stock, compatibility with various materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Machining marks (normal to axis of component), macroscale fractographic implication . . . . .560 Machining oils, stress-corrosion cracking . . . . . . . .834 Machining speeds, as root cause of forgings defects, rationale, resolution, and corrective action . . . . . . . . . . . . . . . . . . . . . . 327, 329, 330, 331 Machining tear, as root cause of forgings defects, rationale, resolution, and corrective action . . . . . . . . . . . . . . . . . . . . . . 327, 329, 330, 331 Mackinawite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .884 as corrosion products in pipeline excavations and laboratory soil box tests . . . . . . . . . . . . . . . . . . .887

McQuad-Ehn test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .364 Macroetching . . . . . . . . . . . . . . . . . . . . . . . . . .511–512, 513 in failure analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .337 of forgings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 to identify unsoundness in ingot . . . . . . . . . . . . . . . . . 83 to reveal chemical segregation . . . . . . . . . . . . . . . . . . . 84 to reveal dendritic structure of ingot or casting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .118 Macrofissures, in weldments . . . . . . . . . . . . . . . . . . . . .180 Macrofractography. See Fractography. Macroinclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .117 Macrophotography . . . . . . . . . . . . . . . . . . . . . . . . . 419, 425 Macropitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 723–724 contact fatigue terminology . . . . . . . . . . . . . . . . . . . . .722 fatigue life . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .723 geometric stress concentration . . . . . . . . . . . . 723–724 point surface origin . . . . . . . . . . . . . . . . . . . . . . . 723, 724 subsurface-origin . . . . . . . . . . . . . . . . . . . . . . . . . . 723, 726 surface-origin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 723–724 Macroporosity . . . . . . . . . . . . . . . . . . . . . . . . .104, 112, 113 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .104 Macroscopic, definition . . . . . . . . . . . . . . . . . . . . . . . . . 1069 Macroscopic examination . . . . . . . . . . . . .334, 335, 336 of fracture surfaces . . . . . . . . . . . . . . . . . . . . . . . . 398–399 Macroscopic plastic flow and instability . . 617–621 Macrosegregation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .118 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .118 in ingots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 Macroshrinkage as casting defect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .106 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1069 Macrostructure, definition . . . . . . . . . . . . . . . . . . . . . 1069 Maghemite, as corrosion products in pipeline excavations and laboratory soil box tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .887 Magnaflux inspection, prior to heat treatment . . .204 Magnesia . . . . . . . . . . . . . . . . . . . . . . . . . 800, 801, 803–804 formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .877 melting point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .877 Magnesia-dolomite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .801 Magnesium cavitation erosion, incubation time . . . . . . . . . . . 1004 cleavage plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .574 compatibility with various manufacturing processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 content effect on galvanic corrosion of alloys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .766 content effect on intergranular fracture of aluminum alloys . . . . . . . . . . . . . . . . . . . . . . . . . . .646 content effect on intergranular stress-corrosion cracking of aluminum alloys . . . . . . . . . . . . . .648 fracture mechanism map . . . . . . . . . . . . . . . . . . . . . . . .570 galvanic series in seawater . . . . . . . . . . . . . . . . . . . . . .762 liquid embrittlers of . . . . . . . . . . . . . . . . . . . . . . . . . . . . .646 maximum erosion rate dependence in cavitation erosion on combined parameter . . . . . . . . . 1016 standard emf series value . . . . . . . . . . . . . . . . . . . . . . .763 Magnesium alloys centrifugal casting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .132 compatibility with various manufacturing processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 containing zinc, workability behavior . . . . . . . . . . . 98 die casting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .125 environment systems exhibiting stress-corrosion cracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .832 intergranular corrosion . . . . . . . . . . . . . . . . . . . . . . . . . .784 permanent-mold casting material . . . . . . . . . . . . . . .124 pitting corrosion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .775 as sacrificial anodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . .756 squeeze casting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .129 stress-corrosion cracking . . . . . . . . . . . . . . . . . . 856–857 uniform corrosion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .767 warm forming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .101 workability behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 Magnesium alloys, specific types AM60 ultimate tensile strength vs. gas porosity voids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 549, 550 AM60A composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .125 AS41A composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .125 AZ alloys

www.asminternational.org

Index / 1127 stress-corrosion cracking . . . . . . . . . . . . . . . . . . . . .856 AZ31B galvanic corrosion . . . . . . . . . . . . . . . . . . . . . . . . . . . .766 AZ80-F stress-corrosion cracking . . . . . . . . . . . . . . . . . . . . .856 AZ91B composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .125 AZ91C-T6 stress-corrosion cracking . . . . . . . . . . . . . . . . . . . . .856 QE 22A-T6 overload failure with rapid unstable cracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .680 ZE10 stress-corrosion cracking . . . . . . . . . . . . . . . . . . . . .856 ZK60 stress-corrosion cracking . . . . . . . . . . . . . . . . . . . . .856 Magnesium chloride, stress-corrosion cracking . . . . . . . . . . . . . . . . . . 824, 825, 836, 837, 847, 848–849, 857 Magnesium fluoride, fracture of disks due to biaxial flexure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 662, 663 Magnesium hydride, formation in aluminum alloys and intergranular stress-corrosion cracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .648 Magnesium oxide bond energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .650 fracture mechanism map . . . . . . . . . . . . . . . . . . . . . . . .570 Magnesium-silicate inclusions, in tire-mold castings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117, 118 Magnetic characteristics, as criteria for materials selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Magnetic particle inspection of alloy steel ski chair lift grip components . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10, 11 of casting defect fracture due to cold shut . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120, 121 of cast steel crosshead of industrial compressor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .153 of corrosion surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . .752 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .270 description, advantages and limitations . . . . . . . .395 of double-face hammers . . . . . . . . . . . . . . . . . . . . . . . .986 effect on fatigue strength . . . . . . . . . . . .720–721, 722 to evaluate tension springs . . . . . . . . . . . . . . . . . . . . . .689 in failure analysis . . . . . . . . . . . . . . . . . . . . . . . . . 336, 395 flaw size range with 90% probability of detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .272 of forgings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .270 in preliminary laboratory examination . . . . . . . . .406 residues from testing affecting accident investigation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .374 of steam turbine rotor disc with stress-corrosion cracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .842 for stress-corrosion cracking . . . . . . . . . . . . . . . . . . . .837 to study defects in malleable irons . . . . . . . . . . . . .140 to study gray iron crankcases . . . . . . . . . . . . . . . . . . .136 to study surface condition of castings . . . . . . . . . .120 uses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .270 of welded tubular posts in carrier vehicle . . . . . .174 weldment inclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . .176 of weldment incomplete penetration . . . . . . . . . . .177 of weldment microfissures . . . . . . . . . . . . . . . . . . . . . .180 of weldments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .159 weldments in headers . . . . . . . . . . . . . . . . . . . . . 165, 166 weldment undercuts . . . . . . . . . . . . . . . . . . . . . . . . . . . . .186 Magnetite, as corrosion products in pipeline excavations and laboratory soil box tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .887 Magnetomechanical damping . . . . . . . . . . . . . . . . . 1015 Magnetron sputtering, coating material, thickness, roughness, and hardness . . . . . . . . . . . . . . . . . . .946 contact stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .946 rolling contact fatigue life . . . . . . . . . . . . . . . . . . . . . .946 rolling contact fatigue tester . . . . . . . . . . . . . . . . . . . .946 substrate material and hardness . . . . . . . . . . . . . . . . .946 Magnification, definition . . . . . . . . . . . . . . . . . . . . . . . . 1069 Maintainability engineering . . . . . . . . . . . . . . . . . . . . . . 52 Maintenance defects due to improper . . . . . . . . . . . . . . . . . . . . . . 72–73 improper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .325 improper, as life-limiting factor . . . . . . . . . . . . . . . .234 Maintenance and repair, provision of . . . . . . . . . . . . 21

© 2002 ASM International. All Rights Reserved. ASM Handbook Volume 11: Failure Analysis and Prevention (#06072G)

www.asminternational.org

1128 / Index

Maintenance cleaning damage as boiler tube damage mechanism on failure wheel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .350 as damage mechanism for boiler tubing . . . . . . . .347 Maintenance plans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Maleic anhydride, causing intergranular corrosion in sensitized austenitic stainless steels . . . . . . .779 Malleability. See also Ductility. definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1069 Malleable iron applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .138 casting defects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140–141 fatigue failures of rocker lever of diesel engines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140, 141 graphite content effect . . . . . . . . . . . . . . . . . . . . . . . . . .138 impingement corrosion . . . . . . . . . . . . . . . . . . . . . . . . .792 Malleableizing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .139 Management systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3–4 Manganese addition to nickel alloys and sulfidation resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .870 alloying element effect on ductile-brittle transition temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .684 content effect on alloy steel temper embrittlement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .195 content effect on internal oxidation . . . . . . . . . . . .214 content effect on quench cracking . . . . . . . . . . . . . .199 content effect on retained austenite formation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .207 content effect on sigma-phase embrittlement . .693 in deposits from microbially-induced corrosion sites in stainless steel cooling water systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .889 effect on hydrogen embrittlement resistance in high-strength steels . . . . . . . . . . . . . . . . . . . . . . . .646 effect on molybdenum microsegregation . . . . . . .219 as embrittling agent . . . . . . . . . . . . . . . . . . . . . . . 691, 692 as embrittling impurity in low-alloy steel castings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .144 forming dispersoids to slow down crack growth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .646 microbially produced . . . . . . . . . . . . . . . . . . . . . . . . . . .883 microsegregation affected by sulfur . . . . . . . . . . . .219 microsegregation susceptibility . . . . . . . . . . . . . . . . .219 oxidation potential in endothermic gas . . . . . . . . .214 Manganese bronze cast, cavitation erosion in seawater . . . . . . . . . . . . .793 decohesive rupture of worm gear . . . . . . . . . . . . . . .676 galvanic series in seawater . . . . . . . . . . . . . . . . . . . . . .762 Manganese-molybdenum steels, three-dimensional fracture surface reconstruction . . . . . . . . . . . .553 Manganese oxidizers, mechanism and indicators for microbially-induced corrosion scenario . . .889 Manganese-oxidizing bacteria . . . . . . . . . . . . . . . . . . .884 Manganese phosphate coatings, for corrosion resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .759 Manganese selenide (MnSe) inclusions, causing stress-corrosion cracking in high-strength steels (initiation sites for cracking) . . . . . . . .831 Manganese steels erosion rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1005 fretting wear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .931 gouging abrasion resistance . . . . . . . . . . . . . . . 907–908 Manganese sulfide inclusions . . . . . . . . .117, 353, 363 causing brittle overload fracture in cast steel brackets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 683–684 causing stress-corrosion cracking in high-strength steels (initiation sites for cracking) . . . . . . . .831 and debonding . . . . . . . . . . . . . . . . . . . . . . . . . . . . 591, 592 formation in steel ingot . . . . . . . . . . . . . . . . . . . . . .88, 89 formation with microsegregation . . . . . . . . . . . . . . .219 fracture initiation at . . . . . . . . . . . . . . . . . . . . . . . . . . . . .593 as grain-boundary precipitate in overheated steels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .646 by hydrogen-induced cracks . . . . . . . . . . . . . . . . . . . .815 and intergranular corrosion . . . . . . . . . . . . . . . . . . . . .782 precipitation detection by metallography . . . . . . .401 in steel lifting eye . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 in tapered-ring sprocket locking device . . . . . . 9, 10 transverse splitting in fracture surface . . . . 612, 617 void sheet fracture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .624 Manufacture, definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Manufacturing

as cause of imperfections . . . . . .613–616, 617, 618, 619 effect on fatigue strength . . . . . . . . . . . . . . . . . 720–721 Manufacturing flaw (or defect) . . . . . . . . . . . . . 72, 561 vs. manufacturing imperfection . . . . . . . . . . . 614, 617 as root cause resulting in failures . . . . . . . . . . . . . . . . 18 Manufacturing imperfection . . . . . . . . . . . . . . . . . . . . .561 vs. manufacturing flaw . . . . . . . . . . . . . . . . . . . . 614, 617 Maraging steel ductile fracture . . . . . . . . . . . . . . . . . . . . . . .598–599, 602 fatigue fracture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 523, 524 stress-corrosion cracking . . . . . . . . . . . . . . . . . . 824, 843 stress-corrosion cracking of stud . . . . . . . . . 631, 633 thermal embrittlement by titanium carbonitrides and intergranular fracture . . . . . . . . . . . . . . . . . .646 Marcasite, as corrosion products in pipeline excavations and laboratory soil box tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .887 Marine environment, thermal barrier coatings and hot corrosion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .877 Marine paints, antifoulants, past and present . . . .894 Marketing defect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 Marquenching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212, 214 modified . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212, 214 Marring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .901 Martempering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212, 214 to minimize cracking . . . . . . . . . . . . . . . . . . . . . . . . . . . .199 to minimize distortion . . . . . . . . . . . . . . . . . . . . . . . . 1053 Martensite. See also Tempered martensite. . . . . . .928 atomic volume of ferrous alloys . . . . . . . . . . . . . . . .194 carbon content vs. lattice parameters . . . . . 193, 194 crystal structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .193 in nickel-chromium steel . . . . . . . . . . . . . . . . . . 211, 213 as transformational product in steel . . . . . 192, 193, 194, 195, 196 volume changes of carbon steels due to phase transformation . . . . . . . . . . . . . . . . . . . . . . . 194, 195 Martensite finish (Mf) temperature . . . . . . . . . . . . .194 Martensite start (Ms) temperature . . . . . . . . 192, 193 and cracking tendency . . . . . . . . . . . . . . . . . . . . . . . . . .208 hydrostatic pressure effect . . . . . . . . . . . . . . . . 194, 196 Martensitic steels, abrasive wear mode identification . . . . . . . . . . . . . . . . . . . . . . . . . 919–920 Massive carbides . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216, 217 Massive voids, in weldments . . . . . . . . . . . . . . . 189, 190 Mass loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .771 with intergranular corrosion . . . . . . . . . . . . . . 778–779 Mass spectrometer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .404 Mass spectroscopy (MS) properties measured . . . . . . . . . . . . . . . . . . . . . . . . . . . . .446 property derived from polymer analysis . . . . . . . .359 use in failure analysis . . . . . . . . . . . . . . . . . . . . . . . . . . .446 Mass-to-change ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . .533 Material coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .279 Material crack tip opening displacement toughness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .245 Material defect, as root cause resulting in failures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Material flaws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346–347 Material imperfections, as damage mechanism for boiler tubing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .347 Material property charts . . . . . . . . . . . . . . . . . . . . . . . . . 29 Materials causing overload failures . . . . . . . . . . . . . . . . . 677–678 operational variations . . . . . . . . . . . . . . . . . . . . . . . . . . .902 Materials engineer, expertise of . . . . . . . . . . . . . . . . . .315 Materials failure analysis . . . . . . . . . . . . . . . . . . . . . . . .380 Materials-first approach . . . . . . . . . . . . . . . . . . . . . .27, 29 Materials/metallurgical failure analysis . . . . . . . .386 Materials Properties Council, Program PSF (computer program) . . . . . . . . . . . . . . . . . . . . . .266 Materials safety data sheet (MSDS) . . . . . . . . . . . . . 16 Materials selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24–39 during concept design . . . . . . . . . . . . . . . . . . . . . . . . 29–31 as corrosion prevention method in industrial facilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .893 criteria related to failure mechanisms, loading, stress, and operating temperatures . . . . . . . . . 35 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 in design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 and failure analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 35–36 for failure prevention . . . . . . . . . . . . . . . . . . . . . . . . 34–35 four-level approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

improper, examples of . . . . . . . . . . . . . . . . . . . . . . . 36–38 material properties considered . . . . . . . . . . . . . . . . . . . 32 Material stressors chemical stressors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 electrical stressors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 electrochemical stressors . . . . . . . . . . . . . . . . . . . . . . . . . 17 mechanical stressors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 radiation stressors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 thermal stressors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Material wear factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . .971 MATHCAD (computer software program) . . . 267, 482 MATHEMATICA (computer software program) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .267 MATLAB (computer software program) . . . . . . .267 Matrix, definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1069 Matrix of direction cosines . . . . . . . . . . . . . . . . . . . . . .483 Maximum allowable design stress . . . . . . . . . . . . . . .656 Maximum bending moment . . . . . . . . . . . . . . . . . . . . .474 Maximum distortion theory . . . . . . . . . . . . . . . . . . . . .473 Maximum likelihood analysis . . . . . . . . . . . . . 253, 271 Maximum normal stress criterion . . . . . . . . . . . . . .461 Maximum normal stresses . . . . . . . . . . . . . . . . . . . . . . .464 Maximum profile depths . . . . . . . . . . . . . . . . . . . . . . . . .530 Maximum shear stress . . . . . . . . . . 464, 465, 466, 482 of beam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .470 normals to planes of . . . . . . . . . . . . . . . . . . . . . . . . . . . .482 Maximum shear stress theory . . . . . . . . . . . . . . . . . . .473 Maximum strength. See Ultimate strength. Maximum stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .230 Maximum stress-intensity factor . . . . . . . . . . . . . . . .279 Maximum stress-intensity factor of overload . .283 Maximum stress intensity for the current cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .283 Maximum subsurface shear stress . . . . . . . . . . . . . .467 McClintock’s void nucleation model . . . . . . . . . . . .623 MEA/DEA. See Monoethanolamine and diethanolamine solutions. MEADEP (computer software program) . . . . . . .267 Mean . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .252, 256, 260 Mean free path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .403 Mean stress . . . . . . . . . . . . . . . . . . . . . . . . . . . .280–281, 700 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .277 Mean value first-order second-moment analysis (MVFOSM) . . . . . . . . . . . . . . 250, 255, 256, 257 Mean value solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .258 Measurable impact wear models . . . . . . . . . . . . . . . .971 Measurable wear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .971 Mechanical (cold) cracks as casting defects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .120 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .104, 1069 Mechanical defects . . . . . . . . . . . . . . . . . . . . . . . . . 228, 232 Mechanical engineering . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Mechanical Engineering Design . . . . . . . . . . . . . . . . .251 Mechanical fatigue, resulting in fatigue damage mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .344 Mechanical fatigue cycles, as life-limiting factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .234 Mechanical hinges, brittle fracture of nylon . . . 457– 459 Mechanical properties definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1069 determination in failure analysis . . . . .334, 337–338 inverse relationships with physical properties . . . 32 Mechanical spectroscopy, property derived from polymer analysis . . . . . . . . . . . . . . . . . . . . . . . . . . .359 Mechanical testing of casting defect fracture due to cold shut . . . . .121 of overload failures . . . . . . . . . . . . . . . . . . . . . . . . . . . . .687 of polymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 445–446 properties measured . . . . . . . . . . . . . . . . . . . . . . . . . . . . .446 use in failure analysis . . . . . . . . . . . . . . . . . . . . . . . . . . .446 Mechanical twinning. See Deformation twinning. Mechanical twins (deformation twins) with brittle fracture . . . . . . . . . . . . . . . . . . . . . . . . . . . . .400 in commercial-purity titanium . . . . . . . . . . . . . . . . . .505 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1069 in metals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .572 Mechanical wear, of slurry-handling equipment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .992 Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .343 Mechatronic misting device, and Legionnaire’s Disease . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

© 2002 ASM International. All Rights Reserved. ASM Handbook Volume 11: Failure Analysis and Prevention (#06072G)

Medart roll, wear failure of steel . . . . . . . . . . . 512, 513 Median crack, definition . . . . . . . . . . . . . . . . . . . . . . . . 1069 Medical devices, mixed-mode cracking of tool steel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 677, 678 Medium-carbon steels annealed, fatigue striations not resolved . . . . . . . .636 brittle fracture of forged rod . . . . . . . . . . . . . . . . . 85–86 environments subjecting alloy to selective leaching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .785 fatigue failure of crank pin . . . . . . . . . . . . . . . 628, 632 fatigue fracture . . . . . . . . . . . . . . . . . . . . . . .119, 631, 633 fold in forging causing cracking . . . . . . . . . . 614, 617 quenched-and-tempered, fatigue fracture showing striations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .636 quenching, and distortion . . . . . . . . . . . . . . . . . 196, 201 tempering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195, 199 X-pattern, crack propagation and resolved tensile stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 630, 633 Medium-strength steels, causes of stress-corrosion cracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .831 Medium-strength steels (accelerated hydrogeninduced cracking), causes of stress-corrosion cracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .831 Melt flow index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .445 Melt flow rate (MFR) . . . . . . . . . . . . . . . . .445, 449, 452 of high-density polyethylene chemical storage vessel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .454 of polyacetal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .455 of polycarbonate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .457 of polyethylene terephthalate . . . . . . . . . . . . . . . . . . .452 properties measured . . . . . . . . . . . . . . . . . . . . . . . . . . . . .446 use in failure analysis . . . . . . . . . . . . . . . . . . . . . . . . . . .446 Melt forging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .124 Melting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .347 from impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 982, 984 as damage mechanism on failure wheel . . . . . . . .349 during heat treatment, as casting defect . . . . . . . .110 Melting point as criteria for materials selection . . . . . . . . . . . . . . . . 32 of semicrystalline polymer . . . . . . . . . . . . . . . . 440–441 Melt-through, in weldments . . . . . . . . . . . . . . . . 169–174 MEMS. See Microelectro-mechanical systems. Mercurials, removed as antifoulant in marine paints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .894 Mercurous nitrate test . . . . . . . . . . . . . . . . . . . . . . . . . . .854 Mercury bond energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .650 causing liquid metal induced embrittlement . . . . . . . . . . . . . . . . . . .863–864, 865 as embrittling metal . . . . . . . . . . . . . . . . . . . . . . . . . . . . .862 induced failures of aluminum alloys . . . . . . . . . . .862 as liquid embrittler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .646 liquid, environment causing stress-corrosion cracking of nickel and nickel-base alloys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .848 standard emf series value . . . . . . . . . . . . . . . . . . . . . . .763 Metabolic activity, method used for inspection, growth and activity assays . . . . . . . . . . . . . . . .893 Metabolites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .884 Metal deposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 749, 750 Metal depositors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .887 Metal dusting, as mechanism for high-temperature corrosion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 868–869 Metal flow rate, as root cause of forgings defects, rationale, resolution, and corrective action . . . . . . . . . . . . . . . . . . . . . . 327, 329, 330, 331 Metal impingement, of permanent-mold castings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .125 Metal-induced embrittlement, definition . . . . . . . .861 Metal ion deposition, and galvanic corrosion . . . .766 Metal-ion reduction . . . . . . . . . . . . . . . . . . . . . . . . 749, 750 Metallic bond, bond energy in various materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .650 Metallic coatings, for corrosion resistance . . . . . . 759, 764 Metallic inclusions as casting defect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .111 in weldments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172–174 Metallic materials bonding and crystallinity . . . . . . . . . . . . . . . . . . . . . . . .568 deformation and fracture . . . . . . . . . . . . . . . . . . 569–572 Metallic projections, as casting defects in International Committee of Foundry

Technical Associations classification scheme . . . . . . . . . . . . . . . . . . . . 104, 105, 119–120 Metallographic examination (metallography) of alloy steel ski chair lift grip components . . . . . 11 of casting defect fracture due to cold shut . . . . .121 of casting defects in ductile iron . . . . . . . . . . . . . . . .142 central force mode for automatic grinder/ polisher . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .504 of corrosion surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . .752 edge preservation . . . . . . . . . . . . . . . . . . . . . . . . . 503–505 equipment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 498–499 etching . . . .500, 501, 503, 504, 505, 506, 507, 509, 510, 511, 512, 513, 514 to examine cracks in service-run gas turbine blades . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .344 in failure analysis . . . . . . . . . 334, 336, 338, 401–402 of failure modes, instantaneous and progressive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .345 fatigue brittle fracture of forged rod . . . . . . . . . 85–86 of fatigue fracture of stainless steel liner for expansion joint . . . . . . . . . . . . . . . . . . . . . . . . . . . . .165 field metallography . . . . . . . . . . . . . . . . . . . . . . . 513–514 fracture mode identification . . . . . . . . . . . . . . . . . . . . .672 of gas turbine blades with low-cycle fatigue . . .346 of gray iron crankcases . . . . . . . . . . . . . . . . . . . . . . . . .135 of gray iron cylinder block casting . . . . . . . 134, 136 grinding . . . . . . . . . . . . . . . . . . . . . . . . 503, 504, 505–506 of hot tears in aluminum alloy castings . . . . . . . .150 knowledge required for failure analysts . . . . . . . .322 of liquid metal induced embrittlement . . . . . . . . . .866 for macroscopic examination . . . . . . . . . . . . . . . . . . .353 of metal-induced embrittlement . . . . . . . . . . 863, 864 mounting . . . . . . . . . . . . . . . . . . . . . . . 502–503, 504, 505 of nodular iron crankshaft main-bearing journal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139, 140 polishing . . . . . . . . . . . . . . . . . . 503, 504, 505, 506–508 preparation and examination of specimens in failure analysis . . . . . . . . . . . . 361–362, 501–508 sectioning . . . . . . . . . . . . . . . . . . . . . . . . . . . .501–502, 503 sectioning of turbine blades . . . . . . . . . . . . . . 297–298 of solid metal induced embrittlement . . . . . . . . . . .865 of spalling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 982–985 specimen orientation . . . . . . . . . . . . . . . . . . . . . . . . . . . .402 of stress-corrosion cracking damage . . . . . . . . . . .838 techniques in failure analysis . . . . . . . . . . . . . 498–514 of wear failures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .413 of weldments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159–160 Metal loss, rate of . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .882 Metallostatic head . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .119 Metal-matrix composites alumina fiber-reinforced with Al-Li alloy matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .548 with alumina fibers in aluminum-alloy matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 540, 542 fracture profile generation, alumina fibers in aluminum alloy . . . . . . . . . . . . . . . . . . . . . . 539, 540 linear profile roughness parameters . . . . . . . . . . . . .542 profile orientation distribution functions . . . . . . .542 profile structure factors for fracture profiles of vertical sections . . . . . . . . . . . . . . . . . . . . . . . . . . . .542 Metal mold reaction, as casting defect . . . . . . . . . .108 Metal-oxide attack, of low-alloy steel castings . .146 Metal penetration . . . . . . . . . . . . . . . . . . . . . . . . . . 119–120 as casting defect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .109 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .104 Metal removal processes, manufacturing/installation anomalies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Metals chemistry service provider, communication, clues for . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .429 Metal spinning, compatibility with various materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Metalworking improvements to mechanical properties . . . . . . . . . 81 manufacturing/installation anomalies . . . . . . . . 11–12 and stress-corrosion cracking . . . . . . . . . . . . . 828, 829 Methanol, stress-corrosion cracking . . . . . . . 834, 857, 858–859 Method of moments . . . . . . . . . . . . . . . . . . . . . . . . 253, 254 Methyl alcohol, causing stress-corrosion cracking in titanium alloys at various temperatures . . .857 Methylene chloride, stress-corrosion cracking . . .845 Methyl methacrylate, for mounting . . .502, 503, 504 MFR. See Melt flow rate.

www.asminternational.org

Index / 1129 MIC. See Microbially induced or influenced corrosion. Microbially induced or influenced corrosion (MIC) . . . . . 18, 751, 753, 754, 768, 769, 787, 791, 881–894 admiralty brass condenser tubing . . . . . . . . . . . . . . .890 aluminum alloy aircraft fuel tanks . . . . . . . . . . . . . .891 of aluminum and its alloys . . . . . . . . . . . . . . . 890–891 aluminum brass condenser tubing . . . . . . . . . . . . . .890 biocides for prevention and control . . . . . . . . . . . .894 brass piping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .890 cathodic protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .885 cathodic protection for control . . . . . . . . . . . . . . . . . .754 cathodic protection for prevention . . . . . . . . 893–894 coatings, protective . . . . . . . . . . . . . . . . . . . . . . . . . . . . .885 in cooling water piping system . . . . . . . . . . . . . . . . . . 20 in cooling-water system . . . . . . . . . . . . . . . . . . . . . . . . . . 13 in cooling water systems, factors for diagnosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 887, 888 copper alloy condenser tubing . . . . . . . . . . . . . . . . . .890 of copper and its alloys . . . . . . . . . . . . . . . . . . . . . . . . .890 in copper and its alloys, corrosion resistance . .890 corrosion inhibitors effect . . . . . . . . . . . . . . . . . . . . . . .885 cupronickel alloys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .890 depolarization mechanisms . . . . . . . . . . . . . . . 882, 883 elements present in surface deposits in stainless steel weldments . . . . . . . . . . . . . . . . . . . . . . . . . . . .889 and hydrostatic testing environment . . . . . . . . . . . .834 industrial sectors affected by . . . . . . . . . . . . . . . . . . .881 industrial sites of problems . . . . . . . . . . . . . . . 885–887 lubricants for protection against . . . . . . . . . . . . . . . .885 materials affected by . . . . . . . . . . . . . . . . . . . . . . . . . . . .881 materials selection and coatings for prevention and control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .892 monitoring methods and probes . . . . . . . . . . 891–892 ozone treatment for control . . . . . . . . . . . . . . . . . . . . .755 piping for storm sewer treatment system . . . . . . .753 preferential attack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .888 sampling, analysis, and inspection of conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 892–893 site identification . . . . . . . . . . . . . . . . . . . . . . . . . . 886–887 in soil environments . . . . . . . . . . . . . . . . . . . . . . 885–887 of stainless steel condenser tubes . . . . . . . . . . . . . . .881 stainless steel welds . . . . . . . . . . . . . . . . . . . . . . . . . . . . .883 steel corrosion-resistant alloys . . . . . . . . . . . . 887–890 system design and operation for prevention . . . .892 Microbially produced manganese, corrosion by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .883 Microbial metabolites . . . . . . . . . . . . . . . . . . . . . . . . . . . .883 Microbiological corrosion, as damage mechanism on failure wheel . . . . . . . . . . . . . . . . . . . . . . . . . . .349 Microchemical analysis in chemical analysis . . . . . . . . . . . . . . . . . .429, 432–436 procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357–358 Microcrack(s) (microcracking) . . . . . . 218, 219, 582, 652, 669 of abrasive particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . .910 and chemical segregation of ingots . . . . . . . . . . . . . . 84 as defect resulting from anodic hard coating . . . . 81 as defect resulting from carburizing . . . . . . . . . . . . . 81 as defect resulting from nitriding . . . . . . . . . . . . . . . . 81 as defect resulting from surface hardening . . . . . . 81 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .218, 1069 and delamination in impact wear . . . . . . . . . 967, 970 of diesel fuel injection control sleeve . . . . . . .12, 13 of extrusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 511, 512 of forging die with chemical segregation . . . . . . . . 85 from hydrogen interactions with ferrous-base alloys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .873 and micropitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .724 of nylon driving gear . . . . . . . . . . . . . . . . . . . . . . . . . 1026 in polycarbonate sheet . . . . . . . . . . . . . . . . . . . . . . . . . .654 in polymer composites . . . 1028, 1029, 1031, 1032, 1037, 1039, 1040 in polymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .657 of polymers from organic chemicals . . . . . . . . . . .369 in refractories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 801, 803 and rolling-contact fatigue . . . . . . . . . . . . . . . . . . . . . .951 in steam drum nozzle . . . . . . . . . . . . . . . . . . . . . 232–233 of surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 653, 654 in titanium aircraft engine compressor disk . . . .264 at twin intersections . . . . . . . . . . . . . . . . . . . . . . . . . . . . .591 in weldments . . . . . . . . . . . . . . . . . . . . . . . . .179, 180, 182

© 2002 ASM International. All Rights Reserved. ASM Handbook Volume 11: Failure Analysis and Prevention (#06072G)

www.asminternational.org

1130 / Index

Microcutting of abrasive particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . .910 of polymers . . . . . . . . . . . . . . . . . . . . . .1028, 1029, 1033 Microelectromechanical systems (MEMS), finite element analysis . . . . . . . . . . . . . . . . . . . . . . . . . . .385 Microelectronics, finite element analysis for design of components . . . . . . . . . . . . . . . . . . . . . . . . . . . . .385 Microfatigue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1028 Microfissures. See also Microcrack(s). definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .179 Micro-Fourier transform infrared spectroscopy (Micro-FTIR) of acrylonitrile-butadiene-styrene grips . . 447, 448 acrylonitrile-butadiene-styrene protective covers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .449 of high-density polyethylene chemical storage vessel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .453 of nylon couplings . . . . . . . . . . . . . . . . . . . . . . . . 448, 450 of nylon filtration unit . . . . . . . . . . . . . . . . . . . . . . . . . .456 of nylon hinges . . . . . . . . . . . . . . . . . . . . . . . . . . . . 458, 459 of nylon wire clips . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .447 of polyacetal latch assemblies . . . . . . . . . . . . . . . . . .455 of polybutylene terephthalate automotive sleeves . . . . . . . . . . . . . . . . . . . . . . . . . .448–449, 451 polycarbonate/PET appliance housings . . . 450–451 of polycarbonate switch housing . . . . . . . . . . . . . . .457 of polyethylene-terephthalate jacket of transportation assemblies . . . . . . . . . . . . 451–452 polyvinyl chloride plasticized tubing . . . . . 448, 451 Microfractography. See Fractography. Micro-FTIR. See Micro-Fourier transform infrared spectroscopy. Microhardness testing in failure analysis . . . . . . . . . . . . . . . . . . . .334, 338, 402 gas turbine blades . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .346 Microinclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .117 Microindendritic shrinkage, in aluminum alloy castings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .149 Microindentation hardness tester . . . . . . . . . . . . . . .364 Microindentation methods, for hardness evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 360–361 Microjets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1013 causing cavitation erosion . . . . . . 1002, 1003, 1004, 1006 impingement mechanism . . . . . . . . . . . . . . . . . . . . . . .998 Microorganism identification, method used for inspection, growth and activity assays . . . .893 Microorganisms, specific, method used for inspection, growth and activity assays . . . .893 Microperforation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .814 Micropitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 724–725 contact fatigue mode and controlling factors . . .725 contact fatigue terminology . . . . . . . . . . . . . . . . . . . . .722 and rolling-contact fatigue . . . . . . . . . . .950, 951, 953 Microplowing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1028, 1029 of abrasive particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . .910 Micropolishing, during rolling-contact fatigue test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 948, 949 Micropores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .112 Microporosity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104, 113 in aluminum alloy castings . . . . . . . . . .150, 151, 152 of aluminum alloys . . . . . . . . . . . . . . . . . . . . . . . . . . . . .112 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .104, 1069 in weldments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .171 Microscope, stereo zoom optical . . . . . . . . . . . . . . . . .655 Microscopic, definition . . . . . . . . . . . . . . . . . . . . . . . . . . 1069 Microscopic examination of fracture surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .399 of fretting damage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .937 to investigate microbial populations . . . . . . . . . . . .893 in preliminary laboratory examination . . . . . . . . .406 Microscopic photography . . . . . . . . . . . . . . . . . . 425–426 Microsegregation . . . . . . . . . . . . . . . . . . . . . . . . . . . 218–220 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .118 in ingots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 in nickel-chromium steel . . . . . . . . . . . . . . . . . . 218, 219 Microshrinkage as casting defect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .106 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1069 as discontinuity for castings . . . . . . . . . . . . . . . . . . . . . . 9 Microshrinkage pores, in austenitic manganese steel castings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .147 Microslip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .941, 950, 951

Microspalling, contact fatigue terminology . . . . . .722 Microstructural evaluations . . . . . . . . . . . . . . . 289, 298 life assessment technique for elevated-temperature exposure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .240 of power plant piping and tubing . . . . . . . . . 304, 305 Microstructure definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1069–1070 effect on abrasive wear . . . . . . . . . . . . . . . . . . . 913–914 effect on fracture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .568 effect on overload failures . . . . . . . . . . . . . . . . 681–684 effect on stress-corrosion cracking . . . . . . . . . . . . .832 influence on fracture path and fracture toughness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .564 light microscopic evaluation . . . 509–512, 513, 514 and overload failure . . . . . . . . . . . . . . . . . . . . . . . 678–679 penultimate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .561 Microtome . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .539 Microvoid coalescence (MVC) . . . . . . . .563, 589, 641 in brittle overload failures . . . . . . . . . . . . . . . . . . . . . .674 of casting fractures . . . . . . . . . . . . . . . . . . . . . . . . 608, 610 as cause for thin-arced arrest region failure . . . .568 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1070 dimpled, in hydrogen embrittlement . . . . . . . . . . . .813 with dimpled intergranular fracture . . . . . . . . . . . . .643 and dimples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .564 and ductile fracture . . . . . . . 473, 591–595, 596, 597 in ductile overload failures . . . . . . . . . . . . . . . 672, 673 ductile tearing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .587 indicative of ductile fracture . . . . . . . . . . . . . . . . . . . .559 manganese content effect . . . . . . . . . . . . . . . . . . . . . . .646 mixed mode fracture . . . . . . . . . . . . . . . . . . . . . . . . . . . .566 in polymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .651 in quasi-cleavage fracture . . . . . . . . . . . . . . . . . . . . . . .573 with tempered-martensite embrittlement . . . . . . .692 and wedge cracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . .575 Microvoids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 523, 652 in ductile impact fracture . . . . . . . . . . . . . . . . . . . . . . .500 in polyimide films . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .970 in polymers . . . . . . . . . . . . . . . . . . . . . . . . . . .651, 652, 656 in titanium aircraft engine compressor disk . . . .264 Microwelding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .408 Mild carbon steels brittle fracture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 521, 523 ductile/brittle fracture . . . . . . . . . . . . . . . . . . . . . 522, 524 ductile fracture . . . . . . . . . . . . . . . . . 521, 522, 523, 524 Mild steels fretting wear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 926, 931 grain size effect on ductile-brittle transition temperature . . . . . . . . . . . . . . . . . . . . . . . . . . 684, 685 strain-aging, failure assessment diagram . . . . . . .244 as substrate material for thermally sprayed coatings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .950 torsion loading with strain path changed . . . . . . .608 Mindlin analysis of slip . . . . . . . . . . . . . . . . . . . . . . . . . .924 Miner’s law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .701 Minimum commitment method . . . . . . . . . . . . . . . . .300 Minimum commitment parameter . . . . . . . . . . . . . .299 Minimum creep rate. See also Creep rate. definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1070 Minimum stress-intensity factor . . . . . . . . . . . . . . . .279 Minimum web thickness, examples for different materials and manufacturing processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 “Minkowski sausage” method . . . . . . . . . . . . . . . . . . .544 Mirror region (ceramics, glassy materials) of cleavage fracture . . . . . . . . . . . . . . . . . . . . . . . . . . . . .573 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1070 in polymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .657 Mirror type stereometer . . . . . . . . . . . . . . . . . . . . . . . . .552 Mirror zone, in polymers . . . . . . . . . . . . . . . . . . . 657–658 Misalignment, in weldments . . . . . . . . . . .158, 169, 190 Misrun(s) as casting defects . . . . . . . . . . . . . . . . . . . . . . . . . 109, 120 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .104, 1070 in permanent-mold castings . . . . . . . . . . . . . . . 124, 125 in pressure die castings . . . . . . . . . . . . . . . . . . . . . . . . .126 Missile coupling nuts, stress-corrosion cracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 851–852 Mission segment by mission segment spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .281 Mission statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .280 Mist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370, 573 Mist hackle (ceramics, glass materials). See also Bifurcation. . . . . . . . . . . . . . . . . . . . . . . . . . . 664, 665

definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1070 and uniaxial tension . . . . . . . . . . . . . . . . . . . . . . . . . . . . .666 Misting devices, mechatronic . . . . . . . . . . . . . . . . . . . . . 44 Mist region . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .657 in polymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 657, 658 Mixed inhibitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 757–758 Mixed metallurgy . . . . . . . . . . . . . . . . . . . . . . . . .1016–1017 Mixed-mode cracking . . . . . . . . . . . . . . . . . . . . . . . . . . . .671 austenitic stainless steels . . . . . . . . . . . . . . . . . . 677, 678 ductile iron impeller . . . . . . . . . . . . . . . . . . . . . . . . . . . .677 as overload failure . . . . . . . . . . . . . . . . . . . . . . . . 677, 678 of tool steel medical device . . . . . . . . . . . . . . . 677, 678 Mixed-mode fracture . . . . . . . . . . . . . . . . . . . . . . . 566, 567 jack cylinder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 687–688 mild carbon steel . . . . . . . . . . . . . . . . . . . . . . . . . . 522, 524 with stress-corrosion cracking . . . . . . . . . . . . . . . . . .842 Mixer blades, ice cream drink, fatigue fracture of stainless steel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8–9 Mixing, mechanical . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .965 MMH. See Monomethyl hydrazine Modal analyses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .384 Mode. See also Crack-tip strain; Crack tip opening displacement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .343 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1070 Modeling . . . . . . . . . . . . . . . . . . . . . . . . . 371, 375, 376–379 aircraft flight simulators . . . . . . . . . . . . . . . . . . . . . . . .377 analytical/mathematical . . . . . . . . . . . . . . . . . . . . . . . . .376 deterministic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .376 ductile plastic flow . . . . . . . . . . . . . . . . . . . . . . . . 617–624 finite-element analysis methods . . . . . . . . . . 377–379 fracture mechanics software . . . . . . . . . . . . . . . . . . . .379 geometric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .376 illustrative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .376 limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .377 to resolve wear failures . . . . . . . . . . . . . . . . . . . . . . . . .903 simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .376 stochastic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .376 use in accident reconstruction . . . . . . . . . . . . 377–379 Models analytical . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .903 phenomenological . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .903 Modified alkyd resins, as corrosion-resistant coatings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .758 Modified-v (chi) geometry . . . . . . . . . . . . . . . . . . . . . . .485 Modified Goodman line . . . . . . . . . . . . . . . . . . . . 700, 701 mean stress effect on alternating stress amplitude . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .701 Modified polyphenylene oxide (PPO), creep modulus vs. temperature . . . . . . . . . . . . . . . . . . .652 Modulo function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .260 Modulus of elasticity (E) . . . . . . . . . . . . . . . . . . . . . . . . .466 and buckling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1048 as criteria for materials selection . . . . . . . . . . . . . . . . 32 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1070 of engineering ceramics and bearing steel . . . . .960 of polymer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1022 relationship with various failure modes . . . . .35, 36 Modulus of rigidity. See Shear modulus. Modulus of rupture, definition . . . . . . . . . . . . . . . . . 1070 Modulus of rupture in bending, definition . . . . 1070 Modulus of rupture in torsion, definition . . . . . 1070 Mohr-Coulomb model . . . . . . . . . . . . . . . . . . . . . . . . . . . .619 Mohr’s circle . . . . . . . . . . . . . . . . . . . . . 463, 464–465, 466 beam, stresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .470 to calculate principle and shear stresses . . . . . . . .489 for strain analysis of neck . . . . . . . . . . . . . . . . . . . . . .597 strain of local necking in prismatic sections . . .621 for thin-walled pressure vessel stresses . . . . . . . .471 three-dimensional, with principal stresses . . . . . .465 for two-dimensional stress transformation . . . . .464 Moisture, causing stress-corrosion cracking . . . . . . . . . . . . . . 826–827, 830, 850, 856 Moisture pickup, melting and refining molten steel, as hydrogen source for hydrogen embrittlement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .819 Moisture-related degradation, of polymers . . . . .368 Mojave Power Station, hot reheat pipe failure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .306 Molasses tank failures . . . . . . . . . . . . . . . . .228, 229, 230 Mold cracked or broken, as casting defect . . . . . . . . . . . .105 defect, high pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . .108 defect-related failures, die casting . . . . . . . . 127, 129

© 2002 ASM International. All Rights Reserved. ASM Handbook Volume 11: Failure Analysis and Prevention (#06072G)

expansion during baking, as casting defect . . . .110 inclusion defect failure in stainless steel . . . . . . 509, 510 post-electric discharge machining fabricationrelated failure . . . . . . . . . . . . . . . . . . . . . . . . 512, 513 Mold coatings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120, 125 Mold creep, as casting defect . . . . . . . . . . . . . . . . . . . . .111 Mold drop, as casting defect . . . . . . . . . . . . . . . . . . . . .105 Mold element cutoff, as casting defect . . . . . . . . . . .105 Mold erosion, of permanent-mold castings . . . . . . .125 Mold expansion, during baking, as casting defect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .110 Mold release agents, as residual chemical contaminants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .436 Mold-release compound, in weldments . . . . . . . . . .188 Mold-wall deficiencies . . . . . . . . . . . . . . . . . . . . . . 119–120 Mold-wall movement, as casting defect . . . . . . . . .110 Molecular fluorescence spectroscopy . . . . . . . . . . .359 Molecular scale voids . . . . . . . . . . . . . . . . . . . . . . . . . . . .651 of polymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .651 Molecular weight assessment methods, for polymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 444–445 Molecular weight reduction, of polybutylene terephthalate automotive sleeves . . . . . . . . . .449 Molten caustics, environment causing stresscorrosion cracking of nickel and nickel-base alloys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .848 Molten metals. See also Liquid metal induced embrittlement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .801 as corrosion mechanism for high-temperature corrosion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 873–874 Molten salts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18, 801 as mechanism for high-temperature corrosion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .874 Molybdates, as inhibitors . . . . . . . . . . . . . . . . . . . . . . . .757 Molybdenum addition effect on alloy steel tempering . . . . . . . .195 addition to improve lead liquid metal induced embrittlement resistance in nickel alloys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 873–874 cavitation erosion, incubation time . . . . . . . . . . . 1004 content effect on internal oxidation . . . . . . . . . . . .214 content effect on microbially-induced corrosion in weldments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 888–889 content effect on sigma-phase embrittlement . .693 content effect on stress-relief embrittlement . . .691 content reducing embrittlement susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .691 erosion rate in mineral oil . . . . . . . . . . . . . . . . . . . . 1007 maximum erosion rate dependence in cavitation erosion on combined parameter . . . . . . . . . 1016 microsegregation affected by silicon and manganese . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .219 microsegregation susceptibility . . . . . . . . . . . . . . . . .219 oxidation potential in endothermic gas . . . . . . . . .214 as physical vapor deposition coating material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .946 qualitative chemical testing for materials identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .431 removed from alloys by selective leaching . . . . .785 as thermally sprayed coating material . . . . . . . . . .950 Molybdenum alloys containing oxides, workability behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 Molybdenum alloy steels, austempering . . . . . . . . .207 Molybdenum carbon carbides . . . . . . . . . . . . . . . . . . .735 Molybdenum disulfide, as lubricant . . . . . . . . 410, 934 Molybdenum trioxide . . . . . . . . . . . . . . . . . . . . . . . . . . . .146 Moment, in beam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .470 Moment-area method . . . . . . . . . . . . . . . . . . . . . . . . . . . .382 Moment of inertia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .470 Moments of the response . . . . . . . . . . . . . . . . . . . . . . . .260 Monel alloys corrosion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405, 785 polishing with relief damage . . . . . . . . . . . . . 506, 507 weldment microfissures . . . . . . . . . . . . . . . . . . . . . . . . .180 Monitoring systems, for microbially-induced corrosion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .891 Monkmon-Grant parameter . . . . . . . . . . . . . . . . . . . . .298 Monoethanolamine (MEA)/diethanolamine (DEA) cracking, stress-corrosion cracking . . . . . . .839 Monoethanolamine (MEA) solution, stresscorrosion cracking . . . . . . . . . . . . . . . . . . . . . . . . .839 Monomethyl hydrazine (MMH)

stress-corrosion cracking . . . . . . . . . . . . . . . . . . . . . . . .859 Monte Carlo sampling . . . . 241–242, 250, 255, 257, 258, 259–262 computer software programs . . . . . . . . . . . . . . . . . . . .267 flow diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .241 in gas turbine rotor damage tolerance analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .264 generating a cumulative distribution function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .261 in importance sampling . . . . . . . . . . . . . . . . . . . . . . . . .262 Moore-Evans method, to correct residual stresses for stress relaxation . . . . . . . . . . . . . . . . . . . . . . . .489 Moore fatigue test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .702 Mo¨ssbauer spectrometry, of corrosion products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .406 Most probable number, to investigate microbial populations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .893 Most probable point (MPP) . . . . . . . . . .257, 258, 266 Motor vehicles, accident reconstruction . . . . . . . . . .377 Mounting ceramic materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .362 in metallographic examination . . . . . . 502–503, 504, 505 resins . . . . . . . . . . . . . . . . . . . . . . . . . . . 502–503, 504, 505 Mounting press . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 502, 504 MPP. See Most probable point. MS. See Mass spectroscopy. MSDS. See Materials safety data sheet. MSG-1. See Handbook: Maintenance Evaluation and Program Development. MSG-2. See Airline/Manufacturer Maintenance Program Planning Document. Mud cracks . . . . . . . . . . . . . . . . . . . . . . . . . . . .564, 565, 638 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1070 Mullite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .804 Multiple bearing testing apparatus, description of rolling contact fatigue test method . . . . . . . .944 Multiple failure, definition in reliability-centered maintenance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 Multiple-linear regression computer program, for fatigue life prediction . . . . . . . . . . . . . . . . . . . . . .705 Multiple-site damage . . . . . . . . . . . . . . . . . .228, 235, 236 Muntz metal, intergranular corrosion . . . . . . . . . . . .784 Mu phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 734–735 formation at elevated temperatures . . . . . . . . . . . . .874 Mushroom-head closure, hydrogen embrittlement . . . . . . . . . . . . . . . . . . . . . . . . 813, 814 Mushrooming . . . . . . . . . . . . . . . . . . . . 918, 919, 966, 967 around periphery of striking/struck hammer face . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 979, 985 Mushy-freezing alloys, microporosity . . . . . . . . . . . .112 Mushy-state forming . . . . . . . . . . . . . . . . . . . . . . . . . . . . .124 Mushy zone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .112 MVC. See Microvoid coalescence. MVFOSM. See Mean value first-order secondmoment analysis.

N Nail hammers, spalling analysis . . . . . . .978, 979, 986 Nanoindentation methods, for hardness evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 360–361 Nanometer scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .361 NASA five-ball testing apparatus, description of rolling contact fatigue test method . . . . . . . .944 NASGRO (computer software program) . . . . . . .283 National Bureau of Standards, study of direct and indirect cost of fracture in U.S. . . . . . . . . . . .227 National Institute of Health image analysis software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .552 National Institute of Standards and Technology, “round robin” programs of chemical analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .431 Natural aging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .403 Natural gas liquids (NGL) . . . . . . . . . . . . . . . . . . . . . . .863 Natural rubber as corrosion-resistant coating . . . . . . . . . . . . . . . . . . .769 mechanical behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . .650 wear resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1022 Naval brass, galvanic series in seawater . . . . . . . . .762

www.asminternational.org

Index / 1131 ND. See Normal direction. NDE. See Nondestructive evaluation. NDI. See Nondestructive inspection. NDT. See Nil ductility transition temperature; Nondestructive testing. NDTT. See Nil ductility transition temperature. Near-eutectoid steel, intergranular fatigue . . . . . . .637 Near net shape manufacturing techniques . . . . . 32, 33, 44 Neat and short fiber reinforced composites . . 1028 Neck . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .100 reduction in area at fracture . . . . . . . . . . . . . . . . . . . .618 Necking. See also Diffuse necking; Local necking. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .651 in annealed vs. cold worked material . . . . . . . . . . .566 controlled by strain-hardening response of materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .617 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18, 1070 diffuse . . . . . . . . . . . . . . . . . . . . . . . . . . 597, 599, 601–602 and ductile fracture . . . . . . . . . . . . . . . . . . . . . . . 600, 604 in ductile overload failures . . . . . . . . . . . . . . . 673, 674 and ductility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .596 in ligaments between particles . . . . . . . . . . . . . . . . . .593 local . . . . . . . . . . . . . . . . . . . . . . . . . . . . 597, 599, 601–602 local, in prismatic specimens . . . . . . . . . . . . . 597, 621 in metallic materials . . . . . . . . . . . . . . . . . . . . . . . . . . . .571 onset prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . 617, 618 plastic load-limit model . . . . . . . . . . . . . . . . . . . . . . . . .624 in polymeric materials . . . . . . . . . . . . . . . . . . . . 568, 569 postnecking strain-rate effects . . . . . . . . . . . . . . . . . .621 tensile loading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .468 in tensile testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .565 triaxial (tensile-hydrostatic) stress . . . . . . . . 596–597 Necking down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .290 Necking strain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 601, 602 Necklace porosity, in weldments . . . . . . . . . . . . . . . . .190 Neck liner, stress-corrosion cracking . . . . . . . . . . . . .845 Negative strain hardening . . . . . . . . . . . . . . . . . . . . . . . . 98 Negligence, as legal theory for products liability lawsuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 Nelson diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .816 Neoprene coatings for corrosion resistance . . . . . . . . . . . . . . . . . . . . . . . . .793 to resist cavitation erosion . . . . . . . . . . . . . . . . . . . . . .999 NER. See Normalized erosion resistance. NESSUS (computer software program) . . . . . . . .267 Net P-F interval, definition in reliability-centered maintenance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 Net-section fracture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .582 Net-section instability . . . . . . . . . . . . . . . . . . . . . . 401, 686 failures due to . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .475 Net section plastic deformation . . . . . . . . . . . . . . . . . .656 Net shape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Net softening . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .601 Network carbides . . . . . . . . . . . . . . . . . . . . . .216, 217, 218 Neuber method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .282 Neuber’s rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .302 Neumann bands. See also Mechanical twin (deformation twin). definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1070 Neutral axis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 471, 474 Neutron diffraction to measure subsurface residual stress locations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .489 for measuring and studying residual stresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1053 Neutron embrittlement. See also Radiation. damage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .646 causes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .690 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1070 effect in ferrous alloys . . . . . . . . . . . . . . . . . . . . . . . . . .690 effect on overload failures . . . . . . . . . . . . . . . . . . . . . .697 steels susceptible . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .690 Newman equation . . . . . . . . . . . . . . . . . . . . . . . . . . 279, 285 Next-level effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 NGL. See Natural gas liquids. Nickel alloying element effect on ductile-brittle transition temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .684 causing liquid or solid metal induced embrittlement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .862 cavitation erosion, incubation time . . . . . . . . . . . 1004 compatibility with various manufacturing processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

© 2002 ASM International. All Rights Reserved. ASM Handbook Volume 11: Failure Analysis and Prevention (#06072G)

www.asminternational.org

1132 / Index

Nickel (continued) content effect on alloy steel temper embrittlement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .195 content effect on internal oxidation . . . . . . . . . . . .214 content effect on low-alloy steel carburization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .146 content effect on retained austenite formation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .207 content effect on sigma-phase embrittlement . .693 in dissimilar metal pair, fretting damage . . . . . . .928 effect on sulfide stress cracking . . . . . . . . . . . . . . . .813 effect on time-to-fracture of copper by stresscorrosion cracking in ammoniacal atmosphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .853 effect on weldment hot cracking . . . . . . . . . . . . . . .185 enhancing embrittlement . . . . . . . . . . . . . . . . . . . . . . . .691 erosion rate in mineral oil . . . . . . . . . . . . . . . . . . . . 1007 fretting wear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .930 galvanic corrosion . . . . . . . . . . . . . . . . . . . . . . . . . 762, 767 maximum erosion rate dependence in cavitation erosion on combined parameter . . . . . . . . . 1016 microsegregation susceptibility . . . . . . . . . . . . . . . . .219 oxidation potential in endothermic gas . . . . . . . . .214 pure, hydrogen embrittlement environment . . . .817 qualitative chemical testing for materials identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .431 removed from alloys by selective leaching . . . . .785 standard emf series value . . . . . . . . . . . . . . . . . . . . . . .763 Nickel aluminides as high-temperature coatings . . . . . . . . . . . . . 876–877 as high-temperature coatings resisting corrosion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .878 Nickel-aluminum bronze dealuminification . . . . . . . . . . . . . . . . . . . . . . . . . . 787–788 galvanic series in seawater . . . . . . . . . . . . . . . . . . . . . .762 Nickel-base alloys. See also Superalloys. brittle fracture of weldment . . . . . . . . . . . . . . . 164, 165 centrifugal casting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .132 chloridation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .873 compatibility with various manufacturing processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 elevated-temperature fatigue . . . . . . . . . . . . . . . . . . . .291 erosive wear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .997 fatigue failures . . . . . . . . . . . . . . . . . . . . . . .302–303, 304 galvanic corrosion . . . . . . . . . . . . . . . . . . . . . . . . . 762, 767 green rot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .868 high-temperature corrosion . . . . . . . . . . . . . . . 871, 872 hydrogen damage . . . . . . . . . . . . . . . . . . . . . . . . . 816–817 hydrogen interactions . . . . . . . . . . . . . . . . . . . . . . . . . . .873 Inconel, corrosion of . . . . . . . . . . . 871, 872, 873, 884 Inconel, distortion failure of small volute springs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1054 intergranular corrosion . . . . . . . . . . . . . . . . . . . . 783–784 intergranular fracture of steam generator tube . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 648–649 intergranular stress-corrosion cracking . . . . . . . . 646, 647–648 liquid metal embrittlement . . . . . . . . . . . . . . . . . . . . . .873 metal dusting attack . . . . . . . . . . . . . . . . . . . . . . . . . . . . .869 microbially-induced corrosion . . . . . . . . . . . . . . . . . .884 Monel, corrosion . . . . . . . . . . . . . . . . . . . . . . . . . . 405, 785 nitridation attack . . . . . . . . . . . . . . . . . . . . . . . . . . 869–870 piping, leak-before-break concept . . . . . . . . . . . . . .231 pitting corrosion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .775 sensitization of, and stress-corrosion cracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .849 stress-corrosion cracking . . . . . . . 832, 848–850, 875 sulfidation of incinerator liner . . . . . . . . . . . . 870–871 uniform corrosion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .769 weldment failures . . . . . . . . . . . . . . . . . . . . . . . . . 167–168 Nickel-base alloys, specific types N02200 (Alloy 200, Nickel 200) galvanic series in seawater . . . . . . . . . . . . . . . . . . .762 intergranular corrosion . . . . . . . . . . . . . . . . . 783, 784 local and diffuse necking . . . . . . . . . . . . . . . 597, 599 stress-corrosion cracking . . . . . . . . . . . . . . . . . . . . .849 N02201 (Alloy 201, Nickel 201) intergranular corrosion . . . . . . . . . . . . . . . . . . . . . . .784 N02270 (Alloy 270, Nickel 270) as reference material for cavitation erosion testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1008, 1009 N06110 (Allcorr) intergranular corrosion evaluation tests and acceptance criteria . . . . . . . . . . . . . . . . . . . . . . . . .781

N8025 microbially-induced corrosion . . . . . . . . . . . . . . .889 N8028 microbially-induced corrosion . . . . . . . . . . . . . . .889 N08904 (904L) intergranular corrosion evaluation tests and acceptance criteria . . . . . . . . . . . . . . . . . . . . . . . . .781 Ni-18Cr sulfidation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .870 Ni-28Cr sulfidation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .870 80Ni-20Cr creep behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .730 70Ni-30Cu intergranular fatigue . . . . . . . . . . . . . . . . . . . . . . . . . .637 S-590 elongation related to rupture life . . . . . . . . . . . . .732 stress rupture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .732 Nickel-base heat-resisting alloys. See also Superalloys. creep onset temperature . . . . . . . . . . . . . . . . . . . . . . . . .729 defects in forgings . . . . . . . . . . . . . . . . . . . . . . . . . . . 90–91 Monel, polishing with relief damage . . . . . 506, 507 stress-rupture ductility . . . . . . . . . . . . . . . . . . . . 732–733 for warm and hot gas turbine engine components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .296 Nickel-base superalloys. See Superalloys. Nickel-boron-silicon-chromium-iron-carbon, as thermally sprayed coating material . . . . . . . .950 Nickel-chromium alloys, cavitation erosion in seawater . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .793 fretting wear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .931 localized corrosion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .767 Nickel-chromium-iron-silicon-boron alloys, as coatings to prevent vibratory cavitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1017 Nickel-chromium-molybdenum steels, spalling resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 980, 981 Nickel-chromium-molybdenum-vanadium alloys, stress-relief embrittlement of welded tube . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .691 Nickel-chromium-silicon-boron alloys, to repair cavitation damage in hydroturbines . . . . . 1017 Nickel-chromium steels microcracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218, 219 microstructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211, 213 Nickel-copper alloys cavitation erosion in seawater . . . . . . . . . . . . . . . . . .793 environments subjecting alloy to selective leaching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .785 Nickel-copper-aluminum alloy, cavitation erosion in seawater . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .793 Nickel in some acids, removed from alloys by selective leaching . . . . . . . . . . . . . . . . . . . . . . . . . .785 Nickel-molybdenum alloys environments subjecting alloy to selective leaching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .785 markings mistaken for fatigue . . . . . . . . . . . . . . . . . .638 Nickel-molybdenum-chromium alloys, cavitation erosion in seawater . . . . . . . . . . . . . . . . . . . . . . . .793 Nickel plating for cavitation erosion resistance . . . . . . . 1006, 1008 of decarburized alloy steel coil spring specimen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .510 electroless, for metallographic examination . . . 512, 513 electroless, of carbon steel for metallographic examination . . . . . . . . . . . . . . . . . . . . . . . . . . 503, 504 to enhance edge retention of fracture . . . . . 499–500 erosion rate of metallic coatings in 3% NaCl aqueous solution . . . . . . . . . . . . . . . . . . . . . . . . . 1008 of tool steel for metallographic examination . . 502, 503 of wear failure surface . . . . . . . . . . . . . . . . . . . . . . . . . .413 Nickel silver, galvanic series in seawater . . . . . . . . .762 Nickel steels, centrifugal casting . . . . . . . . . . . . . . . . . .132 Nickel-titanium alloys erosion rate in 3.5% NaCl aqueous solution 1006 erosion resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1016 liquid-impact erosion and low-cycle fatigue resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1016 substituted for Stellite to lower weight . . . . . . . 1016 Nickel-titanium alloys/steel, erosion rate in vibratory cavitation . . . . . . . . . . . . . . . . . . . . . . 1016

Nicks, visible, macroscale fractographic implication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .560 Ni-Hard, erosive wear . . . . . . . . . . . . . . . . . . . . . . . . . . . .997 Nil ductility transition temperature (NDT or NDTT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .685 and brittle fracture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .234 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1070 increased by neutron embrittlement . . . . . . . . . . . .697 Nimonic alloys, overaging effect on rupture life . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .734 Niobia, addition improving oxidation resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .868 Niobium content effect on sigma-phase embrittlement . .693 microsegregation susceptibility . . . . . . . . . . . . . . . . .219 Niobium alloys, workability behavior . . . . . . . . . . . . . 98 Ni-Resist liners, for cavitation erosion resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .793 Ni-SFA, erosion rate in 3.5% NaCl aqueous solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1006 Nitrate-reducing bacteria . . . . . . . . . . . . . . . . . . . . . . . .890 Nitrates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .773 in aqueous solution, causing stress-corrosion cracking in carbon steels . . . . . . . . . . . . . . . . . .831 stress-corrosion cracking . . . . . . . . . . . . .828, 839, 853 Nitration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .439 of polymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .439 Nitric acid causing intergranular corrosion in sensitized austenitic stainless steels . . . . . . . . . . . . . . . . . .779 concentrated, intergranular corrosion evaluation test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .781 intergranular corrosion evaluation test . . . . . . . . .781 red fuming, causing stress-corrosion cracking in titanium alloys at various temperatures . . .857 Nitridation of gas turbine blades . . . . . . . . . . . . . . . . . . . . . . . . . . . .302 as mechanism for high-temperature corrosion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 869–870 Nitride case-hardened steel, mitigating erosive wear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .408 Nitrides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .783 causing crack nucleation in high-strength lowalloy steels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .593 inclusions . . . . . . . . . . . . . . . . . .116, 117, 172, 173, 591 in ingot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 Nitriding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 503, 504 for adhesive wear mitigation . . . . . . . . . . . . . . . . . . .408 of chuck jaw . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 513–514 defects resulting from . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 medium-carbon alloy steel crank pin, and fatigue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .628 to minimize warping . . . . . . . . . . . . . . . . . . . . . . . . . . 1053 to prevent fretting damage . . . . . . . . . . . . . . . . 933, 934 to reduce stresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .717 of twistdrill . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 Nitrites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .992 as inhibitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .757 Nitrogen as alloying species in metal, causing accelerated cracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .831 as alloying species in metal, causing stresscorrosion cracking in copper alloys (in presence of aerated aqueous NH3) . . . . . . . .831 as alloying species in metal, causing stresscorrosion cracking in stainless steels (in presence of Cl–) . . . . . . . . . . . . . . . . . . . . . . . . . . . .831 as cause of gas porosity in metals . . . . . . . . . . . . . .115 effect on mechanical properties . . . . . . . . . . . . . . . . .404 heat transfer rate of quenching medium . . . . . . . .210 as impurity for low-alloy steel castings . . . . . . . .144 Nitrogen diffusion, effect on chemical analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .430 Nitrogen group, stress-corrosion cracking . . . . . . .833 Nitrogen oxide causing stress-corrosion cracking in titanium alloys at various temperatures . . . . . . . . . . . . .857 as damaging substance in atmospheric environments for stress-corrosion cracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .832 liquid, causing stress-corrosion cracking in highstrength titanium alloys . . . . . . . . . . . . . . . . . . . .831 with moisture, causing stress-corrosion cracking in copper alloys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .831

© 2002 ASM International. All Rights Reserved. ASM Handbook Volume 11: Failure Analysis and Prevention (#06072G)

stress-corrosion cracking . . . . . . . . . . . . . . . . . . 857–858 Nitrogen oxidizers, in cooling systems drawing on natural waters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .889 NMR. See Nuclear magnetic resonance spectroscopy. Noble metals, galvanic corrosion . . . . . . . . . . . . . . . . .767 Nodes, definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .378 Nodular iron carbon flotation failures of crankshaft mainbearing journal . . . . . . . . . . . . . . . . . . . . . . . 139, 140 centrifugal casting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .132 Nodularity of graphite . . . . . . . . . . . . . . . .141–142, 143 Nomarski differential interference contrast (DIC), of mounted metal specimen . . . . . . . . . 503, 505 Nominal pipe size (NPS) . . . . . . . . . . . . . . . . . . . . . . . . .863 Nominal strength. See Ultimate strength. Nominal value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .266 Nonabrasive sliding wear, wear morphology . . . .904 Nonabrasive wear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .902 causes of . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .902 operational attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . .902 subcategories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .902 Nondestructive evaluation (NDE). See also Nondestructive inspection; Nondestructive testing. . . . . . . . . . 237, 238–239, 269, 395–397. of cold shut in gray iron paper-drier head . . . . . . . . . . . . . . . .121–122, 123 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .269 guidelines and steps for monitoring turbine operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .297 implementation guidance . . . . . . . . . . . . . . . . . . . . . . .274 measurement techniques . . . . . . . . . . . . .269, 270, 271 role as quantified by probability of detection in fully probabilistic life management . . . . . . 273, 274 role in damage tolerant approach . . . .270–273, 274 technique employed . . . . . . . . . . . . . . . . . . . . . . . . . . . . .238 Nondestructive inspection (NDI). See also Nondestructive evaluation; Nondestructive testing. . . . . . . . . . . . . . . . 237, 238–239, 395–397 method chosen to determine inspection interval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .276 Nondestructive methods, for fracture profile generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 539–540 Nondestructive testing (NDT). See also Nondestructive evaluation; Nondestructive inspection. . . . . . . . . . . . . . . . . . . . . . .238–239, 269 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .269 to detect hot cracks or lamellar tears . . . . . . . . . . .170 in preliminary laboratory examination . . . . . . . . .406 relative nondestruction . . . . . . . . . . . . . . . . . . . . 316–317 of weldments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .159 Non-fill, as discontinuity in semisolid casting . . . . . . . . . . . . . . . . . . . . . . . . . . .127–128, 131 Nonlinear analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 383–384 Nonlinear distortion energy criterion . . . . . . . . . . .461 Nonlinear elastic fracture mechanics . . . . . 479–480 Nonmetallic conductors, and galvanic corrosion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .766 Nonmetallic inclusions causing distortion . . . . . . . . . . . . . . . . . . . .205, 207, 208 and debonding in metals . . . . . . . . . . . . . . . . . . 571, 572 ductile fracture of steel lifting eye . . . . . . . . . . . . . . . 37 in forgings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 in helicopter main rotor bolt of steel . . . .89–90, 91 in ingot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .83, 88–90, 91 and microsegregation . . . . . . . . . . . . . . . . . . . . . . . . . . .219 in permanent-mold castings . . . . . . . . . . . . . . . . . . . . .124 as root cause of forgings defects, rationale, resolution, and corrective action . . . 327, 329, 330, 331 shape-control methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 in twistdrill . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 in weldments . . 169, 171, 172–174, 175, 176, 183, 186 Nonmetallic materials, corrosion . . . . . . . . . . . . . . . .405 Nonoperational consequences, definition in reliability-centered maintenance . . . 62 of failure modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 Normal component of stress, definition . . . . . . . . .462 Normal direction (ND). See also Longitudinal direction. definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1070 labeling conventions for rolled sheet and plate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1069

Normal distribution function . . 252, 253, 254, 256, 264 Normal flight envelope . . . . . . . . . . . . . . . . . . . . . . . . . . .377 Normal format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .256 Normal impact wear . . . . . . . . . . . . . . . . . . . . . . . . . . . . .965 Normalized erosion resistance (NER) . . . . . . . . . 1010 Normalized steel, notch sensitivity vs. notch radius . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .278 Normalizing, effect on grain size . . . . . . . . . . . . . . . . .218 Normal stress, causing brittle cleavage fracture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .588 Normal tension, law of . . . . . . . . . . . . . . . . . . . . . . . . . . .664 Norton relation for creep-strain rate . . . . . . . . . . .309 Notch. See Stress concentration. Notch acuity, definition . . . . . . . . . . . . . . . . . . . . . . . . . 1070 Notch brittleness, definition . . . . . . . . . . . . . . . . . . . . 1070 Notch depth, definition . . . . . . . . . . . . . . . . . . . . . . . . . 1070 Notched-bar stress-rupture tests . . . . . . . . . . 731–732 Notched-bar upset test . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 Notched parts, distortion and quenching . . . 198, 202 Notched tension test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .634 Notch effect, in castings . . . . . . . . . . . . . . . . . . . . . . . . . .112 Notches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .465 Notching, stress concentration . . . . . . . . . . . . . . . . . . . .716 Notch radius . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277–278 Notch rupture strength, definition . . . . . . . . . . . . . 1070 Notch sensitivity . . . . . . . . . . . . . . . . . . . . . . .277–278, 718 of castings, and design . . . . . . . . . . . . . . . . . . . . . . . . . .133 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1070 and stress-rupture ductility . . . . . . . . . . . . . . . . . . . . . .732 of torque link bolt material . . . . . . . . . . . . . . . . . . . . .284 Notch sensitivity factor . . . . . . . . . . . . . . . . . . . . . 277–278 Notch strength, definition . . . . . . . . . . . . . . . . . . . . . . 1070 Notch tensile strength. See Notch strength. Nozzle, for zinc die casting . . . . . . . . . . . . . . . . . 127, 130 Nozzle geometry analysis . . . . . . . . . . . . . . . . . . . . . . . .388 NPS. See Nominal pipe size. Nuclear engineering, probabilistic risk assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .252 Nuclear grade steels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .844 Nuclear magnetic resonance (NMR) spectroscopy for polymeric analysis . . . . . . . . . . . . . . . . . . . . . . . . . .446 properties measured . . . . . . . . . . . . . . . . . . . . . . . . . . . . .446 property derived from polymer analysis . . . . . . . .359 use in failure analysis . . . . . . . . . . . . . . . . . . . . . . . . . . .446 Nucleation, in polymers . . . . . . . . . . . . . . . . . . . . . . . . . . .657 Nucleic acid sequences, as basis for assays of microbially-induced corrosion . . . . . . . 892–893 Null hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .699 Number of cycles for fatigue failure, correlated to average striation spacing . . . . . . . . . . . . . . . . . .551 Numerical integration, to find probability of failure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .255 Numerical Recipes in FORTRAN . . . . . . . . . . . . . . . .267 Numerical simulation programs, for failure modes and effects analysis . . . . . . . . . . . . . . . . . . . . . 57–58 Nuts, hydrogen embrittlement . . . . . . . . . . . . . . . 811, 812 Nylon crack propagation and ductile fracture . . . . . . . . .654 creep modulus vs. temperature . . . . . . . . . . . . . . . . .652 functioning both as fiber and as plastic . . . . . . . .650 hydrolysis of . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .797 as semicrystalline thermoplastic . . . . . . . .1023–1024 solution viscosity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .445 solvation effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .796 specific wear rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1020 stress crazing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .652 wear failure of driving gear . . . . . . . . . . . . . . . . . . . 1026 Nylon 6 creep modulus vs. temperature . . . . . . . . . . . . . . . . .652 friction coefficient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1025 relative resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .653 specific wear rate . . . . . . . . . . . . . . . . . . . . . . . 1020, 1025 as tribological material over metals . . . .1025–1026 Nylon 6/6 brittle fracture of mechanical hinges . . . . . 457–459 as contaminant for couplings . . . . . . . . . . . . . 448, 450 differential scanning calorimetry thermogram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .440 fatigue (relaxation) of wire clips . . . . . . . . . 447, 449 Fourier transform infrared spectroscopy . . . . . . . .439 friction coefficient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1025 specific wear rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1025

www.asminternational.org

Index / 1133 as tribological material over metals . . . .1025–1026 Nylon 6/12 resin, embrittlement of couplings . . . 448, 450 Nylon 11 friction coefficient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1025 specific wear rate . . . . . . . . . . . . . . . . . . . . . . . 1020, 1025 as tribological material over metals . . . .1025–1026 Nylon 12 resin environmental stress cracking of filtration unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 456, 457 glass-fiber- and mineral-reinforced . . . . . . . 456, 457 as tribological materials over metals . . .1025–1026 Nylon/polyethylene, wear failure of antifriction bearing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1025, 1026

O Objective aperture, of scanning electron microscope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .517 Oblique illumination . . . . . . . . . . . . . . . . . . . . . . . . . . . . .663 Occam’s Razor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .343 Occupational Safety and Health Administration (OSHA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34, 76 Octahedral plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .465 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .465 Octahedral shear stress criterion . . . . . . . . . . . . . . .461 OEMs. See Original equipment manufacturers. OES. See Optical emission spectroscopy; Optical emission spectrophotometer. Off-dimension casting, definition . . . . . . . . . . . . . . . .104 OHA. See Operating hazard analysis. Oil circulated, heat transfer rate of quenching medium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .210 as lubricants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 410–411 still, heat transfer rate of quenching medium . .210 Oil and gas refinery inhibitors . . . . . . . . . . . . . . . . . .758 Oil ash corrosion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .874 Oil canning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .101 Oiliness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .410 Oil internal pipelines, prevention approach for corrosion in industrial facilities . . . . . . . . . . .893 Oil refineries, hydrogen-induced blistering . . . . . 814, 815 Oil sand molding, in shape-casting processes classification scheme . . . . . . . . . . . . . . . . . . . . . .124 Oil vapors, effect on polymer wear failures . . . . 1026 Oleamide, effect on polyethylene . . . . . . . . . . . . . . . 1025 X (omega) geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . .485 On-condition task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65, 69 definition in reliability-centered maintenance . . . 62 One-body wear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .965 {1,1,1} plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .465 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .465 One-step temper embrittlement. See also Tempered-martensite embrittlement. . . . . . .692 One-time change . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 definition in reliability-centered maintenance . . . 62 worth-doing criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 Onsager’s formalism of Fick’s law . . . . . . . . . . . . . .875 On-site examination . . . . . . . . . . . . . . . . . . . . . . . . 405–406 On-site testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 393–394 Open-die forgings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 Open flakes, from hydrogen impurity in low-alloy steel castings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .145 Opening mode of deformation (KI), definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1074 Open shrinkage, as casting defect . . . . . . . . . . . . . . . .106 Operating context, definition in reliability-centered maintenance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 Operating hazard analysis (OHA) . . . . . . . . . . . . . . . 76 Operational consequences, definition in reliabilitycentered maintenance . . . . . . . . . . . . . . . . . . . . . . . 62 for failure mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 Operation Failsafe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .332 Operation history, determination of . . . . . . . . . . . . . .238 Operator-induced loads . . . . . . . . . . . . . . . . . . . . . . . . . .280 Optical characteristics, as criteria for materials selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

© 2002 ASM International. All Rights Reserved. ASM Handbook Volume 11: Failure Analysis and Prevention (#06072G)

www.asminternational.org

1134 / Index

Optical emission spectrophotometer, specimen size requirement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .430 Optical emission spectroscopy (OES) . . . . . 430, 431 Optical etching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .363 as ceramographic etching procedure . . . . . 362, 363 Optical light fractography to examine glasses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .560 limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .560 Optical metallographic photography . . . . . 419, 426 Optical metallography . . . . . . . . . . . . . . . . . . . . . 419, 426 Optical microscopy. See also Light microscopy. of elevated-temperature fractures of piping and tubing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .289 to examine turbine blades for creep voids . . . . . .298 to examine turbine blades for microstructural instabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .298 Optical stereomicroscopy . . . . . . . . . . . . .419, 425–426 Orange peel . . . . . . . . . . . . . . . . . . . . . . . . . . . .565, 598, 601 as casting defect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .108 and cold forming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .102 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1070 on sheet metal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .101 ORAS (computer software program) . . . . . . . . . . .267 Organic chemicals, causing degradation of polymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 368–369 Organic liquids, environment causing stresscorrosion cracking of nickel and nickel-base alloys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .848 Orientation. See Crack plane orientation and growth direction; Longitudinal direction; Normal direction; Transverse direction. Orientation distribution function of the fracture profile (f(␣)) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .542 Orientation distribution functions . . . . . . . . 542, 546 Orientation hardening . . . . . . . . . . . . . . . . . . . . . . . . . . .569 Original equipment manufacturers (OEMs) . . .228 and failure analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . .315 Orowan looping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .740 Orowan’s modification of the Griffith model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 588, 589 Orr, Sherby, and Dorn (OSD) parameter . . . . . 299, 300 Orthogonal shear stress reversal . . . . . . . . . . . . . . . .944 Orthopedic implants fretting . . . . . . . . . . . . . . . . . . . . . 924, 930, 931, 934–935 stress-corrosion cracking of stainless steel . . . . .366 Orthotropic material, elastic constants for . . . . . .467 OSD. See Orr, Sherby, and Dorn (OSD) parameter. OSHA. See Occupational Safety and Health Act. Osmometry membrane, property derived from polymer analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .359 vapor pressure, property derived from polymer analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .359 Ostwald ripening . . . . . . . . . . . . . . . . . . . . . . . . . . . 731, 741 Outer fiber stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .470 Overaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .403 effect on overload failures . . . . . . . . . . . . . . . . . . . . . .694 and stress rupture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .734 Overdesigning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .228 to prevent failure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .227 Overfills in forgings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 in ingots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 of weldments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .158 Overheating Babbitt metal, lining of bronze cylinder of friction bearing of locomotive drive axle . . . . 335–336 causing fractures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .615 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1070 effect on fatigue strength . . . . . . . . . . . . . . . . . . . . . . .719 effect on overload failures . . . . . . . . . . . . . . . . . . . . . .695 of forgings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 and intergranular fracture of steels . . . . . . . . . . . . .646 Overheating failure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .290 short-term . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .876 Overlap(s) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .548 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .174 extent of . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .538 in fracture profile . . . . . . . . . . . . . . . . . . . . . . . . . . 542–543 of fracture surface, extent of . . . . . . . . . . . . . . 546–547 in weldments . . . . . . . . . . . . . . . . . . . . . . . . .169, 174, 176 Overlap at the weld toe, surface feature as cause for rejection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .156

Overlap parameter (O) . . . . . . . . . . . . . . . . . . . . . 546–547 Overlay coatings as high-temperature coatings resisting corrosion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .877 for hot corrosion resistance of turbine blades . .294 to resist cavitation erosion . . . . . . . . . . . . . . . . . . . . 1000 rolling-contact fatigue . . . . . . . . . . . . . . . . . . . . . 945–949 thermal-mechanical fatigue life . . . . . . . . . . . . . . . . .302 Overload . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1047–1050 as damage mechanism on failure wheel . . . . . . . .349 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1047 fracture mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . .563 microstructural features associated with . . . . . . . .563 Overload failures . . . . . . . . . . . . . . . . . . . . . .401, 671–699 atomic structure influences . . . . . . . . . . . . . . . 678–679 blue brittleness . . . . . . . . . . . . . . . . . . . . . . . . . . . . 690–691 by brittle cracking mechanism, causing service failures of welds . . . . . . . . . . . . . . . . . . . . . . . . . . .156 brittle overload failures . . . . . . . . . . . . . . . . . . . . . . . . .674 burning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .695 causes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .671 creep embrittlement . . . . . . . . . . . . . . . . . . . . . . . . . . . . .695 crystal structure influences . . . . . . . . . . . . . . . . 678–679 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 degree of order effect . . . . . . . . . . . . . . . . . . . . . 678–679 ductile overload failures . . . . . . . . . . . . .671–674, 675 ductility effect in crystalline materials . . . 679–680 environmentally induced embrittlement . . 695–699 400 to 500 ⬚C (750–930 ⬚F) embrittlement . . . . .692 fracture mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . .671 fracture modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 671, 672 fractures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .397 graphitization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 693–694 hydrogen damage . . . . . . . . . . . . . . . . . . . . . . . . . 695–697 intergranular fracture . . . . . . . . . . . . . . . . . . . . . . 675–677 intermetallic compound embrittlement . . . . . . . . .694 interstitial or substitutional elements effects . . .681 laboratory fracture examination . . . . . . . . . . . . . . . .699 liquid-metal-induced embrittlement . . . . . . 697–698 material factors as root cause . . . . . . . . . . . . . 677–678 mechanical loading effects . . . . . . . . . . . . . . . . . . . . . .686 microstructure influence . . . . . . . . . . . . . . . . . . 681–684 mixed-mode cracking . . . . . . . . . . . . . . . . . . . . . . 677,678 neutron embrittlement . . . . . . . . . . . . . . . . . . . . . . . . . . .697 overaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .694 overheating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .695 precipitation embrittlement . . . . . . . . . . . . . . . . . . . . .694 quench-age embrittlement . . . . . . . . . . . . . . . . . . . . . .690 quench cracking . . . . . . . . . . . . . . . . . . . . . . . . . . . 694–695 reheat cracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .691 service damage or alteration . . . . . . . . . . . . . . . . . . . .689 sigma-phase embrittlement . . . . . . . . . . . . . . . 692–693 solid-metal-induced embrittlement . . . . . . . . . . . . .698 strain-age embrittlement effect . . . . . . . . . . . . . . . . .690 stress-corrosion cracking . . . . . . . . . . . . . . . . . . . . . . . .697 stress-relief embrittlement . . . . . . . . . . . . . . . . . . . . . .691 temperature effects . . . . . . . . . . . . . . . . . . . . . . . . 684–687 tempered martensite embrittlement . . . . . . . . . . . . .692 temper embrittlement . . . . . . . . . . . . . . . . . . . . . 691–692 texture effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 680–681 transgranular cleavage . . . . . . . . . . . . . . .674–675, 676 welding role in embrittlement and overload behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 698–699 Overload fast fracture . . . . . . . . . . . . . . . .632, 633–634 Overload fracture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 fracture modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .400 monotonic, surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . .562 Overloading continuous . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .480 as distortion failure . . . . . . . . . . . . . . . . . . . . .1047–1050 Overload region, of fatigue fracture . . . . . . . 576, 578 Overstress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .708–709, 711 Overtemper burning, definition . . . . . . . . . . . . . . . . . .220 Overtempering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .720 Overvoltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .520 Owner, definition in reliability-centered maintenance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 Oxalic acid causing intergranular corrosion in sensitized austenitic stainless steels . . . . . . . . . . . . . . . . . .779 intergranular corrosion evaluation test . . . . . . . . .781 Oxidation causing beach marks . . . . . . . . . . . . . . . . . . . . . . 707, 708

of ceramics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .370 chromium addition effect . . . . . . . . . . . . . . . . . . . . . . .234 of coatings for gas turbine blades . . . . . . . . 303, 304 at crack tip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .579 as damage mechanism on failure wheel . . . . . . . .349 and decarburization causing distortion . . . 202, 204 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1070 depth measured for gas turbine blade surface evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .298 effect on erosion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .997 factors governing . . . . . . . . . . . . . . . . . . . . . . . . . . 806–807 in fatigue fracture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .576 in grain boundaries influencing intergranular fracture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .645 and high-temperature corrosion . . . . . . . . . . . 868, 869 in hot crack vs. hot tear . . . . . . . . . . . . . . . . . . . . . . . . .104 of hot tear of sand-cast steel axle housing . . . . .119 internal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214–215 of low-alloy steel castings . . . . . . . . . . . . . . . . 145–146 of lubricants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .410 of malleable iron . . . . . . . . . . . . . . . . . . . . . . . . . . 140, 141 molybdenum addition effect . . . . . . . . . . . . . . . . . . . .234 of nickel alloy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .870 of nickel-base superalloys used for gas turbine blades . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .294 as pitting corrosion products . . . . . . . . . . . . . . . . . . . .775 of polymers . . . 405, 439, 441, 444, 456, 458, 459, 798 to prevent fretting damage . . . . . . . . . . . . . . . . . . . . . .934 reaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .749 for refractories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .801 and residual stress in hardened steels . . . . . . . . . .493 resistant materials or coatings for elevatedtemperature service . . . . . . . . . . . . . . . . . . . . . . . .231 stainless steel valve stems . . . . . . . . . . .200–201, 204 and thermomechanical fatigue . . . . . . . . . . . . . . . . . .739 Udimet 520 nickel alloy gas turbine blades . . . . . . . . . . . . . . . . . . . . . . . . . . .302–303, 304 Oxidative wear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .966 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1070–1071 in impact wear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .966 mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 902, 903 Oxide(s) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 clusters of particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . .592 dissolution in bone screw . . . . . . . . . . . . . . . . . . . . . . .115 entrapped, and cold shut in cast steel equalizer beams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122, 123 fluffy, in low-alloy steel castings . . . . . . . . . 145, 146 in ingot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 low-temperature, corroding technical ceramics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 804, 805 removal prior to fractography . . . . . . . . . . . . . . . . . .354 Oxide dispersion-strengthened nickel-base alloys elevated temperatures for engineering applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .729 Oxide entrapment, in weldments . . . . . . . . . . . . . . . .189 Oxide films as casting defects . . . . . . . . . . . . . . . . . . . .117–118, 119 cracking from cyclic oxidation of chromia and alumina oxides . . . . . . . . . . . . . . . . . . . . . . . . . . . . .868 Oxide formation, and overload failure . . . . . . . . . . .681 Oxide inclusions . . . . . . . . . . . . . . . . . . . . . . .116, 117, 591 as casting defect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .112 in ingots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 in squeeze casting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .129 subsurface feature as cause for rejection . . . . . . .156 in weldments . . . . . . . . . . . . . . . . . . . 169, 172, 173–174 Oxide laps, in corrosion-resistant castings . . . . . . .147 Oxide print technique . . . . . . . . . . . . . . . . . . . . . . . . . . . .337 Oxide scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 as casting defect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .109 Oxide-scale-based life prediction . . . . . . . . . . . . . . . .289 life assessment technique for elevated-temperature exposure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .240 of power plant piping and tubing . . . .304, 308–309 Oxide skins, as casting defect . . . . . . . . . . . . . . . . . . . .112 Oxidized fingernail on fracture surface, macroscale fractographic implication . . . . . . . . . . . . . . . . . .560 Oxidizing agents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .750 Oxidizing gases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .803 reaction with refractories . . . . . . . . . . . . . . . . . . . . . . .878 Oxyacetylene cutting . . . . . . . . . . . . . . . . . . . . . . . . . . . . .335 Oxycarbides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .801

© 2002 ASM International. All Rights Reserved. ASM Handbook Volume 11: Failure Analysis and Prevention (#06072G)

Oxygen as damaging substance in atmospheric environments for stress-corrosion cracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .832 dissolved in liquid H2O, causing stress-corrosion cracking in sensitized stainless steels . . . . .831 effect on hydrogen embrittlement . . . . . . . . . . . . . .813 effect on mechanical properties . . . . . . . . . . . . . . . . .404 grain-boundary segregation and intergranular brittle fracture . . . . . . . . . . . . . . . . . . . . . . . . 643, 645 as impurity for low-alloy steel castings . . 144, 145 stress-corrosion cracking . . . . . . . . . . . . . . . . . . . . . . . .840 x-ray elemental composition map made with electron microprobe . . . . . . . . . . . . . . . . . . . . . . .865 Oxygen inhibitors. See also Antioxidants. . . . . . . .806 Oxygen reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 749–750 Oxygen scavengers, and microbially induced corrosion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .885 Oxynitrides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .801 Ozone, as biocidal agent . . . . . . . . . . . . . . . . . . . . . . . . . .894

P PA. See Polyamide. Pack aluminizing process, diffusional growth mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .876 Pack cementation, of aluminide coatings . . . . . . . .877 Pack codeposition, of aluminide coatings . . . . . . . .877 Packet size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .612 PACVD. See Plasma-assisted chemical vapor deposition. Painting, removal technique effect on chemical analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .430 Palladium, standard emf series value . . . . . . . . . . . . .763 Palmgren-Miner cumulative damage rule . . . . . 277, 280, 284 PAN. See Polyacrylonitrile. Paper-drier head, cold shut as casting defect . . . . . . . . . . . . . . . . . . .120–122, 123 Parabolic hardening . . . . . . . . . . . . . . . . . . .617–618, 619 Parabolic markings, of polymers . . . . . . . . . . 659–660 Parallax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 551, 552 Parallel structural systems . . . . . . . . . . . . . . . . . 262, 263 Parameter-based assessments . . 289, 298, 299–300 life assessment technique for elevated-temperature exposure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .240 Parametric design and analysis . . . . . .27–28, 31, 33 Paris constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 479, 584 Paris equation . . . . . . . . 285, 286, 478–479, 578, 584 Paris law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 580, 584 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1071 exponent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .577, 578, 584 region . . . . . . . . . . . . . . . . . . . . . .479, 577, 578, 580, 708 Partial safety factors (PSFs) . . . . 251, 265, 266, 267 Particle erosion, variables . . . . . . . . . . . . . . . . . . . . . . . .902 Particle fracture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .628 Particle-matrix interface strength . . . . . . . . . . . . . . .592 Particle size factor, erosive wear . . . . . . . . . . . . . . . . .996 Particulate erosion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .997 Particulate-filled composites, adhesive wear . .1035, 1036–1037 Particulate-reinforced polymers . . . . . . . . . . . . . . . 1029 abrasive wear . . . . . . . . . . . . . . . . . . . . .1029, 1030–1031 adhesive wear . . . . . . . . . . . . . . . . . . . .1035, 1036–1037 Parting. See also Dealloying. . . . . . . . . . . . . . . . . . . . . .785 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1071 Parting line grain flow, as discontinuity for forgings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Parts configuration design risks, factors, and questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 features designed to aid manufacturing and reduce material cost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 PASCC. See Polythionic acid stress-corrosion cracking. Passivating films, providing corrosion resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .884 Passivation, of stainless steel . . . . . . . . . . . . . . . . . . . . .534 Passive region . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .750

Passivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .750–751, 767 and acid concentration effect on uniform corrosion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .770 anodic protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .757 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .750 destruction by pitting corrosion . . . . . . . . . . . . . . . . .771 elements exhibiting effects of . . . . . . . . . . . . . . . . . .750 Pasty white iron (II) carbonate, as corrosion products in pipeline excavations and laboratory soil box tests . . . . . . . . . . . . . . . . . . .887 Patching with welds, to resist corrosive wear . . . .992 Pattern error, as casting defect . . . . . . . . . . . . . . . . . . .110 Pattern mounting error, as casting defect . . . . . . .110 PBI. See Polybenzimidazole. PBT. See Polybutylene terephthalate. PC. See Polycarbonate. PCB. See Printed circuit board. PCR. See Polymerase chain reaction. PCVD. See Plasma chemical vapor deposition. PDF. See Probability density function. PDMS. See Polydimethyl siloxane. PE. See Polyethylene. Peak-to-trough height average value, in fracture profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .542 Pearlite atomic volume of ferrous alloys . . . . . . . . . . . . . . . .194 divorce of . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291–292 in high-temperature transformation products . . .215 as transformational product in steel . . . . . 192, 193, 194, 195, 196 Pearson plot of crack-growth rate . . . . . . . . . . . . . .703 Pearson VII function . . . . . . . . . . . . . . . . . . . . . . . . . . . . .487 Pebbles. See Orange peel. PECVD. See Plasma-enhanced chemical vapor deposition. PEEK. See Polyetheretherketone. PEEKK. See Polyetheretherketoneketone. Peeling, contact fatigue terminology . . . . . . . . . . . . . .722 Peeling fatigue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 724–725 Peening distortion due to residual stresses . . . . . . . . . . . . . 1053 to improve ground surfaces . . . . . . . . . . . . . . . . . . . . .221 to remove surface oxides . . . . . . . . . . . . . . . . . . . . . . .215 of weldments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .159 PEI. See Polyetherimide. PEN. See Polyethernitrile. Pencil glide, definition . . . . . . . . . . . . . . . . . . . . . . . . . . 1071 Penetrant testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .345 Penetration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 801, 802 factors governing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .806 of liquids in refractories . . . . . . . . . . . . . . . . . . . . . . . .802 rate of . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .802 slag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .803 Pepper-pot pitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .890 Percent shear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .604 Percussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .965 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .965 Percussion cone, definition . . . . . . . . . . . . . . . . . . . . . 1071 Percussion track tools, striking/struck tool specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .987 Percussive wear. See Impact wear. Performance-demonstration-based approach, to life assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . .274 Performance factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Performance indices . . . . . . . . . . . . . . . . . . . . . . . . . . .29, 35 Performance standards . . . . . . . . . . . . . . . . . . . . . . . . . .229 Periclase formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .877 melting point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .877 Permanent (metal cores) casting, in shape-casting processes classification scheme . . . . . . . . . . .124 Permanent mold casting . . . . . . . . . . . . . . . . . . . 124–125 characteristics of process . . . . . . . . . . . . . . . . . . . . . . .124 classification scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . .124 and defect-related failures . . . . . . . . . . . . . . . . 123–124 mold material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .123 pouring temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . .125 in shape-casting processes classification scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .124 variables affecting dimensional accuracy and surface finish . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .125 Permanent molding, and surface finish of casting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .120

www.asminternational.org

Index / 1135 Permanent pattern casting, in shape-casting processes classification scheme . . . . . . . . . . .124 Persistent slip bands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .629 Persistent slip lines, definition . . . . . . . . . . . . . . . . . . 1071 PES. See Polyether sulfone. PET. See Polyethylene terephthalate. P-F interval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 definition in reliability-centered maintenance . . . 62 PFA. See Probability of false alarms. PFZs. See Precipitate-free zones. pH effect on microbially induced corrosion attack on weldments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .888 and hydrogen damage . . . . . . . . . . . . . . . . . . . . . . . . . . .873 Phase diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .376 copper-lead . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367, 368 to design refractories . . . . . . . . . . . . . . . . . . . . . . . . . . . .801 interpretations of, in failure analysis . . . . . . . . . . .322 Phases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .338 Phase transformations, during heating and cooling . . . . . . . . . . . . . . . . . . . . 192–195, 196, 197 Phenol formaldehyde bonds of . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .650 chemical changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .650 Phenol-formaldehyde cured rubber, characteristics of engineering polymers . . . . . . . . . . . . . . . . . . .359 Phenolic(s) abrasive wear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1030 as corrosion-resistant coating . . . . . . . . . . . . . . . . . . .769 Phenolic linings, as corrosion-resistant coatings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .758 Phenolic resin for mounting . . . . . . . . . . . . . . . . . . . 502, 503, 504, 505 specific wear rates . . . . . . . . . . . . . . .1020, 1022, 1023 Phenolic resin-aramid fiber composites, specific wear rates . . . . . . . . . . . . . . . . . . . . . . . . . 1022, 1023 Phenolic resin composites, specific wear rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1022 Phosphate conversion coatings for corrosion resistance . . . . . . . . . . . . . . . . . . . . . . . . .759 as hydrogen source for hydrogen embrittlement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .819 Phosphate corrosion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .344 as boiler tube damage mechanism on failure wheel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .350 characteristics of boiler waterwall damage mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . 347, 348 Phosphates, as inhibitors . . . . . . . . . . . . . . . . . . . . . . . . . .757 Phosphating to prevent fretting damage . . . . . . . . . . . . . . . . . . . . . .934 role in hydrogen embrittlement . . . . . . . . . . . . . . . . .820 Phosphides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .117 Phosphide sweat, as casting defect . . . . . . . . . . . . . . .111 Phosphonates, as inhibitors . . . . . . . . . . . . . . . . . 757–758 Phosphoric acid causing intergranular corrosion in sensitized austenitic stainless steels . . . . . . . . . . . . . . . . . .779 corrosion by, stainless steel valve in vending machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Phosphorus as alloying species in metal, causing accelerated cracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .831 as alloying species in metal, causing stresscorrosion cracking in copper alloys (in presence of aerated aqueous NH3) . . . . . . . .831 as alloying species in metal, causing stresscorrosion cracking in stainless steels (in presence of Cl–) . . . . . . . . . . . . . . . . . . . . . . . . . . . .831 contaminating tension springs from phosphate coating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .689 content effect in structural steels . . . . . . . . . . . . . . .404 content effect on temper embrittlement . . 691, 692 content in intergranular fracture surfaces of carburized steels . . . . . . . . . . . . . . . . . . . . . 644–645 effect on rupture ductility . . . . . . . . . . . . . . . . . . . . . . .736 effect on time-to-fracture of copper by SCC in ammoniacal atmosphere . . . . . . . . . . . . . . . . . . .853 effect on weldment hot cracking . . . . . . . . . . . . . . .185 as embrittling impurity in low-alloy steel castings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .144 as grain-boundary embrittler . . . . . . . . . . . . . . . . . . . .646 grain-boundary segregation and intergranular brittle fracture . . . . . . . . . . . . . . . . . . . . . . . . 643, 645

© 2002 ASM International. All Rights Reserved. ASM Handbook Volume 11: Failure Analysis and Prevention (#06072G)

www.asminternational.org

1136 / Index

Phosphorus (continued) grain-boundary segregation causing intergranular stress-corrosion cracking . . . . . . . . . . . . . . . . . .647 and hot corrosion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .872 microsegregation susceptibility . . . . . . . . . . . . . . . . .219 in paper-drier head casting, cold shut defect . . 121, 122 stress-corrosion cracking . . . . . . . . . . . . . . . . . . 826–827 Phosphorus print technique . . . . . . . . . . . . . . . . . . . . .337 Photodegradation, of polymers . . . . . . .653, 654, 798 Photodocuments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Photoelastic coatings . . . . . . . . . . . . . . . . . . . . . . . 396–397 Photoelectron maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .532 Photography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 418–427 aperture selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .421 color calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .405 digital photography . . . . . . . . . . . . . . . . . . . . . . . 420–421 digital scanners . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .420 documentation in field . . . . . . . . . . . . . . . . . . . . . . . . . .418 documentation in laboratory . . . . . . . . . . . . . . . . . . . .419 equipment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 419–420 feature exposure selection . . . . . . . . . . . . . . . . . . . . . .421 film photography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .420 filter selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .421 fracture surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . 421–425 lighting considerations . . . . . . . . . . . . . . . . . . . . . . . . . .419 lighting types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .421 macroscopic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .398 magnification determination . . . . . . . . . . . . . . . . . . . .419 on-site data collection . . . . . . . . . . . . . . . . . . . . . . . . . . .394 in preliminary visual examination . . . . . . . . . . . . . .395 shutter speed selection . . . . . . . . . . . . . . . . . . . . . . . . . .421 specifications for field photographic documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . .418 Photolytic degradation, of polymers . . . . . . . . . . . . .368 Photosynthetic metabolism . . . . . . . . . . . . . . . . . . . . . .881 Phthalic anhydride (crude), causing intergranular corrosion in sensitized austenitic stainless steels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .779 Physical aging, as polymer failure mechanism . . .368 Physical crack size (ap), definition . . . . . . . . . . . . . 1071 Physical etching, as ceramographic etching procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362, 363 Physical evidence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .317 Physical properties definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1071 inverse relationships with mechanical properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Physical vapor deposition (PVD) . . . . . . . . . . . . . . . .759 coatings, rolling-contact fatigue of . . . . . . . 945–949 to prevent fretting damage . . . . . . . . . . . . . . . . . . . . . .934 PI. See Polyimide. Pickling and hydrogen stress cracking . . . . . . . . . . . . . . . . . . .811 inhibited solutions to remove rust or scale . . . . .406 to remove heat-tinted scale from stainless steels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .888 Piece-part fault analysis . . . . . . . . . . . . . . . . . . . . . .53, 55 Pigs (cleaning devices) . . . . . . . . . . . . . . . . . . . . . . . . . . .894 Pilings, crevice corrosion . . . . . . . . . . . . . . . . . . . . . . . . .776 Pilot-plant operations, performance monitoring for corrosion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .406 Pin, fatigue fracture in low-cycle fatigue . . . 631, 633 Pinholes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .115 as casting defects . . . . . . . . . . . . . . . . . . . . . . . . . 106, 115 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1071 surface, as casting defect . . . . . . . . . . . . . . . . . . . . . . .106 Pinion shafts, distortion of steel . . . . . . . . . . . . 202, 205 Pin-joint assembly, lug fracture . . . . . . . . . . . . . . . . . .395 Pin-loaded clevis, stress analysis . . . . . . . . . . . 471–472 Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 682, 690 and neutron embrittlement . . . . . . . . . . . . . . . . . . . . . .697 Pin shear stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .472 Piobert lines. See Lu¨ders lines. Pipe. See also Pipelines; Piping; Tube; Tubing. of fire protection system water supply, graphitic corrosion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 787, 788 hydrogen attack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .816 hydrogen-induced cracking in low-carbon steel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .366 pitting corrosion, of carbon steel . . . . . . . . . 356, 357 in pressurized water reactor, stress-corrosion cracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 827–828 stress-rupture failure of CrMo steel . . . . . . . . . . . .365

Pipe coupling, uniform corrosion of copper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 768–769 Pipe (defect type) in forgings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 in ingots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86–87 Pipe elbow, impingement corrosion of malleable iron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .792 Pipelines buried, impressed-current cathodic protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 756, 757 buried, preventive maintenance for . . . . . . . 754–755 carbonate/bicarbonate stress-corrosion cracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 839–840 erosion-corrosion . . . . . . . . . . . . . . . . . . . . . . . . . . 771, 791 graphitic corrosion . . . . . . . . . . . . . 786–787, 788, 789 hydrogen embrittlement from cathodic protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .813 pitting corrosion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .771 Pipe porosity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82–83 Pipe stress and pressure vessel analysis . . . . . . . .385 Pipe void, distortion from stress raisers . . . . 205, 207 Piping. See also Pipe; Pipelines; Tube; Tubing. fabrication code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .780 life-limiting factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .233 liquid metal induced embrittlement . . . . . . 862, 863, 864, 866 microbially induced corrosion of brass . . . . . . . . .890 microbially induced corrosion of cupronickel power station condenser tubing . . . . . . . . . . .890 outlet, stress-corrosion cracking by chlorides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 844–845 power-plant, leak-before-break concept . . . . . . . .231 pressure, and static stresses . . . . . . . . . . . . . . . . . . . . .234 prevention approach for corrosion in industrial facilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .893 for storm sewer, pitting, and microbially induced corrosion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .753 uniform corrosion of copper . . . . . . . . . . . . . . 768, 769 velocity-affected corrosion, fire-sprinkler system for saltwater ferry boat . . . . . . . . .789–790, 791 Piping finite element analysis . . . . . . . . . . . . . . . . . . . .385 Piping for steam engines elevated temperatures for applications . . . . . . . . .729 materials used . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .729 Piping in nuclear reactors elevated temperatures for applications . . . . . . . . .729 materials used . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .729 Piston of gun-recoil mechanism, ductile iron fatigue fracture . . . . . . . . . . . . . . . . . . . . . . . . . .141–142, 143 Pitman arm forging, material quality problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .509 Pits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343, 519 as casting defects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .120 formation by corrosion, as geometric stress raisers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .634 in ingot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .83, 90 Pitting. See also Etch pits. . . . . . . 337, 751, 753, 754, 761, 763, 765–766, 767–768, 771–775 aircraft freshwater tanks . . . . . . . . . . . . . . . . . . 773–774 as boiler tube damage mechanism on failure wheel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .350 causes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .771 from contact fatigue on gear teeth . . . . . . . . 629, 632 contact fatigue terminology . . . . . . . . . . . . . . . . . . . . .722 of copper tube . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .353 of copper with microbially induced corrosion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .890 damage mechanism . . . . . . . . . . . . . . . . . . . . . . . 343–344 as damage mechanism on failure wheel . . . . . . . .349 as defect resulting from electrolytic cleaning . . . 81 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1071 evaporator tubes . . . . . . . . . . . . . . . . . . . . . . . . . . . 845, 846 failure reduction measures . . . . . . . . . . . . . . . . . . . . . .777 features observed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .356 heat exchanger tube of copper . . . . . . . . . . . . 356, 357 heat exchanger tube of stainless steel . . . . . . . . . .356 as localized corrosion . . . . . . . . . . . . . . . . . . . . . . . . . . .874 from microbially induced corrosion . . . . . 882, 884, 886, 887, 888, 889 piping for storm sewer treatment system . . . . . . .753 of post-electrical discharge machining tool steel mold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 512, 513 reboiler bypass duct damper . . . . . . . . . . . . . . . . . . . .775

of steam turbine blade . . . . . . . . . . . . . . . . . . . . 774, 775 of steam turbine rotor disk . . . . . . . . . . . . . . . . . . . . . .842 stirring fluid for control of . . . . . . . . . . . . . . . . . . . . . .755 subsurface-origin . . . . . . . . . . . . . . . . . . . . . . . . . . 722–723 surface-origin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .722 tubes in organic chemical plant condenser, potable water effect . . . . . . . . . . . . . . . . . . . . . . . . . . 772–773 and type 2 low-temperature hot corrosion . . . . . .872 and velocity-affected corrosion . . . . . .789–790, 791 wires in electrostatic precipitator at paper plant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 774–775 Pitting factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .703 Pitting index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .775 Pitting resistance equivalent number (PREN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .775 Pivotal hammer impact wear apparatus 970–971 Plague quenching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .213 Plain carbon steels austempering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .207 uniform corrosion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .769 Plaintiff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 Planar grinding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 506, 507 Planar imperfections, of weldments . . . . . . . . . . . . .157 Planar slip, in stainless steel . . . . . . . . . . . . . . . . 523, 524 Plane strain . . . . . . . . . . . . . . . . . . . . . . 466, 467, 478, 656 deformation and fracture surface . . . . . . . . . . . . . . .478 Plane-strain compression . . . . . . . . . . . . . . . . . . . . . . . . . 98 Plane-strain deformation, definition . . . . . . . . . . . 1071 Plane strain flat fracture . . . . . . . . . . . . . . . . . . . . . . . . .566 Plane-strain fracture toughness (KIc) . . . . 230, 243, 478, 480, 582, 656, 686, 687 crack tip opening displacement optimum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247, 248 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . 401, 476, 1071 of polymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .657 relationship with various failure modes . . . . .35, 36 Plane-strain loading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .466 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1071 Plane-strain microvoid coalescence . . . . . . . 563, 566 Plane-strain slab compression tests . . . . . . . . . . . . .603 Plane stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 467, 478 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1071 deformation and fracture surface . . . . . . . . . . . . . . .478 Plane-stress fracture toughness (Kc) . . . . . 401, 480, 687 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .401, 1071 Plane stress loading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .466 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1071 Plane stress slant fracture . . . . . . . . . . . . . . . . . . . . . . . . . .566 Plasma arc cutting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .335 Plasma arc welding, failure origins related to . . .186 Plasma-assisted chemical vapor deposition (PACVD) coating material, thickness, and hardness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .949 contact stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .949 fatigue life . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .949 rolling contact fatigue tester . . . . . . . . . . . . . . . . . . . .949 substrate material and hardness . . . . . . . . . . . . . . . . .949 surface roughness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .949 Plasma chemical vapor deposition (PCVD) coating material, thickness, and hardness . . . . . .949 contact stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .949 fatigue life . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .949 rolling contact fatigue tester . . . . . . . . . . . . . . . . . . . .949 substrate material and hardness . . . . . . . . . . . . . . . . .949 surface roughness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .949 Plasma-enhanced chemical vapor deposition (PECVD) coating material, thickness, and hardness . . . . . .949 contact stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .949 fatigue life . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .949 rolling contact fatigue tester . . . . . . . . . . . . . . . . . . . .949 substrate material and hardness . . . . . . . . . . . . . . . . .949 surface roughness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .949 Plasma etching, as ceramographic etching procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362, 363 Plasma spray, to prevent fretting damage . . . . . . . .934 Plaster casting, characteristics of process . . . . . . . .124 Plaster-mold casting, minimum web thickness . . . 32 Plaster slurry molding, in shape-casting processes classification scheme . . . . . . . . . . . . . . . . . . . . . .124 Plastic bags, additives in plastic transferring to samples studied . . . . . . . . . . . . . . . . . . . . . . . . . . . .528

© 2002 ASM International. All Rights Reserved. ASM Handbook Volume 11: Failure Analysis and Prevention (#06072G)

Plastic buckling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .559 by overloading . . . . . . . . . . . . . . . . . . . . . . . . . .1048–1049 Plastic collapse . . . . . . . . . . . . . . . . . . . . . . . . .240, 241, 243 causing service failures of welds . . . . . . . . . . . . . . .156 Plastic deformation. See also Deformation, plastic. defintion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1071 Plasticity correction factor (q) . . . . . . . . . . . . . . . . . . .245 Plasticity interaction factor . . . . . . . . . . . . . . . . . . . . . .267 Plasticization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 796–797 degree increased by chemical attack . . . . . . . . . . .369 of polymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .439 Plasticizer migration, from polyvinyl chloride . .796 Plasticizers, biological degradation . . . . . . . . . . . . . . .885 Plastic limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .474 Plastic load-limit model . . . . . . . . . . . . . . . . . . . . 623, 624 Plastic portion of the fracture-resistance energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .479 Plastic potential equation . . . . . . . . . . . . . . . . . . . . . . . .461 Plastic strain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 565–566 effect on number of cycles to failure . . . . . . . . . . .491 Plastic zone . . . . . . 279, 282–283, 476, 477, 549, 611, 654 and crack-tip blunting . . . . . . . . . . . . . . . . . . . . . 612, 616 creation of . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .476 creation with crack initiation . . . . . . . . . . . . . 581–582 for fatigue initiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . .706 radius at crack tip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .583 size, calculation of . . . . . . . . . . . . . . . . . . .283, 477, 566 vertical serial sectioning . . . . . . . . . . . . . . . . . . . . . . . .553 Plate brittle fracture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352–353 discontinuities, types of . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 hydrogen embrittlement . . . . . . . . . . . . . . . . . . . 814, 815 residual-stress map of welded plate . . . . . . . . . . . .489 Platen friction, and compression failure . . . . . . . . .603 Plate theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .380 Plating and cold forming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .102 electroless nickel . . . . . . . . . . . . . . . . . . . . . . . . . . 512, 513 electroless nickel-phosphorus alloy . . . . . . . . . . . . .407 and fatigue strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . .720 hard chrome . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .407 to preserve edge of specimen . . 502, 503, 504, 505 removal process effect on chemical analysis . . .430 Platinum as addition to aluminide coatings . . . . . . . . . . . . . . .877 fretting wear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .934 galvanic corrosion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .767 galvanic series in seawater . . . . . . . . . . . . . . . . . . . . . .762 sputter coating for polymers undergoing SEM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 638, 639 standard emf series value . . . . . . . . . . . . . . . . . . . . . . .763 Platinum alloys, environments subjecting alloy to selective leaching . . . . . . . . . . . . . . . . . . . . . . . . . .785 platinum aluminide diffusion coatings . . . . . . . . .877 Plexiglass, cavitation erosion . . . . . . . . . . . . . . . . . . . 1003 Plowing . . . . . . . . . . . . . . . . . . . . . . . . . . . 910, 912, 913, 914 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1071 of polymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1022 Plucking, of ceramic material in impact wear . . . .968 Plug quenching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .213 PMMA. See Polymethylmethacrylate. Pneumatic pumps, to fill castings, avoiding oxide films . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .118 POD. See Probability of detection. Point analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .520 Point-surface origin, contact fatigue mode and controlling factors . . . . . . . . . . . . . . . . . . . . . . . . .725 Poisson distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .253 Poisson’s ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .466 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1071 Polarization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 763–764 Polarization break testing . . . . . . . . . . . . . . . . . . . . . . . .771 Polarization curves . . . . . . . . . . . . . . 763–764, 771, 778 Polarized light, as ceramographic etching procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .362 Polar moment of inertia . . . . . . . . . . . . . . . . . . . . . . . . .469 Polishing abrasives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 507–508 attack polishing solution use . . . . . . . . . . . . . . . . . . . .507 central force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .507 of ceramics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362, 363 cloths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 506, 507

electrolytic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .508 four-step contemporary practice . . . . . . . . . . 507–508 guidelines for semiautomatic preparation of structural ceramics . . . . . . . . . . . . . . . . . . . . . . . . .362 mechanical systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . .506 in metallographic examinatin . . . . . . . 503, 504, 505, 506–508 nonferrous metals with rigid grinding disc . . . . .508 post-electrical discharge machining, improperly done . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 512, 513 steels with a rigid grinding disc . . . . . . . . . . . . . . . .508 traditional method . . . . . . . . . . . . . . . . . . . . . . . . . 507, 508 Poll (of hammer), definition . . . . . . . . . . . . . . . . . . . . . .987 Polyacetal brittle fracture of latch assemblies . . . . . . . . 454–456 differential scanning calorimetry thermogram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .440 Polyacrylonitrile (PAN) based fibers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1038 relative resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .653 Polyakov rules, for quenching . . . . . . . . . . . . . . 210, 212 Polyamide (PA) abrasive wear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1030 adhesive wear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1040 characteristics of engineering polymers . . . . . . . .359 ductile fracture behavior . . . . . . . . . . . . . . . . . . . . . . . .655 notch sensitivity and brittle fractures . . . . . . . . . . .657 solution viscosity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .445 Polyamide 6 (PA 6), abrasive wear . . . . . . . . . . . . . 1030 Polyamide 11 (PA 11), abrasive wear . . . . . . . . . . 1031 Polyamide 12 (PA12), erosion rate . . . . . . 1005, 1006 Polyamide 66 (PA 66) abrasive wear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1030 adhesive wear . . . . . . . . . . . . . . . . . . . .1039, 1040, 1041 Polybenzimidazole (PBI) adhesive wear . . . . . . . . . . . . . . . . . . . . . . . . . . 1035, 1038 specific wear rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1020 wear resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1022 Polybutylene, ductile fracture behavior . . . . . . . . . . .655 Polybutylene terephthalate (PBT) creep modulus vs. temperature . . . . . . . . . . . . . . . . .652 differential scanning calorimetry thermogram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .440 embrittlement of automotive sleeves . . . . .448–449, 451, 452 Polycarbonate (PC) abrasive wear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1030 acetone solvent-induced cracking of metal-framed ophthalmic lenses . . . . . . . . . . . . . . . . . . . . . . . . . .654 brittle fracture of electrical switch housings . . . . . . . . . . . . . . . . . . . . . . . . .456–457, 458 crack propagation and ductile fracture . . . . . . . . .654 crack propagation and shear banding . . . . . 654, 655 craze formation . . . . . . . . . . . . . . . . . . . . . . . . . . . 568, 569 creep modulus vs. temperature . . . . . . . . . . . . . . . . .652 deformation by shear banding . . . . . . . . . . . . . . . . . .652 differential scanning calorimetry . . . . . . . . . . . . . . .441 ductile fracture behavior . . . . . . . . . . . . . . . . . . . . . . . .655 dynamic stress waves causing fracture . . . 634, 635 embrittlement, bracket . . . . . . . . . . . . . . . . . . . . 446, 447 environmentally induced cracking . . . . . . . . . . . . . .654 fatigue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 638, 639 fatigue fractures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .659 Fourier transform infrared spectroscopy . . . . . . . .439 fracture surface features . . . . . . . . . . . . . . . . . . . . . . . .657 as glassy thermoplastic . . . . . . . . . . . . . . . . . . . . . . . 1023 isochronous creep plot of stress-strain behavior vs. temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .653 mirror zone and mist region . . . . . . . . . . . . . . . . . . . .658 mist region . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .658 notch sensitivity and brittle fractures . . . . . . . . . . .657 relative resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .653 shrinkage voids on field fracture surface . . . . . . .657 solvent effects on crazing . . . . . . . . . . . . . . . . . . . . . . .653 stress crazing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .652 Wallner lines not caused by fatigue in fracture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 634, 635 Polycarbonate/PET, environmental stress cracking of appliance housings . . . . . 450–451, 452, 453 Polycarbonate resin Lexan 101, Fourier transform infrared radiation spectroscopy . . . . . . . . . . . .439 Polycrystalline, definition . . . . . . . . . . . . . . . . . . . . . . . 1071 Polydimethyl siloxane (PDMS) . . . . . . .532, 535, 536

www.asminternational.org

Index / 1137 Polyester abrasive wear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1030 brittle fracture behavior . . . . . . . . . . . . . . . . . . . . . . . . .656 as corrosion-resistant coating . . . . . . . . . . . . . . . . . . .769 hydrolysis of . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .797 Polyetheretherketone (PEEK) abrasive wear . . . . . . . . . . . . . . . . . . . . .1030, 1032, 1033 adhesive wear . . . . . . . . . . . . . 1035, 1036, 1038, 1040 cohesive wear . . . . . . . . . . . . . . . . . . . . . . . . . . 1020, 1022 as glassy thermoplastic . . . . . . . . . . . . . . . . . . . . . . . 1023 specific wear rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1020 Polyetheretherketoneketone (PEEKK), adhesive wear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1035 Polyether-imide (PEI) abrasive wear . . . . . . . . . . . . . . 1030, 1031, 1033, 1034 adhesive wear . . . . . . . . . . . . . . . . . . . .1036, 1037, 1038 Polyethernitrile (PEN), adhesive wear . . 1035, 1038 Polyether sulfone (PES) abrasive wear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1030 adhesive wear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1038 Polyethylene (PE) abrasive wear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1030 brittle fracture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 659, 797 characteristics of engineering polymers . . . . . . . .359 as coating to resist microbially induced corrosion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .885 crack propagation and ductile fracture . . . . . . . . .654 crack propagation and failure mechanisms . . . . .654 crazing fibrils in . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .651 differential scanning calorimetry thermogram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .440 distortion of chemical storage vessel . . . . . 453–454 ductile fracture . . . . . . . . . . . . . . . . . . . . . . .655, 659, 660 lubricants effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1025 medium-density, fatigue . . . . . . . . . . . . . . . . . . . . . . . .638 relative resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .653 rib markings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .659 as semicrystalline thermoplastic . . . . . . . .1023–1024 solvation effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .796 specific wear rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1020 stress crazing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .652 surface embrittlement . . . . . . . . . . . . . . . . . . . . . . . . . . .798 Polyethylene terephthalate (PET) abrasive wear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1030 brittle fracture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 451–453 characteristics of engineering polymers . . . . . . . .359 crack propagation and ductile fracture . . . . . . . . .654 crystallization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .441 ductile fracture behavior . . . . . . . . . . . . . . . . . . . . . . . .655 Fourier transform infrared spectroscopy . . . . . . . .439 notch sensitivity and brittle fractures . . . . . . . . . . .657 shear band formation . . . . . . . . . . . . . . . . . . . . . . . . . . .622 time-of-flight secondary ion mass spectroscopy mass spectrum . . . . . . . . . . . . . . . . . . . . . . . 531, 533 x-ray photoelectron spectroscopy high-resolution spectrum . . . . . . . . . . . . . . . . . . . . . . . .529, 531, 534 Polyimide (PI) abrasive wear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1030 ladder molecules, characteristics of engineering polymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .359 Polyisoprene characteristics of engineering polymers . . . . . . . .359 fracture mechanism map . . . . . . . . . . . . . . . . . . . . . . . .571 microstructure similar to natural rubber . . . . . . . .650 wear resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1022 Polymerase chain reaction (PCR), to amplify microbially induced corrosion material present . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .893 Polymeric-coated wires, for impressed-current anodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .756 Polymer(s). See also Elastomers; Glassy thermoplastics; Thermosets. abrasion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1019 abrasive wear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 912–913 aging and degradation . . . . . . . . . . . . . . . . . . . . 441, 444 analysis methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .359 as base material . . . . . . . . . . . . . . . . . . . . . . . . . . . 358, 359 brittle creep behavior . . . . . . . . . . . . . . . . . . . . . . . . . . .651 bulk wear . . . . . . . . . . . . . . . . . . . . . . . . .1019, 1020, 1021 centrifugal casting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .132 chemical attack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .439 chemical contact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .439 chemical exposure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .796

© 2002 ASM International. All Rights Reserved. ASM Handbook Volume 11: Failure Analysis and Prevention (#06072G)

www.asminternational.org

1138 / Index

Polymer(s) (continued) chemical wear . . . . . . . . . . . . . . . . . . . . . . . . . . 1019, 1020 coefficient of thermal expansion . . . . . . . . . . 442–443 cohesive wear . . . . . . . . . . . . . . . . . . . .1020, 1021, 1022 contamination determination . . . . . . . . . . . . . . . . . . . .439 crack propagation . . . . . . . . . . . . . . . . . . . . . . . . . 654–655 crazing as failure mechanism . . . . . . . .367–368, 369 creep modulus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .652 cross linking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .444 crystallinity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 441, 650 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .650 degradation . . . . . . . . . . 439, 441, 442, 444, 797–798 delamination wear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1019 differential scanning calorimetry . . . . . . . . . 439–441 in dissimilar metal pair, fretting damage . . . . . . .928 ductile creep behavior . . . . . . . . . . . . . . . . . . . . . . . . . .651 ductile tearing mode of deformation . . . . . . . . . . .658 dynamic mechanical analysis . . . . . . . .443–444, 445 environmental effect on . . . . . . . . . . . . . . . . . . . 796–799 environmental effects on wear failures . . . . . . . . . . . . . . . . . . . . . . .1024–1025 environmental stress cracking . . . . . . .439, 443, 653 environmental wear . . . . . . . . . . . . . . . . . . . . . . . . . . . 1019 erosion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1019 evaluation in failure analysis . . . . . . . . . . . . . 367–369 evolved gas analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . .442 factors influencing performance . . . . . . . . . . 437, 438 factors initiating material removal during wear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1025 fatigue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .368, 638–639 fatigue wear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1019 Fourier transform infrared spectroscopy . . 437–439 fractography of . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .655 fretting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .929, 1019 gel permeation chromatography . . . . . . . . . . 444–445 glass transition in amorphous plastics . . . . . . . . . .441 humidity effect on wear failures . . . . . . . . . . . . . . 1025 hydrolysis . . . . . . . . . . . . . . . . . . . . . . . 439, 44, 456, 797 impact resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .444 impact wear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .970 interfacial wear . . . . . . . . . . . . . . . . . . . . . . . . . .1019–1022 after Izod impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .658 lubricant effects on wear failures . . . . . . .1024–1025 mechanical testing . . . . . . . . . . . . . . . . . . . . . . . . 445–446 mechanical wear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1019 melt flow rate or melt flow index . . . . . . . . . . . . . . .445 melting point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 440–441 moisture-related degradation . . . . . . . . . . . . . . . . . . . .368 molded-in stresses . . . . . . . . . . . . . . . . . . . . . . . . . 443, 444 molecular weight assessment methods . . . 444–445 organic chemicals causing degradation . . . 368–369 overload failures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .679 oxidation . . . . . . .439, 441, 444, 456, 458, 459, 798 particulate-reinforced abrasive wear . . . . . . . . . . . . . . . . . . . . . . . . .1029, 1030–1031 photodegradation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .798 photolytic degradation . . . . . . . . . . . . . . . . . . . . . . . . . .368 photooxidation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .439 physical aging as failure mechanism . . . . . . . . . . .368 plasticization . . . . . . . . . . . . 367, 439, 796–797, 1025 for repairing cavitation erosion . . . . . . . . . . . . . . . 1017 residual stress as failure mechanism . . . . . . . . . . . .368 solution viscosity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .445 solvation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .439, 796–797 specific wear rate . . . . . . . . . . . . . . . . . . . . . . . 1020, 1022 stress relaxation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .650 surface embrittlement . . . . . . . . . . . . . . . . . . . . . . . . . . .798 swelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 796–797 temperature effects . . . . . . . . . . . . . . . . . . . . . . . . 798–799 thermal degradation . . . . . . . . . . . . . . . . . . . . . . . 797–798 thermal oxidation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .439 thermal stress as failure mechanism . . . . . . . . . . . .368 thermal wear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1019 thermogravimetric analysis . . . . . . . . . . . . . . . 441–442 thermomechanical analysis . . . . . . . . . .442–443, 444 transfer wear . . . . . . . . . . . . . . . . . . . . . . . . . . . 1019, 1020 viscoelasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .650 wear failures . . . . . . . . . . . . . . . . . . . . . . . . . . . .1019–1026 weight loss relation . . . . . . . . . . . . . . . . . . . . . . . . . . . 1022 Polymer(s), reinforced . . . . . . . . . . . . . . . . . . . .1028–1041 abrasive wear . . . . . . . . . . . . . . . . . . . . . . . . . . . .1029–1035 adhesive (sliding) wear . . . . . . . . . .1034, 1035–1041 bidirectionally (BD) . . . . . . . . . . . . . .1033, 1034–1035 continuous unidirectional fiber, abrasive wear . . . . . . . . . . . . . . . . . . . . . . . . .1029, 1032, 1033

fabric composites, abrasive wear . . . . . . .1033–1035 fabric composites, adhesive wear . . . . . . . . . . . . . 1040 fillers for . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1028 fracture toughness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1032 hybrid composites, adhesive wear . . . . . .1040–1041 particulate-filled composites, adhesives wear . . . . . . . . . . . . . . . . . . . . . . . . .1035, 1036–1037 short-fiber, abrasive wear . . . . . . . .1030, 1031–1033 short-fiber, adhesive wear . . . . . . . . . . . . . .1035, 1036, 1037–1038 tribological performance . . . . . . . . . . . . . . . .1028–1029 unidirectional fiber composites . . . . . . . . .1038–1040 Polymeric materials bonding and crystallinity . . . . . . . . . . . . . . . . . . . . . . . .568 deformation and fracture . . . . . . . . . . . . .568–569, 570 glass transition temperature effect . . . . . . . . 568, 569 multiaxial loading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .619 neck formation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .569 orientation hardening . . . . . . . . . . . . . . . . . . . . . . . . . . .620 thermal softening . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .620 uniaxial loading of . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .619 Polymer(s) with continuous fibers . . . . . . . . . . . . . 1029 Polymethyl methacrylate (PMMA) abrasive wear . . . . . . . . . . . . . . . . . . . . .1029, 1030, 1033 brittle fracture behavior . . . . . . . . . . . . . . . . . . . 656, 657 crazing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .654 fatigue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 638, 639 fretting wear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1023 as glassy thermoplastic . . . . . . . . . . . . . . . . . . . . . . . 1023 mist region . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .658 relative resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .653 specific wear rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1020 stress crazing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .652 Polymethyl methacrylate (PMMA) composites, abrasive wear . . . . . . . . . . . . . . . . . . . . . 1029, 1030 Polymorphism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .681 Polyoxymethylene (POM) abrasive wear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1030 microcracking due to ultraviolet exposure . . . . 653, 654 relative resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .653 wear failure of gear wheel . . . . . . . . . . . . . . . . . . . . 1026 wear volume relation . . . . . . . . . . . . . . . . . . . . . . . . . . 1022 Polyphenylene oxide (PPO) abrasive wear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1030 relative resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .653 Polyphenylene sulfide (PPS) abrasive wear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1030 adhesive wear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1038 Polyphosphate-inhibitor treatments . . . . . . . 757–758 Polyphthalamide crystallization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .441 differential scanning calorimetry thermogram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .440 Polypropylene (PP) abrasive wear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1030 characteristics of engineering polymers . . . . . . . .359 as contaminant for couplings . . . . . . . . . . . . . 448, 450 crack propagation and crazing . . . . . . . . . . . . 654, 655 creep modulus vs. temperature . . . . . . . . . . . . . . . . .652 ductile fracture behavior . . . . . . . . . . . . . . . . . . . . . . . .655 isothermal transfer wear behavior . . . . . . . . . . . . 1024 notch sensitivity and brittle fractures . . . . . . . . . . .657 as petri dishes for storing samples to be later analyzed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .528 rapid overload fracture . . . . . . . . . . . . . . . . . . . . 634, 635 relative resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .653 rib marks not caused by fatigue in fracture . . . 634, 635 specific wear rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1020 stress crazing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .652 Polystyrene (PS) abrasive wear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1030 brittle fracture behavior . . . . . . . . . . . . . . . . . . . 656, 657 crack propagation and initiation . . . . . . . . . . 654, 655 differential scanning calorimetry . . . . . . . . . . . . . . .441 Fourier transform infrared spectroscopy . . . . . . . .439 as glassy thermoplastic . . . . . . . . . . . . . . . . . . . . . . . 1023 mist region . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .658 as petri dishes for storing samples to be later analyzed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .528 relative resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .653 shear banding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 652, 653

specific wear rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1020 stress crazing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .652 Polystyrene-acrylonitrile-butadrine, embrittlement of grips . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 447, 448 Polysulfone (PSU) crazing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .654 differential scanning calorimetry . . . . . . . . . . . . . . .441 Fourier transform infrared spectroscopy . . . . . . . .439 relative resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .653 solvent effects on crazing . . . . . . . . . . . . . . . . . . . . . . .653 Polytetrafluoroethylene (PTFE) abrasive wear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1030 adhesive wear . . . . . . . . . . . . . . . . . . . .1035, 1036, 1038 bronze-filled, for insert to prevent fretting damage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .934 as filler for nylon promoting wear resistance . . . . . . . . . . . . . . . . . . . . . . . . . . 1025, 1026 fretting damage on steel . . . . . . . . . . . . . . . . . . . . . . . .933 interfacial wear . . . . . . . . . . . . . . . . . . . . . . . . . 1020, 1021 isothermal transfer wear behavior . . . . . . . . . . . . 1024 as semicrystalline thermoplastic . . . . . . . .1023–1024 specific wear rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1020 temperature and pressure related to linear wear with sliding speed . . . . . . . . . . . . . . . . . . . . . . . 1021 wear rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1024 Polytetrafluoroethylene composites, wear rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1024 Polytetrafluoroethylene-filled polyoxymethylene, wear volume relation . . . . . . . . . . . . . . . . . . . . 1022 Polythionic acid (H2SnO6) causing stress-corrosion cracking in sensitized Inconel 600 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .831 causing stress-corrosion cracking in sensitized stainless steels . . . . . . . . . . . . . . . . . . . . . . . . . . . . .831 environment causing stress-corrosion cracking of nickel and nickel-base alloys . . . . . . . . . . . . . .848 stress-corrosion cracking . . . . . . . . . . . . . . . . . . 844, 849 Polythionic acid stress-corrosion cracking (PASCC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .844 Polytrifluorochloroethylene (PTFCE), abrasive wear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1030 Polyurethane (PU) adhesive wear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1039 moisture-cured, as corrosion-resistant coatings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .758 relative resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .653 Polyurethane paint, as coating to protect low-head hydraulic machines from cavitation erosion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1017 Polyvinyl chloride (PVC) abrasive wear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1030 brittle fracture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .660 characteristics of engineering polymers . . . . . . . .359 as coating to resist microbially induced corrosion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .885 ductile fracture behavior . . . . . . . . . . . . . . . . . . . . . . . .655 fatigue failure, pipe . . . . . . . . . . . . . . . . . . . . . . . . . . . . .524 notch sensitivity and brittle fractures . . . . . . . . . . .657 parabolic markings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .659 plasticization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .796 plasticizer migration . . . . . . . . . . . . . . . . . . . . . . . . . . . .796 relative resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .653 solution viscosity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .445 time-dependent isometric tensile creep curves for unplasticized polymer . . . . . . . . . . . . . . . . . . . . .651 unplasticized, crazing . . . . . . . . . . . . . . . . . . . . . . . . . . .654 work material related failure of tubing . . . 448, 451 POM. See Polyoxymethylene. Pontoons, floating-bridge, connector failure . . . . . 113, 114 Poor mold repair, as casting defect . . . . . . . . . . . . . .109 Porcelain, glazed, brittle fracture . . . . . . . . . . . . . . . . .670 Porcelain enamels, as corrosion-resistant coatings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .758 Porcelain insulator fracture markings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .664 replica, fracture surface . . . . . . . . . . . . . . . . . . . 663, 664 Pore(s) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 665, 669 in ceramics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 665,669 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1071 Porosity . . . . . . . . . . . . . . . . . . . 81, 82, 104, 112–116, 593 in corrosion-resistant castings . . . . . . . . . . . . . . . . . .148 as criteria for materials selection . . . . . . . . . . . . . . . . 32

© 2002 ASM International. All Rights Reserved. ASM Handbook Volume 11: Failure Analysis and Prevention (#06072G)

definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1071 as discontinuity for castings . . . . . . . . . . . . . . . . . . . . . . 9 in ingots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86–87 in permanent-mold castings . . . . . . . . . . . . . . . . . . . . .124 reduction by high pressure application . . . . . . . . .124 in refractories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 801, 806 as source of steel cracking . . . . . . . . . . . . . . . . 205, 207 in squeeze casting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .129 of technical ceramics . . . . . . . . . . . . . . . . . . . . . . . . . . . .806 as welding defect of castings . . . . . . . . . . . . . . . . . . .152 in weldments . . 157–158, 169, 170–172, 173, 185, 186, 187, 188, 189–190 Portable laboratory, components of . . . . . . . . . . . . .394 Postcrystallization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1026 Postplating baking, and hydrogen embrittlement prevention . . . . . . . . . . . . . . . . . . . . . . . . . . . . 820, 822 Postweld heat treat cracking. See Stress-relief embrittlement. Postweld heat treatment, of welded castings . . 152– 153 Potable water, and pitting corrosion . . . . . . . . 772–773 Potassium in deposits from microbially induced corrosion sites in stainless steel cooling water systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .889 standard emf series value . . . . . . . . . . . . . . . . . . . . . . .763 Potassium hydroxide (KOH) causing stress-corrosion cracking in carbon steels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .831 causing stress-corrosion cracking in Fe-Cr-Ni alloys (caustic cracking) . . . . . . . . . . . . . . . . . . .831 Potassium pyrosulfates . . . . . . . . . . . . . . . . . . . . . . . . . . .874 Potassium sulfate, as agent for hot corrosion . . . .872 Potential failure, definition in reliability-centered maintenance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 Potential measurements screening tests . . . . . . . .765 Potentiodynamic polarization curves . . . . . 763–764 Potentiodynamic testing . . . . . . . . . . . . . . . . . . . . . . . . . .407 Potentiostat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .763 Potentiostatic testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . .407 Poultice corrosion, definition . . . . . . . . . . . . . . . . . . . 1071 Pourbaix diagrams . . . . . . . . . . . . . . . . . . . . . . . . . 755, 801 Poured short, as casting defect . . . . . . . . . . . . . . . . . . .109 Pouring temperature, of permanent-mold castings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .125 Powder-free gloves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .528 Powder-generation plants, processes used causing corrosive wear . . . . . . . . . . . . . . . . . . . . . . . . . . . . .990 Power industry, design life of components . . . . . .229 Powder metallurgy constructs, intergranular brittle fracture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .677 Powder metallurgy die, heat-treatment-related failure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 510, 511 Powder metal products, nitridation attack from ammonia environements . . . . . . . . . . . . . . . . . . .869 Power plant gate-valve stem, stress-corrosion cracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 847–848 Power plant piping and tubing leak-before-break concept . . . . . . . . . . . . . . . . 231, 232 life assessment methods . . . . . . . . . . . . . . . . . . 304–310 Power plant waterwall tube, thermomechanical fatigue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .346 Power station condenser tubing microbially induced corrosion of aluminum brass . . . . . . . . . . . . . . . . . . . . . . . . . . . .890 of cupronickel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .890 PP. See Polypropylene. PPO. See Polyphenylene oxide. PPS. See Polyphenylene sulfide. Precious metals, for impressed-current anodes . .756 Precipitate-free zone(s) (PFZs) . . . . . . . . . . . . . . . . . .576 assisting creep embrittlement . . . . . . . . . . . . . . . . . . .695 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1071 dimpled intergranular fractures observed . . . . . . 643, 645 Precipitates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .338 Precipitating inhibitors . . . . . . . . . . . . . . . . . . . . . . . . . . .757 Precipitation embrittlement of austenitic manganese steels . . . . . . . . . . . . 147, 149 effect on overload failures . . . . . . . . . . . . . . . . . . . . . .694 Precipitation-hardenable stainless steels, workability behavior . . . . . . . . . . . . . . . . . . . . . . . . 98 Precision bolt, hydrogen damage . . . . . . . . . . . . . . . . .816

Precision saws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .502 blades for . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .502 Predictable errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 Prediction methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 Prediction maintenance, in petrochemical and chemical-processing industries . . . . . . . . . . . . . 21 Predominance diagrams . . . . . . . . . . . . . . . . . . . . . . . . .801 Preferential oxidation, of low-alloy steel castings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145, 146 Preferred orientation. See also Fiber; Texture. definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1071 Preheating, before austenitizing, to minimize warping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1052 Preliminary design review . . . . . . . . . . . . . . . . . . . . . . . . 75 PREN. See Pitting resistance equivalent number. Preproduction review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 Preservation of evidence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .406 in failure analysis . . . . . . . . . . . . . . . . . . . .334, 339–340 of fracture surfaces . . . . . . . . . . . . . . . . . . . . . . . . 397–398 Presputtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .530 Pressing and sintering (P/M), compatibility with various materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Press quench system . . . . . . . . . . . . . . . . . . .197, 202, 213 Pressure, effect on cavitation erosion . . . . . . . . . . 1010 Pressure die casting . . . . . . . . 125–127, 128, 129, 130 defect-related failures . . . . . 126–127, 128, 129, 130 and soldering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .127 Pressure differential, acting on aircraft fuselage . . . . . . . . . . . . . . . . . . . . . . . . .279, 284–285 Pressure-sensitive-adhesive (PSA)-backed polishing cloths . . . . . . . . . . . . . . . . . . . . . . . . . . .505 Pressure-sensitive-adhesive (PSA)-backed SiC grinding paper . . . . . . . . . . . . . . . . . . . . . . . . . . . .505 Pressure vessel(s) brittle fracture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .181 design codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .229 design parameters . . . . . . . . . . . . . . . . . . . . . . . . . 229, 230 fabrication code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .780 life-limiting factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .233 root-cause analysis of failure . . . . . . . . . . . . . . . . . . . . . 6 static stresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .234 stress-corrosion cracking . . . . . . . . . . . . . . . . . . 857–859 thin-walled, stress analysis . . . . . . . . . . . . . . . . . . . . . .471 Pressure vessel hatch cover, fatigue failure . . . 286– 287 Pressure vessel plates, temper embrittlement . . . .692 Pressure vessels in nuclear reactors elevated temperatures for applications . . . . . . . . .729 materials used . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .729 Pressurized cylindrical section, stress analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .475 Preventive measures . . . . . . . . . . . . . . . . . . . . . . . . . . . 75–77 Primary backscattered electrons (BSE) . . 518–519 Primary creep. See also Transient creep. definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1071 Primary function(s), definition in reliabilitycentered maintenance . . . . . . . . . . . . . . . . . . . . . . . 62 Primary stresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .462 Principal stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .482 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1071 values of . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .464 Principal stress plane . . . . . . . . . . . . . . . . . . . . . . . . . . . .464 Prior austenite grain boundaries and intergranular fatigue . . . . . . . . . . . . . . . . . . . . . . . .637 and intergranular fracture . . . . . . . . . . . . . . . . . . . . . . .645 metallographic examination . . . . . . . . . . . . . . . . . . . .364 microcracks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .218 nitride present in chuck jaw . . . . . . . . . . . . . . 513–514 quench cracking patterns . . . . . . . . . . . . . . . . . 201, 204 Prior austenite grains, in brittle fracture surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 612, 616 Prior austenite grain size, determining retained austenite volume . . . . . . . . . . . . . . . . . . . . . . . . . . .211 Proactive maintenance, definition in reliabilitycentered maintenance . . . . . . . . . . . . . . . . . . . . . . . 62 PROACT software package, root cause analysis (RCA) automated process . . . . . . . . . . . 331–332 Probabilistic analyses . . . . . . . . . . . . . . . . . . . . . . 241–242 Probabilistic life assessment . . . . . . . . . . . . . . . 250–267 computer software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .267 elements of . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .252 Probability, definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . .252

www.asminternational.org

Index / 1139 Probability-based design codes . . . . . . . . . . . . . . . . . .250 Probability-based structural design criteria, by U.S. Navy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .252 Probability density function (PDF) centroid of . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .252 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .252 Probability of detection (POD) . . . . . . .270–271, 272 Probability of failure . . . . . . . . . . . . . . . . . .241, 255, 256 bounds on series system . . . . . . . . . . . . . . . . . . . . . . . .263 due to natural evolution of damage to a critical value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .270 estimate of . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .257 estimation of superset of . . . . . . . . . . . . . . . . . . . . . . . .260 Probability of false alarms (PFA) . . . . . . . . . . . . . . .271 Probability of fracture (PROF) computer code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .252 Probability of injury . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 acceptable level of . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 Probability parameter, definition . . . . . . . . . . . . . . . .543 Probability plotting . . . . . . . . . . . . . . . . . . . . . . . . . 253–254 PROBAN (computer software program) . . . . . . .267 Probe current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .517 Probes based on nucleic-acid base sequences, to investigate microbial populations . . . . . . . . .893 Problem solving . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Problem-solving model, steps in process . . . . . . . .4–5 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Process failure modes and effects analysis . . . . . . 52 Processing, and fracture origins of ceramics . . . 669– 670 Processing material flaws, as boiler tube damage mechanism on failure wheel . . . . . . . . . . . . . . .350 Process piping, fabrication code . . . . . . . . . . . . . . . . . .780 Product development schedule . . . . . . . . . . . . . . . . . . . 53 Products liability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71–78 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 history of law code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 legal bases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71–72 suits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .340 Products recall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 planning for . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 PROF (computer software program). See also Probability of fracture computer code. . . . .267 PROFES (computer software program) . . . . . . . .267 Profile configuration parameter (Rp) . . . . . . . . . . .541 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .541 Profile orientation distribution function . . . . . . . .542 Profile overlap parameter (Op) . . . . . . . . . . . . . . . . . .543 Profile structure factor . . . . . . . . . . . . . . . . . . . . . 545, 546 using orientation distribution function of nonoverlapped element of fracture profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .547 Profilometer traces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .565 Profilometry to determine fretting damage . . . . . . . . . . . . . . . . . . .925 to measure fretting wear . . . . . . . . . . . . . . . . . . . . . . . .932 Profilometry-based quantitative fractography . . . . . . . . . . . . . . . . . . . . . . . . 538, 539 PROFIT (computer software program) . . . . . . . .267 Program PSF (computer software program) . . .266 Progression marks, of stress-corrosion cracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .835 Projected image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .548 Projection welding, failure origins related to . . . .187 Proof loads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .403 Proof load testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .446 of polyacetal latch assemblies . . . . . . . . . . . . . . . . . .455 Proof testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .403 Proportional limit. See also Elastic limit. definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1071 Propulsion System Components program . . . . . .251 Protective coatings. See also Coatings. biodegradation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .881 for gas turbine blades . . . . . . . . . . . . . . . . . . . . . . . . . . .298 to prevent microbially induced corrosion . . . . . .893 to resist microbially induced corrosion . . . . . . . . .885 Protective covers, brittle fracture of ABS resins . . . . . . . . . . . . . . . . . . . . . . . . . . . .449–450, 452 Protective device, definition in reliability-centered maintenance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 Protective system, definition in reliability-centered maintenance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 Protein, lipopolysaccharide, nucleic acid analysis, to investigate microbial populations . . . . . .893

© 2002 ASM International. All Rights Reserved. ASM Handbook Volume 11: Failure Analysis and Prevention (#06072G)

www.asminternational.org

1140 / Index

Prototype function review . . . . . . . . . . . . . . . . . . . . . . . . 75 Prototype review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 Prototype testing, to determine optimal wear properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 PS. See Polystyrene. PSA. See Pressure-sensitive-adhesive backed SiC grinding paper; Pressure-sensitive-adhesive backed polishing cloths. Pseudomonads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .891 in microbially induced corrosion of stainless steels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .890 Pseudomonas (NCMB 2021) . . . . . . . . . . . . . . . . . . . . .891 PSFs. See Partial safety factors. PSU. See Polysulfone. PTFCE. See Polytrifluorochloroethylene. PTFE. See Polytetrafluoroethylene. PU. See Polyurethane. Pugh’s method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Pull cracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209, 211 Pulldowns, as casting defects . . . . . . . . . . . . . . . . . . . . .120 Pullout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1030, 1039, 1040 of graphite particles in cast iron . . . . . . . . . . . . . . . .137 Pull stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209, 211 Pulse-echo ultrasonic inspection . . . . . . . . . . . . . . . . .271 Pulse-echo ultrasonic instruments . . . . . . . . . . . . . .269 Pulverization . . 1033–1034, 1035, 1038, 1039, 1040 of fibers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1031 Pump impeller from nuclear plant, brittle fracture of steel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152, 153 Pump impellers of cast iron, shrinkage porosity failure . . .114–115, 116 of CF-8M, erosive wear . . . . . . . . . . . . . . . . . . . . . . . .999 Punch, austenitization inadequate for tool steel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 509, 510 Pure ductile tearing . . . . . . . . . . . . . . . . . . . . . . . . 623, 624 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1071 Pure shear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .469 Push cracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209, 211 Push stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209, 211 Push-up, as casting defect . . . . . . . . . . . . . . . . . . . . . . . .108 PVC. See Polyvinyl chloride. PVD. See Physical vapor deposition. Pyrite, as corrosion products in pipeline excavations and laboratory soil box tests . . . . . . . . . . . . . . .887

Q QELS. See Quasi-elastic light scattering. Quadruple mass spectrometer . . . . . . . . . . . . . . . . . . .358 Qualification testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .298 Quantitative fractography, definition . . . . . . . . . . . .538 information from . . . . . . . . . . . . . . . . . . . . . . . . . . 538–554 Qualitative stress-analysis skill . . . . . . . . . . . . . . . . . .322 Quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3–4 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Quality assurance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 and failure modes and effects analysis . . . . . . . . . . 52 Quality bend fatigue curves . . . . . . . . . . . . . . . 173, 176 Quality control, as damage mechanism for boiler tubing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .347 Quality management techniques, to look for potential failures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 Quantity, effect on materials selection . . . . . . . . . . . . 33 Quasi-adiabatic heat dissipation . . . . . . . 1020, 1021 Quasi-adiabatic interfacial wear . . . . . . . . . . . . . . 1021 Quasi-cleavage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353, 675 Quasi-cleavage cracking, from hydrogen in nickelbase alloys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .873 Quasi-cleavage fracture . . . . . . . . . . . . . . . . . . . . . . . . . .573 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1071–1072 Quasi-elastic light scattering (QELS), property derived form polymer analysis . . . . . . . . . . . .359 Quasi-static tensile tests, at elevated temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .575 Quaternary ammonium salts, as biocidal agent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .894 Quench-age embrittlement, causes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .690 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1072

effect in ferrous alloys . . . . . . . . . . . . . . . . . . . . . . . . . .690 effect on overload failures . . . . . . . . . . . . . . . . . . . . . .690 steels susceptible . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .690 Quench aging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .404 Quench-and-tempered low-alloy steel, spalling resistance and mechanical properties . . . . . .980 Quenchants aqueous polymer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .207 flow direction effect on distortion . . . . . . . . 208, 211 liquid vaporizable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .208 selection and severity . . . . . . . . . . 205–207, 209, 210 uniformity and quench cracking . . . . 207–208, 210, 211 Quenchant temperature . . . . . . . . . . . . . . . . . . . . 210–211 Quench crack(s) . . . . . .208–210, 211, 595, 642, 686, 984–985, 986 and austenitizing temperature . . . . . . . . . . . . . 201, 204 carbon equivalent effect . . . . . . . . . . . . . . . . . . 208, 211 as casting defect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .107 as defect resulting from heat treatment . . . . . . . . . . 81 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1072 design corrections to reduce possibility . .198–199, 203 effect on fatigue strength . . . . . . . . . . . . . . . . . . . . . . .719 effect on overload failures . . . . . . . . . . . . . . . . 694–695 in forgings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .92, 96–97 and hydrogen embrittlement . . . . . . . . . . . . . . . . . . . .821 and quenchant uniformity . . . . . . 207–208, 210, 211 as root cause of forgings defects, rationale, resolution, and corrective action . . . 327, 329, 330, 331 shaft hardening over a cross hole . . . . . . . . . 198, 202 of tool steel roll . . . . . . . . . . . . . . . . . . . . . .509–510, 511 in weldments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .187 Quench distortion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .208 Quenched-and-tempered steels critical section thicknesses . . . . . . . . . . . . . . . . . . . . . .477 fatigue fracture of pin . . . . . . . . . . . . . . . . . . . . . 631, 633 notch sensitivity vs. notch radius . . . . . . . . . . . . . . .278 strain rate sensitivity in bend failures . . . . . . . . . .606 Quenching contaminants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .208 die system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197, 201 and distortion . . . . . . . 196–197, 198, 201, 202, 1053 effect on microcracking . . . . . . . . . . . . . . . . . . . . . . . . .218 foaming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .208 heat transfer rates for quenching media . . . . . . . .210 interrupted techniques . . . . . . . . . . . . . . . .212–213, 214 methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213–214 notched parts, and distortion . . . . . . . . . . . . . . 198, 202 Polyakov rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210, 212 press system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197, 202 quenchant selection and severity . . . 205–207, 209, 210 quenchant uniformity, and quench cracking . . . . . . . . . . 207–208, 210, 211 restraint techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . .213 subcritical . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .690 Quench severity, definition . . . . . . . . . . . . . . . . . . . . . . .206 Quench system design, and distortion . . . . .196–197, 201

R Rachinger correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . .487 Radial marks. See also Chevron pattern. . . . . . . . 397, 562–563, 587, 601, 605, 719, 934 in brittle fracture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .674 in casting fractures . . . . . . . . . . . . . . 608,610, 612, 613 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1072 in ductile fracture . . . . . . . . .598, 599, 602, 603, 604 in fatigue fracture . . . . . . . . . . . . . . . . . . . . . . . . . 576, 577 near fibrous zone . . . . . . . . . . . . . . . . . . . . . . . . . . 601, 605 macroscale fractographic implication . . . . . . . . . . .560 Radial shear. See Radial marks. Radial shear marks. See Radial marks. Radial stress, distribution beneath notch root of notched-bar specimen . . . . . . . . . . . . . . . . . . . . .597 Radiation, as environment contributing to damage mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . 347–348

Radiation damage. See also Neutron embrittlement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .336 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1072 Radiation embrittlement, influencing intergranular fracture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .645 Radiographic inspection . . . . . . . . . . . . . . . . . . . . . . . . .345 of casting defect fracture due to cold shut . . . . .120 of cast iron pipe with graphitic corrosion . . . . . 787, 788 of corrosion surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . .752 description, advantages and limitations 270, 395, 396 to detect tungsten inclusions . . . . . . . . . . . . . . . . . . . .186 for failure analysis and investigations . . . 336, 395, 396 flaw size range with 90% probability of detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .272 limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .270 in preliminary laboratory examination . . . . . . . . .406 uses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .270 of welding defects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .171 of weldments . . . . . . . . . . . . . .159, 165, 173, 177, 180 Radius of beam curvature . . . . . . . . . . . . . . . . . . . . . . .470 Rail car couplers, brittle fracture . . . . . . . . . . . . . . . . .349 Railroad percussion tools, spalling of . . . . . . . . . . .977 Railroad rails, service condition failure due to frictional heat . . . . . . . . . . . . . . . . . . . . . . . . 512, 514 Railway tank car, brittle fracture of steel weldment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .161 Rain-flow method, for cycle counting . . . . . . . . . . . .281 Raining in centrifugal casting . . . . . . . . . . . . . . . . . . . . . . . . . . . .132 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .132 Raised core, as casting defect . . . . . . . . . . . . . . . . . . . .105 Raised pit, as flaw in rolled bars . . . . . . . . . . . . . . . . . . 82 Raised sand, as casting defect . . . . . . . . . . . . . . . . . . . .105 Raman techniques analysis depth and area . . . . . . . . . . . . . . . . . . . . . . . . .527 detection limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .527 ease of use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .527 information evaluated . . . . . . . . . . . . . . . . . . . . . . . . . . .527 Ramaway, as casting defect . . . . . . . . . . . . . . . . . . . . . .111 Ramming, soft or insufficient, as casting defect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .110 Ramoff, as casting defect . . . . . . . . . . . . . . . . . . . . . . . . .111 Random number generator . . . . . . . . . . . . . . . . . . . . . .260 Random sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .254 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .250 Random variable (RV) definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .252 generation of values . . . . . . . . . . . . . . . . . . . . . . . 259–260 in Monte Carlo sampling . . . . . . . . . . . . . . . . . . . . . . .259 Range-pair-range method for cycle counting . .281 Rankine criterion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .461 Rapping of pattern, excess, as casting defect . . .110 RAPTOR (computer software program) . . . . . . .267 Ratcheting, as distortion failure . . . . . . . . . .1055–1056 Ratchet marks . . . . . . . . . . . . . . . . . . . . . . . . .346, 627, 632 characteristic patterns in cylindrical components . . . . . . . . . . . . . . . . . . . . . . . . . . 632, 633 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1072 and fatigue crack propagation . . . . . . 708, 710, 711, 712, 713 in fatigue fracture . . . . . . . . . . . . . . 576, 577–578, 631 at intermediate stress intensity range . . . . . . . . . . .579 in low-alloy steel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .627 macroscale fractographic implication . . . . . . . . . . .560 with rotating-bending fatigue . . . . . . . . . . . . . 713, 714 Ratner-Lancaster plots (relation) . . . . . . 1023, 1031 of cohesive wear of polymers . . . . . . . . . . . . . . . . 1022 Rattail as casting defects . . . . . . . . . . . . . . . . . . . . . . . . . 108, 120 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .104, 1072 from mold-wall deficiencies . . . . . . . . . . . . . . . . . . . .119 Rayleigh distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . .253 RBSN. See Reaction bonded silicon nitride. RCA. See Root-cause analysis. RCF. See Rolling-contact fatigue. RCM. See Reliability-centered maintenance. RCS. See Reaction control system. R-curve. See also J-R curve. definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1072 RCW. See Rolling-contact wear.

© 2002 ASM International. All Rights Reserved. ASM Handbook Volume 11: Failure Analysis and Prevention (#06072G)

RD. See Rolling direction. Reaction-bonded silicon nitride (RBSN) . . . . . . . .805 brittle fracture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 669–670 Reaction control system (RCS) . . . . . . . . . . . . 857–858 Reaction control system oxidizer pressure vessels, stress corrosion cracking . . . . . . . . . . . . 857–858 Reactive aldehydes, as biocidal agent . . . . . . . . . . . .894 Reactive elements, as addition to aluminide coatings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .877 Reactive gas fluxing, of aluminum alloy castings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .150 Reactive magnetron sputtering coating material, thickness, roughness, and hardness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .946 contact stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .946 rolling contact fatigue life . . . . . . . . . . . . . . . . . . . . . .946 rolling contact fatigue tester . . . . . . . . . . . . . . . . . . . .946 substrate material and hardness . . . . . . . . . . . . . . . . .946 Reactive metals, galvanic corrosion . . . . . . . . . . . . . .767 Reactive sputtering coating material, thickness, roughness, and hardness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .946 contact stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .946 rolling contact fatigue life . . . . . . . . . . . . . . . . . . . . . .946 rolling contact fatigue tester . . . . . . . . . . . . . . . . . . . .946 substrate material and hardness . . . . . . . . . . . . . . . . .946 Reactor skirts in nuclear reactors elevated temperatures for applications . . . . . . . . .729 materials used . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .729 Real area of contact . . . . . . . . . . . . . . . . . . . . . . . . 926–927 Real space methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .495 Reaustenitized zones, of forging, cracking . . . . . 511, 512 Rebar, welded, casting fracture . . . . . . . . . . . . . 608, 613 Reboiler bypass duct damper, pitting corrosion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .775 Recession value of wear volume . . . . . . . . . . . . . . . . .973 Recirculation inlet nozzle of reactor vessel, stress corrosion cracking . . . . . . . . . . . . . . . . . . . 849–850 Records . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76–77 Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .338 Recrystallization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338, 549 and alpha-phase formation . . . . . . . . . . . . . . . . . . . . . .693 of aluminum alloy . . . . . . . . . . . . . . . . . . . . . . . . 553, 554 of polymer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .441 and stress rupture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .734 Recrystallization anneal, and cold forming with sensitization . . . . . . . . . . . . . . . . . . . . . . . . . . 101, 102 Recrystallization temperature, and equicohesion temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .686 of polymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .441 Recycled slurry test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .990 Recycling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 feasibility of, and materials selection . . . . . . . . . . . . 34 Red brass, galvanic series in seawater . . . . . . . . . . .762 Redesign, vs. maintenance in reliability-centered maintenance review . . . . . . . . . . . . . . . . . . . . . . . . . 63 “Red mud” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .922 Redox potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .801 as electrochemical monitoring method used for microbially induced corrosion . . . . . . . . . . . . .892 Redox reactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 801, 869 microbial metabolism . . . . . . . . . . . . . . . . . . . . . . . . . . .881 Reduced surface energy theory . . . . . . . . . . . 809, 810 Reducing gases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .803 reaction with refractories . . . . . . . . . . . . . . . . . . . . . . .878 Reduction definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1072 for refractories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .801 Reduction in area . . . . . . . . . . . . . . . . . . . . . . . . . . . 732, 733 of cast carbon-molybdenum steels . . . . . . . . . . . . . .145 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1072 in ductile fracture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .587 of ductile vs. brittle fractures . . . . . . . . . . . . . . . . . . .565 of metallic materials . . . . . . . . . . . . . . . . . . . . . . . . . . . .569 of neck at fracture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .618 of quenched and tempered low-alloy steel . . . . .980 for single crystals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .597 as temperature decrease . . . . . . . . . . . . . . . . . . . . . . . . .596 and true logarithmic tensile strain . . . . . . . . . . . . . .596 Reduction in grain boundary influencing intergranular fracture . . . . . . . . . . . . . . .645 Reduction of area. See Reduction in area.

Reduction reaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .749 Redundant design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 Redundant subsystems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 Reentrant regions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .548 extent of . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 546–547 Reentrant segments, in fracture profiles . . . 542–543 Referee test methods, in chemical analysis . . . . . 429, 430–431 Refinery vessel plate, hydrogen embrittlement . . . . . . . . . . . . . . . . . . . . . . . . 814, 815 Reformer applications . . . . . . . . . . . . . . . . . . . . . . . . . . . .869 Refractories analysis strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .805 basic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 803–804 black . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .806 carbon-bonded . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .801 corrosion by dusts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .803 corrosion by gases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .803 corrosion resistance based on maximum temperature criterion . . . . . . . . . . . . . . . . . . . . . . .803 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .800 fireclay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 803, 804 fusion-cast . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .801 high-alumina . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 803, 804 high-alumina with clay . . . . . . . . . . . . . . . . . . . 803, 804 as high-temperature coatings resisting corrosion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 877–878 inclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116–117 installation and maintenance procedures . . . . . . .807 material selection . . . . . . . . . . . . . . . . . . . . . . . . . 805–807 prevention of corrosion failures . . . . . . . . . . . . . . . .805 process control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .807 silica . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 803, 804 silicon carbide . . . . . . . . . . . . . . . . . . . . . . . .801, 803, 804 zircon-zirconia . . . . . . . . . . . . . . . . . . . . . . .801, 803, 804 Refractory alloys, creep onset temperature . . . . . .729 Refractory body-centered cubic metals, fracture mechanism maps, general shifts . . . . . . . . . . .571 Refractory chromites . . . . . . . . . . . . . . . . . . . . . . . . . . . . .801 Refractory coating inclusions, as casting defects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .111 Refractory linings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .800 Refractory materials, corrosion failure . . . . 800–804 Refractory metals compatibility with various manufacturing processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 creep onset temperature . . . . . . . . . . . . . . . . . . . . . . . . .729 Refractory oxides, fracture mechanism maps, general shifts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .571 Refrigeration, reducing retained austenite in steel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .211 Regulations, eye protection . . . . . . . . . . . . . . . . . . . . . . . . 74 Rehardening burn . . . . . . . . . . . . . . . . . . . . . . . . . . 220–221 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .220 Reheat cracking. See Stress-relief embrittlement. Reheater tubes, oxide-scale-based life prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308–309 Reinforced concrete, corrosion by hydrogen sulfide gas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .755 Reinforced polymers. See Polymers, reinforced. Reinforcing rod, microstructure using replicating tape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 513, 514 Reinforcing steel, corrosion by hydrogen sulfide gas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .755 Reliability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 and failure prevention . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 usefulness of approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Reliability block diagrams . . . . . . . . . . . . . . . . . 262, 267 Reliability-centered maintenance (RCM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21, 60–70 computer software role . . . . . . . . . . . . . . . . . . . . . . . . . . 69 consequences of failure . . . . . . . . . . . . . . . . . . . . . . 66–67 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 failure effects and intervention . . . . . . . . . . . . . . . . . . 64 failure management policies . . . . . . . . . . . . . . . . . 64–66 failure management policy selection . . . . . . . . 67–68 history and development . . . . . . . . . . . . . . . . . . . . . 60–61 implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 managing and resourcing the process . . . . . . . 68–70 process asset functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 process, questions asked . . . . . . . . . . . . . . . . . . . . . . . . . 61 scheduled tasks as failure management policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64–66

www.asminternational.org

Index / 1141 technical feasibility . . . . . . . . . . . . . . . . . . . . . . . . . . 66–67 unscheduled policies as failure management policies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64, 66 Reliability engineering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 Reliability function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .241 Reliability logic diagram . . . . . . . . . . . . . . . . . . . . . .51, 53 Relief valve of hot water heater . . . . . . . . . . . . . . . . . . 54 Remaining life assessment . . . . . . . . . . . . . . . . 228, 281, 296, 298–302 for solenoid valve . . . . . . . . . . . . . . . . . . . . . . . . . 237–238 Remaining-life/inspection interval . . . . . . . . . . . . . .741 Remelting, for chemical analysis specimens . . . . .430 Reoxidation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .117 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .117 Repairs, and distortion failures . . . . . . . . . . . . . . . . . 1054 Repair welds, on corrosion-resistant castings, and service failures . . . . . . . . . . . . . . . . . . . . . . . . . . . . .148 Repeatability, definition . . . . . . . . . . . . . . . . . . . . . . . . . .488 Repeated-cycle deformation wear mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . 902, 903 Replacement time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .281 Replica(s) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .513–514, 663 acetate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .406 acetate tape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .394 of corrosion fatigue fracture-surface deposits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 721–722 creep damage assessment . . . . . . . . . . . . . . . . . 731, 732 examination with scanning electron microscope . . . . . . . . . . . . . . . . . . . . . . . . . . . 498, 499 examination with transmission electron microscope . . . . . . . . . . . . . . . . . . . . . . . . . . . 498, 499 made in on-site investigation . . . . . . . . . . . . . . . . . . .394 optical . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 513–514 photography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .398 procedure for fracture surfaces . . . . . . . . . . . 397–398 room-temperature-vulcanized (RTV) rubber . . .394 of wear failures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .412 Replica metallography post-EPR to confirm EPR results . . . . . . . . . . . . . . .779 Replica technique, for fracture profile generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .539 Replication in failure analysis . . . . . . . . . . . . . . . . . . . . . . . . . 337, 338 of fatigue fracture surface . . . . . . . . . . . . . . . . . . . . . .340 of steam piping systems . . . . . . . . . . . . . . . . . . . . . . . .345 Report preparation, in failure analysis . . . . 334, 339 Reproducibility, definition . . . . . . . . . . . . . . . . . . . . . . . .488 Residual life . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .273 Residual strength analysis . . . . . . . . . . . . . . . . . . . . . . .480 Residual stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 462, 467 in amorphous polymer resins . . . . . . . . . . . . . 443, 444 and average roughness (Ra) surface . . . . . . 486, 487 in castings . . . . . . . . . . . . . . . . . . . . . . . . . . . .134–135, 136 causes as knowledge required for failure analyst . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .322 in ceramics, and crack branching . . . . . . . . . 369–370 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1072 and distortion . . . . . . . . . . . . . . . . . . . . . . . . . . . .1052–1053 in ductile iron stuffing box . . . . . . . . . . . . . . . . . . . . . .137 failure causes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .484 and fatigue fracture of weldments with undercuts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .176 flame cutting effect . . . . . . . . . . . . . . . . . . . . . . . . . . 84–85 grinding process effect . . . . . . . . . . . . . . . . . . . . 493–494 heat treatment effects . . . . . . . . . . . . . . . . . . . . . 494–495 heat treatment temperature effect of iron alloys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .495 and high-cycle fatigue . . . . . . . . . . . . . . . . . . . . . . . . . .493 impact wear affected by . . . . . . . . . . . . . . . . . . . . . . . .969 in-service loads effects on near-surface stress states in gears . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .494 in limit analyses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .475 and manufacturing imperfections . . . . . . . . . . . . . . .613 during marquenching . . . . . . . . . . . . . . . . . . . . . . . . . . .212 measurement by x-ray diffraction in failure analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 484–496 in overload failures . . . . . . . . . . . . . . . . . . . . . . . 687, 688 of polycarbonate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .457 in polymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 368, 454 quasi-static loading of components . . . . . . . . . . . . .490 and quench cracking . . . . . . . . . . . . . . . . . . . . . . . . . . . .208 during reheating and quenching, metallurgical sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196, 200

© 2002 ASM International. All Rights Reserved. ASM Handbook Volume 11: Failure Analysis and Prevention (#06072G)

www.asminternational.org

1142 / Index

Residual stress (continued) size change caused by heat treatment of prismatic parts . . . . . . . . . . . . . . . . . . . . . . . . . . . . .194–195, 198 in steel after shot peening . . . . . . . . . . . . . . . . . 927–928 in steel cargo tiedown sockets . . . . . . . . . . . . . . . . . .496 and stress concentration in fatigue . . . . . . . . . . . . .717 and stress-corrosion cracking . . 825, 827, 828, 830 and stress intensity . . . . . . . . . . . . . . . . . . . . . . . . 481–482 and tempering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195, 199 of weldments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .161 Residual stress analysis description, advantages and limitations . . . . . . . .396 for failure analysis and investigations . . . . . . . . . .396 Resin-bonded sand casting, characteristics of process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .124 Resin sand molding, in shape-casting processes classification scheme . . . . . . . . . . . . . . . . . . . . . .124 Resistance butt welding, failure origins related to . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .187 Resistance seam welding, failure origins related to . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .187 Resistance spot welding, failure origins related to . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .187 Resistance welding, failure origins related to . . 187– 188 Resolidification, and shrinkage cavities . . . . . . . . . .615 Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .517, 518, 522 levels of, in engineering design process . . . . .41, 42 Response surface evaluation . . . . . . . . . . . . . . . . . . . . .267 Response surface method (RSM), . . . .250, 258–259 Response variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .257 Restraint cracks, in weldments . . . . . . . . . . . . . . . . . .188 Restraint fixturing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .213 Restraint quenching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .213 Resulfurized steels, intergranular brittle fracture of valve seats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .677 Resulfurized steels, workability behavior . . . . . . . . . 98 Retained austenite carbon content influence on formation . . . 210, 212 carbon content vs. lattice parameters . . . . . 193, 194 in carburized track wheel . . . . . . . . . . . . . . . . . 510, 511 conversion to martensite . . . . . . . . . . . . . . . . . . 211, 213 cryogenically cooled . . . . . . . . . . . . . . . . . . . . . . . . . . . .210 dimensional changes . . . . . . . . . . . . . . . . . . . . . . 194–195 and dimensional variation with tempering . . . . 195, 198 and distortion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .201 effect on compressive stresses and effect on steel properties . . . . . . . . . . . . . . . . . . 211–212 formation, factors affected . . . . . . . . . . . . . . . . . . . . . .195 formation with austempering processes . . . . . . . .207 in metallographic examinations . . . . . . . . . . . . . . . . .364 in nickel-chromium steel . . . . . . . . . . . . . . . . . . 211, 213 in overaustenized tool steel . . . . . . . . . .509–510, 511 volume changes of carbon steels due to phase transformation . . . . . . . . . . . . . . . . . . . . . . . 194, 195 Retardation effects . . . . . . . . . . . . . . . . . . . . . . . . . 282–283 Retirement-for-Cause (RFC) inspection systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271–272 Reverse elastoplastic loading mode . . . . . . . . . . . . .492 Reverse sample genome probing, to investigate microbial populations . . . . . . . . . . . . . . . . . . . . . .893 Reverse temper embrittlement . . . . . . . . . . . . . . . . . .695 Rework, of coatings . . . . . . . . . . . . . . . . . . . . . . . . . 152–154 Reynolds slip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .941 RFC. See Retirement-for-Cause inspection system. RGDs. See Rigid grinding discs. Rheocasting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .127 Rhodium, cleavage fracture . . . . . . . . . . . . . . . . . . . . . . .589 Rib-mark(s). See also Arrest lines; Beach marks. definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1072 not caused by fatigue . . . . . . . . . . . . . . . . . . . . . 634, 635 of polymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .659 Ridged fracture, microscale fractographic implication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .560 Ridge marks, in tensile fracture . . . . . . . . . . . . . . . . . .634 Ridge patterns, in casting fractures . . .608, 612, 613 Ridges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 632, 634 from torsional stresses . . . . . . . . . . . . . . . . . . . . . . . . . .714 Rigid grinding discs (RGDs) . . . . . . . . . . . . . . . . . . . . .504 polishing practices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .508 Rigid polyvinyl chloride, creep modulus vs. temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .652 Rimmed steels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .690

Lu¨ders lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .101 Rim-tempered hammers . . . . . . . . . . . . . . . . . . . . . . . . .978 Ring cracks, of silicon nitride bearing balls . . . . . .957 Ring gears, dimension limits . . . . . . . . . . . . . . . 202, 205 Ring-on-ring flexure test . . . . . . . . . . . . . . . . . . . . . . . . .666 Ring-on-ring test . . . . . . . . . . . . . . . . . . . . . . . . . . . . 662, 663 apparatus, description of rolling contact fatigue test method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .944 Ripple mark. See Wallner line. Riser, broken casting at, as casting defect . . . . . . . .110 Risering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .113 and cold shut prevention . . . . . . . . . . . . . . . . . . . . . . . .123 and shrinkage porosity . . . . . . . . . . . . . . . . . . . . . . . . . .113 Risk acceptable level of . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48, 72, 263 legal distinction from hazard and danger . . . . . . . . 72 Risk analysis . . . . . . . . . . . . . . . . . . . . . . . . . . .250, 262, 263 to target chemical treatments preventing microbially induced corrosion . . . . . . . . . . . . .894 Risk and hazard analysis . . . . . . . . . . . . . . . . . . . . .28, 29 Risk assessment in design . . . . . . . . . . . . . . . . . . . . . . . . . 28 Risk-benefit analysis, factors . . . . . . . . . . . . . . . . . . . . . . 72 Risk-informed (or risk-based) approach, to life assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .274 River lines . . . . . . . . . . . . . . . . . . .521, 523, 563, 611, 612 with brittle fracture 563, 564, 572–573, 674, 400 and stress-corrosion cracking . . . . . . . . . . . . . . . . . . .836 and tongues in cleavage and structure . . . . . . . . . .590 in transgranular cleavage . . . . . . . . . . . . . . . . . . . . . . .674 River markings, on polycarbonate . . . . . . . . . . . . . . .457 on polyethylene chemical storage vessel . . . . . . .453 River marks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .612 with brittle fracture . . . . . . . . . . . . . . . . . . . . . . . . . . . . .400 River pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370, 397 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1072 microscale fractographic implication . . . . . . . . . . .560 Riveted joints, crevice corrosion . . . . . . . . . . . . . . . . .775 Rock candy fracture 145, 353, 605, 642, 836, 837 as casting defect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .107 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1072 intergranular brittle fracture . . . . . . . . . . . . . . . . . . . .677 Rocker levers of diesel engines, fatigue failures with spiking defects . . . . . . . . . . . . . . . . . 140, 141 Rockwell hardness number (HR), definition . . 1072 Rockwell hardness test, definition . . . . . . . . . . . . . 1072 Rockwell superficial hardness test, definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1072 Rods brittle fracture of medium-carbon steel . . . . . . 85–86 torsional fatigue failure . . . . . . . . . . . . . . . . . . . 630, 633 Roll, quench cracking of tool steel . . . . .509–510, 511 Roll burst, as distortion factor . . . . . . . . . . . . . . . . . . . .205 Rolled-in scale in forgings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 in ingots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 Roller, fatigue fracture with banding . . . . . . . . . . . . .720 Rolling direction of . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .412 imperfections causing fractures . . . . . . . . . . . 615, 617 Rolling-contact fatigue (RCF) carbide structure affected by . . . . . . . . . . . . . . . . . . . .217 of ceramics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 957–963 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .409 of chemical vapor deposition coatings . . . . . . . . .949 crack propagation to . . . . . . . . . . . . . . . . . . . . . . 958–959 damage classification system . . . . . . . . . . . . . . . . . . .942 as damage mechanism on failure wheel . . . . . . . .349 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 941, 957 delamination failure . . . . . . . . . . . . . . . . . . . . . . . 960, 962 design factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 946–947 failure modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .941 failure origins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .941 failure theories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .943 initiation site . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 life prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 945, 946 material removal in failure . . . . . . . . . . . . . . . . . . . . . .941 mechanisms for . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .409 rolling-contact wear . . . . . . . . . . . . . . . . . . . . . . . 962–963 spalling fatigue failure . . . . . . . . . . . . . . . . . . . . 960–962 in steel, characteristics . . . . . . . . . . . . . . . . . . . . 942–943 stress risers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 941, 942 testing . . . . . . . . . . 943, 944, 948, 949, 951, 959–962

of thermal spray coatings . . . . . . . . . . . . . . . . . 949–954 tribometers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .943 of vapor-deposited coatings . . . . . . . . . . . . . . . 945–949 Rolling contact fatigue test machines . . . . . 959–960 ball-on-plate . . . . . . . . . . . . . . . . . . . . . . . . . .959–960, 961 ball-on-rod . . . . . . . . . . . . . . . . . . . . . . . . . . .960, 961, 963 contacting ring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .960 disc-on-rod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 960, 960 five-ball . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .959 modified four-ball . . . . . . . . . . . . . . . . . . . .944, 959, 962 ring-on-disk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .962 Rolling-contact wear (RCW) . . . . . . . . . . . . . . . . . . . .941 Rolling direction (RD), labeling conventions for rolled sheet and plate . . . . . . . . . . . . . . . . . . . . 1069 Rolling-element bearings . . . . . . . . . . . . . . . . . . . 941–942 fretting wear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 935–937 life prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 945, 946 Rolling four-ball testing apparatus, description of rolling contact fatigue test method . . . . . . . .944 Rolling motion, operational variations . . . . . . . . . . .902 Rolling scratches, deformed, macroscale fractographic implication . . . . . . . . . . . . . . . . . .560 Room-temperature aging . . . . . . . . . . . . . . . . . . . . . . . .690 Room-temperature-vulcanized (RTV) rubber, for replicas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .394 Root cause . . . . . . . . . . . . . . . . . . . . . . . . 235, 316, 318, 386 determination in failure analysis . . . . . . . . . . . . . . . .393 determination of . . . . . . . . . . . . . . . . . . . . . .4–5, 325, 559 of distortion . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1056–1057 imperfection as cause of failures . . . . . . . . . . . . . . .561 stress analysis part of procedure for determining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .473 of unacceptable stress concentrators . . . . . . . . . . . .460 of weldment failure . . . . . . . . . . . . . . . . . . . . . . . . . . . . .160 Root-cause analysis (RCA) . . . . . . . . . . . . . . . 6, 7, 318, 388, 399–400 assembly errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .325 charting methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14–15 design deficiencies effect . . . . . . . . . . . . . . . . . . . . . . . . . 7 design errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .325 examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6, 7 fabrication/manufacturing errors . . . . . . . . . . . . . . . .325 in failure investigation . . . . . . . . . . . . . . . . . . . . 327–328 levels of . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 of lunar command modules . . . . . . . . . . . . . . . . . . . . .324 responsibility assignments for failures . . . . . . . . . . . 7 of sprocket locking device failure . . . . . . . . . . . . 9, 10 techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 usefulness for larger scale investigations . . . . . . .320 Root cracks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .181 in weldments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158, 161 Root porosity, in weldments . . . . . . . . . . . . . . . . . . . . . .190 ROOTS Investigative Process . . . . . . . . . . . . . . . . . . .332 Rosette. See Radial marks. Rotary swaging, compatibility with various materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Rotating-bending fatigue . . . . . . . . . . . . . . . . . . . 579, 581 of drive shaft . . . . . . . . . . . . . . . . . . . . . . . . .712–713, 714 shaft failure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .627 in shafts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 712, 713 Rotating disk tests . . . . . . . . . . . . . . . . .1007, 1008–1009 Rotating journal, life assessment of overheating damage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239, 240 Rotational molding, compatibility with various materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Rotors, temper embrittlement at elevated temperature of steel . . . . . . . . . . . . . . . . . . . . . . . .293 Rotors for steam engines, elevated temperatures for applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .729 materials used . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .729 Rotor shafts, torsional-fatigue fracture . . . . . 714–715 Roughness, of casting fracture . . . . . . . . . . . . . . . . . . . . . . . . . 608, 612 and crack propagation . . . . . . . . . . . . . . . . . . . . . . . . . .562 of fracture profiles . . . . . . . . . . . . . . . . . . . . . . . . 541–542 of fracture surface . . . . . . . . . . . . . . . . . . . .541, 545–546 of fracture surface, and crack initiation . . 562–563 severe, as casting defect . . . . . . . . . . . . . . . . . . . . . . . .108 surface, as casting defect . . . . . . . . . . . . . . . . . . . . . . .108 of torsion loaded surface . . . . . . . . . . . . . . . . . . 606–607 variable of fracture edge, macroscale fractographic implication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .560 Roughness-induced crack closure stress intensity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .542

© 2002 ASM International. All Rights Reserved. ASM Handbook Volume 11: Failure Analysis and Prevention (#06072G)

Roughness of non-overlapped regions of fracture surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .547 Roughness parameters . . . . . . . . . . . . . . . . . . . . . . . . . . .541 Rounded “r-type” cracking . . . . . . . . . . . . . . . . 575–576 R-ratio . . . . . . . . . . . . . . . . . 277, 279, 283, 285, 286, 481 R6 failure assessment diagrams . . . . . . . . . . . . . . . . .244 R6 criteria (Great Britain) . . . . . 240, 241, 243, 246 R6 curve (interpolation formula) . . . . . . . . . . . . . . . .243 R6 curve option 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .246 RSM. See Response-surface method. RTV rubber. See Room-temperature vulcanized rubber. Rubber aging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .405 in nylon 6/6 hinges . . . . . . . . . . . . . . . . . . . . . . . 458, 459 Rubbery polymer, modulus versus temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .799 Rubbing definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1072 effect on fracture surface and failure analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .335 general, macroscale fractographic implication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .560 localized, macroscale fractographic implication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .560 Rub marks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .354 Rules of mixtures . . . . . . . . . . . 1029, 1030–1031, 1040 Runout, as casting defect . . . . . . . . . . . . . . . . . . . . . . . . .109 Run-repair-replace decisions . . . . . . . . . . . . . . . . . . . .241 Run-to-failure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66, 67 definition in reliability-centered maintenance . . . 62 Rupture as damage mechanism for boiler tubing . . . . . . . .347 in ingot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 Rupture disc, liquid metal induced embrittlement . . . . . . . . . . . . . . . . . . .862, 864–865 Rupture ductility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .695 Rupture life . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 729, 732 Rupture stress, definition . . . . . . . . . . . . . . . . . . . . . . . 1072 Rust . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .934 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1072 on fractured drive shaft . . . . . . . . . . . . . . . . . . . . . . . . .713 as product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .750 removal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .406 in steel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .768 on steel pilings crevice corrosion . . . . . . . . . . . . . . .776 Rusting in weldments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .188 of aircraft freshwater tanks . . . . . . . . . . . . . . . . . . . . .773 and cold forming . . . . . . . . . . . . . . . . . . . . . . . . . . 101–102 Rutherford scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . .518 RV. See Random variable.

S Sacrificial-anode protection . . . . . . . . . . .755–756, 757 Safe, definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 Safe-end on reactor nozzle, stress-corrosion cracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 849–850 Safe-life . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45, 281 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .270 design methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . .700 principal testing data description . . . . . . . . . . . . . . .700 Safe-life approach . . . . . . . . . 231, 269, 270, 281–282, 283–284, 286 scatter factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .284 service life . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .270 Safe structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .243 Safety, definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 effect on materials selection . . . . . . . . . . . . . . . . . . . . . 34 Safety consequences definition in reliability-centered maintenance . . . 62 for failure mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 Safety factor . . .20–21, 22, 230, 241, 250, 281, 460, 490 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20, 1048 design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .686 of design of Yankee dryer . . . . . . . . . . . . . . . . . . . . . .387 and design stress . . . . . . . . . . . . . . . . . . . . . . . . . . 473, 477 for distortion . . . . . . . . . . . . . . . . . . . . . . . . . . . .1048–1049

and fracture stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .482 of shotgun barrel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1051 of U-tube of steam generator . . . . . . . . . . . . . . . . . . .388 of weldments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .160 Safety factor on load . . . . . . . . . . . . . . . . . . . . . . . . . . . . .243 Safety glasses acetone solvent-induced cracking . . . . . . . . 653–654 to prevent eye injury . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 Safety hazards at accident senses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .373 spalling of hammers . . . . . . . . . . . . . . . . . . . . . . 979–980 Safety index . . . . . . . . . . . . . . . . . . . . . . 250, 255, 256, 266 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .256 generalized . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257–258 Safety limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .273 Safety margins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .273 Safety standard, definition . . . . . . . . . . . . . . . . . . . . . . . . 48 Salt bath, heat transfer rate of quenching medium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .210 Salt melt etching, of ceramics . . . . . . . . . . . . . . . . . . . .362 Salt-spray test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .773 Sample current, x-ray elemental composition map made with electron microprobe . . . . . . . . . . .865 Sample mean, definition . . . . . . . . . . . . . . . . . . . . . . . . . .251 Sample removal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .345 Sample size and crack plane curvature of castings . . . . 611, 615 effect on bending failure of notched sample . . 606, 610 Sample standard deviation, definition . . . . . . . . . . .251 Sampling corrosion products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .751 in failure analysis investigation . . . . . . . . . . . 393–394 lubricants, for wear failures . . . . . . . . . . . . . . . . . . . . .412 metallurgical . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359–360 on-site . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405–406 for stress-corrosion cracking damage . . . . . . . . . . .835 Sampling error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 548, 549 SAN. See Styrene-acrylonitrile. Sand inclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116–117 raised, as casting defects . . . . . . . . . . . . . . . . . . . . . . . .105 Sand casting compatibility with various materials . . . . . . . . . . . . . 33 for steel, minimum web thickness . . . . . . . . . . . . . . . 32 Sand hole as casting defects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .120 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .104, 1072 Sand inclusions, as casting defect . . . . . . . . . . . . . . . .111 Saponification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .411 Saturation value of profile roughness parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .544 Saw blade, residual-stress map of steel . . . . . . . . . . .489 SC. See Single crystal alloys. Scab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 as casting defects . . . . . . . . . . . . . . . . . . . . . . . . . 109, 120 corner, as casting defect . . . . . . . . . . . . . . . . . . . . . . . .105 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .104, 1072 expansion, as casting defect . . . . . . . . . . . . . . . . . . . .109 fillet, as casting defect . . . . . . . . . . . . . . . . . . . . . . . . . .105 in ingot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .83, 90 from mold-wall deficiencies . . . . . . . . . . . . . . . . . . . .119 Scabbing, contact fatigue terminology . . . . . . . . . . .722 Scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18, 338 formation, and sulfidizing environment . . . . . . . .870 growth rate affected by high temperature . . . . . .868 in low-alloy steel castings . . . . . . . . . . . . . . . . . . . . . .145 oxide, as casting defect . . . . . . . . . . . . . . . . . . . . . . . . .109 removal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .406 size indication, in photographs . . . . . . . . . . . . . . . . .394 Scale marker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .351 Scaling (metallic oxidation) . . . . . . . . . . . . . . . . . . . . . .215 as casting defect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .109 of refractory walls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .803 Scandia as addition to thermal barrier coatings for hot corrosion resistance . . . . . . . . . . . . . . . . . . . . . . . .877 Scanning Auger microprobe analysis . . . . . . . . . . .529 in failure analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .337 of liquid metal induced embrittlement by mercury . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .865 Scanning Auger microscopy . . . . . . . . . . . . . . . . . . . . .529 Scanning electron microscope (SEM)

www.asminternational.org

Index / 1143 advantages over transmission electron microscope . . . . . . . . . . . . . . . . . . . . . . . . . . . 560–561 development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .560 to examine cleavage fractures or replicas of fractures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 498, 499 to examine fatigue fractures in metals . . . . 635–636 in failure analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .336 for macroscopic examination . . . . . . . . . . . . . . . . . . .353 for microscopic examination of fracture surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .399 Scanning electron microscope (SEM)-based quantitative fractographic methods . . . . .538 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .538 Scanning electron microscope fractography . . .538 of metal-induced embrittlement . . . . . . . . . . . . . . . .862 to study fatigue fracture of ductile iron . . 142, 143 Scanning electron microscopy (SEM) . . . . 419, 426, 516–526, 655 accelerating voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . .525 of alloy steel ski chair lift grip components . . . . . 11 cold-field-emission . . . . . . . . . . . . . . . . . . . . . . . . 516, 517 component systems . . . . . . . . . . . . . . . . . . . . . . . 516–521 depth of field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .516 development of technology . . . . . . . . . . . . . . . . . . . . .516 electron-optical column . . . . . . . . . . . . . . . . . . . 516–518 electron source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .516 environmental . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .516 to examine cracks in service-run gas turbine blades . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .344 to examine wear scars . . . . . . . . . . . . . . . . . . . . . . . . . .902 in failure analysis . . . . . . . . . . . . . . 336, 337, 338, 339 of failure modes, instantaneous and progressive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .345 as fractography technique . . . . . . . . . . . .522–523, 662 fracture mode identification . . . . . . . . . . . . . . . . . . . . .672 high-resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .516 high-vacuum, conventional imaging mode . . . . .516 image dependence on microscope type and operating parameters . . . . . . . . . . . . . . . . . 524–525 line scan mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .540 of liquid-metal embrittlement . . . . . . . .367, 368, 369 low- or variable-pressure . . . . . . . . . . . . . . . . . . . . . . .516 of nonmetallic specimens . . . . . . . . . . . . . . . . . . . . . . .362 properties measured . . . . . . . . . . . . . . . . . . . . . . . . . . . . .446 property derived from polymer analysis . . . . . . . .359 purchasing decisions . . . . . . . . . . . . . . . . . . . . . . . . . . . .526 quantitative fractography . . . . . . . . . . . . . . . . . 547–551 sample insertion port . . . . . . . . . . . . . . . . . . . . . . . . . . . .521 sample preparation . . . . . . . . . . . . . . . . . . . . . . . . 521–522 Schottky gun . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .516 signal detection and display . . . . . . . . . . . . . . 518–520 stereo-pair imaging-based methods . .539, 551–553 thermal-field-emission . . . . . . . . . . . . . . . . . . . . . . . . . .516 for three-dimensional surface maps . . . . . . . . . . . .565 use in failure analysis . . . . . . . . . . . . . . . . . . . . . . . . . . .446 vacuum source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .516 vacuum system . . . . . . . . . . . . . . . . . . . . . . . . . . . . 520–521 of wear damage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .412 Scanning electron microscopy (SEM) quantitative fractography . . . . . . . . . . . . . . . . . . . . . . . . 547–551 number density of features in fracture surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 547–548 Scanning potentiostat . . . . . . . . . . . . . . . . . . . . . . . . . . . .763 Scars, as casting defects . . . . . . . . . . . . . . . . . . . . . . . . . .108 Scatter factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .286 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .270 SCC. See Stress-corrosion cracking. SCF. See Stress-corrosion fatigue. SCFs. See Stress concentration factors. Scheduled, definition in reliability-centered maintenance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 Scheduled discard, definition in reliability-centered maintenance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 Scheduled discard tasks . . . . . . . . . . . . . . . . . . . . . . .65, 69 Scheduled restoration task . . . . . . . . . . . . . . . . . . . .65, 69 definition in reliability-centered maintenance . . . 62 Scheduled tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64–66 worth-doing criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 Schmid’s law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .588 Scientific method, steps in . . . . . . . . . . . . . . . . . . . . . . . . . 4 Scleroscope hardness number (HSc or HSd), definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1072 Scleroscope hardness test, definition . . . . . . . . . . 1072

© 2002 ASM International. All Rights Reserved. ASM Handbook Volume 11: Failure Analysis and Prevention (#06072G)

www.asminternational.org

1144 / Index

Score marks, of steel mold for centrifugal casting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .133 Scores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .354 Scoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .909 and cold forming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .102 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .408, 1072 Scrap value, effect on materials selection . . . . . . . . . 34 Scratching. See also Plowing. definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1072 Scratching abrasion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .908 Scratching damage maps, for polymethyl methacrylate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1023 Screwdriver, stress analysis . . . . . . . . . . . . . . . . . . . . . . .475 Screws, ductile overload failure . . . . . . . . . . . . . 673–674 Scuffing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .909 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .408, 1072 Sealing and hydraulic circuit systems, cavitation erosion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1007 Seam(s) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81, 82, 615 as casting defect . . . . . . . . . . . . . . . . . . . . . . . . . . . 108, 112 definition . . . . . . . . . . . . . . . . . . . . . . . . . . 104, 1072–1073 as discontinuity for extrusions and drawn products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 distortion from stress raisers . . . . . . . . .204–205, 207 as flaw in rolled bars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 in forgings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .91, 93, 95 in ingot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 Season cracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .853 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1073 Seawater causing intergraular corrosion in sensitized austenitic stainless steels . . . . . . . . . . . . . . . . . .779 causing stress-corrosion cracking in titanium alloys at various temperatures . . . . . . . . . . . . .857 stress-corrosion cracking . . . . . . . . . . . . .851–852, 857 Secant modulus. See also Modulus of elasticity. definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1073 Secondary crack definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1073 on fracture surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .398 Secondary creep. See also Creep. definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1073 Secondary electron imaging (SEI) mode . . . . . . .432 Secondary electrons . . . . . . . . . . . . . . . . . . . . . . . . 518, 519 Secondary functions, definition in reliabilitycentered maintenance . . . . . . . . . . . . . . . . . . . . . . . 62 Secondary ion maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .533 Secondary ion mass spectroscopy (SIMS) . . . . . 357, 358 for polymeric analysis . . . . . . . . . . . . . . . . . . . . . . . . . .446 Secondary stresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .462 Second-order bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . .262 Second-order reliability method (SORM) . . . . . .257 Second phases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .118 in ductile fracture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .591 Sectioning of fracture surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .398 in metallographic examination . . . . . . .501–502, 503 tools used for . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .398 Section modulus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .470 Section size of cast irons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137, 138 effect on casting design . . . . . . . . . . . . . . . . . . . . . . . . .134 of low-alloy steel castings . . . . . . . . . . . . . . . . . . . . . .144 Se factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1031 Segregates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .338 Segregation in as-cast products . . . . . . . . . . . . . . . . . . . . . . . . 429, 430 and casting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .118 in centrifugal casting . . . . . . . . . . . . . . . . . . . . . . . . . . . .132 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83, 1073 as discontinuity for castings . . . . . . . . . . . . . . . . . . . . . . 9 as discontinuity for forgings . . . . . . . . . . . . . . . . . . . . . . 9 in forgings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 in gray iron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .139 in weldments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .169 Segregation banding, in centrifugal casting . . . . .132 SEI. See Secondary electron imaging. Seismic analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .388 Seismic finite element dynamic analysis . . 384–385 Seizure definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .408 failure by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Selective leaching. See also Decarburization; Denickelification; Dezincification; and Graphitic corrosion. . . . . . 337, 751, 752, 755, 761, 785–788 dealloying mechanisms . . . . . . . . 768, 785, 788, 790 dealloying of noble metals . . . . . . . . . . . . . . . . 788, 790 dealuminification . . . . . . . . . . . . . . . . . . . . .787–788, 789 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1073 denickelification . . . . . . . . . . . . . . . . . . . . . . . . . . . 788, 789 desiliconification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .788 destannification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .788 dezincification . . . . . . . . . . . . . . . . . . . . . . . .785–786, 787 graphitic corrosion . . . . . . . . . . . . . 786–787, 788, 789 Selective quenching . . . . . . . . . . . . . . . . . . . . . . . . . 213, 214 Selenium in base metal and weldment porosity . . . . . . . . . . .170 as embrittling agent . . . . . . . . . . . . . . . . . . . . . . . . . . . . .691 as grain-boundary embrittler . . . . . . . . . . . . . . . . . . . .646 grain-boundary segregation and intergranular brittle fracture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .643 Self-equilibrating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .467 SEM. See Scanning electron microscope; Scanning electron microscopy. Semicentrifugal casting, in shape-casting processes classification scheme . . . . . . . . . . . . . . . . . . . . . .124 Semicrystalline thermoplastics . . . . . . . . . 1023, 1024 wear volume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1024 Semipermanent (sand cores) casting, in shapecasting processes classification scheme . . .124 Semiquantitative emission spectrography . . . . . .404 Semisolid casting . . . . . . . . . . . . . . . . 124, 127–129, 131 defect-related failures . . . . . . . . . . . . . . . .127–129, 131 Semisolid forging. See Semisolid casting. Semisolid metalworking . . . . . . . . . . . . . . . . . . . . . . . . . .124 Semisolid processing. See Semisolid casting. Sensitivity analysis . . . . . . . . . . . . . . . . . . . .249, 376, 377 Sensitization cold forming and stress corrosion cracking vulnerability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .101 of corrosion-resistant casting . . . . . . . . . . . . . . . . . . .149 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .292, 1073 and intergranular corrosion of stainless steels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 778–783 and intergranular (IG) fracture of stainless steels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .645 of stainless steel castings . . . . . . . . . . . . . . . . . . . . . . .146 of stainless steels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .780 of steel alloys used for gas turbine tubes and piping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291, 292 and stress corrosion cracking . . . . . . . .828, 832, 833 Serial sectioning . . . . . . . . . . . . . . . . . . . . . . .538, 551, 553 vertical . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 553, 554 Series structural system . . . . . . . . . . . . . . . . . . . . 262–263 Service damage, effect on overload failure . . . . . .689 Service environment(s) . . . . . . . . . . . . . . . . . . . . . . 30, 344 Service life . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6, 8 appropriate operating conditions, maintenance and inspection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 failure due to anomalies . . . . . . . . . . . . . . . . .13, 14, 15 loss of, as failure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 in safe-life approach, definition of . . . . . . . . . . . . . .270 surface condition effect . . . . . . . . . . . . . . . . . . . . . . . . .120 Service life anomaly, as root cause resulting in failures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Service propulsion system (SPS) . . . . . . . . . . 857–859 Service propulsion system fuel tanks, stress corrosion cracking . . . . . . . . . . . . . . . . . . . 858–859 Sessile dislocations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .589 747 Maintenance Steering Group (MSG) . . . . . . . 61 SFRPs. See Short-fiber reinforced polymers. Shaft brittle fracture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352–353 fatigue failure . . . . . . . . . . . . . . . . . . 579, 581, 631, 633 fatigue fracture from rotating bending fatigue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 631, 633 fatigue fracture of steel . . . 707–708, 709, 710–711 liquid metal induced embrittlement . . . . . . . . . . . . .865 rotating bending fatigue failure . . . . . . . . . . . 631, 633 from rotor, torsional-fatigue fracture . . . . . 714–715 from tube-bending machine, fatigue fracture . . .711 Shaft hardening over a cross hole, design and distortion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198, 202

Shakeout, early, as casting defect . . . . . . . . . . . . . . . . .110 Shape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 distortion on quenching . . . . . . . . . . . . . . . . . . . . . . . . .208 Shape-casting processes, classification scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .124 Shape distortion, of sheet metal . . . . . . . . . . . . . . . . . .101 Shark’s teeth. See also Striation. definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1073 Sharp undercut at the weld toe, surface feature as cause for rejection . . . . . . . . . . . . . . . . . . . . . . . . .156 Shatter crack. See Flake. Shear bands. See also Adiabatic shear bands; Sheardeformation bands; Slip lines. and abrasive wear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .920 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1073 in ductile overload failures . . . . . . . . . . . . . . . . . . . . .672 and ductility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 595–596 formation . . . . . . . . . . . . . . . . . . . . . . . . . . . . .568, 621–622 in metallic materials . . . . . . . . . . . . . . . . . . . . . . . . . . . .571 in polycarbonate . . . . . . . . . . . . . . . . . . . . . . . . . . 654, 655 in polymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 652, 653 Shear component of stress, definition . . . . . . . . . . .462 Shear cracks, in forgings . . . . . . . . . . . . . . . . . . . . . . . . . . 92 Shear-deformation bands. See also Shear bands; Slip lines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 652, 653 Shear fasteners, liquid metal induced embrittlement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .866 Shear force, of beam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .470 Shear fracture. See also Shear stress. definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1073 Shear hackle, definition . . . . . . . . . . . . . . . . . . . . . . . . . 1073 Shearing crack characteristics and crack growth mechanism . . .100 classification scheme by Greek letters . . . . . . . . . . . 99 Shearing failures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .100 Shear ledges. See Radial marks. Shear lip . . . . . . . . . . . . . . . . . . . . . . . . . . 473, 566–567, 589 in bending tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .604 in brittle sample, and impact energy . . . . . . . . . . .605 in casting fractures . . . . . . . . . . . . . . . . . . .607, 610, 614 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1073 depth related to plane-stress plastic zone size and fracture toughness . . . . . . . . . . . . . . . . . . . . . . . . .583 in ductile fracture . . .400, 598, 599–600, 601, 604, 605 in ductile overload failures . . . . . . . . . . . . . . . . . . . . .673 of fatigue failure . . . . . . . . . . . . . . . . . . . . . . . . . . 630, 633 on fracture surface macroscale fractographic implication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .560 and fracture toughness . . . . . . . . . . . . . . . . . . . . . . . . . .477 in overload failures . . . . . . . . . . . . . . . . . . . . . . . 687, 688 in unnotched specimens . . . . . . . . . . . . . . . . . . . . . . . . .601 width on plate specimens to estimate stress for fracture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .583 Shear localization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .600 Shear modulus (G) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .466 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1073 Shear pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .460 Shear planes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 600, 604 Shear-related defects, in forgings . . . . . . . . . . . . . 92–93 Shear strain, definition . . . . . . . . . . . . . . . . . . . . . . . . . 1073 Shear strain rate, of carbon and low alloy steels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 980, 981 Shear strength as criteria for materials selection . . . . . . . . . . . . . . . . 32 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1073 Shear stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1035 causing permanent deformation . . . . . . . . . . . . . . . .588 components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .463 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .462, 1073 subsurface fatigue crack initiation . . . . . . . . . . . . . .628 Shear yielding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .658 Shear yield strength, relationship with various failure modes . . . . . . . . . . . . . . . . . . . . . . . . . . .35, 36 Sheet, discontinuities, types of . . . . . . . . . . . . . . . . . . . . . . 9 Sheet forming, problems encountered . . . . . . 100–101 Sheet metal forming, compatibility with various materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Sheet metalworking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 Shelf, in ingots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 Shell casting (steel), minimum web thickness . . . . 32 Shelling contact fatigue terminology . . . . . . . . . . . . . . . . . . . . .722

© 2002 ASM International. All Rights Reserved. ASM Handbook Volume 11: Failure Analysis and Prevention (#06072G)

definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .975 Shell molding, and surface finish of casting . . . . . .120 Shell resin sand molding, in shape-casting processes classification scheme . . . . . . . . . . . . . . . . . . . . . .124 Sherardizing, to prevent fretting damage . . . . . . . .933 Sherlock Holmes Rule . . . . . . . . . . . . . . . . .343, 344, 347 Shielded metal arc welding failure origins related to . . . . . . . . . . . . . . . . . . . . . . . .185 headers for superheated water . . . . . . . . . . . . 165–166 weldment inclusions . . . . . . . . . . . . . . . . . . . . . . 172, 173 weldment incomplete fusion and in-phase . . . . 178, 180 weldment porosity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .171 Shift, as casting defect . . . . . . . . . . . . . . . . . . . . . . . . . . . .111 Shifted core, as casting defect . . . . . . . . . . . . . . . . . . . .111 Shift factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1021–1022 Ship hull, intergranular corrosion . . . . . . . . . . . . . . . . .778 Ship service turbine generator casings, thermomechanical fatigue . . . . . . . . . . . 741–745 Shock load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364, 394 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1073 Shock waves, causing cavitation erosion . . . . . . . 1002 Short-fiber reinforced polymers (SFRPs) abrasive wear . . . . . . . . . . . . . . . . . . . . .1030, 1031–1033 adhesive wear . . . . . . . . . . . . . 1035, 1036, 1037–1038 composites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1028, 1029 Short-term overheat, as boiler tube damage mechanism on failure wheel . . . . . . . . . . . . . . .350 Short-term overheating (stress rupture), as damage mechanism for boiler tubing . . . . .347 Shot blasting, to remove surface oxides . . . . . . . . . .215 Shotcreting application method, . . . . . . . . . . . . . . . .759 Shotgun barrel, deformation failure of steel . . . 1051 Shot peening, . . . . . . . . . . . . . . . . . . . . . . . . . . .221–222, 927 and compressive residual stresses levels in steel automotive springs . . . . . . . . . . . . . . . . . . . . . . . . .492 to correct decarburization effects . . . . . . . . . . . . . . .216 distortion due to residual stresses . . . . . . . . . . . . . 1053 effect on manufactured components . . . . . . . . . . . .494 effect on overload failures . . . . . . . . . . . . . . . . . . . . . .688 effect on tensile residual-stress field . . . . . . 490–491 effect on Waspaloy rotating bend fatigue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 492–493 to increase compressive stresses by work hardening . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211–212 to increase fatigue strength of rotor shaft . . . . . .715 of malleable irons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .140 to minimize fretting . . . . . . . . . . . . . . . . . . . . . . . . . . . . .409 to prevent fretting damage . . . . . . . . . . . . . . . . . . . . . .933 recovery of internal oxidation . . . . . . . . . . . . . . . . . .215 and rolling-contact fatigue deformation . . . . . . . .953 stress gradients affected by . . . . . . . . . . . . . . . . . . . . .494 for stress reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .717 Shrinkage. See also Casting shrinkage. . . . . . . . . . . . 81 allowance, improper, as casting defect . . . . . . . . .110 axial, as casting defect . . . . . . . . . . . . . . . . . . . . . . . . . .106 blind, as casting defect . . . . . . . . . . . . . . . . . . . . . . . . . .106 centerline, as casting defect . . . . . . . . . . . . . . . . . . . . .106 core, as casting defect . . . . . . . . . . . . . . . . . . . . . . . . . .106 corner, as casting defect . . . . . . . . . . . . . . . . . . . . . . . .106 in corrosion-resistant castings . . . . . . . . . . . . . . . . . .148 dispersed, as casting defect . . . . . . . . . . . . . . . . . . . . .106 fillet, as casting defect . . . . . . . . . . . . . . . . . . . . . . . . . .106 of gray iron crankcases . . . . . . . . . . . . . . . . . . . . . . . . .136 internal, as casting defect . . . . . . . . . . . . . . . . . . . . . . .106 in malleable irons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .140 open or external, as casting defect . . . . . . . . . . . . .106 of permanent-mold castings . . . . . . . . . . . . . . . . . . . .125 Shrinkage cavity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .113 in carbon steel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .509 in castings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .614 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1073 Shrinkage gaps, between specimen and mount . . . . . . . . . . . . . . . . . . . . . 502, 503, 504, 505 Shrinkage porosity . . . . . . . . . . . . . . 113–116, 120, 593 in aluminum alloy castings . . . . . . . . . . . . .149, 150, 151 of aluminum pressure vessel hatch cover . . . . . . . . .287 as casting defect . . . . . . . . . . . . . . . . . . . . . .106, 613, 614 in casting fractures . . . . . . . . . . . . . . . . . . . . . . . . 608, 613 and cold shut in cast steel equalizer beams . . . 122, 123 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .104, 1073 as discontinuity in semisolid casting . . . . . 128, 131

effect on fatigue strength . . . . . . . . . . . . . . . . . . . . . . .719 and fracture from manufacturing imperfections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .613 and overload failures . . . . . . . . . . . . . . . . . . . . . . 683–684 in pressure die castings . . . . . . . . 126–127, 128, 129 as root cause of forgings defects, rationale, resolution, and corrective action . . . 327, 329, 330, 331 of welded cast steel crosshead . . . . . . . . . . . . 153, 154 of weldments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .186 Shrinkage voids in casting fractures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .608 in polymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .657 in weldments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .169 Shut-off valve of the stress ratio . . . . . . . . . . . . . . . .283 Shutter speed, in photography . . . . . . . . . . . . . . . . . .421 Sialons (Silicon-aluminum oxynitride) . . . . . . . . . .806 Side lighting of fracture . . . . . . . . . . . . . . . . . . . . . . . . . .419 Siderite, as corrosion products in pipeline excavations and laboratory soil box tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .887 Sigma phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 734–735 in austenitic manganese steel castings . . . . 147, 149 of beta - NiAl coatings . . . . . . . . . . . . . . . . . . . . . . . . .876 in corrosion-resistant castings . . . . . . . . . . . . . . . . . .149 formation at elevated temperatures . . . . . . . . . . . . .874 transformed from delta ferrite . . . . . . . . . . . . 500, 501 Sigma phase embrittlement causes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .690 of chromium-nickel alloy . . . . . . . . . . . . . . . . . 512, 513 effect in ferrous alloys . . . . . . . . . . . . . . . . . . . . . . . . . .690 effect on overload failures . . . . . . . . . . . . . . . . 692–693 of stainless steel . . . . . . . . . . . . . . . . . . . . . . . . . . . 500, 501 steels susceptible . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .690 Sigma-phase formation, of steel alloys used for gas turbine tubes and piping . . . . . . . .291, 292, 293 Signal-to-noise ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .518 Signature block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 415–416 Silica formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .877 melting point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .877 stress-corrosion cracking . . . . . . . . . . . . . . . . . . . . . . . .840 thermal stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .801 Silicate(s) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .802 formation in steel ingot . . . . . . . . . . . . . . . . . . . . . . . . . . 88 Silicate glasses, fracture markings . . . . . . . . . . . . . . . .664 Silicate inclusions by hydrogen-induced cracks . . . . . . . . . . . . . . . . . . . .815 in stainless steel mold . . . . . . . . . . . . . . . . . . . . . 509, 510 Silicon addition to nickel alloys and sulfidation resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .870 bond energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .650 in chromium-silicon aluminide coatings . . . . . . . .877 content effect on internal oxidation . . . . . . . . . . . .214 content effect on sigma-phase embrittlement . .693 in deposits from microbially induced corrosion sites in stainless steel cooling water systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .889 effect on molybdenum microsegregation . . . . . . .219 effect on time-to-fracture of copper by stress corrosion cracking in ammoniacal atmosphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .853 effect on weldment hot cracking . . . . . . . . . . . . . . .185 as embrittling agent . . . . . . . . . . . . . . . . . . . . . . . . . . . . .691 as embrittling impurity in low-alloy steel castings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .144 enhancing embrittlement . . . . . . . . . . . . . . . . . . 691, 692 as grain-boundary embrittler . . . . . . . . . . . . . . . . . . . .646 grain-boundary segregation causing intergranular stress corrosion cracking . . . . . . . . . . . . . . . . . .647 microsegregation susceptibility . . . . . . . . . . . . . . . . .219 oxidation potential in endothermic gas . . . . . . . . .214 removed from alloys by selective leaching . . . . .785 as surface contaminant on powder-free gloves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .528 Silicon alloys case debonding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .131 hypereutectic, grain refinement . . . . . . . . . . . . . . . . .150 Silicon-aluminum oxynitrides . . . . . . . . . . . . . . . . . . .801 Silicon bronze environments subjecting alloy to selective leaching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .785

www.asminternational.org

Index / 1145 galvanic series in seawater . . . . . . . . . . . . . . . . . . . . . .762 intergranular corrosion . . . . . . . . . . . . . . . . . . . . . . . . . .784 Silicon carbide (SiC) for abrasive particles for cutting wheels . . . . . . . .502 ceramics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .800 as chemical vapor deposition coating material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .949 coatings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .949 density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .960 elastic modulus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .960 erosion rate of ceramics with different grain size in ion-exchanged water . . . . . . . . . . . . . . . . . . 1007 failure mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .960 as filler for polymer composites . . . . . . . 1035, 1036 formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .877 hardness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .960 melting point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .877 reaction bonded, corrosion resistance to fused salts, alkalis, and low-melting oxides . . . . .805 reaction bonded, corrosion resistance to various hot gases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .805 refractoriness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 800, 805 toughness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .960 Silicon carbide-titanium carbide graphite as chemical vapor deposition substrate material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .949 Silicon deoxidation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .117 Silicon nitride (Si3N4) bending as fracture mode . . . . . . . . . . . . . . . . . . . . . . .666 ceramics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .800 density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .960 elastic modulus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .960 erosion rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1005, 1007 failure mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .960 as filler for polymer composites . . . . . . . . . . . . . . 1036 formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .877 hardness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .960 hot pressed, corrosion resistance to various hot gases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .805 impact cracking of bearing balls . . . . . . . . . . . . . . . .957 impact wear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .969 melting point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .877 plasma etching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .363 reaction bonded, corrosion resistance to various hot gases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .805 refractoriness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .805 toughness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .960 uniaxial tension, rod fracture . . . . . . . . . . . . . 663, 666 Silicon nitride (Si3N4) and M50 bearing steel as physical vapor deposition substrate material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .946 Silicon steel laminations porosity in weldments . . . . . . . . . . . . . . . . . . . . . . . . . .170 Silky fracture definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1073 Siloxane as surface contaminants . . . . . . . . . . . . . . . . . . . . . . . . .528 Silver in dissimilar metal pair, fretting damage . . . . . . .928 as embrittling metal . . . . . . . . . . . . . . . . . . . . . . . . . . . . .862 environments subjecting alloy to selective leaching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .785 fretting wear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .930 galvanic corrosion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .767 galvanic series in seawater . . . . . . . . . . . . . . . . . . . . . .762 high-purity, ductile fracture and void nucleation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .593 liquid embrittlers of . . . . . . . . . . . . . . . . . . . . . . . . . . . . .646 removed from alloys by selective leaching . . . . .785 standard emf series value . . . . . . . . . . . . . . . . . . . . . . .763 uniform corrosion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .768 Silver brazing alloys galvanic series in seawater . . . . . . . . . . . . . . . . . . . . . .762 Silver chloride degrading nylon resin . . . . . . . . . . . . . . . . . . . . . . . . . . .456 Silver or magic bullet theory . . . . . . . . . . . . . . 328, 331 Silver plating for adhesive wear mitigation . . . . . . . . . . . . . . . . . . .408 Simons (silicon-magnesium oxynitride) . . . . . . . . .806 SIMS. See Secondary ion mass spectroscopy. Simulated-service testing . . 334, 338–339, 404–405, 407, 752 for corrosion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 406, 407

© 2002 ASM International. All Rights Reserved. ASM Handbook Volume 11: Failure Analysis and Prevention (#06072G)

www.asminternational.org

1146 / Index

Simulated-service testing (continued) determined by tribological aspect number . . . . . 902, 903 for intergranular corrosion . . . . . . . . . . . . . . . . . . . . . .779 for stress-corrosion cracking . . . . . . . . . . . . . . . . . . . .838 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .376 Simulation programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . .377 Single-crystal (SC) alloys . . . . . . . . . . . . . . . . . . . . . . . .682 for gas turbine components . . . . . . . . . . . . . . . . . . . . .296 Single-crystal cleavage models . . . . . . . . . . . . 588–589 Single-cycle deformation wear mechanisms . . . . . . . . . . . . . . . . . . . 902–903 Sink marks as casting defect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .108 Sintered alumina fretting wear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .929 Sintered reaction-bonded silicon nitride (SRBSN) impact wear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .969 Sintered silicon carbide brittle fracture due to defect . . . . . . . . . . . . . . 669–670 Sioux City incident, titanium fan disk defect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228, 232 Situation-Filter-Outcome Model . . . . . . . . . . . . . . . .332 Six Sigma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3–4, 5, 10 Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 distortion on quenching . . . . . . . . . . . . . . . . . . . . . . . . .208 effect on ductility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .597 Size exclusion chromatography. See Gel permeation chromatography. Sketch, three-dimensional . . . . . . . . . . . . . . . . . . . . . . . . 27 Ski chair lift grip components brittle fracture of alloy steel . . . . . . . . . . . . . . . . .10, 11 Skimming techniques to prevent inclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . .117 Skin-dry sand molding in shape-casting processes classification scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .124 Skin passing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .338 Slabbing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .803 Slack quench . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .142 Slag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .801 trapped, as welding defect of castings . . . . . . . . . .152 Slag blowholes as casting defect . . . . . . . . . . . . . . . . . . . . . . . . . . . 106, 111 Slagging resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .803 Slag inclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116, 117 as casting defect . . . . . . . . . . . . . . . . . . . . . . . . . . . 108, 111 subsurface feature as cause for rejection . . . . . . .156 in welded cast steel crosshead . . . . . . . . . . . . 153, 154 in weldments . . 157–158, 169, 170, 171, 172–173, 174, 175, 176 Slant fracture. See also Shear lip. . . . . . . . . . . . . . . . .587 in castings . . . . . . . . . . . . . . . . . . . . . . . . . . . .607, 610, 614 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1073 SLC. See Sustained load cracking. Sledge hammers . . . . . . . . . . . . . . . . . 976, 977, 981, 987 Sliding direction of . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .412 negative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .413 Sliding abrasion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 908–909 Sliding contact wear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .909 Sliding distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1022 of polymer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1022 Sliding motion operational variations . . . . . . . . . . . . . . . . . . . . . . . . . . .902 Sliding speed . . . . . . . . . . . . . . . . . . . . . . .1021, 1022, 1032 Sliding velocity effect on impact wear failures . . . . . . . . . . . . 967–968 Sliding wear causing corrosive wear . . . . . . . . . . . . . . . . . . . . . . . . . .989 damage manifestation . . . . . . . . . . . . . . . . . . . . . . . . . . .901 mechanism of steel couple . . . . . . . . . . . . . . . . 902, 903 Sliding wear tests, high-speed . . . . . . . . . . . . . . . . . . .967 Slime formers in microbiologically induced corrosion of stainless steels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .890 Slime-forming organisms . . . . . . . . . . . . . . . . . . . . . . . .884 Slimers in cooling systems drawing on natural waters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .889 microbially induced corrosion morphology products, and deposits . . . . . . . . . . . . . . . . . . . . .888 Slip. See also Flow. . . . . . . . . . . . . . . 568, 587–588, 922 amplitude of, and fretting wear . . . . . .924–925, 926

in crystals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .589 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1073 duplex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .589 in metallic materials . . . . . . . . . . . 569, 570, 571, 572 in overload failures . . . . . . . . . . . . . . . . . . . . . . . 679–680 Slip band(s), and intergranular fracture . . . . . . . . . . . . . . . . . . . . . . .644 Slip band deformation . . . . . . . . . . . . . . . . . . . . . . . . . . .593 Slip-band density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .739 Slip deformation mechanism . . . . . . . . . . . . . . . . . . . .563 Slip lines. See Shear bands; Shear-deformation bands. Slipping time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .971 Slip plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 579, 581 Slip system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 679, 680 Slit-island(s) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 544, 547 Slit-island method, for measuring fractal dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . 544, 547 Slit-lakes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 544, 547 Sliver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 as flaw in rolled bars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 in forgings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 in ingots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .83, 90 Slow crack growth procedure for monolithic structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .273 Slow loading bend testing of notched specimens . . . . . . . . . . . . . . . . . . . . . . . . . . .605 Slow strain rate embrittlement. See also Internal reversible hydrogen embrittlement. . . . . . . .810 Slurry abrasives angle of attack, and corrosive wear . . . . . . . . . . . .991 density of, and corrosive wear . . . . . . . . . . . . 990–991 hardness of, and corrosive wear . . . . . . . . . . . . . . . .991 hydrodynamics effect on corrosive wear . . . . . . .991 impingement on two-body corrosive wear . . . . . . . . . . . . . . . . . . . . . . . 990–991 shape of . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .990 size of and corrosive wear . . . . . . . . . . . . . . . . . . . . . .991 solids concentration, and corrosive wear . . . . . . .991 velocity, and corrosive wear . . . . . . . . . . . . . . . . . . . .991 Slurry conditioning to resist corrosive wear . . . . . . . . . . . . . . . . . . . . . . . . .992 Slurry erosion variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .902 Slurry handling causing corrosive wear . . . . . . . . . . . . . . . . . . . . . . . . . .989 Slurry parameters to resist corrosive wear . . . . . . . . . . . . . . . . . . . . . . . . .992 Slurry tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .990 Slush casting in shape-casting processes classification scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .124 SMAC (computer program) for analyzing motor vehicle accidents . . . . . . . . . .377 Small-angle x-ray diffraction property derived from polymer analysis . . . . . . . .359 Small-crack growth rates . . . . . . . . . . . . . . . . . . . . . . . .703 Small-scale yielding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .477 Smearing fracture surface with torsion loading . . . . . 607, 610 SMIE. See Solid metal induced embrittlement. Smooth-bar rotating beam tests of ductile iron pistons . . . . . . . . . . . . . . . . . . . . . . . . . . .142 Smooth-bar stress-rupture tests . . . . . . . . . . . . . . . . .731 S-N curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .491 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1073 S-N diagram. See S-N curve. S-N method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 700–702 Snowmobile throttle and braking design and human factors . . 74 Snowthrower adapters brittle overload failure of zinc alloy . . . . . . . . . . . .683 Soaps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .410 Society for the Advancement of Science in Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .321 Society of Automotive Engineers publishes range of allowed concentrations and residual elements in metal compositions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .430 Soda-lime glass brittle fracture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 521, 523 cleavage fracture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .573

Soderberg line mean stress effect on alternating stress amplitude . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .701 Soderberg’s law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .701 Sodium alloying effect on aluminum-silicon alloys . . . . .118 as embrittling metal . . . . . . . . . . . . . . . . . . . . . . . . . . . . .862 as liquid embrittler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .646 standard emf series value . . . . . . . . . . . . . . . . . . . . . . .763 as surface contaminant on powder-free gloves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .528 Sodium chloride (NaCl) bond energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .650 causing chloridation of carbon steel . . . . . . . . . . . .873 stress-corrosion cracking . . . . . . 825, 844, 849, 851– 852, 856 Sodium chromate as additon to cooling water for cavitation erosion resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .793 Sodium hydroxide (NaOH) causing stress-corrosion cracking in carbon steels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .831 causing stress-corrosion cracking in Fe-Cr-Ni alloys (caustic cracking) . . . . . . . . . . . . . . . . . . .831 stress-corrosion cracking . . . . . . 823, 824, 833, 838, 839, 840, 844, 849, 857 Sodium hypochlorite solution causing pitting corrosion of stainless steel tanks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 773–774 Sodium pyrosulfates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .874 Sodium sulfate as agent causing hot corrosion . . . . . . . . . . . . 871, 872 corroding technical ceramics . . . . . . . . . . . . . 804, 805 Sodium tetrathionate solution stress-corrosion cracking . . . . . . . . . . . . . . . . . . . . . . . .849 Sodium thiosulfate solutions stress-corrosion cracking . . . . . . . . . . . . . . . . . . . . . . . .849 Softening . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .803 Soft steel impact wear coefficient values . . . . . . . . . . . . . . . . . .971 Software fault analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 SOHIC. See Stress-oriented hydrogen-induced cracking. Sohnke’s law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 587–588 Soil environments microbiologically induced corrosion of steel and iron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 885–887 pitting corrosion and sampling requirement . . . .356 Soil oxidation reduction potential factors correlating with sulfate-reducing bacteria (SRB) numbers for buried pipeline sites . .886 Soil resistivity factors correlating with sulfate-reducing bacteria (SRB) numbers for buried pipeline sites . .886 Soil water content factors correlating with sulfate-reducing bacteria (SRB) numbers for buried pipeline sites . .886 Soldering as casting defect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .108 in die castings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .127 Solenoid valve fatigue fracture of stainless steel . . . . . . . . . 235–238 Solgasmix computer code . . . . . . . . . . . . . . . . . . . . . . . .801 Solidification, accelerated . . . . . . . . . . . . . . . . . . . . . . . .118 Solidification cracks subsurface feature as cause for rejection . . . . . . .156 in weldments . . . . . . . . . . . . . . . . . . . 157, 167, 170, 184 Solidification modeling to predict microporosity areas . . . . . . . . . . . . . . . . . .112 Solidification rate increase effect on thermal gradient . . . . . . . . . . . . .112 Solidification shrinkage of aluminum alloy castings . . . . . . . . . . . . . . . . . . . . .150 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1073 Solidification shrinkage crack definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1073 Solid impingement erosion cause . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .995 Solid-metal-induced embrittlement (SMIE) . . . 694, 751 of alloy steel and cadmium . . . . . . . . . . . . . . . . . . . . .865 alloy steel and tin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .865 of carbon steel and cadmium . . . . . . . . . . . . . . . . . . .865 carbon steel and tin . . . . . . . . . . . . . . . . . . . . . . . . . . . . .865

© 2002 ASM International. All Rights Reserved. ASM Handbook Volume 11: Failure Analysis and Prevention (#06072G)

causes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .690 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .861 effect in ferrous alloys . . . . . . . . . . . . . . . . . . . . . . . . . .690 effect on overload failures . . . . . . . . . . . . . . . . . . . . . .698 failure analysis of . . . . . . . . . . . . . . . . . . . . . . . . . 862–863 influencing intergranular fracture . . . .642, 645, 646 and intergranular (IG) fracture . . . . . . . . . . . . . . . . . .645 metals shown to cause . . . . . . . . . . . . . . . . . . . . . . . . . .862 rate and time to failure . . . . . . . . . . . . . . . . . . . . . . . . . .862 service failures . . . . . . . . . . . . . . . . . . . . . . .862, 863–866 steels susceptible . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .690 titanium-cadmium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .866 Solid modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .381 Solid-particle erosion . . . . . . . . . . . . . . . . . . . . . . . . . . . 1005 Solid refractory material . . . . . . . . . . . . . . . . . . . . . . . .801 Solid rocket booster (SRB) failure on space shuttle Challenger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 Solid shrinkage definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1073 Solid-solution reactions to introduce precipitates for strengthening . . . . .874 Solid-solution strengthening . . . . . . . . . . . . . . . 681, 684 of nickel-base superalloys used for gas turbine blades . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .294 Solubility parameters . . . . . . . . . . . . . . . . . . . . . . 796–797 Solution annealing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .403 Solution conditioning to resist corrosive wear . . . . . . . . . . . . . . . . . . . . . . . . .992 Solution etching as ceramographic etching procedure . . . . . 362, 363 Solution heat treatments to control intergranular corrosion . . . . . . . . . . . . . . .875 Solution viscosity properties measured . . . . . . . . . . . . . . . . . . . . . . . . . . . . .446 use in failure analysis . . . . . . . . . . . . . . . . . . . . . . . . . . .446 Solvation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 796–797 of polymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .439 Solvent-crazing phenomenon . . . . . . . . . . . . . . 652–653 Solvent-induced failures . . . . . . . . . . . . . . . . . . . . . . . . .653 Solvents and crazing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 652–653 Somat 2100 data acquisition system . . . . . . . . . . . .977 Sonic waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .665 Sootblower corrosion as damage mechanism for boiler tubing . . . . . . . .347 Sootblower erosion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .876 as boiler tube damage mechanism on failure wheel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .350 SORM. See Second-order reliability method. Source code, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .267 Sour gas hydrogen-induced cracking in pipe wall . . . . . . .815 Souring of environment . . . . . . . . . . . . . . . . . . . . . . . . . .884 “Sour service” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .884 Spacecraft separation springs solid metal induced embrittlement . . . . . . . . . . . . . .865 Spall in rolling contact fatigue test machine . . . . . . . . .959 Spall cavities . . . . . . . . . . . . . . . .982, 983, 984, 985, 986 Spalling . . . . . . . . . . . . . . . . . . . . . . . . . . . 197, 801, 802–803 of aluminide coatings, platinum effect . . . . . . . . .877 Burn’s field tests . . . . . . . . . . . . . . . . . . . . . . . . . . 975, 978 cavities . . . . . . . . . . . . . . . . . . . .982, 983, 984, 985, 986 of centrifugal castings . . . . . . . . . . . . . . . . . . . . 132, 133 in ceramics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .961 chemical . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 802–803 chromium-molybdenum steels . . . . . . . . . . . . . . . . . .978 of coatings for gas turbine blades . . . . . . . . 303, 304 contact fatigue terminology . . . . . . . . . . . . . . . . . . . . .722 as damage mechanism on failure wheel . . . . . . . .349 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .975, 1073 by fatigue of forged roll . . . . . . . . . . . . . . . . . . 629, 632 fractography of . . . . . . . . . . . . . . . . . . . . . . . . . . . . 982–985 from impact events . . . . . . . . . . . . . . . . . . . . . . . . 975–988 in impact wear . . . . . . . . . . . . . . . . . . . . . . . . . . . . 966, 967 metallography of . . . . . . . . . . . . . . . . . . . . . . . . . . 982–985 and oxidation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .868 by quench crack . . . . . . . . . . . . . . . . . . . . . .984–985, 986 of refractory coatings . . . . . . . . . . . . . . . . . . . . . . . . . . .878 as rolling contact fatigue failure mode of thermal spray cermet and ceramic coatings . . . . . . . .951 striking/struck tool impact geometries . . . . 977, 978 of striking tools, testing and analysis methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 975–978

structural . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 802–803 by temper embrittlement . . . . . . . . . . . . . . . . . . . . . . . .985 of thermal barrier coatings . . . . . . . . . . . . . . . . . . . . . .877 tool geometry considerations . . . . . . . . . . . . . . . . . . .978 valve seating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .972 Spalling fatigue of thermal sprayed coatings . . . . . . . . . . . . . . . . . . . .953 Spalling fatigue failure of rolling-contact fatigue . . . . . . . . . . . . . . . . . . 960–961 Spangles and cold forming of zinc-coated steel sheet . . . .102 Spatter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 in ingots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 surface feature as cause for rejection . . . . . . . . . . .156 in weldments . . . . . . . . . . . . . .169, 175, 177, 187, 190 Specifications definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 in design process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 effect on materials selection . . . . . . . . . . . . . . . . . . . . . 34 Specific-iron effect . . . . . . . . . . . . . . . . . . . . . . . . . . 831, 833 Specificity of metal-induced embrittlement . . . . . . . . . . . . . . . .862 Specific strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Specific wear rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .929 of polymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1020, 1022 Spectrochemical analysis of fretting damage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .937 Spectrographic analysis . . . . . . . . . . . . . . . . . . . . . . . . . .404 of gray-iron cylinder head . . . . . . . . . . . . . . . . . . . . . .112 Spectrophotometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .404 Spectrum load effects . . . . . . . . . . . . . . . . . . . . . . 282–283 Spherical stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .466 Spherical stress tensors . . . . . . . . . . . . . . . . . . . . . . . . . .482 Spheroidal carbides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .216 Spheroidization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 693, 695 Spikes as casting defects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .120 in malleable irons . . . . . . . . . . . . . . . . . . . . . . . . . 140, 141 in weldments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189, 190 Spinodal decomposition . . . . . . . . . . . . . . . . . . . . . . . . . .692 Splash zone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .776 Splash-zone corrosion . . . . . . . . . . . . . . . . . . . . . . . . . . . .776 Splay in polycarbonate switch housing . . . . . . . . . . . . . . .457 Splined shafts fatigue fracture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .712 Splits in forgings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 Spoilation of evidence . . . . . . . . . . . . . . . . . . . . . . . . . . . .375 Spool-type hydraulic valve distortion failure of steel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1053–1054 Spot-check test kits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .431 Spot testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .404 Spray quenching . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213, 214 Spreadsheet programs in failure investigations . . . . . . . . . . . . . .328, 329, 330 Spring(s) stress analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .472 types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .472 Springback as casting defect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .111 of sheet metal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .101 Spring index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .472 Spring wire fatigue fractures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .707 Sprocket drive wheel ductile fracture of aluminum alloy castings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151–152 SPS. See Service propulsion system. Sputter coating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 521, 522 Sputtered reflected layers as ceramographic etching procedure . . . . . . . . . . .362 Sputtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .946 to apply coatings to polymers for SEM . . . . . . . .638 Sputtering, for vapor-depositing coatings . . . . . . . .759 Sputter rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 530, 531 Square joints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .163 Squeeze casting . . . . . . . . . . . . . . . . . . . . . . . .127, 129–131 defect-related failures . . . . . . . . . . . . . . . .127, 129–131 in shape-casting processes classification scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .124 SRB. See Sulfate-reducing bacteria. SRBSN. See Sintered reaction-bonded silicon nitride.

www.asminternational.org

Index / 1147 SRFs. See Strength-reduction factors. SSC. See Sulfide-stress cracking. SSTG. See Ship service turbine generator casings. Stabilizers, chemical additive . . . . . . . . . . . . . . . . . . . . .798 Stacking-fault energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . .909 and fatigue fracture . . . . . . . . . . . . . . . . . . . . . . . . . . . . .578 and fretting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .928 Stainless steels aging reactions as cause of corrosion . . . . . . . . . .874 brittle fracture by fatigue of welded liner for bellows-type expansion joint . . . . . . . . 164–165 brittle fracture of gas turbine hot-gas casing . . 363, 364 cavitation erosion . . . . . . . . . . . . . . . . . . . . . . .1013–1014 centrifugal casting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .132 chloridation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .873 chloride stress-corrosion cracking . . . . . . . . . . . . . .755 cold forming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .101 cold shut in casting . . . . . . . . . . . . . . . . . . . . . . . . . . . . .120 compatibility with various manufacturing processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 corrosion-resistant alloys . . . . . . . . . . . . . . . . . 889–890 crevice corrosion . . . . . . . . . . . . . . . . . . . . . . . . . . 775–776 distortion failure of cantilever beams . . . . . . . . . 1049 distortion failures of Belleville washers . . . . . . 1052 ductile overload fracture . . . . . . . . . . . . . . . . . . 674, 675 elastic crack-tip opening displacement . . . 244–245 embrittlement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .692 erosive wear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .998 fatigue fracture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235–238 fatigue fracture of mixer blades for ice cream drink . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8–9 fatigue fracture of weldment inlet header . . . . . . . . . . . . . . . . . . . . . . . . . . 166–167 as fiber reinforcement for unidirectional polymer composites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1038 fretting wear . . . . . . . . . . . . . . . 927, 930, 931, 934–935 galvanic corrosion . . . . . . . . . . . . . . . . . . . . . . . . . 762, 767 green rot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .868 heat-tinted zones, microbially induced corrosion of . . . . . . . . . . . . . . . . . . . . . . . . . . 887–888 heat treating failures . . . . . . . . . . . . . . . . .200–201, 204 high-chromium, and 400 to 500 ⬚C (750 to 930 ⬚F) embrittlement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .692 hydrogen damage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .816 intergranular corrosion . . . . . . . . . . . . . . . . . . . . 777–783 liquid-droplet erosion . . . . . . . . . . . . . . . . . . . . . . . . . 1015 liquid metal induced embrittlement . . . . . . . 866, 873 localized corrosion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .767 maraging, erosion rate . . . . . . . . . . . . . . . . . . . . . . . . 1005 metal dusting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .869 microbially induced corrosion . . . . . . .881, 883, 884 nitridation attack . . . . . . . . . . . . . . . . . . . . . . . . . . 869–870 overaging effect on rupture life . . . . . . . . . . . . . . . . .734 as overlays to resist liquid impingement erosion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .998 passivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .534 piping, leak-before-break concept . . . . . . . . 231, 232 pitting corrosion . . . . 356, 771–772, 772–773, 774– 775 in presence of chloride ions, causes of stresscorrosion cracking . . . . . . . . . . . . . . . . . . . . . . . . .831 sensitized, causes of stress-corrosion cracking . . . . . . . . 831, 834, 844, 846, 847–848 sigma-phase embrittlement . . . . . . . . . . . . . . . 692–693 silicate inclusion defect . . . . . . . . . . . . . . . . . . . 509, 510 stress-corrosion cracking . . . . . . . 366, 827–828, 832 uniform corrosion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .768 welded elbow assembly failure . . . . . . . . . . . 163–164 weldment hot cracking . . . . . . . . . . . . . . . . . . . . . . . . . .184 weldments, microbially induced corrosion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 887–889 workability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 zinc-induced liquid metal embrittlement . . . . . . 367, 369 Stainless steels, austenitic casting defects . . . . . . . . . . . . . . . . . . 146–147, 148, 149 causes of stress-corrosion cracking . . . . . . . . . . . . .831 causing liquid or solid metal induced embrittlement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .862 cavitation erosion in seawater . . . . . . . . . . . . . . . . . .793 cleavage fracture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .589 composition control . . . . . . . . . . . . . . . . . . . . . . . . . . . . .406

© 2002 ASM International. All Rights Reserved. ASM Handbook Volume 11: Failure Analysis and Prevention (#06072G)

www.asminternational.org

1148 / Index

Stainless steels, austenitic (continued) ductile fracture of diesel fuel injection control sleeve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12–13 environment systems exhibiting stress-corrosion cracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .832 fatigue fracture at low stacking fault energy . . .578 fatigue fracture of mixer blades . . . . . . . . . . . . . . . .8–9 forged extrusion, high-energy-rate . . . . . . . . . . .97, 98 fretting wear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .931 hardness vs. amplitude of slip in fretting . . . . . . .928 hydrogen embrittlement . . . . . . . . . . . . . . . . . . . . . . . . .813 intergranular corrosion . . . . . . . . . . . . . . . . . . . . 777–783 intergranular fatigue . . . . . . . . . . . . . . . . . . . . . . . . . . . .644 intergraunlar stress-corrosion cracking . . . . . . . . .647 microbially induced corrosion . . . . . . . . . . . . . . . . . .884 mitigating adhesive wear . . . . . . . . . . . . . . . . . . . . . . .408 mixed-mode cracking . . . . . . . . . . . . . . . . . . . . . 677, 678 polishing with relief damage . . . . . . . . . . . . . 506, 507 sensitization at elevated temperatures . . . . 874–875 sensitized causes of stress-corrosion cracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .831 sensitized, intergranular creep facture . . . . . . . . . .576 stress-corrrosion cracking . . . . . . . . . . . 824, 825, 832, 843–846, 875 substances in atmospheric environments causing stress-corrosion cracking . . . . . . . . . . . . . . . . . .832 uniform corrosion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .769 weldment ductility-dip cracking . . . . . . . . . . . . . . . .184 Stainless steels, austenitic, specific types S20100, oxidation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .869 S20200, oxidation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .869 S21800 (Nitronic 60), adhesive wear resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .408 S30100, oxidation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .869 S30200 (18-8) crystallographic fatigue . . . . . . . . . . . . . . . . 636–637 distortion failure of cantilever beams . . . . . . 1049 erosion rate of metallic coatings in 3% NaCl aqueous solution . . . . . . . . . . . . . . . . . . . . . . . . . 1008 fatigue fracture showing striations . . . . . . . . . . .635 galvanic series in seawater . . . . . . . . . . . . . . . . . . .762 intergranular corrosion . . . . . . . . . . . . . . . . . . . . . . .780 oxidation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .869 scale effect on distortion . . . . . . . . . .202–203, 206 stress-corrosion cracking . . . . . . . . . . . . . . . 824, 825 S30300 ductile overload fracture of wire . . . . . . . 674, 675 intergranular corrosion . . . . . . . . . . . . . . . . . 781–782 valve in vending machine, citric and phosphoric acid corrosion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 S30400 cavitation erosion . . . . . . . . . . . . . .1003, 1013, 1014 chloride stress-corrosion cracking . . . . .340–341, 823, 824 crevice corrosion of tube . . . . . . . . . . . . . . . . . . . . .776 erosion rate . . . . . . . . . . . . . . . . . . . .1005, 1006, 1007 fatigue fracture . . . . . . . . . . . . . . . . . . . . . . . . . 523, 524 galvanic series in seawater . . . . . . . . . . . . . . . . . . .762 hydrogen embrittlement and intergranular fracture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .647 intergranlar corrosion . . 778, 779–780, 781, 782 liquid metal induced embrittlement . . . . . . . . . .866 microbially induced corrosion . . . .883, 888, 889 microvoid coalescence on fracture face . . . . .500 for nitric acid storage and shipping containers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .770 oxidation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .869 sensitization at elevated temperatures . . 292, 874 sensitized fracture, light micrograph . . . . . . . . .500 stress-corrosion cracking . . . . . 38, 500, 824, 825, 827–828, 831, 834, 843, 844 stretch zone width correlation with fracture toughness, elastic modulus normalized . . .584 transgranular fracture . . . . . . . . . . . . . . . . . . . 500, 501 S30403 (304L) denickelification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .788 erosion rate in vibratory erosion rate in vibratory cavitation . . . . . . . . 1016 hydrogen embrittlement . . . . . . . . . . . . . . . . 647, 813 intergranular corrosion . . . . . . . . . . . . . . . . . 780, 781 intergranular fractures . . . . . . . . . . . . . . . . . . . . . . . .647 liquid metal induced embrittlement . . . . . . . . . .866 microbially induced corrosion . . . . . . . . . 889, 890 microbially induced corrosion of welds . . . . 883, 889

microbially induced or influenced corrosion, condenser tubes . . . . . . . . . . . . . . . . . . . . . . . . . . . .881 pickling to remove heat-tinted scale . . . . . . . . .888 stress-corrosion cracking . . . . 824, 825, 831, 843 vibratory cavitation behavior compared to NiCr-Fe-Si-B coatings . . . . . . . . . . . . . . . . . . . . . . 1017 S30409 (304H) maximum metal temperatures for hightemperature boiler tube materials . . . . . . . . .304 maximum-use temperatures . . . . . . . . . . . . . . . . . .693 S30500, stress-corrosion cracking in boiling magnesium chloride . . . . . . . . . . . . . . . . . . . . . . .825 S30800 chloride stress-corrosion cracking . . . . . 823, 824 microbially induced corrosion in weldments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 888, 889 type 308L, pickling to remove heat-tinted scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .888 S30900 intergranular corrosion . . . . . . . . . . . . . . . . . . . . . . .780 oxidation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .869 S30908 (type 309S) hydrogen embrittlement . . . . . . . . . . . . . . . . . . . . . .813 intergranular corrosion evaluation tests and acceptance criteria . . . . . . . . . . . . . . . . . . . . . . . . .781 S31000 hydrogen embrittlement and intergranular fractures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .647 intergranular corrosion . . . . . . . . . . . . . . . . . . . . . . .780 oxidation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .869 stress-corrosion cracking . . . . . . . . . .824, 825, 835 S31200, sigma phase embrittlement of fractured surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 500, 501 S31400, stress-corrosion cracking . . . . . . . . 824, 825 S31600 chloride-induced stress-corrosion cracking . .490 creep damage . . . . . . . . . . . . . . . . . . . . . . . . . . . 365, 366 crevice corrosion tray deck . . . . . . . . . . . . 775–776 elevated-temperature ductility . . . . . . . . . . . . . . . .733 elevated-temperature fatigue . . . . . . . . . . . . . . . . .291 elevated temperatures for engineering applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .729 fatigue fracture of solenoid valve . . . . . . 235–238 galvanic series in seawater . . . . . . . . . . . . . . . . . . .762 intergranular corrosion . . . . . . . . . . . . . . . . . 780, 781 maximum erosion rate dependence in cavitation erosion on combined parameter . . . . . . . . . 1016 microbially induced cracking in weldments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 888, 889 oxidation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .869 pitting corrosion of tubes . . . . . . . . .356, 772–773 as reference material for cavitation erosion testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1008, 1009 seawater causing corrosion in piping . .789–790, 791 sensitization at elevated temperatures . . . . . . . .292 stress-corrosion cracking . . . 366, 825, 836, 837, 843–846 S31603 (316L) erosion rate in 3.5% NaCl aqueous solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1008 fretting wear of orthopedic implants . . . 930, 931 intergranular corrosion . . . . . . . . . . . . . . . . . 780, 781 intergranular stress-corrosion cracking . . . . . 823, 824 laser surface modification for cavitation erosion resistance . . . . . . . . . . . . . . . . . . . . . . . . . . 1007, 1008 liquid metal induced embrittlement . . . . . . . . . .866 microbially induced corrosion . . . 883, 884, 888, 889 overload failures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .678 pickling to remove heat-tinted scale . . . . . . . . .888 pitting and microbially induced corrosion of storm sewer piping . . . . . . . . . . . . . . . . . . . . . . . .753 pitting corrosion of wires . . . . . . . . . . . . . . 774–775 residual-stress map of welded plate . . . . . . . . . .489 seawater causing corrosion in piping . .789–790, 791 stress-corrosion cracking . . . . 826–527, 835, 836 type 316LR, fretting wear of bone plate for orthopedic implants . . . . . . . . . . . . . . . . . . 934–935 S31700 intergranular corrosion . . . . . . . . . . . . . . . . . 780, 781

galvanic series in seawater . . . . . . . . . . . . . . . . . . .762 oxidation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .869 S31703 (317L) intergranular corrosion . . . . . . . . . . . . . . . . . 780, 781 microbially induced corrosion in weldments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .888 for wires for electrostatic precipitator at paper plant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .774 S32100 brittle fracture of gas turbine hot-gas casing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363, 364 brittle fracture of weldments . . . . . . . . . . . 163–165 carbide precipitation . . . . . . . . . . . . . . . . . . . . 363, 364 elevated-temperature service . . . . . . . . . . . . . . . . .292 galvanic series in seawater . . . . . . . . . . . . . . . . . . .762 intergranular corrosion . . . . . . . . . . . . . . . . . 780, 781 intergranular creep fracture . . . . . . . . . . . . 575, 576 liquid metal induced embrittlement . . . . . . . . . .866 oxidation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .869 pitting corrosion of aircraft freshwater tanks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 773–774 stress-corrosion cracking . . . . . . . . . .830, 843, 844 zinc-induced liquid metal embrittlement . . . . 367, 369 SA-213 grade TP 321H, intergranular creep fracture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .576 S33000, oxidation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .869 S34700 crevice corrosion . . . . . . . . . . . . . . . . . . . . . . . . . . . . .777 elevated-temperature service . . . . . . . . . . . . . . . . .292 fatigue fracture of welded inlet header . . . . . . . . . . . . . . . . . . . . . . . . . . 166–167 galvanic series in seawater . . . . . . . . . . . . . . . . . . .762 intergranular corrosion . . . . . . . . . . . . . . . . . 780, 781 oxidation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .869 sigma-phase formation . . . . . . . . . . . . . . . . . 292, 293 stress-corrosion cracking . . . . . . . . . .825, 843, 844 S34709 (type 347H), maximum metal temperatures for high-temperature boiler tube materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .304 type 347L, stress-corrosion cracking in boiling magnesium chloride 18-12, erosion rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1005 RA85H, sulfidation resistance . . . . . . . . . . . . . . . . . .871 Stainless steels, duplex intergranular corrosion . . . . . . . . . . . . . . . . . . . . . . . . . .780 stress-corrosion cracking . . . . . . . . . . . . . . . . . . 846–847 V-notched, bending failure . . . . . . . . . . . . . . . . . . . . . .605 Stainless steel, duplex, specific types S32550, intergranular corrosion . . . . . . . . . . . . . . . .780 S32900, intergranular corrosion . . . . . . . . . . . . . . . .780 25-6, erosion rate . . . . . . . . . . . . . . . . . . . . . . 1005, 1016 Stainless steels, ferritic causing liquid or solid metal induced embrittlement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .862 intergranular corrosion . . . . . . . . . . . . . . .780, 782–783 stress-corrosion cracking . . . . . . . . . . . . . . . . . . 846–847 Stainless steels, ferritic, specific types S40500, oxidation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .869 S40900, high-frequency induction welding . . . .191 S43000 banding and chemical segregation of ingot . . 83, 84 corrosion fatigue of wires around insulators in wet scrubbing systems . . . . . . . . . . . . . . . 340–341 galvanic series in seawater . . . . . . . . . . . . . . . . . . .762 intergranular corrosion . . . . . . . . . . . . . . . . . 780, 781 oxidation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .869 S44200, oxidation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .869 S44600 (Sea-Cure) intergranular corrosion . . . . . . . . . . . . . . . . . 780, 781 oxidation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .869 stress-corrosion cracking . . . . . . . . . . . . . . . . . . . . .846 S44626 (26-1S), intergranular corrosion evaluation tests and acceptance criteria . . . . . . . . . . . . . . .781 S44660 (Sea-Cure/Sc-1), intergranular corrosion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .780 S44700 (29-4), intergranular corrosion evaluation tests and acceptance criteria . . . . . . . . . . .781 S44726 (E-Brite 26-1), intergranular corrosion . . . . . . . . . . . . . . . . . . 780, 781, 782–783 S44735 (AL 29-4C), stress-corrosion cracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .846

© 2002 ASM International. All Rights Reserved. ASM Handbook Volume 11: Failure Analysis and Prevention (#06072G)

S44800 (29-4-2) intergranular corrosion . . . . . . . . . . . . . . . . . 780, 781 13-4, erosion rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1005 Stainless steels, martensitic causing liquid or solid metal induced embrittlement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .862 mitigating adhesive wear . . . . . . . . . . . . . . . . . . . . . . .408 stress-corrosion cracking . . . . . . . . . . . . . . . . . . . . . . . .875 Stainless steels, martensitic, specific types S40300 erosive wear of steam turbine blade . . . . . . . . .998 microbially induced corrosion . . . . . . . . . 889, 890 microstructure showing distortion from a seam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204, 207 pitting corrosion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .774 quench cracking . . . . . . . . . . . . . . . . . . . . . . . . 200, 204 stress-corrosion cracking . . . . . . . . . . . . . . . . . . . . .825 S41000 defect-related failure, cold shut in aircraft fuelcontrol lever . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .120 fatigue failure of gas turbine blades . . . . . . . . .341 galvanic series in seawater . . . . . . . . . . . . . . . . . . .762 oxidation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .869 stress-corrosion cracking . . . . . . . . . . . . . . . 825, 827 S41600 galvanic series in seawater . . . . . . . . . . . . . . . . . . .762 oxidation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .869 S42000 microstructure, silicate inclusion defect . . . . 509, 510 oxidation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .869 S43100 hydrogen embrittlement . . . . . . . . . . . . . . . . 813, 814 stress-corrosion cracking . . . . . . . . . . . . . . . . . . . . .825 S44000, oxidation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .869 S44004 (440C) as chemical vapor deposition substrate material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .949 as physical vapor deposition substrate material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .946 as substrate material for thermally sprayed coatings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .950 Stainless steels, precipitation-hardened cavitation erosion in seawater . . . . . . . . . . . . . . . . . .793 hydrogen embrittlement . . . . . . . . . . . . . . . . . . . . . . . . .812 mitigating adhesive wear . . . . . . . . . . . . . . . . . . . . . . .408 stress-corrosion cracking . . . . . . . . . . . . . . . . . . 847–848 Stainless steels, precipitation-hardened, specific types S13800 (PH13-8Mo), stress-corrosion cracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .848 S15700 (PH15-7Mo), solution-treating temperature effect on Ms temperature . . . . . . . . . . . . . . . . 1052 S17400 (17-4PH) (type 630) counterface material having impact wear . . . 967, 968 hydrogen damage . . . . . . . . . . . . . . . . . . . . . . . . . . . . .816 liquid-droplet erosion resistance . . . . . . . . . . . 1015 pitting corrosion of steam-turbine blade . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 774–775 stress-corrosion cracking . . . . . . . . . . . . . . . 847–848 stress intensity range effect on fatigue fracture mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .578 S17700 (17-7PH) (type 631) distortion failure of Belleville washers . . . . 1052 solution-treating temperature effect on Ms temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1052 S35000 (AM-350), solution-treating temperature effect on Ms temperature . . . . . . . . . . . . . . . . 1052 S35500 (AM-355), solution-treating temperature effect on Ms temperature . . . . . . . . . . . . . . . . 1052 Standard deviation . . . . . . . . . . . . . . . . . . . . . . . . . 256, 260 Standardization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Standardization of designs, effect on materials selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Standards categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19–20 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Standards and specifications, specific types . . . .386 by manufacturers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .386 for piping and pressure vessel design . . . . . . . . . .385 proof testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .403 Aerospace Material Specification (AMS) (of SAE) 2770, quench media selection . . . . . . . 206–207

American National Standards Institute (ANSI) B173.3–1991, heavy striking tools . . . . . . . 985, 986, 987 ANSI B209.1–1991, chisels . . . . . . . . . . . . . . . . . . . .987 ANSI B209.3–1990, wood splitting wedges . . .987 ANSI/American Gear Manufacturers Association, microcracks, grade 3 quality limitations . .218 ANSI/AGMA 1010-E96, nomenclature for fatigue damage modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . .722 ANSI/AGMA 2001-C95, decarburization limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215, 216 ANSI/American Welding Society B.4.0, “Standard Methods for Mechanical Testing of Welds” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .156 ANSI/HTI B 173.3, hammer-testing procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .976 American Petroleum Institute (API) . . . . .579, 1104 acceptance criteria for steel welds . . . . . . . . . . .170 fitness-for-service assessment methodology . . .160, 240–241, 251, 265, 266, 267 American Railway Engineering and Maintenanceof-Way Association (AREMA), percussion track tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .987 American Society of Mechanical Engineers (ASME) IX approach, flaw size fitness-forservice assessment methodology . . . . . . . . . .160 American Society for Testing and Materials (ASTM) A 143, hot dip galvanized structural steel products, embrittlement prevention and detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .811 ASTM A 213, tube manufacturing by seamless process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .772 ASTM A 262 (A, B, and C), corrosion-screening tests . . . . . . . . . . . . . . . . . . . . . . . 149, 770, 780, 781 ASTM A 300, Charpy V-notch requirements . .161 ASTM 370, dimensions of test bars for heat determination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .144 ASTM A 763-S, intergranular corrosion evaluation test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .781 ASTM B 41, elevated-temperature service of zinc anodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .785 ASTM B 154, fuse requirements . . . . . . . . . . . . . . .854 ASTM D 638, tensile testing of polymers . . . . .445 ASTM D 790, flexural testing of polymers . . . .445 ASTM D 1193, reagent water specification . . 1007 ASTM D 1238, melt flow rate determination in polymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .445 ASTM D 1243, solution viscosity determination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .445 ASTM D 3029, falling weight impact testing of polymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .445 ASTM D 5045, polymer linear elastic fracture mechanics properties . . . . . . . . . . . . . . . . . . . . . .656 ASTM E 23, pendulum impact test . . . . . . . . . . 1063 ASTM E 139, life fraction rule . . . . . . . . . . . . . . . . .298 ASTM E 178, “Practice for Dealing with Outlying Observations” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .753 ASTM E 381, macroetching for macroscopic examination . . . . . . . . . . . . . . . . . . . . . . . . . . . 84, 337 ASTM E 399, material property toughness determination . . . .476, 582, 1064, 1071, 1074 ASTM E 468, “Presentation of Constant Amplitude Fatigue Test Results for Metallic Materials” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .702 ASTM E 606, strain-controlled fatigue testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .702 ASTM E 620, “Standard Practice for Reporting Opinions of Technical Experts” . . . . . 327, 394 ASTM E 647, fatigue-crack-growth threshold definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .703 ASTM E 678, “Standard Practice for Evaluation of Technical Data” . . . . . . . . . . . . . . . . .327, 394, 418 ASTM E 860, “Standard Practice for Examining and Testing Items That Are or May Become Involved in Litigation” . . . 327, 394, 418, 419 ASTM E 915, x-ray diffraction instrumentation alignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .486 ASTM E 1020, “Standard Practice for Reporting Incidents” . . . . . . . . . . . . . . . . . . . . . . .327, 394, 418 ASTM E 1150-87, fatigue definition . . . . . . . . . . .628 ASTM E 1188, “Standard Practice for Collection and Preservation of Information and Physical Items by a Technical Investigator” . . 327, 418

www.asminternational.org

Index / 1149 ASTM E 1426, x-ray elastic constant determination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .486 ASTM E 1823, definition of terminology and misinterpreted terms . . . . . . . .1061, 1067, 1069 ASTM F 519, “Standard Test Method for Mechanical Hydrogen Embrittlement Evaluation of Plating Processes and Service Environments” . . . . . . . . . . . . . . . . . . . . . . . . . . . . .811 ASTM F 746, evaluation of material for suitable surgical implant use . . . . . . . . . . . . . . . . . . . . . . .777 ASTM F 1459, “Standard Test Method for Determination of the Susceptibility of Metallic Materials to Gaseous Hydrogen Embrittlement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .811 ASTM F 1940, “Standard Test Method for Process Control Verification to Prevent Hydrogen Embrittlement in Plated or Coated Fasteners” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .811 ASTM G 1, evaluation of uniform corrosion damage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .771 ASTM G 3, electrochemical testing guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .407 ASTM G 5, method for generating potentiodynamic polarization curves . . . . . .763 ASTM G 16, “Applying Statistics to Analysis of Corrosion Data” . . . . . . . . . . . . . . . . . . . . . . . . . . .753 ASTM G 28 (A-B), intergranular corrosion evaluation test . . . . . . . . . . . . . . . . . . . . . . . . . . . . .781 ASTM G 32, vibratory tests for cavitation erosion . . . . . . . . 1004, 1007–1008, 1009, 1016 ASTM G 46, evaluation of severity of pitting corrosion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .773 ASTM G 50, tensile strength loss test . . . . . . . . . .771 ASTM G 59, electrochemical test methods . . . .771 ASTM G 67, weight-loss test method for intergranular corrosion . . . . . . . . .778, 781, 784 ASTM G 73, cavitation and erosion evaluation test . . . . . . . . . . . . . . . . . . . . . . . . . .1007, 1008–1009 ASTM G 82, galvanic series creation . . . . . . . . . .763 ASTM G 89, jaw crusher wear plates . . . . . . . . . .915 ASTM G 108, electrochemical potentio-kinetic reactivation (EPR) technique to evaluate intergranular corrosion . . . . . . . . . . . . . . 779, 780 ASTM G 142 “Standard Test Method for Determination of Susceptibility of Metals to Embrittlement in Hydrogen-Containing Environments at High Pressure, High Temperature, or Both” . . . .811 British Standards Institute (BS) 876-1949, hammer hardness specifications . . . . . . . . . . . . . . 975, 978 BS 876-1981, hammer hardness specifications . . . . . . . . . . . . . . . . . . . .985, 986, 987 BS 1490, sprocket drive wheel . . . . . . . . . . . 151–152 BS 7000 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 BS 7608:1993, flaw size fitness-for-service assessment methodology . . . . . . . . . . . . . . . . . .160 BS 7910:1999, flaw size fitness-for-service assessment methodology, current fracture criteria . . . . . . . . . . . . . . . .160, 243, 244, 246, 247 BS PD 6493:1991, flaw size fitness-for-service assessment methodology . . . . . . .160, 241, 243 Central Electricity Generating Board (CEGB) R 6, flaw size fitness-for-service assessment methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .160 Deformation plasticity failure assessment diagram, flaw size fitness-for-service assessment methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .160 Electric Power Research Institute (EPRI) GE J and crack tip opening displacement (CTOD) estimation scheme, flaw size fitness-forservice assessment methodology . . . . . . . . . .160 German DIN steel 17200, as substrate material for thermally sprayed coatings . . . . . . . . . . . . . . . .950 GGG-H-86C-1963, hammers . . . . . . . .985–986, 987 International Institute of Welding (IIW) approach, flaw size fitness-for-service assessment methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .160 International Standards Organization ISO 63365.2, decarburization limits . . . . . . . . . . . 215, 216 Japanese Industrial Standards JIS G 4105, as substrate material for thermally sprayed coatings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .950 MF0004-018, fluids contacting titanium in space design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .859

© 2002 ASM International. All Rights Reserved. ASM Handbook Volume 11: Failure Analysis and Prevention (#06072G)

www.asminternational.org

1150 / Index

Standards and specifications, specific types (continued) Military specifications, MIL-F-18372, failure modes and effects analysis procedure . . . . . . 50 MIL-P-26539, reaction control system oxidizer pressure vessels . . . . . . . . . . . . . . . . . . . . . . . . . . . .858 MIL-STD-1530 (MIL-HDBX-1530), ASIP and aircraft design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .274 MIL-STD 1629 (ships), failure modes and effects analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .50, 56 MIL-STD-1783 (MIL-HDBK-1783), ENSIP . . .274 NACE International, surface preparation for coatings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .758 NACE standard MR-01, “Sulfide-Stress-CrackingResistance Metallic Material for Oil-Field Equipment” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .813 NACE standard RP-01-70, avoidance of polythionic acid stress-corrosion cracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .844 Society of Automotive Engineers (SAE), SAE J 1739, FMEA worksheet . . . . . . . . . . . . . . . . . . . . 56 SAE JA 1011, “Evaluation Criteria for ReliabilityCentered Maintenance (RCM) Processes” . . 61–62, 63, 64, 65, 66, 67, 68, 69 SAE-MIL-H-6088, conductivity measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .403 Steel Structures Painting Council, surface preparation for coatings . . . . . . . . . . . . . . . . . . .758 Swedish Standards Institute, surface preparation for coatings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .758 Welding Engineering Society (WES) 2805, flaw size fitness-for-service assessment methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .160 Stanley rim-tempered hammers . . . . . . . . . . . . . . . . .978 Star. See Radial marks. State of the art, definition . . . . . . . . . . . . . . . . . . . . . . . . . 76 Statically indeterminate structure . . . . . . . . 382, 383 Static fatigue. See also Hydrogen-induced delayed cracking. definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1073 Static loading, definition . . . . . . . . . . . . . . . . . . . . . . . . 1073 Statics equilibrium equations . . . . . . . . . . . . . . . . . . . .463 Static stresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .700 in pressure vessels and pressure piping . . . . . . . .234 Static yield strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .701 Steadite, in paper-drier head casting, cold shut defect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121, 122 Steady-rate creep. See Creep. Steady stage, of cavitation erosion . . . . . . 1003, 1006 Steady-state analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . .384 Steam, environment causing SCC of nickel and nickel-base alloys . . . . . . . . . . . . . . . . . . . . . . . . . .848 Steam-air decoking, to burn away carbon or coke deposits on furnaces . . . . . . . . . . . . . . . . . . . . . . .870 Steam bubbles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .115 Steam-condensate tubing, SCC . . . . . . . . . . . . 845–846 Steam drum nozzle, weldment, brittle fracture in steel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232–233 Steam erosion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 876, 999 Steam generators, U-tubes, corrosion failure . . . . . . . . . . . . . . . . . . . . . 388–389 Steam generator tube, intergranular fracture of Inconel 600 nickel-base alloy . . . . . . . 648–649 Steam impingement as boiler tube damage mechanism on failure wheel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .350 as damage mechanism . . . . . . . . . . . . . . . . . . . . 349, 350 as damage mechanism for boiler tubing . . . . . . . .347 Steam tube, uniform corrosion . . . . . . . . . . . . . . . . . . .770 Steam turbine blade liquid-droplet erosion . . . . . . . . . . . . . . . . . . . . . . . . . 1014 liquid impingement erosion . . . . . . . . . . . . . . . . . . . . .998 pitting corrosion . . . . . . . . . . . . . . . . . . . . . . . . . . . 774–775 Steam turbine components, stress-corrosion cracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .840 Steam turbine rotor disc, stress-corrosion cracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 841–842 Stearamide, effect on polyethylene . . . . . . . . . . . . . 1025 Steel(s) aluminum-killed, and intergranular fracture . . . .646 brittle fracture . . . . . . . 142–143, 144, 152, 153–154 carburizing of track wheel . . . . . . . . . . . . . . . . 510, 511 casting imperfections . . . . . . . . . . . . . . . . . . . . . . . . . . .104

Charpy V-notch upper-shelf energies of shape controlled steel . . . . . . . . . . . . . . . . . . . . . . . . . .89, 90 for cool gas turbine engine components . . . . . . . .296 cooling with transformation . . . 194–195, 197, 198 cooling without transformation . . . . . . . . . . . 194, 197 corrosion-resistant castings defects . .147–149, 150 crystal structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 193, 194 density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .960 dispersoids effect on fracture path and fracture toughness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .564 in dissimilar metal pair, fretting damage . . . . . . .928 distortion failures . . . . . . . . . . . . . . . .1052, 1053–1055 elastic crack tip opening displacement . . . 244–245 elastic modulus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .960 failure mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .960 fatigue failure . . . . . . . . . . . . . . . . . . . . . . . .173–174, 176 fatigue fracture . . . . . . . . . . . . . . 87, 88, 175–176, 177 fretting wear . . . . . . . . . . . . . . . . . . . . . . . . . .933, 936–937 galvanic corrosion . . .767 grade/condition selection and distortion avoidance 199–200, 205 hardness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .960 heat treatment effect on residual stress in coil springs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 494–495 impact wear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 967, 971 large particles, effect on fracture path and fracture toughness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .564 liquid embrittlers of . . . . . . . . . . . . . . . . . . . . . . . . . . . . .646 for marine ropes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .931 microbially induced corrosion, failure analysis of . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 885–890 phase transformations . . . . . . . . . . 192–195, 196, 197 residual-stress map of saw blade . . . . . . . . . . . . . . .489 resulfurized, microsegregation . . . . . . . . . . . . . . . . . .219 seam defect in rolled bar forging . . . . . . . . . . . .93, 94 shot peening to reduce friction coefficient in fretting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .927 sliding wear mechanism . . . . . . . . . . . . . . . . . . 902, 903 structural component material behavior . . . . . . . .282 temper embrittlement at elevated temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .293 toughness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .960 uniform corrosion . . . . . . . . . . . . . . . . . . . .768, 769, 770 weldments, cracking of . . . . . . . . 158–159, 161, 169 Steels, specific types 1010 electron beam welding . . . . . . . . . . . . . . . . . . . . . . .189 oxidation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .869 1015, internal oxidation . . . . . . . . . . . . . . . . . . . 214–215 1018, decarburization . . . . . . . . . . . . . . . . . . . . . 215, 216 1020 cavitation erosion . . . . . . . . . . . . . . . . . . . . . . . . . . . 1013 erosion wear . . . . . . . . . . . . . . . . . . . . . . . . . . . . 996, 997 inelastic cyclic buckling of cylindrical specimens . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1056 shear fractures . . . . . . . . . . . . . . . . . . . . .600, 604, 605 shear-lip formation . . . . . . . . . . . . . . . . . . . . . 599, 604 1022, banding from chemical segregation in ingot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 1025, fatigue failure . . . . . . . . . . . . . . . . .173–174, 176 1030 brace fracture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .320 microstructure with distortion from scale . . . 204, 207 1035 carburizing-related failure of track wheel . . 510, 511 pin in guy wire of Loran tower . . . . . . . . 334–335 10B35, stretch zone width correlation with fracture toughness, elastic modulus normalized . . .584 1037, quench cracking . . . . . . . . . . . . . . . . . . . . . . . . . .199 1038 burning from overheating . . . . . . . . . . . . . . 201, 204 pipe defect in ingot . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 1040 austenitization . . . . . . . . . . . . . . . . . . . . . . . . . . 201, 204 fatigue fracture of weldment . . . . . .175–176, 177 quench cracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .199 shot peened, residual stresses present . . . . . . . .493 1041 chemical segregation in ingot . . . . . . . . . . . . . . . . . 83 torsional-fatigue fracture of shaft . . . . . . 708, 709 1042 fatigue fracture with radial marks . . . . . . . . . . . .577 fatigue fracture with ratchet marks . . . . . . . . . .577

1045 continuous cooling transformation diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .193 microstructure showing distortion from a lap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204, 207 microstructure showing nonuniform quenching effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208, 210 mixed-mode fracture of jack cylinder 687–688 quench cracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .199 spalling tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .978 spheroidized, fracture mechanism map . . . . . .571 time-temperature-transformation diagram . . .192 1046, fatigue fracture . . . . . . . . . . . . . . . . . . . . . 576, 577 1060 adiabatic shear bands . . . . . . . . . . . . . . . . . . . . . . . . .982 austenitization effect on grain size . . . . . 218, 219 spalling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 976, 978 transformation shear bands . . . . . . . . . . . . . 982, 983 1070 composition range . . . . . . . . . . . . . . . . . . . . . . . . . . . .204 distortion failure of hold-down clamps . . . . 1052 hardness vs. heat treatment temperature . . . . .495 heat treatment temperature effect on residual stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .495 quench cracking . . . . . . . . . . . . . . . . . . . . . . . . 200, 204 XRD peak integral breadth vs. heat treat temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .495 1072, spalling tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .978 1075, spalling tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .978 1080 austempering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .213 light profile microscopy . . . . . . . . . . . . . . . . . . . . . .540 spalling tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .978 1095, scale effect on distortion . . . . . .202–203, 206 1117, distortion failure of spool-type hydraulic valve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1053–1054 1137, quench cracking . . . . . . . . . . . . . . . . . . . . . . . . . .199 1138, deformation failure of shotgun barrel . . 1051 1141 quench cracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .199 1144 (G11440) ductile fracture of tapered-ring sprocket locking device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9, 10 lifting eye, ductile fracture . . . . . . . . . . . . . . . .36, 37 microsegregation . . . . . . . . . . . . . . . . . . . . . . . . . . . . .219 microsegregation and stringer inclusions . . . .219 quench cracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .199 1215, microstructure of nitrided specimen in 4 mounting resins . . . . . . . . . . . . . . . . . . . . . . 503, 504 1340, quench cracking . . . . . . . . . . . . . . . . . . . . . . . . . .199 1345, quench cracking . . . . . . . . . . . . . . . . . . . . . . . . . .199 1410, impact wear . . . . . . . . . . . . . . . . . . . . . . . . 967, 968 1536, quench cracking . . . . . . . . . . . . . . . . . . . . . . . . . .199 1541 chevrons indicative of fatigue . . . . . . . . . . . . . . . .562 quench cracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .199 1552, spalling tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .978 2330, constant-life diagram . . . . . . . . . . . . . . . . . . . . .701 3310, shrinkage porosity of jaws casting . . . . . . .114 4037, hydrogen embrittlement of cap screws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 696–697 4100, alloy depletion . . . . . . . . . . . . . . . . . . . . . . . . . . . .215 4118 microstructure showing distortion from machining . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204, 206 as physical vapor deposition substrate material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .946 4130 constant-life diagram . . . . . . . . . . . . . . . . . . . . . . . . .701 fatigue-crack-growth rate in sodium chloride solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .704 fatigue failure of aircraft torque link on bolt fixed-nose landing gear . . . . . . . . . . . . . . 283–284 fatigue fracture of steel shaft . . . . . . . . . . . 707–708 hydrogen embrittlement . . . . . . . . . . . . . . . . . . . . . .812 localized overheating of pipe permanent mold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132, 133 seam defect in rolled bar . . . . . . . . . . . . . . . . . .93, 94 S-N curve for notched steel sheet . . . . . . . . . . . .284 4140 alloy depletion promoting cracking . . . . . . . . . .215 banding of tempered martensite . . 219, 220 4140 debonding of MnS particles . . . . . . . . . . . . . . . . . .592 distortion failure of aircraft-wind slat track . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1052

© 2002 ASM International. All Rights Reserved. ASM Handbook Volume 11: Failure Analysis and Prevention (#06072G)

distortion failure of gas-nitrided drive-gear assembly . . . . . . . . . . . . . . . . . . . . . . . . . . .1054–1055 etching for metallographic examination . . . . .364 fatigue fracture with tire tracks . . . . . . . . 354, 355 fretting wear of freon-compressor shaft . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 936–937 liquid metal induced embrittlement . . . . 863, 865 maximum erosion rate dependence in cavitation erosion on combined parameter . . . . . . . . . 1016 microstructure showing distortion . . . . . 204, 206 microstructure showing distortion from machining . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204, 206 oxidation and decarburization due to excessive heating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202, 204 quench cracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .199 subsurface cracking . . . . . . . . . . . . . . . . . . . . 219, 220 tempered martensite with quench cracking from overheating . . . . . . . . . . . . . . . . . . . . . . . . . . 202, 205 transverse cracks (splitting) at MnS stringers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 612, 617 for welded tubular posts in carrier vehicles . . . . . . . . . . . . . . . . . . . . . . . . .173–174, 176 4142 microstructure showing distortion . . . . . 204, 206 4150 bending failure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .605 brittle fracture, smaller facets . . . . . . . . . . 612, 616 debonding at infusion-matrix interface . . . . . 571, 572 dual-dimple size of particles and debonding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .592 fatigue fracture of drive shaft . . . . .712–713, 714 microstructure replica of nitrided chuck jaw . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 513–514 quench cracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .199 radial marks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 599, 603 4300 alloy depletion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .215 4320 intergranular fatigue fracture in gas-carburized steel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .645 4330 liquid metal induced embrittlement . . . . 864, 865 4340 constant-life diagram . . . . . . . . . . . . . . . . . . . . . . . . .701 ductile fracture on shear planes and void sheet formation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 593, 594 fatigue-crack-initiation cycles . . . . . . . . . . . . . . . .716 fatigue-crack-initiation threshold . . . . . . . . . . . . .717 fatigue fracture of rotor shaft . . . . . . . . . . 714–715 fracture mechanics applied to fractography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .482 fracture profile from tensile fracture . . . . . . . . .544 hydrogen embrittlement . . . . . . . . . . . . . . . . . . . . . .812 intergranular SCC and hydrogen embrittlement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .646 microstructure showing quench cracking . . . 207, 210 mud cracks on fracture surface . . . . . . . . 564, 565 notched round specimen fracture surfaces . . 597, 598 rolling and directionality effect on fracture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 615, 617 spalling tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . 978, 987 stress-corrosion cracking, beach marks present . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .708 temperature effect on ductility . . . .605–606, 609 torsion loading for ductile fracture . . . . . . . . . . .606 4485 microstructure, wear failure of medart roll . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 512, 513 4615 microstructure, central bursting (chevron cracking) of extrusion . . . . . . . . . . . . . . . 511, 512 4817 fatigue fracture of shaft, with beach marks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 579, 581 5160H (spring steel) decarburization in coil spring . . . . . . . . . . 509, 510 52100 fretting wear of raceways of rings on automotive front-wheel bearing . . . . . . . . . . .936 hardness vs. heat treatment temperature . . . . .495

hydrogen bake of bearings in aerospace applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .324 microcracking susceptibility . . . . . . . . . . . . . . . . .218 as physical vapor deposition substrate material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .946 XRD peak integral breadth vs. heat treatment temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .495 6150 fatigue fracture of valve springs . . . . . . . . . .87, 88 8600 alloy depletion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .215 8620 grinding cracks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .221 microcracking susceptibility . . . . . . . . . . . . . . . . .218 microstructure of mounted specimen, decarburization evident . . . . . . . . . . . . . . . . . . . .503 quenching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .207 8630 constant-life diagram . . . . . . . . . . . . . . . . . . . . . . . . .701 microstructure having porosity causing distortion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205, 207 microstructure showing distortion from a seam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204, 207 8740 hydrogen embrittlement of nuts . . . . . . . . 811, 812 9254 solid metal induced embrittlement . . . . . . . . . . .865 9260 spalling of sledge hammers . . . . . . . . . . . . . . . . . .981 spalling tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .978 9300 (0.25C-0.98Mn-3.52Ni-1.34Cr- . . . . 0.24Mo) weldment brittle fracture by . . . . . . . . . . . . 178, 180 A20/A 20m railway tank car steels . . . . . . . . . . . . . . . . . . . . . . . .161 A27, grade 65-35 composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .145 mechanical properties . . . . . . . . . . . . . . . . . . . . . . . .145 A27, grade 70-40 carbon-manganese steels . . . . . . . . . . . . . . . . . . . 1013 A36 Charpy impact valves for crack propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .605 fatigue-crack-growth rate . . . . . . . . . . . . . . . . . . . .704 fatigue-crack-initiation cycles . . . . . . . . . . . . . . . .716 fatigue crack-initiation threshold . . . . . . . . . . . . .717 A48, grade 105-85 brittle fracture of welded crosshead of industrial compressor . . . . . . . . . . . . . . . . . . . . . . . . . . . 153–154 A53 fatigue fracture of weldment . . . . . . . . . . . 168–169 A105 brittle fracture . . . . . . . . . . . . . . . . . . . . . . . . . . 232–233 A105, grade II fatigue fracture of welded flanges and elbow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165–166 A106 hydrogen attack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .816 maximum-use temperature . . . . . . . . . . . . . . . . . . .693 A106, grade B fatigue fracture of welded pipe . . . . . . . . 165–166 pipe connecting two bellows joints . . . . 164–165 A148, grade 105-85 cold shut in truck equalizer beams . . . . . 122–123 A148, grade 135/125 brittle overload fracture of brackets . . . . 683–684 A148, grade 150-125 shrinkage porosity failure of connector for pontoons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113, 114 A178, grade A oxidation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .869 A192 oxidation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .869 A209, grade T-1A oxidation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .869 A210, grade A oxidation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .869 A212, grade B brittle fracture of weldments in railway tank car . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .161 A213, grade T-11 oxidation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .869 A213, grade T-22 creep embrittlement of superheater tube . . . . .695

www.asminternational.org

Index / 1151 oxidation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .869 A213, grade T-91 oxidation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .869 A216, grade WCB carbon steel for turbines and pumps . . . . . . . 1013 A226 fatigue fracture of weldment . . . . . . . . . . . 176, 177 A245 (A570 and A611) stress-corrosion cracking of hoppers on trucks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .841 A283, grades A, B, C and D carbon steel for turbines and pumps . . . . . . . 1013 A285, grade C hydrogen-induced blistering in plate . . . 814, 815 A293 fatigue failure of fan shafts . . . . . . . . . . . . 705–706 A302-B fatigue-crack-growth rate . . . . . . . . . . . . . . . . . . . .704 A356, grade 6 brittle fracture and stress-corrosion cracking of turbine casing . . . . . . . . . . . . . . . . . . .142–143, 144 A470 Class 4 stress-corrosion cracking . . . . . . . . . . . . . . . 841–842 A514 corrosive wear of slurry abrasives . . . . . . . . . . .990 A516 inclusion shape control in rolled plate . . . . . . . . 89 A516, grade 60 carbon steel for turbines and pumps . . . . . . . 1013 A516, grade 70 replacing A212, grade B steel for applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .161 A517-F fatigue-crack-initiation cycles . . . . . . . . . . . . . . . .716 fatigue-crack-initiation threshold . . . . . . . . . . . . .717 A533 grade B impact fracture toughness vs. temperature . . 680, 681 A533B stretch zone width correlation with fracture toughness, elastic modulus normalized . . .584 A537-A fatigue-crack-growth rate . . . . . . . . . . . . . . . . . . . .704 fatigue-crack-initiation cycles . . . . . . . . . . . . . . . .716 fatigue-crack-initiation threshold . . . . . . . . . . . . .717 A572, grade 42, type 2 welding defect failures . . . . . . . . . . . . . . . . . . . . . . .169 A572 grade 50 failure assessment diagrams . . . . . . . . . . . . . . . . . .248 A574 hydrogen embrittlement . . . . . . . . . . . . . . . . 696–697 A633C manganese sulfide inclusions and brittle fracture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .89, 91 A710 ductile crack growth . . . . . . . . . . . . . . . . . . . . 593, 594 0.1% C steel ductile crack nucleation, and debonding . . . . .592 pitting corrosion of pipe . . . . . . . . . . . . . . . . 356, 357 0.15% C, 1% Mn, 0.75 Cr, 0.85% Ni quenching, and distortion . . . . . . . . . . . . . . 196, 201 0.2% carbon brittle fracture by bolt hole in grain storage bin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .616, 618, 619 0.21C-0.77Mn brittle fracture in weldment by lamellar tearing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181, 182 0.30-0.50 wt% C low-alloy mechanical properties . . . . . . . . . . . . . . . . . . . . . . . .980 0.65C-1Si-3Ni spalling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 978, 987 carbon-Mo (T1) maximum metal temperatures for hightemperature boiler tube materials . . . . . . . . .304 1% C steel distortion from nonmetallic inclusions . . . . . . 205, 207 1.15C-12.8Mn-0.50Si (13% Mn) brittle fracture of chain link . . . . . . .146–147, 148 0.5Cr-0.5Mo maximum-use temperature . . . . . . . . . . . . . . . . . . .693 0.5Cr-0.5Mo-0.25V creep behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .730

© 2002 ASM International. All Rights Reserved. ASM Handbook Volume 11: Failure Analysis and Prevention (#06072G)

www.asminternational.org

1152 / Index

Steels, specific types (continued) 1Cr-0.5Mo residual life prediction . . . . . . . . . . . . . . . . . . . . . . .299 1CrMoV elevated-temperature failure by temper embrittlement, rotors . . . . . . . . . . . . . . . . . . . . . .293 1Cr-Mo-V elevated-temperature fatigue . . . . . . . . . . . . . . . . .291 CrMoV (brittle) expected life in accelerated test based on LFR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .307 expended life fraction . . . . . . . . . . . . . . . . . . . . . . . .307 CrMoV (ductile) expected life in accelerated test based on LFR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .307 expended life fraction . . . . . . . . . 307 1.2Cr-0.5Mo maximum-use temperature . . . . . . . . . . . . . . . . . . .693 11⁄4Cr-1⁄2Mo creep cavitation damage of power plant piping and tubing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .306 creep-fatigue crack growth rate vs. stressintensity factor range . . . . . . . . . . . . . . . . 309, 310 elevated-temperature ductility . . . . . . . . . . . . . . . .733 hardness vs. Larson-Miller parameter . . . . . . .305 1.25Cr-0.5Mo (T11) maximum metal temperatures for hightemperature boiler tube materials . . . . . . . . .304 1.25Cr-0.5Mo-Si oxidation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .869 2Cr-1Mo stress-rupture behavior . . . . . . . . . . . . . . . . . 735, 736 temper embrittlement of pressure vessel plates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .692 2.25Cr-1Mo carbide formation in isothermal diagram . . . 735, 736 carbides in microstructure vs. Larson-Miller parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .305 crack initiation life as function of strain range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .745 cross-weld stress-rupture data for pipe seam weldments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .307 dimpled intergranular fracture . . . . . . . . . . . . . . .643 elevated-temperature fatigue . . . . . . . . . . . . . . . . .291 expected life in accelerated test based on LFR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .307 expended life fraction . . . . . . . . . . . . . . . . . . . . . . . .307 hardness vs. Larson-Miller parameter . . . . . . .305 hold time effect on fatigue crack growth rate properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .744 Larson-Miller rupture parameter plot vs. stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .299 maximum metal temperatures for hightemperature boiler tube materials . . . . . . . . .304 maximum-use temperature . . . . . . . . . . . . . . . . . . .693 oxide-scale-based life prediction of tubing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308–309 thermomechanical fatigue in ship service turbine generator (SSTG) casings . . . . . . . . . . . 741–745 oxidation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .869 7Cr-Mo oxidation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .869 9Cr-1Mo hardness vs. Larson-Miller parameter . . . . . . .305 maximum metal temperatures for hightemperature boiler tube materials . . . . . . . . .304 maximum-use temperature . . . . . . . . . . . . . . . . . . .693 oxidation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .869 oxidation resistance . . . . . . . . . . . . . . . . . . . . . . . . . .234 stress-rupture behavior . . . . . . . . . . . . . . . . . 735, 736 9Cr-1Mo-V oxidation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .869 15CrV6 volume changes during phase transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . .200 DIN 17CrNiMo6 Fatigue crack in gear tooth . . . . . . . . . . . . . 366, 367 25% Cr-12% Ni microstructure, sigma-phase embrittlement of hook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 512, 513 34CrNiMo6 brittle fracture of ski chair lift grip components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

41CrMo4 cavitation erosion. incubation time . . . . . . . . 1004 100Cr6 as physical vapor deposition substrate material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .946 tempering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195, 198 Fe-0.25C-1Mn-0.40Cr-0.35Mo fatigue fracture of heavy-duty axle housing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .119 Fe-3.25Si tongues and cleavage fractures . . . . . . . . . . . . . . .590 Fe-4Ni fatigue fracture, cyclic brittle cleavage . . . . . .579 intergranular fatigue . . . . . . . . . . . . . . . . . . . . . . . . . .644 fatigue fracture, cyclic cleavage . . . . . . . 579, 581 austenitic 12%Mn gouging abrasion resistance . . . . . . . . . . . . . . . . . .907 NiCrMoV stress corrosion cracking of steam turbine components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .840 3% Ni-Cr carburized steel carbide formations at quenching . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216, 217 4%Ni carbide formations in microstructure . . 216, 218 4% Ni-C-Cr carburized steel carbides formed . . . . . . . . . . . . . . . . . . . . . . . . 216, 217 10Ni fatigue-crack-growth rate . . . . . . . . . . . . . . . . . . . .704 12Ni fatigue-crack-growth rate . . . . . . . . . . . . . . . . . . . .704 AISI 01 hardness vs. heat treatment temperature . . . . .495 heat treatment temperature effect on residual stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .495 XRD peak integral breadth vs. heat treatment temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .495 CPM-10V impact wear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .967 50CV4 phase transformation . . . . . . . . . . . . . . . . . . . 194, 196 D6AC high-cycle fatigue . . . . . . . . . . . . . . . . .580–581, 583 intergranular fracture and high-cycle fatigue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .644 stress intensity vs. time to failure . . . . . . 479, 480 E4340 forging defect (pipe) . . . . . . . . . . . . . . . . . . . . . .87, 88 forging defects of nonmetallic inclusions in helicopter main rotor bolt . . . . . . . . . .89–90, 91 E6010 weldment fisheyes . . . . . . . . . . . . . . . . . . . . . . 179, 182 E7018 weldment fisheyes . . . . . . . . . . . . . . . . . . . . . . 179, 181 E11018 weldment fisheyes . . . . . . . . . . . . . . . . . . . . . . 179, 182 EN-24 stress intensity range effect on fatigue fracture mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .578 F-255 erosion rate in vibratory cavitation . . . . . . . . 1016 alloy HH, type II heat-resistant alloy precipitation embrittlement at elevated temperatures . . . . . . . . . . . . . . . . . . . . . . . . . 147, 149 HK-40 (26Cr-20Ni) carbon-nitrogen interaction for corrosion . . . .870 HL-40 (30Cr-20Ni) carbon-nitrogen interaction for corrosion . . . .870 HY-80 fatigue-crack-growth rate . . . . . . . . . . . . . . . . . . . .704 fatigue-crack-initiation cycles . . . . . . . . . . . . . . . .716 fatigue-crack-initiation threshold . . . . . . . . . . . . .717 HY-100 shear banding . . . . . . . . . . . . . . . . . . . . . . . . . . . 593, 595 HY-130 fatigue-crack-growth rate . . . . . . . . . . . . . . . . . . . .704 fatigue-crack-initiation cycles . . . . . . . . . . . . . . . .716 fatigue-crack-initiation threshold . . . . . . . . . . . . .717 JIS S38C tempering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195, 199 JIS S45C selective quenching . . . . . . . . . . . . . . . . . . . . . 213, 214 as substrate material for thermally sprayed coatings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .950

JIS SCM440 distortion from improper leading . . . . . . 202, 205 JIS SNCM 439 tempering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195, 199 300 M stress intensity range effect on fatigue fracture mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .578 90MnV8 volume changes during phase transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . .200 RQT 701 corrosion fatigue and microbially induced corrosion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .884 Schedule 80 low-carbon steel stress corrosion cracking of pipe . . . . . . . . . . . . .840 vanadium HSLA (0.1% carbon) fatigue striations . . . . . . . . . . . . . . . . . . . . . . . . 580, 582 X120Mn12 cavitation erosion, incubation time . . . . . . . . 1004 XC45 erosion rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1005 XC68 erosion rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1005 SAE grade 5 dimple-rupture fracture . . . . . . . . . . . . . . . . . . . . . . .673 grade 8 high-strength steel ductile overload fracture . . . . . . . . . . . . . . . 673–674 grade 11L17 intergranular brittle fracture of valve seats . .677 136 lb/yd rail microstructure, service condition failure . . . . 512, 514 Step fracture. See Fatigue striation; Striation. Steps as discontinuity for extrusions and drawn products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Stepwise cracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .815 Stereocamera . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 426, 427 Stereographic pairs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .663 Stereological relationships . . . . . . . . . . . . . . . . . 538, 539 Stereomicroscope to examine damaged surface before and after cleaning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .406 low-power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .498 Stereomicroscopic photography . . . . . .419, 425–426 Stereomicroscopy of alloy steel ski chair lift grip components . . . . . 11 of corrosion surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . .752 for macroscopic examination . . . . . . . . . . . . . . . . . . .353 Stereo-pair based imaging . . . . . . . . . . . .538, 552–553 Stereo-photogrammetry . . . . . . . . . . . . . . .550, 551, 552 Stereophotography . . . . . . . . . . . . . . . . . . . .419, 426–427 Stereo zoom optical microscope . . . . . . . . . . . . . . . . .655 Steric hindrance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .568 Steven and Haynes equation . . . . . . . . . . . . . . . 210, 212 Sticker, as casting effect . . . . . . . . . . . . . . . . . . . . . . . . . .105 Sticking, in squeeze casting . . . . . . . . . . . . . . . . . . . . . . .131 Sticking to molds/cores, of permanent-mold castings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .125 Stochastic model, definition . . . . . . . . . . . . . . . . . . . . . .376 Stop/starts, of weldments . . . . . . . . . . . . . . . . . . . . . . . . .158 Storage modulus . . . . . . . . . . . . . . . . . . . . . . .443–444, 445 Storage tanks, prevention approach for corrosion in industrial facilities . . . . . . . . . . . . . . . . . . . . . . . . .893 Straightening, and fatigue strength . . . . . . . . . . . . . . .720 Strain accumulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .617 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1073 postnecking rate effects . . . . . . . . . . . . . . . . . . . . . . . . .621 Strain-age embrittlement . . . . . . . . . . . . . . . . . . . . . . . .403 by bolt hole in steel grain storage bin . . . 616, 618, 619 causes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .690 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1073–1074 effect in ferrous alloys . . . . . . . . . . . . . . . . . . . . . . . . . .690 effect on overload failures . . . . . . . . . . . . . . . . . . . . . .690 from nitrogen in low-alloy steel castings . . . . . . .145 steels susceptible . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .690 Strain aging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .404 and brittle fracture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .400 in weldments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .169 Strain energy release rate. See Crack extension force. Strainer for process steam line in chicken feed plant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

© 2002 ASM International. All Rights Reserved. ASM Handbook Volume 11: Failure Analysis and Prevention (#06072G)

Strain hardening . . . . . . . . . . . . . . . . . . . . . . .565, 582, 589 and cold forming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .102 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1074 and ductility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .596 and necking . . . . . . . . . . . . . . . . . . . . 597, 617, 618, 619 and overload failures . . . . . . . . . . . . . . . . . . . . . . . . . . . .689 unnotched specimens . . . . . . . . . . . . . . . . . . . . . . . . . . .602 Strain-hardening coefficient, of extra-hard hammers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .981 Strain-hardening exponent . . . . . 596, 617, 619, 987 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1074 Strain life . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .702 Strain localization . . . . . . . . . . . . . . . . . . . . . . . . . . 621–623 parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .622 predictive model for onset . . . . . . . . . . . . . . . . . . . . . .622 Strain rate and twinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 589, 590 effect on ductility in overload failures . . . . . . . . .680 effect on fractures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .600 effect on fracture toughness . . . . . . . . . . . . . . 680, 681 Strain rate effects, in safety analysis . . . . . . . . . . . . .475 Strain-rate hardening . . . . . .565, 596, 597, 617, 619 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1074 and overload failures . . . . . . . . . . . . . . . . . . . . . . . . . . . .689 postnecking effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .621 unnotched specimens . . . . . . . . . . . . . . . . . . . . . . . . . . .602 strain rate hardening exponent (m) . . . . . . . 596, 987 Strain rate loading, and twinning or cleavage fracture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .590 Strain-rate sensitivity . . . . . . . . . . . 601, 605, 606, 618 Strain-rate sensitivity exponent . . . . . . . . . . . . . . . . .987 Strain-rate sensitivity index . . . . . . . . . . . . . . . . . . . . .987 Strain softening, definition . . . . . . . . . . . . . . . . . . . . . 1074 Strain to fracture prediction . . . . . . . . . . . . . . . . . . . .592 Strap joints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .163 Strategic materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Strauss test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .647 Stray-current corrosion, definition . . . . . . . . . . . . 1074 Stray currents . . . . . . . . . . . . . . . . . . . 753, 764, 768–769 Strength-reduction factors (SRFs) . . . . . . . . . . . . . .922 Strength-stress integration domain . . . . . . . . . . . . .255 Strength-to-weight ratio . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Stress(es) allowable, for static service . . . . . . . . . . . . . . . . . . . 1047 in casing of ship service turbine generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 741–745 code-allowable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .385 complex, with fatigue fractures . . . . . . . . . . . . . . . . .717 of constant-amplitude loading cycle . . . . . . 276–277 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . 461–462, 1074 and distortion ratios from overloading . . . . . . . 1047 as environment contributing to damage mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . 347–348 as life-limiting factor . . . . . . . . . . . . . . . . . . . . . . 233–234 with liquid metal induced embrittlement . . . . . . .697 mode II, and fatigue crack propagation . . . . . . . .958 molded-in, in polymers . . . . . . . . . . . . . . . . . . . 443, 444 in overload failures . . . . . . . . . . . . . . . . . . . . . . . 687–689 during reheating and quenching, metallurgical sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196, 200 and stress-corrosion cracking in service . . 830–831 transformation of . . . . . . . . . . . . . . . . . . . . . . . . . . 482–483 Stress alloying . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .865 Stress amplitude . . . . . . . . . . . . . . . . . . . . . . . . . . . . 700, 701 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1074 Stress analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 686–687 application of . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 473–475 beam bending . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 469–471 of casing of ship service turbine generator . . . . 741, 742 of common geometries . . . . . . . . . . . . . . . . . . . . 468–473 compression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 468, 469 critical locations for failure . . . . . . . . . . . . . . . . . . . . .474 to evaluate net-section instability failures . . . . . .401 in failure analysis investigation . . . 15, 16, 399–400 failure criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .473 fundamentals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 461–468 internally pressurized cylindrical section . . . . . . .475 limit analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 474–475 mechanics of material approach . . . . .468, 469, 470 pin-loaded clevis . . . . . . . . . . . . . . . . . . . . . . . . . . 471–472 screwdriver used as a pry-bar . . . . . . . . . . . . . . . . . . .475 shear and bending moment diagram approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .470

springs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .472 strain rate effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .475 stress concentration . . . . . . . . . . . . . . . . . . . . . . . 472–473 tensile bars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .468 theory of elasticity approach . . . . . . . . . . . . . . 468, 469 torsion bars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .469 Stress at fracture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .657 Stress components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .462 Stress concentration. See also Stress raisers. . . . . . . . . . . . . . . . . . . .472–473, 717 and crack propagation with component failure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .496 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1074 effect of stress raisers on . . . . . . . . . . . . . . . . . 715–716 effect on fatigue cracking . . . . . . . . . . . . . . . . . . . . . . .716 factor . . . . . 158, 163, 233, 277–278, 382, 472–473, 496, 716–717 fatigue failures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 715–717 as life-limiting factor . . . . . . . . . . . . . . . . . . . . . . 233–234 residual stresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .717 of rolling-contact fatigue . . . . . . . . . . . . . . . . . . 941, 952 for stress-corrosion cracking . . . . . . . . . . . . . . 828–830 stress-intensity expression at sharp notch . . . . . .716 and stress reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . .717 Stress concentration factor . . . . .277–278, 472–473, 716–717 with beam theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .382 and crack propagation with component failure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .496 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .716, 1074 as design consideration . . . . . . . . . . . . . . . . . . . . . . . . .233 disalignment of weld . . . . . . . . . . . . . . . . . . . . . . . . . . . .163 due to misalignment . . . . . . . . . . . . . . . . . . . . . . . . . . . .158 for fatigue crack initiation . . . . . . . . . . . . . . . . . . . . . .706 Stress concentrators for forging burst in ingots . . . . . . . . . . . . . . . . . . . . . . . 87 in glasses and/or ceramics . . . . . . . . . . . . . . . . . . . . . .667 nonmetallic inclusions in ingot . . . . . . . . . . . . . . . . . . 89 Stress-corrosion cracking (SCC). See also Corrosion. . . . . . .337, 343, 490–491, 751, 761, 765–766, 768, 823–859. air conditioning absorber tubes . . . . . . . . . . . . . . . . .855 by air contaminants . . . . . . . . . . . . . . . . . . . . . . . . . . . . .833 aircraft actuator barrel lug . . . . . . . . . . . . . . . . . . . . . .852 of aircraft attachment bolt . . . . . . . . . . . . . . . . . . . . . .848 aircraft hinge bracket . . . . . . . . . . . . . . . . . . . . . 851, 852 aircraft strap-type clamp . . . . . . . . . . . . . . . . . . 828, 829 aircraft undercarriage leg forgings . . . . . . . . 852–853 by alcohol . . . . . . . . . . . . . . . . . . . . . . . . . . . .857, 858–859 of alpha-brasses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .835 aluminum alloys . . . .825, 832, 833, 834, 835, 836, 850–853 by amines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 833, 839 by ammonia . . . 823, 824, 829, 831, 832, 833, 839, 853–856 by ammoniacal copper sulfate solution . . . . . . . . .853 from ammonia released by algal biomass decay in brass condenser . . . . . . . . . . . . . . . . . . . . . . . . . . . .887 by ammonium nitrate . . . . . . . . . . . . . . . .828, 839, 841 analysis of failures . . . . . . . . . . . . . . . . . . . . . . . . 834–835 by atmosphere . . . . . . . . . . . . . . . . . . . . . . . .832, 833, 856 beach marks present . . . . . . . . . . . . . . . . . . . . . . 631, 633 by benzene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .859 as boiler tube damage mechanism on failure wheel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .350 brasses . . . . . . . . . . . . . . . 823, 825, 832, 835, 836, 837 by bromide ions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .857 by calcium chloride . . . . . . . . . . . . . . . . . . . . . . . . . . . . .849 by carbonate/bicarbonate . . . . . . . . . . . . . . . . . 839–840 by carbonates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .840 by carbon dioxide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .840 of carbon steels . . . . . . . . . . . . . . . . . . . . . . . . . . . 838–843 causing service failures of welds . . . . . . . . . . . . . . .156 characteristics . . . . . . . . . . . . . . . . . . . . . . . .823–824, 825 chemical analysis . . . . . . . . . . . . . . . . . . . . . . . . . 837–838 by chlorides . . . 823, 824, 825, 829, 830, 832, 833, 834, 835, 840, 841–842, 843–849, 850, 851–852, 856, 857 by chlorinated solvents . . . . . . . . . . . . . .857, 858–859 by citrate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .853 from coatings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .834 contact-finger retainers . . . . . . . . . . . . . . . . . . . . 828–830 controlling factors . . . . . . . . . . . . . . . . . . . . . . . . . 811, 812

www.asminternational.org

Index / 1153 copper and copper alloys . . . . . . . . . . . 828–830, 832, 853–856 in corrosion-resistant castings . . . . . . . . . . . . . . . . . .147 of corrosion-resistant steels . . . . . . . . . . . . . . . . . . . . .833 of coupling nuts . . . . . . . . . . . . . . . . . . . . . . . . . . . 851–852 crack branching . . . . .835, 843, 844, 845, 846, 852, 856 crack growth rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .825 crack initiation . . . . . . . . . . . . . . . . . . . . . . .824–825, 836 crack propagation . . . . . . . . . . . . . . . . . . . .401, 824–825 crystal structure effect . . . . . . . . . . . . . . . . . . . . . . . . . .832 as damage mechanism for boiler tubing . . . . . . . .347 as damage mechanism on failure wheel . . . . . . . .349 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1074 by diethanolamine (DEA) solutions . . . . . . . . . . . .839 effect on overload failures . . . . . . . . . . . . . . . . 697–698 environments . . 832–833, 843–844, 848–849, 853, 856, 857 evaporation tubes . . . . . . . . . . . . . . . . . . . . . . . . . 845, 846 ferrules for electric fuses . . . . . . . . . . . . . . . . . . . . . . .854 by fingerprints . . . . . . . . . . . . . . . . . . . . . . . .834, 858–859 finned tube in generator air cooler unit . . . 855–856 by fluoride . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 834, 856 by fluorinated hydrocarbons . . . . . . . . . . . . . . . . . . . .857 forged lug . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .828 by Freon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .859 by halide ions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .833 of high-nickel alloys . . . . . . . . . . . . . . . . . . . . . . . . . . . .823 of high-strength steels . . . . . . . . . . . . . . . . . . . . 833, 835 in high-temperature environments . . . . . . . . . . . . . .875 hoppers on trucks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .841 by hot dry chloride salts . . . . . . . . . . . . . . . . . . . . . . . .857 by hydrochloric acid . . . . . . . . . . . . . . . . . . . . . . 838, 857 by hydrofluoric acid . . . . . . . . . . . . . . . . . . . . . . . . . . . . .838 by hydrogen chloride . . . . . . . . . . . . . . . . . . . . . 857, 859 and hydrogen stress cracking . . . . . . . . . . . . . . . . . . .847 influencing intergranular fracture . . . . . . . . . 642, 645 inhibitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 838–839 and integranular stress-corrosion cracking . . . 646– 647 by iodide ions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .857 of iron-chromium alloys . . . . . . . . . . . . . . . . . . . . . . . .823 by isopropyl alcohol . . . . . . . . . . . . . . . . . . . . . . 858–859 jet pump beams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .850 by kraft liquor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .840 by liquid hand soap . . . . . . . . . . . . . . . . . . . . . . . 858–859 loading types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 of low-alloy steels . . . . . . . . . . . . . . . . . . . . . . . . 838–843 by lubricants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .834 by machining oils . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .834 macroscopic examination . . . . . . . . . . . . . . . . . . . . . . .836 magnesium alloys . . . . . . . . . . . . . . . . . . . . . . . . . 856–857 by magnesium chloride . . 824, 825, 836, 837, 847, 848–849, 857 manufacturing sources as root cause . . . . . 826–827 of maraging steels . . . . . . . . . . . . . . . . . . . . . . . . . 824, 843 materials properties related to . . . . . . . . . . . . . . . . . . . 36 materials selection criteria . . . . . . . . . . . . . . . . . . . . . . . 35 mechanisms of . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .826 metallographic analysis . . . . . . . . . . . . . . . . . . . . . . . . .838 metal susceptibility . . . . . . . . . . . . . . . . . . . . . . . . 831–832 by metalworking . . . . . . . . . . . . . . . . . . . . . . . . . . 828, 829 by methanol . . . . . . . . . . . . . . . . . . . . 834, 857, 858–859 by methylene chloride . . . . . . . . . . . . . . . . . . . . . . . . . .845 microscopic examination . . . . . . . . . . . . . . . . . 836–837 microstructure effect . . . . . . . . . . . . . . . . . . . . . . . . . . . .832 with mixed-mode fracture . . . . . . . . . . . . . . . . . . . . . .842 by moisture . . . . . . . . . . . . . . . . 826–827, 830, 850, 856 monoethanolamine DEA (MEA/DEA) cracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .839 by monoethanolamine (MEA) solutions . . . . . . . .839 by monomethyl hydrazine (MMH) . . . . . . . . . . . . .859 near-neutral pH, microbial involvement . . . . . . . .884 neck liner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .845 of nickel-base alloys . . . . . . . . . . . . . . . . .832, 848–850 by nitrates . . . . . . . . . . . . . . . . . . . . . . . . . . . .828, 839, 853 by nitrogen group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .833 by nitrogen tetroxide . . . . . . . . . . . . . . . . . . . . . . 857–858 on-site examination . . . . . . . . . . . . . . . . . . . . . . . . . . . . .835 operating temperatures . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 orthopedic implant of stainless steel . . . . . . . . . . . .366 outlet piping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 844–845 by oxygen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .840

© 2002 ASM International. All Rights Reserved. ASM Handbook Volume 11: Failure Analysis and Prevention (#06072G)

www.asminternational.org

1154 / Index

Stress-corrosion cracking (SCC) (continued) by phosphorus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 826–827 pipe in pressurized-water reactor . . . . . . . . . 827–828 by polythionic acid . . . . . . . . . . . . . . . . . . . . . . . . 844, 849 preservice environments . . . . . . . . . . . . . . . . . . 834–835 pressure vessels . . . . . . . . . . . . . . . . . . . . . . . . . . . 857–859 reaction control system oxidizer pressure vessels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 857–858 reduction methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .875 and residual stresses . . . . . . . . . . . 825, 827, 828, 830 safe-end on reactor nozzle . . . . . . . . . . . . . . . . 849–850 by seawater . . . . . . . . . . . . . . . . . . . . . . . . . . .851–852, 857 and sensitization of nickel alloys . . . . . . . . . . . . . . .849 and sensitization of stainless steels . . . . . . 843, 844, 846, 847–848 service environments . . . . . . . . . . . . . . . . . . . . . . 833–834 service propulsion system fuel tanks . . . . . 858–859 by silica . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .840 similarity to liquid metal induced embrittlement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .861 simulated-service tests . . . . . . . . . . . . . . . . . . . . . . . . . .838 by sodium chloride . . 825, 844, 849, 851–852, 856 by sodium hydroxide . . . . 823, 824, 833, 838, 839, 840, 844, 849, 857 by sodium tetrathionate solution . . . . . . . . . . . . . . . .849 by sodium thiosulfate solutions . . . . . . . . . . . . . . . . .849 specific-ion effect . . . . . . . . . . . . . . . . . . . . . . . . . 831, 833 stainless steel holding tank coupling . . . . . . . . 37–38 of stainless steels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .832 austenitic . . . . . . . . . . . . . . . . . . 824, 825, 832, 843–846 duplex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 846–847 ferritic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 846–847 martensitic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 847–848 precipitation-hardened . . . . . . . . . . . . . . . . . . . . 847–848 steam-condensate tubing . . . . . . . . . . . . . . . . . . 845–846 steam turbine components . . . . . . . . . . . . . . . . . . . . . .840 steam turbine rotor disc . . . . . . . . . . . . . . . . . . . 841–842 stress concentrations . . . . . . . . . . . . . . . . . . . . . . 828–830 stresses in service . . . . . . . . . . . . . . . . . . . . . . . . . 830–831 stress raisers for . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .824 stress types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 in subcritical fracture mechanics . . . . . . . . . . . . . . .479 by sulfates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 840, 853 by sulfur . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .826–827, 833 by sulfur dioxide, moist . . . . . . . . . . . . . . . . . . . . . . . . .853 by sulfuric acid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .838 by tartrate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .853 thermal expansion effects . . . . . . . . . . . . . . . . . . . . . . .830 threshold stress . . . . . . . . . . . . . . . . . . . . . . .823–824, 825 titanium and titanium alloys . . . . .13, 832, 857–859 by toluene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 826–827 transgranular, and flute formation . . . . . . . . . . . . . .613 tube sheets of air compressor . . . . . . . . . . . . . 854–855 valve stem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 847–848 by water, boiling . . . . . . . . . . . . . . . . . . . . .844, 849–850 by water, distilled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .859 by water-soluble coolant . . . . . . . . . . . . . . . . . . . . . . . .848 by water vapor . . . . . . . . . . . . 833, 847–848, 853, 854 wedging action of corrosion products . . . . 830–831 and welding . . . . . . . . . . . . . . . . . . . . 827–828, 832, 847 by working fluids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .833 of zirconium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .834 Stress corrosion fatigue (SCF) . . . . . . . . . . . . . 479, 559 Stress corrosion threshold . . . . . . . . . . . . . . . . . . . . . . .563 Stress crack definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .104, 1074 of polymers . . . . . . . . . . . . . . . . . . . . . . . . . .405, 651, 652 Stress cracking reagents . . . . . . . . . . . . . . . . . . . . . . . . .797 Stress crazing, of polymers . . . . . . . . . . . .651, 652, 653 Stress cycle, definition . . . . . . . . . . . . . . . . . . . . . . . . . . 1074 Stress deviator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .482 Stress directors, in helicopter gearing . . . . . . . . . . . .460 Stress gradients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 665, 667 in residual stress analysis by x-ray diffraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .489 x-ray diffraction technique for characterization of . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .494 Stress-intensity in ceramics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .959 created by applied loads . . . . . . . . . . . . . . . . . . . . . . . .476 as life-limiting factor . . . . . . . . . . . . . . . . . . . . . . 233–234 Stress-intensity amplitude during fatigue crack growth . . . . . . . . . . . . . . . . . . . .545 of fracture surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .546

Stress-intensity factor (KI) . . . . . . . . . . . 230, 243, 247, 278–279, 283, 461, 477 controlling crack growth . . . . . . . . . . . . . . . . . . . . . . . .270 at crack tip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .656 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1074 determination of . . . . . . . . . . . . . . . . . . . . . . . . . . . 233–234 related to brittle fracture . . . . . . . . . . . . . . . . . . . . . . . .657 solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .285 stresses at crack tip quantified . . . . . . . . . . . . . . . . . .401 Stress-intensity factor range (DK), definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1074 Stress-intensity parameter, quantifying stress at a crack tip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .686 Stress-intensity range . . . . . . . . . . . . . . . . . . . . . . 279, 703 of circular penetration in pressurized fuselage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .285 fatigue crack propagagation . . . . . . . . . . . . . . 577, 578 Stress-intensity threshold, of aluminum circular penetration in pressurized fuselage . . . . . . . .285 Stress-intensity values . . . . . . . . . . . . . . . . . . . . . . . . . . . .478 Stress invariants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .464 Stress-life variables . . . . . . . . . . . . . . . . . . . . . . . . . 276–278 Stress-mapping method, for x-ray diffraction measurement location selection . . . . . 488–489 Stress maxima . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .463 Stressor, definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Stress-oriented hydrogen-induced cracking (SOHIC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .884 Stress profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .382 Stress raisers. See also Stress concentration. . . . .875 casting defects in malleable irons . . . . . . . . . . . . . .140 and crack propagation with component failure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .496 defects as . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .104 as design deficiencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 and distortion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1050 and ductility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .595 effect on fatigue strength . . . . . . . . . . . . . . . . . . . . . . .720 effect on stress concentration and distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . 715–716 fatigue crack as . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .707 and fatigue failures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .152 fractures at or near . . . . . . . . . . . . . 609–611, 614, 615 and fretting wear . . . . . . . . . . . . . . . . . . . . . . . . . . 935–936 from grinding of forged rod . . . . . . . . . . . . . . . . . . . . . 86 inclusions as . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .117 in large parts of fractured surfaces . . . . . . . . . . . . .398 notch-type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .120 perimeter of . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210, 212 from prior machining laps and seams . . . .204–205, 206, 207 for quench cracking . . . . . . . . . . . . . . . . . . . . . . . 209–210 and stress-corrosion cracking . . . . . . . . . . . . . . . . . . .836 surface seams in dirty steels . . . . . . . . . . . . . . . . . . . .199 for torsional loading . . . . . . . . . . . . . . . . . . . . . . . . . . . .714 weldment inclusions . . . . . . . . . . . 173–174, 176, 177 in weldments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170, 175 Stress range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .700 Stress ratio (A or R) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .700 cyclic loading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .478 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1074 and distortion from overloading . . . . . . . . . . . . . . 1047 Stress relief to prevent stress-corrosion cracking . . . . . . . . . . . .490 by tempering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195, 199 Stress-relief cracking, of weldments . . . . . . . . . . . . .184 Stress-relief embrittlement causes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .690 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1074 effect in ferrous alloys . . . . . . . . . . . . . . . . . . . . . . . . . .690 effect on overload failures . . . . . . . . . . . . . . . . . . . . . .691 steels susceptible . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .690 welded tube . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .691 in weldments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157, 184 Stress-relief heat treatments after cold forming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .102 for weldments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .161 Stress risers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 584, 656 and fatigue crack initiation . . . . . . . . . . . . . . . 234, 577 infinite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .282 for rolling-contact fatigue failures . . . . . . . . 941, 942 Stress-rupture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 731–733 aging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .734

carbide reactions . . . . . . . . . . . . . . . . . . . . . . . . . . 735–736 creep-rupture embrittlement . . . . . . . . . . . . . . . . . . . .736 delayed transformation to equilibrium phases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .734 ductility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 732–733 as elevated-temperature failure in gas turbine tubes and pipes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289–290 fractures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .733–734, 735 in gas turbine engines . . . . . . . . . . . . . . . . . . . . . . . . . . .296 intergranular corrosion . . . . . . . . . . . . . . . . . . . . . . . . . .734 intermetallic-phase precipitation . . . . . . . . . . 734–735 metallurgical instabilities . . . . . . . . . . . . . . . . . 734–736 order-disorder transition . . . . . . . . . . . . . . . . . . . . . . . .734 overaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .734 oxidation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .734 precipitation, process interaction . . . . . . . . . . . . . . .736 recrystallization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .734 slag-enhanced corrosion . . . . . . . . . . . . . . . . . . . . . . . .734 stress-corrosion cracking . . . . . . . . . . . . . . . . . . . . . . . .734 trace element contamination . . . . . . . . . . . . . . . . . . . .734 transgranular-intergranular fracture transition . .734 Stress rupture failure of boiler tubes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .305 as mechanism of high-temperature corrosion . .876 steam pipe of CrMo steel . . . . . . . . . . . . . . . . . . . . . . .365 Stress-rupture strength. See creep-rupture strength. Stress-rupture tests and intergranular creep fracture . . . . . . . . . . . . . . . .575 of power plant piping and tubing . . . . . . . . . . . . . . .304 Stress-sorption theory, of stress-corrosion crack propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .826 Stress spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280–281 Stress state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .461 Stress-strain requiring foot correction . . . . . . . . . . . .403 Stress-strain diagram . . . . . . . . . . . . . . . . . . . . .17–18, 19 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1074 Stress-strain relationships . . . . . . . . . . . . . . . . . 466–467 Stress tensor . . . . . . . . . . . . . . . .462, 463, 464, 465, 474 decomposition of . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .482 eigenvalves of . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .482 Stress transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . .463 Stress vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .462 Stress whitening, of polymers . . . . . . . . . . . . . . 651, 652 Stress-whitening failure . . . . . . . . . . . . . . . . . . . . . . . . . .651 Stretcher strains. See Lu¨ders lines. Stretch zone . . . . . . . . . . . . . . . . . . . . . . . . . . . .584, 612, 616 to calculate stress and material toughness . . . . . 612, 616 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1074 in fractured specimen . . . . . . . . . . . . . . . . . . . . . 480, 481 width correlated to fracture toughness . . . . . . . . . .584 Striated. See also Striation. definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1074 Striated fracture, microscale fractographic implication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .560 Striated structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .580 Striated surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .580 Striation. See also Fatigue striations; Striated. . . 708, 709 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1074 in stress-corrosion cracking . . . . . . . . . .835, 836–837 Striation spacing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .524 Strict liability, as legal theory for products liability lawsuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 Striking/struck tools, specifications . . . . . . . . 985, 986 Stringer. See also Inclusions. . . . . . . . . . . . . . . . 117, 118 definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1074–1075 in forgings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 manganese sulfide in tapered-ring sprocket locking device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9, 10 and subsurface cracking and microsegregation . . . . . . . . . . . . . . . . . . . . . . . . . . .219 Strip necking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .582 Strip necking zone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .568 Strip yield model, for crack retardation . . . . . . . . . .283 Strontium, alloying effect on aluminum-silicon alloys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .118 Structural ceramics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .800 Structural foam molding, compatibility with various materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Structural reliability analysis . . . . . . . . . . . . . . . . . . . .261 Structural reliability theory . . . . . . . . . . . . . . . . . . . . .250 Structural steels, lateral expansion vs. Charpy impact energy . . . . . . . . . . . . . . . . . . . . . . . . 604, 608

© 2002 ASM International. All Rights Reserved. ASM Handbook Volume 11: Failure Analysis and Prevention (#06072G)

Strurel (computer software program) . . . . . . . . . . . . .267 Stud, stress-corrosion cracking of maraging steel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 631, 633 Stuffing box, fatigue fracture . . . . . . . . . .136–137, 138 Stylus profilometry . . . . . . . . . . . . . . . . . . . . . . . . . 539, 540 Styrenated polyester, characteristics of engineering polymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .359 Styrene-acrylonitrile (SAN), brittle fracture behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .656 Styrene-butadiene-styrene (triblock polymer), characteristics of engineering polymers . . .359 Sub-boundary structure (subgrain structure). See also Grain boundary. definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1075 Subcase fatigue . . . . . . . . . . . . . . . . . . . . . . . .723, 725–726 contact fatigue mode and controlling factors . . .725 contact fatigue terminology . . . . . . . . . . . . . . . . . . . . .722 Subcritical annealing to deter quench cracking . . . . . . . . . . . . . . . . . . . . . . . .200 with supercarburizing . . . . . . . . . . . . . . . . . . . . . . . . . . .216 Subcritical fatigue crack growth . . . . . . . . . . . . . . . .581 Subcritical fracture mechanics . . . . . . . . . . . . . . . . . .480 Subcritical quenching . . . . . . . . . . . . . . . . . . . . . . . . . . . .690 Subgrain, definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1075 Subgrain structure. See Sub-boundary structure. Submerged arc welding failure origins related to . . . . . . . . . . . . . . . . . . 185–186 weldment inclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . .172 weldment porosity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .171 Submicron chipping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .962 Subscale formation . . . . . . . . . . . . . . . . . . . . . . . . . 214–215 Subsurface blowholes, as casting defects . . . . . . . . . . . . . . . . . . . . . .106 cracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219, 220 fatigue cracks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1022 fatigue initiation . . . . . . . . . . . . . . . . . . . . . . . .627, 628, 632 rolling-contact fatigue in gear tooth . . . . . . . . . 942–943 weldment features as cause for rejection . . . . . . . . . .156 Subsurface corrosion. See Internal oxidation. Subsurface-origin pitting . . . . . . . . . . . . . . . . . . 722–723 Suck-in as casting defect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .108 in forgings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 Suction, as cavitation mechanism . . . . . . . . 1003, 1004 Sugar liquor (pH 7), causing intergranular corrosion in sensitized austenitic stainless steels . . . .779 Sulfate in groundwater, factors correlating with sulfate-reducting bacteria (SRB) numbers for buried pipeline sites . . . . . . . . . . . . . . . . . . . . . . .886 Sulfate-reducing bacteria (SRB) . . . . . . . . . . 884, 891 ammonium bisulfite as nutrient . . . . . . . . . . . . . . . . .885 in cooling systems drawing on natural waters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .889 corrosion mechanisms . . . . . . . . . . . . . . . . . . . . 882–883 identification basis for microbially induced cracking site . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .887 mechanism and indicators for microbially induced cracking scenarios . . . . . . . . . . . . . . . . . . . . . . . . .889 in microbially induced cracking of stainless steels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .890 microbially induced corrosion morphology products, and deposits . . . . . . . . . . . . . . . . . . . . .888 population correlation with soil conditions at pipeline sites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .886 in soil environments . . . . . . . . . . . . . . . . . . . . . . 885–887 viable cell counts method used for assays . . . . . .893 Sulfate reductase assay, activity assessed in MIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .893 Sulfate reduction to investigate microbial populations . . . . . . . . . . . .893 method used for inspection, growth and activity assays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .893 Sulfates, stress-corrosion cracking . . . . . . . . . . 840, 853 Sulfidation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .343 for adhesive wear mitigation . . . . . . . . . . . . . . . . . . .408 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1075 of low-alloy steel castings . . . . . . . . . . . . . . . . 145, 146 as mechanism for high-temperature corrosion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 870–871 molten salts involvement . . . . . . . . . . . . . . . . . . . . . . .874 nickel alloy incinerator liner . . . . . . . . . . . . . . 870–871 of nickel-base superalloys used for gas turbine blades . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .294

Sulfide(s). See also Manganese sulfide inclusions. formation during solidification of steel ingot . . . . 88 inclusions . . .37, 116, 117, 172–174, 219, 591, 592 Sulfide films, grain boundary . . . . . . . . . . . . . . . . . . . . .117 Sulfide impurities in aqueous solutions, causing stress-corrosion cracking in medium strength to high-strength steels (accelerated hydrogeninduced cracking) . . . . . . . . . . . . . . . . . . . . . . . . . .831 Sulfide stress cracking (SSC) . . . . . . . . .812–813, 884 as damage mechanism . . . . . . . . . . . . . . . . . . . . . . . . . .349 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1075 location on failure wheel . . . . . . . . . . . . . . . . . 348, 349 Sulfonation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .439 of polymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .439 Sulfur in base metal, and weldment porosity . . . . . . . . . .170 content effect on structural steels . . . . . . . . . . . . . . .404 content effect on deformation of polyisoprenes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .571 content effect or quench cracking . . . . . . . . . . . . . .199 in deposits from MIC sites in stainless steel cooling water systems . . . . . . . . . . . . . . . . . . . . .889 effect on low-alloy steel castings . . . . . . . . . 144, 145 effect on manganese microsegregation . . . . . . . . .219 effect on rupture ductility . . . . . . . . . . . . . . . . . . . . . . .736 effect on weldment hot cracking . . . . . . . . . . . . . . .184 as grain-boundary embrittler . . . . . . . . . . . . . . . . . . . .646 grain-boundary segregation and IG brittle fracture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .643 grain-boundary segregation causing intergranular stress-corrosion cracking . . . . . . . . . . . . . . . . . .647 microsegregtion susceptibility . . . . . . . . . . . . . . . . . .219 segregation, and weldment porosity . . . . . . . . . . . .171 segregation to core of steel . . . . . . . . . . . . . . . . . . . . .430 stress-corrosion cracking . . . . . . . . . . . . .826–827, 833 Sulfur dioxide as damaging substance in atmospheric environments for stress-corrosion cracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .832 effect on refractories . . . . . . . . . . . . . . . . . . . . . . . . . . . .803 moist, and stress-corrosion cracking . . . . . . . . . . . .853 Sulfur dioxide (SO2) gas with moisture, causing stress-corrosion cracking in copper alloys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .831 Sulfuric acid, causing stress-corrosion cracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .838 Sulfuric anodizing, for corrosion resistance . . . . .759 Sulfurous acid, environment causing stress-corrosion cracking of nickel and nickel-base alloys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .848 Sulfur oxidizers, in cooling systems drawing on natural waters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .889 Sulfur-oxidizing bacteria . . . . . . . . . . . . . . . . . . . . . . . . .881 Sulfur oxyanions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .884 Sulfur print technique . . . . . . . . . . . . . . . . . . . . . . . . . . .337 Sulfur print test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84–85 Sulfur recovery unit weldment, intergranular stresscorrosion cracking . . . . . . . . . . . . . . . . . . . 840–841 Sulfur-reducing bacteria, in uniform corrosion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 768, 769 Superalloys elevated temperatures for engineering applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .729 for gas turbine blades . . . . . . . . . . . . . . . . . . . . . 294–295 grain-boundary segregation . . . . . . . . . . . . . . . . . . . . .874 molten metal corrosion . . . . . . . . . . . . . . . . . . . . . . . . .874 weldment ductility-dip cracking . . . . . . . . . . . . . . . .184 workability behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 Superalloys, specific types K63198 (19-9DL) stress-corrosion cracking . . . . . . . . . . . . . . . 828, 829 K66286 (A-286) cadmium plating surface treatment as inappropriate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 hydrogen embrittlement environment . . . . . . . .817 N04400 (Alloy 400, Monel 400) cavitation erosion in seawater . . . . . . . . . . . . . . . .793 galvanic series in seawater . . . . . . . . . . . . . . . . . . .762 hydrochloric acid, corrosion by . . . . . . . . . . . . . .770 N05500 (Alloy K-500, Monel K-500) cavitation erosion in seawater . . . . . . . . . . . . . . . .793 galvanic series in seawater . . . . . . . . . . . . . . . . . . .762 hydrogen damage . . . . . . . . . . . . . . . . . . . . . . . . . . . . .817 hydrogen embrittlement environment . . . . . . . .817

www.asminternational.org

Index / 1155 N06002 (Alloy X, Alloy HX, Hastelloy X) oxidation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .869 N06007 (Alloy G, ERNiCrMo-1, Hastelloy G) hydrogen damage . . . . . . . . . . . . . . . . . . . . . . . . . . . . .817 intergranular corrosion . . . . . . . . . . . . . . . . . 781, 783 pitting corrosion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .775 N06050 (HX) oxidation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .869 N06110 (Allcorr) intergranular corrosion . . . . . . . . . . . . . . . . . . . . . . .781 N06455 (Alloy C-4, Hastelloy C-4) cavitation erosion . . . . . . . . . . . . . . . . . . . . . . . . . . . 1016 hydrogen embrittlement environment . . . . . . . .817 intergranular corrosion . . . . . . . . . . . . . . . . . . . . . . .781 stress-corrosion cracking . . . . . . . . . . . . . . . . . . . . .849 N06600 (Alloy 600, IN-600, Inconel 600) galvanic corrosion . . . . . . . . . . . . . . . . . . . . . . 762, 767 hydrogen embrittlement environment . . . . . . . .817 intergranular corrosion . . . . . .388–389, 648, 783, 784 intergranular fracture of steam generator tube . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 648–649 stress-corrosion cracking . . . . . . . . . .831, 849–850 N06601 (Alloy 601, IN-601, Inconel 601) high-temperature corrosion . . . . . . . . . . . . . 871, 872 intergranular corrosion . . . . . . . . . . . . . . . . . . . . . . .783 N06617 (Alloy 617, ERNiCrCoMo-1, Inconel 617, IN-617) high-temperature corrosion . . . . . . . .870, 871, 872 N06625 (Alloy 625, ERNiCrMo-3, Haynes 625, IN-625, Inconel 625) cavitation erosion in seawater . . . . . . . . . . . . . . . .793 hydrogen damage . . . . . . . . . . . . . . . . . . . . . . . . . . . . .817 hydrogen embrittlement environment . . . . . . . .817 intergranular corrosion . . . . . . . . . . . . . . . . . 781, 783 N06625 microbially induced corrosion in weldments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .888 N06686 (Alloy 686, Inconel 686, 686 (CPT) pitting corrosion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .775 N06690 (Alloy 690, IN-690, Inconel 690) intergranular corrosion . . . . . . . . . . . . . . . . . . . . . . .781 stress-corrosion cracking . . . . . . . . . . . . . . . . . . . . .849 sulfidation of incinerator liner . . . . . . . . . . . . . . .870 N06985 (Alloy G-3, ERNiCrMo-9, Hastelloy G-3) carbide precipitation of turbine blades . . . . . . 294, 295 hydrogen damage . . . . . . . . . . . . . . . . . . . . . . . . . . . . .817 intergranular corrosion . . . . . . . . . . . . . . . . . 781, 784 rotating bend fatigue testing, shot peening effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 492–493 stress-corrosion cracking . . . . . . . . . . . . . . . . . . . . .849 N07001 (Waspaloy) stress rupture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .735 thermomechanical fatigue . . . . . . . . . . . . . . . . . . . .739 thermomechanical fatigue life model . . . . . . . .740 N07041 (Alloy R-41, Haynes R-41, Rene´ 41) aging reactions as cause of corrosion . . . . . . . .874 N07041 (Alloy R-41, Haynes R-41, Rene´ 41) molten metal corrosion as liquid metal embrittlement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .874 N07500 (Udimet 500) high-temperature corrosion TMF life model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .740 turbine blade, vane, and nozzle land-based applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .296 N07718 (Alloy 718) brittle fracture of welded gas-turbine innercombustion-chamber case assembly . . . . . 164, 165 N07718 cavitation erosion in seawater . . . . . . . . . . . . . . . .793 N07718 (IN-718, ErNiFeCr-2, IN-718, Inconel 718) average asperity, height in fracture profile . . .542 crack-closure stress intensity vs. average asperity height . . . . . . . . . . . . . . . . . . . . . . . . . . . . .542 fatigue fracture shear regions, from deformation twinning . . . . . . . . . . . . . . . . . . . . . . . . .578, 579, 580 hot working . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .100 hydrogen damage . . . . . . . . . . . . . . . . . . . . . . . . . . . . .817 hydrogen embrittlement environment . . . . . . . .817 resisting adiabatic shear . . . . . . . . . . . . . . . . . . . . . .987 stress-corrosion cracking . . . . . . . . . . . . . . . . . . . . .849

© 2002 ASM International. All Rights Reserved. ASM Handbook Volume 11: Failure Analysis and Prevention (#06072G)

www.asminternational.org

1156 / Index

Superalloys, specific types (continued) N07750 (Alloy X-750, IN-X-750, Inconel X-750) elevated-temperature fatigue . . . . . . . . . . . . . . . . .291 hydrogen damage . . . . . . . . . . . . . . . . . . . . . . . . . . . . .817 hydrogen embrittlement environment . . . . . . . .817 intergranular corrosion . . . . . . . . . . . . . . . . . . . . . . .784 stress-corrosion cracking . . . . . . . . . . . . . . . 849, 850 N07751 (Alloy 751, Inconel 751) dimpled intergranular fracture after stress rupture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .643 N08020 (Alloy 20, Carpenter 20 Cb-3) hydrogen damage . . . . . . . . . . . . . . . . . . . . . . . . . . . . .817 intergranular corrosion . . . . . . . . . . . . . . . . . 781, 783 stress-corrosion cracking . . . . . . . . . . . . . . . . . . . . .849 N08120 (Alloy HR-120, Haynes HR-120) sulfidation resistance . . . . . . . . . . . . . . . . . . . . . . . . .871 N08800 (Alloy 800, IN-800, Incoloy 800) incomplete fusion in weldment with steel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167–168 intergranular corrosion . . . . . . . . . . . . . . . . . . . . . . .783 microbially induced corrosion . . . . . . . . . . . . . . .889 stress-corrosion cracking . . . . . . . . . . . . . . . 845, 849 N08810 (Alloy 800H, Incoloy 800H) intergranular corrosion sensitization susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .783 N08811 (Alloy 800 HT, Incoloy 800HT) sulfidation resistance . . . . . . . . . . . . . . . . . . . . . . . . .871 N08825 (Alloy 825, Incoloy 825) galvanic series in seawater . . . . . . . . . . . . . . . . . . .762 hydrogen damage . . . . . . . . . . . . . . . . . . . . . . . . . . . . .817 intergranular corrosion . . . . . . . . . . . . . . . . . 781, 783 pitting corrosion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .775 stress-corrosion cracking . . . . . . . . . . . . . . . . . . . . .849 N10001 (Alloy B, ERNiMo-1, Hastelloy B) galvanic series in seawater . . . . . . . . . . . . . . . . . . .762 intergranular corrosion . . . . . . . . . . . .781, 783, 784 stress-corrosion cracking . . . . . . . . . . . . . . . . . . . . .849 sulfuric acid corrosion . . . . . . . . . . . . . . . . . . . . . . . .770 N10002 (Hastelloy C) cavitation erosion in seawater . . . . . . . . . . . . . . . .793 galvanic series in seawater . . . . . . . . . . . . . . . . . . .762 intergranular corrosion . . . . . . . . . . . . . . . . . 783, 784 pitting corrosion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .775 N10276 (Alloy C-276, ERNiCrMo-4, Hastelloy C276, HAS-C-276) galvanic corrosion . . . . . . . . . . . . . . . . . . . . . . . . . . . .767 hydrogen damage . . . . . . . . . . . . . . . . . . . . . . . . . . . . .817 hydrogen embrittlement environment . . . . . . . .817 intergranular corrosion . . . . . . . . . . . . . . . . . . . . . . .781 N10276 pitting corrosion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .775 stress-corrosion cracking . . . . . . . . . . . . . . . . . . . . .849 N10629 (Alloy B-4, Hastelloy B-4, Nicrofer 6629) cavitation erosion, incubation time . . . . . . . . 1004 N10665 (Alloy B-2, ERNiMo-7, Hastelloy B-2) cavitation erosion, incubation time . . . . . . . . 1004 N10665 (Alloy B-2, ERNiMo-7, Hastelloy B-2) hydrogen damage . . . . . . . . . . . . . . . . . . . . . . . . . . . . .817 intergranular corrosion . . . . . . . . . . . . . . . . . . . . . . .781 stress-corrosion cracking . . . . . . . . . . . . . . . . . . . . .849 N12160 (Alloy HR-160, Haynes HR-160) sulfidation resistance . . . . . . . . . . . . . . . . . . . . . . . . .871 R30016 (Haynes 6-B) cavitation erosion . . . . . . . . . . . . . . . . . . . . . . . . . . . 1004 R30035 (MP-35N) hydrogen embrittlement environment . . . . . . . .817 R30155 (N-155) oxidation . . . . . . . . . . . . . . . . . . . . . .869 R30605 (Haynes A-25) cavitation erosion, incubation time . . . . . . . . 1004 A-286 hydrogen embrittlement . . . . . . . . . . . . . . . . . . . . . .813 Alloy 28 stress-corrosion cracking . . . . . . . . . . . . . . . . . . . . .849 CY5Sn BiM adhesive wear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .408 DS CM 247 LC turbine blade, vane, and nozzle land-based applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .296 GTD-111 aluminide coating life prediction for gas turbine blades . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303, 304

overlay coating life prediction for gas turbine blades . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .304 turbine blade, vane and nozzle land-based applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .296 Haynes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .556 sulfidation resistance . . . . . . . . . . . . . . . . . . . . . . . . .871 IN 939 turbine blade, vane, and nozzle land-based applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .296 Inconel 713C casting fracture showing dendritic solidification . . . . . . . . . . . . . . . . . . . . . . . . . 608, 613 IN 738 LC IN 738 (Inconel 738) impact test results of retired blades, half-sized specimens . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .301 Larson-Miller parameter for long-term creep predictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .300 low-cycle fatigue of service-run gas turbine blades . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .344 Orr-Sherby-Dorn parameter for long-term creep predictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .300 thermal-mechanical fatigue life assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .301 turbine blade, vane, and nozzle land-based applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .296 stress-corrosion cracking . . . . . . . . . . . . . . . . . . . . .849 M-352 stress-corrosion cracking . . . . . . . . . . . . . . . . . . . . .849 Mar-M 246 TMF life model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .740 Mar-M 247 gamma-prime particles in microstructure . . . .365 NASAIR 100 creep behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .731 PWA 1483 turbine blade, vane, and nozzle land-based applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .296 Rene´ 77 hot corrosion of turbine blades . . . . . . . . . 294, 295 TMF life model with carbide precipitation and cracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .741 Rene´ 80 thermomechanical fatigue life model . . 740, 741 thermomechanical fatigue of turbine blades . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .739 SC Rene´ N5 turbine blade, vane, and nozzle land-based applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .296 Udimet 520 oxidation and intergranular cracking, gas turbine blades . . . . . . . . . . . . . . . . . . . . . . . . . . .302–303, 304 turbine blade, vane and nozzle land-based applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .296 Udimet 700 (U-700) intergranular stress-corrosion cracking . . . . . .647 stress rupture . . . . . . . . . . . . . . . . . . . . . .733, 734, 735 Udimet 710 (U-710) aging parameter vs. impact toughness of turbine blades . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 impact test results of retired blades, full-sized specimens . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .301 impact test results of retired blades, half-sized specimens . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .301 Supercarburizing . . . . . . . . . . . . . . . . . . . . . . . . . . . 216–217 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .216 Supercooling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .135 of gray iron cylinder block . . . . . . . . . . . . . . . . . . . . .134 Superheater tubes creep embrittlement . . . . . . . . . . . . . . . . . . . . . . . . . . . . .695 intergranular creep fracture . . . . . . . . . . . . . . . 575, 576 oxide-scale-based life prediction . . . . . . . . . 308–309 Superposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .382 to obtain beta factor solutions for more complex geometries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .279 Surface(s) blowholes, as casting defects . . . . . . . . . . . . . . . . . . .106 condition, and casting defects . . . . . . . . . . . . . . . . . .120 pinholes, as casting defects . . . . . . . . . . . . . . . . . . . . .106 weldment features as cause for rejection . . . . . . .156 Surface alloying . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .760 Surface analysis, definition and overview . . 527–528

Surface blisters, as discontinuity in semisolid casting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127, 131 Surface blow, as discontinuity in semisolid casting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .128 Surface crack, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 957–958 characteristics and crack growth mechanism . . .100 classification scheme by Greek letters . . . . . . . . . . . 99 Surface damage contribution/subsurface damage contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .971 Surface distress, contact fatigue terminology . . . .722 Surface embrittlement, of polymers . . . . . . . . . . . . .798 Surface energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1022 of polymer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1022 Surface fatigue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .966 in impact wear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .966 Surface finish, prevention of fretting damage by shot peening . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .933 Surface flaw aspect ratios . . . . . . . . . . . . . . . . . . . . . . . .248 Surface folds, as casting defects . . . . . . . . . . . . . . . . . .107 Surface hardening defects resulting from . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 and fatigue imitation . . . . . . . . . . . . . . . . . . . . . . 628, 632 Surface layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .338 Surface melting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .760 Surface modification, for corrosion resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 759–760 Surface-origin pitting . . . . . . . . . . . . . . . . . . . . . . . . . . . .722 Surface oxidation, from ballistic impact . . . 982, 984 Surface oxide concentrations, in aluminum alloy castings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .149 Surface porosity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .120 Surface replica . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 520, 522 Surface rolling to increase compressive stresses by work hardening . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211–212 for stress reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .717 Surface roughness, casting . . . . . . . . . . . . . . . . . . . . . . .108 Surface roughness parameter (Rs) . . . . . . . . 545, 546 Surface volume, definition . . . . . . . . . . . . . . . . . . . . . . . .546 Surfactants, as addition to disperse MIC deposits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .894 Surgical implants, crevice corrosion . . . . . . . . . . . . .777 Survey spectrum . . . . . . . . . . . . . . . . . . . . . . .528, 530, 534 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .530 Sustained load cracking (SLC), of aluminum alloys with small lead content . . . . . . . . . . . . . . . . . . . .864 Swelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .796–797, 803 of plastics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .405 Synthetic rubber, microstructure . . . . . . . . . . . . . . . . .650 Systematic random sampling scheme . . . . . . . . . . .548 System hazard analyses . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 System integrator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 System reliability . . . . . . . . . . . . . . . . 250, 251, 262–263 computer software programs . . . . . . . . . . . . . . . . . . . .267 Systems engineering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

T Tafel lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .771 Tail . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .665 TAN. See Tribological aspect number. Tan delta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .443, 444, 445 Tangential stress. See Shear stress. Tangent modulus. See also Modulus of elasticity. definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1075 Tanks, prevention approach for corrosion in industrial facilities . . . . . . . . . . . . . . . . . . . . . . . . .893 Tank tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .404 Tantalum addition improving oxidation resistance . . . . . . . .868 addition to control intergranular corrosion . . . . .875 galvanic corrosion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .767 hydrogen damage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .818 Tantalum alloys hydrogen damage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .818 workability behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 Tapered compression test . . . . . . . . . . . . . . . . . . . . . . . . . 99 Tapered-ring sprocket locking device, ductile fracture of carbon steel . . . . . . . . . . . . . . . . . . 9, 10 Taper sectioning, of worn specimens . . . . . . . . . . . .413

© 2002 ASM International. All Rights Reserved. ASM Handbook Volume 11: Failure Analysis and Prevention (#06072G)

Tapes, for securing samples to be analyzed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 528–529 Target load/life test method . . . . . . . . . . . . . . . . . . . . . .710 Target reliabilities . . . . . . . . . . . . . . . . . . . . .262, 264, 266 Target safety index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .264 Target specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Tarnish films . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .825 Tarnishing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .768 Tarnish rupture model . . . . . . . . . . . . . . . . . . . . . . . . . . .826 Tartratte, stress-corrosion cracking . . . . . . . . . . . . . .853 Taylor’s series expansion . . . . . . . . . . . . . . . . . . . . . . . .257 of gX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .256 Taylor’s tool lifetime equation . . . . . . . . . . . . . . . . . . .916 TBC. See Thermal barrier coating. TBO. See Thermally grown oxide layer. TC. See Total carbon content. TCF. See True corrosion fatigue. TCP. See Topologically close-packed phases. TD. See Transverse direction. TE. See Temper embrittlement. Tear dropping, as casting defect . . . . . . . . . . . . . . . . .109 Tearing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118–119 ductile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .611, 612, 616 in forgings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 Tearing assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .246 Tearing fracture, definition . . . . . . . . . . . . . . . . . . . . . 1075 Tear ridges, definition . . . . . . . . . . . . . . . . . . . . . . . . . . 1075 Tear zone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 475, 611 Technical ceramics. See also Advanced ceramics; Engineering ceramics. . . . . . . . . . .800, 804–805 hot gas corrosion . . . . . . . . . . . . . . . . . . . . . . . . . . 804, 805 material selection . . . . . . . . . . . . . . . . . . . . . . . . . 805–807 molten salt corrosion . . . . . . . . . . . . . . . . . . . . . . 804, 805 process control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .807 Technical Plan for Evaluation (TPE) chart . . . 328, 331 Technical Plan for Resolution . . . . . . . .328, 330, 331 Telemetry-radio system . . . . . . . . . . . . . . . . . . . . . . . . . .992 Tellurium as embrittling agent . . . . . . . . . . . . . . . . . . . . . . . 691, 862 as grain-boundary embrittler . . . . . . . . . . . . . . . . . . . .646 grain-boundary segregation and intergranular brittle fracture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .643 TEM. See Transmission electron microscopy. Temperature brittle-to-ductile fracture transition . . . . . . . 612, 616 and distortion failures . . . . . 1049–1050, 1051–1052 distribution within ground surface . . . . . . . . . . . . . .220 effective, over TMF cycle . . . . . . . . . . . . . . . . 739, 740 effect on cavitation erosion . . . . . . . . . . . . . . . . . . . 1010 effect on deformation of polyisoprenes . . . . . . . .571 effect on ductility of metallic materials . . . . . . . .575 effect on fatigue crack growth rate in gas turbines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .291 effect on fracture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .568 effect on fretting wear . . . . . . . . . . . . . . . . . . . . 931–932 effect on overload failures . . . . . . . . . . . . . . . . 684–687 effect on polymers . . . . . . . . . . . . . . . . . . . . . . . . 798–799 effect on uniform corrosion . . . . . . . . . . . . . . . . . . . . .770 as environment contributing to damage mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . 347–348 equicohesive . . . . . . . . . . . . . . . . . . . 575, 641, 680, 734 flash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1028 high homologous . . . . . . . . . . . . . . . . . . . . . . . . . . 564, 569 homologous temperature . . . . . . . . . . . . .569, 570, 571 hot-face . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .803 as life-limiting factor . . . . . . . . . . . . . . . . . . . . . . . . . . . .234 and microcracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .218 Temperature sweep, definition . . . . . . . . . . . . . . . . . . .443 Temper brittleness. See Temper embrittlement. Temper carbon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .138 Tempered glass, crack branching . . . . . . . . . . . . . . . . .658 Tempered martensite and banding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219, 220 in microstructure from stress raisers . . . . . 204, 206, 207 nonuniform quenching producing bands . . . . . . 208, 210 in railroad rails, and failure of . . . . . . . . . . . . 512, 514 viewed best by light microscopy . . . . . . . . . . . . . . .499 volume changes of carbon steels, due to phase transformation . . . . . . . . . . . . . . . . . . . . . . . 194, 195

Tempered martensite embrittlement (TME) causes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .690 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1075 effect in ferrous alloys . . . . . . . . . . . . . . . . . . . . . . . . . .690 effect on overload failures . . . . . . . . . . . . . . . . . . . . . .692 steels susceptible . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .690 Temper-embrittled steel, critical section thicknesses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .477 Temper embrittlement (TE) . . . . . . . . . . . . . . . . . . . . .404 and carbides in microstructure . . . . . . . . . . . . . . . . . .583 causes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .690 causing spalling . . . . . . . . . . . . . . . . . . . . . . . . . . . 985, 986 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1075 detection by scanning auger microprobe analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .337 effect in ferrous alloys . . . . . . . . . . . . . . . . . . . . . . . . . .690 effect on overload failures . . . . . . . . . . . . . . . . 691–692 of low-alloy steel castings . . . . . . . . . . . . . . . . 144, 145 pressure vessel plates of steel . . . . . . . . . . . . . . . . . . .692 of steel alloys used for gas turbine tubes and piping . . . . . . . . . . . . . . . . . . . . . . . . . . .291, 292–293 steels susceptible . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .690 of welded castings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .153 in weldments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169, 184 Tempering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .195, 198, 199 effect on fracture features . . . . . . . . . . . . . . . . . . . . . . .335 effect on microcracking . . . . . . . . . . . . . . . . . . . . . . . . .218 to improve ground surfaces . . . . . . . . . . . . . . . . . . . . .221 metallurgical reactions and physical changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195, 198 to prevent hydrogen embrittlement . . . . . . . . . . . . .821 for stress relief . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195, 199 volume changes affected . . . . . . . . . . . . .195, 198, 199 Tempering scale, in quench crack . . . . . . . . . . . . . . . .694 10 degree rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .770 Tensile bars, stress analysis . . . . . . . . . . . . . . . . . . . . . . .468 Tensile-hydrostatic component . . . . . . . . . . . . 596–597 Tensile residual stress effect on fracture loads as function of test temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .490 leading to stress-corrosion cracking . . . . . . 825, 827 Tensile shear failure . . . . . . . . . . . . . . . . . . .600–601, 605 Tensile strength. See also Ultimate strength. of cast carbon-molybdenum steels . . . . . . . . . . . . . .145 as criteria for materials selection . . . . . . . . . . . . . . . . 32 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1075 of quenched and tempered low-alloy steel . . . . .980 Tensile stress(es) in ceramics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .664 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1075 and hydrogen embrittlement . . . . . . . . . . . . . . . . . . . .819 Tensile testing. See Tension testing. Tension, definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1075 Tension-tension testing oxide, film effect on fatigue life . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .117 Tension testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 402–403 of carbon steel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .509 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1075 gas turbine blades . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .346 and intergranular creep fracture . . . . . . . . . . . . . . . .575 of overload failure material . . . . . . . . . . . . . . . . . . . . .687 of polymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .445 strain rate effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .600 Tertiary creep. See also Creep. definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1075 Terylene (Dacron), characteristics of engineering polymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .359 Testability, and failure modes and effects analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 “Test and Replace as Necessary,” United Airlines program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 Testing field service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 improper, as root cause of failures . . . . . . . . . . . . .325 for rolling-contact fatigue . . . . . 943, 944, 948, 949, 951 Test life, definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .270 Tetrathionate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .884 environment causing stress-corrosion cracking of nickel and nickel-base alloys . . . . . . . . . . . . . .848 Textural index of the geomembranes . . . . . . . . . . .545 Texture. See also Fiber; Preferred orientation. definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1075 TGA. See Thermogravimetric analysis.

www.asminternational.org

Index / 1157 Theoretical stress-concentration factor. See Stressconcentration factor. Thermal aging, of polymers . . . . . . . . . . . . . . . . . . . . . .441 Thermal analysis design applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .382 finite-element analysis software programs for . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .382 Thermal barrier coatings (TBC), as hightemperature coatings resisting corrosion . .877 Thermal conductivity, as criteria for materials selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Thermal cracks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 in forgings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 Thermal deformation profile . . . . . . . . . . . . . . . . . . . .383 Thermal embrittlement, of maraging steels, and intergranular fracture . . . . . . . . . . . . . . . . . . . . . .646 Thermal etching of ceramics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .362 as ceramographic etching procedure . . . . . 362, 363 Thermal expansion as criteria for materials selection . . . . . . . . . . . . . . . . 32 and stress-corrosion cracking . . . . . . . . . . . . . . . . . . .830 Thermal expansion coefficient, and distortion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1050 Thermal expansion mismatches . . . . . . . . . . . 592, 803 and oxidation at high temperatures . . . . . . . . . . . . .868 Thermal fatigue . . . . . . . . . . . . . . . . . . . . . . . .726, 736–737 of boiler tubes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .305 as damage mechanism on failure wheel . . . . . . . .349 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . 234, 291, 1075 as elevated-temperature failure in gas turbines . . . . . . . . . . . . . . . . . . . 289, 291, 292, 296 of low-alloy steel castings . . . . . . . . . . .142, 143–144 materials properties related to . . . . . . . . . . . . . . . . . . . 36 Thermal fatigue cracks. See also Heat checking. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .875 of pressure die castings . . . . . . . . . . . . . . . . . . . 127, 130 Thermal fatigue cycles, as life-limiting factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .234 Thermal-fatigue fractures . . . . . . . . . . . . . . . . . 736–737 Thermal gradients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .667 adjustment to minimize corrosion . . . . . . . . . . . . . .806 created by nonuniform quenching . . . . . . . . . . . . . .208 and stress-corrosion cracking . . . . . . . . . . . . . . . . . . .830 and volume changes during phase transformations . . . . . . . . . . . . . . . . . . . . . . 196, 200 Thermal insulation, and crevice corrosion . . . . . . . . . . . . . . . . . . . . . 776–777 Thermal grown oxide (TBO) layer, in thermal barrier coatings . . . . . . . . . . . . . . . . . . . . . . . . . . . .877 Thermal loading, stress sources . . . . . . . . . . . . . . . . . .582 Thermally induced embrittlement, contribution to overload failures . . . . . . . . . . . . . . . . . . . . . 690–695 Thermal-mechanical fatigue. See Thermomechanical fatigue. Thermal mismatch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .802 of refractories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .801 Thermal process cracking, as damage mechanism on failure wheel . . . . . . . . . . . . . . . . . . . . . . . . . . .349 Thermal severity number (TSN) . . . . . . . . . . . . . . . .183 Thermal shock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .384 causing mechanical (cold) cracks . . . . . . . . . . . . . . .120 of ceramics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370, 667 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1075 minimized with sigma phase . . . . . . . . . . . . . . . . . . .292 of PET jacket, transportation assemblies . . . . . . 451, 452 of refractories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .806 of refractory coatings . . . . . . . . . . . . . . . . . . . . . . . . . . .878 of technical ceramics . . . . . . . . . . . . . . . . . . . . . . . . . . . .806 Thermal shock exposure . . . . . . . . . . . . . . . . . . . . . . . . .349 Thermal shock resistance . . . . . . . . . . . . . . . . . . . . . . . . . 35 Thermal shock testing, of PET jacket, transportation assemblies . . . . . . . . . . . . 451, 452 Thermal softening . . . . . . . . . . . . . . . . . . . . .600–601, 620 overcoming strain and strain-rate hardening . . 621, 622 Thermal spraying coatings and rolling-contact fatigue . . . . . . 949–954 for corrosion resistance . . . . . . . . . . . . . . . . . . . . . . . . .759 to repair liquid-impact erosion damage . . . . . . 1017 vs. physical vapor deposition for coatings . . . . .945 Thermal stability, as criteria for materials selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

© 2002 ASM International. All Rights Reserved. ASM Handbook Volume 11: Failure Analysis and Prevention (#06072G)

www.asminternational.org

1158 / Index

Thermal stress(es) cooling with transformation of steels . . . . .194–195, 197, 198 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1075 and distortion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206–207 as polymer failure mechanism . . . . . . . . . . . . . . . . . .368 of refractories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .806 and stress intensity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .481 of technical ceramics . . . . . . . . . . . . . . . . . . . . . . . . . . . .806 Thermal wear mechanisms . . . . . . . . . . . . . . . . 902, 903 Thermoforming, compatibility with various materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Thermogram definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .440 for dynamic mechanical analysis . . . . . . . . . 443, 445 in thermogravimetric analysis . . . . . . . . . . . . . . . . . .442 of thermomechanical analysis . . . . . . . . . . . . 442, 443 Thermogravimetric analysis (TGA) of acrylonitrile-butadiene-styrene protective covers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 449–450 evolved gas analysis techniques (TGA-FTIR or TGA-MS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .442 with FTIR analysis information . . . . . . . . . . . . . . . .442 of high-density polyethylene chemical storage vessel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 453–454 of nylon filtration unit . . . . . . . . . . . . . . . . . . . . 456, 457 of nylon hinges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .459 of PET jacket, transportation assemblies . . . . . . .452 of plasticized polyvinyl chloride tubing . . 448, 451 of polyacetal latch assemblies . . . . . . . . . . . . . . . . . .455 of polybutylene terephthalate automotive sleeves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .449 of polyethylene terephthalate jacket of transportation assemblies . . . . . . . . . . . . . . . . . .452 of polymers . . . . . . . . . . . . . . . . . . . . . . . . . .441–443, 444 properties measured . . . . . . . . . . . . . . . . . . . . . . . . . . . . .446 property derived from polymer analysis . . . . . . . .359 use in failure analysis . . . . . . . . . . . . . . . . . . . . . . . . . . .446 Thermomechanical analysis of polycarbonate switch housing . . . . . . . . . 457, 458 of polymers . . . . . . . . . . . . . . . . . . . . . . . . . .442–443, 444 properties measured . . . . . . . . . . . . . . . . . . . . . . . . . . . . .446 property derived from polymer analysis . . . . . . . .359 use in failure analysis . . . . . . . . . . . . . . . . . . . . . . . . . . .446 Thermomechanical fatigue . . . . . . . . . . .384, 738–745 as boiler tube damage mechanism on failure wheel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .350 component-simulation testing . . . . . . . . . . . . . . . . . . .741 cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 738–739 as damage mechanism for boiler tubing . . . . . . . .347 as damage mechanism on failure wheel . . . . . . . .349 decay in maximum stress . . . . . . . . . . . . . . . . . . . . . . .740 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .738 descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 738–739 engineering equation . . . . . . . . . . . . . . . . . . . . . . 740–741 life assessment technique for elevated-temperature exposure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .240 life model with carbide precipitation and cracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .741 life model with metastable precipitates and plasticity/oxidation . . . . . . . . . . . . . . . . . . . 740–741 life model with stable precipitate structure and plasticity/oxidation . . . . . . . . . . . . . . . . . . . . . . . . .740 life prediction in regime . . . . . . . . . . . . . . . . . . . . . . . .738 loading (cycling) types . . . . . . . . . . . . . . . . . . . . . . . . . .738 mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 739–741 of power plant waterwall tube . . . . . . . . . . . . . . . . . .346 residual life prediction in a turbine casing . . . . . . . . . . . . . . . . . . . . . . . . 741–745 resulting in fatigue damage mode . . . . . . . . . . . . . .344 of turbine blades of Rene´ 80 . . . . . . . . . . . . . . . . . . .739 Thermomechanical fatigue life assessment, of gas turbine blades . . . . . . . . . . . . . . . . . . . . . . . . 301–302 Thermomechanical fatigue testing . . .301–302, 736 Thermophiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .754 Thermoplastic acrylics, as corrosion-resistant coatings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .758 Thermoplastic polymers. See also Glassy thermoplastics; Semicrystalline thermoplastics. bonds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .650 characteristics of engineering polymers . . . . . . . .359 compatibility with various manufacturing processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

as corrosion-resistant coatings . . . . . . . . . . . . . . . . . .758 deformation and fracture . . . . . . . . . . . . . . . . . . . . . . . .568 minimum web thickness . . . . . . . . . . . . . . . . . . . . . . . . . 32 for mounting . . . . . . . . . . . . . . . . . . . . . . . . .502–503, 504 Thermosetting polymers . . . . . . . . . . . . . . . . . . . . . . . 1021 bonds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .650 compatibility with various manufacturing processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 crystallinity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .650 minimum web thickness . . . . . . . . . . . . . . . . . . . . . . . . . 32 for mounting . . . . . . . . . . . . . . . . . . . . . . . . .502–503, 504 wear failures . . . . . . . . . . . . . . . . . . . . . . . . . . . 1022, 1023 Thin-layer activation (TLA), to measure fretting wear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .932 Thin-layer composites with metallic supports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1028 Thiobacilli . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .887 Thiocyanates, environment causing stress-corrosion cracking of nickel and nickel-base alloys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .848 Thiocyanate tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .886 Thiosulfate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 884, 889 environment causing stress-corrosion cracking of nickel and nickel-base alloys . . . . . . . . . . . . . .848 Thiothrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .890 Third body . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1022 Third-body abrasion . . . . . . . . . . . . . . . . . . . . . . . . . . . 1005 Thoria, refractoiness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .805 Thorium and thorium alloys, hydrogen damage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .818 Threaded connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . .383 Three-dimensional angular distribution . . . . . . . .546 Three-dimensional fracture surface reconstruction methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .538 Three-dimensional laser confocal scanning microscopy . . . . . . . . . . . . . . . . . . . . . . . . . . 551, 553 Three-dimensional reconstructure of fracture surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 551–554 Three-dimensional stress analysis . . . . . . . . . 465–466 Three-dimensional transformation equation . . .463 300 to 350 ⬚C (570 to 660 ⬚F) embrittlement. See also Tempered martensite embrittlement. definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1075 350 ⬚C (or 500 ⬚F) embrittlement. See also Tempered-martensite embrittlement. . . . . . .692 Three-point flexure bend test . . . . . . . . . . . . . . . . . . . .666 Threshold crack tip stress-intensity factor . . . . .811 Threshold stress, for stress-corrosion cracking . . . . . . . . . . . . . . . . . . . . . . . . .823–824, 825 Threshold stress-intensity factor . . . . . . . . . . . . . . . .283 Threshold stress-intensity for stress-corrosion cracking (KISCC) . . . . . . . . . . . . . . . . . . . . . . . . . .824 relationship with various failure modes . . . . .35, 36 Throat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .176 of weldment . . . . . . . . . . . . . . . . . . . . . . . . . .162, 163, 164 Through cracks, fatigue propagated . . . . . . . . . . . . .633 Thumbnail, definition . . . . . . . . . . . . . . . . . . . . . . . . . . . 1075 TiC. See Titanium carbide. Tide marks. See Beach marks. Tie molecules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .652 TIFF digital camera file format . . . . . . . . . . . . . . . . .420 Tilt boundaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 589, 612 and loading mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .574 Time-invariant problem . . . . . . . . . . . . . . . . . . . . . . . . . .251 Time-of-flight secondary ion mass spectrometry (TOF-SIMS) . . . . . . . . . . . . . 527, 531, 532–533 adapted to running conducting and insulating materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .529 analysis depth and area . . . . . . . . . . . . . . . . . . . . . . . . .527 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .532 detection limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . 527, 532 ease of use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .527 features of technique . . . . . . . . . . . . . . . . . . . . . . . . . . . .527 handling insulating as well as conducting materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .533 high-mass resolution analyses . . . . . . . . . . . . . . . . . .536 information evaluated . . . . . . . . . . . . . . . . . . . . . . . . . . .527 mass spectrum of polyethylene terephthalate . . . . . . . . . . . . . . . . . . . . . . . . . 531, 533 positive ion spectrum of stainless steel surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 532, 536 of stainless steel . . . . . . . . . . . . . . . . . . . . . .532, 535, 536 surface contaminants . . . . . . . . . . . . . . . . . . . . . . . . . . . .528

total positive ion image of stainless steel surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 532, 533 Time quenching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212, 213 Time-temperature parameter assessments . . . . . . . . . . . . . . . . . . . . . . . . . . 299–300 Time-temperature-transformation (TTT) diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192, 194 and austempering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212, 213 Time-variant problem . . . . . . . . . . . . . . . . . . . . . . . . . . . .251 Time-variant reliability . . . . . . . . . . . . . . . . . . . . 250, 262 TiN. See Titanium nitride. Tin causing solid metal induced embrittlement . . . . .865 contact effect on temper embrittlement . . . . . . . . .691 effect on rupture ductility . . . . . . . . . . . . . . . . . . . . . . .736 effect on time-to-fracture of copper by stresscorrosion cracking in ammoniacal atmosphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .853 as embrittling impurity, in low-alloy steel castings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144, 145 as embrittling metal . . . . . . . . . . . . . . . . . . . . . . . . . . . . .862 galvanic corrosion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .767 galvanic series in seawater . . . . . . . . . . . . . . . . . . . . . .762 as grain-boundary embrittler . . . . . . . . . . . . . . . . . . . .646 grain-boundary segregation and intergranular brittle fracture . . . . . . . . . . . . . . . . . . . . . . . . 643, 645 liquid, causing stress-corrosion cracking of nickel and nickel-base alloys . . . . . . . . . . . . . . . . . . . . .848 microsegregation susceptibility . . . . . . . . . . . . . . . . .219 as molten metal corrodent . . . . . . . . . . . . . . . . . . . . . .873 standard emf series value . . . . . . . . . . . . . . . . . . . . . . .763 x-ray elemental composition map made with electron microprobe . . . . . . . . . . . . . . . . . . . . . . .865 Tin alloys, die casting . . . . . . . . . . . . . . . . . . . . . . . . . . . . .125 Tin bronzes, galvanic series in seawater . . . . . . . . .762 Tin chloride, causing chloridation of carbon steel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .873 Tin embrittlement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .429 Tin-lead solder, 50-50, galvanic series in seawater . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .762 Tinner’s setting hammers . . . . . . . . . . . . .978, 979, 986 Tin plating, 2.5 lm, erosion rate of metallic coatings in 3% NaCl aqueous solution . . . . . . . . . . . 1008 Tinsley thickness gage . . . . . . . . . . . . . . . . . . . . . . . . . . . .147 Tire-mold castings, inclusions causing failures in ductile iron . . . . . . . . . . . . . . . . . . . . . . . . . . . 117, 118 Tire tracks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 354, 355 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1075 Titanium. See also Alpha-beta titanium; Alpha titanium; Beta titanium. addition increasing solubility of manganese sulfides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .117 addition to control intergranular corrosion . . . . .875 causes of stress-corrosion cracking . . . . . . . . . . . . .831 causing liquid or solid metal induced embrittlement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .862 compatibility with various manufacturing processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 content effect on nitridation susceptibility . . . . .870 content effect on sigma-phase embrittlement . .693 for deoxidizing aluminum-killed steels . . . . . . . . .646 erosion rate in mineral oil . . . . . . . . . . . . . . . . . . . . 1007 fatigue failure of aircraft compressor disks (rotors) . . . . . . . . . . . . . . . . . . . . . . . . . .264, 265, 266 forming dispersoids to slow down crack growth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .646 fretting wear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 930, 935 galvanic corrosion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .767 galvanic series in seawater . . . . . . . . . . . . . . . . . . . . . .762 hydrided . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .817 hydrogen damage . . . . . . . . . . . . . . . . . . . . . . . . . 817–818 liquid embrittlers of . . . . . . . . . . . . . . . . . . . . . . . . . . . . .646 oxidation potential in endothermic gas . . . . . . . . .214 oxide film for fretting corrosion resistance . . . . .928 resistant to microbially induced corrosion . . . . . .881 standard emf series value . . . . . . . . . . . . . . . . . . . . . . .763 stress-corrosion cracking . . . . . . . . . . . . .832, 857–859 structural component material behavior . . . . . . . .282 Titanium, specific types ASTM F67, grade 2, cutting damage from sectioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .505 commercial-purity, polishing with disturbed metal (residual damage) . . . . . . . . . . . . . . . . . . . . . . . . . .506

© 2002 ASM International. All Rights Reserved. ASM Handbook Volume 11: Failure Analysis and Prevention (#06072G)

grade 2 commercially pure, for nitric acid storage and shipping containers . . . . . . . . . . . . . . . . . . .770 Titanium alloys aircraft fan disk failure . . . . . . . . . . . . . . . . . . . . 228, 232 causes of stress-corrosion cracking . . . . . . . . . . . . .831 cavitation erosion in seawater . . . . . . . . . . . . . . . . . .793 centrifugal casting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .132 compatibility with various manufacturing processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 for cool gas turbine engine components . . . . . . . .296 corrosion resistance to microbially induced corrosion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .893 creep . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 729, 730 defects in forgings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 electron beam welding . . . . . . . . . . . . . . . . . . . . 189–190 environment systems exhibiting stress-corrosion cracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .832 fretting wear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 930–931 high-strength, causes of stress-corrosion cracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .831 hot isostatically pressed fatigue fracture showing striations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .635 hydrogen damage . . . . . . . . . . . . . . . . . . . . . . . . . 817–818 impact wear . . . . . . . . . . . . . . . . . . . . . . . . . .967, 968, 971 liquid metal induced embrittlement . . . . . . . . . . . . .866 microbially induced corrosion resistance . . . . . . .881 overaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .694 solid metal induced embrittlement . . . . . . . . . . . . . .866 stress-corrosion cracking . . . . . . . . . . . . .832, 857–859 Titanium alloys, specific types Ti-Al-2.5Sn, overload failure with rapid unstable cracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .680 Ti-5Al-2.5Sn, stress-corrosion cracking . . . . . . . .857 Ti-6Al-2Sn-4Zr-2Mo, polishing with staining damage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .506 Ti-6Al-4V cavitation erosion . . . . . . . . . . . . . . . . . . . . . . . . . . . 1003 crack-opening thresholds and compressive residual stresses . . . . . . . . . . . . . . . . . . . . . . . . . . . .490 dimple-rupture fracture . . . . . . . . . . . . . . . . . . . . . . .673 electron beam welding . . . . . . . . . . . . . . . . . 189, 190 erosion rate . . . . . . . . . . . . . . . . . . . . . . . . . . 1005, 1006 fatigue fracture with fatigue striations . . . . . . 580, 582 flow-through defect in forging . . . . . . . . . . . .93, 94 fretting wear of orthopedic implants . . . . . . . . .930 liquid-droplet erosion resistance . . . . . . . . . . . 1015 liquid metal induced embrittlement . . . . . . . . . .866 second-phase cleavage fracture . . . . . . . . 578, 580 stress-corrosion cracking . . . . . . . . . .834, 857–859 stress-intensity range effect on fatigue fracture mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .578 stress-intensity vs. time to failure . . . . . . 479, 480 stress-strain plots, directionality effect . . . . . . 615, 617 stretch zone width correlation with fracture toughness, elastic modulus normalized . . .584 Ti-6Al-4V ELI, fretting wear of orthopedic implants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .931 Ti-8Al-1V-1Mo, stress-corrosion cracking . . . . .857 B-1208CA, dimple size change and intergranular cracking with aging . . . . . . . . . . . . . . . . . . . . . . . .596 B-120CVA, dimple size . . . . . . . . . . . . . . . . . . . 594–595 IMI 550, fretting wear . . . . . . . . . . . . . . . . . . . . . . . . . .931 RMI 5522S, impact wear . . . . . . . . . . . . . . . . . . . . . . .967 Titanium aluminides, as high-temperature coatings resisting corrosion . . . . . . . . . . . . . . . . . . . . . . . . .878 Titanium aluminum carbonitride, as physical vapor deposition coating material . . . . . . . . .946 Titanium aluminum nitride, as physical vapor deposition coating material . . . . . . . . . . . . . . . .946 Titanium-aluminum nitride coatings . . . . . . . . . . . . . . . . . . . . . . . . .945, 947–948 Titanium aluminum vanadium nitride, as physical vapor deposition coating material . . . . . . . . .946 Titanium carbide composite, mitigating abrasive wear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .407 Titanium carbides coatings . . . . . . . . . . . . . . . . . . . . . . . . . 945, 949, 969, 970 in ingot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 Titanium carbonitride as chemical vapor deposition coating material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .949

in ingot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 as physical vapor deposition coating material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .946 and thermal embrittlement of maraging steels and intergranular fracture . . . . . . . . . . . . . . . . . . . . . .646 Titanium ion-getter pumps . . . . . . . . . . . . . . . . . . . . . .521 Titanium nitride (TiN), coatings . . . . . 945–946, 947, 948, 949, 969, 970 Titanium nitride and carbon, as physical vapor deposition coating material . . . . . . . . . . . . . . . .946 Titanium nitride/niobium nitride, as physical vapor deposition coating material . . . . . . . . . . . . . . . .946 Titanium zirconium nitride, as physical vapor deposition coating material . . . . . . . . . . . . . . . .946 T-joints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162, 163 fillet-welded . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .162 lamellar tearing . . . . . . . . . . . . . . . . . . . . . . . . . . . 180, 182 weldment porosity . . . . . . . . . . . . . . . . . . .171–172, 173 T-junction procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . .395 TLA. See Thin-layer activation. T-L orientation (T-S). See Crack-plane orientation. TMA. See Thermomechanical analysis. TME. See Tempered-martensite embrittlement. TMF. See Thermomechanical fatigue. Toe cracks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .181 in weldments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .158 TOF-SIMS. See Time-of-flight secondary ion mass spectrometry. Toluene, and stress-corrosion cracking . . . . . 826–827 Tongue. See also Deformation twinning; Mechanical twin. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 572. crack direction for creation of . . . . . . . . . . . . . . . . . .590 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1075 and deformation twinning . . . . . . . . . . . . . . . . . . . . . .590 microscale fractographic implication . . . . . . . . . . .560 in stress-corrosion cracking . . . . . . . . . . . . . . . 835, 836 Tool lifetime equation . . . . . . . . . . . . . . . . . . . . . . . . . . . .916 Tool marks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 398, 595 as defect resulting from machining . . . . . . . . . . . . . . 81 Tool steels austenitization-related failures . . . . . . .509–510, 511 fabrication-related failures . . . . . . . . . . . . . . . . 512, 513 forging defect in die . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 fretting wear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .934 furnace atmosphere and heat treatment failure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 510, 511 hydrogen flaking . . . . . . . . . . . . . . . . . . . . . . . . . . . . .88, 89 mixed-mode cracking of medical device . . . . . . 677, 678 as physical vapor deposition substrate material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .946 pressure die casting . . . . . . . . . . . . . . . . . . . . . . . 127, 129 quench cracking . . . . . . . . . . . . . . . . . . . . . .509–510, 511 size changes during hardening, carbon steels . .195 Tool steels, specific types A2, sectioned by abrasive cutting, light micrograph . . . . . . . . . . . . . . . . . . . . . .501–502, 503 A6, fatigue fracture of shaft from tube-bending machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .711 D2 microstructure, flame impingement during austenitization . . . . . . . . . . . . . . . . . . . . . . . . 510, 511 microstructure, overaustenitized draw die insert . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 510–511 mixed-mode cracking of medical device . . . 677, 678 D5, forging defect failure in forging die . . . . . . . . 85 H13 abrasive wear . . . . . . . . . . . . . . . . . . . . . . . . . . . 918, 919 epoxy-mounted metallographic specimen, soft ceramic shot filler . . . . . . . . . . . . . . . . . . . . 504, 505 erosion of nozzle for zinc die casting . . 127, 130 hardness vs. heat treatment temperature . . . . .495 ion-nitrided, white-etching iron nitride layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 503, 504 polishing with dragging out of inclusion, “comet tailing” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .506 XRD peak integral breadth vs. heat treat temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .495 L6, microstructure, under-austenitization of punch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 509, 510 M2, shrinkage gap between specimen and mount . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 503, 505

www.asminternational.org

Index / 1159 M50 as chemical vapor deposition substrate material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .949 as physical vapor deposition substrate material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .946 as substrate material for thermally sprayed coatings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .950 O1 crack-tip blunting . . . . . . . . . . . . . . . . . . . . . . . . . . . . .567 crack-tip blunting and ductile tearing . . 612, 616 hydrogen flaking of die . . . . . . . . . . . . . . . . . . .88, 89 microstructure, abusive grinding . .511–512, 513 microstructure, quench cracking of roll . . . . 509– 510, 511 quasi-cleavage fracture . . . . . . 573, 574, 610, 614 S7 microstructure, heat treatment failure of jewelrystriking die . . . . . . . . . . . . . . . . . . . . . . . . . . . 510, 511 microstructure, pitting from post-EDM procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . 512, 513 X155Cr VM012, cavitation erosion, incubation time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1004 Topographical imaging . . . . . . . . . . . . . . . . . . . . . . . . . . .519 Topographic contrast, by scanning electron microscope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .499 Topographic index (e), definition . . . . . . . . . . . . . . . .546 Topologically close-packed phase (tcp) . . . 734–735 interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .736 Torch cutting to remove specimens from failed parts . . . . . . . . .406 to section specimens . . . . . . . . . . . . . . . . . . . . . . . . . . . .501 Torque . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 469, 474 Torque link bolt fatigue failure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283–284 fatigue-life assessment, on fixed-nose landing gear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283–284 Torsion, definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1075 Torsional-fatigue analysis . . . . . . . . . . . . . . . . . . . . . . . .240 Torsional-fatigue fracture of rotor shaft . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 714–715 valve spring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .719 Torsional fatigue testing . . . . . . . . . . . . . . . . . . . . . . . . .714 Torsional sliding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1023 Torsional stress, definition . . . . . . . . . . . . . . . . . . . . . . 1075 Torsion bars, stress analysis . . . . . . . . . . . . . . . . . . . . . .469 Torsion loading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .565 for fracture surfaces . . . . . . . . . . . . 606–608, 610, 611 initiation sites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 reversed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 630, 633 Torsion testing smearing of fracture surface . . . . . . . . . . . . . . 607, 610 stress-state effect on fracture mechanism . . . . . .607 Total carbon content (TC) . . . . . . . . . . . . . . . . . . . . . . .137 Total organic carbon in groundwater, factors correlating with sulfate-reducing bacteria (SRB) numbers for buried pipeline sites . .886 Total Quality Management (TQM) . . . . . . . . 3, 4, 10 TOTM. See Trioctyl trimellitate. TPE. See Technical Plan for Evaluation chart. TQM. See Total Quality Management. Trace elements, and weldment reheat cracking . .184 Track wheel, heat-treatment-related failure . . . . . 510, 511 Traction motor suspension bearings, liquid metal induced embrittlement . . . . . . . . . . . . . . . 865, 866 Tramp elements effect on microsegregation in steel castings . . . . . . . . . . . . . . . . . . . . . . . . . 218–219 inducing intergranular fracture . . . . . . . . . . . . . . . . .646 iron in stainless steel . . . . . . . . . . . . . . . . . . . . . . . . . . . .406 nonmetallic inclusions in weldments . . . . 169, 171, 172–174, 175, 176 in overload failures . . . . . . . . . . . . . . . . . . . . . . . . . . . . .681 Transcrystalline. See Transgranular. Transcrystalline cracking. See Transgranular cracking or fracture. Transfer film . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1022 Transformation hardening . . . . . . . . . . . . . . . . . . . . . . .760 Transformation of stress . . . . . . . . . . . . . . . . . . . 482–483 Transformation shear bands . . . . . . . . . . . . . . . 982, 983 Transformer vessel model . . . . . . . . . . . . . . . . . . . . . . . .384 Transgranular, definition . . . . . . . . . . . . . . . . . . . . . . . 1075 Transgranular beachmarks . . . . . . . . . . . . . . . . . . . . . .343

© 2002 ASM International. All Rights Reserved. ASM Handbook Volume 11: Failure Analysis and Prevention (#06072G)

www.asminternational.org

1160 / Index

Transgranular cleavage . . . . . . . . . . . . . . .674–675, 676 in brittle fracture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .400 truck transmission housing of gray iron . . 675, 676 Transgranular cracking definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1075 from hydrogen in nickel-base alloys . . . . . . . . . . .873 mechanisms of . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .563 Transgranular crack propagation . . . . . . . . . . . . . . .563 Transgranular fracture . . . . . . . . . . . . . . .663, 665–666 alumina . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .666 of ceramics . . . . . . . . . . . . . . . . . . . . . . . . . . .665–666, 669 creep damage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .733 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .665, 1075 ductile fractures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .400 in high-cycle fatigue cracking . . . . . . . . . . . . . . . . . .344 with hydrogen embrittlement . . . . . . . . . . . . . 696, 813 indicative of brittle fracture . . . . . . . . . . . . . . . . . . . . .559 mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .642 of stainless steel . . . . . . . . . . . . . . . . 235–238, 500, 501 stress rupture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .734 with tempered-martensite embrittlement . . . . . . .692 Transgranular stress-corrosion cracking (T-SCC), vs. dealloying of noble metals . . . . . . . 788, 790 Transient and dynamic analysis . . . . . . . . . . . . . . . . .384 Transient creep. See also Creep. definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1075 Transient creep parameter . . . . . . . . . . . . . . . . . . . . . .309 Transition materials, to eliminate a dissimilar-metal junction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .764 Transition scarp, definition . . . . . . . . . . . . . . . . . . . . . 1075 Transition temperature as criteria for materials selection . . . . . . . . . . . . . . . . 32 for lubricants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .411 relationship with various failure modes . . . . .35, 36 Transmission electron microscope development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .560 to examine cleavage fractures or replicas of fractures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 498, 499 Transmission electron microscopy (TEM) in failure analysis . . . . . . . . . . . . . . . . . . . .337, 338, 339 as fractography technique . . . . . . . . . . . . . . . . . . . . . . .662 for microfractography . . . . . . . . . . . . . . . . . . . . . 353–354 in preliminary laboratory examination . . . . . . . . .406 property derived from polymer analysis . . . . . . . .359 Transpassive region . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .750 Transverse cracks . . . . . . . . . . . . . . . . . . . . .567, 612, 617 in weldments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .158 Transverse direction (TD) definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1075 labeling conventions for rolled sheet and plate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1069 Tray deck, crevice corrosion . . . . . . . . . . . . . . . . 775–776 Trellis contacts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .931 Tresca theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .461 Tresca yield criterion . . . . . . . . . . . . . . . . . . . . . . . 465, 473 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1075 Trial-and-error bench testing . . . . . . . . . . . . . . . . . . . . . 30 Triaxial loading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .466 Triaxial stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .466 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1075 Tribofilm wear mechanisms . . . . . . . . . . . . . . . 902, 903 Tribological aspect number (TAN) . . . . . . . . . . . . . .902 Tribology, definition . . . . . . . . . . . . . . . . . . . . . . .407, 1075 Tribometer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .927 Tribosystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 901, 902 Tributyl-tin, banned as antifoulant in marine paints` . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .894 Trichloroethylene, causing stress-corrosion cracking in titanium alloys at various temperatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .857 Trichlorofluorethane, causing stress-corrosion cracking in titanium alloys at various temperatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .857 Trioctyl trimellitate (TOTM), as plasticizer for tubing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 448, 451 Triple-point cracking/cavitation . . . . . . . . . . . . 99, 575 TRIP steel resisting adiabatic shear . . . . . . . . . . . . . .987 Truck kingpin, and wheel assembly separation . . . 45 Truck transmission housing, transgranular cleavage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 675, 676 True area fraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .549 True average dimple surface area . . . . . . . . . . . . . . .550 True average striation spacing, in fatigue fracture surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .551

True Brinelling definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .935 and false Brinelling compared . . . . . . . . . . . . 935, 936 True centrifugal casting defect-related failures . . . . . . . . . . . . . . . . . . . . . . . . . . .132 in shape-casting processes classification scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .124 True-v (chi) geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . .485 True corrosion fatigue (TCF) . . . . . . . . . . . . . . . . . . . .479 True corrosion fatigue combined with stress corrosion fatigue . . . . . . . . . . . . . . . . . . . . . . . . . .479 True strain . . . . . . . . . . . . . . . . . . . . . . . 245, 617–618, 619 True stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .245, 617–618 True striation spacing, in fatigue fracture surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 550, 551 TSN. See Thermal severity number. TSP. See Tube support plates. TTT. See Time-temperature-transformation diagrams. Tube. See also Pipe; Piping; Tubing. crevice corrosion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .776 erosion-corrosion of 70-30 cupronickel . . . . . . . .353 feedwater pressure, denickelification . . . . . 788, 789 piercing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 pitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .353 pitting corrosion in organic chemical plant condenser . . . . . . . . . . . . . . . . . . . . . . . . . . . . 772–773 from potable water supply, dezincification . . . . 786, 787 stress-relief embrittlement of Ni-Cr-Mo-V steel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .691 Tuberculation, definition . . . . . . . . . . . . . . . . . . . . . . . 1075 Tube rubbing, as damage mechanism for boiler tubing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347, 350 Tube sheets of air compressor, stress-corrosion cracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 854–855 Tube support plates (TSP) . . . . . . . . . . . . . . . . . 388–389 Tubing. See also Pipe; Piping; Tube. expansion formed, cleavage cracking . . . . . . . . . .572 stress-corrosion cracking . . . . . . . . . . . . . . . . . . 845–846 Tuftriding, for adhesive wear mitigation . . . . . . . . .408 Tungsten bond energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .650 cavitation erosion, incubation time . . . . . . . . . . . 1004 content effect on sigma-phase embrittlement . .693 as electron source for scanning electron microscopy . . . . . 516, 517, 521, 524–525, 526 impact wear coefficient values . . . . . . . . . . . . . . . . . .971 oxidation potential in endothermic gas . . . . . . . . .214 removed from alloys by selective leaching . . . . .785 Tungsten alloys, workability behavior . . . . . . . . . . . . . 98 Tungsten carbide-chromium-nickel, as thermally sprayed coating material . . . . . . . . . . . . . . . . . . .950 Tungsten carbide-cobalt, as coating . . . . . . .949–950, 951, 952, 953, 954 Tungsten carbide-10% cobalt-4% chromium, as thermally sprayed coating material . . . . . . . .950 Tungsten carbide-12% cobalt, as thermally sprayed coating material . . . . . . . . . . . . . . . . . . . . . . . . . . . .950 Tungsten carbide-15% cobalt, as thermally sprayed coating material . . . . . . . . . . . . . . . . . . . . . . . . . . . .950 Tungsten-carbide-17% cobalt, as thermally sprayed coating material . . . . . . . . . . . . . . . . . . . . . . . . . . . .950 Tungsten carbide composite, mitigating abrasive wear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .407 Tungsten metal inclusions subsurface feature as cause for rejection . . . . . . .156 in weldments . . . . . . . . . . . . . . . . . . . 169, 172–174, 186 Tunnel-boring machine, abrasive wear of disk cutters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 918, 919 Turbine blades microstructure of alloys . . . . . . . . . . . . . . . . . . . . . . . . .739 root examination to determine damage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .345 thermomechanical fatigue . . . . . . . . . . . . . . . . . . . . . . .739 Turbine casing, of low-alloy steel, brittle fracture and stress-corrosion cracking failures . . . 142– 143, 144 Turbine engine disks, x-ray diffraction used to track residual-stress levels with engine cycles . .493 Turbine vane, creep damage . . . . . . . . . . . . . . . . . . . . . .728 Turning, and fatigue strength . . . . . . . . . . . . . . . . . . . . .720 Twin. See also Annealing or growth twin; Mechanical twin (deformation twin).

definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1075–1076 Twinning. See also Deformation twinning; Mechanical twin. . . . . . . . . . . . . . . .563, 568, 569 density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .589 in metallic materials . . . . . . . . . . . 569, 570, 571–572 secondary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .591 Twist boundaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .612 and loading mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .574 Twistdrill, of high-speed steel, brittle fracture . . . . . . . . . . . . . . . . . . . . . . . . . . . 73–74 Twist hackle (ceramics, glassy materials) . . . . . 665, 666, 667, 668 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1076 Two-body wear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .965 Two-dimensional stress tensor . . . . . . . . . . . . . 465–466 Two-dimensional stress transformation equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .463 Two-step temper embrittlement. See also Temper embrittlement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .692 Type size, on warning label . . . . . . . . . . . . . . . . . . . . . . . . 75

U UDFRPs. See Unidirectional fiber reinforced polymer composites. UHMWPE. See Ultrahigh molecular weight polyethylene. Ultimate strength definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1076 relationship with various failure modes . . . . .35, 36 Ultimate tensile strength (UTS). See Ultimate strength. Ultrahigh molecular weight polyethylene (UHMWPE) cohesive wear . . . . . . . . . . . . . . . . . . . . . . . . . . 1020, 1022 isothermal transfer wear behavior . . . . . . . . . . . . 1024 as semicrystalline thermoplastic . . . . . . . .1023–1024 specific wear rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1020 wear failures of acetabular sockets for hip joints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1025 wear resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1022 Ultrasonic cleaning of corrosion-fatigue surfaces . . . . . . . . . . . . . . . . . . . .722 of corrosion surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . .752 of fractured surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . .397 Ultrasonic cleaning bath, to clean fracture surfaces for microfractography . . . . . . . . . . . . . . . . . . . . .353 Ultrasonic inspection . . . . . . . . . . . . . . . . . . . . . . . . . . . . .345 of casting defects in ductile iron . . . . . . . . . . . . . . . .142 of corrosion surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . .752 of creep cavitation damaged power plant piping and tubing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .306 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .270 description, advantages and limitations . . 395, 396 of double-face hammers . . . . . . . . . . . . . . . . . . . . . . . .986 for failure analysis and investigation . . . . 336, 395, 396 flaw size range with 90% probability of detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .272 of forgings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .94, 97 to identify unsoundness in ingot . . . . . . . . . . . . . . . . . 83 limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .270 of liquid metal induced embrittlement . . . . . . . . . .864 in oxide-scale-based life prediction of tubing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308–309 of pipe with stress-corrosion cracking . . . . . . . . . .827 in preliminary laboratory examination . . . . . . . . .406 uses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .270 of welded headers for superheated water . . . . . . .166 of weldments . . . . . . . . . . . . . . . . . . . . . . . . .159, 173, 177 for weldments in sulfur recovery unit . . . . . . . . . .841 Ultrasonic microindentation hardness tester . . 360, 361 Ultraviolet (UV) light, as degradation source for polymers . . . . . . . . . . . . . . . . . . 405, 653–654, 798 Ultraviolet/visible absorption spectroscopy . . . . 359, 404 Unbiased counting frame . . . . . . . . . . . . . . . . . . . . . . . .548 Uncertainty in a structural parameter . . . . . . . . .250 Underbead cracks . . . . . . . . . . . . . . . . . . . . .181, 815, 827

© 2002 ASM International. All Rights Reserved. ASM Handbook Volume 11: Failure Analysis and Prevention (#06072G)

subsurface feature as cause for rejection . . . . . . .156 in weldments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .158 Undercooling, in gray iron . . . . . . . . . . . . . . . . . . . . . . . .139 Undercrystallization, of polyacetal . . . . . . . . . . . . . .455 Undercut as welding defect of castings . . . . . . . . . . . . . . . . . . .152 in weldments . . 158, 169, 171, 174, 175, 176, 177, 186 Underdeposit attack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .887 Underdeposit corrosion-caustic gouging, as damage mechanism for boiler tubing . . . . .347 Underdeposit corrosion-hydrogen damage, as damage mechanism for boiler tubing . . . . .347 Underdeposit corrosion-phosphate corrosion, as damage mechanism for boiler tubing . . . . .347 Underdesign . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 671, 686 Underfill definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .174 in forgings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .91, 92 in ingots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 surface feature as cause for rejection . . . . . . . . . . .156 in weldments . . . . . . . . . . . . . . . . . . . 169, 174–175, 176 Underfill corrosion, definition . . . . . . . . . . . . . . . . . . 1076 Undersized welds, surface feature as cause for rejection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .156 Uniaxial tension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 663, 666 of ceramics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 666, 667 silicon nitride rod . . . . . . . . . . . . . . . . . . . . . . . . . 663, 666 Uniaxial tension testing . . . . . . . . . . . . . . . . . . . . . . . . . .486 for determining x-ray elastic constants . . . . . . . . .486 Uniaxial upset test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 Unidirectional fiber reinforced polymer composites (UDFRPs), adhesive wear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1038–1040 Uniform corrosion boiler feedwater tubes . . . . . . . . . . . . . . . . . . . . . . . . . .768 classification according to environmental or electrochemical attack . . . . . . . . . . . . . . . . . . . . .768 concentration effect . . . . . . . . . . . . . . . . . . . . . . . 769–770 corrosion products effect . . . . . . . . . . . . . . . . . . . . . . . .769 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1076 features observed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .356 piping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .768, 769, 770 temperature effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .770 testing methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .771 Uniform distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . .253 Uniform random number . . . . . . . . . . . . . . . . . . . . . . . .260 UNIPASS (computer software program) . . . . . . . . . .267 Unisteel testing apparatus description of rolling contact fatigue test method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .944 United Kingdom Central Electricity Generating Board (CEGB) failure analysis diagram . . . . . . . . . . . 240, 241 failure assessment diagram (R6 curve) 243 Unlubricated sliding wear mechanism, steel couple . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 902, 903 Unmelted electrodes, in ingots . . . . . . . . . . . . . . . . . . . . 90 Unreasonably dangerous, definition . . . . . . . . . . . . . . 72 Unsaturated polyesters as corrosion-resistant coatings . . . . . . . . . . . . . . . . . .758 crack propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .654 Unscheduled policies . . . . . . . . . . . . . . . . . . . . . . . . . .64, 66 Untempered martensite . . . . . . . . . . . . . . . . . . . . . . . . . .720 metallographic examination . . . . . . . . . . . . . . . . . . . .364 residual stress in all phases present . . . . . . . . . . . . .495 and spalled hammers . . . . . . . . . . . 982, 983, 984, 985 and sulfide stress cracking . . . . . . . . . . . . . . . . . . . . . .813 in tool steel . . . . . . . . . . 502, 503, 982, 983, 984, 985 on worn surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .413 Upper limit, design, and distortion . . . . . . .1047–1048 Upset butt welding, failure origins related to . . . .188 Upset compression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 Upset forgings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 Upset test, for determining if chemical segregation is excessive in ingot . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 Upsetter, twistdrill failure . . . . . . . . . . . . . . . . . . . . . . 73–74 Upsetting internal crack characteristics and crack growth mechanism . . .100 classification scheme by Greek letters Upshock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .667 Upside crack characteristics and crack growth mechanism . . .100

classification scheme by Greek letters . . . . . . . . . . . 99 Upstream oil and gas, prevention approach for corrosion in industrial facilities . . . . . . . . . . .893 Uranium, hydrogen damage . . . . . . . . . . . . . . . . . . . . . .818 Uranium alloys high strength, causes of stress-corrosion cracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .831 hydrogen damage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .818 Urethanes, as corrosion-resistant coatings . . . . . . .758 Usefulness, loss of, causes . . . . . . . . . . . . . . . . . . . . . . . .906 User, definition in reliability-centered maintenance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 User expectation of products and systems, . . . . .3–4 U-tubes, corrosion failure . . . . . . . . . . . . . . . . . . . 388–389 UV. See Ultraviolet light.

V Vacuum, causing fretting wear . . . . . . . . . . . . . . . . . . . .930 Vacuum degassing, of ingots . . . . . . . . . . . . . . . . . . . . . . 87 Vacuum deposition, to coat specimens with conducting layer for scanning electron microscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .362 Vacuum evaporation, to apply coatings to polymers for scanning electron microscopy . . . . . . . . .638 Vacuum-remelted alloys, inclusions in ingot . . . . . 88 Validation, of model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .377 Valve in soda-dispensing system, intergranular corrosion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 781–782 Valve in vending machine, corrosion failure . . . . . 38 Valve seats, intergranular brittle fracture of resulfurized steel . . . . . . . . . . . . . . . . . . . . . . . . . . .677 Valve springs fatigue fracture in steel . . . . . . . . . . . . . . . . . . . . . .87, 88 torsional-fatigue fracture . . . . . . . . . . . . . . . . . . . . . . . .719 Valve stems distortion of . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17, 18 heat treating failure . . . . . . . . . . . . . . . . . .200–201, 204 stress-corrosion cracking . . . . . . . . . . . . . . . . . . 847–848 VAM. See Vinyl acetate monomer. Vanadate, corroding technical ceramics . . . . 804–805 Vanadium content effect on sigma-phase embrittlement . .693 content effect on stress-relief embrittlement . . .691 forming dispersoids to slow down crack growth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .646 and hot corrosion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .872 Vanadium pentoxide, reaction to form oil ash corrosion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .874 van der Waals bond, bond energy in various materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .650 Vapor-deposited coatings, for corrosion resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .759 Variable amplitude cycling . . . . . . . . . . . . . . . . . . . . . .491 Variable-amplitude loading . . . . . . . . . . . . . . . . 277–278 Variable-pressure scanning electron microscope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .561 Variance, definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .252 Variation method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .544 VDI Guideline 2221 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 Veining, as casting defect . . . . . . . . . . . . . . . . . . . . . . . . .105 Velocity, effect on cavitation erosion . . . . . . . . . . . 1010 Velocity-affected corrosion as damage mechanism on failure wheel . . . . . . . .349 piping of fire-sprinkler system on ferry . .789–790, 791 Velocity bifurcation. See Mist hackle. Velocity exponent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .995 Velocity forking. See Mist hackle. Velocity hackle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 664, 665 and uniaxial tension . . . . . . . . . . . . . . . . . . . . . . . . . . . . .666 Vending machine valve, intergranular corrosion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 781–782 Vent, broken casting at, as casting defect . . . . . . . . .110 Vertical lift conveyors, for mail sorting facilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Vertical roughness parameter (Rv) . . . . . . . . . . . . . .541 Vertical section fracture profile . . . . . 541, 542, 544, 545 Vertical sectioning plane . . . . . . . . . . . . . . . . . . . . . . . . .541

www.asminternational.org

Index / 1161 Vertical section profilometry . . . . . . . . . . . . . . . . . . . .547 V-groove joints . . . . . . . . . . . . . . . . . . . . . . . . .166–167, 168 Viable organism cell counts, method used for inspection, growth and activity assays . . . .893 Vibration in fretting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .927 normal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .927 tangential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .927 Vibration and dynamic response . . . . . . . . . . 384–385 Vibration fatigue as boiler tube damage mechanism on failure wheel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .350 as damage mechanism for boiler tubing . . . . . . . .347 Vibration modal analysis . . . . . . . . . . . . . . . . . . . . . . . .384 Vibrio natriegens . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .885 Vicat softening temperature . . . . . . . . . . . . . . . . . . . . .443 Vickers hardness number (HV), definition . . . . 1076 Vickers hardness test . . . . . . . . . . . . . . . . . . . . . . . 360–361 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1076 Vickers indentation origin, in glass plate . . . . . . . .667 Vickers indenter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 360, 361 Vickers microindentation hardness testing . . . . 360, 361, 1076 Videocamera . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .427 Videodocumentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .419 high speed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .419 Videography . . . . . . . . . . . . . . . . . . . . . . . . . . .425–426, 427 Vinyl acetate monomer (VAM), pitting corrosion of stainless steel tubes . . . . . . . . . . . . . . . . . . 772–773 Vinyl paints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .758 Vinyls, as corrosion-resistant coatings . . . . . . . . . . . .758 Vinyl-solution coatings . . . . . . . . . . . . . . . . . . . . . . . . . . .758 Viscoplastic deformation . . . . . . . . . . . . . . . . . . . 568–569 Viscosity of polycarbonate/PET, appliance housings . . . . .450 of polymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .445 of slags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .801 Viscous flow polymer, modular versus temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .799 Visual evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .316 Visual examination . . . . . . . . . . . . . . . . . . . .333, 335–337 of aluminum pressurized fuselage . . . . . . . . . . . . . .286 to examine wear scars . . . . . . . . . . . . . . . . . . . . . . . . . .902 of failed parts before cleaning . . . . . . . . . . . . . . . . . .395 in failure analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .418 of failure modes, instantaneous and progressive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .345 fracture mode identification . . . . . . . . . . . . . . . . . . . . .672 of fretting damage . . . . . . . . . . . . . . . . . . . . . . . . 936–937 of metal induced embrittlement . . . . . . . . . . . . . . . . .862 preliminary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .406 of weldment microfissures . . . . . . . . . . . . . . . . . . . . . .180 of weldment undercuts . . . . . . . . . . . . . . . . . . . . . . . . . .186 Void coalescence, microscale models . . . . . . . 623–624 Void formation models . . . . . . . . . . . . . . . . . . . . . . . . . . .592 Void formation process . . . . . . . . . . . . . . . . . . . . . . . . . . .575 Void nucleation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 571–572 Void nucleation models . . . . . . . . . . . . . . . . . . . . . 592, 623 Voids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 in Al-Li metal-matrix composite . . . . . . . . . 548, 549 from creep damage . . . . . . . . . . . . . . . . . . . . . . . . 365, 366 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1076 growth and coalescence mechanisms . . . . . . . . . . .593 methance formed in carbon steel . . . . . . . . . . . . . . .366 nucelation and growth generating fracture segment in aluminum alloy . . . . . . . . . . . . . . . . . . . 553, 554 in polymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .656 reduction by high pressure application . . . . . . . . .124 in squeeze casting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .129 Void sheet formation . . . . . . . . . . . . . . . . . . . . . . . 593, 594 Void sheet fracture . . . . . . . . . . . . . . . . . . . .593, 623–624 Void volume fraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . .624 Voigt deconvolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .495 Voigt function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .487 Volatility, of gases and solids of acids and bases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 801–802 Volatility diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .801 Volume changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .466 as quenching result in steel . . . . . . . . . . . . . . . . . . . . .193 during reheating and quenching metallurgical sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196, 200 Volumetric imperfections, of weldments . . 157–158 Volumetric modulus of elasticity. See Bulk modulus of elasticity.

© 2002 ASM International. All Rights Reserved. ASM Handbook Volume 11: Failure Analysis and Prevention (#06072G)

www.asminternational.org

1162 / Index

Volute springs, small, distortion failure of Inconel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1054 von Karman effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .831 von Mises effective stress . . . . . . . . . . . . . . . . . . . . . . . .482 von Mises-Hencky theory . . . . . . . . . . . . . . . . . . . . . . . .482 von Mises stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .465 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1076 von Mises yield criterion. See also Effective stress. . . . . . . . . . . . . . . . . . . . . . . . . . . .461, 473, 623 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1076 and rolling contact fatigue . . . . . . . . . . . . . . . . . . . . . .944 Vulcanized rubbers, chemical changes . . . . . . . . . .650

W Wake hackle (ceramic, glassy materials) . . . . . . 665, 666 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1076 Wake hackle lines . . . . . . . . . . . . . . . . . . . . . . . . . . 663–664 Wake lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .522 Walker relation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 479, 584 Wallner lines . . . . . 369, 370, 662, 664–665, 666, 668 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1076 in glass rod fracture mirror . . . . . . . . . . . . . . . . . . . . .664 not caused by fatigue . . . . . . . . . . . . . . . . . . . . . 634, 635 of polymers . . . . . . . . . . . . . . . . . . . . . . . . . .457, 657, 658 Warm forming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .101 Warm working . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .97, 99 metallurgical defects, in cast or wrought grain structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 Warnings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 in product usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Warpage (warping), and distortion . . . . . 469, 1052– 1053 in permanent-mold castings . . . . . . . . . . . . . . . . . . . . .125 Warped casting, as casting defect . . . . . . . . . . . . . . . .111 Warping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .469 Warranties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 Warren-Averbach method . . . . . . . . . . . . . . . . . . . . . . .495 Washes, from mold-wall deficiencies . . . . . . . . . . . . .119 Washout, in pressure die castings . . . . . . . . . . 127–130 Wash scab, as casting defect . . . . . . . . . . . . . . . . . . . . . .109 Wastewater tunnel structure, corrosion by hydrogen sulfide gas . . . . . . . . . . . . . . . . . 754, 755 Wastewater vaporizer weldments, intergranular corrosion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 782–783 Watanabe number (J) . . . . . . . . . . . . . . . . . . . . . . . . . . . .692 Water (H2O) boiling, stress-corrosion cracking . . . .844, 849–850 bond energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .650 circulated, heat transfer rate of quenching medium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .210 distilled, stress-corrosion cracking . . . . . . . . . . . . . .859 environment causing stress-corrosion cracking of nickel and nickel-base alloys . . . . . . . . . . . . . .848 Water-bromine ions, environment causing stresscorrosion cracking of nickel and nickel-base alloys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .848 Water-chloride ion, environment causing stresscorrosion cracking of nickel and nickel-base alloys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .848 Water-chloride ions-carbon dioxide-hydrogen sulfide-sulfur, environment causing stresscorrosion cracking of nickel and nickel-base alloys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .848 Waterfalling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118–119 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .118 Water filtration unit, environmental stress cracking of nylon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 456, 457 Water hammer effect . . . . . . . . . . . . . . . . . . . . . . . . . . . 1014 on polycarbonate plumbing fixtures . . . . . . . . . . . .659 Water-hydrofluoric acid, environment causing stress-corrosion cracking of nickel and nickelbase alloys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .848 Water-hydroxide ions, environment causing stresscorrosion cracking of nickel and nickel-base alloys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .848 Water-iodine ions, environment causing stresscorrosion cracking of nickel and nickel-base alloys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .848

Waterline pipe, copper, erosive wear . . . . . . . . . . . .999 Water pipe joint, galvanic corrosion . . . . . . . . . . . . .356 Water plasticization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1023 Water pumps, cavitation erosion of cast iron suction bell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .999 Water removal, as corrosion prevention method in industrial facilities . . . . . . . . . . . . . . . . . . . . . . . . .893 Waterside corrosion fatigue, as boiler tube damage mechanism on failure wheel . . . . . . . . . . . . . . .350 Water-soluble coolant, stress-corrosion cracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .848 Water vapor, stress-corrosion cracking . . .833, 847– 848, 853, 854 Waterwall fireside corrosion . . . . . . . . . . . . . . . . . . . . .874 Waterwall tubing, damage mechanisms . . . . . . . . .347 Wavelength-dispersive spectrometers (WDS) . . . . . . . . . . . . . . . 357, 358, 435–436, 520 Wavelength-dispersive spectroscopy (WDS) . . . 322, 404, 435–436, 527 of aluminum alloy castings . . . . . . . . . . . . . . . . . . . . .152 analysis depth and area . . . . . . . . . . . . . . . . . . . . . . . . .527 detection limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .527 ease of use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .527 in failure analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .338 information evaluated . . . . . . . . . . . . . . . . . . . . . . . . . . .527 Wavelength dispersive x-ray analysis, property derived from polymer analysis . . . . . . . . . . . .359 Wavenumbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .438 Waves of detachment . . . . . . . . . . . . . . . . . . . . 1021, 1022 Wavy slip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 580, 581 WDS. See Wavelength dispersive spectrometer; Wavelength dispersive spectroscopy. Wear activities required for resolution of problems . .901 behavior stability shown in plot . . . . . . . . . . . . . . . .904 characteristics of failure mode . . . . . . . . . . . . . . . . . .345 characterization of . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .902 of chopper knife . . . . . . . . . . . . . . . . . . . . . . . . . . . 512, 513 classification of . . . . . . . . . . . . . . . . . . . . . .903, 904, 907 controlled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18–19 criterion for acceptable . . . . . . . . . . . . . . . . . . . . . . . . .902 damage features . . . . . . . . . . . . . . . . . . . . . . . . . . . 356–357 as damage mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .347 data obtaining and evaluation . . . . . . . . . . . . . 903–904 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . 906, 907, 1076 as environment contributing to damage mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . 347–348 examination methods . . . . . . . . . . . . . . . . . . . . . . . . . . .345 manifestation of . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .901 material properties related to . . . . . . . . . . . . . . . . . . . . 36 mechanism types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .902 on medart roll . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 512, 513 quantification of amount . . . . . . . . . . . . . . . . . . . . . . . .902 root cause resulting in . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 types of . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 407–410 Wear chips . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .407 Wear coefficients, empirical . . . . . . . . . . . . . . . . . . . . .903 Wear debris, from impact wear . . . . . . .968, 969, 970 Wear design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .904 Wear equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .911 for short-fiber reinforced polymers . . . . .1031–1032 Wear failures . . . . . . . . . . . . . . 18–19, 20, 407, 901–905 analysis of . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411–413 avoidance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .904 chemical analysis of screenings or wear debris . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .412 chemical analysis techniques employed . . . . . . . .413 electron diffraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .413 evaluation of verification of solutions . . . . . . . . . .904 in failure analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .337 geological studies of soil or abrasive minerals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .413 hardness testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .413 metallographic examination . . . . . . . . . . . . . . . . . . . .413 microscopic examination of damage . . . . . . . . . . .412 motion direction of relative . . . . . . . . . . . . . . . 412–413 root cause determination . . . . . . . . . . . . . . . . . . . . . . . .904 screening of abrasives or wear debris . . . . . . . . . .412 service conditions, detailed description of . . . . . . . . . . . . . . . 411–412 surface configuration changes . . . . . . . . . . . . . . . . . .412 surface damage information . . . . . . . . . . . . . . . . . . . .412 weight-loss estimates . . . . . . . . . . . . . . . . . . . . . . . . . . .412

x-ray diffraction of . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .413 “Wearing in” process . . . . . . . . . . . . . . . . . . . . . . . . . . . .412 Wear maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1023 for polymethyl methacrylate . . . . . . . . . . . . . . . . . . 1023 Wearout age . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65, 69 Wear oxidation. See Fretting. Wear particles produced by cavitation as cavitation mechanism . . . . . . . . . . . . . . . . . . . . . . 1005 Wear rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1022 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1019, 1076 Wear resistance (Wr) . . . . . . . . . . . . . . . . . . . 32–33, 1035 as criteria for materials selection . . . . . . . . . . . . . . . . 32 matrix hardness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .413 microstructure effect . . . . . . . . . . . . . . . . . . . . . . . . . . . .413 Wear scars depth vs. compressive and tensile residual stresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .928 inspection and measurement of . . . . . . . . . . . . . . . . .902 Wear testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .404 Wear volume . . . . . . . . . . . . . . . . . . . . . . . . . 971, 973, 1022 of polymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1022 of semicrystalline thermoplastics . . . . . . . . . . . . . 1024 Weathering steels uniform corrosion . . . . . . . . . . . . .767 Wedel-Neubauer classification of material condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .306 Wedge cracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .575 Wedge test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 Wehnelt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .517 Weibull analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .945 Weibull distribution . . . . . . . . . . . . . . . . . . .253, 254, 266 Weight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Weld contours and failure origins . . . . . . . . . . . . . . 186, 187, 188, 190 poor, in weldments . . . . . . . . . . . . . . . . . . . . . . . . 186, 187 Weld cracks, in weldments . . . . . . . . . . . . . . . . . . . . . . .158 Weld-face contours, of weldments . . . . . . . . . . . . . . .186 Weld filler metal, liquid metal induced embrittlement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .863 Welding. See also Weldments. casting defects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152–154 defects resulting from . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 distortion due to residual stresses . . . . . . . . . . . . . 1053 and hydrogen damage . . . . . . . . . . . . . . . . . . . . . . . . . . .818 hydrogen embrittlement control . . . . . . . . . . . . . . . .696 intergranular corrosion in stainless steels . . . . . .780 as life-limiting factor . . . . . . . . . . . . . . . . . . . . . . . . . . . .232 manufacturing/installation anomalies . . . . . . . . . . . . 12 “rework” of castings . . . . . . . . . . . . . . . . . . . . . . 152–154 role in embrittlement and overload failures . . 698– 699 and stress-corrosion cracking . .827–828, 832, 839, 847 stress-relief embrittlement . . . . . . . . . . . . . . . . . . . . . .691 temper embrittlement susceptibility . . . . . . . . . . . .692 Welding characteristics, as criteria for materials selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Welding imperfections, as damage mechanism for boiler tubing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .347 Weldments aqueduct joints failures . . . . . . . . . . . . . . . . . . . . . . . . .169 brittle fracture . . . . . . . 153–154, 156, 161, 164–165, 178, 180, 232–233 casting fracture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 608, 613 cold cracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .699 cracking, prevention methods . . . . . . . . . . . . . . . . . . .159 crevice corrosion in V-sections of heat exchanger tubes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .777 of direct-current motor armature, brittle fracture of . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181, 182 discontinuities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157–159 distortion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156, 160 drill pipe connection, fatigue failure . . . . . . 354, 355 elbow assembly failure of stainless steel . . . . . 163– 164 failure origins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169–191 failures, in-service . . . . . . . . . . . . . . . . . . .157, 159–161 failures, root-cause defects . . . . . . . . . . . . . . . . . . . . . .157 failure to meet strength, ductility, or toughness requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .156 fatigue failure of tubular posts in carrier vehicle . . . . . . . . . . . . . . . . . . . . . . . . . .173–174, 176 fatigue fractures . . . . . . 163167, 171–172, 173, 176, 177

© 2002 ASM International. All Rights Reserved. ASM Handbook Volume 11: Failure Analysis and Prevention (#06072G)

fitness-for-service codes . . . . . . . . . . . . . . . . . . 160–161 fitness-for-service concepts . . . . . . . . . . . . . . . . . . . . .157 high-temperature water stress-corrosion cracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .844 hydrogen damage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .815 incomplete fusion . . . . . . . . . . . . . . . . . . . . . . . . . 167–168 inlet header failure in stainless steel . . . . . . 166–167 intergranular corrosion of E-Brite . . . . . . . . 782–783 joint design effect on fatigue . . . . . . . . . . . . . 163–167 liquid metal induced embrittlement . . . . . . . 864, 866 metallographic examination, sectioning . . 159–160 microbially induced cracking of stainless steels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .883 nondestructive testing . . . . . . . . . . . . . . . . . . . . . . . . . . .159 overload failures . . . . . . . . . . . . . . . . . . . . . . . . . . 685–686 preheater failure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .168 railway tank car failure . . . . . . . . . . . . . . . . . . . . . . . . .161 root-weld penetration causing failure . . . . . . . . . . .168 service conditions . . . . . . . . . . . . . . . . . . . . . . . . . 159–161 shaft of steel for amusement ride . . . .175–176, 177 SiC grinding abrasive particles embedded . . . . .506 of stainless steel, microbially induced cracking of . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 887–889 of steel, cracking . . . . . . . . . . . . . . . . . . . . . . . . . . 158–159 stress concentrations . . . . . . . . . . . . . . . . . . . . . . 163, 164 stress-relief embrittlement . . . . . . . . . . . . . . . . . . . . . .691 subsurface fatigue origin at discontinuity . . . . . 629, 633 subsurface features as rejection cause . . . . . . . . . .156 sulfide stress cracking . . . . . . . . . . . . . . . . . . . . . . . . . . .813 surface features as rejection cause . . . . . . . . . . . . . .156 types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162–163 Well casings, prevention approach for corrosion in industrial facilities . . . . . . . . . . . . . . . . . . . . . . . . .893 Weld-pool fluidity, weldment porosity . . . . . . . . . . .171 Weld repairs of castings with discontinuities . . . . . . . . . . . . . . . . .103 of cast steel crosshead . . . . . . . . . . . . . . . . . . . . 153, 154 decohesive rupture of worm gear . . . . . . . . . . . . . . .676 of liquid-impact damage . . . . . . . . . . . . . . . .1016–1017 vs. rework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .152 as service life anomaly . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Weld ripples, of weldments . . . . . . . . . . . . . . . . . . . . . . .158 Weld splatter, and crevice corrosion . . . . . . . . . . . . .777 Weld toe intrusions, in weldments . . . . . . . . . . . . . . .157 Weld toe stress-concentration factor . . . . . . 163–164 Wet analytical chemistry . . . . . . . . . . . . . . . . . . . . . . . . .359 Wet chemical analysis . . . . . . . . . . . . . . . . .404, 430–431 of corrosion products . . . . . . . . . . . . . . . . . . . . . . . . . . .406 specimen size requirements . . . . . . . . . . . . . . . . . . . . .431 of worn surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .413 Wet scrubbing systems . . . . . . . . . . . . . . . . . . . . . 340–341 Wheel of failure . . . . . . . . . . . . . . . . . . . . . . . .347, 348, 349 Whisker. See Striation. White cast iron abrasive wear resistance . . . . . . . . . . . . . . . . . . . . . . . .919 conversion to malleable iron . . . . . . . . . . . . . . . . . . . .138 erosive wear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .997 gas porosity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .115 gouging abrasion resistance . . . . . . . . . . . . . . . . . . . . .908 mitigating abrasive wear . . . . . . . . . . . . . . . . . . . . . . . .407 White layer . . . . . . . . . . . . . . . . . . . . . . . 413, 965–966, 967 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .408 Why tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .332 Wicking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .834 Widmansta¨tten ␣-b structure . . . . . . . . . . . . . . . . . . . .578 Wind tunnel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .404 Wire electrical discharge machining, compatibility with various materials . . . . . . . . . . . . . . . . . . . . . . 33 Wires chloride-ion stress-corrosion cracking . . . . 340–341 corrosion fatigue . . . . . . . . . . . . . . . . . . . . . . . . . . 340–341 ductile overload fracture of stainless steel . . . . 674, 675 in electrostatic precipitation at paper plant, pitting corrosion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 774–775 Witness interviews . . . . . . . . . . . . . . . . . . . . . . . . . . 372–373 Wo¨hler diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .491 Wolf’s ear helical fracture . . . . . . . . . . . . . . . . . . . . . . .608 due to torsion loading . . . . . . . . . . . . . . . .561, 562, 608 Wood, biological attack or rotting . . . . . . . . . . . . . . . .405 Wood splitting wedges, striking/struck tool specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .987

“Woody” fracture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .682 “Woody” structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .835 Workability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .96, 97–99 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 depending on grain size and grain structure . . . . . . . . . . . . . . . . . . . . . . . . . . 98–99 exhibited by different alloy systems . . . . . . . . . . . . . 98 flow localization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 Work hardening. See Strain hardening. Work-hardening manganese steel, abrasive wear resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .919 Working distance, in scanning electron microscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .517 Working fluids, stress-corrosion cracking . . . . . . . .833 Work of fracture of brittle solids . . . . . . . . . . . . . . .545 World War II Liberty ships . . . . . . . . . 228, 230, 234, 685–686 Worm gear, decohesive rupture of manganese bronze . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .676 Wormholes, in weldments . . . . . . . . . . . . . . . . . . . . . . . .171 Wrinkling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .101 of sheet metal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100–101 Written material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 Wrought products flaws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81–82 manufacturing imperfections causing fractures . . . . . . . . . . . . . . . . . . . . . . . . .614–615, 617 Wustite, formation of . . . . . . . . . . . . . . . . . . . . . . . . . . . . .309

X XEC. See X-ray elastic constant. XPS. See X-ray photoelectron spectroscopy. X-ray diffraction (XRD) . . . . . . . . . . . . . . . . . . . 404, 522 to analyze microbially induced corrosion deposits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .892 to assess heat treatment effects on residual stress in steel coil springs . . . . . . . . . . . . . . . . . . 494–495 to assess heat treatment temperature effect on residual stress of iron alloys . . . . . . . . . . . . . . .495 of corrosion products . . . . . . . . . . . . . . . . . . . . . . . . . . .406 of crystalline material in microbially induced corrosion products . . . . . . . . . . . . . . . . . . . . . . . . .886 damaged components, residual stress measurement analysis specified . . . . . . . . . . . . . . . . . . . . . . . . . .484 data analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .485 of delamination failure in ceramics . . . . . . . . . . . . .962 description, advantage and limitations . . . . . . . . .396 to determine retained austenite amount . . . . . . . .364 done before eddy current or ultrasonic inspection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .490 for failure analysis and investigation . . . . . 337, 396 importance of method . . . . . . . . . . . . . . . . . . . . . . . . . . .484 instrument calibration and alignment . . . . . 486–488 for measuring and studying residual stresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1053 peak position determination . . . . . . . . . . . . . . . . . . . .487 property derived from polymer analysis . . . . . . . .359 residual stress distribution in steel after tempering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195, 199 residual stress measurement in failure analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 484–496 specimen size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .484 for stress-corrosion cracking . . . . . . . . . . . . . . . . . . . .837 stress gradient characterization . . . . . . . . . . . . . . . . .494 to validate brittle fracture of steel cargo tiedown sockets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .496 of weldment inclusions . . . . . . . . . . . . . . . . . . . . . . . . .172 of worn surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .413 x-ray elastic constant determination . . . . . . . . . . . .486 X-ray diffraction residual stress analysis accessing measurement locations . . . . . . . . . . . . . . .489 of carbon steel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .495 collection parameters . . . . . . . . . . . . . . . . . . . . . . . . . . .487 to compare grinding and shot peening effects on surface and subsurface residual stress state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .491 corrosion effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . 486–487 in locations of stress concentration . . . . . . . . . . . . .496 measurement directions and depths selection . .489

www.asminternational.org

Index / 1163 measurement location selection . . . . . . . . . . . 488–489 reference axes and direction of measurement shown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .485 repeatability and reproducibility . . . . . . . . . . . . . . . .488 residual stress vs. number of cycles from turbine engine disks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .493 sample population selection of . . . . . . . . . . . . . . . . .488 specimen preparation . . . . . . . . . . . . . . . . . . . . . 489–490 of steel automotive springs . . . . . . . . . . . . . . . . . . . . .492 stress relaxation correction due to sectioning . .489 surface curvature and beam size effects . . 487–488 of Waspaloy after rotating bend fatigue, shot peening effect . . . . . . . . . . . . . . . . . . . . . . . . 492–493 X-ray elastic constant (XEC) . . . . . . . . . . . . . . . . . . . .486 X-ray fluorescence spectrography . . . . . . . . . . . . . . .404 of corrosion products . . . . . . . . . . . . . . . . . . . . . . . . . . .406 X-ray fluorescence spectroscopy for stress-corrosion cracking . . . . . . . . . . . . . . . . . . . .837 of worn surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .413 X-ray imaging spectroscopy . . . . . . . . . . . . . . . . . . . . .426 X-ray photoelectron spectroscopy (XPS) . . . . . . 527, 529, 530–532 adapted to running, conducting, and insulating materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .529 analysis depth and area . . . . . . . . . . . . . . . . . . . . . . . . .527 angle-dependent analysis . . . . . . . . . . . . . . . . . . . . . . .532 application areas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .531 atomic concentration . . . . . . . . . . . . . . . . .529, 532, 534 compositional depth profile of stainless steel . . . . . . . . . . . . . . . . . . . . . . . . . . . . .530, 531, 534 detection limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . 527, 530 ease of use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .527 features of technique . . . . . . . . . . . . . . . . . . . . . . . . . . . .527 high-resolution carbon spectrum of stainless steel surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 533, 534 high-resolution iron spectrum from well-passivated stainless steel surface . . . . . . . . . . . . . . . . . . . . . .534 high-resolution iron spectrum of stainless steel surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 533, 534 high-resolution spectrum of polyethylene terephthalate . . . . . . . . . . . . . . . . . . . .529, 531, 534 information evaluated . . . . . . . . . . . . . . . . . . . . . . . . . . .527 montage display of Cr in first nine sputter cycles of depth profile . . . . . . . . . . . . . . . . . . . . . . 534, 535 montage display of iron in the first eight sputter cycles of depth profile . . . . . . . . . . . . . . . 534–535 for polymeric analysis . . . . . . . . . . . . . . . . . . . . . . . . . .446 properties measured . . . . . . . . . . . . . . . . . . . . . . . . . . . . .446 property derived from polymer analysis . . . . . . . .359 of reinforced polymers . . . . . . . . . . . . . . . . . . . . . . . . 1036 surface contaminants . . . . . . . . . . . . . . . . . . . . . . . . . . . .528 survey spectrum of stainless steel surface . . . . . 529, 531, 534 use in failure analysis . . . . . . . . . . . . . . . . . . . . . . . . . . .446 X-ray powder diffraction (XRPD) . . . . . . . . 357, 358 X-ray radiography, of liquid metal induced embrittlement of mercury-contaminated aluminum welds . . . . . . . . . . . . . . . . . . . . . . . . . . .864 X-ray techniques, in failure analysis . . . . . . . 334, 338 XRD. See X-ray diffraction analysis. XRPD. See X-ray powder diffraction.

Y Yankee dryer, corrosion failure . . . . . . . . . . . . . 387–388 Yellow brass, galvanic series in seawater . . . . . . . .762 Yield. See also Creep; Flow; Yield strength. definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1076 Yielding as prelude to structural collapse . . . . . . . 1047 Yield point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .467 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1076 elongation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .101 phenomenon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .690 Yield pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .926 Yield strength (offset yield strength) of cast carbon-molybdenum steels . . . . . . . . . . . . . .145 as criteria for materials selection . . . . . . . . . . . . . . . . 32 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1076 of quenched and tempered low-alloy steel . . . . .980 relationship with failure modes . . . . . . . . . . . . . .35, 36

© 2002 ASM International. All Rights Reserved. ASM Handbook Volume 11: Failure Analysis and Prevention (#06072G)

www.asminternational.org

1164 / Index

Yield stress (Lr) . . . . . . . . . . . . . . . . . . 244, 245, 283, 467 definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1076 of quenched and tempered low-alloy steel . . . . .980 and residual stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .481 Yield zone in castings, notched specimens . . . . . . . . . . . . . . . . .610 K-field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .612 as a result of overload . . . . . . . . . . . . . . . . . . . . . . . . . .283 Young’s modulus. See Modulus of elasticity. Yttrium, addition improving oxidation resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .868

Z Zero impact wear model . . . . . . . . . . . . . . . . . . . . . . . . .971 Zero principal stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . .466 Zero-resistance milliammeter . . . . . . . . . . . . . . . . . . .765 Zero-wear limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .971 Zig-zag fracture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .623 Zinc, causing liquid metal induced embrittlement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .866 cavitation erosion, incubation time . . . . . . . . . . . 1004 cleavage plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .574 compatibility with various manufacturing processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 content effect on copper alloy stress-corrosion cracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .854 effect on time-to-fracture of copper by stresscorrosion cracking in ammoniacal atmosphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .853 as embrittling metal . . . . . . . . . . . . . . . . . . . . . . . . . . . . .862 liquid, environment causing stress-corrosion cracking of nickel and nickel-base alloys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .848 galvanic corrosion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .767 galvanic series in seawater . . . . . . . . . . . . . . . . . . . . . .762 interaction with copper sulfate solution . . . . . . . .750 intergranular corrosion . . . . . . . . . . . . . . . . . . . . . . . . . .785 as liquid embrittler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .646 as molten metal corrodent . . . . . . . . . . . . . . . . . . . . . .873

removed from alloys by selective leaching . . . . .785 slip plane as cleavage plane . . . . . . . . . . . . . . 587, 589 standard emf series value . . . . . . . . . . . . . . . . . . . . . . .763 as surface contaminant on powder-free gloves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .528 x-ray elemental composition map made with electron microprobe . . . . . . . . . . . . . . . . . . . . . . .865 Zinc alloy anodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .756 intergranular corrosion . . . . . . . . . . . . . . . . . . . . . . . . . .785 Zinc alloys compatibility with various manufacturing processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 die casting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .125 permanent-mold casting material . . . . . . . . . . . . . . .124 as sacrificial anodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . .756 snowthrower adapters brittle overload failure . .683 uniform corrosion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .767 Zinc alloys, specific types AC40A, composition . . . . . . . . . . . . . . . . . . . . . . . . . . .125 AG41A, composition . . . . . . . . . . . . . . . . . . . . . . . . . . .125 Alloy 7, composition . . . . . . . . . . . . . . . . . . . . . . . . . . . .125 ILZR0 16, composition . . . . . . . . . . . . . . . . . . . . . . . . .125 ZA-27 (Z35840), brittle overload failure of snowthrower adapters . . . . . . . . . . . . . . . . . . . . .683 ZN-0.2Al-0.035Pb, intergranular corrosion . . . .785 Zinc chloride, causing chloridation of carbon steel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .873 Zinc chloride/sodium chloride, causing chloridation of carbon steel . . . . . . . . . . . . . . .873 Zinc coatings, and cold forming of steel sheet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .102 Zinc die casting dies, erosion failures . . . . . . 127, 130 Zinc di-n-octyldithiophosphate, as lubricant to prevent fretting damage . . . . . . . . . . . . . . . . . . .934 Zinc embrittlement, in steel . . . . . . . . . . . . . . . . . . . . . .697 Zinc phosphate coatings . . . . . . . . . . . . . . . . . . . . . . . . .822 for corrosion resistance . . . . . . . . . . . . . . . . . . . . . . . . .759 Zinc plating for cavitation erosion resistance . . . . . . . 1006, 1008 erosion rate of metallic coatings in 3% NaCl aqueous solution . . . . . . . . . . . . . . . . . . . . . . . . . 1008 Zinc-rich coatings, as corrosion-resistant coatings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .758 Zinc sulfate solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .750

Zinc sulfide powder, gold-coated, imaged by scanning electron microscopy . . . . . . . . . . . . .525 Zircalloy tubing, yield strength variation . . . . . . . .681 Zirconia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .800 addition improving oxidation resistance . . . . . . . .868 density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .960 elastic modulus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .960 failure mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .960 formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .877 frictional contact effect on sliding mode deformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .959 hardness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .960 melting point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .877 refractoriness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .805 stabilized, corrosion resistance to fused salts, alkalis, and low-melting oxides . . . . . . . . . . .805 stabilized, corrosion resistance to various hot gases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .805 thermal stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .801 Zirconia, toughness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .960 Zirconium addition increasing solubility of manganese sulfides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .117 for deoxidizing aluminum-killed steels . . . . . . . . .646 forming dispersoids to slow down crack growth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .646 galvanic corrosion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .767 hydrogen damage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .818 oxide film for fretting corrosion resistance . . . . .928 stress-corrosion cracking . . . . . . . . . . . . . . . . . . . . . . . .834 Zirconium alloys causes of stress-corrosion cracking . . . . . . . . . . . . .831 environment systems exhibiting stress-corrosion cracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .832 hydrogen damage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .818 erosion rate of ceramics with different grain size in ion-exchanged water . . . . . . . . . . . . . . . . . . 1007 Zirconium dioxide (ZrO2), as filler for polymer composites . . . . . . . . . . . . . . . . . . . . . . . . 1035, 1036 Zirconium nitride, as physical vapor deposition coating material . . . . . . . . . . . . . . . . . . . . . . . . . . . .946 Zirconium oxide, abrasive used to prepare steels for chemical analysis . . . . . . . . . . . . . . . . . . . . . . . . . .430 Zircon-zirconia refractories . . . . . . . . . . . . . . . . . . . . .800

ASM International is the society for materials

engineers and scientists, a worldwide network dedicated to advancing industry, technology, and applications of metals and materials. ASM International, Materials Park, Ohio, USA www.asminternational.org This publication is copyright © ASM International®. All rights reserved. Publication title

Product code

ASM Handbook Volume 11: Failure Analysis and Prevention

06072G

To order products from ASM International: Online Visit www.asminternational.org/bookstore Telephone 1-800-336-5152 (US) or 1-440-338-5151 (Outside US) Fax 1-440-338-4634 Mail

Customer Service, ASM International 9639 Kinsman Rd, Materials Park, Ohio 44073-0002, USA

Email [email protected]

American Technical Publishers Ltd. 27-29 Knowl Piece, Wilbury Way, Hitchin Hertfordshire SG4 0SX, In Europe United Kingdom Telephone: 01462 437933 (account holders), 01462 431525 (credit card)

www.ameritech.co.uk Neutrino Inc. In Japan Takahashi Bldg., 44-3 Fuda 1-chome, Chofu-Shi, Tokyo 182 Japan Telephone: 81 (0) 424 84 5550 Terms of Use. This publication is being made available in PDF format as a benefit to members and customers of ASM International. You may download and print a copy of this publication for your personal use only. Other use and distribution is prohibited without the express written permission of ASM International. No warranties, express or implied, including, without limitation, warranties of merchantability or fitness for a particular purpose, are given in connection with this publication. Although this information is believed to be accurate by ASM, ASM cannot guarantee that favorable results will be obtained from the use of this publication alone. This publication is intended for use by persons having technical skill, at their sole discretion and risk. Since the conditions of product or material use are outside of ASM's control, ASM assumes no liability or obligation in connection with any use of this information. As with any material, evaluation of the material under end-use conditions prior to specification is essential. Therefore, specific testing under actual conditions is recommended. Nothing contained in this publication shall be construed as a grant of any right of manufacture, sale, use, or reproduction, in connection with any method, process, apparatus, product, composition, or system, whether or not covered by letters patent, copyright, or trademark, and nothing contained in this publication shall be construed as a defense against any alleged infringement of letters patent, copyright, or trademark, or as a defense against liability for such infringement.

Related Documents


More Documents from "tiredforever"