Final-paper-with-appendix (1).docx

  • Uploaded by: Andres Tamayo
  • 0
  • 0
  • January 2021
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Final-paper-with-appendix (1).docx as PDF for free.

More details

  • Words: 81,947
  • Pages: 712
Loading documents preview...
TECHNOLOGICAL INSTITUTE OF THE PHILIPPINES 938 Aurora Boulevard, Cubao, Quezon City

CE 509

CE PROJECTS 2 ENTITLED: DESIGN OF TWO-STOREY FIRE STATION IN BARANGAY BAGONG NAYON COGEO, ANTIPOLO CITY

LEADER: LLARENAS, KRYSTAL CLAIRE R.

MEMBERS: CO, CHRISTIAN C. TAMAYO III, ANDRES A.

SUBMITTED TO: ENGR. RHONNIE C. ESTORES

DATE: March 2020

Table of Contents CHAPTER 1: PROJECT BACKGROUND...........................................................................................................1 1.1

PROJECT BACKGROUND...............................................................................................................1

1.2 PROJECT LOCATION...........................................................................................................................1 1.3 THE CLIENT........................................................................................................................................2 1.3.1 Client’s Specification...................................................................................................................2 1.4 PROJECT OBJECTIVES.........................................................................................................................2 1.4.1 General Objectives......................................................................................................................2 1.4.2 Specific Objectives......................................................................................................................3 1.5 SCOPE AND LIMITATION....................................................................................................................3 1.5.1 Scope of the Project....................................................................................................................3 1.5.2 Limitation of the Project.............................................................................................................3 1.6 PERSPECTIVE......................................................................................................................................4 1.7 PROJECT DEVELOPMENT...................................................................................................................4 CHAPTER 2: DESIGN INPUTS AND REVIEW OF RELATED LITERATURE..........................................................6 2.1 DESCRIPTION OF THE PROJECT..........................................................................................................6 2.1.2 Topography of the Project..........................................................................................................9 2.2 Soil Profile..........................................................................................................................................9 2.2.1 Geotechnical Investigation.........................................................................................................9 2.3 DATA INPUTS...................................................................................................................................11 2.3.1 Structural Design Inputs............................................................................................................11 2.3.2 Design Loads.............................................................................................................................17 2.3.4 Geotechnical Design Inputs......................................................................................................24 2.4 REVIEW OF RELATED LITERATURES..................................................................................................35 2.4.1 Local Literature and Studies......................................................................................................35 2.4.2 Foreign Literature and Studies..................................................................................................37 CHAPTER 3: DESIGN CONSTRAINTS, TRADEOFFS AND STANDARDS..........................................................40 3.1 DESIGN CONSTRAINTS.....................................................................................................................40 3.1.1 Quantitative Constraints...........................................................................................................40 3.1.2 Qualitative Constraints.............................................................................................................41 3.2 TRADEOFFS......................................................................................................................................42 3.2.1 Structural Engineering Context (Moment Resisting Frame)......................................................42 3.2.2 Geotechnical Engineering Context (Ground Improvement)......................................................45

3.3 RAW DESIGNERS RANKING..............................................................................................................48 3.3.1 Computation for Ranking of Economic Constraints (Vibro Replacement vs. WSM)..................55 3.3.2 Computation for Ranking of Economic Constraint (Jet Grouting vs Vibro-Replacement).........55 3.3.3 Computation for Ranking of Sustainability Constraint (Vibro-Replacement vs. WSM).............56 3.3.4 Computation for Ranking of Sustainability Constraint (WSM vs Jet Grouting).........................56 3.3.5 Computation for Ranking of Constructability Constraint (Vibro-Replacement vs WSM)..........57 3.3.6 Computation for Ranking of Constructability Constraint (WSM vs Jet Grouting).....................57 3.3.7 Computation for Ranking of Constructability Constraint (Jet Grouting vs Vibro-Replacement) ...........................................................................................................................................................58 3.3.8 Computation for Ranking of Safety Constraint (Vibro-Replacement vs WSM).........................58 3.3.9 Computation for Ranking of Safety Constraint (WSM vs Jet Grouting).....................................58 3.3.10 Computation for Ranking of Safety Constraint (Jet Grouting vs Vibro-Replacement).............59 3.3.11 Tradeoffs Assessment.............................................................................................................59 3.4 DESIGN STANDARDS....................................................................................................................59 CHAPTER 4: DESIGN OF STRUCTURE..........................................................................................................60 4.1 DESIGN METHODOLOGY (Structural Context).................................................................................60 4.2 DESIGN OF TRADEOFF 1 (SPECIAL MOMENT RESISTING FRAME)....................................................61 4.2.1 Design Specification..................................................................................................................61 4.2.2 Design Loads.............................................................................................................................62 4.2.3

Live Loads...........................................................................................................................63

4.2.4

Seismic load parameter.....................................................................................................64

4.2.5 Load Combination.....................................................................................................................65 4.2.6 Structural Analysis....................................................................................................................66 4.2.7 Structural Design......................................................................................................................79 4.3 DESIGN OF TRADEOFF 2 (DUAL SYSTEM WITH INTERMEDIATE MOMENT FRAME – SPECIAL REINFORCED CONCETE SHEAR WALL).................................................................................................117 4.3.1 Design Specification................................................................................................................117 4.3.2 Design Loads...........................................................................................................................118 4.3.3

Live Loads.........................................................................................................................119

4.3.4

Seismic load parameter...................................................................................................120

4.3.5 Load Combination...................................................................................................................121 4.3.6 Structural Analysis..................................................................................................................122 4.3.7 Structural Design....................................................................................................................136 4.4 DESIGN OF TRADEOFF 3 (DUAL SYSTEM – SPECIAL REINFORCED CONCETE SHEAR WALL)............170

4.4.1 Design Loads...........................................................................................................................170 4.4.2 Design Loads...........................................................................................................................171 4.4.3

Live Loads.........................................................................................................................172

4.4.4

Seismic load parameter...................................................................................................173

4.4.5 Load Combination...................................................................................................................174 4.4.7.3 Column/Wall Design................................................................................................................214 4.2 DESIGN METHODOLOGY (Geotechnical Context)......................................................................222 4.2.2 Design Process........................................................................................................................222 4.2.3 Design Parameters..................................................................................................................223 4.2.4 Structural Tradeoffs Bearing Capacity Design Process............................................................223 4.2.5 Bearing Capacity Computation of SMRF Structure.................................................................224 4.2.6 Bearing Capacity Computation of DS w/ IMF Structure..........................................................234 4.2.7 Bearing Capacity Computation of DS......................................................................................243 4.3 Validation of Trade-Offs (Geotechnical)........................................................................................251 4.3.1 Final Estimate:........................................................................................................................251 4.3.2 Final Constructability Estimate:..............................................................................................252 4.3.3 Final Safety Estimate:..............................................................................................................252 4.5. Validation of Trade-Offs................................................................................................................253 4.5.2 Validation of Trade-Offs (Geotechnical Context)........................................................................258 4.6 Final Trade-off Assessment............................................................................................................264 4.6.1 Trade-offs Assessment (Structural Context)...........................................................................264 4.6.2 Trade-offs Assessment for Geotechnical Context...................................................................265 4.7 Influence of Multiple Constraints, Trade-offs and Standards........................................................265 4.7.1 Structural Context...................................................................................................................266 4.7.2 Geotechnical Context.............................................................................................................268 4.8 Sensitivity Report...........................................................................................................................271 4.8.1 Structural Context...................................................................................................................271 4.8.2 Geotechnical Context.............................................................................................................274 4.9 NORMALIZATION...........................................................................................................................279 4.9.1 Structural Context...................................................................................................................279 4.9.2 Geotechnical Context.............................................................................................................280 CHAPTER 5: FINAL DESIGN.......................................................................................................................283 5.1 Final Design (Structural Context)...................................................................................................283

5.1.1 Framing System......................................................................................................................283 5.1.2 Beam Design...........................................................................................................................285 5.1.3 COLUMN DESIGN....................................................................................................................295 5.1.5 SLAB DESIGN...........................................................................................................................299 5.2 Final Design (Geotechnical Context)..............................................................................................307 5.2.1 Footing Details........................................................................................................................307 5.2.2 Ground Improvement Details.................................................................................................308 APPENDIX A.1: COST ESTIMATES.............................................................................................................310 APPENDIX A.2: DETAILS OF CONSTRUCTION ACTIVITIES.........................................................................318 APPENDIX A.3: FINAL ESTIMATES FOR SUSTAINABILITY (MAINTENANCE COST).....................................333 APPENDIX A.4: FINAL ESTIMATES FOR ENVIRONMENTAL ASSESSMENT (CO2 EMITTED)........................334 APPENDIX B.1: COMPUTATION OF BEAM (SMRF)...................................................................................335 APPENDIX B.2: COMPUTATION OF COLUMN(SMRF)...............................................................................361 APPENDIX B.3: COMPUTAION OF SLAB(SMRF)........................................................................................389 APPENDIX B.4: COMPUTATION OF BEAM (DS W/ IMF)...........................................................................394 APPENDIX B.5: COMPUTATION OF SHEAR WALL / COLUMN (DS W/ IMF)..............................................418 APPENDIX B.6: COMPUTATION OF SLAB (DS W/ IMF).............................................................................483 APPENDIX B.7: COMPUTATION OF BEAM (DS W/ SMF)..........................................................................487 APPENDIX B.8: COMPUTATION OF SHEAR WALL / COLUMN (DS W/ SMF).............................................507 APPENDIX B.9: COMPUTATION OF SLAB (DS W/ SMF)............................................................................577 APPENDIX B.10: Bearing Capacity Computation of SMRF Structure........................................................581 APPENDIX B.11: Ground Improvement Using Jet Grouting.....................................................................583 APPENDIX B.12: Ground Improvement Using Wet Soil Mixing Using Lime..............................................590 APPENDIX B.13: Ground Improvement Using Vibro-Replacement..........................................................598 APPENDIX B.14: Bearing Capacity Computation of DS w/ IMF Structure................................................602 APPENDIX B.15: Ground Improvement Using Jet Grouting.....................................................................605 APPENDIX B.16: Ground Improvement Using Wet Soil Mixing Using Lime..............................................612 APPENDIX B.17: Ground Improvement Using Vibro-Replacement..........................................................619 APPENDIX B.18: Bearing Capacity Computation of DS.............................................................................622 APPENDIX B.19: Ground Improvement Using Jet Grouting.....................................................................625 APPENDIX B.20: Ground Improvement Using Wet Soil Mixing Using Lime..............................................632 APPENDIX B.20: Ground Improvement Using Vibro-Replacement..........................................................639 APPENDIX B.21: Footing Calculation using Geo5.....................................................................................642

APPENDIX B.22: Trade off Estimate.........................................................................................................644

CHAPTER 1: PROJECT BACKGROUND 1.1 PROJECT BACKGROUND A fire station is a structure or other area for storing firefighting apparatus such as fire engines and related vehicles, personal protective equipment, fire hoses and other specialized equipment. Fire station supports the needs of the fire department and the community in which it is located. It must accommodate extremely diverse functions, including housing, recreation, administration, training, community education, equipment and vehicle storage, equipment and vehicle maintenance, and hazardous materials storage. While it is usually only occupied by trained personnel, the facility may also need to accommodate the general public for community education or outreach programs.

In terms of size, Antipolo City is the second largest in Rizal Province next only to Rodriguez, formerly Montalban. Its total land area of 38,504.44 hectares represents 29.9% of the entire land area of the Rizal Province. Since Antipolo is a large city, building a fire station is necessary. There are two fire stations currently existing in Antipolo, the Annex Fire Station, located along Sumulong Highway, and Antipolo City Fire Station, located at Barangay Dela Paz. The location of these fire stations is far from other Barangays, specifically in Barangay Bagong Nayon. Bagong Nayon is a Barangay in the city of Antipolo and according to 2015 Census, it has a population of around 46000 which represent 5.92% of the total population of Antipolo. The distance of Annex Fire station and Antipolo City Fire Station in this barangay is 5.9 km and 5.5 km respectively. The total estimated travel time using a normal vehicle is around 15 minutes to 25 minutes without considering the traffic. The duration of travel time is quite long and it might cause a problem for the fire rescue team to respond.

The proposed two-storey Fire Station will cater to the needs of the people living in Barangay Bagong Nayon, Antipolo City. This proposed project envisions to serve as a primary rescue in fire incidents and lessen the damage caused by manmade and natural disasters. 1.2 PROJECT LOCATION The location of this project is at Barangay Bagong Nayon, Antipolo City, along Marilaque Highway in front of The Church of Jesus Christ Of Latter-day Saints. The setting is accessible to road, transportation and also for the people.

1

Figure 1.1 Satellite View of Marikina-Infanta Highway, Antipolo City - Bearing 14°37'20.9"N 121°10'26.7"E Source: https://www.google.com/maps/@14.6225942,121.1752831,360m/data=!3m1!1e3

Figure 1.2 Street view of Marikina-Infanta Highway, Antipolo City Source: https://www.google.com/maps/@14.6225942,121.1752831,360m/data=!3m1!1e3 1.3 THE CLIENT The client of this project is the City Government of Antipolo, Rizal as represented by Hon. Andrea A. Ynares, the client agreed upon when the project shall be done as soon as possible.

2

1.3.1 Client’s Specification The designers went to Antipolo City Hall and were able to talk and had a chance to interview Engr. Jesus Gonzaga, the head of the Engineering Department. According to Engr. Gonzaga, a fire station usually contains the following: ● Fire station costs around 20000 Php - 30000 Php per volume ● The duration of construction of the project ends at around 18 months ● The structure can resist Earthquake Forces since it is an essential type of facility ● The life span of the structure can last 50 years ● The structure must be environment friendly and has a low maintenance cost in which it can maintain its quality up to its design lifespan. 1.4 PROJECT OBJECTIVES 1.4.1 General Objectives The main objective of this project is to design a Two-Storey Fire Station Building in Barangay Bagong Nayon, Antipolo City using the structural analysis with accordance to structural and building code in order to meet the client's specification and to provide a facility that will aid the area in case of fire incident. To provide the most effective and feasible material that will yield the most suited system in the project location.

1.4.2 Specific Objectives ● To enhance the knowledge and skills of making use of Theory of Structures and Soil Mechanics Principles to design a building ● To evaluate the trade-offs based on the limitations in order to differentiate what is the effective design choice ● To identify the soil classification of the chosen location in which the structure will be built ● To provide the client with plans and cost estimates of the project. ● To evaluate the impact of important constraints in relation with trade-offs, programs and specific standards in order to determine the most efficient design for the project

3

1.5 SCOPE AND LIMITATION 1.5.1 Scope of the Project The following are the scope covered by the design project: ● Provide design plan such as structural plans and architectural plans as well as structural detail ● The project is conceptualized with accordance to the National Structural Code of the Philippines (NSCP 2015) and National Building Code of the Philippines (PD 1096) ● Analyze the strength and safety of structure by the use of the software program, STAAD pro and STAAD RCDC. ● The design project specifies the plans, reinforcements needed and the properties and capacity of soil. ● The design project provides the material, equipment and labor cost estimates of the chosen tradeoffs for comparison. 1.5.2 Limitation of the Project The following are the limitation of the design project: ● The design of Electrical, Mechanical and Plumbing Plan are not included ● The interior design of the project is not included ● The designers shall not assess other constraints with no relation on the design of water distribution system ● The designers will limit the cost estimate on the materials used for the structural members ● The designers will not provide the detailed construction activities and the estimate cost of operation and machineries

4

1.6 PERSPECTIVE

Figure 1.3 Perspective view of the building 1.7 PROJECT DEVELOPMENT The designers prepared for the design of a 2-storey fire station in Barangay Bagong Nayon, Antipolo City. In the first stage of the project, the designers will identify the problems currently existing in the society that the designers intend to make a solution. As the problem is being identified, there is a lack of fire station around Barangay Bagong Nayon, Antipolo City resulting in severe damage to properties. After having the solution, the designers will look for the location where the said project will be constructed, then conceptualization of the project begins conforming to the request of the client. The conceptualization of the design of a four-storey fire station includes different inputs strengthening design process, materials and construction techniques, purpose, ground characteristics and set of standards and codes provided in the Philippines. After the conceptualization, data were gathered using different types of method. Then designers identify the constraints and different trade-offs to solve the evident problem considering the constraints. There will be a provide design for each trade-off to properly explain each of its capabilities and advantages. After presenting each trade-off with their specific aspects; results will be compared and evaluated in order to come up with the most efficient alternative. The final design is based on the most effective result evaluated by the designer. This output will be recommended to be able to design a four-storey fire station.

5

Figure 1-3. Project Development flowchart

6

CHAPTER 2: DESIGN INPUTS AND REVIEW OF RELATED LITERATURE 2.1 DESCRIPTION OF THE PROJECT This chapter describes the data parameters collected to be used in designing the structural and geotechnical tradeoffs. Review of related literature and studies are also presented in this part, which will introduce former studies regarding the problem and proposed solution, and also the constraints and tradeoffs utilized in the design projects. The Four-storey Fire Station has a dimension of 16m by 15m, it has floor area of 240 square meters and a total floor area of 960 square meters. The height of the first floor is 3.5m. The height of second to fourth floor is 3m. The total height of the structure is 13m including the parapet wall at roof deck. The Fire station is equipped with different rooms and facilities such as office for the staff, conference room, training room, fitness gym, dormitory, storage and archive. The fire station is categorized as Essential Facility in chapter 2, section 208 of National Structural Code of the Philippines 2015 The project aims to construct a fire station in Barangay Bagong Nayon, Antipolo City. This project will be using three (3) trades-offs as a proposed design and be evaluated according to the constraint formulated. 2.1.1 Demography of the Project Among the 14 city/municipalities of Rizal, Antipolo City had the largest population with 776,386, followed by Rodriguez (Montalban) with 369,222 and Cainta with 322,128. The population of these three municipalities together comprised more than half (50.89 percent) of the entire population of the province as shown in the table below.

7

Table 2.1 Total population of Municipalities of Rizal

Table 2.2 Total Population of Antipolo City

The population of Bagong Nayon grew from 18,002 in 1990 to 45,976 in 2015, an increase of 27,974 people. The latest census figures in 2015 denote a positive growth rate of 0.34%, or an increase of 824 people, from the previous population of 45,152 in 2010.

8

Figure 2.1 Population of Barangay Nayon categorized by age group Source: https://www.philatlas.com/luzon/r04a/rizal/antipolo/bagong-nayon.htmla

Figure 2.2 Population and Growth of Barangay Bagong Nayon Source: https://www.philatlas.com/luzon/r04a/rizal/antipolo/bagong-nayon.htmla

9

2.1.2 Topography of the Project

Figure 2.3 Topographic view of Barangay Bagong Nayon Source: https://www.philatlas.com/luzon/r04a/rizal/antipolo/bagong-nayon.htmla 2.2 Soil Profile The following data that were gathered as a basis for the design loads on the given location. Unfortunately, the designers were not able to obtain a Geotechnical Report from the Antipolo City Hall due privacy of their data. We tried to convince the officials but they refused to give us information unless we have a valid consent from the land owners. The designers find another Geotechnical Report from other places nearby, but still applicable as the basis for the design loads on the given location 2.2.1 Geotechnical Investigation This report presents the result of the geotechnical investigation conduction for the above cited project of the City Government of Marikina. The investigation work involving borehole drilling was carried out in March 2012 by Universal Testing Laboratory and Inspection, Inc(UTLII) upon the request of proponent/client. The purpose of the investigation is to determine the general subsurface condition at site by the test boring with SPT sampling and core drilling and to evaluate the results and with respect to the concept and foundation design of the proposed structure. The samples obtained from the boring were tested in the laboratory for engineering classification and strength determination and analysis. This report covers the methodology of the field and laboratory investigations, assessment of the subsurface conditions, and estimation of the allowable soil bearing capacity, settlement analysis and citing other related construction problems.

10

2.2.1.1 Field Investigation Program The investigation involved the drilling of the two (2) boreholes to a depth 15m each below the present ground level at the site with the use of a rotary drilling machine. The drilling was executed on the whole day of 27 March 2012 following the ASDTM procedures as briefly described below. The location of the boreholes is shown in Figure 1.0. The hole was advanced by wash boring and standard penetration test (SPT). The Standard Penetration Test (SPT) is performed every 1.0 meter of depth measured from the ground surface. Initially an NWcasting was driven into the ground using the driver hammer weighing 63.5 kg. up to a depth of 0.50 m. The section of the casting which was driven into the ground was cleaned up to the bottom wash boring. The term “Wash Boring” refers to the process in which a hole is advanced by combination of chopping and jetting to break the soil or rock into small fragments called cuttings and washing to remove cuttings from the hole. TH tools used to consist of the drill rods with a chopping bit at the bottom and a water swivel and lifting the bail at the top. This is connected to the water pump by a heavy-duty hose attached to the water swivel. This assembly is attached to the cathead by means of a rope which passes through the sheave and tied to the lifting bail. The tool is then lowered to the level of soil in the casing, and the water under pressure is introduced to the bottom of the hole means of the water passages in the drill rods and the chopping bit. At the same time, the bit is raised and dropped by means of the rope attached to the lifting bail. Each time the rods are dropped they are also partially rotated manually by means of a wrench placed around the rods. The latter process helps to break up the material at the base of the hole. The resulting cuttings are carried to the surface in the drilling water which flows in the annular space between the drill rods and the inside of the casing. The process is continued until the depth for taking SPT samples is reached. The Standard Penetration Test (SPT) was used to extract relatively distributed samples from the borehole at intervals not exceeding 1:50 meters. This was done by driving a standard split-barrel sampler with the following specifications:

: Make : Outside Diameter : Inside Diameter : Length

: Std. : : : 61.0 cm.

CONSISTENCY CLASSIFICATION (Terzaghi and Peck, 1969)

Sprague

FOR

5.40 3.50

and

Henwood

FINE-GRANED

Type cm. cm. SOILS

Classification

SPT, N

Undrained Shear Strength, su (kPa)

Very soft Soft Medium Stiff Stiff Very Stiff Hard

<2 2 -4 4–8 8 – 15 15 – 30 >30

<12 12-25 25-50 50-100 100-200 >200 11

RELATIVE DENSITY CLASSIFICATION (U.S. NAVY, 1982 & Lambe and Whitman, 1969)

FOR

COARSE-GRAINED

SOILS

Classification

SPT, N

Undrained Shear Strength, su (kPa)

Very loose Loose Medium dense Dense Very Dense

<4 4 - 10 10 – 30 30 – 50 >50

0-15 15-35 36-65 65-85 85-100

All SPT samples were placed in a properly labeled air tight plastic bag before they were transported to the laboratory office of UTLII in Pasig City for the required testing. 2.2.2.2 Subsurface as Found The subsurface of the site is represented by the soil profile derived along the drilled boreholes as shown in Figure 2.0 As can be seen from the profile, the subsoil around BH-1 is underlain by overburden composed soil of moderately/highly plastic clay (CL/CH) starting from the ground surface down all the way to the bottom end of the borehole. N-values ranged from 21 to 62 blows/ft suggesting a consolidated to over consolidated stratum. Over the vicinity of BH-2, silty sand (SM) covers the upper 4.5m thick layer before clayey materials were hit down to the bottom end of the borehole. The silty sands are non-plastic with recorded N-values of 20 - 29 blows/ft while the clays are highly plastic and have registered a blow count ranging from 33 - 65 blows/ft. These blow counts indicated compacted sand deposits while the consolidation and consistency of the clays are the same as those in BH-1. The groundwater level was measured at 8.0m or more inside the boreholes after completing the drilling. Allowable Soil Bearing Capacity at Foundation level A spread or combined type of a shallow foundation can be adopted. The footings can be embedded to a depth of 1.5m or deeper below the present ground level. For purposes of designing the footings, the estimated allowable soil bearing capacity at varying footing level and base width are tabulated below: Allowable Soil Bearing Capacity, kPa (Basis: BH-1)h Depth, meter 1.5 2.0 2.2.2.3 Settlement

Base of Footing Base = 1.5m B = 3.0m 227 240

Bearing Layer Clay Clay

For footings resting on clays, a long-term settlement of 50mm to 100mm should be anticipated. On the other hand, a maximum settlement of 25mm can be allowed for footings resting sand. Crucial to these tolerable settlements is the excessive differential settlement that could affect the engineering integrity of the structure. Provision for footing tie beams therefore be incorporated as an integral part of the foundation system to minimize such excessive settlement to a manageable limit. 12

2.2.2.4 Site Coefficient S and Seismic Zone Factor Z The site coefficient S and seismic zone factor Z required determining the design base shear V for structural design is defined in terms of the soil profile as specified in the National Building Code of the Philippines. Based on the soil profiles as determined from borings, the Structural Engineer for the project could classify the site the corresponding S factor for given type of soil by referring to the Building Code. The seismic map of the Philippines divides the country into two zones, namely Zone 2 and 4. For the site under study, the maximum zone factor Z is also found in the said Building Code. 2.3 DATA INPUTS 2.3.1 Structural Design Inputs The gathered data and parameters are used for designing the structural tradeoffs and design. Function

Quantity

Fire Truck Garage

2 units

Toilet and Bathroom

2 units

Storage Room

2 units

Conference Room

1 unit

Office

1 unit

Clinic and Dormitory

1 unit

Training Room

1 unit

Total

34 units

Table 2.3 Room Classification with Corresponding Area

Floor

Function

Area

Unit

Ground Floor

Fire Truck Garage 1 and 2

150

m2

Ground Floor

Toilet and Bathroom

5

m2

Ground Floor

Storage and Facility

15

m2

Ground Floor

Lobby

20

m2

Second Floor

Training Area

60

m2 13

Second Floor

Clinic and dormitory

40

m2

Second Floor

Conference Room

20

m2

Second Floor

Administration’s Office

20

m2

Second Floor

Toilet and Bathroom

20

m2

Table 2.4 Room Classification with Corresponding Area 2.2.2 Architectural Plans As for the design of the two-storey fire station building, the designer exceed the minimum sizes of the rooms but some are considered to the minimum to maximize the lot provided for the building.

14

Figure 2.4 Ground Floor Plan

15

Figure 2.5 2nd Floor Plan

16

Figure 2.6 Front Elevation

Figure 2.7 Rear Elevation 17

Figure 2.8 Left Side Elevation

Figure 2.9 Right Side Elevation

18

2.3.2 Design Loads Using the National Structural Code of the Philippines (NSCP 2015) the Fire Station is considered as an essential facility with regards to occupancy category. 2.3.2.1 Dead Loads Below are the components and minimum design load of each component for each function of the said room descriptions based on section 204 of chapter 2 in the code it consists of the weight of all materials to be used in the construction of the structure.

Figure 2.10 Minimum Design Dead Loads in NSCP 2015

Member Load st

th

Components ( 1 to 2 floor)

Design Load (KPa)

Frame Walls Windows, Glass, Frame and Sash

0.38

Concrete Masonry Unit

19

CHB Wall, 150mm, Full Grout (Plastered both sides)

3.11

CHB Wall, 100mm, Full Grout (Plastered both sides)

2.98

Wall covering Waterproofing Membrane: Bituminous smooth surface

0.07

Table 2.5 Other Minimum Design Loads

Floor Load Components ( 1st to 2th floor)

Design Load (KPa)

Ceilings Gypsum board (per mm thickness)

0.008

Plaster on tile or concrete

0.24

Floor Fills Lightweight Concrete, per mm

0.015

Floor and Floor Finishes Cement Finish (25MM) on stone concrete fill

1.53

Frame Partitions Wood or Steel studs, 13 mm gypsum board each side

0.38

20

Frame Walls Windows, Glass, Frame and Sash

0.38

Total Dead Load

2.553

Table 2.6 Other Minimum Design Loads 2.3.3.2 Live Loads The maximum live loads expected by the intended use or occupancy based on section 205 of the code. Below are the occupancy descriptions and the equivalent design live loads in KPa:

Figure 2.11 Minimum Live Loads in NSCP 2015

Use or Occupancy Description

Description

Design Load (KPa)

Parking garages and ramps

Public parking and ramps

4.8

Roof Decks

Same as area served or occupancy

--

Office

(Other offices)

2.4

Table 2.6 Minimum Design Live Loads 2.3.3.3 Seismic load parameter The seismic load parameters were obtained with the geographical data and were based on chapter 2, section 208 of the code.

21

Figure 2.12 Nearest active fault trace Source: http://faultfinder.phivolcs.dost.gov.ph/

Figure 2.13 Occupancy Category in NSCP 2015

22

Figure 2.14 Seismic importance factor in NSCP 2015

Figure 2.15 Seismic zone in NSCP 2015

Figure 2.16 Near source factor in NSCP 2015

23

Figure 2.17 Seismic Coefficient in NSCP 2015

Figure 2.18 Structure period in NSCP 2015

24

Figure 2.19 Structure period in NSCP 2015

Parameters Importance Factor

1.5

Soil Profile Type

Stiff Soil, Sd

Seismic Zone

ZONE 4: Z=0.4

Seismic source type

A

Near Source Factor (Na)

1.2

Near Source Factor (Nv)

1.6

Seismic Coefficient (Ca)

0.44Na = 0.53

Seismic Coefficient (Cv)

0.64 Nv = 1.02

R (Special Reinforced Concrete Moment

8.5 25

Frame) Numerical Coefficient (Ct)

.0731

R (Intermediate Reinforced Concrete Moment Frame)

5.5

Numerical Coefficient (Ct)

.0731

R (Ordinary Reinforced Concrete Moment Frame)

3.5

Numerical Coefficient (Ct)

.0731

2.3.3.4 Wind Parameters

Table 2.7 Seismic Load Parameter

The wind load parameters were based on the NSCP 2010 and it was determined through the location of the proposed structure. As stated on the code, buildings and other vertical structures shall be designed and constructed to resist wind loads as specified and presented in chapter 2 section 207 of the code. Parameters Basic Wind Speed 200 kph Wind Directionality Factor, Kd 0.85 Exposure Category B Topographic Factor, Kzt 1 Building Classification Category III Structure Type Building Structure Enclosure Classification Enclosed Building Internal Pressure Coefficient, GCpi -0.55, +0.55 Importance Factor 1.5

Table 2.8 Wind Parameter 2.3.4 Geotechnical Design Inputs Here are the design parameters for the geotechnical, here are some tables, figures and data’s to be used in the design. 2.3.4.1 Soil Classification There are several systems of soil classification which are based generally on particle size or on some additional soil properties such as plasticity and compressibility.

26

Source: SOIL SUITABILITY CLASSIFICATION FOR AQUACULTURE 2.3.4.2 Unit Weight of Soil In this table shown here the SPT N-Value from Soil Profile.

By Interpolating the data with the SPT N-Value from Soil Profile we get the value and converting the unit. 2.3.4.3 Angle of Internal Friction Shown here the angle of friction data’s, that will be used in the design. Soil friction angle [°] Description

Well graded gravel, sandy gravel, with little or no fines

USCS

GW

min  max

Specific value

33

 

40

27

Poorly graded gravel, sandy gravel, with little or no fines

GP

32

44

 

Sandy gravels - Loose

(GW, GP)

 

 

35

Sandy gravels - Dense

(GW, GP)

 

 

50

Silty gravels, silty sandy gravels

GM

30

40

 

Clayey gravels, clayey sandy gravels

GC

28

35

 

Well graded sands, gravelly sands, with little or no fines

SW

33

43

 

Well-graded clean sand, gravelly sands - Compacted

SW

-

-

38

Well-graded sand, angular grains - Loose

(SW)

 

 

33

Well-graded sand, angular grains - Dense

(SW)

 

 

45

Poorly graded sands, gravelly sands, with little or no fines

SP

30

39

 

Poorly-garded clean sand - Compacted

SP

-

-

37

Uniform sand, round grains - Loose

(SP)

 

 

27

Uniform sand, round grains - Dense

(SP)

 

 

34

Sand

SW, SP

37

38

 

Loose sand

(SW, SP)

29

30

 

Medium sand

(SW, SP)

30

36

 

Dense sand

(SW, SP)

36

41

 

Silty sands

SM

32

35

 

Silty clays, sand-silt mix - Compacted

SM

-

-

34

Silty sand - Loose

SM

27

33

  28

Silty sand - Dense

SM

30

34

 

Clayey sands

SC

30

40

 

Calyey sands, sandy-clay mix - compacted

SC

 

 

31

Loamy sand, sandy clay Loam

SM, SC

31

34

 

Inorganic silts, silty or clayey fine sands, with slight plasticity

ML

27

41

 

Inorganic silt - Loose

ML

27

30

 

Inorganic silt - Dense

ML

30

35

 

Inorganic clays, silty clays, sandy clays of low plasticity 

CL

27

35

 

Clays of low plasticity - compacted

CL

 

 

28

Organic silts and organic silty clays of low plasticity

OL

22

32

 

Inorganic silts of high plasticity 

MH

23

33

 

Clayey silts - compacted

MH

 

 

25

Silts and clayey silts - compacted

ML

 

 

32

Inorganic clays of high plasticity 

CH

17

31

 

Clays of high plasticity - compacted

CH

 

 

19

Organic clays of high plasticity 

OH

17

35

 

Loam

ML, OL, MH, OH

28

32

 

Silt Loam

ML, OL, MH, OH

25

32

 

Clay Loam, Silty Clay Loam

ML, OL, CL, MH, OH, CH

18

32

  29

Silty clay

OL, CL, OH, CH

18

32

 

Clay

CL, CH, OH, OL

18

28

 

Peat and other highly organic soils

Pt

0

10

 

Using the Average Value of Angle of friction of clay which is 23 degrees. 2.3.4.4 Cohesion Soil friction angle is a shear strength parameter of soils. Its definition is derived from the Mohr-Coulomb failure criterion and it is used to describe the friction shear resistance of soils together with the normal effective stress. In the stress plane of Shear stress-effective normal stress, the soil friction angle is the angle of inclination with respect to the horizontal axis of the Mohr-Coulomb shear resistance line. Typical values of soil friction angle for different soils according to USCS. Some typical values of soil friction angle are given below for different USCS soil types at normally consolidated condition unless otherwise stated.

Source: ecorisq.org 30

Using the value of 19 degrees for the angle of friction as the critical data for the design 2.3.4.5 Adhesion Empirical adhesion coefficient α Pile material

Soil consistency

Cohesion range

Adhesion coefficient α [-]

cu [kPa] Timber and concrete piles

Very soft

0 - 12

0.00 - 1.00

Soft

12 - 24

1.00 - 0.96

Medium stiff

24 - 48

0.96 - 0.75

Stiff

48 - 96

0.75 - 0.48

Very stiff

96 - 192

0.48 - 0.33

Source: NAVFAC DM 7.2, Foundation and Earth Structures, U.S. Department of the Navy, 1984.

2.3.4.6 Poisson’s Ratio Summary of Poisson’s ratio, ν and SPT N value relationships Soil type

ν and SPT N value relationship

r 2

Range of N

Loose granular soil

ν = 0.2 + 0.01 N

0.998

0–20

Dense granular soil

ν = 0.2 + 0.005 N

0.998

20–50

Soft clay

ν = 0.15 + 0.0167 N

0.998

0–6

Stiff clay

ν = 0.125 + 0.0125 N

0.998

6–30

Source: Estimation of Engineering Properties of Soils from Field SPT Using Random Number Generation

31

2.3.4.7 Jet Grout Compressive Strength Jet grouting with a cement content of approximately 400 kg/m3 (20% by weight) was able to increase the compressive strength of a soft, plastic clay from a value between 40 to 60 kPa to an average of 4500 kPa. This result is consistent with previous experience.

Typical Soilcrete Strength Source: JET GROUTING SYSTEMS: ADVANTAGES AND DISADVANTAGES, p. 875-886. 2.3.4.8 Stone Columns (Vibro Replacements) Typical Values of Unit Weight for Soils γsat (kN/m3)

γd (kN/m3)

Gravel

20 - 22

15 - 17

Sand

18 - 20

13 - 16

Silt

18 - 20

14 - 18

Clay

16 - 22

14 - 21

Type of soil

32

2.3.4.9 Youngs Modulus of Elasticity

Source: Soil elastic Young's modulus (Geotechdata,2013) 2.3.4.10 Compressive Strength

33

Source: 2012 compiled from Kezdi 1974 and Prat et al. 1995) 2.3.4.11 Undrained Shear Strength

Source: Terzaghi and Peck, 1969 2.3.4.12 Shear Strength and Bulk Unit Weight of Soil Mixing Shows here the table and datas that has been gathered to be used in the design.

34

35

36

Source: International Journal of Scientific & Engineering Research Volume 9,pg 149- 154

37

2.3.4.13 Allowable Bearing Capacity of Vibro-Replacement

Source: Principle of Foundation Engineering 6 th Edition, p 770-771

38

2.4 REVIEW OF RELATED LITERATURES 2.4.1 Local Literature and Studies

Unrelenting effects of natural disasters: earthquakes, storm surges, typhoons on different structures

According to O. Ace (2018), recent history has seen the unrelenting effects of natural disasters— earthquakes, storm surges, typhoons—on different structures. Among these structures are schools, government office buildings, and homes. Many have been reinforced, renovated, or rebuilt following these disasters. Most structures, particularly in the Philippines, are designed using the National Structural Code of the Philippines (NSCP), with which a set of minimum requirements (e.g., strength, stiffness, connections, etc.) based on the structural loads expected throughout the building’s lifetime. However, with the increasing frequency of natural disasters—particularly typhoons—which are unusually large loads these structures will have to carry; one may not have a clear expectation of the performance of these code-designed buildings. These structures may underperform or be overdesigned. Building back better, more resilient structures requires one to gain insight on what specifically causes them to fail, how likely these specific causes are to happen, and ultimately what the consequences of these failures are. Once this information is available, the weaknesses in these designs may then be better addressed. The objective of the paper is to be able to quantify the performance of the different structures in order to see the relative influence of changes made in the different design variables. Understanding the different factors that affect how a structure performs against a hazard will allow better insight into how to design new structures that are more resilient.

Risk Analysis of Three-storey Reinforced Concrete Moment resisting Frame Structures Using Performance-based Wind Engineering

Throughout the different levels of analyses conducted, it is evident that, generally, performance of the structures was influenced by modifications made in the roof pitch. This is due to the larger surface area roof cover has compared to the total window surface area in any one of the structures. This is also consistent with what is observed in numerous studies on wind engineering, where severe wind damage follows a progressive, top to bottom trend. Modifying the building aspect ratio however had a greater effect on window damage, where more slender structures incurred more damage. Regarding hazard characterization: the Gumbel distribution function used in this study generally shows a good fit except for extreme wind speeds, which was evident in the Gumbel plot generated, where data points for higher wind speeds had larger deviations from the trend line. The test of other distribution functions to describe severe wind hazard is recommended. Investigating more design components, damage indicators, and types of structures is recommended to get clearer expectations of performance. This will allow for better insight into the weaknesses and even strengths of current designs, thus allowing designers to help in building back more resilient structures.

39

Life cycle analysis of structural systems of residential housing units in the Philippines

In designing a house, or any structure, there are three things commonly considered by the structural engineer; these are represented in the safety–serviceability–cost triangle. Safety and serviceability ensure that the structure can fulfill its intended purpose by satisfying code requirements on strength, ductility, and deflections. Addressing economy, on the other hand, requires value engineering to produce an optimum design with reasonable cost. However, the triangle is increasingly found to be incomplete. There is the question of environmental impacts the structure may bear on society. But what parameter may be used to guide structural designers to make their structures “greener”? This paper proposes the use of a “Structural Sustainability Index (SSI)”, a single-score based on the Life Cycle Assessment (LCA) framework. The SSI was derived from five environmental impacts, whose respective weights were determined from a survey of Civil engineering professionals. The impacts and their weights are: Global Warming Potential (36%), Ocean Acidification (10%), Human Toxicity (12%), Abiotic Materal Depletion (16%), and Energy Use (26%). The concept was applied to low-cost housing units in the Philippines. Four models with approximately 60 sq.m. floor area were investigated. structural systems of these houses are conventional reinforced concrete, modular block system, I beam, and modified system. Among the four, the I beam house incurred the lowest SSI of 0.682 while the conventional had the greatest at 0.986. The I beam, however, was found to have the largest contribution in abiotic material depletion due to heavy steel usage. This could be lessened through recycling of steel, as the manufacturing stage was found to contribute the most damage. Significant improvements were made in all impact categories when converting from a conventional to a modified system using T-joists and wall stiffeners, for a total of 9.87% decrease in SSI. Costs likewise decreased. With the SSI and LCA framework, sustainability concerns can be quantified by structural engineers and significant improvements can be made in designing. .

Structural Assessment of the Three-Storey Engineering Building at Laguna State Polytechnic University, Sta. Cruz Campus

Structural Assessment is a process to analyze a structural system in order to predict the responses of the real structure under the excitation of expected loading and external environment during the service life of the structure. This allows the calculation of the forces and deformations of the various structural components. A well designed structure will be able to resist all loadings besides the static loads design. Dynamic loads such as wind load and seismic response also needs to be considered into structural design. Structural assessment can be initiated, when there has been a change in resistance such as structural deterioration due to time-depending processes like corrosion and fatigue or structural damage by accidental actions. Also, when there will be a change in loading, increase in lateral loads for example, or an extension of the design working life. Assessment can also be carried out to analyze the current structural reliability for environmental hazards like earthquakes or extreme winds and waves.

40

2.4.2 Foreign Literature and Studies

Comparative Study of OMRF and SMRF

According to the comparative study of G.V.S SivaPrasad and S. Adiseshu, the objective of their study to analyze the seismic behavior of Special Moment Resisting Frame (SMRF) and Ordinary Moment Resisting Frame (OMRF) in the scenario of five-storey, ten-storey, fifteen-storey and twenty-storey reinforced concrete structure located at seismic zone II. The standards used by the researchers were under IS 1893:2000 and IS 456:2000. The design was also composed of alternate shear wall in the structural frame. Furthermore, with the progress of the new method that the designers used and the evaluation and analysis of shear wall system and the serviceability done by the researchers, the engineers who are able to do the same method as it was stated by the designers, will be able to select the most economic system resulting in safety of the structure planning to built. Due to the intensive comparative study done by the researchers, they found that SMRF system was cost effective and resisting to high rise structures.

Damage-control Seismic Design of Moment resisting RC Frame Buildings

H. Jiang, B. Fu and L. Chen proposed a new seismic design for directly and efficiently controlling damage to structural and non-structural components of moment resisting reinforced concrete building. Using their proposed design method for a typical six-storey moment resisting RC frame building under the standard of Chinese Seismic Design Code. The seismic performance of the structure was evaluated under different levels of earthquake intensity/magnitude by conducting a non-linear time history analysis. The results showed that the pre-determined seismic performance objectives as design with their proposed method can be achieved resulting in great efficiency.

A Study of the Various Structural Framing Systems Subjected to Seismic Loads

According to the study of Abhyuday Titiksh (2015), in seismic behavior of the structure having various structural configurations like OMRCF (Ordinary Moment Resisting Concrete Frames), SMRCF (Special Moment Resisting Frames) and BSF (Braced Steel Frames). A comparative study of all the types of frames will shed light on the best suited frame to be adopted for seismic loads in Indian scenario. For this purpose, a G+4 building was designed for OMRCF, SMRCF and BSF framing configurations in Seismic Zone V according to Indian codes. Tests were carried out to evaluate their structural efficiencies in terms of storey drifts, Base shear, amount of reinforcement etc. Moment frames have been widely used for seismic resisting systems due to their superior deformation and energy dissipation capacities. A moment frame consists of beams and columns, which are rigidly connected. The components of a moment frame should 41

resist both gravity and lateral load. Lateral forces are distributed according to the flexural rigidity of each component.

Regularity and optimization practice in structural frames in real design cases

According Dunant, A., Drewniok, M., Eleftheriadis, S., Cullen., J and Allywood, J. (2018), they could confirm the principal finding that about 35–45% of the steel by mass of the load-bearing frame is not required in terms of structural efficiency. However, only part of this is over-design, as the cores, trimmers, and ties representing 6% of the total mass are necessary for the stability of structures and are mandated by the codes, and a further 3% of the mass is underused in secondary edge beams whose design is frequently constrained by the available space. Nonetheless, these beams are still oversized in many cases: in general, the smallest available section should be used. The original study had suggested that rationalization was a likely culprit for the overdesign. This could show that this was likely not the case. The remainder of the underutilization can be explained by the design practice of the engineers. To guard against changes during the project, the engineers seem very reluctant to design beams with ur beyond 0.8. In effect, this results in at least 20% of the mass of steel frames which is not necessary for the purpose of safety or service. Small changes in the design target could create important material savings at no cost. For this to be practical, one should assess how often the defensive design practice prevented re-designs. There is probably an opportunity, before sending the plans to the fabricator, to perform a round of optimization. If the model structure is already coded in a computer aided design tool, this operation should not be onerous. Nonetheless, there may be little incentive to do this after the tender depending on the form of the tender. Thus, design and build contracts may offer more scope for optimizing designs. Their study shows that further improvement in the design of steel frames should come from more elaborate strategies, in particular taking into account the design of connections when choosing the sections or designing composite deckings. Such a strategy would allow the selection of thinner sections without otherwise changing the design practice.

A Case Study Of Wet Soil Mixing For Bearing Capacity Improvement In Turkey

According to Arash Maghsoudloo, Asli Can (2018), This paper presents a ground improvement implementation case under a raft foundation of a local hospital. The selected ground improvement method is Wet Soil Mixing (WSM) technique. Soil mixing is increasingly applied to environmental applications and ground stabilization in geotechnical projects. In this technique, weak soil is mixed with cementitious slurry to improve the characteristics of the soil.The investigated case is one of the pioneering WSM ground improvement technique implementation cases in Turkey. The soil profile mainly consisted of low plasticity clay. The effect of ground improvement is verified by a series of laboratory tests and four in-situ pile loading tests.The results of in-situ pile load tests on constructed soilcrete columns showed an acceptable factor of safety for the bearing capacity of the WSM columns. Measured bearing capacities in all four tested columns were nearly 20% higher than calculated values. In addition, a set of samples are obtained from the 42

constructed columns and unconfined compression tests have been conducted.The laboratory test results indicate that the selected cementitious slurry has a sufficient efficiency to form the stabilizing columns. In this study, a ground improvement case in Turkey is investigated. The article presents the initial site investigations and the definition of the performed ground improvement system. In addition the behavior of the underlying soil is molded in a 2-D finite element program. The input soil of the finite element analysis was calibrated based on the measured data obtained from field studies. Utilized ground improvement system so-called Wet Speed Mixing was concluded to be efficient for the improvement of the soft soil profile in the investigated site. It was observed that, although the exact behavior of the soil cannot be captured perfectly, with simple constitutive models such as Mohr-Coulomb and Isotropic Hardening Soil model, overall physical behavior of the soil profile can be predicted with acceptable accuracy. It can be concluded that in practical works, due to insufficient laboratory test data use of such simple constitutive models may also be beneficial. Another conclusion of this study was the confirmation that the bearing capacity was improved and the settlements were reduced by ground improvement application, and the amounts can be calculated or estimated by the analytical and numerical methods and empirical correlations.

Ground Improvement Using the Vibro Replacement Column Technique

According to, McCabe B., McNeill J., Black J.,(2007), The Vibro Stone Column technique is one of the most widely-used ground improvement processes in the world, although its potential for improving Irish sites has yet to be fully exploited. Historically the system has been used to densify loose granular soils, but over the past 35 years, the system has been used increasingly to reinforce soft cohesive soils and mixed fills. This paper will describe the technique, applicable soil types, settlement and bearing capacity calculations, recent research areas and an Irish case study. The Irish construction industry has been slower than many of its European counterparts to recognise the technical and economic advantages that Vibro Stone Columns can provide. Ireland has an abundance of soft estuarine and alluvial soils and these may be improved sufficiently to allow standard foundations to be constructed at shallow depth, without the need to resort to deep piling. Where ground conditions are suitable, stone column solutions have been shown to be more cost effective than trench fill in excess of 2m depth. In addition, stone columns can offer considerable contract programme savings over other ground improvement methods, such as preloading and vertical drains. As with all geotechnical projects, a thorough site investigation with adequate information on soil strength and compressibility is essential.

43

CHAPTER 3: DESIGN CONSTRAINTS, TRADEOFFS AND STANDARDS 3.1 DESIGN CONSTRAINTS Constraints are the factors or hindrance affects the design or refers to some limitations under the desire project to be constructed or developed. In the design of the project, it is important to consider the different effects of the design constraints and limitations to the structure. Constraint is defined as the limiting condition that may affect the design and construction of the project. Construction projects have a specific set of objectives and constraints such as a required time frame for completion. The following were considered to have relevant impact on the design of the Fire Station building. 3.1.1 Quantitative Constraints The quantitative constraints indicate limitations on the resources which are to be allocated among various decision variables. These resources may be production capacity, manpower, time, space or machinery. Capable of being estimated or expressed with numeric values, that is being measurable.

44

3.1.1.1 Economic Constraints (Cost) In designing, the budget of the client is the common concern that is why economic is the basic constraint in a project. Without the investment of the client, the whole project is affected from planning and conceptualizing up to the construction phase. Thus, the most economical among the trade-offs namely Special Moment Resisting Frame (SMRF), Ordinary Moment Resisting Frame and Special Reinforced Concrete Shear Walls (Dual System) are the choices that the designer might choose. 3.1.1.2 Constructability Constraints (Construction Duration) The duration of construction plays a vital role for both the designer and for the client. The client preferably wants a shorter time for the construction because it saves more time and financial benefits that are favor for both parties. The design of the structural elements should not compromise the required strength due to the client’s desirable choice. In constructing a building, estimating the number of workers or laborers, equipment needed and materials to be used are considered because of how the project is built without these three. In this constraint, the time also considered because the delay of the project for some problems may be technical or any problem. If the project will not reach the desired time to finish the project it will cause the project to spend more money to finish. 3.1.1.3 Environmental Assessment Environmental assessment is taken up in this exercise as a rapid assessment technique for determining the current status of the environment and identifying impact of critical activities on environmental parameters. As such environmental assessment provides a rational approach to sustainable development. It also enables us in carrying out environmental cost-benefit analysis of projects at an initial stage. It is thus a precursor to detailed analysis of environmental impacts, which are taken up only if a need for the same is established. For this constraint, the designers based the environmental assessment to carbon emission due to vehicles and machines used in the construction. 3.1.1.4 Sustainability (Maintenance Cost) Maintaining the structure premises is necessary in order to preserve the assets and protect the building the building occupants. Proper building maintenance makes sure that the building and the environment remain healthy, clean and a safe place to work or reside. On the contrary, this also causes the value of your building higher that keep up regular maintenance. For this constraint, the designers measured the maintenance cost by multiplying the 15% of total estimate cost to overall estimate cost divided by the designed life span. 3.1.1.5 Risk Assessment (Deflection) Safety is taken into consideration since most of the time in designing for accidents cannot be avoided. Upon the evaluation of the designer, the constraint is based on the deflection to prevent structural damage caused by loads. Considering the safety of the workers and the future occupants illustrates the quality of the project and quality of the designer as an engineer without sacrificing the risks of the occupants in the future. And this also engaged with the cost because the less deflection the less cost to be construct vise-

45

versa, but the large beam can carry heavy loads compared to small beams. But the designer must be considered the safety of the users and how it takes over a period of time to be stable. 3.1.2 Qualitative Constraints Qualitative constraints are used to gain an understanding of underlying reasons, opinions, and motivations. It provides insights into the problem or helps to develop ideas or hypotheses for potential quantitative research. 3.1.2.1 Social Constraint The location of the project has residents living within the area and it is just right beside a main road. The designers considered social as a constraint because those people living and passing by the area may complain about the project during its construction as it may be seen as a hazard especially during rainy days and it's possible to cause heavy traffic. 3.1.2.2 Ethical Constraint The project was located on the Bagong Nayon, Cogeo and it lies with some private properties on its side. Therefore, the designers need to make sure that upon the construction of the project, the structure must not affect or damage any other properties near the construction area. 3.1.2.3 Political Constraint This being a government project, it is important to consider the political constraint in designing and building a public structure. The designers have to assure the public that the project does not endorse any political party and its candidates, that this project is purely for the benefit of the public and the infrastructures of the country. 3.2 TRADEOFFS To address these multiple constraints, the designers came up with two specialization of trade-offs; Structural Engineer Geo-technical. There are three alternatives for each specialization that were chosen by the designer to satisfy the constraints and also, this will help the client to decide for the best option that will be used for the design. The designer chose the following tradeoffs. 3.2.1 Structural Engineering Context (Moment Resisting Frame) A moment frame is a special type of frame that uses rigid connections between each of its constituent members. This configuration is able to resist lateral and overturning forces because of the bending moment and shear strength that is inherent in its members and the connecting joints. Therefore, the stiffness and strength of the moment frame in seismic design depends on the stiffness and strength of its members.

46

3.2.1.1Special Reinforced Concrete Moment Frame (SMRF) The Special Moment-Resisting Frame System (SMRF) is a type of frame system detailed to provide ductile behavior and comply with requirements in Chapter 4 or 5 of National Structural Code of the Philippines (NSCP). The ductile behavior is the response to stress of concrete material which undergoes permanent deformation without fracturing. Also, ductile behavior of concrete is enhanced in high confining pressures combined with high temperatures and low rates of strain. Special Moment Resisting Frames are designed so that beams, columns, and beam-column joints in moment frames are proportioned and detailed to resist flexural, axial, and shearing actions that result as a building sways through multiple displacement cycles during strong earthquake ground shaking.

Figure 3.1 Special Moment Resisting Concrete Frame Source: https://www.researchgate.net/figure/Reinforcement-details-for-columns_fig1_270393949

Advantages ● Shear failure can be avoided through use of a capacity-design approach

Disadvantages ● It is a higher cost compared to other framing systems. 47

● It can avoid anchorage or splice failure ● It can attain the design of a strong column and weak beam frame because if columns provide a stiff and strong spine over the building height, drift will be more uniformly distributed and localized damage will be reduced ● Plain concrete has relatively small usable compressive strain capacity (around 0.003), and this might limit the deformability of beams and columns of special moment frames.

● Splices in special moment frame columns also can be critical to system performance. It is important to note that, in many cases, the primary demand on steel special moment frame columns is flexure, or flexure combined with axial tension, rather than axial compression. In effect, these columns act as “vertical beams” rather than classical columns. ● Proper detailing of the welds between the doubler plates and the column web, column flanges, and/or continuity plates is needed to ensure that force transfers through this highly stressed region can be achieved

Table 3.1 Advantages Disadvantages of SMRF Source: https://www.nehrp.gov/pdf/nistgcr9-917-3.pdf 3.2.1.2 Dual System with Intermediate Moment Frames A concrete moment resisting frame designed in accordance with Sec 8.3.10

Figure 3.2 Intermediate Moment Resisting Concrete Frame 48

Source: https://www.researchgate.net/figure/Reinforcement-details-for-columns_fig1_270393949

Advantages ● IMRCF column specimens had strength larger than that required by ACI 318, and they had drift capacities greater than 4.5% ● Lightweight

Disadvantages ● Labor intensive construction ● increase of concrete strength even with relative decrease of structural weight will lead to increase of structural construction cost.

Table 3.2 Advantages Disadvantages of IMRF Source: https://www.researchgate.net/publication/287223306_Optimal_Design_of_Intermediate_Reinforced_Concr ete_Moment_Resisting_Frames_with_Shear_Walls_for_Different_Arrangements_of_Columns 3.2.1.3 Dual System with Special Reinforced Concrete Shear Walls Essentially complete frame provides support for gravity loads, and resistance to lateral loads is provided by a specially detailed moment-resisting frame and shear walls or braced frames.

Figure 3.3 Dual System Special Reinforced Concrete Shear Walls Source: https://theconstructor.org/structural-engg/high-rise-buildings-structural-systems/23076/

49

Advantages ● Lightweight ● Easier Retrofit ● Adaptable to architectural layout

Disadvantages ● High construction cost ● Long Construction Period

Table 3.3 Advantages Disadvantages of Dual System Special Reinforced Concrete Shear Walls Source: https://www.researchgate.net/publication/251508673_Seismic_Behaviors_of_Columns_in_Ordinary_and_I ntermediate_Moment_Resisting_Concrete_Frames 3.2.2 Geotechnical Engineering Context (Ground Improvement) This field deals with the bearing capacity of soil and defining its strength to resist deformation. 3.2.2.1 Vibro Replacement Vibro Replacement is a method of constructing densely compacted stone columns using a depth vibrator to densify the aggregate backfill and surrounding granular soil. The technology is used to treat clays, silts and mixed stratified soils and improve their load bearing and settlement characteristics. Application: ● Suitable for very weak, cohesive and organic soils. ● The allowable bearing pressure after improvement is typically in a range of 150 to 400kPa ● Off-shore compaction for quay walls and bridge abutments ● Liquefaction mitigation

50

Figure 3.4 Vibro Replacement Source: https://www.google.com/search? q=vibro+replacement+picture&rlz=1C1CHBF_enPH854PH854&source=lnms&tbm=isch&sa=X&ved=2ahU KEwjDk73s6c7nAhXsKqYKHcSjC3IQ_AUoAXoECA0QAw&biw=1536&bih=754#imgrc=QMnP6HbpoiBa6M

Advantages

Disadvantages

● An effective treatment for soft/weak soils at depths of 2m >20m.

● Vibro-compaction is only effective on granular and non-cohesive soils.

● Optimised and localised treatment solution for differing soils.

● Densification generally cannot be achieved when the granular soil contains more than 12 to 15 percent silt or more than 2 percent clay.

● Highly economical and often results in greater time savings. ● Reduces the risk of seismically induced liquefaction. ● Minimal noise and vibration. ● Allows high production rates being quicker to complete than piling.

● A comprehensive analysis of the soil profile is needed with continuous sampling or in-situ testing. ● Not suitable for sites with contaminated land if vibratory techniques use water jetting.

51

Table 3.4 Advantages and Disadvantages of Vibro Replacement Source:https://www.premierguarantee.com/resource-hub/advantages-and-disadvantages-of-vibro-piling/ 3.2.2.2 Wet Soil Mixing Wet soil mixing or also known as deep mixing method is a ground improvement technique that uses dry cementitious binder to create soilcrete that improves high moisture clays and other weak soils by mechanically mixing. It can be used in nearly any soil type, including organics. Stiff soils and obstruction must be pre-drilled ahead of soil mixing process. Application ● Increase bearing capacity ● Decrease settlement ● Mitigate liquefaction ● Provide structural support ● Reduce permeability

Figure 3.5 Wet Soil Mixing Source: https://www.google.com/search?biw=1366&bih=608&tbm 52

=isch&sxsrf=ACYBGNTmSsL3NMIdupemtoFHjGMKX35BFg %3A1571353878510&sa=1&ei=FvWoXe3jHpP6wQOBsrT4BA&q=wet+soil+mixing&oq=wet+&gs_l=img.1.0 .35i39j0i67j0l8.13857.15699..16301...0.0..0.199.518.4j1......0....1..gws-wiz-img.......0i10.-wvkKys8Bhs

Advantages ● Can be used up to a depth of 30m and by theory can be used for most subsurface ● Low vibration and noise ● Reduced in amount of waste materials ● Economical than remove and replaced

Disadvantages ● High cost of mobilization ● Uneconomical for small structur ● Design verification is subjective ● Must have in depth investigation of geotechnical report

Table 3.5 Advantages and Disadvantages of Wet Soil Mixing Source: https://www.dot.ny.gov/divisions/engineering/technical-services/geotechnical-engineeringbureau/geotech-eng-repository/GDM_Ch-14_Ground%20Improvement.pdf

3.2.2.3 Jet Grouting Jet grouting is a ground improvement or soil stabilization method. Jet grouting is a method of soil stabilization which involves the injection of a stabilizing fluid into the subsoil (or the soil under treatment) under high pressure under high velocity. The injection process involves a certain amount of site preparation as well as injection equipment. Application     

For construction of horizontal barriers Control of groundwater Underpinning Tunneling Support for excavation

53

Figure 3.6 Jet Grouting Source: https://www.google.com/search? q=jet+grouting&rlz=1C1CHBF_enPH854PH854&source=lnms&tbm=isch&sa=X&ved=2ahUKEwjkka247s7 nAhVExIsBHSVID_EQ_AUoAXoECA8QAw&biw=1536&bih=754#imgrc=HPEtbwMOSOJ7cM

Advantages

Disadvantages

● Large cemented material column creation without causing huge ground disturbances (subsoil)

● limited depth

● Columns form continuous elements forming in different shapes thus improving the mechanical properties and decreasing porosity.

● availability of the equipment

● weak in tensile strength

● it cannot use in small area projects

● Improvement in construction process thus emerging out with a better design philosophy ● It’s attractive nature in terms of confined space working and under difficult site conditions

54

Table 3.6 Advantages and Disadvantages of Jet Grouting Source: https://theconstructor.org/geotechnical/jet-grouting-procedure-advantages/14470/ 3.3 RAW DESIGNERS RANKING Based on the constraints stated above, three construction methodologies were considered on the structural framing system to be design to satisfy the requirements of cost, speed of construction, life span and structural safety. Using the model on trade off strategies in engineering design by Otto and Antonsson (1991), the importance of each criterion (on scale 1 to 5, 5 with the highest importance) was assigned and each design methodology’s ability to satisfy the criterion.

Figure 3.7 Ranking Scale

After considering the design constraints, the designers performed an initial evaluation of the two framing system based on the constraints above and came up with the raw designer’s ranking shown in the table below. The outcome of the set criterion therefore will constitute the decision of the client and the designers. Above all, economical, will be given an importance value of 10. Safety or risk assessment will be given an importance value of 9, sustainability constraints and constructability will be given an importance value of 8, and lastly, environmental assessment will be given an importance value of 8

Design Criteria

Criterion’s Importance (on a scale of 0 to 10)

Economic Safety Sustainability Constructability

10 9 9 9

Ability to satisfy the criterion (on a scale of 0 to 10) Special Reinforced Dual System with Dual System with Concrete Moment Intermediate Special Moment Frame Moment Frame Frame 7 8 9 9 7 6 8 7 6 6 6 5 55

Environmental assessment Overall Rank

8

7

7

7

313

297

283

Table 3.7: Designer’s Raw Ranking

Cost Special Reinforced Concrete Moment Frame

Dual System with Intermediate Moment Frame

Dual System with Special Moment Frame

Economic

Php 2,440,595.00

Php 2,616,075.00

Php 3,036,999.00

Constructability

95 days

98 days

102 days

Safety

7.06 mm

9.09 mm

11.26 mm

Sustainability

Php 12,200.00

Php 12,900.00

Php 12,750.00

Environmental Assessment

35.94 kg of CO2 per km

43.13 35.94 kg of CO2 per km

40.25 35.94 kg of CO2 per km

Constraint

Table 3.8: Initial Estimate Value

Cost Difference of Trade off A and Trade off B % difference=

higher value−lower value ×10 higher value

% difference=

2616075−2440595 ×10 2616075

% difference=0.67 Subordinaterank =Governing rank −%difference Subordinate rank =10−0.67 Subordinaterank =9.33 56

Cost Difference of Trade off B and Trade off C % difference=

higher value−lower value ×10 higher value

% difference=

3036999−2616075 ×10 3036999

% difference=1.39 Subordinate rank =Governing rank −%difference Subordinate rank =10−1.96 Subordinate rank =8.04

Cost Difference of Trade off A and Trade off C % difference=

higher value−lower value ×10 higher value

% difference=

3036999−2440595 ×10 3036999

% difference=1.39 Subordinate rank =Governing rank −%difference 57

Subordinate rank =10−1.3 Subordinaterank =8.61

Duration Difference of Trade off A and Trade off B % difference=

higher value−lower value ×10 higher value

% difference=

98−95 × 10 98

% difference=0.31=1 Subordinate rank =Governing rank −%difference Subordinate rank =10−1 Subordinate rank =9

Duration Difference of Trade off B and Trade off C % difference=

higher value−lower value ×10 higher value

% difference=

102−98 ×10 102

% difference=0.4=1 58

Subordinate rank =Governing rank −%difference Subordinate rank =10−1 Subordinate rank =9

Duration Difference of Trade off A and Trade off C % difference=

higher value−lower value ×10 higher value

% difference=

102−95 ×10 102

% difference=0.69=1 Subordinaterank =Governing rank −%difference Subordinate rank =10−1 Subordinate rank =9

Safety Difference of Trade off A and Trade off B % difference=

higher value−lower value ×10 higher value

59

% difference=

9.09−7.06 ×10 9.09

% difference=2.23=3 Subordinaterank =Governing rank −%difference Subordinate rank =10−3 Subordinate rank =7

Safety Difference of Trade off B and Trade off c % difference=

higher value−lower value ×10 higher value

% difference=

11.26−9.09 × 10 11.26

% difference=1.92=2 Subordinate rank =Governing rank −%difference Subordinaterank =10−2 Subordinate rank =8

Safety Difference of Trade off A and Trade off C 60

% difference=

higher value−lower value ×10 higher value

% difference=

11.26−7.06 × 10 11.26

% difference=3.73=4 Subordinaterank =Governing rank −%difference Subordinate rank =10−4 Subordinate rank =6

Sustainability Difference of Trade off A and Trade off B % difference=

higher value−lower value ×10 higher value

% difference=

12900−12200 ×10 12900

% difference=0.5=1 Subordinaterank =Governing rank −%difference Subordinate rank =10−1 Subordinate rank =9

61

Sustainability Difference of Trade off B and Trade off C % difference=

higher value−lower value ×10 higher value

% difference=

12900−12750 ×10 12900

% difference=0.11 Subordinaterank =Governing rank −%difference Subordinate rank =10−1 Subordinate rank =9

Sustainability Difference of Trade off A and Trade off C % difference=

higher value−lower value ×10 higher value

% difference=

12750−12200 ×10 12750

% difference=0.43=1 Subordinate rank =Governing rank −%difference Subordinate rank =10−1 Subordinate rank =9

62

Design Criteria Economic

Ability to satisfy the criterion (on a scale 0 to 10) Criterion’s Importance (on a Vibroscale of 0 to 10) Wet Soil Mixing Jet Grouting Replacement 10 2.6 1.53 2.6

Safety

9

Sustainability

9

Constructability

8

Over-all Rank

Trade-offs GEOTECHNICAL SYSTEM

8.45

1.62

1.92

10

8.33

8.33

9.18

9.41

9.38

246

162.39

175.58

Design constraints Economic Sustainability Cost (Php) Bearing capacity (Kpa)

Low Mobility 672.30 per 861.8 Compaction cubic yard Wet Soil Mixing Preloading of soil

2585.78 per 1019.89 cubic yard 395.62 per cubic yard 165.6

Constructability (Duration - days)

50

Safety Service life - years

75

50

85

60

80

63

3.3.1 Computation for Ranking of Economic Constraints (Vibro Replacement vs. WSM) % difference=

HigherValue−LowerValue x 10 HigherValue

% difference=

2585.78−672.30 x 10 2585.78

% difference=7.4 SubordinateRank=GoverningRank −( % difference ) SubordinateRank=10−7.4 SubordinateRank=2.6

Computation for Ranking of Economic Constraint (WSM vs Jet Grouting) % difference=

HigherValue−LowerValue x 10o HigherValue

% difference=

2585.78−395.62 x 10 2585.78

% difference=8.47

SubordinateRank=GoverningRank −( % difference ) SubordinateRank=10−8.47 SubordinateRank=1.53 ≈ 1

64

3.3.2 Computation for Ranking of Economic Constraint (Jet Grouting vs Vibro-Replacement) % difference=

HigherValue−LowerValue x 10 HigherValue

% difference=

2585.78−672.30 x 10 2585.78

% difference=7.4 SubordinateRank=GoverningRank −( % difference ) SubordinateRank=10−7.4 SubordinateRank=2.6

3.3.3 Computation for Ranking of Sustainability Constraint (Vibro-Replacement vs. WSM) % difference=

HigherValue−LowerValue x 10 HigherValue

% difference=

1019.89−861.8 x 10 1019.89

% difference=1.55 SubordinateRank=GoverningRank −( % difference ) SubordinateRank=10−1.55 SubordinateRank=8.45

65

3.3.4 Computation for Ranking of Sustainability Constraint (WSM vs Jet Grouting) % difference=

HigherValue−LowerValue x 10 HigherValue

% difference=

1019.89−165.6 x 10 1019.89

% difference=8.38 SubordinateRank=GoverningRank −( % difference ) SubordinateRank=10−8.38 SubordinateRank=1.62 ≈ 1

Computation for Ranking of Sustainability Constraint (Jet Grouting vs Vibro-Replacement) % difference=

HigherValue−LowerValue x 10 HigherValue

% difference=

861.8−165.6 x 10 861.8

% difference=8.08 SubordinateRank=GoverningRank −( % difference ) SubordinateRank=10−8.08 SubordinateRank=1.92 ≈ 1

66

3.3.5 Computation for Ranking of Constructability Constraint (Vibro-Replacement vs WSM) % difference=

HigherValue−LowerValue x 10 HigherValue

% difference=

50 days−50 days x 10 50 days

% difference=0 SubordinateRank=GoverningRank −( % difference ) SubordinateRank=10 SubordinateRank=10

3.3.6 Computation for Ranking of Constructability Constraint (WSM vs Jet Grouting) % difference=

HigherValue−LowerValue x 10 HigherValue

% difference=

60 days−50 days x 10 60 days

% difference=1.67 SubordinateRank=GoverningRank −( % difference ) SubordinateRank=10−1.67 SubordinateRank=8.33 ≈ 8

67

3.3.7 Computation for Ranking of Constructability Constraint (Jet Grouting vs Vibro-Replacement) % difference=

HigherValue−LowerValue x 10 HigherValue

% difference=

60 days−50 days x 10 60 days

% difference=1.67 SubordinateRank=GoverningRank −( % difference ) SubordinateRank=10−1.67 SubordinateRank=8.33 ≈ 8

3.3.8 Computation for Ranking of Safety Constraint (Vibro-Replacement vs WSM) % difference=

HigherValue−LowerValue x 10 HigherValue

% difference=

85 years−75 years x 10 85 years

% difference=.82 SubordinateRank=GoverningRank −( % difference ) SubordinateRank=10−.82 SubordinateRank=9.18

68

3.3.9 Computation for Ranking of Safety Constraint (WSM vs Jet Grouting) % difference=

HigherValue−LowerValue x 10 HigherValue

% difference=

85 years−80 years x 10 85 years

% difference=0.59 SubordinateRank=GoverningRank −( % difference ) SubordinateRank=10−0.59 SubordinateRank=9.41≈ 9

3.3.10 Computation for Ranking of Safety Constraint (Jet Grouting vs Vibro-Replacement) % difference=

HigherValue−LowerValue x 10 HigherValue

% difference=

80 years−75 years x 10 80 years

% difference=0.63 SubordinateRank=GoverningRank −( % difference ) SubordinateRank=10−0.63 SubordinateRank=9.38≈ 9

69

3.3.11 Tradeoffs Assessment The governing rank is the subjective choice of the designers in appointing the value for the criterion’s importance and the ability to satisfy the criterion, the designers would subjectively choose any desired value. In this case, economic constraint was given an importance of ten (10). Also, risk assessment constraint was given importance of nine (9) for the quality and integrity of the project. The constructability constraint is given an importance of nine (9) since it will be based on the duration of construction phase. The sustainability constraint is given an importance of nine (9) since the life span of the building in different factors arises will determine if the project is sustainable or not, and lastly the environmental assessment was given an importance factor of eight (8). 3.4 DESIGN STANDARDS The designers come up with the design of the fire station building with accordance to the following codes and standards:

The National Building Code of the Philippines (PD 1096). The National Building Code of the Philippines, also known as Presidential Decree No. 1096 was formulated and adopted as a uniform building code to embody up-to-date and modern technical knowledge on building design, construction, use, occupancy and maintenance. The Code provides for all buildings and structures, a framework of minimum standards and requirements to regulate and control location, site, design, and quality of materials, construction, use, occupancy, and maintenance. The National Structural Code of the Philippines. This code provides minimum standards to safeguard life or limb, property and public welfare by regulating and controlling the design, construction, quality of materials pertaining to the structural aspects of all buildings and structures within its jurisdiction. The provision of this code shall apply to the construction, alteration, moving, demolition, repair, maintenance and use of any building or structure within its jurisdiction, except work located primarily in a public way, public utility towers and poles, hydraulic flood control structures, and indigenous family dwellings.

70

CHAPTER 4: DESIGN OF STRUCTURE 4.1 DESIGN METHODOLOGY (Structural Context) The structure was designed with accordance to various codes and standards, codes provided in this design project. The structure was designed as reinforced concrete using ultimate stress design (USD). The codes and standards that were used in the design process are specified in Chapter 3

DESIGN SPECIFICATIONS

MATERIAL PROPERTIES

STRUCTURAL MODEL

LOAD MODELS

STRUCTURAL ANALYSIS

STRUCTURAL DESIGN Figure 4.1 Design Process In designing the structure, the designer provided a flow chart which shows the respective design stage process. The design starts with conceptualizing what structure is to be built and what functions in order to what geometric modelling is appropriate for the structure. In geometric modelling, the frame was conceptualized with accordance to the National Building Code of the Philippines (NBCP) and the design specifications was conformed to the National Structural Code of the Philippines (NSCP 2015). The designer used a structural software STAAD Pro v8i for the geometric modelling and structural analysis to calculate the needed values for the structural design. The designer has used different load combination specified by the code in generating the structural data to be used in the structural design. The design process takes place after gathering the values generated by the software.

71

4.2 DESIGN OF TRADEOFF 1 (SPECIAL MOMENT RESISTING FRAME)

Figure 4.2 3D Rendered view of the Reinforced Concrete SMRF Structure 4.2.1 Design Specification

Figure 4.3 Design Properties in STAAD Pro ELEMENT COLUMN

DIMENSION 450mm x 450mm

MATERIAL Concrete 72

BEAM SLAB

400mm x 250mm 150 mm (Thickness) Table 4.1 Design Properties

Concrete Concrete

4.2.2 Design Loads The Design Loads and Parameters shown are project design inputs from the National Structural Code of the Philippines (NSCP) 2015.

Figure 4.4 Dead Load input in STAAD Pro Member Load st

th

Components (1  to 2 floor)

Design Load (KPa)

Frame Walls Windows, Glass, Frame and Sash

0.38

Concrete Masonry Unit CHB Wall, 150mm, Full Grout (Plastered both sides)

3.11

CHB Wall, 100mm, Full Grout (Plastered both sides)

2.98

Wall covering Waterproofing Membrane: Bituminous smooth surface

0.07

Table 4.2 Member Loads Floor Load Components (1st to 2th floor)

Design Load (KPa)

73

Ceilings Gypsum board (per mm thickness)

0.008

Plaster on tile or concrete

0.24

Floor Fills Lightweight Concrete, per mm

0.015

Floor and Floor Finishes Cement Finish (25MM) on stone concrete fill

1.53

Frame Partitions Wood or Steel studs, 13 mm gypsum board each side

0.38

Frame Walls Windows, Glass, Frame and Sash

0.38

Total Dead Load

2.553

Table 4.3 Dead Loads 4.2.3 Live Loads The maximum live loads expected by the intended use or occupancy based on section 205 of the code. Below are the occupancy descriptions and the equivalent design live loads in KPa:

Figure 4.5 Live Load input in STAAD Pro Use or Occupancy Description

Description

Design Load (KPa)

74

Parking garages and ramps Roof Decks

Public parking and ramps Same as area served or occupancy (Other offices) Table 4.4: Minimum Design Live Loads

Office 4.2.4

4.8 -2.4

Seismic load parameter

Figure 4.6 Seismic Parameters in STAAD Pro Parameters Importance Factor Soil Profile Type Seismic Zone Seismic source type Near Source Factor (Na) Near Source Factor (Nv) Seismic Coefficient (Ca) Seismic Coefficient (Cv) R (Special Reinforced Concrete Moment Frame) Numerical Coefficient (Ct) Table 4.5 Seismic Parameters

1.5 Stiff Soil, Sd ZONE 4: Z=0.4 A 1.2 1.6 0.44Na = 0.53 0.64 Nv = 1.02 8.5 .0731

4.2.5 Load Combination The following table defines the different types of load combination used in the structural analysis of the building. All these combinations will be applied and the designer will determine the load combination that 75

will produce the maximum stress in the building. This governing load combination will then be used to calculate the member forces for the design.

Figure 4.7 NSCP 2015 Load Combination generated in STAAD Pro

Figure 4.8 NSCP 2015 generated Drift code in STAAD Pro

76

Figure 4.9 NSCP 2015 – ACI-FOOTING Load Combination code generated in STAAD Pro

4.2.6 Structural Analysis The parameters that were previously stated in this chapter were now then used for the structural analysis of the configuration using computer software (STAAD). The designer defined all load combinations, seismic and wind load definitions, dead and live loads and trial structural members to obtain the member forces that will be used in the design. The following figures show the highlights of the structural analysis process.

77

Figure 4.10 Allowable drift factor in NSCP 2015

78

Δs = Δm / (0.7 x R) Where: Δm = 0.025h or h/40, if T < 0.7 sec Δm = 0.020h or h/50, if T > 0.7 sec T = fundamental period of building h = structural height Ct = .0731 T = Ct(H).75 = .0731(8.5).75 = 0.364 < 0.7 Δs = Δm / (0.7 x R) = 1 / 0.7 x 8.5 x 40 = .0042

Figure 4.11 Allowable drift factor input in STAAD Pro

79

Figure 4.12 Maximum Shear Forces result in STAAD Pro

Figure 4.13 Maximum Bending Moment result in STAAD Pro

80

Figure 4.14 Earthquake force at x-direction result in STAAD Pro

Figure 4.15 Earthquake force at z-direction result in STAAD Pro

81

Figure 4.16 Dead Load

Figure 4.17 Live Loads

82

Figure 4.18 1.4 DL

Figure 4.19 1.2 DL + 1.2 LL

83

Figure 4.20 1.42 DL + .5 LL + 1.25 EQ

Figure 4.21 1.42 DL + .5 LL - 1.25 EQ

84

Figure 4.22 1.42 DL + 1.25 EQ

Figure 4.23 1.42 DL - 1.25 EQ

85

Figure 4.24 0.68 DL + 1.25 EQ

4.2.6.1 STAAD Pro Results

Figure 4.25 0.68 DL - 1.25 EQ

86

Figure 4.26 Center of Mass Result

Figure 4.27 Center of Mass Result

87

Figure 4.28 Center of Rigidity result

88

Figure 4.29 Storey Drift Check

Figure 4.30 Soft storey Check

89

Figure 4.31 Design Base Shear in NSCP 2015

Check: W = 6554.58 kN I = 1.5 R = 8.5 Na = 1.2 Nv = 1.6 Ca = 0.44Na = 0.53 Cv = 0.64Nv = 1.02 T = 0.364 V = Cv(I)(W) / RT = 3241.23 kN (design base shear) V = 2.5Ca(I)(W) / R = 1526.83 kN (maximum design base shear) GOVERNS! V = 0.11Ca(I)(W) = 571.03 kN (minimum design base shear) V = 0.8ZNV(I)(W) / R = 444.16 kN (minimum design base shear) 4.2.7 Structural Design

After analyzing the structure using STAAD Pro, the designers used the STAAD RCDC for designing the beams, columns, slabs and walls. 4.2.7.1 Design of Beam

90

Figure 4.32 Design process of singly reinforced beams

Figure 4.33 Design process of doubly reinforced beams

91

Figure 4.34 Design process of shear reinforcement

92

Figure 4.35 Beam Layout Result in STAAD RCDC BEAM DESIGN SUMMARY 93

Group No

:

G1

:

4

Breadth

:

250

mm

Depth

:

400

mm

Material Properties

:

C20 : Fy420 : Clear Cover = 40 mm

Design Code

:

ACI 318M - 2011

Beam Type

:

Ductile Beam

Analysis Reference(Member)

5.5m

Flexure Design Beam Bottom Left

Mid

Right

Beam Top Left

Mid

Right

Mu (kN)

99.84 74.56 91.69 175.097 58.861 190.265 1 3

PtClc (%)

1.13

Ast Calc (sqmm)

929.8 1013.4 663.7 1681.99 510.96 1820.35 5 2

Ast Prv (sqmm)

992.8 992.8

0.8

1.02

2.04

0.619

2.21

1191.3 2026.84 573.04 2026.84 6

Reinforcement 3-#16 3-#16 3-#16 2-#25 2-#19 2-#25 2-#16 2-#16 3-#16 2-#25 2-#25   Shear Design

Vu (kN) Asv Torsion (sqmm) Asv Reqd (sqmm)

Left

Mid

Right

112.84

104.04

119.2

0

0

0

616.788

486.998

669.374 94

Asv Prv (sqmm)

1417.6

1134.08

1417.6

Reinforcement

2L-#10 @ 100

2L-#10 @ 125

2L-#10 @ 100

  SFR

: -

Beam No

:

B2

Group No

:

G1

:

5

Breadth

:

250

mm

Depth

:

400

mm

Material Properties

:

C20 : Fy420 : Clear Cover = 40 mm

Design Code

:

ACI 318M - 2011

Beam Type

:

Ductile Beam

Analysis Reference(Member)

5.5m

Flexure Design Beam Bottom Left Mu (kN)

85.755

Mid

Right

Beam Top Left

Mid

Right

65.38 178.26 56.71 79.01 165.86 6 5 5

PtClc (%)

0.94

0.7

0.86

2.07

0.595

1.94

Ast Calc (sqmm)

1013.42

573.4 1710.8 490.7 1013.42 1597.73 1 9 2

Ast Prv (sqmm)

1191.36

595.6 2026.8 573.0 1191.36 2026.84 8 4 4

Reinforcemen 3-#16 3-#16 3-#16 2-#25 2-#19 2-#25 95

t

3-#16

3-#16 2-#25

2-#25

  Shear Design Left

Mid

Right

111.77

96.61

110.24

0

0

0

Asv Reqd (sqmm)

614.384

416.629

615.282

Asv Prv (sqmm)

1417.6

1134.08

1417.6

Reinforcement

2L-#10 @ 100

2L-#10 @ 125

2L-#10 @ 100

Vu (kN) Asv Torsion (sqmm)

  SFR

: -

Beam No

:

B3

Group No

:

G1

:

6

Breadth

:

250

mm

Depth

:

400

mm

Material Properties

:

C20 : Fy420 : Clear Cover = 40 mm

Design Code

:

ACI 318M - 2011

Beam Type

:

Ductile Beam

Analysis Reference(Member)

5.5m

Flexure Design Beam Bottom

Beam Top

96

Left

Mid

Right

Left

Mid

Right

Mu (kN)

85.60 84.25 110.49 181.309 66.421 187.834 3 3

PtClc (%)

0.94

Ast Calc (sqmm)

776.5 762.4 1051.2 1738.66 583.45 1798.18 4 8 3

Ast Prv (sqmm)

992.8 992.8

0.92

1.27

2.11

0.707

2.18

1191.3 2026.84 794.24 2026.84 6

Reinforcement 3-#16 3-#16 3-#16 2-#25 2-#16 2-#25 2-#16 2-#16 3-#16 2-#25 2-#16 2-#25   Shear Design Left

Mid

Right

119.39

104.24

114.37

0

0

0

Asv Reqd (sqmm)

668.632

479.578

624.347

Asv Prv (sqmm)

1417.6

1134.08

1417.6

Reinforcement

2L-#10 @ 100

2L-#10 @ 125

2L-#10 @ 100

Vu (kN) Asv Torsion (sqmm)

  SFR

: -

Beam No

:

B4

Group No

:

G2

:

25

Analysis Reference(Member)

5.5m

97

Breadth

:

250

mm

Depth

:

400

mm

Material Properties

:

C20 : Fy420 : Clear Cover = 40 mm

Design Code

:

ACI 318M - 2011

Beam Type

:

Ductile Beam

Flexure Design Beam Bottom Left Mu (kN)

115.236

PtClc (%)

1.34

Mid

Right

Beam Top Left

Mid

Right

84.79 202.58 67.43 102.84 204.676 3 7 6 0.93

1.17

2.34

0.719

2.37

Ast Calc (sqmm)

1107.45 768.1 1013.42

1932.7 593.3 1951.82 6 3

Ast Prv (sqmm)

1191.36 992.8 1191.36

2026.8 794.2 2026.84 4 4

Reinforcemen 3-#16 3-#16 3-#16 2-#25 2-#16 2-#25 t 3-#16 2-#16 3-#16 2-#25 2-#16 2-#25   Shear Design Left

Mid

Right

120.95

116.6

124.98

0

0

0

Asv Reqd (sqmm)

688.643

603.402

726.284

Asv Prv (sqmm)

1417.6

1134.08

1417.6

Vu (kN) Asv Torsion (sqmm)

98

Reinforcement

2L-#10 @ 100

2L-#10 @ 125

2L-#10 @ 100

  SFR

: -

Beam No

:

B5

Group No

:

G2

:

26

Breadth

:

250

mm

Depth

:

400

mm

Material Properties

:

C20 : Fy420 : Clear Cover = 40 mm

Design Code

:

ACI 318M - 2011

Beam Type

:

Ductile Beam

Analysis Reference(Member)

5.5m

Flexure Design Beam Bottom Left Mu (kN) PtClc (%)

90.278 1

Mid

Right

Beam Top Left

Mid

Right

68.74 189.05 58.95 82.81 180.62 3 9 3 0.73

0.91

2.19

0.62

2.1

Ast Calc (sqmm)

1013.42 606.1 1013.42

1809.3 511.8 1732.37 5 3

Ast Prv (sqmm)

1191.36 992.8 1191.36

2026.8 573.0 2026.84 4 4

Reinforcemen 3-#16 3-#16 3-#16 2-#25 2-#19 2-#25 t 3-#16 2-#16 3-#16 2-#25 2-#25   Shear Design

99

Left

Mid

Right

114.54

106.16

114.28

0

0

0

Asv Reqd (sqmm)

667.152

505.249

667.298

Asv Prv (sqmm)

1417.6

1134.08

1417.6

Reinforcement

2L-#10 @ 100

2L-#10 @ 125

2L-#10 @ 100

Vu (kN) Asv Torsion (sqmm)

  SFR

: -

Beam No

:

B6

Group No

:

G2

:

27

Breadth

:

250

mm

Depth

:

400

mm

Material Properties

:

C20 : Fy420 : Clear Cover = 40 mm

Design Code

:

ACI 318M - 2011

Beam Type

:

Ductile Beam

Analysis Reference(Member)

5.5m

Flexure Design Beam Bottom Left Mu (kN) PtClc (%)

Mid

Right

Beam Top Left

Mid

Right

78.04

70.60 178.84 53.94 88.21 176.839 2 7 8

0.85

0.76

0.97

2.08

0.563

2.06 100

Ast Calc (sqmm)

1013.42

624.3 464.8 1013.42 1716.2 1697.88 6 4

Ast Prv (sqmm)

1191.36 992.8 1191.36

2026.8 573.0 2026.84 4 4

Reinforcemen 3-#16 3-#16 3-#16 2-#25 2-#19 2-#25 t 3-#16 2-#16 3-#16 2-#25 2-#25   Shear Design Left

Mid

Right

114.3

105.92

110.92

0

0

0

Asv Reqd (sqmm)

666.074

492.767

668.376

Asv Prv (sqmm)

1417.6

1134.08

1417.6

Reinforcement

2L-#10 @ 100

2L-#10 @ 125

2L-#10 @ 100

Vu (kN) Asv Torsion (sqmm)

  SFR

: -

Beam No

:

B7

Group No

:

G3

:

46

Breadth

:

250

mm

Depth

:

400

mm

Material Properties

:

C20 : Fy420 : Clear Cover = 40 mm

Design Code

:

ACI 318M - 2011

Analysis Reference(Member)

5.5m

101

Beam Type

:

Ductile Beam

Flexure Design Beam Bottom Left Mu (kN)

Mid

120.748

Right

Beam Top Left

Mid

Right

87.76 208.16 70.44 107.49 209.238 8 7 3

PtClc (%)

1.42

0.97

1.23

Ast Calc (sqmm)

1174.57

Ast Prv (sqmm)

1191.36 992.8 1191.36

2.4

0.755

2.42

799.2 1983.6 622.7 1016.36 1993.44 6 7 9 2026.8 794.2 2026.84 4 4

Reinforcemen 3-#16 3-#16 3-#16 2-#25 2-#16 2-#25 t 3-#16 2-#16 3-#16 2-#25 2-#16 2-#25   Shear Design Left

Mid

Right

123

118.61

126.99

0

0

0

Asv Reqd (sqmm)

708.876

623.699

745.93

Asv Prv (sqmm)

1417.6

1134.08

1417.6

Reinforcement

2L-#10 @ 100

2L-#10 @ 125

2L-#10 @ 100

Vu (kN) Asv Torsion (sqmm)

  SFR

Beam No

: -

:

B8 102

Group No

:

G3

:

47

Breadth

:

250

mm

Depth

:

400

mm

Material Properties

:

C20 : Fy420 : Clear Cover = 40 mm

Design Code

:

ACI 318M - 2011

Beam Type

:

Ductile Beam

Analysis Reference(Member)

5.5m

Flexure Design Beam Bottom Left Mu (kN) PtClc (%)

100.845 1.14

Mid

Right

Beam Top Left

Mid

Right

72.33 199.26 62.28 100.48 198.335 5 1 3 0.78

1.14

2.31

0.659

2.3

Ast Calc (sqmm)

1013.42 641.5 1013.42

1902.4 543.5 1893.98 2 4

Ast Prv (sqmm)

1191.36 992.8 1191.36

2026.8 573.0 2026.84 4 4

Reinforcemen 3-#16 3-#16 3-#16 2-#25 2-#19 2-#25 t 3-#16 2-#16 3-#16 2-#25 2-#25   Shear Design

Vu (kN) Asv Torsion (sqmm) Asv Reqd (sqmm)

Left

Mid

Right

120.11

111.73

119.96

0

0

0

680.134

559.283

678.52 103

Asv Prv (sqmm)

1417.6

1134.08

1417.6

Reinforcement

2L-#10 @ 100

2L-#10 @ 125

2L-#10 @ 100

  SFR

: -

Beam No

:

B9

Group No

:

G3

:

48

Breadth

:

250

mm

Depth

:

400

mm

Material Properties

:

C20 : Fy420 : Clear Cover = 40 mm

Design Code

:

ACI 318M - 2011

Beam Type

:

Ductile Beam

Analysis Reference(Member)

5.5m

Flexure Design Beam Bottom Left Mu (kN)

106.01

Mid

Right

Beam Top Left

Mid

Right

87.52 208.14 69.99 119.92 206.938 3 7 2

PtClc (%)

1.21

0.97

1.41

Ast Calc (sqmm)

1013.42

Ast Prv (sqmm)

1191.36 992.8 1191.36

2.4

0.75

2.39

796.6 1983.4 618.3 1164.38 1972.45 8 8 5 2026.8 794.2 2026.84 4 4

Reinforcemen 3-#16 3-#16 3-#16 2-#25 2-#16 2-#25 104

t

3-#16 2-#16 3-#16 2-#25 2-#16 2-#25

  Shear Design Left

Mid

Right

126.63

118.25

122.43

0

0

0

Asv Reqd (sqmm)

742.382

619.861

703.354

Asv Prv (sqmm)

1417.6

1134.08

1417.6

Reinforcement

2L-#10 @ 100

2L-#10 @ 125

2L-#10 @ 100

Vu (kN) Asv Torsion (sqmm)

  SFR

: -

Beam No

:

B10

Group No

:

G4

:

67

Breadth

:

250

mm

Depth

:

400

mm

Material Properties

:

C20 : Fy420 : Clear Cover = 40 mm

Design Code

:

ACI 318M - 2011

Beam Type

:

Ductile Beam

Analysis Reference(Member)

5.5m

Flexure Design Beam Bottom

Beam Top

105

Left Mu (kN)

Mid

118.094

Right

Left

Mid

Right

83.80 193.46 67.57 109.45 207.931 5 9 1

PtClc (%)

1.38

0.92

Ast Calc (sqmm)

1142

757.8 1849.5 594.6 1039.07 1981.51 3 8 4

Ast Prv (sqmm)

1.26

1191.36 992.8 1191.36

2.24

0.721

2.4

2026.8 794.2 2026.84 4 4

Reinforcemen 3-#16 3-#16 3-#16 2-#25 2-#16 2-#25 t 3-#16 2-#16 3-#16 2-#25 2-#16 2-#25   Shear Design Left

Mid

Right

120.07

111.22

126.38

0

0

0

Asv Reqd (sqmm)

678.253

560.083

739.955

Asv Prv (sqmm)

1417.6

1134.08

1417.6

Reinforcement

2L-#10 @ 100

2L-#10 @ 125

2L-#10 @ 100

Vu (kN) Asv Torsion (sqmm)

  SFR

: -

Beam No

:

B11

Group No

:

G4

:

68

Analysis Reference(Member)

5.5m

106

Breadth

:

250

mm

Depth

:

400

mm

Material Properties

:

C20 : Fy420 : Clear Cover = 40 mm

Design Code

:

ACI 318M - 2011

Beam Type

:

Ductile Beam

Flexure Design Beam Bottom Left Mu (kN)

95.432

Mid

Right

Beam Top Left

Mid

Right

72.09 188.67 63.82 81.03 167.268 8 1 1

PtClc (%)

1.07

0.77

0.88

Ast Calc (sqmm)

1013.42

Ast Prv (sqmm)

1191.36 992.8 1191.36

2.19

0.677

1.95

639.1 1805.8 558.3 1013.42 1610.57 6 2 1 2026.8 573.0 2026.84 4 4

Reinforcemen 3-#16 3-#16 3-#16 2-#25 2-#19 2-#25 t 3-#16 2-#16 3-#16 2-#25 2-#25   Shear Design Left

Mid

Right

114.3

99.14

112.41

0

0

0

Asv Reqd (sqmm)

623.955

446.118

615.39

Asv Prv (sqmm)

1417.6

1134.08

1417.6

Vu (kN) Asv Torsion (sqmm)

107

Reinforcement

2L-#10 @ 100

2L-#10 @ 125

2L-#10 @ 100

  SFR

: 1-#13EF

Beam No

:

B12

Group No

:

G4

:

69

Breadth

:

250

mm

Depth

:

400

mm

Material Properties

:

C20 : Fy420 : Clear Cover = 40 mm

Design Code

:

ACI 318M - 2011

Beam Type

:

Ductile Beam

Analysis Reference(Member)

5.5m

Flexure Design Beam Bottom Left

Mid

Right

Beam Top Left

Mid

Right

Mu (kN)

77.70 78.73 100.82 172.327 62.018 180.018 2

PtClc (%)

0.84

Ast Calc (sqmm)

695.2 705.7 1013.4 1656.72 541 1726.88 9 3 2

Ast Prv (sqmm)

992.8 992.8

0.86

1.14

2.01

0.656

2.09

1191.3 2026.84 573.04 2026.84 6

Reinforcement 3-#16 3-#16 3-#16 2-#25 2-#19 2-#25 2-#16 2-#16 3-#16 2-#25 2-#25   Shear Design

108

Left

Mid

Right

115.53

100.37

111.3

0

0

0

Asv Reqd (sqmm)

630.438

439.404

594.091

Asv Prv (sqmm)

1417.6

1134.08

1417.6

Reinforcement

2L-#10 @ 100

2L-#10 @ 125

2L-#10 @ 100

Vu (kN) Asv Torsion (sqmm)

  SFR

: -

Beam No

:

B13

Group No

:

G5

:

113

Breadth

:

250

mm

Depth

:

400

mm

Material Properties

:

C20 : Fy420 : Clear Cover = 40 mm

Design Code

:

ACI 318M - 2011

Beam Type

:

Ductile Beam

Analysis Reference(Member)

5.5m

Flexure Design Beam Bottom Left Mu (kN) PtClc (%)

Mid

Right

Beam Top Left

147.97 90.974 134.25 186.879 1.74

1.01

1.63

2.17

Mid

Right

77.06 197.06 9 0.835

2.28 109

Ast Calc (sqmm)

1434.52 833.28

1348.5 1789.47 688.9 1882.34 2

Ast Prv (sqmm)

1586.46 1013.42

1410.5 794.2 2026.84 2026.84 4 4

Reinforcemen 2-#25 2-#25 2-#25 2-#25 2-#16 2-#25 t 2-#19 2-#16 2-#25 2-#16 2-#25   Shear Design Left

Mid

Right

124

112.29

132.09

0

0

0

Asv Reqd (sqmm)

731.563

605.582

812.4

Asv Prv (sqmm)

1417.6

1134.08

1417.6

Reinforcement

2L-#10 @ 100

2L-#10 @ 125

2L-#10 @ 100

Vu (kN) Asv Torsion (sqmm)

  SFR

: -

Beam No

:

B14

Group No

:

G5

:

101

Breadth

:

250

mm

Depth

:

400

mm

Material Properties

:

C20 : Fy420 : Clear Cover = 40 mm

Design Code

:

ACI 318M - 2011

Analysis Reference(Member)

5.5m

110

Beam Type

:

Ductile Beam

Flexure Design Beam Bottom Left Mu (kN)

Mid

Right

Beam Top Left

Mid

134.429 79.289 134.56 188.158

PtClc (%)

1.64

0.86

1.64

2.18

Right

73.98 187.856 3 0.797

2.18

Ast Calc (sqmm)

1350.94 711.42

1352.6 1801.14 657.9 1798.38 8

Ast Prv (sqmm)

1410.54 1013.42

1410.5 794.2 2026.84 2026.84 4 4

Reinforcemen 2-#25 2-#25 2-#25 2-#25 2-#16 2-#25 t 2-#16 2-#16 2-#25 2-#16 2-#25   Shear Design Left

Mid

Right

125.23

105.43

125.08

0

0

0

Asv Reqd (sqmm)

755.2

541.234

753.004

Asv Prv (sqmm)

1417.6

1134.08

1417.6

Reinforcement

2L-#10 @ 100

2L-#10 @ 125

2L-#10 @ 100

Vu (kN) Asv Torsion (sqmm)

  SFR

Beam No

: -

:

B15 111

Group No

:

G5

:

89

Breadth

:

250

mm

Depth

:

400

mm

Material Properties

:

C20 : Fy420 : Clear Cover = 40 mm

Design Code

:

ACI 318M - 2011

Beam Type

:

Ductile Beam

Analysis Reference(Member)

5.5m

Flexure Design Beam Bottom Left Mu (kN) PtClc (%)

Mid

Right

134.146 91.18 1.63

1.01

Beam Top Left

Mid

Right

148.2 197.384 77.06 186.676 1.74

2.29

0.835

2.17

Ast Calc (sqmm)

1347.13 835.48

1436.5 1885.3 688.8 1787.62 9

Ast Prv (sqmm)

1410.54 1013.42

1586.4 794.2 2026.84 2026.84 6 4

Reinforcemen 2-#25 2-#25 2-#25 2-#25 2-#16 2-#25 t 2-#16 2-#19 2-#25 2-#16 2-#25   Shear Design

Vu (kN) Asv Torsion (sqmm) Asv Reqd (sqmm)

Left

Mid

Right

132.27

112.47

123.89

0

0

0

814.58

607.303

729.384 112

Asv Prv (sqmm)

1417.6

1134.08

1417.6

Reinforcement

2L-#10 @ 100

2L-#10 @ 125

2L-#10 @ 100

  SFR

: 1-#13EF

Beam No

:

B16

Group No

:

G6

:

114

Breadth

:

250

mm

Depth

:

400

mm

Material Properties

:

C20 : Fy420 : Clear Cover = 40 mm

Design Code

:

ACI 318M - 2011

Beam Type

:

Ductile Beam

Analysis Reference(Member)

5.5m

Flexure Design Beam Bottom Left Mu (kN) PtClc (%)

Mid

Right

Beam Top Left

144.768 89.071 130.84 192.551 1.7

0.99

1.58

2.23

Ast Calc (sqmm)

1405.32 813.02 1303.2 1841.21

Ast Prv (sqmm)

1410.54 1013.42

Mid

Right

79.49 186.038 9 0.865

2.16

713.5 1781.8 6

1410.5 794.2 2026.84 2026.84 4 4

Reinforcemen 2-#25 2-#25 2-#25 2-#25 2-#16 2-#25 113

t

2-#16

2-#16 2-#25 2-#16 2-#25

  Shear Design Left

Mid

Right

121.83

108.54

124.36

0

0

0

Asv Reqd (sqmm)

743.909

572.172

782.272

Asv Prv (sqmm)

1417.6

1134.08

1417.6

Reinforcement

2L-#10 @ 100

2L-#10 @ 125

2L-#10 @ 100

Vu (kN) Asv Torsion (sqmm)

  SFR

: -

Beam No

:

B17

Group No

:

G6

:

102

Breadth

:

250

mm

Depth

:

400

mm

Material Properties

:

C20 : Fy420 : Clear Cover = 40 mm

Design Code

:

ACI 318M - 2011

Beam Type

:

Ductile Beam

Analysis Reference(Member)

5.5m

Flexure Design Beam Bottom

Beam Top

114

Left Mu (kN)

Mid

Right

Left

Mid

123.041 73.378 123.09 177.208

PtClc (%)

1.46

0.79

1.46

2.06

Right

68.12 176.643 9 0.727

2.06

Ast Calc (sqmm)

1203.12 651.88

1203.6 600.0 1701.25 1696.09 7 8

Ast Prv (sqmm)

1410.54 1013.42

1410.5 794.2 2026.84 2026.84 4 4

Reinforcemen 2-#25 2-#25 2-#25 2-#25 2-#16 2-#25 t 2-#16 2-#16 2-#25 2-#16 2-#25   Shear Design Left

Mid

Right

116.19

102.9

115.98

0

0

0

Asv Reqd (sqmm)

764.622

513.869

761.559

Asv Prv (sqmm)

1417.6

1134.08

1417.6

Reinforcement

2L-#10 @ 100

2L-#10 @ 125

2L-#10 @ 100

Vu (kN) Asv Torsion (sqmm)

  SFR

: -

Beam No

:

B18

Group No

:

G6

:

90

Analysis Reference(Member)

5.5m

115

Breadth

:

250

mm

Depth

:

400

mm

Material Properties

:

C20 : Fy420 : Clear Cover = 40 mm

Design Code

:

ACI 318M - 2011

Beam Type

:

Ductile Beam

Flexure Design Beam Bottom Left Mu (kN) PtClc (%)

Mid

Right

Beam Top Left

Mid

Right

130.5 89.465 145.15 186.301

79.56 192.288 2

1.57

0.866

0.99

1.71

2.16

Ast Calc (sqmm)

1298.73 817.21 1408.8 1784.2

Ast Prv (sqmm)

1410.54 1013.42

2.23

714.1 1838.82 9

1410.5 794.2 2026.84 2026.84 4 4

Reinforcemen 2-#25 2-#25 2-#25 2-#25 2-#16 2-#25 t 2-#16 2-#16 2-#25 2-#16 2-#25   Shear Design Left

Mid

Right

124.58

111.29

121.62

0

0

0

Asv Reqd (sqmm)

785.415

591.116

740.766

Asv Prv (sqmm)

1417.6

1134.08

1417.6

Vu (kN) Asv Torsion (sqmm)

116

Reinforcement

2L-#10 @ 100

2L-#10 @ 125

2L-#10 @ 100

  SFR

: -

Beam No

:

B19

Group No

:

G7

:

115

Breadth

:

250

mm

Depth

:

400

mm

Material Properties

:

C20 : Fy420 : Clear Cover = 40 mm

Design Code

:

ACI 318M - 2011

Beam Type

:

Ductile Beam

Analysis Reference(Member)

5.5m

Flexure Design Beam Bottom Left Mu (kN)

104.953

Mid

Right

Beam Top Left

Mid

Right

66.59 148.59 62.79 106.5 165.823 9 7 6

PtClc (%)

1.2

0.71

1.22

1.75

0.665

1.94

Ast Calc (sqmm)

987.34

585.1 1440.2 548.4 1013.42 1597.39 7 4 6

Ast Prv (sqmm)

992.8

595.6 1586.4 573.0 1191.36 2026.84 8 6 4

Reinforcemen 3-#16 3-#16 3-#16 2-#25 2-#19 2-#25 t 2-#16 3-#16 2-#19 2-#25   Shear Design

117

Left

Mid

Right

104.39

91.1

109.71

0

0

0

Asv Reqd (sqmm)

671.61

407.519

684.127

Asv Prv (sqmm)

1417.6

1134.08

1417.6

Reinforcement

2L-#10 @ 100

2L-#10 @ 125

2L-#10 @ 100

Vu (kN) Asv Torsion (sqmm)

  SFR

: 1-#13EF

Beam No

:

B20

Group No

:

G7

:

103

Breadth

:

250

mm

Depth

:

400

mm

Material Properties

:

C20 : Fy420 : Clear Cover = 40 mm

Design Code

:

ACI 318M - 2011

Beam Type

:

Ductile Beam

Analysis Reference(Member)

5.5m

Flexure Design Beam Bottom Left Mu (kN) PtClc (%)

Mid

Right

Beam Top Left

Mid

Right

109.40 68.00 103.4 165.529 63.749 154.889 2 7 7 1.26

0.73

1.18

1.93

0.676

1.82 118

Ast Calc (sqmm)

1038.5 598.8 970.5 1594.71 557.61 1497.65 3 9 3

Ast Prv (sqmm)

1191.3 992.8 992.8 2026.84 573.04 1586.46 6

Reinforcement 3-#16 3-#16 3-#16 2-#25 2-#19 2-#25 3-#16 2-#16 2-#16 2-#25 2-#19   Shear Design Left

Mid

Right

108.55

95.27

106.95

0

0

0

Asv Reqd (sqmm)

656.789

454.893

698.948

Asv Prv (sqmm)

1417.6

1134.08

1417.6

Reinforcement

2L-#10 @ 100

2L-#10 @ 125

2L-#10 @ 100

Vu (kN) Asv Torsion (sqmm)

  SFR

: 1-#13EF

Beam No

:

B21

Group No

:

G7

:

91

Breadth

:

250

mm

Depth

:

400

mm

Material Properties

:

C20 : Fy420 : Clear Cover = 40 mm

Design Code

:

ACI 318M - 2011

Analysis Reference(Member)

5.5m

119

Beam Type

:

Ductile Beam

Flexure Design Beam Bottom Left

Mid

Right

Beam Top Left

Mid

Right

Mu (kN)

99.61 72.56 112.39 158.479 61.418 156.859 9 2

PtClc (%)

1.12

Ast Calc (sqmm)

927.3 643.7 1073.6 1530.39 535.26 1515.62 9 6 3

Ast Prv (sqmm)

992.8 992.8

0.78

1.3

1.86

0.649

1.84

1191.3 1586.46 573.04 1586.46 6

Reinforcement 3-#16 3-#16 3-#16 2-#25 2-#19 2-#25 2-#16 2-#16 3-#16 2-#19 2-#19   Shear Design Left

Mid

Right

109.67

96.38

104.77

0

0

0

Asv Reqd (sqmm)

681.078

459.737

662.675

Asv Prv (sqmm)

1417.6

1134.08

1417.6

Reinforcement

2L-#10 @ 100

2L-#10 @ 125

2L-#10 @ 100

Vu (kN) Asv Torsion (sqmm)

  SFR

Beam No

: -

:

B22 120

Group No

:

G8

:

116

Breadth

:

250

mm

Depth

:

400

mm

Material Properties

:

C20 : Fy420 : Clear Cover = 40 mm

Design Code

:

ACI 318M - 2011

Beam Type

:

Ductile Beam

Analysis Reference(Member)

5.5m

Flexure Design Beam Bottom Left Mu (kN) PtClc (%)

Mid

Right

Beam Top Left

Mid

Right

111.46 101.5 71.6 153.222 59.243 162.006 3 5 1.29

0.77

1.15

1.8

0.624

1.89

Ast Calc (sqmm)

1062.6 634.2 948.9 1482.44 514.58 1562.56 5 2 3

Ast Prv (sqmm)

1191.3 992.8 992.8 1586.46 573.04 1586.46 6

Reinforcement 3-#16 3-#16 3-#16 2-#25 2-#19 2-#25 3-#16 2-#16 2-#16 2-#19 2-#19   Shear Design

Vu (kN) Asv Torsion (sqmm) Asv Reqd (sqmm)

Left

Mid

Right

107.62

87.81

113.95

0

0

0

644.494

381.608

681.283 121

Asv Prv (sqmm)

1417.6

1134.08

1417.6

Reinforcement

2L-#10 @ 100

2L-#10 @ 125

2L-#10 @ 100

  SFR

: -

Beam No

:

B23

Group No

:

G8

:

104

Breadth

:

250

mm

Depth

:

400

mm

Material Properties

:

C20 : Fy420 : Clear Cover = 40 mm

Design Code

:

ACI 318M - 2011

Beam Type

:

Ductile Beam

Analysis Reference(Member)

5.5m

Flexure Design Beam Bottom Left

Mid

Right

Beam Top Left

Mid

Right

Mu (kN)

95.23 61.21 56.44 89.02 149.925 141.016 5 7 4

PtClc (%)

1.07

Ast Calc (sqmm)

879.2 533.3 812.4 488.1 1452.36 1371.09 1 5 9 8

Ast Prv (sqmm)

992.8

0.65

0.98

1.76

0.592

1.66

595.6 573.0 992.8 1586.46 1586.46 8 4

Reinforcemen 3-#16 3-#16 3-#16 2-#25 2-#19 2-#25 122

t

2-#16

2-#16 2-#19

2-#19

  Shear Design Left

Mid

Right

104.39

84.59

103.49

0

0

0

Asv Reqd (sqmm)

641.975

351.913

629.454

Asv Prv (sqmm)

1417.6

1134.08

1417.6

Reinforcement

2L-#10 @ 100

2L-#10 @ 125

2L-#10 @ 100

Vu (kN) Asv Torsion (sqmm)

  SFR

: 1-#13EF

Beam No

:

B24

Group No

:

G8

:

92

Breadth

:

250

mm

Depth

:

400

mm

Material Properties

:

C20 : Fy420 : Clear Cover = 40 mm

Design Code

:

ACI 318M - 2011

Beam Type

:

Ductile Beam

Analysis Reference(Member)

5.5m

Flexure Design Beam Bottom

Beam Top

123

Left Mu (kN)

Mid

Right

Left

Mid

96.771 81.446 122.51 156.557

PtClc (%)

1.09

0.89

1.45

1.83

Right

68.41 163.592 5 0.731

1.91

Ast Calc (sqmm)

895.99 733.48

1196.4 602.8 1512.86 1577.04 7 8

Ast Prv (sqmm)

1013.42 1013.42

1410.5 794.2 1586.46 1586.46 4 4

Reinforcemen 2-#25 2-#25 2-#25 2-#25 2-#16 2-#25 t 2-#16 2-#19 2-#16 2-#19   Shear Design Left

Mid

Right

115.41

95.61

109.07

0

0

0

Asv Reqd (sqmm)

687.642

432.672

696.153

Asv Prv (sqmm)

1417.6

1134.08

1417.6

Reinforcement

2L-#10 @ 100

2L-#10 @ 125

2L-#10 @ 100

Vu (kN) Asv Torsion (sqmm)

  SFR

: 1-#13EF

124

4.2.7.2 Design of Slab 

Identify the load consists of: Live load pressure Dead load pressure

   

Ceiling load and other attached below the slab Determine the minimum thickness “h” from NSCP 2010 or 2015. Compute the weight of slab (Pa), Weight =уconc x h Calculate the factored moment (Mu) uniform load wu=factored pressure x 1m Compute the effective depth,d

d=h−covering ( usually 20 mm )−0.5(main diameter)  

Required Steel ratio, ρ: Solve for Rn from Mu = 𝟇 Rn bd2 0.85 f ' c ρ= ¿) fy



Solve for ρmax and ρmin If ρ is <ρmax and >ρmin, use ρ If ρ is >ρmax, increase depth of slab to ensure ductile failure If ρ is <ρmin, use ρ=ρmin



Compute the required spacing As= ρbd

A ≤ 0.5 B A Two way slab ≥ 0.5 B One way slab

L =SIMPLY SUPPORTED 20 L =ONE END CONTINOUS 24 L =BOTH ENDS 28 125

L =CANTILEVER 10 As temp.= 0.002bt s=

1. 2. 3. 4. 5.

Abar ( 1000 ) <smax use sax if s is>smax AS

When S/L<0.5 it is one way slab Min. Steel bars (main reinforced)=12mm𝟇 Min. Temp. Bars=10mm𝟇 Max. Spacing of main bars greater than not equal to 3 times thickness of slab of 500mm Max. Spacing of temperature bars less than not equal to 5 times thickness of slab of 500mm

As=0.0018 bt

for grade 400 bars

fy=400 MPa

As=0.02 bt

for grade 300 bars

fy=300 MPa

For Two way Slab 1. 2. 3. 4.

S/L>0.5 it is two way slab Min. Thickness t=perimeter / 180 Max. Spacing of main bars =3t greater than not equal to 500mm Spacing of bars within the column strips is 3/2 times the spacing t the center.

126

Table 4.36 Slab layout result from STAAD RCDC

127

Two Way Slab:

1. Interior Panel

 

2. One Short Edge Discontinuous

 

3. One Long Edge Discontinuous

 

4. Two Adjacent Edges Discontinuous

 

5. Two Short Edges Discontinuous

 

6. Two Long Edges Discontinuous

 

7. Three Edges Discontinuous (One Long Edge Continuous)

 

8. Three Edges Discontinuous (One Short Edge Continuous)

 

9. Four Edges Discontinuous

 

10.Simply Supported On Four Sides

      Level:

5.5m

     

      Slab No. : S1 Ly = 5 m

Lx = 4 m

Live Load = 2.4 kN/sqm

Imposed Load = 2.553 kN/sqm

Thickness = 150 mm

Span Type = 2-Way

Panel Type = 4

Design Code = ACI 318 - 2011

Grade of Concrete = C20

Grade of Steel = Fy420

Bottom SS

Bottom LS

Top SS

Top LS

Distribution

#10 @ 250

#10 @ 250

#10 @ 250

#10 @ 250

#10 @ 250 128

     

      Slab No. : S2 Ly = 5 m

Lx = 4 m

Live Load = 2.4 kN/sqm

Imposed Load = 2.553 kN/sqm

Thickness = 150 mm

Span Type = 2-Way

Panel Type = 4

Design Code = ACI 318 - 2011

Grade of Concrete = C20

Grade of Steel = Fy420

Bottom SS

Bottom LS

Top SS

Top LS

Distribution

#10 @ 250

#10 @ 250

#10 @ 250

#10 @ 250

#10 @ 250

      Slab No. : S4 Ly = 5 m

Lx = 4 m

Live Load = 2.4 kN/sqm

Imposed Load = 2.553 kN/sqm

Thickness = 150 mm

Span Type = 2-Way

Panel Type = 2

Design Code = ACI 318 - 2011

Grade of Concrete = C20

Grade of Steel = Fy420

Bottom SS

Bottom LS

Top SS

Top LS

Distribution

#10 @ 250

#10 @ 250

#10 @ 250

#10 @ 250

#10 @ 250

     

129

      Slab No. : S5 Ly = 5 m

Lx = 4 m

Live Load = 2.4 kN/sqm

Imposed Load = 2.553 kN/sqm

Thickness = 150 mm

Span Type = 2-Way

Panel Type = 1

Design Code = ACI 318 - 2011

Grade of Concrete = C20

Grade of Steel = Fy420

Bottom SS

Bottom LS

Top SS

Top LS

Distribution

#10 @ 250

#10 @ 250

#10 @ 250

#10 @ 250

#10 @ 250

     

      Slab No. : S6 Ly = 5 m

Lx = 4 m

Live Load = 2.4 kN/sqm

Imposed Load = 2.553 kN/sqm

Thickness = 150 mm

Span Type = 2-Way

Panel Type = 4

Design Code = ACI 318 - 2011

Grade of Concrete = C20

Grade of Steel = Fy420

Bottom SS

Bottom LS

Top SS

Top LS

Distribution

#10 @ 250

#10 @ 250

#10 @ 250

#10 @ 250

#10 @ 250

      Slab No. : S7 130

Ly = 5 m

Lx = 4 m

Live Load = 2.4 kN/sqm

Imposed Load = 2.553 kN/sqm

Thickness = 150 mm

Span Type = 2-Way

Panel Type = 4

Design Code = ACI 318 - 2011

Grade of Concrete = C20

Grade of Steel = Fy420

Bottom SS

Bottom LS

Top SS

Top LS

Distribution

#10 @ 250

#10 @ 250

#10 @ 250

#10 @ 250

#10 @ 250

     

      Slab No. : S8 Ly = 5 m

Lx = 4 m

Live Load = 2.4 kN/sqm

Imposed Load = 2.553 kN/sqm

Thickness = 150 mm

Span Type = 2-Way

Panel Type = 3

Design Code = ACI 318 - 2011

Grade of Concrete = C20

Grade of Steel = Fy420

Bottom SS

Bottom LS

Top SS

Top LS

Distribution

#10 @ 250

#10 @ 250

#10 @ 250

#10 @ 250

#10 @ 250

     

      Slab No. : S9 Ly = 5 m

Lx = 4 m 131

Live Load = 2.4 kN/sqm

Imposed Load = 2.553 kN/sqm

Thickness = 150 mm

Span Type = 2-Way

Panel Type = 4

Design Code = ACI 318 - 2011

Grade of Concrete = C20

Grade of Steel = Fy420

Bottom SS

Bottom LS

Top SS

Top LS

Distribution

#10 @ 250

#10 @ 250

#10 @ 250

#10 @ 250

#10 @ 250

4.2.7.3 Column Design

Table 4.37 Column layout Result from STAAD RCDC 132

Load Combinations: 1. 1.4 (LOAD 3: DL) 2. 1.2 (LOAD 3: DL) +1.6 (LOAD 4: LL) 3. 1.42 (LOAD 3: DL) +0.5 (LOAD 4: LL) +1.25 (LOAD 1: EQ X) 4. 1.42 (LOAD 3: DL) +0.5 (LOAD 4: LL) +1.25 (LOAD 2: EQ Z) 5. 1.42 (LOAD 3: DL) +0.5 (LOAD 4: LL) -1.25 (LOAD 1: EQ X) 6. 1.42 (LOAD 3: DL) +0.5 (LOAD 4: LL) -1.25 (LOAD 2: EQ Z) 7. 1.42 (LOAD 3: DL) +1.25 (LOAD 1: EQ X) 8. 1.42 (LOAD 3: DL) +1.25 (LOAD 2: EQ Z) 9. 1.42 (LOAD 3: DL) -1.25 (LOAD 1: EQ X) 10. 1.42 (LOAD 3: DL) -1.25 (LOAD 2: EQ Z) 11. 0.68 (LOAD 3: DL) +1.25 (LOAD 1: EQ X) 12. 0.68 (LOAD 3: DL) +1.25 (LOAD 2: EQ Z) 13. 0.68 (LOAD 3: DL) -1.25 (LOAD 1: EQ X) 14. 0.68 (LOAD 3: DL) -1.25 (LOAD 2: EQ Z)

Levels:

1. FOUNDATION 2. 2m 3. 5.5m 4. 8.5m

Column/Wall: C1 Level Size Material LC Analysis P (kN) Mx My Pt Interaction Main Links (mm) LC No (kNm) (kNm) (%) Ratio Reinforcement 133

1 TO 450 X C25: 6 2 450 Fy420

2 TO 450 X C25: 12 3 450 Fy420

3 TO 450 X C25: 5 4 450 Fy420

41

47

40

1131.79

3.54

2.4 245.18

0.64

#10 @ 75 4-#32 + 8-#16 + #10 @ 225

0.9

12-#16

#10 @ 75 + #10 @ 225

12-#16

#10 @ 75 + #10 @ 225

153.16 -7.91 203.55 1.18

333.61 145.96

38.2 1.18

0.62

  Column/Wall: C2 Level Size Material LC Analysis P (kN) Mx My Pt Interaction Main (mm) LC No (kNm) (kNm) (%) Ratio Reinforcement 1 TO 2

450 C25: X 11 Fy420 450

46

217.44 224.96 6.42 2.4

2 TO 3

450 C25: X 13 Fy420 450

48

163.98

3 TO 4

450 C25: X 11 Fy420 450

46

195.06

-6.9 2.4

58.39 -137.1 9.22 2.4

Links

0.54

#10 @ 4-#32 + 8-#16 75 + #10 @ 225

0.85

#10 @ 4-#32 + 8-#16 75 + #10 @ 225

0.65

#10 @ 4-#32 + 8-#16 75 + #10 @ 225

  Column/Wall: C3 Level Size Material LC Analysis P (kN) Mx My Pt Interaction Main Links (mm) LC No (kNm) (kNm) (%) Ratio Reinforcement 1 TO 450

C25: 13

48

270.85 -220.7 4.24 1.18

0.91

12-#16

#10 @ 134

2

2 TO 3

X Fy420 450

75 + #10 @ 225

450 C25: X 13 Fy420 450

#10 @ 75 + #10 @ 225

450 3 TO C25: X 13 4 Fy420 450

48

48

207.91 213.64 -16.87 1.18

57.27 142.05 6.93 2.4

0.92

0.67

12-#16

#10 @ 75 + 4-#32 + 8-#16 #10 @ 225

  Column/Wall: C4 Level Size Material LC Analysis P (kN) Mx My Pt Interaction Main Links (mm) LC No (kNm) (kNm) (%) Ratio Reinforcement 1 TO 2

450 C25: X 13 Fy420 450

450 2 TO C25: X 11 3 Fy420 450

3 TO 4

450 C25: X 3 Fy420 450

48

215.6 26.01 1.18 217.16

46

304.47 174.67 -26.41 1.18

38

335.92 36.43 1.18 142.59

0.94

0.73

0.61

12-#16

#10 @ 75 + #10 @ 225

12-#16

#10 @ 75 + #10 @ 225

12-#16

#10 @ 75 + #10 @ 225

  Column/Wall: C5 Level Size Material LC Analysis P (kN) Mx My Pt Interaction Main (mm) LC No (kNm) (kNm) (%) Ratio Reinforcement 1 TO 450 C25: 14 2 X Fy420

49

191.32 6.17

- 2.4 254.22

0.61

Links

4-#32 + 8-#16 #10 @ 75 + #10 135

450

@ 225

2 TO 3

450 C25: X 12 Fy420 450

47

161.53 -9.33 239.63 2.4

0.58

#10 @ 4-#32 + 8-#16 75 + #10 @ 225

3 TO 4

450 C25: X 4 Fy420 450

39

131.74 53.35

2.4 166.69

0.8

#10 @ 4-#32 + 8-#16 75 + #10 @ 225

  Column/Wall: C6 Level Size Material LC Analysis P (kN) Mx My Pt Interaction Main Links (mm) LC No (kNm) (kNm) (%) Ratio Reinforcement 450 1 TO C25: X 14 2 Fy420 450 450 2 TO C25: X 14 3 Fy420 450

3 TO 4

450 C25: X 12 Fy420 450

49

49

47

221.97 6.94

203.15 6.86

2.4 236.85

1.18 222.28

92.6 3.53 2.4 151.43

0.57

#10 @ 75 + 4-#32 + 8-#16 #10 @ 225

0.95

#10 @ 75 + #10 @ 225

0.69

12-#16

#10 @ 75 + 4-#32 + 8-#16 #10 @ 225

  Column/Wall: C7 Level Size Material LC Analysis P (kN) Mx My Pt Interaction Main Links (mm) LC No (kNm) (kNm) (%) Ratio Reinforcement 1 TO 2

450 C25: X 11 Fy420 450

2 TO 450

C25: 11

46

218.58 232.87 -9.49 1.18

0.99

12-#16

#10 @ 75 + #10 @ 225

46

187.46

0.97

12-#16

#10 @

- -14.27 1.18

136

3

3 TO 4

222.39

75 + #10 @ 225

93.46 151.6

#10 @ 75 + 4-#32 + 8-#16 #10 @ 225

X Fy420 450 450 C25: X 13 Fy420 450

48

-0.3 2.4

0.68

  Column/Wall: C8 Level Size Material LC Analysis P (kN) Mx My Pt Interaction Main Links (mm) LC No (kNm) (kNm) (%) Ratio Reinforcement 450 1 TO C25: X 13 2 Fy420 450

2 TO 3

450 C25: X 12 Fy420 450

450 3 TO C25: X 4 4 Fy420 450

48

47

39

53.08

19.35 1.18 206.83

155.26

3.19 197.9 1.18 8

126.1 -46.72 132.7 1.18 5

0.98

0.87

0.65

12-#16

#10 @ 75 + #10 @ 225

12-#16

#10 @ 75 + #10 @ 225

12-#16

#10 @ 75 + #10 @ 225

  Column/Wall: C9 Level Size Material LC Analysis P (kN) Mx My Pt Interaction Main (mm) LC No (kNm) (kNm) (%) Ratio Reinforcement

Links

1 TO 2

450 C25: X 12 Fy420 450

47

191.82 6.06 254.26 2.4

0.61

#10 @ 4-#32 + 8-#16 75 + #10 @ 225

2 TO 3

450 C25: X 14 Fy420 450

49

161.17

2.4 239.49

0.58

#10 @ 4-#32 + 8-#16 75 + #10 @ 225

-8.8

137

3 TO 4

450 C25: X 6 Fy420 450

41

131.56 52.96 166.35 2.4

0.8

#10 @ 4-#32 + 8-#16 75 + #10 @ 225

  Column/Wall: C10 Level Size Material LC Analysis P (kN) Mx My Pt Interaction Main Links (mm) LC No (kNm) (kNm) (%) Ratio Reinforcement 450 1 TO C25: X 13 2 Fy420 450 450 2 TO C25: X 12 3 Fy420 450

3 TO 4

450 C25: X 12 Fy420 450

48

47

47

226.75

203.44

-7.15 2.4 247.51

6.1

222.3 1.18 4

85.3 -5.07 -150.5 2.4

0.59

#10 @ 75 + 4-#32 + 8-#16 #10 @ 225

0.95

#10 @ 75 + #10 @ 225

0.69

12-#16

#10 @ 75 + 4-#32 + 8-#16 #10 @ 225

  Column/Wall: C11 Level Size Material LC Analysis P (kN) Mx My Pt Interaction Main Links (mm) LC No (kNm) (kNm) (%) Ratio Reinforcement 1 TO 2

450 C25: X 11 Fy420 450

2 TO 3

450 C25: X 11 Fy420 450

3 TO 450 C25: 13 4 X Fy420

46

225.38 246.94 -7.18 2.4

0.59

#10 @ 75 + 4-#32 + 8-#16 #10 @ 225 #10 @ 75 + #10 @ 225

46

203.94 215.81 -6.51 1.18

0.92

48

91.65 148.45 -2.97 2.4

0.67

12-#16

4-#32 + 8-#16 #10 @ 75 + 138

#10 @ 225

450   Column/Wall: C12

Level Size Material LC Analysis P (kN) Mx My Pt Interaction Main Links (mm) LC No (kNm) (kNm) (%) Ratio Reinforcement 1 TO 2

450 C25: X 13 Fy420 450

2 TO 3

450 C25: X 12 Fy420 450

450 3 TO C25: X 6 4 Fy420 450

48

52.01 22.22 2.4 221.21

47

184.2 9.05 1.18 7

41

152.6

127.87 -48.3

128.3 1.18 1

0.56

#10 @ 75 + 4-#32 + 8-#16 #10 @ 225

0.82

12-#16

#10 @ 75 + #10 @ 225

12-#16

#10 @ 75 + #10 @ 225

0.63

  Column/Wall: C13 Level Size Material LC Analysis P (kN) Mx My Pt Interaction Main Links (mm) LC No (kNm) (kNm) (%) Ratio Reinforcement

1 TO 2

450 C25: X 5 Fy420 450

40

1072.97

-10.25 2.4 252.92

0.66

#10 @ 75 4-#32 + 8-#16 + #10 @ 225

450 2 TO C25: X 14 3 Fy420 450

49

152.81 -7.25

1.18 203.47

0.9

12-#16

#10 @ 75 + #10 @ 225

3 TO 450

40

330.69 155.57 -22.43 1.18

0.64

12-#16

#10

C25:

5

139

4

@ 75 + #10 @ 225

X Fy420 450

  Column/Wall: C14 Level Size Material LC Analysis P (kN) Mx My Pt Interaction Main (mm) LC No (kNm) (kNm) (%) Ratio Reinforcement 1 TO 2

450 C25: X 13 Fy420 450

2 TO 3

450 C25: X 13 Fy420 450

3 TO 4

450 C25: X 11 Fy420 450

-6.22 2.4 258.74

48

206.64

48

155.33 -1.61 2.4 221.66

46

59.67

-154 -13.73 2.4

Links

0.62

#10 @ 4-#32 + 8-#16 75 + #10 @ 225

0.97

#10 @ 4-#32 + 8-#16 75 + #10 @ 225

0.73

#10 @ 4-#32 + 8-#16 75 + #10 @ 225

  Column/Wall: C15 Level Size Material LC Analysis P (kN) Mx My Pt Interaction Main (mm) LC No (kNm) (kNm) (%) Ratio Reinforcement

Links

1 TO 2

450 C25: X 11 Fy420 450

46

281.26 250.38 -5.56 2.4

0.59

#10 @ 4-#32 + 8-#16 75 + #10 @ 225

2 TO 3

450 C25: X 11 Fy420 450

46

220.49

6.42 2.4 271.74

0.65

#10 @ 4-#32 + 8-#16 75 + #10 @ 225

3 TO 4

450 C25: X 13 Fy420 450

48

60.37 167.13 -14.13 2.4

0.79

#10 @ 4-#32 + 8-#16 75 + #10 @ 225

 

140

Column/Wall: C16 Level Size Material LC Analysis P (kN) Mx My Pt Interaction Main Links (mm) LC No (kNm) (kNm) (%) Ratio Reinforcement 450 1 TO C25: X 3 2 Fy420 450 450 2 TO C25: X 13 3 Fy420 450

3 TO 4

450 C25: X 3 Fy420 450

38

992.54 253.47 -10.75 2.4

1.92 1.18 192.54

48

123.18

38

334.65 -25.75 1.18 160.72

0.64

#10 @ 75 + 4-#32 + 8-#16 #10 @ 225

0.86

12-#16

#10 @ 75 + #10 @ 225

12-#16

#10 @ 75 + #10 @ 225

0.66

141

4.3 DESIGN OF TRADEOFF 2 (DUAL SYSTEM WITH INTERMEDIATE MOMENT FRAME – SPECIAL REINFORCED CONCETE SHEAR WALL)

Figure 4.38 3D Rendered view of Tradeoff 2 4.3.1 Design Specification

ELEMENT COLUMN

Figure 4.39 Design Properties in STAAD Pro DIMENSION MATERIAL 450mm x 450mm Concrete 142

BEAM SLAB SHEAR WALL

400mm x 300mm 150 mm (Thickness) 300 mm (Thickness) Table 4.8 Design Properties

Concrete Concrete Concrete

4.3.2 Design Loads The Design Loads and Parameters shown are project design inputs from the National Structural Code of the Philippines (NSCP) 2015.

Figure 4.40 Dead Load input in STAAD Pro Member Load Components (1st to 2th floor)

Design Load (KPa)

Frame Walls Windows, Glass, Frame and Sash

0.38

Concrete Masonry Unit CHB Wall, 150mm, Full Grout (Plastered both sides)

3.11

CHB Wall, 100mm, Full Grout (Plastered both sides)

2.98

Wall covering Waterproofing Membrane: Bituminous smooth surface

0.07

143

Table 4.9 Member Loads Floor Load Components (1st to 2th floor)

Design Load (KPa)

Ceilings Gypsum board (per mm thickness)

0.008

Plaster on tile or concrete

0.24

Floor Fills Lightweight Concrete, per mm

0.015

Floor and Floor Finishes Cement Finish (25MM) on stone concrete fill

1.53

Frame Partitions Wood or Steel studs, 13 mm gypsum board each side

0.38

Frame Walls Windows, Glass, Frame and Sash

0.38

Total Dead Load

2.553

Table 4.10 Dead Loads 4.3.3

Live Loads

The maximum live loads expected by the intended use or occupancy based on section 205 of the code. Below are the occupancy descriptions and the equivalent design live loads in KPa:

144

Figure 4.41 Live Load input in STAAD Pro Use or Occupancy Description Parking garages and ramps Roof Decks Office 4.3.4

Description

Design Load (KPa)

Public parking and ramps Same as area served or occupancy (Other offices) Table 4.11 Minimum Design Live Loads

4.8 -2.4

Seismic load parameter

Figure 4.42 Seismic Parameters in STAAD Pro Parameters Importance Factor Soil Profile Type Seismic Zone Seismic source type Near Source Factor (Na) Near Source Factor (Nv) Seismic Coefficient (Ca) Seismic Coefficient (Cv) R (DUAL SYSTEM with Intermediate Moment Frame) Numerical Coefficient (Ct) Table 4.12 Seismic Parameters

1.5 Stiff Soil, Sd ZONE 4: Z=0.4 A 1.2 1.6 0.44Na = 0.53 0.64 Nv = 1.02 6.5 .0731

145

4.3.5 Load Combination The following table defines the different types of load combination used in the structural analysis of the building. All these combinations will be applied and the designer will determine the load combination that will produce the maximum stress in the building. This governing load combination will then be used to calculate the member forces for the design.

Figure 4.43 NSCP 2015 Load Combination generated in STAAD Pro

Figure 4.44 NSCP 2015 generated Drift code in STAAD Pro

146

Figure 4.45 NSCP 2015 – ACI-FOOTING Load Combination code generated in STAAD Pro

4.3.6 Structural Analysis The parameters that were previously stated in this chapter were now then used for the structural analysis of the configuration using computer software (STAAD). The designer defined all load combinations, seismic and wind load definitions, dead and live loads and trial structural members to obtain the member forces that will be used in the design. The following figures show the highlights of the structural analysis process.

147

Figure 4.46 Allowable drift factor in NSCP 2015

148

Δs = Δm / (0.7 x R) Where: Δm = 0.025h or h/40, if T < 0.7 sec Δm = 0.020h or h/50, if T > 0.7 sec T = fundamental period of building h = structural height Ct = .0731 T = Ct(H).75 = .0731(8.5).75 = 0.364 < 0.7 Δs = Δm / (0.7 x R) = 1 / 0.7 x 6.5 x 40 = .0055

Figure 4.47 Allowable drift factor input in STAAD Pro

149

Figure 4.48 Maximum Shear Forces

Figure 4.49 Maximum Bending Moment

150

Figure 4.50 Earthquake force at x-direction

Figure 4.51 Earthquake force at z-direction

151

Figure 4.52 Dead Loads

Figure 4.53 Live Loads

152

Figure 4.54 1.4 DL

Figure 4.55 1.2 DL + 1.2 LL

153

Figure 4.56 1.42 DL + .5 LL + 1.25 EQ

Figure 4.57 1.42 DL + .5 LL - 1.25 EQ

154

Figure 4.58 1.42 DL + 1.25 EQ

Figure 4.59 1.42 DL - 1.25 EQ

155

Figure 4.60 0.68 DL + 1.25 EQ

Figure 4.61 0.68 DL - 1.25 EQ

156

4.3.6.1 STAAD Pro Results

Figure 4.62 Summary of Result in STAAD Pro

Figure 4.63 Center of Mass

157

Figure 4.64 Center of Rigidity

158

Figure 4.65 Storey Drift Check

Figure 4.66 Soft Storey Check 159

Figure 4.67 Design Base Shear in NSCP 2015 Check: W = 6854.52 kN I = 1.5 R = 6.5 Na = 1.2 Nv = 1.6 Ca = 0.44Na = 0.53 Cv = 0.64Nv = 1.02 T = 0.364 V = Cv(I)(W) / RT = 4432.55 kN (design base shear) V = 2.5Ca(I)(W) / R = 2087.99kN (maximum design base shear) GOVERNS! V = 0.11Ca(I)(W) = 597.17 kN (minimum design base shear) V = 0.8ZNV(I)(W) / R = 506.18 kN (minimum design base shear 4.3.7 Structural Design After analyzing the structure using STAAD Pro, the designers used the STAAD RCDC for designing the beams, columns, slabs and walls.

160

4.3.7.1 Design of Beam

Figure 4.68 Design process of singly reinforced beams

Figure 4.69 Design process of doubly reinforced beams

161

Figure 4.70 Design process of shear reinforcement

162

Figure 4.71 Beam layout result from STAAD RCDC

163

Beam No

:

B1

Group No

:

G1

:

4

Breadth

:

250

mm

Depth

:

400

mm

Material Properties

:

C20 : Fy420 : Clear Cover = 40 mm

Design Code

:

ACI 318M - 2011

Beam Type

:

Ductile Beam

Analysis Reference(Member)

5.5m

Flexure Design Beam Bottom Left Mu (kN)

0

Mid

Right

Beam Top Left

Mid

Right

73.15 25.09 70.4 143.007 6 2 0.87

0.83

1.76

0

PtClc (%)

0.13

0.333 0.13

Ast Calc (sqmm)

528.8 715.2 687.9 1454.82 275 317.29 2 3 3

Ast Prv (sqmm)

595.6 397.1 992.8 992.8 1586.46 397.12 8 2

Reinforcement 3-#16 3-#16 3-#16 2-#25 2-#16 2-#16 2-#16 2-#16 2-#19   Shear Design

Vu (kN)

Left

Mid

Right

100.46

85.3

33.36 164

Asv Torsion (sqmm)

301.619

301.619

301.619

Asv Reqd (sqmm)

790.491

580.757

301.619

Asv Prv (sqmm)

1417.6

1134.08

1417.6

Reinforcement

2L-#10 @ 100

2L-#10 @ 125

2L-#10 @ 100

Beam No

:

B2

Group No

:

G2

:

6

Breadth

:

250

mm

Depth

:

400

mm

Material Properties

:

C20 : Fy420 : Clear Cover = 40 mm

Design Code

:

ACI 318M - 2011

Beam Type

:

Ductile Beam

Analysis Reference(Member)

5.5m

Flexure Design Beam Bottom Left Mu (kN) PtClc (%)

Mid

122.591 114.538 1.52

1.41

Beam Top

Right

Left

0

0

0.13

Mid

Right

45.38 193.036 6

0.13 0.537

2.31

Ast Calc (sqmm)

1254.53 1160.23 675.61

107.2 443.2 1902.68 5 2

Ast Prv

1410.54 1410.54 1013.4 397.1 573.0 2026.84 165

(sqmm)

2

2

4

Reinforcemen 2-#25 2-#25 2-#25 2-#16 2-#19 2-#25 t 2-#16 2-#16 2-#25   Shear Design Left

Mid

Right

9.11

109.55

124.71

Asv Torsion (sqmm)

506.334

506.334

506.334

Asv Reqd (sqmm)

506.334

1074.796

1250.621

Asv Prv (sqmm)

1417.6

1134.08

1417.6

Reinforcement

2L-#10 @ 100

2L-#10 @ 125

2L-#10 @ 100

Vu (kN)

Beam No

:

B3

Group No

:

G3

:

25

Breadth

:

250

mm

Depth

:

400

mm

Material Properties

:

C20 : Fy420 : Clear Cover = 40 mm

Design Code

:

ACI 318M - 2011

Beam Type

:

Ductile Beam

Analysis Reference(Member)

5.5m

Flexure Design 166

Beam Bottom Left

Mid

Beam Top

Right Left

Mid

Right

Mu (kN)

30.77 59.87 2 7

PtClc (%)

0.38

Ast Calc (sqmm)

315.3 582.7 470.1 275 253.4 1253.7 6 6 8

Ast Prv (sqmm)

397.1 595.6 595.6 397.1 397.1 1410.54 2 8 8 2 2

0.71

0

20.71 16.45 122.382 6 6

0.13

0.33 0.307

1.52

Reinforcement 2-#16 3-#16 3-#16 2-#16 2-#16 2-#25 2-#16   Shear Design Left

Mid

Right

Vu (kN)

49.86

77.79

86.17

Asv Torsion (sqmm)

366.3

366.3

366.3

Asv Reqd (sqmm)

371.32

559.479

721.643

Asv Prv (sqmm)

1417.6

1134.08

1417.6

Reinforcement

2L-#10 @ 100

2L-#10 @ 125

2L-#10 @ 100

Beam No

:

B4

Group No

:

G3

167

Analysis Reference(Member)

5.5m

:

26

Breadth

:

250

mm

Depth

:

400

mm

Material Properties

:

C20 : Fy420 : Clear Cover = 40 mm

Design Code

:

ACI 318M - 2011

Beam Type

:

Ductile Beam

Flexure Design Beam Bottom

Beam Top

Left

Mid

Right

Left

0

39.64 8

0

99.871

PtClc (%)

0.13

0.41

0.13

1.13

0.256

1.16

Ast Calc (sqmm)

470.1 334.6 323.3 138.1 930.19 8 1 9 7

957

Ast Prv (sqmm)

595.6 397.1 397.1 397.1 1410.54 1410.54 8 2 2 2

Mu (kN)

Mid

Right

13.04 102.271 7

Reinforcemen 3-#16 2-#16 2-#16 2-#25 2-#16 2-#25 t 2-#16 2-#16   Shear Design

Vu (kN) Asv Torsion (sqmm) Asv Reqd (sqmm)

Left

Mid

Right

78.67

53.04

80.09

0

0

0

382.836

208.333

430.965

168

Asv Prv (sqmm)

1417.6

1134.08

1417.6

Reinforcement

2L-#10 @ 100

2L-#10 @ 125

2L-#10 @ 100

Beam No

:

B5

Group No

:

G3

:

27

Breadth

:

250

mm

Depth

:

400

mm

Material Properties

:

C20 : Fy420 : Clear Cover = 40 mm

Design Code

:

ACI 318M - 2011

Beam Type

:

Ductile Beam

Analysis Reference(Member)

5.5m

Flexure Design Beam Bottom Left Mu (kN)

0

Mid

Right

Beam Top Left

Mid

Right

54.72 14.70 20.41 114.035 25.26 3 4

PtClc (%)

0.13

0.65

0.33

1.39

0.276 0.33

Ast Calc (sqmm)

470.1 537.6 227.5 275 1146.51 282.11 8 4 8

Ast Prv (sqmm)

595.6 595.6 397.1 397.1 1410.54 397.12 8 8 2 2

Reinforcement 3-#16 3-#16 2-#16 2-#25 2-#16 2-#16 2-#16   Shear Design

169

Left

Mid

Right

84.25

64.53

51.78

Asv Torsion (sqmm)

375.028

375.028

375.028

Asv Reqd (sqmm)

712.046

521.171

405.864

Asv Prv (sqmm)

1417.6

1134.08

1417.6

Reinforcement

2L-#10 @ 100

2L-#10 @ 125

2L-#10 @ 100

Vu (kN)

Beam No

:

B6

Group No

:

G4

:

46

Breadth

:

250

mm

Depth

:

400

mm

Material Properties

:

C20 : Fy420 : Clear Cover = 40 mm

Design Code

:

ACI 318M - 2011

Beam Type

:

Ductile Beam

Analysis Reference(Member)

5.5m

Flexure Design Beam Bottom Left Mu (kN) PtClc (%)

Mid

31.56 59.18 5 7 0.4

0.69

Beam Top

Right Left 0 0.13

Mid

Right

24.80 22.06 130.499 4 0.33 0.333

1.65 170

Ast Calc (sqmm)

326.6 572.0 470.1 275 8 1 8

Ast Prv (sqmm)

397.1 595.6 595.6 397.1 397.1 1410.54 2 8 8 2 2

275 1361.96

Reinforcement 2-#16 3-#16 3-#16 2-#16 2-#16 2-#25 2-#16   Shear Design Left

Mid

Right

46.57

77.2

85.58

Asv Torsion (sqmm)

401.927

401.927

401.927

Asv Reqd (sqmm)

401.927

587.162

751.328

Asv Prv (sqmm)

1417.6

1134.08

1417.6

Reinforcement

2L-#10 @ 100

2L-#10 @ 125

2L-#10 @ 100

Vu (kN)

Beam No

:

B7

Group No

:

G4

:

47

Breadth

:

250

mm

Depth

:

400

mm

Material Properties

:

C20 : Fy420 : Clear Cover = 40 mm

Design Code

:

ACI 318M - 2011

Analysis Reference(Member)

5.5m

171

Beam Type

:

Ductile Beam

Flexure Design Beam Bottom Left Mu (kN)

Mid

Right

Beam Top Left

Mid

Right

7.936

41.06 17.13 7.74 109.343 109.382 1 2

PtClc (%)

0.13

0.42

Ast Calc (sqmm)

470.1 347.2 382.0 182.3 1037.84 1038.3 8 3 3 8

Ast Prv (sqmm)

595.6 397.1 397.1 397.1 1410.54 1410.54 8 2 2 2

0.13

1.26

0.256

1.26

Reinforcemen 3-#16 2-#16 2-#16 2-#25 2-#16 2-#25 t 2-#16 2-#16   Shear Design Left

Mid

Right

83.28

52.39

83.34

0

0

0

Asv Reqd (sqmm)

382.419

208.333

431.382

Asv Prv (sqmm)

1417.6

1134.08

1417.6

Reinforcement

2L-#10 @ 100

2L-#10 @ 125

2L-#10 @ 100

Vu (kN) Asv Torsion (sqmm)

Beam No

:

B8

172

Group No

:

G4

:

48

Breadth

:

250

mm

Depth

:

400

mm

Material Properties

:

C20 : Fy420 : Clear Cover = 40 mm

Design Code

:

ACI 318M - 2011

Beam Type

:

Ductile Beam

Analysis Reference(Member)

5.5m

Flexure Design Beam Bottom Left Mu (kN)

0

Mid

Right

Beam Top Left

Mid

Right

59.22 31.49 129.845

21.62 24.878 6

0.69

0.333 0.33

PtClc (%)

0.13

0.4

1.64

Ast Calc (sqmm)

470.1 573.2 327.3 1354.76 275 282.11 8 4 5

Ast Prv (sqmm)

595.6 595.6 397.1 397.1 1410.54 397.12 8 8 2 2

Reinforcement 3-#16 3-#16 2-#16 2-#25 2-#16 2-#16 2-#16   Shear Design Left

Mid

Right

86.3

77.92

45.85

Asv Torsion (sqmm)

381.444

381.444

381.444

Asv Reqd (sqmm)

738.441

579.268

381.444

Vu (kN)

173

Asv Prv (sqmm)

1417.6

1134.08

1417.6

Reinforcement

2L-#10 @ 100

2L-#10 @ 125

2L-#10 @ 100

Beam No

:

B9

Group No

:

G5

:

67

Breadth

:

250

mm

Depth

:

400

mm

Material Properties

:

C20 : Fy420 : Clear Cover = 40 mm

Design Code

:

ACI 318M - 2011

Beam Type

:

Ductile Beam

Analysis Reference(Member)

5.5m

Flexure Design Beam Bottom Left

Mid

Beam Top

Right Left

Mid

Right

Mu (kN)

28.89 41.21 99.97 20.70 15.16 113.899 7 1 1 8

PtClc (%)

0.33

0.42

Ast Calc (sqmm)

275

348.5 397.1 221.4 931.3 1091.47 7 2 6

Ast Prv (sqmm)

0.2

1.13 0.268

1.32

397.1 397.1 397.1 595.6 992.8 1191.36 2 2 2 8

Reinforcement 2-#16 2-#16 2-#16 3-#16 3-#16 3-#16 2-#16 3-#16 174

  Shear Design Left

Mid

Right

82.48

50.66

88.46

0

0

0

Asv Reqd (sqmm)

352.949

208.333

387.65

Asv Prv (sqmm)

1417.6

1134.08

1417.6

Reinforcement

2L-#10 @ 100

2L-#10 @ 125

2L-#10 @ 100

Vu (kN) Asv Torsion (sqmm)

Beam No

:

B10

Group No

:

G5

:

68

Breadth

:

250

mm

Depth

:

400

mm

Material Properties

:

C20 : Fy420 : Clear Cover = 40 mm

Design Code

:

ACI 318M - 2011

Beam Type

:

Ductile Beam

Analysis Reference(Member)

5.5m

Flexure Design Beam Bottom Left Mu (kN)

Mid

Right

Beam Top Left

Mid

Right

12.31 38.97 19.23 11.54 106.377 95.148 5 9 8 175

PtClc (%)

0.16

0.4

0.15

1.22

0.256 1.06

Ast Calc (sqmm)

397.1 328.6 330.9 205.3 1003.6 878.26 2 5 3 5

Ast Prv (sqmm)

397.1 397.1 397.1 595.6 1191.36 992.8 2 2 2 8

Reinforcement 2-#16 2-#16 2-#16 3-#16 3-#16 3-#16 3-#16 2-#16   Shear Design Left

Mid

Right

84.13

49.18

81.29

0

0

0

Asv Reqd (sqmm)

345.274

208.333

325.507

Asv Prv (sqmm)

1417.6

1134.08

1417.6

Reinforcement

2L-#10 @ 100

2L-#10 @ 125

2L-#10 @ 100

Vu (kN) Asv Torsion (sqmm)

Beam No

:

B11

Group No

:

G5

:

69

Breadth

:

250

mm

Depth

:

400

mm

Material Properties

:

C20 : Fy420 : Clear Cover = 40 mm

Analysis Reference(Member)

5.5m

176

Design Code

:

ACI 318M - 2011

Beam Type

:

Ductile Beam

Flexure Design Beam Bottom Left Mu (kN)

Mid

Right

Beam Top Left

Mid

Right

7.641

41.66 18.5 104.749 17.99 98.137 7

PtClc (%)

0.13

0.43

Ast Calc (sqmm)

330.9 352.6 330.9 191.7 985.01 911 3 5 3 2

Ast Prv (sqmm)

397.1 397.1 397.1 595.6 992.8 992.8 2 2 2 8

0.24

1.19

0.256

1.1

Reinforcement 2-#16 2-#16 2-#16 3-#16 3-#16 3-#16 2-#16 2-#16   Shear Design Left

Mid

Right

85.5

50.08

80.72

0

0

0

Asv Reqd (sqmm)

368.384

208.333

322.413

Asv Prv (sqmm)

1417.6

1134.08

1417.6

Reinforcement

2L-#10 @ 100

2L-#10 @ 125

2L-#10 @ 100

Vu (kN) Asv Torsion (sqmm)

Beam No

:

B12 177

Group No

:

G6

:

113

Breadth

:

250

mm

Depth

:

400

mm

Material Properties

:

C20 : Fy420 : Clear Cover = 40 mm

Design Code

:

ACI 318M - 2011

Beam Type

:

Ductile Beam

Analysis Reference(Member)

5.5m

Flexure Design Beam Bottom Left Mu (kN)

0

Mid

Right

Beam Top Left

Mid

Right

54.70 25.88 56.93 106.648 5 7 0.65

0.68

1.3

0

PtClc (%)

0.13

0.339 0.13

Ast Calc (sqmm)

397.1 537.4 558.3 279.9 1072.25 238.27 2 3 2 5

Ast Prv (sqmm)

397.1 595.6 595.6 595.6 1191.36 595.68 2 8 8 8

Reinforcement 2-#16 3-#16 3-#16 3-#16 3-#16 3-#16 3-#16   Shear Design Left

Mid

Right

78.81

59

20.29

Asv Torsion (sqmm)

512.188

512.188

512.188

Asv Reqd (sqmm)

791.574

580.798

512.188

Vu (kN)

178

Asv Prv (sqmm)

1417.6

1134.08

1417.6

Reinforcement

2L-#10 @ 100

2L-#10 @ 125

2L-#10 @ 100

Beam No

:

B13

Group No

:

G7

:

89

Breadth

:

250

mm

Depth

:

400

mm

Material Properties

:

C20 : Fy420 : Clear Cover = 40 mm

Design Code

:

ACI 318M - 2011

Beam Type

:

Ductile Beam

Analysis Reference(Member)

5.5m

Flexure Design Beam Bottom Left

Mid

Beam Top

Right Left

Mid

Right

Mu (kN)

58.89 57.15 7 5

PtClc (%)

0.69

Ast Calc (sqmm)

570.2 553.8 397.1 107.2 275 1066.67 5 1 2 5

Ast Prv (sqmm)

595.6 595.6 397.1 595.6 595.6 1191.36 8 8 2 8 8

0.67

0 0.13

0

25.27 106.158 3

0.13 0.333

1.29

Reinforcement 3-#16 3-#16 2-#16 3-#16 3-#16 3-#16 3-#16 179

  Shear Design Left

Mid

Right

10.71

68.59

88.39

Asv Torsion (sqmm)

275.855

275.855

275.855

Asv Reqd (sqmm)

275.855

436.707

729.531

Asv Prv (sqmm)

1417.6

1134.08

1417.6

Reinforcement

2L-#10 @ 100

2L-#10 @ 125

2L-#10 @ 100

Vu (kN)

Beam No

:

B14

Group No

:

G8

:

114

Breadth

:

250

mm

Depth

:

400

mm

Material Properties

:

C20 : Fy420 : Clear Cover = 40 mm

Design Code

:

ACI 318M - 2011

Beam Type

:

Ductile Beam

Analysis Reference(Member)

5.5m

Flexure Design Beam Bottom Left

Mid

Right Left

Beam Top Mid

Right

180

Mu (kN)

16.56 27.63 60.40 8.72 11.066 63.48 2 6 3

PtClc (%)

0.21

Ast Calc (sqmm)

176.1 198.5 525.5 275 116.9 555.02 8 6 9

Ast Prv (sqmm)

397.1 397.1 397.1 595.6 595.68 595.68 2 2 2 8

0.33

0.13

0.64 0.256 0.67

Reinforcemen 2-#16 2-#16 2-#16 3-#16 3-#16 3-#16 t   Shear Design Left

Mid

Right

39.84

30.38

42.3

0

0

0

Asv Reqd (sqmm)

208.333

208.333

234.209

Asv Prv (sqmm)

1417.6

1134.08

1417.6

Reinforcement

2L-#10 @ 100

2L-#10 @ 125

2L-#10 @ 100

Vu (kN) Asv Torsion (sqmm)

Beam No

:

B15

Group No

:

G8

:

102

Breadth

:

250

mm

Depth

:

400

mm

Material Properties

:

C20 : Fy420 : Clear Cover = 40 mm

Analysis Reference(Member)

5.5m

181

Design Code

:

ACI 318M - 2011

Beam Type

:

Ductile Beam

Flexure Design Beam Bottom Left

Mid

Beam Top

Right Left

Mid

Right

Mu (kN)

13.02 21.92 5.18 3

58.7

PtClc (%)

0.17

0.62 0.256

Ast Calc (sqmm)

137.9 397.1 509.4 154.2 234.8 630.76 1 2 4 1

Ast Prv (sqmm)

397.1 397.1 397.1 595.6 595.6 1191.36 2 2 2 8 8

0.28

0.13

14.53 71.25 5 0.76

Reinforcement 2-#16 2-#16 2-#16 3-#16 3-#16 3-#16 3-#16   Shear Design Left

Mid

Right

38.39

31.84

43.76

0

0

0

Asv Reqd (sqmm)

329.044

208.333

208.333

Asv Prv (sqmm)

1417.6

1134.08

1417.6

Reinforcement

2L-#10 @ 100

2L-#10 @ 125

2L-#10 @ 100

Vu (kN) Asv Torsion (sqmm)

182

Beam No

:

B16

Group No

:

G8

:

90

Breadth

:

250

mm

Depth

:

400

mm

Material Properties

:

C20 : Fy420 : Clear Cover = 40 mm

Design Code

:

ACI 318M - 2011

Beam Type

:

Ductile Beam

Analysis Reference(Member)

5.5m

Flexure Design Beam Bottom Left Mu (kN)

0

Mid

Right

Beam Top Left

Mid

Right

28.75 33.82 22.36 104.579 2.196 1 4

PtClc (%)

0.13

0.35

0.33

1.25

0.404 0.13

Ast Calc (sqmm)

397.1 289.2 332.8 275 1032.82 238.27 2 6 9

Ast Prv (sqmm)

397.1 397.1 397.1 595.6 1191.36 595.68 2 2 2 8

Reinforcement 2-#16 2-#16 2-#16 3-#16 3-#16 3-#16 3-#16   Shear Design

Vu (kN)

Left

Mid

Right

70.98

57.69

21.94 183

Asv Torsion (sqmm)

709.647

709.647

709.647

Asv Reqd (sqmm)

928.897

782.796

709.647

Asv Prv (sqmm)

1417.6

1134.08

1417.6

Reinforcement

2L-#10 @ 100

2L-#10 @ 125

2L-#10 @ 100

Beam No

:

B17

Group No

:

G9

:

115

Breadth

:

250

mm

Depth

:

400

mm

Material Properties

:

C20 : Fy420 : Clear Cover = 40 mm

Design Code

:

ACI 318M - 2011

Beam Type

:

Ductile Beam

Analysis Reference(Member)

5.5m

Flexure Design Beam Bottom Left

Mid

Beam Top

Right Left

Mid

Right

Mu (kN)

13.61 26.68 51.95 4.67 9.866 63.059 9 6 5

PtClc (%)

0.17

Ast Calc (sqmm)

144.3 264.7 446.3 275 107.25 550.98 4 5 4

Ast Prv (sqmm)

397.1 397.1 397.1 573.0 397.12 573.04 2 2 2 4

0.33

0.13

0.54 0.256 0.67

184

Reinforcemen 2-#16 2-#16 2-#16 2-#19 2-#16 2-#19 t   Shear Design Left

Mid

Right

38.52

31.71

43.63

0

0

0

Asv Reqd (sqmm)

208.333

208.333

251.666

Asv Prv (sqmm)

1417.6

1134.08

1417.6

Reinforcement

2L-#10 @ 100

2L-#10 @ 125

2L-#10 @ 100

Vu (kN) Asv Torsion (sqmm)

Beam No

:

B18

Group No

:

G9

:

103

Breadth

:

250

mm

Depth

:

400

mm

Material Properties

:

C20 : Fy420 : Clear Cover = 40 mm

Design Code

:

ACI 318M - 2011

Beam Type

:

Ductile Beam

Analysis Reference(Member)

5.5m

Flexure Design Beam Bottom

Beam Top 185

Left

Mid

Right Left

Mid

Right

Mu (kN)

11.99 20.64 8 6

PtClc (%)

0.15

0.27

Ast Calc (sqmm)

126.9

220.7 528.8 173.6 478.8 650.44 8 2 5

Ast Prv (sqmm)

397.1 397.1 595.6 573.0 397.1 1586.46 2 2 8 4 2

0

55.44 16.32 73.234 3 9

0.13

0.58 0.256

0.79

Reinforcement 2-#16 2-#16 3-#16 2-#19 2-#16 2-#25 2-#19   Shear Design Left

Mid

Right

36.69

33.53

45.45

0

0

0

Asv Reqd (sqmm)

395.499

208.333

218.304

Asv Prv (sqmm)

1417.6

1134.08

1417.6

Reinforcement

2L-#10 @ 100

2L-#10 @ 125

2L-#10 @ 100

Vu (kN) Asv Torsion (sqmm)

Beam No

:

B19

Group No

:

G9

:

91

Analysis Reference(Member)

5.5m

186

Breadth

:

250

mm

Depth

:

400

mm

Material Properties

:

C20 : Fy420 : Clear Cover = 40 mm

Design Code

:

ACI 318M - 2011

Beam Type

:

Ductile Beam

Flexure Design Beam Bottom Left Mu (kN)

0

Mid

Right

Beam Top Left

Mid

Right

43.63 60.55 46.35 152.063 4 3 0.54

0.59

1.87

0

PtClc (%)

0.13

0.726 0.13

Ast Calc (sqmm)

528.8 442.5 487.0 598.8 1543.73 317.29 2 1 9 9

Ast Prv (sqmm)

595.6 595.6 595.6 794.2 1586.46 397.12 8 8 8 4

Reinforcement 3-#16 3-#16 3-#16 2-#25 2-#16 2-#16 2-#19 2-#16   Shear Design Left

Mid

Right

Vu (kN)

94.01

80.72

14.38

Asv Torsion (sqmm)

939.94

939.94

939.94

1376.449

1243.249

939.94

1417.6

1288.73

1417.6

Asv Reqd (sqmm) Asv Prv (sqmm)

187

Reinforcement

2L-#10 @ 100

2L-#10 @ 110

2L-#10 @ 100

Beam No

:

B20

Group No

:

G10

:

116

Breadth

:

250

mm

Depth

:

400

mm

Material Properties

:

C20 : Fy420 : Clear Cover = 40 mm

Design Code

:

ACI 318M - 2011

Beam Type

:

Ductile Beam

Analysis Reference(Member)

5.5m

Flexure Design Beam Bottom Left Mu (kN)

0

Mid

Right

Beam Top Left

Mid

56.54 24.10 56.86 104.067 8 4 0.65

0.67

1.26

Right 0

PtClc (%)

0.13

0.333 0.13

Ast Calc (sqmm)

397.1 539.3 554.3 1039.58 275 238.27 2 9 5

Ast Prv (sqmm)

397.1 595.6 595.6 595.6 1191.36 595.68 2 8 8 8

Reinforcement 2-#16 3-#16 3-#16 3-#16 3-#16 3-#16 3-#16   Shear Design

188

Left

Mid

Right

78.77

58.97

20.33

Asv Torsion (sqmm)

512.248

512.248

512.248

Asv Reqd (sqmm)

791.057

580.554

512.248

Asv Prv (sqmm)

1417.6

1134.08

1417.6

Reinforcement

2L-#10 @ 100

2L-#10 @ 125

2L-#10 @ 100

Vu (kN)

Beam No

:

B21

Group No

:

G11

:

92

Breadth

:

250

mm

Depth

:

400

mm

Material Properties

:

C20 : Fy420 : Clear Cover = 40 mm

Design Code

:

ACI 318M - 2011

Beam Type

:

Ductile Beam

Analysis Reference(Member)

5.5m

Flexure Design Beam Bottom Left

Mid

Mu (kN)

77.16 69.03 5 6

PtClc (%)

0.84

0.81

Beam Top

Right Left 0 0.13

0

Mid

Right

29.58 119.124 6

0.13 0.333

1.4 189

Ast Calc (sqmm)

689.8 667.8 397.1 107.2 275 1154.58 7 3 2 5

Ast Prv (sqmm)

992.8 992.8

397.1 595.6 595.6 1191.36 2 8 8

Reinforcement 3-#16 3-#16 2-#16 3-#16 3-#16 3-#16 2-#16 2-#16 3-#16   Shear Design Left

Mid

Right

12.27

66.97

86.77

Asv Torsion (sqmm)

294.054

276.663

276.663

Asv Reqd (sqmm)

294.054

421.924

866.989

Asv Prv (sqmm)

1417.6

1134.08

1417.6

Reinforcement

2L-#10 @ 100

2L-#10 @ 125

2L-#10 @ 100

Vu (kN)

4.3.7.2 Design of Slab 

Identify the load consists of: Live load pressure Dead load pressure

   

Ceiling load and other attached below the slab Determine the minimum thickness “h” from NSCP 2010 or 2015. Compute the weight of slab (Pa), Weight =уconc x h Calculate the factored moment (Mu) uniform load wu=factored pressure x 1m Compute the effective depth,d

d=h−covering ( usually 20 mm )−0.5(main diameter)  

Required Steel ratio, ρ: Solve for Rn from Mu = 𝟇 Rn bd2

190

ρ=



0.85 f ' c ¿) fy

Solve for ρmax and ρmin If ρ is <ρmax and >ρmin, use ρ If ρ is >ρmax, increase depth of slab to ensure ductile failure If ρ is <ρmin, use ρ=ρmin



Compute the required spacing As= ρbd

A ≤ 0.5 B A Two way slab ≥ 0.5 B One way slab

L =SIMPLY SUPPORTED 20 L =ONE END CONTINOUS 24 L =BOTH ENDS 28 L =CANTILEVER 10 As temp.= 0.002bt s=

6. 7. 8. 9. 10.

Abar ( 1000 ) <smax use sax if s is>smax AS

When S/L<0.5 it is one way slab Min. Steel bars (main reinforced)=12mm𝟇 Min. Temp. Bars=10mm𝟇 Max. Spacing of main bars greater than not equal to 3 times thickness of slab of 500mm Max. Spacing of temperature bars less than not equal to 5 times thickness of slab of 500mm 191

As=0.0018 bt

for grade 400 bars

fy=400 MPa

As=0.02 bt

for grade 300 bars

fy=300 MPa

For Two way Slab 5. 6. 7. 8.

S/L>0.5 it is two way slab Min. Thickness t=perimeter / 180 Max. Spacing of main bars =3t greater than not equal to 500mm Spacing of bars within the column strips is 3/2 times the spacing of the center.

192

Figure 4.72 Slab layout result from STAAD RCDC Two Way Slab:

1. Interior Panel

 

2. One Short Edge Discontinuous

 

3. One Long Edge Discontinuous

 

4. Two Adjacent Edges Discontinuous

 

5. Two Short Edges Discontinuous 193

 

6. Two Long Edges Discontinuous

 

7. Three Edges Discontinuous (One Long Edge Continuous)

 

8. Three Edges Discontinuous (One Short Edge Continuous)

 

9. Four Edges Discontinuous

 

10.Simply Supported On Four Sides

      Level:

5.5m

     

      Slab No. : S1 Ly = 5 m

Lx = 4 m

Live Load = 2.4 kN/sqm

Imposed Load = 2.553 kN/sqm

Thickness = 150 mm

Span Type = 2-Way

Panel Type = 4

Design Code = ACI 318 - 2011

Grade of Concrete = C20

Grade of Steel = Fy420

      Bottom SS

Bottom LS

Top SS

Top LS

Distribution

#10 @ 250

#10 @ 250

#10 @ 250

#10 @ 250

#10 @ 250

     

      Slab No. : S2 194

Ly = 5 m

Lx = 3.85 m

Live Load = 2.4 kN/sqm

Imposed Load = 2.553 kN/sqm

Thickness = 150 mm

Span Type = 2-Way

Panel Type = 9

Design Code = ACI 318 - 2011

Grade of Concrete = C20

Grade of Steel = Fy420

      Bottom SS

Bottom LS

Top SS

Top LS

Distribution

#10 @ 250

#10 @ 250

---

---

#10 @ 250

     

      Slab No. : S4 Ly = 4.85 m

Lx = 4 m

Live Load = 2.4 kN/sqm

Imposed Load = 2.553 kN/sqm

Thickness = 150 mm

Span Type = 2-Way

Panel Type = 9

Design Code = ACI 318 - 2011

Grade of Concrete = C20

Grade of Steel = Fy420

      Bottom SS

Bottom LS

Top SS

Top LS

Distribution

#10 @ 250

#10 @ 250

---

---

#10 @ 250

     

      195

Slab No. : S5 Ly = 5 m

Lx = 4 m

Live Load = 2.4 kN/sqm

Imposed Load = 2.553 kN/sqm

Thickness = 150 mm

Span Type = 2-Way

Panel Type = 1

Design Code = ACI 318 - 2011

Grade of Concrete = C20

Grade of Steel = Fy420

      Bottom SS

Bottom LS

Top SS

Top LS

Distribution

#10 @ 250

#10 @ 250

#10 @ 250

#10 @ 250

#10 @ 250

     

      Slab No. : S6 Ly = 4.85 m

Lx = 4 m

Live Load = 2.4 kN/sqm

Imposed Load = 2.553 kN/sqm

Thickness = 150 mm

Span Type = 2-Way

Panel Type = 9

Design Code = ACI 318 - 2011

Grade of Concrete = C20

Grade of Steel = Fy420

      Bottom SS

Bottom LS

Top SS

Top LS

Distribution

#10 @ 250

#10 @ 250

---

---

#10 @ 250

     

196

      Slab No. : S7 Ly = 5 m

Lx = 4 m

Live Load = 2.4 kN/sqm

Imposed Load = 2.553 kN/sqm

Thickness = 150 mm

Span Type = 2-Way

Panel Type = 4

Design Code = ACI 318 - 2011

Grade of Concrete = C20

Grade of Steel = Fy420

      Bottom SS

Bottom LS

Top SS

Top LS

Distribution

#10 @ 250

#10 @ 250

#10 @ 250

#10 @ 250

#10 @ 250

     

      Slab No. : S8 Ly = 5 m

Lx = 4 m

Live Load = 2.4 kN/sqm

Imposed Load = 2.553 kN/sqm

Thickness = 150 mm

Span Type = 2-Way

Panel Type = 3

Design Code = ACI 318 - 2011

Grade of Concrete = C20

Grade of Steel = Fy420

      Bottom SS

Bottom LS

Top SS

Top LS

Distribution

#10 @ 250

#10 @ 250

#10 @ 250

#10 @ 250

#10 @ 250

      197

      Slab No. : S9 Ly = 5 m

Lx = 4 m

Live Load = 2.4 kN/sqm

Imposed Load = 2.553 kN/sqm

Thickness = 150 mm

Span Type = 2-Way

Panel Type = 4

Design Code = ACI 318 - 2011

Grade of Concrete = C20

Grade of Steel = Fy420

      Bottom SS

Bottom LS

Top SS

Top LS

Distribution

#10 @ 250

#10 @ 250

#10 @ 250

#10 @ 250

#10 @ 250

4.3.7.3 Column Design

198

199

Figure 4.73 Column layout result from STAAD RCDC

200

Load Combinations : 1. 1.4 (LOAD 3: DL) 2. 1.2 (LOAD 3: DL) +1.6 (LOAD 4: LL) 3. 1.42 (LOAD 3: DL) +0.5 (LOAD 4: LL) +1.25 (LOAD 1: EQ X) 4. 1.42 (LOAD 3: DL) +0.5 (LOAD 4: LL) +1.25 (LOAD 2: EQ Z) 5. 1.42 (LOAD 3: DL) +0.5 (LOAD 4: LL) -1.25 (LOAD 1: EQ X) 6. 1.42 (LOAD 3: DL) +0.5 (LOAD 4: LL) -1.25 (LOAD 2: EQ Z) 7. 1.42 (LOAD 3: DL) +1.25 (LOAD 1: EQ X) 8. 1.42 (LOAD 3: DL) +1.25 (LOAD 2: EQ Z) 9. 1.42 (LOAD 3: DL) -1.25 (LOAD 1: EQ X) 10. 1.42 (LOAD 3: DL) -1.25 (LOAD 2: EQ Z) 11. 0.68 (LOAD 3: DL) +1.25 (LOAD 1: EQ X) 12. 0.68 (LOAD 3: DL) +1.25 (LOAD 2: EQ Z) 13. 0.68 (LOAD 3: DL) -1.25 (LOAD 1: EQ X) 14. 0.68 (LOAD 3: DL) -1.25 (LOAD 2: EQ Z)

Levels :

1. FOUNDATION 2. 2m 3. 5.5m 4. 8.5m

Column/Wall : C1 Level Size Material LC Analysis P (kN) Mx My Pt Interaction Main Links (mm) LC No (kNm) (kNm) (%) Ratio Reinforcement 1 TO 400

C25 :

9

44

1074.62 -44.46 -27.79 1.21

0.37

4-#19 + 4-#16 #10 @ 201

2

2 TO 3

125 + #10 @ 200

X Fy420 400 400 C25 : X 5 Fy420 400

400 3 TO C25 : X 5 4 Fy420 400

40

40

719.7 56.04 41.23 1.21

359.13 104.38 67.85 1.21

0.49

#10 @ 125 + 4-#19 + 4-#16 #10 @ 200

0.86

#10 @ 125 + 4-#19 + 4-#16 #10 @ 200

  Column/Wall : C2 Level Size Material LC Analysis P (kN) Mx My Pt Interaction Main Links (mm) LC No (kNm) (kNm) (%) Ratio Reinforcement

300 1 TO C25 : X 11 2 Fy420 5000

300 2 TO C25 : X 11 3 Fy420 5000

300 3 TO C25 : X 13 4 Fy420 5000

46

507.3

14870.3 1.3 0.17 3 4

46

397.4 10506.8 4 2

48

148.9 1.3 -2922.31 2.94 5 4

1.6

1.3 4

0.88

#10 @ 36-#19 + 34- 150 + #19 #10 @ 300

0.63

#10 @ 36-#19 + 34- 150 + #19 #10 @ 300

0.18

36-#19 + 34#19

#10 @ 300

 

202

Column/Wall : C3 Level Size Material LC Analysis P (kN) Mx My Pt Interaction Main Links (mm) LC No (kNm) (kNm) (%) Ratio Reinforcement 400 1 TO C25 : X 7 2 Fy420 400 400 2 TO C25 : X 3 3 Fy420 400

3 TO 4

400 C25 : X 3 Fy420 400

42

38

38

960.05 41.94 -27.62 1.21

604.47 -80.06 44.73 1.21

376.61 114.75 -67.23 1.21

0.35

#10 @ 125 + 4-#19 + 4-#16 #10 @ 200

0.62

#10 @ 125 + 4-#19 + 4-#16 #10 @ 200

0.91

#10 @ 125 + 4-#19 + 4-#16 #10 @ 200

  Column/Wall : C4 Level Size Material LC Analysis P (kN) Mx My Pt Interaction Main Links (mm) LC No (kNm) (kNm) (%) Ratio Reinforcement 400 1 TO C25 : X 11 2 Fy420 400

2 TO 3

400 C25 : X 3 Fy420 400

400 3 TO C25 : X 3 4 Fy420 400

46

38

38

238.71 40.58 8.21 1.21

511.29 -33.93 -22.58 1.21

229.92 -65.86 -35.92 1.21

0.28

#10 @ 125 + 4-#19 + 4-#16 #10 @ 200

0.28

#10 @ 125 + 4-#19 + 4-#16 #10 @ 200

0.53

#10 @ 125 + 4-#19 + 4-#16 #10 @ 200

203

  Column/Wall : C5 Level Size Material LC Analysis P (kN) Mx My Pt Interaction Main Links (mm) LC No (kNm) (kNm) (%) Ratio Reinforcement 1 TO 2

400 C25 : X 13 Fy420 400

400 2 TO C25 : X 5 3 Fy420 400

3 TO 4

400 C25 : X 5 Fy420 400

48

40

40

279.17 -39.55

7.9 1.21

595.06 45.78 -31.68 1.21

243.23 -69.6 43.89 1.21

0.26

#10 @ 125 + 4-#19 + 4-#16 #10 @ 200

0.38

#10 @ 125 + 4-#19 + 4-#16 #10 @ 200

0.58

#10 @ 125 + 4-#19 + 4-#16 #10 @ 200

  Column/Wall : C6 Level Size Material LC Analysis P (kN) Mx My Pt Interaction Main Links (mm) LC No (kNm) (kNm) (%) Ratio Reinforcement 300 1 TO C25 : X 14 2 Fy420 4000

49

398.11

0.82

#10 @ 28-#19 + 28- 150 + #19 #10 @ 300

0.58

#10 @ 28-#19 + 28- 150 + #19 #10 @ 300

-13.59 1.34 1866.49

0.18

28-#19 + 28- #10 @ #19 300

-5.39 1.34 8801.42

2 TO 3

300 C25 : X 14 Fy420 4000

49

304.78 -2.41 1.34 6157.41

3 TO 4

300 C25 : X 6 Fy420 4000

41

294.39

204

  Column/Wall : C7 Level Size Material LC Analysis P (kN) Mx My Pt Interaction Main Links (mm) LC No (kNm) (kNm) (%) Ratio Reinforcement 1 TO 2

300 C25 : X 14 Fy420 4000

2 TO 3

3 TO 4

0.67

#10 @ 28-#19 + 28- 150 + #19 #10 @ 300

49

321.83 -1.84 1.34 5067.01

0.48

#10 @ 28-#19 + 28- 150 + #19 #10 @ 300

41

293.28

10.91 1.34 1560.12

0.15

28-#19 + 28- #10 @ #19 300

49

414.49 -7214.9 -6.29 1.34

300 C25 : X 14 Fy420 4000 300 C25 : X 6 Fy420 4000

  Column/Wall : C8 Level Size Material LC Analysis P (kN) Mx My Pt Interaction Main Links (mm) LC No (kNm) (kNm) (%) Ratio Reinforcement 400 1 TO C25 : X 11 2 Fy420 400

2 TO 3

400 C25 : X 11 Fy420 400

3 TO 400 C25 : 3 4 X Fy420 400

46

214.76 49.94 6.39 1.21

0.34

#10 @ 125 + 4-#19 + 4-#16 #10 @ 200 #10 @ 125 + 4-#19 + 4-#16 #10 @ 200

46

199.65 36.03 4.92 1.21

0.25

38

209.28 -72.86

0.5

-2.2 1.21

4-#19 + 4-#16 #10 @ 125 + #10 @ 205

200

  Column/Wall : C9 Level Size Material LC Analysis P (kN) Mx My Pt Interaction Main Links (mm) LC No (kNm) (kNm) (%) Ratio Reinforcement 1 TO 2

400 C25 : X 13 Fy420 400

400 2 TO C25 : X 13 3 Fy420 400

3 TO 4

400 C25 : X 5 Fy420 400

48

48

40

216.78 -49.74 6.45 1.21

201.21 -36.08 4.85 1.21

211.71 72.44 -1.75 1.21

0.34

#10 @ 125 + 4-#19 + 4-#16 #10 @ 200

0.25

#10 @ 125 + 4-#19 + 4-#16 #10 @ 200

0.5

#10 @ 125 + 4-#19 + 4-#16 #10 @ 200

  Column/Wall : C10 Level Size Material LC Analysis P (kN) Mx My Pt Interaction Main Links (mm) LC No (kNm) (kNm) (%) Ratio Reinforcement 400 1 TO C25 : X 5 2 Fy420 400

2 TO 3

400 C25 : X 5 Fy420 400

40

40

1015.19 -65.28 -6.19 1.21

675.33 -52.26 14.59 1.21

0.41

#10 @ 125 + 4-#19 + 4-#16 #10 @ 200

0.33

#10 @ 125 + 4-#19 + 4-#16 #10 @ 200

206

3 TO 4

400 C25 : X 5 Fy420 400

40

331.75 85.06 -36.88 1.21

0.62

#10 @ 125 + 4-#19 + 4-#16 #10 @ 200

  Column/Wall : C11 Level Size Material LC Analysis P (kN) Mx My Pt Interaction Main Links (mm) LC No (kNm) (kNm) (%) Ratio Reinforcement 400 1 TO C25 : X 13 2 Fy420 400

2 TO 3

400 C25 : X 11 Fy420 400

3 TO 4

400 C25 : X 3 Fy420 400

48

46

38

196.88 -60.96 -5.88 1.21

164.11 44.85 5.87 1.21

134.56 -72.48 -31.02 1.21

0.43

#10 @ 125 + 4-#19 + 4-#16 #10 @ 200

0.32

#10 @ 125 + 4-#19 + 4-#16 #10 @ 200

0.58

#10 @ 125 + 4-#19 + 4-#16 #10 @ 200

  Column/Wall : C12 Level Size Material LC Analysis P (kN) Mx My Pt Interaction Main Links (mm) LC No (kNm) (kNm) (%) Ratio Reinforcement 400 1 TO C25 : X 11 2 Fy420 400 2 TO 400 C25 : 11 3 X Fy420

46

286.7 58.76 -6.06 1.21

0.38

46

230.56 -51.88 -2.71 1.21

0.35

#10 @ 125 + 4-#19 + 4-#16 #10 @ 200 4-#19 + 4-#16 #10 @ 125 + 207

#10 @ 200

400 400 3 TO C25 : X 5 4 Fy420 400

40

131.59 75.4 -29.33 1.21

0.6

#10 @ 125 + 4-#19 + 4-#16 #10 @ 200

  Column/Wall : C13 Level Size Material LC Analysis P (kN) Mx My Pt Interaction Main Links (mm) LC No (kNm) (kNm) (%) Ratio Reinforcement 1 TO 2

400 C25 : X 3 Fy420 400

400 2 TO C25 : X 3 3 Fy420 400

3 TO 4

400 C25 : X 3 Fy420 400

38

38

38

922.3 66.17 -6.31 1.21

581.31 53.42 15.74 1.21

334.09 -89.84 -38.52 1.21

0.41

#10 @ 125 + 4-#19 + 4-#16 #10 @ 200

0.34

#10 @ 125 + 4-#19 + 4-#16 #10 @ 200

0.65

#10 @ 125 + 4-#19 + 4-#16 #10 @ 200

208

4.4 DESIGN OF TRADEOFF 3 (DUAL SYSTEM – SPECIAL REINFORCED CONCETE SHEAR WALL)

Figure 4.74 3D Rendered view of Tradeoff 3 4.4.1 Design Loads The Design Loads and Parameters shown are project design inputs from the National Structural Code of the Philippines (NSCP) 2015.

Figure 4.75 Design Properties in STAAD Pro ELEMENT COLUMN

DIMENSION 450mm x 450mm

MATERIAL Concrete 209

BEAM SLAB SHEAR WALL

400mm x 300mm 150 mm (Thickness) 300 mm (Thickness) Table 4.16 Design Properties

Concrete Concrete Concrete

4.4.2 Design Loads The Design Loads and Parameters shown are project design inputs from the National Structural Code of the Philippines (NSCP) 2015.

Figure 4.76 Dead Load input in STAAD Pro Member Load Components (1st to 2th floor)

Design Load (KPa)

Frame Walls Windows, Glass, Frame and Sash

0.38

Concrete Masonry Unit CHB Wall, 150mm, Full Grout (Plastered both sides)

3.11

CHB Wall, 100mm, Full Grout (Plastered both sides)

2.98

Wall covering Waterproofing Membrane: Bituminous smooth surface

0.07

Table 4.18 Member Loads

Floor Load

210

Components (1st to 2th floor)

Design Load (KPa)

Ceilings Gypsum board (per mm thickness)

0.008

Plaster on tile or concrete

0.24

Floor Fills Lightweight Concrete, per mm

0.015

Floor and Floor Finishes Cement Finish (25MM) on stone concrete fill

1.53

Frame Partitions Wood or Steel studs, 13 mm gypsum board each side

0.38

Frame Walls Windows, Glass, Frame and Sash

0.38

Total Dead Load

2.553

Table 4.19 Dead Loads 4.4.3 Live Loads The maximum live loads expected by the intended use or occupancy based on section 205 of the code. Below are the occupancy descriptions and the equivalent design live loads in KPa:

Figure 4.77 Live Load input in STAAD Pro Use or Occupancy

Description

Design Load (KPa) 211

Description Parking garages and ramps Roof Decks Office 4.4.4

Public parking and ramps Same as area served or occupancy (Other offices) Table 4.20 Minimum Design Live Loads

4.8 -2.4

Seismic load parameter

Figure 4.78 Seismic Parameters in STAAD Pro Parameters Importance Factor Soil Profile Type Seismic Zone Seismic source type Near Source Factor (Na) Near Source Factor (Nv) Seismic Coefficient (Ca) Seismic Coefficient (Cv) R (DUAL SYSTEM – Special Reinforced Concrete Shear Wall) Numerical Coefficient (Ct) Table 4.21 Seismic Parameters

1.5 Stiff Soil, Sd ZONE 4: Z=0.4 A 1.2 1.6 0.44Na = 0.53 0.64 Nv = 1.02 8.5 .0731

212

4.4.5 Load Combination The following table defines the different types of load combination used in the structural analysis of the building. All these combinations will be applied and the designer will determine the load combination that will produce the maximum stress in the building. This governing load combination will then be used to calculate the member forces for the design.

Figure 4.79 NSCP 2015 Load Combination generated in STAAD Pro

Figure 4.80 NSCP 2015 generated Drift code in STAAD Pro

213

Figure 4.81 NSCP 2015 – ACI-FOOTING Load Combination code generated in STAAD Pro

4.4.6 Structural Analysis The parameters that were previously stated in this chapter were now then used for the structural analysis of the configuration using computer software (STAAD). The designer defined all load combinations, seismic and wind load definitions, dead and live loads and trial structural members to obtain the member forces that will be used in the design. The following figures show the highlights of the structural analysis process.

214

Figure 4.82 Allowable drift factor in NSCP 2015

215

Δs = Δm / (0.7 x R) Where: Δm = 0.025h or h/40, if T < 0.7 sec Δm = 0.020h or h/50, if T > 0.7 sec T = fundamental period of building h = structural height Ct = .0731 T = Ct(H).75 = .0731(8.5).75 = 0.364 < 0.7 Δs = Δm / (0.7 x R) = 1 / 0.7 x 8.5 x 40 = .0042

Figure 4.83 Allowable drift factor input in STAAD Pro

216

Figure 4.84 Maximum Shear Forces

Figure 4.85 Maximum Bending Moment

217

Figure 4.86 Earthquake force at x-direction

Figure 4.87 Earthquake force at z-direction

218

Figure 4.88 Dead Loads

Figure 4.89 Live Loads

219

Figure 4.90 1.4 DL

Figure 4.91 1.2 DL + 1.2 LL

220

Figure 4.92 1.42 DL + .5 LL + 1.25 EQ

Figure 4.93 1.42 DL + .5 LL - 1.25 EQ

221

Figure 4.94 1.42 DL + 1.25 EQ

Figure 4.95 1.42 DL - 1.25 EQ

222

Figure 4.96 0.68 DL + 1.25 EQ

4.4.3.1 STAAD Pro Results

Figure 4.97 0.68 DL - 1.25 EQ

223

Figure 4.98 Summary of Result in STAAD Pro

Figure 4.99 Center of Mass

224

Figure 4.100 Center of Rigidity

225

Figure 4.101 Storey Drift Check

Figure 4.102 Soft Storey Check

226

Figure 4.103 Design Base Shear in NSCP 2015 Check: W = 6854.52 kN I = 1.5 R = 6.5 Na = 1.2 Nv = 1.6 Ca = 0.44Na = 0.53 Cv = 0.64Nv = 1.02 T = 0.364 V = Cv(I)(W) / RT = 4432.55 kN (design base shear) V = 2.5Ca(I)(W) / R = 2087.99kN (maximum design base shear) GOVERNS! V = 0.11Ca(I)(W) = 597.17 kN (minimum design base shear) V = 0.8ZNV(I)(W) / R = 506.18 kN (minimum design base shear

4.4.7.1 Design of Beam

227

Figure 4.104 Design process of singly reinforced beams

Figure 4.105 Design process of doubly reinforced beams

228

Figure 4.106 Design process of shear reinforcement

229

Figure 4.107 Column Design Result from STAAD RCDC Beam No

:

B1

230

Group No

:

G1

:

4

Breadth

:

250

mm

Depth

:

400

mm

Material Properties

:

C20 : Fy420 : Clear Cover = 40 mm

Design Code

:

ACI 318M - 2011

Beam Type

:

Regular Beam

Analysis Reference(Member)

5.5m

Flexure Design Beam Bottom Left Mu (kN)

0

Mid

Right

Beam Top Left

Mid

Right

72.82 22.64 69.61 139.172 6 5 0.86

0.82

1.72

0

PtClc (%)

0.13

0.333 0.13

Ast Calc (sqmm)

107.2 711.9 680.1 1419.84 275 107.25 5 5 4

Ast Prv (sqmm)

397.1 397.1 992.8 992.8 1586.46 397.12 2 2

Reinforcement 2-#16 3-#16 3-#16 2-#25 2-#16 2-#16 2-#16 2-#16 2-#19   Shear Design Left

Mid

Right

Vu (kN)

100.7

60.76

33.12

Asv Torsion (sqmm)

276.56

276.56

276.56

Asv Reqd (sqmm)

767.826

386.398

276.56 231

Asv Prv (sqmm)

1134.08

1134.08

1134.08

Reinforcement

2L-#10 @ 125

2L-#10 @ 125

2L-#10 @ 125

Beam No

:

B2

Group No

:

G2

:

6

Breadth

:

250

mm

Depth

:

400

mm

Material Properties

:

C20 : Fy420 : Clear Cover = 40 mm

Design Code

:

ACI 318M - 2011

Beam Type

:

Regular Beam

Analysis Reference(Member)

5.5m

Flexure Design Beam Bottom Left Mu (kN) PtClc (%)

Mid

121.972 114.261 1.51

1.4

Beam Top

Right

Left

0

0

0.13

Ast Calc (sqmm)

1244.85 1154.01 107.25

Ast Prv (sqmm)

1410.54 1410.54

Mid

Right

42.55 188.915 7

0.13 0.504

2.26

107.2 415.7 1863.13 5 4

1013.4 397.1 573.0 2026.84 2 2 4

Reinforcemen 2-#25 2-#25 2-#25 2-#16 2-#19 2-#25 t 2-#16 2-#16 2-#25 232

  Shear Design Left

Mid

Right

31.05

84.98

124.92

Asv Torsion (sqmm)

476.595

476.595

476.595

Asv Reqd (sqmm)

476.595

695.159

1222.966

Asv Prv (sqmm)

1134.08

1134.08

1232.7

Reinforcement

2L-#10 @ 125

2L-#10 @ 125

2L-#10 @ 115

Vu (kN)

Beam No

:

B3

Group No

:

G3

:

25

Breadth

:

250

mm

Depth

:

400

mm

Material Properties

:

C20 : Fy420 : Clear Cover = 40 mm

Design Code

:

ACI 318M - 2011

Beam Type

:

Regular Beam

Analysis Reference(Member)

5.5m

Flexure Design Beam Bottom Left Mu (kN)

Mid

29.74 59.87 7 7

Beam Top

Right Left 0

Mid

Right

18.62 13.75 118.085 8 5 233

PtClc (%)

0.37

0.71

0.13

0.33 0.273

1.46

Ast Calc (sqmm)

307.2

582.7 107.2 275 225.1 1201.42 6 5

Ast Prv (sqmm)

397.1 595.6 397.1 397.1 397.1 1410.54 2 8 2 2 2

Reinforcement 2-#16 3-#16 2-#16 2-#16 2-#16 2-#25 2-#16   Shear Design Left

Mid

Right

49.79

50.22

86.24

Asv Torsion (sqmm)

338.014

338.014

338.014

Asv Reqd (sqmm)

342.345

355.774

694.114

Asv Prv (sqmm)

1134.08

1134.08

1134.08

Reinforcement

2L-#10 @ 125

2L-#10 @ 125

2L-#10 @ 125

Vu (kN)

Beam No

:

B4

Group No

:

G3

:

26

Breadth

:

250

mm

Depth

:

400

mm

Material Properties

:

C20 : Fy420 : Clear Cover = 40 mm

Analysis Reference(Member)

5.5m

234

Design Code

:

ACI 318M - 2011

Beam Type

:

Regular Beam

Flexure Design Beam Bottom Left Mu (kN)

Mid

Right

Beam Top Left

Mid

Right

7.294

39.64 5.32 93.051 9.57 95.719 8

PtClc (%)

0.13

0.41

Ast Calc (sqmm)

107.2 334.6 107.2 107.2 855.57 884.49 5 1 5 5

Ast Prv (sqmm)

397.1 397.1 397.1 397.1 1410.54 1146.08 2 2 2 2

0.13

1.04

0.13

1.07

Reinforcemen 2-#16 2-#16 2-#16 2-#25 2-#16 2-#19 t 2-#16 2-#19   Shear Design Left

Mid

Right

Vu (kN)

76

28.75

77.42

Asv Torsion (sqmm)

0

0

0

Asv Reqd (sqmm)

258.572

208.333

281.314

Asv Prv (sqmm)

1134.08

1134.08

1134.08

Reinforcement

2L-#10 @ 125

2L-#10 @ 125

2L-#10 @ 125

Beam No

:

B5 235

Group No

:

G3

:

27

Breadth

:

250

mm

Depth

:

400

mm

Material Properties

:

C20 : Fy420 : Clear Cover = 40 mm

Design Code

:

ACI 318M - 2011

Beam Type

:

Regular Beam

Analysis Reference(Member)

5.5m

Flexure Design Beam Bottom Left Mu (kN)

0

Mid

Right

Beam Top Left

Mid

Right

55.06 12.48 20.1 110.995 25.26 5 5

PtClc (%)

0.13

0.65

0.33

1.35

0.249 0.33

Ast Calc (sqmm)

107.2 535.4 205.6 275 1112.09 275 5 2 4

Ast Prv (sqmm)

397.1 595.6 397.1 397.1 1146.08 397.12 2 8 2 2

Reinforcement 2-#16 3-#16 2-#16 2-#19 2-#16 2-#16 2-#19   Shear Design Left

Mid

Right

Vu (kN)

84.19

48.17

51.84

Asv Torsion (sqmm)

349.41

349.41

349.41

Asv Reqd (sqmm)

694.799

349.41

381.28 236

Asv Prv (sqmm)

1134.08

1134.08

1134.08

Reinforcement

2L-#10 @ 125

2L-#10 @ 125

2L-#10 @ 125

  SFR

: 1-#13EF

Beam No

:

B6

Group No

:

G4

:

46

Breadth

:

250

mm

Depth

:

400

mm

Material Properties

:

C20 : Fy420 : Clear Cover = 40 mm

Design Code

:

ACI 318M - 2011

Beam Type

:

Regular Beam

Analysis Reference(Member)

5.5m

Flexure Design Beam Bottom Left

Mid

Beam Top

Right Left

Mid

Right

Mu (kN)

30.18 59.18 1 7

PtClc (%)

0.38

Ast Calc (sqmm)

313.3 572.0 107.2 275 8 1 5

Ast Prv (sqmm)

397.1 595.6 397.1 397.1 397.1 1410.54 2 8 2 2 2

0.69

0 0.13

21.93 18.02 124.439 2 9 0.33 0.333

1.55

275 1282.66

Reinforcement 2-#16 3-#16 2-#16 2-#16 2-#16 2-#25 237

2-#16   Shear Design Left

Mid

Right

46.36

49.76

85.79

Asv Torsion (sqmm)

375.024

375.024

375.024

Asv Reqd (sqmm)

375.024

389.004

726.595

Asv Prv (sqmm)

1134.08

1134.08

1134.08

Reinforcement

2L-#10 @ 125

2L-#10 @ 125

2L-#10 @ 125

Vu (kN)

Beam No

:

B7

Group No

:

G4

:

47

Breadth

:

250

mm

Depth

:

400

mm

Material Properties

:

C20 : Fy420 : Clear Cover = 40 mm

Design Code

:

ACI 318M - 2011

Beam Type

:

Regular Beam

Analysis Reference(Member)

5.5m

Flexure Design Beam Bottom

Beam Top

238

Left

Mid

Right

Left

Mid

Right

Mu (kN)

12.08 41.06 12.62 11.95 100.333 100.4 8 1 1

PtClc (%)

0.15

Ast Calc (sqmm)

127.8 347.2 126.3 133.5 935.33 936.08 6 3 5 8

Ast Prv (sqmm)

397.1 397.1 397.1 397.1 1410.54 1410.54 2 2 2 2

0.42

0.15

1.13

0.162

1.13

Reinforcemen 2-#16 2-#16 2-#16 2-#25 2-#16 2-#25 t 2-#16 2-#16   Shear Design Left

Mid

Right

79.68

28.1

79.74

0

0

0

Asv Reqd (sqmm)

295.276

208.333

295.872

Asv Prv (sqmm)

1134.08

1134.08

1134.08

Reinforcement

2L-#10 @ 125

2L-#10 @ 125

2L-#10 @ 125

Vu (kN) Asv Torsion (sqmm)

Beam No

:

B8

Group No

:

G4

:

48

Analysis Reference(Member)

5.5m

239

Breadth

:

250

mm

Depth

:

400

mm

Material Properties

:

C20 : Fy420 : Clear Cover = 40 mm

Design Code

:

ACI 318M - 2011

Beam Type

:

Regular Beam

Flexure Design Beam Bottom Left Mu (kN)

0

Mid

Right

Beam Top Left

Mid

Right

59.22 30.1 123.861

17.65 22.023 3

0.69

0.33

PtClc (%)

0.13

0.38

1.55

0.33

Ast Calc (sqmm)

107.2 573.2 272.5 314 1276.66 275 5 4 6

Ast Prv (sqmm)

397.1 595.6 397.1 397.1 1410.54 397.12 2 8 2 2

Reinforcement 2-#16 3-#16 2-#16 2-#25 2-#16 2-#16 2-#16   Shear Design Left

Mid

Right

86.31

50.29

55.42

Asv Torsion (sqmm)

356.877

356.877

322.035

Asv Reqd (sqmm)

714.011

373.645

388.849

Asv Prv (sqmm)

1134.08

1134.08

1134.08

Vu (kN)

240

Reinforcement

2L-#10 @ 125

2L-#10 @ 125

2L-#10 @ 125

Beam No

:

B9

Group No

:

G5

:

67

Breadth

:

250

mm

Depth

:

400

mm

Material Properties

:

C20 : Fy420 : Clear Cover = 40 mm

Design Code

:

ACI 318M - 2011

Beam Type

:

Regular Beam

Analysis Reference(Member)

5.5m

Flexure Design Beam Bottom Left

Mid

Beam Top

Right Left

Mid

Right

Mu (kN)

21.49 88.93 15.36 39.21 16.09 103.102 8 3 9

PtClc (%)

0.28

Ast Calc (sqmm)

230.1 330.7 171.0 811.5 163.2 966.36 5 1 8 7 4

Ast Prv (sqmm)

397.1 397.1 397.1 859.5 595.6 992.8 2 2 2 6 8

0.4

0.21

0.98 0.198

1.17

Reinforcement 2-#16 2-#16 2-#16 3-#19 3-#16 3-#16 2-#16   Shear Design

241

Left

Mid

Right

78.11

27.7

84.1

0

0

0

Asv Reqd (sqmm)

294.983

208.333

350.304

Asv Prv (sqmm)

1134.08

1134.08

1134.08

Reinforcement

2L-#10 @ 125

2L-#10 @ 125

2L-#10 @ 125

Vu (kN) Asv Torsion (sqmm)

Beam No

:

B10

Group No

:

G5

:

68

Breadth

:

250

mm

Depth

:

400

mm

Material Properties

:

C20 : Fy420 : Clear Cover = 40 mm

Design Code

:

ACI 318M - 2011

Beam Type

:

Regular Beam

Analysis Reference(Member)

5.5m

Flexure Design Beam Bottom Left Mu (kN) PtClc (%)

Mid

Beam Top

Right Left

Mid

Right

15.42 36.94 96.59 14.5 14.107 86.341 8 4 9 0.2

0.38

0.19

1.08 0.181 0.95 242

Ast Calc (sqmm)

163.8 310.6 153.8 894.1 149.59 784.26 7 2 7

Ast Prv (sqmm)

397.1 397.1 397.1 992.8 595.68 992.8 2 2 2

Reinforcemen 2-#16 2-#16 2-#16 3-#16 3-#16 3-#16 t 2-#16 2-#16   Shear Design Left

Mid

Right

80.41

26.22

77.57

0

0

0

Asv Reqd (sqmm)

314.195

208.333

284.208

Asv Prv (sqmm)

1134.08

1134.08

1134.08

Reinforcement

2L-#10 @ 125

2L-#10 @ 125

2L-#10 @ 125

Vu (kN) Asv Torsion (sqmm)

Beam No

:

B11

Group No

:

G5

:

69

Breadth

:

250

mm

Depth

:

400

mm

Material Properties

:

C20 : Fy420 : Clear Cover = 40 mm

Design Code

:

ACI 318M - 2011

Analysis Reference(Member)

5.5m

243

Beam Type

:

Regular Beam

Flexure Design Beam Bottom Left

Mid

Beam Top

Right Left

Mid

Right

Mu (kN)

11.73 39.45 95.84 19.5 12.597 87.98 4 1 6

PtClc (%)

0.15

Ast Calc (sqmm)

124.0 332.8 208.2 885.8 133.33 801.49 6 5 1 7

Ast Prv (sqmm)

397.1 397.1 397.1 992.8 595.68 859.56 2 2 2

0.4

0.25

1.07 0.162 0.97

Reinforcemen 2-#16 2-#16 2-#16 3-#16 3-#16 3-#19 t 2-#16   Shear Design Left

Mid

Right

81.69

27.12

76.91

0

0

0

Asv Reqd (sqmm)

325.689

208.333

283.553

Asv Prv (sqmm)

1134.08

1134.08

1134.08

Reinforcement

2L-#10 @ 125

2L-#10 @ 125

2L-#10 @ 125

Vu (kN) Asv Torsion (sqmm)

Beam No

:

B12 244

Group No

:

G6

:

113

Breadth

:

250

mm

Depth

:

400

mm

Material Properties

:

C20 : Fy420 : Clear Cover = 40 mm

Design Code

:

ACI 318M - 2011

Beam Type

:

Regular Beam

Analysis Reference(Member)

5.5m

Flexure Design Beam Bottom Left Mu (kN)

0

Mid

Right

Beam Top Left

Mid

Right

54.54 56.18 101.472 22.49 2 0.65

0.67

1.23

0

PtClc (%)

0.13

0.333 0.13

Ast Calc (sqmm)

107.2 535.1 550.4 1012.81 275 107.25 5 3 4

Ast Prv (sqmm)

397.1 595.6 595.6 595.6 1191.36 595.68 2 8 8 8

Reinforcement 2-#16 3-#16 3-#16 3-#16 3-#16 3-#16 3-#16   Shear Design Left

Mid

Right

79.63

52.08

19.47

Asv Torsion (sqmm)

448.705

448.705

448.705

Asv Reqd (sqmm)

737.556

450.74

448.705

Vu (kN)

245

Asv Prv (sqmm)

1134.08

1134.08

1134.08

Reinforcement

2L-#10 @ 125

2L-#10 @ 125

2L-#10 @ 125

Beam No

:

B13

Group No

:

G7

:

89

Breadth

:

250

mm

Depth

:

400

mm

Material Properties

:

C20 : Fy420 : Clear Cover = 40 mm

Design Code

:

ACI 318M - 2011

Beam Type

:

Regular Beam

Analysis Reference(Member)

5.5m

Flexure Design Beam Bottom Left

Mid

Beam Top

Right Left

57.81 56.54

PtClc (%)

0.68

Ast Calc (sqmm)

562.3 550.4 107.2 107.2 275 1008.76 8 2 5 5

Ast Prv (sqmm)

595.6 595.6 397.1 595.6 595.6 1191.36 8 8 2 8 8

0.13

0

Right

Mu (kN)

0.67

0

Mid

21.94 101.037

0.13 0.333

1.22

Reinforcement 3-#16 3-#16 2-#16 3-#16 3-#16 3-#16 3-#16 246

  Shear Design Left

Mid

Right

15.42

59.43

86.98

Asv Torsion (sqmm)

251.384

251.384

251.384

Asv Reqd (sqmm)

251.384

324.163

647.673

Asv Prv (sqmm)

1134.08

1134.08

1134.08

Reinforcement

2L-#10 @ 125

2L-#10 @ 125

2L-#10 @ 125

Vu (kN)

Beam No

:

B14

Group No

:

G8

:

114

Breadth

:

250

mm

Depth

:

400

mm

Material Properties

:

C20 : Fy420 : Clear Cover = 40 mm

Design Code

:

ACI 318M - 2011

Beam Type

:

Regular Beam

Analysis Reference(Member)

5.5m

Flexure Design Beam Bottom Left

Mid

Right Left

Beam Top Mid

Right

247

Mu (kN)

12.20 26.36 53.99 9.05 7.741 57.553 9 7 4

PtClc (%)

0.16

Ast Calc (sqmm)

129.1 107.2 465.2 275 107.25 498.61 6 5 7

Ast Prv (sqmm)

397.1 397.1 397.1 595.6 595.68 595.68 2 2 2 8

0.33

0.13

0.56

0.13

0.6

Reinforcemen 2-#16 2-#16 2-#16 3-#16 3-#16 3-#16 t   Shear Design Left

Mid

Right

39.84

24.43

42.3

0

0

0

Asv Reqd (sqmm)

208.333

208.333

208.333

Asv Prv (sqmm)

1134.08

1134.08

1134.08

Reinforcement

2L-#10 @ 125

2L-#10 @ 125

2L-#10 @ 125

Vu (kN) Asv Torsion (sqmm)

Beam No

:

B15

Group No

:

G8

:

102

Breadth

:

250

mm

Depth

:

400

mm

Analysis Reference(Member)

5.5m

248

Material Properties

:

C20 : Fy420 : Clear Cover = 40 mm

Design Code

:

ACI 318M - 2011

Beam Type

:

Regular Beam

Flexure Design Beam Bottom

Beam Top

Left

Mid

9.25

21.62 5

6.4

52.99 11.53 65.348 1 5

PtClc (%)

0.13

0.28

0.13

0.55 0.148

Ast Calc (sqmm)

107.2 231.5 107.2 455.9 121.9 573.04 5 4 5 4 3

Ast Prv (sqmm)

397.1 397.1 397.1 595.6 595.6 1191.36 2 2 2 8 8

Mu (kN)

Right Left

Mid

Right

0.69

Reinforcement 2-#16 2-#16 2-#16 3-#16 3-#16 3-#16 3-#16   Shear Design Left

Mid

Right

38.39

25.89

43.76

0

0

0

Asv Reqd (sqmm)

208.333

208.333

208.333

Asv Prv (sqmm)

1134.08

1134.08

1134.08

Reinforcement

2L-#10 @ 125

2L-#10 @ 125

2L-#10 @ 125

Vu (kN) Asv Torsion (sqmm)

249

Beam No

:

B16

Group No

:

G8

:

90

Breadth

:

250

mm

Depth

:

400

mm

Material Properties

:

C20 : Fy420 : Clear Cover = 40 mm

Design Code

:

ACI 318M - 2011

Beam Type

:

Regular Beam

Analysis Reference(Member)

5.5m

Flexure Design Beam Bottom Left Mu (kN)

0

Mid

Right

Beam Top Left

Mid

Right

28.75 31.59 21.84 101.168 0.891 1 2

PtClc (%)

0.13

0.35

0.33

1.21

0.38

0.13

Ast Calc (sqmm)

107.2 289.2 313.6 275 994.65 107.25 5 6 8

Ast Prv (sqmm)

397.1 397.1 397.1 595.6 1191.36 595.68 2 2 2 8

Reinforcement 2-#16 2-#16 2-#16 3-#16 3-#16 3-#16 3-#16   Shear Design

Vu (kN)

Left

Mid

Right

70.93

50.93

21.99 250

Asv Torsion (sqmm)

664.721

664.721

664.721

Asv Reqd (sqmm)

883.398

664.721

664.721

Asv Prv (sqmm)

1134.08

1134.08

1134.08

Reinforcement

2L-#10 @ 125

2L-#10 @ 125

2L-#10 @ 125

Beam No

:

B17

Group No

:

G9

:

115

Breadth

:

250

mm

Depth

:

400

mm

Material Properties

:

C20 : Fy420 : Clear Cover = 40 mm

Design Code

:

ACI 318M - 2011

Beam Type

:

Regular Beam

Analysis Reference(Member)

5.5m

Flexure Design Beam Bottom Left

Mid

Beam Top

Right Left

Mid

Right

Mu (kN)

10.19 26.68 46.79 7.16 7.223 57.815 4 6 6

PtClc (%)

0.13

Ast Calc (sqmm)

107.5 107.2 398.9 275 107.25 501.08 7 5 8

Ast Prv (sqmm)

397.1 397.1 397.1 573.0 397.12 573.04 2 2 2 4

0.33

0.13

0.48

0.13

0.61

251

Reinforcemen 2-#16 2-#16 2-#16 2-#19 2-#16 2-#19 t   Shear Design Left

Mid

Right

38.52

25.76

43.63

0

0

0

Asv Reqd (sqmm)

208.333

208.333

208.333

Asv Prv (sqmm)

1134.08

1134.08

1134.08

Reinforcement

2L-#10 @ 125

2L-#10 @ 125

2L-#10 @ 125

Vu (kN) Asv Torsion (sqmm)

Beam No

:

B18

Group No

:

G9

:

103

Breadth

:

250

mm

Depth

:

400

mm

Material Properties

:

C20 : Fy420 : Clear Cover = 40 mm

Design Code

:

ACI 318M - 2011

Beam Type

:

Regular Beam

Analysis Reference(Member)

5.5m

Flexure Design Beam Bottom

Beam Top 252

Left Mu (kN)

Mid

Right Left

Mid

Right

8.487

19.99 50.20 13.80 2.41 68.124 8 8 5

PtClc (%)

0.13

0.26

Ast Calc (sqmm)

107.2 213.6 107.2 430.2 146.3 600.04 5 7 5 2 4

Ast Prv (sqmm)

397.1 397.1 397.1 573.0 397.1 1586.46 2 2 2 4 2

0.13

0.52 0.177

0.73

Reinforcement 2-#16 2-#16 2-#16 2-#19 2-#16 2-#25 2-#19   Shear Design Left

Mid

Right

36.69

27.58

45.45

0

0

0

Asv Reqd (sqmm)

208.333

208.333

208.333

Asv Prv (sqmm)

1134.08

1134.08

1134.08

Reinforcement

2L-#10 @ 125

2L-#10 @ 125

2L-#10 @ 125

Vu (kN) Asv Torsion (sqmm)

Beam No

:

B19

Group No

:

G9

:

91

Breadth

:

250

mm

Depth

:

400

mm

Analysis Reference(Member)

5.5m

253

Material Properties

:

C20 : Fy420 : Clear Cover = 40 mm

Design Code

:

ACI 318M - 2011

Beam Type

:

Regular Beam

Flexure Design Beam Bottom Left Mu (kN)

0

Mid

Right

Beam Top Left

Mid

Right

43.15 58.75 46.59 149.603 3 3 0.53

0.59

1.84

0

PtClc (%)

0.13

0.705 0.13

Ast Calc (sqmm)

107.2 438.1 484.5 581.8 1521.32 107.25 5 4 4 4

Ast Prv (sqmm)

397.1 595.6 595.6 794.2 1586.46 397.12 2 8 8 4

Reinforcement 2-#16 3-#16 3-#16 2-#25 2-#16 2-#16 2-#19 2-#16   Shear Design Left

Mid

Right

93.94

73.95

21.02

Asv Torsion (sqmm)

891.559

891.559

891.559

Asv Reqd (sqmm)

1327.279

1094.505

891.559

Asv Prv (sqmm)

1350.1

1134.08

1134.08

Reinforcement

2L-#10 @ 105

2L-#10 @ 125

2L-#10 @ 125

Vu (kN)

254

Beam No

:

B20

Group No

:

G10

:

116

Breadth

:

250

mm

Depth

:

400

mm

Material Properties

:

C20 : Fy420 : Clear Cover = 40 mm

Design Code

:

ACI 318M - 2011

Beam Type

:

Regular Beam

Analysis Reference(Member)

5.5m

Flexure Design Beam Bottom Left Mu (kN)

0

Mid

Beam Top

Right Left

Mid

Right

54.68 99.78 56.15 21.319 4 6 0.65

0.66

1.2

0

PtClc (%)

0.13

0.333 0.13

Ast Calc (sqmm)

107.2 547.7 991.5 534 275 107.25 5 1 5

Ast Prv (sqmm)

397.1 595.6 595.6 992.8 595.68 595.68 2 8 8

Reinforcemen 2-#16 3-#16 3-#16 3-#16 3-#16 3-#16 t 2-#16   Shear Design Left

Mid

Right 255

Vu (kN)

79.7

52.15

19.4

Asv Torsion (sqmm)

448.553

448.553

448.553

Asv Reqd (sqmm)

746.58

451.273

448.553

Asv Prv (sqmm)

1134.08

1134.08

1134.08

Reinforcement

2L-#10 @ 125

2L-#10 @ 125

2L-#10 @ 125

Beam No

:

B21

Group No

:

G11

:

92

Breadth

:

250

mm

Depth

:

400

mm

Material Properties

:

C20 : Fy420 : Clear Cover = 40 mm

Design Code

:

ACI 318M - 2011

Beam Type

:

Regular Beam

Analysis Reference(Member)

5.5m

Flexure Design Beam Bottom Left

Mid

Beam Top

Right Left

Mid

Right

Mu (kN)

70.62 68.99 7 1

PtClc (%)

0.83

Ast Calc (sqmm)

687.9 671.8 107.2 107.2 275 1099.73 6 7 5 5

0.81

0 0.13

0

26.54 114.591 2

0.13 0.333

1.33

256

Ast Prv (sqmm)

992.8 992.8

397.1 595.6 595.6 1191.36 2 8 8

Reinforcement 3-#16 3-#16 2-#16 3-#16 3-#16 3-#16 2-#16 2-#16 3-#16   Shear Design Left

Mid

Right

15.64

45.22

88.08

Asv Torsion (sqmm)

248.338

248.338

230.947

Asv Reqd (sqmm)

248.338

248.338

636.049

Asv Prv (sqmm)

1134.08

1134.08

1134.08

Reinforcement

2L-#10 @ 125

2L-#10 @ 125

2L-#10 @ 125

Vu (kN)

4.4.7.2 Design of Slab 

Identify the load consists of: Live load pressure Dead load pressure

   

Ceiling load and other attached below the slab Determine the minimum thickness “h” from NSCP 2010 or 2015. Compute the weight of slab (Pa), Weight =уconc x h Calculate the factored moment (Mu) uniform load wu=factored pressure x 1m Compute the effective depth,d

d=h−covering ( usually 20 mm )−0.5(main diameter)  

Required Steel ratio, ρ: Solve for Rn from Mu = 𝟇 Rn bd2 ρ=

0.85 f ' c ¿) fy

257



Solve for ρmax and ρmin If ρ is <ρmax and >ρmin, use ρ If ρ is >ρmax, increase depth of slab to ensure ductile failure If ρ is <ρmin, use ρ=ρmin



Compute the required spacing As= ρbd

A ≤ 0.5 B A Two way slab ≥ 0.5 B One way slab

L =SIMPLY SUPPORTED 20 L =ONE END CONTINOUS 24 L =BOTH ENDS 28 L =CANTILEVER 10 As temp.= 0.002bt s=

11. 12. 13. 14. 15.

Abar ( 1000 ) <smax use sax if s is>smax AS

When S/L<0.5 it is one way slab Min. Steel bars (main reinforced)=12mm𝟇 Min. Temp. Bars=10mm𝟇 Max. Spacing of main bars greater than not equal to 3 times thickness of slab of 500mm Max. Spacing of temperature bars less than not equal to 5 times thickness of slab of 500mm

As=0.0018 bt

for grade 400 bars

fy=400 MPa 258

As=0.02 bt

for grade 300 bars

fy=300 MPa

For Two way Slab 9. 10. 11. 12.

S/L>0.5 it is two way slab Min. Thickness t=perimeter / 180 Max. Spacing of main bars =3t greater than not equal to 500mm Spacing of bars within the column strips is 3/2 times the spacing of the center.

259

Figure 4.108 Column Design Result from STAAD RCDC

260

Two Way Slab:

1. Interior Panel

 

2. One Short Edge Discontinuous

 

3. One Long Edge Discontinuous

 

4. Two Adjacent Edges Discontinuous

 

5. Two Short Edges Discontinuous

 

6. Two Long Edges Discontinuous

 

7. Three Edges Discontinuous (One Long Edge Continuous)

 

8. Three Edges Discontinuous (One Short Edge Continuous)

 

9. Four Edges Discontinuous

 

10.Simply Supported On Four Sides

      Level:

5.5m

     

      Slab No. : S1 Ly = 5 m

Lx = 4 m

Live Load = 2.4 kN/sqm

Imposed Load = 2.553 kN/sqm

Thickness = 150 mm

Span Type = 2-Way

Panel Type = 4

Design Code = ACI 318 - 2011

Grade of Concrete = C20

Grade of Steel = Fy420

      Bottom SS

Bottom LS

Top SS

Top LS

Distribution 261

#10 @ 250

#10 @ 250

#10 @ 250

#10 @ 250

#10 @ 250

     

      Slab No. : S2 Ly = 5 m

Lx = 3.85 m

Live Load = 2.4 kN/sqm

Imposed Load = 2.553 kN/sqm

Thickness = 150 mm

Span Type = 2-Way

Panel Type = 9

Design Code = ACI 318 - 2011

Grade of Concrete = C20

Grade of Steel = Fy420

      Bottom SS

Bottom LS

Top SS

Top LS

Distribution

#10 @ 250

#10 @ 250

---

---

#10 @ 250

     

      Slab No. : S4 Ly = 4.85 m

Lx = 4 m

Live Load = 2.4 kN/sqm

Imposed Load = 2.553 kN/sqm

Thickness = 150 mm

Span Type = 2-Way

Panel Type = 9

Design Code = ACI 318 - 2011

Grade of Concrete = C20

Grade of Steel = Fy420

      Bottom SS

Bottom LS

Top SS

Top LS

Distribution

262

#10 @ 250

#10 @ 250

---

---

#10 @ 250

     

      Slab No. : S5 Ly = 5 m

Lx = 4 m

Live Load = 2.4 kN/sqm

Imposed Load = 2.553 kN/sqm

Thickness = 150 mm

Span Type = 2-Way

Panel Type = 1

Design Code = ACI 318 - 2011

Grade of Concrete = C20

Grade of Steel = Fy420

      Bottom SS

Bottom LS

Top SS

Top LS

Distribution

#10 @ 250

#10 @ 250

#10 @ 250

#10 @ 250

#10 @ 250

     

      Slab No. : S6 Ly = 4.85 m

Lx = 4 m

Live Load = 2.4 kN/sqm

Imposed Load = 2.553 kN/sqm

Thickness = 150 mm

Span Type = 2-Way

Panel Type = 9

Design Code = ACI 318 - 2011

Grade of Concrete = C20

Grade of Steel = Fy420

      Bottom SS

Bottom LS

Top SS

Top LS

Distribution

263

#10 @ 250

#10 @ 250

---

---

#10 @ 250

     

      Slab No. : S7 Ly = 5 m

Lx = 4 m

Live Load = 2.4 kN/sqm

Imposed Load = 2.553 kN/sqm

Thickness = 150 mm

Span Type = 2-Way

Panel Type = 4

Design Code = ACI 318 - 2011

Grade of Concrete = C20

Grade of Steel = Fy420

      Bottom SS

Bottom LS

Top SS

Top LS

Distribution

#10 @ 250

#10 @ 250

#10 @ 250

#10 @ 250

#10 @ 250

     

      Slab No. : S8 Ly = 5 m

Lx = 4 m

Live Load = 2.4 kN/sqm

Imposed Load = 2.553 kN/sqm

Thickness = 150 mm

Span Type = 2-Way

Panel Type = 3

Design Code = ACI 318 - 2011

Grade of Concrete = C20

Grade of Steel = Fy420

      Bottom SS

Bottom LS

Top SS

Top LS

Distribution

264

#10 @ 250

#10 @ 250

#10 @ 250

#10 @ 250

#10 @ 250

     

      Slab No. : S9 Ly = 5 m

Lx = 4 m

Live Load = 2.4 kN/sqm

Imposed Load = 2.553 kN/sqm

Thickness = 150 mm

Span Type = 2-Way

Panel Type = 4

Design Code = ACI 318 - 2011

Grade of Concrete = C20

Grade of Steel = Fy420

Bottom SS

Bottom LS

Top SS

Top LS

Distribution

#10 @ 250

#10 @ 250

#10 @ 250

#10 @ 250

#10 @ 250

4.4.7.3 Column/Wall Design

265

266

Figure 4.109 Column Design Result from STAAD RCDC Load Combinations: 267

1. 1.4 (LOAD 3: DL) 2. 1.2 (LOAD 3: DL) +1.6 (LOAD 4: LL) 3. 1.42 (LOAD 3: DL) +0.5 (LOAD 4: LL) +1.25 (LOAD 1: EQ X) 4. 1.42 (LOAD 3: DL) +0.5 (LOAD 4: LL) +1.25 (LOAD 2: EQ Z) 5. 1.42 (LOAD 3: DL) +0.5 (LOAD 4: LL) -1.25 (LOAD 1: EQ X) 6. 1.42 (LOAD 3: DL) +0.5 (LOAD 4: LL) -1.25 (LOAD 2: EQ Z) 7. 1.42 (LOAD 3: DL) +1.25 (LOAD 1: EQ X) 8. 1.42 (LOAD 3: DL) +1.25 (LOAD 2: EQ Z) 9. 1.42 (LOAD 3: DL) -1.25 (LOAD 1: EQ X) 10. 1.42 (LOAD 3: DL) -1.25 (LOAD 2: EQ Z) 11. 0.68 (LOAD 3: DL) +1.25 (LOAD 1: EQ X) 12. 0.68 (LOAD 3: DL) +1.25 (LOAD 2: EQ Z) 13. 0.68 (LOAD 3: DL) -1.25 (LOAD 1: EQ X) 14. 0.68 (LOAD 3: DL) -1.25 (LOAD 2: EQ Z)

Levels :

1. FOUNDATION 2. 2m 3. 5.5m 4. 8.5m

Column/Wall: C1 Level Size Material LC Analysis P (kN) Mx My Pt Interaction Main Links (mm) LC No (kNm) (kNm) (%) Ratio Reinforcement 1 TO 400 C25: 9 2 X Fy420 400

44

1055.37 38.55 22.24 1.21

0.3

4-#19 + 4-#16 #10 @ 75 + #10 @ 268

200 2 TO 3

400 C25 : X 5 Fy420 400

400 3 TO C25 : X 5 4 Fy420 400

40

40

713.38 52.76 38.31 1.21

356.3 97.3 62.29 1.21

0.42

#10 @ 75 + 4-#19 + 4-#16 #10 @ 200

0.71

#10 @ 75 + 4-#19 + 4-#16 #10 @ 200

  Column/Wall : C2 Level Size Material LC Analysis P (kN) Mx My Pt Interaction Main Links (mm) LC No (kNm) (kNm) (%) Ratio Reinforcement 300 1 TO C25: X 11 2 Fy420 5000

300 2 TO C25 : X 11 3 Fy420 5000 300 3 TO C25 : X 13 4 Fy420 5000

46

506.7 11379.6 0.7 0.17 6 5 6

0.7 6

46

396.9 8042.14 1.67

48

148.9 0.7 -2239.95 2.86 6 6

0.88

#10 @ 75 36-#16 + 34+ #10 #13 @ 300

0.63

#10 @ 75 36-#16 + 34+ #10 #13 @ 300

0.18

36-#16 + 34#13

#10 @ 300

  Column/Wall : C3 Level Size Material LC Analysis P (kN) Mx My Pt Interaction Main Links (mm) LC No (kNm) (kNm) (%) Ratio Reinforcement 269

1 TO 2

400 C25: X 7 Fy420 400

400 2 TO C25: X 3 3 Fy420 400

3 TO 4

400 C25: X 3 Fy420 400

42

38

38

952.83 34.64 -22.96 1.21

599.41 -78.73 43.49 1.21

373.89 111.24 -64.2 1.21

0.28

#10 @ 75 + 4-#19 + 4-#16 #10 @ 200

0.55

#10 @ 75 + 4-#19 + 4-#16 #10 @ 200

0.79

#10 @ 75 + 4-#19 + 4-#16 #10 @ 200

  Column/Wall : C4 Level Size Material LC Analysis P (kN) Mx My Pt Interaction Main Links (mm) LC No (kNm) (kNm) (%) Ratio Reinforcement 1 TO 2

400 C25: X 7 Fy420 400

400 2 TO C25 : X 3 3 Fy420 400

3 TO 4

400 C25 : X 3 Fy420 400

42

38

38

527.96 32.34 8.89 1.21

515.07 -29.54 -21.81 1.21

231.67 -56.94 -34.66 1.98

0.18

#10 @ 75 + 4-#19 + 4-#16 #10 @ 200

0.23

#10 @ 75 + 4-#19 + 4-#16 #10 @ 200

0.41

#10 @ 75 + 4-#25 + 4-#19 #10 @ 200

  Column/Wall : C5

270

Level Size Material LC Analysis P (kN) Mx My Pt Interaction Main Links (mm) LC No (kNm) (kNm) (%) Ratio Reinforcement 400 1 TO C25 : X 5 2 Fy420 400

2 TO 3

400 C25 : X 5 Fy420 400

3 TO 4

400 C25 : X 5 Fy420 400

40

40

40

665.89 -30.8 7.64 1.21

598.34 40.28 -31.61 1.21

244.99 -61.16 43.49 1.98

0.17

#10 @ 75 + 4-#19 + 4-#16 #10 @ 200

0.33

#10 @ 75 + 4-#19 + 4-#16 #10 @ 200

0.47

#10 @ 75 + 4-#25 + 4-#19 #10 @ 200

  Column/Wall : C6 Level Size Material LC Analysis P (kN) Mx My Pt Interaction Main Links (mm) LC No (kNm) (kNm) (%) Ratio Reinforcement 1 TO 2

300 C25 : X 14 Fy420 4000

2 TO 3

3 TO 4

0.97

#10 @ 32-#13 + 28- 75 + #13 #10 @ 300

304.57 -1.94 0.63 4725.58

0.69

#10 @ 32-#13 + 28- 75 + #13 #10 @ 300

-13.48 0.63 1452.86

0.21

32-#13 + 28- #10 @ #13 300

49

397.82 -3.96 0.63 6749.43

300 C25 : X 14 Fy420 4000

49

300 C25 : X 6 Fy420 4000

41

294.3

 

271

Column/Wall : C7 Level Size Material LC Analysis P (kN) Mx My Pt Interaction Main Links (mm) LC No (kNm) (kNm) (%) Ratio Reinforcement 300 1 TO C25 : X 14 2 Fy420 4000

49

414.55

-4.86 0.63 5536.33

0.79

#10 @ 32-#13 + 28- 75 + #13 #10 @ 300

300 2 TO C25 : X 14 3 Fy420 4000

49

321.84

-1.36 0.63 3891.97

0.57

#10 @ 32-#13 + 28- 75 + #13 #10 @ 300

300 C25 : X 6 Fy420 4000

41

293.34

11.03 0.63 1212.53

0.18

32-#13 + 28- #10 @ #13 300

3 TO 4

  Column/Wall : C8 Level Size Material LC Analysis P (kN) Mx My Pt Interaction Main Links (mm) LC No (kNm) (kNm) (%) Ratio Reinforcement 1 TO 2

400 C25 : X 11 Fy420 400

400 2 TO C25 : X 11 3 Fy420 400

3 TO 4

400 C25 : X 3 Fy420 400

46

46

38

219.1 38.34 4.79 1.21

202.66 28.31 3.52 1.21

210.47 -61.29 -0.04 1.98

0.22

#10 @ 75 + 4-#19 + 4-#16 #10 @ 200

0.17

#10 @ 75 + 4-#19 + 4-#16 #10 @ 200

0.35

#10 @ 75 + 4-#25 + 4-#19 #10 @ 200

272

  Column/Wall : C9 Level Size Material LC Analysis P (kN) Mx My Pt Interaction Main Links (mm) LC No (kNm) (kNm) (%) Ratio Reinforcement 1 TO 2

400 C25 : X 13 Fy420 400

400 2 TO C25 : X 13 3 Fy420 400

3 TO 4

400 C25 : X 5 Fy420 400

48

48

40

221.02 -38.17 4.85 1.21

204.09 -28.33

3.4 1.21

212.93 60.9 0.46 1.98

0.22

#10 @ 75 + 4-#19 + 4-#16 #10 @ 200

0.16

#10 @ 75 + 4-#19 + 4-#16 #10 @ 200

0.35

#10 @ 75 + 4-#25 + 4-#19 #10 @ 200

  Column/Wall : C10 Level Size Material LC Analysis P (kN) Mx My Pt Interaction Main Links (mm) LC No (kNm) (kNm) (%) Ratio Reinforcement 400 1 TO C25 : X 5 2 Fy420 400

2 TO 3

400 C25 : X 5 Fy420 400

3 TO 4

400 C25 : X 5 Fy420 400

40

40

40

1005.17 -51.42 -2.57 1.21

668.29 -43.12 16.32 1.21

328.99 71.86 -39.11 1.21

0.3

#10 @ 75 + 4-#19 + 4-#16 #10 @ 200

0.27

#10 @ 75 + 4-#19 + 4-#16 #10 @ 200

0.5

#10 @ 75 + 4-#19 + 4-#16 #10 @ 200 273

  Column/Wall : C11 Level Size Material LC Analysis P (kN) Mx My Pt Interaction Main Links (mm) LC No (kNm) (kNm) (%) Ratio Reinforcement 1 TO 2

400 C25 : X 11 Fy420 400

2 TO 3

400 C25 : X 11 Fy420 400

400 3 TO C25 : X 3 4 Fy420 400

46

46

38

213.97 47.33 4.31 1.21

162.29 34.43 5.02 1.21

134.08 -56.74 -29.94 1.98

0.27

#10 @ 75 + 4-#19 + 4-#16 #10 @ 200

0.21

#10 @ 75 + 4-#19 + 4-#16 #10 @ 200

0.41

#10 @ 75 + 4-#25 + 4-#19 #10 @ 200

  Column/Wall : C12 Level Size Material LC Analysis P (kN) Mx My Pt Interaction Main Links (mm) LC No (kNm) (kNm) (%) Ratio Reinforcement 1 TO 2

400 C25 : X 13 Fy420 400

400 2 TO C25 : X 3 3 Fy420 400 3 TO 400 C25 : 5 4 X Fy420

48

309.73 -45.92 4.18 1.21

0.25

#10 @ 75 + 4-#19 + 4-#16 #10 @ 200 #10 @ 75 + 4-#19 + 4-#16 #10 @ 200

38

520.11 -41.99 -9.98 1.21

0.23

40

130.97 58.78 -28.21 1.98

0.41

4-#25 + 4-#19 #10 @ 75 + 274

#10 @ 200

400

  Column/Wall : C13 Level Size Material LC Analysis P (kN) Mx My Pt Interaction Main Links (mm) LC No (kNm) (kNm) (%) Ratio Reinforcement 400 1 TO C25 : X 3 2 Fy420 400

2 TO 3

400 C25 : X 3 Fy420 400

400 3 TO C25 : X 3 4 Fy420 400

38

38

38

911.13 52.24 -2.61 1.21

554.47 -35.96 -25.63 1.21

331.15 -76.42 -40.52 1.21

0.29

#10 @ 75 + 4-#19 + 4-#16 #10 @ 200

0.28

#10 @ 75 + 4-#19 + 4-#16 #10 @ 200

0.52

#10 @ 75 + 4-#19 + 4-#16 #10 @ 200

275

4.2 DESIGN METHODOLOGY (Geotechnical Context) The designers followed the procedures in “Principles of Foundation Engineering Sixth Edition” for the design of ground improvement using Soil Improvement and Ground Modification published by the Braja M. Das of the California State University, USA. For the design of ground improvement using jet grouting and Wet Soil Mixing, the designers used “Shallow Foundation: Allowable Bearing Capacity and Settlement” and “Pile Foundation” of the book “Principles of Foundation Engineering Sixth Edition” by Braja M. Das. For the design of ground improvement vibroreplacement or stone columns, the designers used Priebe’s method and stone columns in “Principles of Foundation Engineering Sixth Edition by Braja M. Das”.

4.2.2 Design Process As the preceding chapters of this document stated, the footing will be constructed over soft soil or clay and soil improvement and ground modification of the soil using jet grouting, wet soil mixing, or vibro-replacement was the proposed solution to the problem.

276

4.2.3 Design Parameters The following table were the summary of design parameters in the actual design of the ground improvement.

Table 1: Summary of Design Parameters Input Parameter

Values

Cross Section

Reference/Remark  

Height (H)

15m

 Figure 2.3-2 Soil Profiles

Footing

1m x 1m

RCDC

Column

0.4m x 0.4m

RCDC

FG

2m

RCDC 277

Soil Properties

Refer to Geotechnical Report in Chapter 2

Ground Water Table

Refer to Geotechnical Report in Chapter 3

Backfill Properties

 

Layer 1

 

Angle of Friction

23 º

Unit Weight

19.3356 kN/m^3

Cohesion

20 kPa

Layer 2

Refer to Input Parameters in Chapter 2

 

Angle of Friction

19 º

Unit Weight

21.4480 kN/m^3

Cohesion

25 kPa

Factor of Safety

4

Refer to Input Parameters in Chapter 2

Refer to Input Parameters in Chapter 2

4.2.4 Structural Tradeoffs Bearing Capacity Design Process In this section, the analysis is performed with shallow foundations ultimate bearing capacity analysis and each structural tradeoffs has different values of vertical forces and moments, and the designers will pick the maximum bearing capacity that acts on the structure. And the designers will compare the results from the maximum bearing capacity of the structure and allowable bearing capacity of the soil to determine if the structre will fail.

278

4.2.5 Bearing Capacity Computation of SMRF Structure

279

Flow Chart of Ground Improvement for SMRF The figure below shows results that was manually computed and applied to MS Excel. These data will be used for further computation of the design.

280

SMRF PARAMETERS

UNITS

Mz

177.162

kN-m

Mx

175.343

kN-m

Q

939.055

kN

B

2

m

ex

0.186722822

m

ez

0.188659876

m

ECCENTRICITY

Bearing Capacity due to load qmin

185.143467

kPa

qmax

284.384033

kPa

FIGURE: DATA INPUT-OUTPUT FOR SMRF STRUCTURE

Normal Ground 19.335 6

kN/m³

Unit weight of soil (gamma)

c' (or cu)

20

kN/m²

For undrained soils use phi' = 0



23

deg

Angle of friction (phi')

0.014

m²/M N

Coefficient of volume compressibility

E

30

MN/m ²

Young's Modulus



0.4125

 

Poisson's ratio

m

Depth to Water Table



mv

Water Table  

0.8  

 

 

281

Foundation Shape  

sq

 

sq=Square, re=Rectangular, st=Strip

Square

 

Enter only a width for this foundation type

Width

2

m

Width of foundation

Length

2

m

Length not used for this foundation type

Founding Depth

2

m

Depth to Base of foundation

 

 

 

1137.5 3

kN

Applied load - includes weight of foundation

 

 

  Load  

 

Safety Factor  

4

 

Required safety factor

FIGURE: DATA INPUT FOR NATURAL GROUND

Results Square foundation

 

 

 

2m x 2m

 

 

 

Drained Analysis

 

 

 

 

 

 

 

 

 

 

 

Actual Bearing Stress 284

kN/m²

Net Bearing Stress 246

kN/m²

Ultimate Bearing Stress 971

kN/m²

Allowable Bearing Stress 272

kN/m²

282

Actual Safety Factor 3.8

 

 

 

FAIL!

 

 

 

Actual Bearing Stress > Allowable

 

 

 

Settlement Elastic

 

1 3

mm

Consolidation

 

6

mm

Total

 

1 9

mm

FIGURE: DATA OUTPUT FOR NATURAL GROUND

FIGURE: STRESS DISTRIBUTION DIAGRAM

283

4.2.5.1 Ground Improvement Using Jet Grouting

JET GROUTING COLUMN DATA jet grout column diameter

D

1.00 m

horizontal spacing

Lx

1.00 m

vertical spacing

Ly

1.00 m

length of column

L

2.05 m

jet grout column strength target

Pul t

3,884.0 kN/m2

jet grout column shear strength

fJG

153.33 kN/m2

jet grout unit weight

γJG

11.16 kN/m2

FIGURE: Data Parameters for Jet Grout

SOIL DATA natural ground allowable stress

σs

1088.00 m

bearing capacity of ground

σs b

284.00 m

soil unit weight

γs

19.34 m

safety factor

FS

4.00 m

poisson's ratio

ν

0.4 kN/m2

cohesion

C

20.00 kN/m2

adhesion

cu

0.97 kN/m2

angle of internal friction

φ

23.00 kN/m2

FIGURE: Data Parameters for Soil

LIQUEFACTION DATA 284

SPT N-Values

N

23.00 m

Layer Thick

H

10.00 m

Correction Factor due to Surface

FS

1.09 m

Vertical Stress

σv

40.46 m

Effective Vertical Stress

σ'v

28.7 kN/m2

ground acceleration

ama x

0.40 kN/m2

FIGURE: Data Parameters for Liquefaction

SOIL STRESS σsb

284.0 0

kN/m

σsb > σjs

σjs

820.9 9

kN/m

ok

LOADINGS Pv

838.9 6

kN

Pv < Q

Q

843.7 6

kN

ok

SLIP SAFETY Vcol

12.85

kN

Vcol < Vult

Vult

291.7 6

kN

ok

FIGURE: Data Output of Jet Grouting

JET GROUTING FINAL SETTLEMENT Qwp

574.29 Qwp

Qws

269.47 Cp

574.29 Qws

269.47

0.025 Cs

0.029

285



0.67 D

L

2.05 qp

1 L

2.05

838.96 qp

838.96

Ap

0.7854  

 

 

 

Ep

29478000  

 

 

 

Se1

6.68E-05 Se2

TOTAL SETTLEMENT

0.017113 Se3 21.72372723

0.004544 mm

FIGURE: FINAL SETTLEMENT OF JET GROUT PER FOOTING

JET GROUT DESIGN jet grout column diameter

1.00 m

horizontal spacing

1.00 m

vertical spacing

1.00 m

length of column

2.05 m

Number of Jet Grout Column per Footing

9.00 pcs

FIGURE: FINAL DESIGN OF JET GROUT PER FOOTING

286

FIGURE: FINAL DESIGN OF JET GROUT PER FOOTING LAYOUT

4.2.5.2 Ground Improvement Using Wet Soil Mixing Using Lime WET SOIL COLUMN DATA wet soil column diameter

D

0.80 m

horizontal spacing

Lx

1.00 m

vertical spacing

Ly

1.00 m

length of column

L

2.40 m

wet soil column strength target

Pul t

3,884.0 kN/m2

wet soil column shear strength

fJG

57.01 kN/m2

wet soil unit weight

γJG

13.61 kN/m2

FIGURE: Data Parameters for Wet Soil

SOIL DATA natural ground allowable stress

σs

1088.00 m

bearing capacity of ground

σs b

284.00 m

soil unit weight

γs

19.34 m

safety factor

FS

4.00 m

poisson's ratio

ν

0.4 kN/m2

cohesion

C

20.00 kN/m2

adhesion

cu

0.97 kN/m2

angle of internal friction

φ

23.00 kN/m2

FIGURE: Data Parameters for Soil

LIQUEFACTION DATA 287

SPT N-Values

N

23.00 m

Layer Thick

H

10.00 m

Correction Factor due to Surface

FS

1.09 m

Vertical Stress

σv

40.46 m

Effective Vertical Stress

σ'v

28.7 kN/m2

ground acceleration

ama x

0.40 kN/m2

FIGURE: Data Parameters for Liquefaction SOIL STRESS σsb

284.0 0

kN/m

σsb > σjs

σjs

623.3 6

kN/m

Ok

LOADINGS Pv

639.7 8

kN

Pv < Q

Q

655.9 9

kN

Ok

SLIP SAFETY Vcol

14.97

kN

Vcol < Vult

Vult

113.8 7

kN

Ok

FIGURE: Data Output of Wet Soil WET SOIL MIXING FINAL SETTLEMENT Qwp

403.59 Qwp

Qws

262.92 Cp

0.025 Cs

0.03

0.67 D

0.8 L

2.4

ᶓ L

2.4 qp

403.59 Qws

639.78 qp

262.92

639.78 288

Ap

0.5  

 

 

 

Ep

29478000  

 

 

 

Se1

9.44E-05 Se2

TOTAL SETTLEMENT

0.019713 Se3 24.94464351

0.005137 mm

FIGURE: FINAL SETTLEMENT OF WET SOIL PER FOOTING

WET SOIL DESIGN

Wet soil column diameter

0.8 0 m

horizontal spacing

1.0 0 m

vertical spacing

1.0 0 m

length of column

2.4 0 m

Number of Wet Soil per Footing

9.0 pc 0 s

FIGURE: FINAL DESIGN OF WET SOIL PER FOOTING

289

FIGURE: FINAL DESIGN OF WET SOIL MIXING PER FOOTING LAYOUT

4.3.5.3 Ground Improvement Using Vibro-Replacement

290

291

VIBRO-REPLACEMENT DESIGN stone column diameter

1.0 m

horizontal spacing

1.00 m

vertical spacing

1.00 m

length of column

3.8 m

Number of Wet Ssoil per Column

pc 9.00 s

Bearing Capacity

774.757 kP 4 a

FIGURE: FINAL DESIGN OF VIBRO-REPLACEMENT PER FOOTING

292

FIGURE: FINAL DESIGN OF STONE COLUMN PER FOOTING LAYOUT

293

4.2.6 Bearing Capacity Computation of DS w/ IMF Structure

Flow Chart of Ground Improvement for DS w/ IMF 294

The figure below shows results that was manually computed and applied to MS Excel. These data will be used for further computation of the design

DS w/ IMF (SPECIAL REINFORCED SHEAR WALL) PARAMETERS

UNITS

Mz

105.102

kN-m

Mx

56.109

kN-m

Q

2763.708

kN

B

2

m

ex

0.020302072

m

ez

0.038029343

m

ECCENTRICITY

Bearing Capacity due to load qmin

687.7263174

kPa

qmax

694.1276826

kPa

FIGURE: DATA INPUT-OUTPUT FOR DS w/ IMF STRUCTURE

Normal Ground 

19.3356

kN/m³

Unit weight of soil (gamma)

c' (or cu)

20

kN/m²

For undrained soils use phi' = 0



23

deg

Angle of friction (phi')

295

mv

0.014

m²/MN

Coefficient of volume compressibility

E

30

MN/m²

Young's Modulus



0.4125

 

Poisson's ratio

m

Depth to Water Table

Water Table  

0.8  

 

 

Foundation Shape  

sq

 

sq=Square, re=Rectangular, st=Strip

Square

 

Enter only a width for this foundation type

Width

2

m

Width of foundation

Length

2

m

Length not used for this foundation type

Founding Depth

2

m

Depth to Base of foundation

 

 

 

2776.51 1

kN

Applied load - includes weight of foundation

 

 

  Load  

 

Safety Factor  

4

 

Required safety factor

FIGURE: DATA INPUT FOR NATURAL GROUND

Results Square foundation

 

 

 

2m x 2m

 

 

 

Drained Analysis

 

 

 

296

Actual Bearing Stress 694

kN/m²

 

 

 

 

 

 

 

 

 

 

 

FAIL!

 

 

 

Actual Bearing Stress > Allowable

 

 

 

Net Bearing Stress 655

kN/m²

Ultimate Bearing Stress 971

kN/m²

Allowable Bearing Stress 272

kN/m²

Actual Safety Factor 1.4

Settlement Elastic

 

3 4

mm

Consolidation

 

1 7

mm

Total

 

5 1

mm

FIGURE: DATA OUTPUT FOR NATURAL GROUND

297

FIGURE: STRESS DISTRIBUTION DIAGRAM

4.2.6.1 Ground Improvement Using Jet Grouting

JET GROUTING COLUMN DATA jet grout column diameter

D

1.35 m

horizontal spacing

Lx

1.50 m

vertical spacing

Ly

1.50 m

length of column

L

2.60 m

jet grout column strength target

Pul t

3,884.0 kN/m2

jet grout column shear strength

fJG

153.33 kN/m2

jet grout unit weight

γJG

11.16 kN/m2

FIGURE: Data Parameters for Jet Grout

SOIL DATA 298

natural ground allowable stress

σs

1088.00 m

bearing capacity of ground

σs b

694.00 m

soil unit weight

γs

19.34 m

safety factor

FS

4.00 m

poisson's ratio

ν

0.4 kN/m2

cohesion

C

20.00 kN/m2

adhesion

cu

0.97 kN/m2

angle of internal friction

φ

23.00 kN/m2

FIGURE: Data Parameters for Soil

LIQUEFACTION DATA SPT N-Values

N

23.00 m

Layer Thick

H

10.00 m

Correction Factor due to Surface

FS

1.09 m

Vertical Stress

σv

40.46 m

Effective Vertical Stress

σ'v

28.7 kN/m2

ground acceleration

ama x

0.40 kN/m2

FIGURE: Data Parameters for Liquefaction

SOIL STRESS σsb

694.0 0

kN/m

σsb > σjs

σjs

716.6 8

kN/m

ok

LOADINGS 299

Pv

1654. 07

kN

Pv < Q

Q

1670. 42

kN

ok

SLIP SAFETY Vcol

36.37

kN

Vcol < Vult

Vult

531.7 3

kN

ok

FIGURE: Data Output of Jet Grouting

JET GROUTING FINAL SETTLEMENT Qwp

1209.03 Qwp

1209.03 Qws

461.39

Qws

461.39 Cp

0.025 Cs

0.029

0.67 D

1.35 L

ᶓ L

2.6 qp

2.6

1654.07 qp

1654.07

Ap

1.43  

 

 

 

Ep

29478000  

 

 

 

Se1

9.36E-05 Se2

TOTAL SETTLEMENT

0.013536 Se3 16.74088953

0.003111 mm

FIGURE: FINAL SETTLEMENT OF JET GROUT PER FOOTING

JET GROUT DESIGN jet grout column diameter

1.35 m

horizontal spacing

1.50 m

vertical spacing

1.50 m

length of column

2.6 m 300

Number of Jet Grout Column per Footing

4.00 pcs

FIGURE: FINAL DESIGN OF JET GROUT PER FOOTING

FIGURE: FINAL DESIGN OF JET GROUT PER FOOTING LAYOUT

4.2.6.2 Ground Improvement Using Wet Soil Mixing Using Lime

WET SOIL COLUMN DATA wet soil column diameter

D

1.1 m

horizontal spacing

Lx

1.25 m

vertical spacing

Ly

1.25 m

length of column

L

2.45 m

wet soil column strength target

Pul t

3,884.0 kN/m2 301

wet soil column shear strength

fJG

57.01 kN/m2

wet soil unit weight

γJG

13.61 kN/m2

FIGURE: Data Parameters for Wet Soil

SOIL DATA natural ground allowable stress

σs

1088.00 m

bearing capacity of ground

σs b

694.00 m

soil unit weight

γs

19.34 m

safety factor

FS

4.00 m

poisson's ratio

ν

0.4 kN/m2

cohesion

C

20.00 kN/m2

adhesion

cu

0.97 kN/m2

angle of internal friction

φ

23.00 kN/m2

FIGURE: Data Parameters for Soil

LIQUEFACTION DATA SPT N-Values

N

23.00 m

Layer Thick

H

10.00 m

Correction Factor due to Surface

FS

1.09 m

Vertical Stress

σv

40.46 m

Effective Vertical Stress

σ'v

28.7 kN/m2

ground acceleration

ama x

0.40 kN/m2

FIGURE: Data Parameters for Liquefaction

302

SOIL STRESS σsb

694.0 0

kN/m

σsb > σjs

σjs

697.1 4

kN/m

ok

LOADINGS Pv

1120. 97

kN

Pv < Q

Q

1127. 49

kN

ok

SLIP SAFETY Vcol

23.86

kN

Vcol < Vult

Vult

215.2 6

kN

ok

FIGURE: Data Output of Wet Soil

WET SOIL MIXING FINAL SETTLEMENT Qwp

773.21 Qwp

773.21 Qws

354.28

Qws

354.28 Cp

0.025 Cs

0.029



0.67 D

1.1 L

2.45

L

2.45 qp

Ap

0.95  

 

 

 

Ep

29478000  

 

 

 

Se1

8.84E-05 Se2

TOTAL SETTLEMENT

1120.97 qp

0.015677 Se3 19.50594644

1120.97

0.003741 mm

FIGURE: FINAL SETTLEMENT OF WET SOIL PER FOOTING

303

WET SOIL DESIGN Wet soil column diameter

1.1 m

horizontal spacing

1.2 5 m

vertical spacing

1.2 5 m

length of column

2.4 5 m

Number of Wet Soil per Footing

4.0 pc 0 s

FIGURE: FINAL DESIGN OF WET SOIL PER FOOTING

FIGURE: FINAL DESIGN OF WET SOIL PER FOOTING LAYOUT

304

4.2.6.3 Ground Improvement Using Vibro-Replacement

305

VIBRO-REPLACEMENT DESIGN jet grout column diameter

1.0 m

horizontal spacing

1.00 m

vertical spacing

1.00 m

length of column

4 m

Number of Wet Ssoil per Column

pc 9.00 s

Bearing Capacity

774.757 kP 4 a

FIGURE: FINAL DESIGN OF VIBRO-REPLACEMENT PER FOOTING

FIGURE: FINAL DESIGN OF STONE COLUMN PER FOOTING LAYOUT

306

4.2.7 Bearing Capacity Computation of DS

307

Flow Chart of Ground Improvement for DS

308

The figure below shows results that was manually computed and applied to MS Excel. These data will be used for further computation of the design.

DS (SPECIAL REINFORCED CONCRETE SHEAR WALL PARAMETERS

UNITS

Mz

81.741

kN-m

Mx

43.652

kN-m

Q

2268.575

kN

B

2

m

ex

0.019242035

m

ez

0.03603187

m

ECCENTRICITY

Bearing Capacity due to load qmin

564.7844552

kPa

qmax

569.5030448

kPa

FIGURE: DATA INPUT-OUTPUT FOR SMRF STRUCTURE

Normal Ground 19.335 6

kN/m ³

Unit weight of soil (gamma)

c' (or cu)

20

kN/m ²

For undrained soils use phi' = 0



23

deg

Angle of friction (phi')

0.014

m²/M N

Coefficient of volume compressibility

E

30

MN/m ²

Young's Modulus



0.4125

 

Poisson's ratio



mv

309

Water Table  

-0.8

m

Depth to Water Table

 

 

 

Foundation Shape  

sq

 

sq=Square, re=Rectangular, st=Strip

Square

 

Enter only a width for this foundation type

Width

2

m

Width of foundation

Length

2

m

Length not used for this foundation type

Founding Depth

2

m

Depth to Base of foundation

 

 

 

2278.0 1

kN

Applied load - includes weight of foundation

 

 

  Load  

 

Safety Factor  

4

 

Required safety factor

FIGURE: DATA INPUT FOR NATURAL GROUND

Results Square foundation

 

 

 

2m x 2m

 

 

 

Drained Analysis

 

 

 

310

Actual Bearing Stress 570

kN/m ²

 

 

 

 

 

 

 

 

 

 

 

FAIL!

 

 

 

Actual Bearing Stress > Allowable

 

 

 

Net Bearing Stress 531

kN/m ²

Ultimate Bearing Stress 971

kN/m ²

Allowable Bearing Stress 272

kN/m ²

Actual Safety Factor 1.8

Settlement Elastic

 

2 7

m m

Consolidation

 

1 4

m m

Total

 

4 1

m m

FIGURE: DATA OUTPUT FOR NATURAL GROUND

311

FIGURE: STRESS DISTRIBUTION DIAGRAM

4.2.7.1 Ground Improvement Using Jet Grouting

JET GROUTING COLUMN DATA jet grout column diameter

D

0.80 m

horizontal spacing

Lx

1.00 m

vertical spacing

Ly

1.00 m

length of column

L

2.20 m

jet grout column strength target

Pul t

3,884.0 kN/m2

jet grout column shear strength

fJG

153.33 kN/m2

jet grout unit weight

γJG

11.16 kN/m2

FIGURE: Data Parameters for Jet Grout

312

SOIL DATA natural ground allowable stress

σs

1088.00 m

bearing capacity of ground

σs b

570.00 m

soil unit weight

γs

19.34 m

safety factor

FS

4.00 m

poisson's ratio

ν

0.4 kN/m2

cohesion

C

20.00 kN/m2

adhesion

cu

0.97 kN/m2

angle of internal friction

φ

23.00 kN/m2

FIGURE: Data Parameters for Soil

LIQUEFACTION DATA SPT N-Values

N

23.00 m

Layer Thick

H

10.00 m

Correction Factor due to Surface

FS

1.09 m

Vertical Stress

σv

40.46 m

Effective Vertical Stress

σ'v

28.7 kN/m2

ground acceleration

ama x

0.40 kN/m2

FIGURE: Data Parameters for Liquefaction

SOIL STRESS σsb

570.0 0

kN/m

σsb > σjs

σjs

623.3 6

kN/m

Ok 313

LOADINGS Pv

635.7 0

kN

Pv < Q

Q

636.6 9

kN

Ok

SLIP SAFETY Vcol

14.82

kN

Vcol < Vult

Vult

186.7 3

kN

Ok

FIGURE: Data Output of Jet Grouting

JET GROUTING FINAL SETTLEMENT Qwp

400.44 Qwp

Qws

236.25 Cp

0.025 Cs

0.03

0.67 D

0.8 L

2.2



400.44 Qws

236.25

L

2.2 qp

Ap

0.5  

 

 

 

Ep

29478000  

 

 

 

Se1

8.34E-05 Se2

TOTAL SETTLEMENT

635.7 qp

0.019685 Se3 24.83617572

635.7

0.005068 mm

FIGURE: FINAL SETTLEMENT OF JET GROUT PER FOOTING

JET GROUT DESIGN jet grout column diameter

0.8 m

horizontal spacing

1.00 m

vertical spacing

1.00 m 314

length of column Number of Jet Grout Column per Footing

2.2 m 9.00 pcs

FIGURE: FINAL DESIGN OF JET GROUT PER FOOTING

FIGURE: FINAL DESIGN OF JET GROUT PER FOOTING LAYOUT

4.2.7.2 Ground Improvement Using Wet Soil Mixing Using Lime

WET SOIL COLUMN DATA 315

wet soil column diameter

D

0.85 m

horizontal spacing

Lx

1.10 m

vertical spacing

Ly

1.10 m

length of column

L

2.50 m

wet soil column strength target

Pul t

3,884.0 kN/m2

wet soil column shear strength

fJG

57.01 kN/m2

wet soil unit weight

γJG

13.61 kN/m2

FIGURE: Data Parameters for Wet Soil

SOIL DATA natural ground allowable stress

σs

1088.00 m

bearing capacity of ground

σs b

570.00 m

soil unit weight

γs

19.34 m

safety factor

FS

4.00 m

poisson's ratio

ν

0.4 kN/m2

cohesion

C

20.00 kN/m2

adhesion

cu

0.97 kN/m2

angle of internal friction

φ

23.00 kN/m2

FIGURE: Data Parameters for Soil

LIQUEFACTION DATA SPT N-Values

N

23.00 m

Layer Thick

H

10.00 m

Correction Factor due to Surface

FS

1.09 m 316

Vertical Stress

σv

40.46 m

Effective Vertical Stress

σ'v

28.7 kN/m2

ground acceleration

ama x

0.40 kN/m2

FIGURE: Data Parameters for Liquefaction

SOIL STRESS σsb

570.0 0

kN/m

σsb > σjs

σjs

599.8 1

kN/m

Ok

LOADINGS Pv

745.0 8

kN

Pv < Q

Q

746.6 8

kN

Ok

SLIP SAFETY Vcol

18.84

kN

Vcol < Vult

Vult

128.5 3

kN

Ok

FIGURE: Data Output of Wet Soil

WET SOIL MIXING FINAL SETTLEMENT Qwp

467.33 Qwp

Qws

279.35 Cp

0.025 Cs

0.03

0.67 D

0.85 L

2.5

ᶓ L Ap

467.33 Qws

2.5 qp 0.57  

279.35

745.08 qp  

 

745.08  

317

Ep Se1

29478000   9.74E-05 Se2

TOTAL SETTLEMENT

 

  0.018448 Se3

23.04417841

  0.004499 mm

FIGURE: FINAL SETTLEMENT OF WET SOIL PER FOOTING

WET SOIL DESIGN

Wet soil column diameter

0.8 5 m

horizontal spacing

1.1 0 m

vertical spacing

1.1 0 m

length of column

2.5 0 m

Number of Wet Soil per Footing

9.0 pc 0 s

FIGURE: FINAL DESIGN OF WET SOIL PER FOOTING

318

FIGURE: FINAL DESIGN OF WET SOIL PER FOOTING LAYOUT

319

4.2.7.3 Ground Improvement Using Vibro-Replacement

VIBRO-REPLACEMENT DESIGN

320

jet grout column diameter

1.0 m

horizontal spacing

1.00 m

vertical spacing

1.00 m

length of column

2.6 m

Number of Wet Ssoil per Column

pc 9.00 s

Bearing Capacity

774.757 kP 4 a

FIGURE: FINAL DESIGN OF VIBRO-REPLACEMENT PER FOOTING

FIGURE: FINAL DESIGN OF STONE COLUMN PER FOOTING LAYOUT

4.3 Validation of Trade-Offs (Geotechnical) To confirm the Designer’s Raw Ranking that was stated in Chapter 3, the designer computed the necessary details for the validation of tradeoffs. The validation will prove if the assumptions on the initial estimates presented in Chapter 3 is right.

321

In this chapter, the drafted tradeoffs for geotechnical (Vibro-Replacement, Wet Soil Mixing, and Jet Grouting) on Ground Improvement methodology, we compared with initial estimates from the designer. The tables below would signify which tradeoff fits perfectly to the client’s constraints. 4.3.1 Final Estimate: The Total Cost Estimate of the Designer using the methodologies indicated in chapter 3.

Table 2: Total Cost Estimate of the Methodologies. SMRF of

Area

Jet Grouting

0.7854

2.05

9

Wet Mixing

0.5027

2.4

9

0.7854

3.8

9

Soil

Stone Column

Height

No. Column

Tradeoffs

No. of Footing 16

Price

Cost (Php)

19282.074

4470550.399

12740.04519

2213367.8

16 7786.486622

3346405.208

16

DS w/ IMF of

Area

Jet Grouting

1.4314

2.6

4

Wet Mixing

0.9503

2.45

4

0.7854

4

9

Soil

Stone Column

DS

 

Height

No. Column

Tradeoffs

 

  No. Column

Jet Grouting

0.5027

2.2

9

Wet Mixing

0.5675

2.5

9

0.7854

2.6

9

Cost (Php)

19282.074

4592700.024

12740.04519

1898356.424

16 7786.486622

3522531.798

16

 

of

Area

Stone Column

16

Price

 

Tradeoffs

Soil

Height

No. of Footing

No. of Footing 16

Price

  Cost (Php)

19282.074

3070773.636

12740.04519

2602791.233

16 7786.486622

2289645.669

16

322

4.3.2 Final Constructability Estimate: The Total Estimated time for the projects construction to be completed:

Table 3: Total Duration Estimate of the Methodologies SMRF Tradeoffs

Area

Height

No. of No. of Column Footing

Duration Grout

of

Jet Duration (days)

Jet Grouting

0.7854

2.05

9

16

0.011574074

2.68345

Wet Mixing

Soil

0.5027

2.4

9

16

0.011574074

2.0108

Stone Column

0.7854

3.8

9

16

0.011574074

4.9742

DS w/ IMF Tradeoffs

Area

Height

Jet Grouting

1.4314

2.6

4

16

0.011574074

2.75677037

Wet Mixing

Soil

0.9503

2.45

4

16

0.011574074

1.724618519

Stone Column

0.7854

4

9

16

0.011574074

5.236

DS

 

 

No. of No. of Column Footing

 

Height

Duration Grout

 

of

Jet Duration (days)

 

No. of No. of Column Footing

Duration Grout

 

Tradeoffs

Area

of

Jet Duration (days)

Jet Grouting

0.5027

2.2

9

16

0.011574074

1.843233333

Wet Mixing

Soil

0.5675

2.5

9

16

0.011574074

2.364583333

Stone Column

0.7854

2.6

9

16

0.011574074

3.4034

4.3.3 Final Safety Estimate: The Total Estimated Settlement for the projects construction: 323

Table 4: Total Safety Estimate of the Methodologies.

SMRF TRADEOFF

SETTLEMENT (mm)

Jet Grouting

21.72372723

Wet Soil Mixing

24.94464351

Vibro Replacement

7.90000000

DS w/ IMF TRADEOFF

SETTLEMENT (mm)

Jet Grouting

16.74088953

Wet Soil Mixing

19.50594644

Vibro Replacement

7.80000000

DS TRADEOFF

SETTLEMENT (mm)

Jet Grouting

24.83617572

Wet Soil Mixing

23.04417841

Vibro Replacement

6.30000000

4.5. Validation of Trade-Offs This section will provide and confirm the validation results of the initial ranking on Chapter 3. As a review, the strategy used was the trade-off system by Otto & Antonsson to select the final design of the structure. 4.5.1 Final Estimates of Trade-Offs (Structural Context) Considering the price of the structural materials, construction time, and safety, the designer provides final Estimate of the two flooring systems according to the constraints discussed in Chapter 3. The outcome of the set criterion therefore will constitute the decision of the client and the designers. Above all, economical, will be given an importance value of 10. Constructability, Sustainability and Risk 324

Assessment will be given an importance value of 9 and lastly, Environmental Assessment will be given an importance value of 8. Constraint Special Moment Dual System with Dual System with Resisting Frame Intermediate Moment Special Moment Frame Frame Economic Php 1,828,100.00 Php 1,926,400.00 Php 1,905,700.00 Constructability 37 days 51 days 65 days Risk Assessment 1.329 mm 1.479 mm 1.455 mm Sustainability Php 12,200.00 Php 12,900.00 Php 12,750.00 Environmental 35.94 kg of CO2 per km 43.13 kg of CO2 per km 40.25 kg of CO2 per km Assessment

Table 4.21 Final Estimate Value

% difference=

higher value−lower value ×10 higher value

Subordinaterank =Governing rank −%difference

Economic Difference of Special Moment Resisting Frame and Dual System with Intermediate Moment Frame % difference=

1,926,400−1,828,100 × 10 1,926,400

% difference=0.510 Subordinate rank =10−0.510 Subordinate rank =9.49

Economic Difference of Dual System with Intermediate Moment Frame and Dual System with Special Moment Frame % difference=

1,926,400−1,905,700 × 10 1,926,400 325

% difference=¿0.11 Subordinate rank =10−0.11 Subordinate rank =¿ 9.89

Economic Difference of Special Moment Resisting Frame and Dual System with Special Moment Frame

% difference=

1,905,700−1,828,100 × 10 1,905,700 % difference=0.41

Subordinate rank =10−0.41 Subordinate rank =9.59

Constructability Difference of Special Moment Resisting Frame and Dual System with Intermediate Moment Frame % difference=

51−37 ×10 51 % difference=0.41

Subordinate rank =10−0.41 Subordinate rank =9.59

326

Constructability Difference of Dual System with Intermediate Moment Frame and Dual System with Special Moment Frame % difference=

65−51 ×10 65 % difference=2.15

Subordinate rank =10−2.15 Subordinate rank =7.85

Constructability Difference of Special Moment Resisting Frame and Dual System with Special Moment Frame % difference=

65−37 ×10 65 % difference=0.43

Subordinate rank =10−0.41 Subordinaterank =9.57

Risk Assessment Difference of Special Moment Resisting Frame and Dual System with Intermediate Moment Frame % difference=

1.479−1.329 ×10 1.479 327

% difference=1.01 Subordinate rank =10−1.01 Subordinate rank =8.99

Risk Assessment Difference of Dual System with Intermediate Moment Frame and Dual System with Special Moment Frame % difference=

1.479−1.455 ×10 1.479 % difference=0.16

Subordinate rank =10−0.16 Subordinate rank =9.84

Risk Assessment Difference of Special Moment Resisting Frame and Dual System with Special Moment Frame

% difference=

1.455−1.329 ×10 1.455 % difference=0.87

Subordinate rank =10−0.87 Subordinaterank =9.13

328

Sustainability Difference of Special Moment Resisting Frame and Dual System with Intermediate Moment Frame % difference=

12,900−12,200 ×10 12,900 % difference=0.54

Subordinate rank =10−0.16 Subordinaterank =9.46

Sustainability Difference of Dual System with Intermediate Moment Frame and Dual System with Special Moment Frame % difference=

12,900−12,750 ×10 12,900 % difference=0.12

Subordinate rank =10−0.16 Subordinate rank =9.88

Sustainability Difference of Special Moment Resisting Frame and Dual System with Special Moment Frame

329

% difference=

12,750−12,200 ×10 12,750 % difference=0.43

Subordinaterank =10−0.43 Subordinate rank =9.57

Environmental Assessment Difference of Special Moment Resisting Frame and Dual System with Intermediate Moment Frame % difference=

43.13−35.94 ×10 43.13 % difference=1.66

Subordinate rank =10−1.66 Subordinate rank =8.34

Environmental Assessment Difference of Dual System with Intermediate Moment Frame and Dual System with Special Moment Frame % difference=

43.13−40.25 ×10 43.13 % difference=0.72

Subordinate rank =10−1.66 330

Subordinate rank =9.28

Environmental Assessment Difference of Special Moment Resisting Frame and Dual System with Special Moment Frame % difference=

40.25−35.94 ×10 40.25 % difference=1.07

Subordinate rank =10−1.07 Subordinate rank =¿8.93

Design Criteria

Criterion’s Importance (on a scale of 0 to 10)

Economic Constructability Sustainability Risk Assessment Environmental Assessment Overall Rank

10 9 9 9 8

Ability to satisfy the criterion (on a scale of 0 to 10) Special Reinforced Dual System with Dual System with Concrete Moment Intermediate Special Moment Frame Moment Frame Frame 10 8 8 8 8 8 8 8 8 9 7 8 7 7 7 381

343

352

Table 4.22 Final Raw Ranking 4.5.2 Validation of Trade-Offs (Geotechnical Context) To confirm the Designer’s Raw Ranking that was stated in Chapter 3, the designer computed the necessary details for the validation of tradeoffs. The validation will prove if the assumptions on the initial estimates presented in Chapter 3 is right. 331

In this chapter, the drafted tradeoffs for geotechnical (Vibro-Replacement, Wet Soil Mixing, and Jet Grouting) on Ground Improvement methodology, we compared with initial estimates from the designer. The tables below would signify which tradeoff fits perfectly to the client’s constraints. Constraint

Cost Vibro Replacement

Wet Soil Mixing

Jet Grouting

Economic

Php 3,346,405.21

Php 2,213,367.80

Php 4,470,550.40

Constructability

4.9742 days

2.0108 days

2.68345 days

Safety

7.9 mm

24.94464351 mm

21.72372723 mm

Sustainability

774.7574 kPa

623.36 kPa

820.99 kPa

Environmental

31067.91072 kg

23280.23808 kg

57589.29792 kg

Table 4.23 Final Estimate Value for SMRF Cost Difference of Vibro Replacement and Wet Soil Mixing

% difference=

higher value−lower value ×10 higher value

% difference=

3346405.21−2213367.8 × 10 3346405.21

% difference=3.39 Subordinaterank =Governing rank −%difference Subordinate rank =10−3.39 Subordinate rank =6.61

Cost Difference of Vibro Replacement and Jet Grouting % difference=

higher value−lower value ×10 higher value

332

% difference=

4470550.4−3346405.21 × 10 4470550.4

% difference=2.51 Subordinaterank =Governing rank −%difference Subordinate rank =10−2.51 Subordinate rank =7.49

Cost Difference of Jet Grouting and Wet Soil Mixing % difference=

higher value−lower value ×10 higher value

% difference=

4470550.4−2213367.8 × 10 4470550.4

% difference=5.05 Subordinaterank =Governing rank −%difference Subordinate rank =10−5.05 Subordinate rank =4.95

Duration Difference of Vibro Replacement and Wet Soil Mixing % difference=

higher value−lower value ×10 higher value

% difference=

4.9747−2.0108 × 10 4.9747

333

% difference=5.96 Subordinaterank =Governing rank −%difference Subordinate rank =10−5.96 Subordinate rank =4.04

Duration Difference of Vibro Replacement and Jet Grouting % difference=

higher value−lower value ×10 higher value

% difference=

4.9747−2.6835 × 10 4.9747

% difference=4.61 Subordinaterank =Governing rank −%difference Subordinaterank =10−4.61 Subordinate rank =5.39

Duration Difference of Jet Grouting and Wet Soil Mixing % difference=

higher value−lower value ×10 higher value

% difference=

2.86345−2.0108 ×10 2.86345

% difference=2.98 Subordinaterank =Governing rank −%difference 334

Subordinate rank =10−2.98 Subordinate rank =7.02

Safety Difference of Vibro Replacement and Wet Soil Mixing % difference=

higher value−lower value ×10 higher value

% difference=

24.94464351−7.9 × 10 24.94464351

% difference=6.83 Subordinaterank =Governing rank −%difference Subordinate rank =10−6.83 Subordinate rank =3.17

Safety Difference of Vibro Replacement and Jet Grouting % difference=

higher value−lower value ×10 higher value

% difference=

21.72372723−7.9 ×10 21.72372723

% difference=6.36 Subordinaterank =Governing rank −%difference Subordinaterank =10−6.36

335

Subordinate rank =3.64

Safety Difference of Wet Soil Mixing and Jet Grouting % difference= % difference=

higher value−lower value ×10 higher value

24.94464351−21.72372723 × 10 24.94464351 % difference=1.29

Subordinaterank =Governing rank −%difference Subordinaterank =10−1.29 Subordinaterank =8.71

Sustainability Difference of Vibro Replacement and Wet Soil Mixing % difference=

higher value−lower value ×10 higher value

% difference=

774.7574−623.36 × 10 774.7574

% difference=1.95 Subordinaterank =Governing rank −%difference Subordinate rank =10−1.95 Subordinate rank =8.05

336

Sustainability Difference of Vibro Replacement and Jet Grouting % difference=

higher value−lower value ×10 higher value

% difference=

820.99−774.7574 ×10 820.99

% difference=0.56 Subordinaterank =Governing rank −%difference Subordinate rank =10−0.56 Subordinate rank =9.44 Sustainability Difference of Wet Soil Mixing and Jet Grouting % difference=

higher value−lower value ×10 higher value

% difference=

820.99−623.36 ×10 820.99

% difference=2.41 Subordinaterank =Governing rank −%difference Subordinate rank =10−2.41 Subordinate rank =7.59

Difference of Vibro Replacement and Wet Soil Mixing % difference= % difference=

higher value−lower value ×10 higher value

57589.29792−23280.23808 × 10 57589.29792 % difference=5.96

Subordinaterank =Governing rank −%difference

337

Subordinate rank =10−5.96 Subordinate rank =4.04

CO2 Difference of Vibro Replacement and Jet Grouting % difference= % difference=

higher value−lower value ×10 higher value

57589.29792−31067.91072 ×10 57589.29792 % difference=4.61

Subordinaterank =Governing rank −%difference Subordinaterank =10−4.61 Subordinate rank =5.39

CO2 Difference of Jet Grouting and Wet Soil Mixing % difference= % difference=

higher value−lower value ×10 higher value

31067.91072−23280.23808 × 10 31067.91072 % difference=2.51

Subordinaterank =Governing rank −%difference Subordinate rank =10−2.51 Subordinate rank =7.49

338

Design Criteria

Criterion’s Importance (on a scale of 0 to 10) Economic 10 Constructability 8 Safety 9 Sustainability 9 Environmental 6 Overall Rank

Ability to satisfy the criterion (on a scale of 0 to 10) Vibro Wet Soil Mixing Jet Grouting Replacement 6.61 10 4.95 4.04 10 7.02 10 3.17 3.64 8.05 10 7.59 4.04 10 7.49 285.11 358.53 251.67

Table 4.24 Designer’s Raw Ranking 4.6 Final Trade-off Assessment The comprehensive discussion presented below covers the designer’s justification in the rating criteria above: 4.6.1 Trade-offs Assessment (Structural Context) In this section, the designers present a comparative discussion off the results in the final ranking for the Structural Context. For the designer’s final raw ranking, the winning trade-offs is the Special Moment RC Frame that has the highest score rank which is 381 followed by Dual System with Special RC Shear walls that has a score of 352 and then the Dual System with Intermediate Moment Frame that has a score of 343 in the designer’s raw ranking.

4.6.1.1 Economic Assessment (Material Cost) In this criterion, Special Moment RC Frame is the governing trade-off the final material cost for this trade-off is Php 1,828,100.00, the Material Cost is the cheapest compared to Dual System with Special RC Shear walls and Dual System with Intermediate Moment Frame.

4.6.1.2 Serviceability Assessment (Deflection) In this criterion the governing trade-off is Special Moment RC Frame, it only has 1.329 mm vertical deflection and it is the lowest deflection compared to Dual System with Special RC Shear walls and Dual 339

System with Intermediate Moment Frame. This value is significant in the structural integrity of the structure since the higher the magnitude of deflection the higher the risk of failure.

4.6.1.3 Constructability Assessment (Construction Duration) In this criterion, the governing trade-off is the Special Moment RC Frame since it has the least number of expected days to complete the project, which is 37 days.

4.6.1.4 Sustainability Assessment (Maintenance Cost) In this criterion, Special Moment RC Frame is the governing trade-off the final maintenance cost for this trade-off is only Php 12,200.00 per year, this maintenance cost is the cheapest compared Dual System with Special RC Shear walls and Dual System with Intermediate Moment Frame because of the material used to build the structure. Dual System with Intermediate Moment Frame has the largest cost for the maintenance. 4.6.1.5 Environmental Assessment (Carbon Emission) In this criterion, Special Moment RC Frame is the governing trade-off. It only produces 35.94 kg of Carbon Emission per km which is the lowest compared to Dual System with Special RC Shear walls and Dual System with Intermediate Moment Frame. 4.6.2 Trade-offs Assessment for Geotechnical Context In this section, the designers present a comparative discussion off the results in the final ranking for the Geotechnical Context.For the designer’s final raw ranking, the winning trade-offs is the Wet Soil Mixing that has the highest score rank which is 358.53 followed by Vibro Replacement that has a score of 285.11 and lastly the Jet Grouting that has a score of 251.67 in the designer’s final ranking.

4.6.2.1 Economic Assessment (Material Cost) In this criterion, Wet Soil Mixing is the governing trade-off the final material cost for this trade-off is only Php 2,213,367.80. This material is the cheapest compared to Vibro Replacement and the Jet Grouting.

4.6.2.2 Serviceability Assessment (Deflection/Settlement) In this criterion the governing trade-off is the Vibro Replacement, it has the least magnitude of settlement which is 7.9 mm. This is the lowest settlement compared to Wet Soil Mixing and Jet Grouting.

4.6.2.3 Constructability Assessment (Construction Duration) In this criterion, the governing trade-off is Wet Soil Mixing since it has the least number of expected days to complete the project, which is 2 days. It is the lowest number of days to complete the project compared to Vibro Replacement and the Jet Grouting. 340

4.6.2.4 Sustainability Assessment (Bearing Capcity) In this criterion, Jet Grouting is the governing trade-off. It has a bearing capacity of 820.99 kPa. It is the largest bearing capacity compared to Wet Soil Mixing and Vibro Replacement.

4.6.2.5 Environmental Assessment (Carbon Emission) In this criterion, Wet Soil Mixing is the governing trade-off. It only produces 23.3 kg of Carbon Emission per km which is the lowest compared to Vibro Replacement and the Jet Grouting. 4.7 Influence of Multiple Constraints, Trade-offs and Standards Through the consideration of multiple constraints, the designers have chosen what particular designs among the trade-offs they will use. The trade-off is very significant in the design for it will solve the problem regarding the concern of expenses.

4.7.1 Structural Context 4.7.1.1 Graphical Comparison of Final Estimates for Economic Constraint

ECONOMIC CONSTRAINT

CO S T (PhP)

1,905,700.00 1,926,400.00 Dual System with Special Moment...

1,950,000.00 1,900,000.00

Dual System with Intermediat...

1,828,100.00

1,850,000.00 Special Moment Resisting...

1,800,000.00 1,750,000.00 Special Moment Resisting Frame Dual System with Special Moment Frame

Dual System with Intermediate Moment Frame

Bar Chart 4.1 Graphical Comparison for Economic Constraints 341

The Bar Chart above shows that the most expensive trade-offs among the three is the Dual System with Intermediate Moment Frame having a total material cost of Php 1,926,400.00. the cost difference between the governing trade-off is Php 98,300.00. 4.7.1.2 Graphical Comparison of Final Estimates for Risk Assessment Constraint

SAFETY CONSTRAINT 1.46

Deflection (MM)

1.48 Dual System with Special Moment...

1.5 1.45 1.4

Dual System with Intermediat...

1.33

1.35

Special Moment Resisting...

1.3 1.25 Special Moment Resisting Frame Dual System with Special Moment Frame

Dual System with Intermediate Moment Frame

Bar Chart 0.2 Graphical Comparison for Safety Constraints The Bar Chart above indicates the comparison of each trade-offs with respect to their deflection values, the trade-off with the largest value for deflection among the three is the Dual System with Intermediate Moment Frame with deflection value of 1.479 mm. The difference in total soil displacement between the governing trade-off between it is 0.15mm . 4.7.1.3 Graphical Comparison of Final Estimates for Constructability Constraint

CONSTRUCTABI LITY CONSTRAINTS

D U R ATIO N (D AYS )

65

51

70 60 50 40 30 20 10 0

Dual System with Special Moment Frame 37 Dual System with Intermediate Moment Frame

Special Moment Resisting Frame Special Moment Resisting Frame Dual System with Special Moment Frame

Dual System with Intermediate Moment Frame

Bar Chart 0.3 Graphical Comparison for CONSTRUCTABILITY Constraints 342

The Bar Chart above indicates the comparison of each trade-offs with respect to their total construction duration. The trade-off with the longest phase of construction duration among the three is the Dual System with Special Moment Frame having a total construction duration of 65 days. The difference in construction duration between the governing trade-off between it is 28 days. 4.7.1.4 Graphical Comparison of Final Estimates for Sustainability Constraint

SUSTAINABILITY CONSTRAINTS

Maintenance cost . (Php)

12,750.00

13,000.00

12,900.00

12,800.00

Dual System with Special Moment Frame

12,600.00

12,200.00

12,400.00

Dual System with Intermediate Moment Frame

12,200.00 12,000.00

Special Moment Resisting Frame

11,800.00 Special Moment Resisting Frame Dual System with Special Moment Frame

Dual System with Intermediate Moment Frame

Bar Chart 0.4 Graphical Comparison for SUSTAINABILITY Constraints The Bar Chart above indicates the comparison of each trade-offs with respect to their maintenance cost. The trade-off with the highest value for maintenance cost among the three is Dual System with Intermediate Moment Frame having a cost of Php 12,900. The difference in maintenance cost between the governing trade-off is Php 700. 4.7.1.5 Graphical Comparison of Final Estimates for Environmental Constraint

CO 2 E M IS S IO N (K G pe r k m )

ENVI RONMENTAL CONSTRAINTS 40.25

50

35.94

Dual System with Special Moment Frame

43.13

40 30 20 10 0 Special Moment Resisting Frame Dual System with Special Moment Frame

Special Moment Resisting Frame Dual System with Intermediate Moment Frame

Bar Chart 0.5 Graphical Comparison for SUSTAINABILITY Constraints 343

The Bar Chart above indicates the comparison of each trade-offs with respect to their total CO2 emissions. The trade-off with the highest value for the CO2 emission among the three is the Dual System with Intermediate Moment Frame having a total CO2 emission of 43.13 kg. The difference maintenance cost between the governing trade-off between is 7.19 kg. 4.7.2 Geotechnical Context 4.7.2.1 Graphical Comparison of Final Estimates for Economic Constraint ECONOMI C CONSTRA I NT

CO S T (PhP)

3346405

4470550

2213368

VIBRO REPLACEMENT

5000000 4000000

WET SOIL MIXING

3000000 2000000 1000000

JET GROUTING FOOTING

0 JET GROUTING FOOTING

WET SOIL MIXING

VIBRO REPLACEMENT

Bar Chart 4.6 Graphical Comparison for Economic Constraints The Bar Chart above that the most expensive trade-offs among the three is the Jet Grouting having a total material cost of 4,470,550 Php. the cost difference between the governing trade-off is 2,257,182 Php. 4.7.2.2 Graphical Comparison of Final Estimates for Safety Constraint

S E T T LE M E N T (M M )

SA F ETY CONSTRA I NT

24.94 7.9 21.72

VIBRO REPLACEMENT

25 20

WET SOIL MIXING

15 10 5

JET GROUTING FOOTING

0 JET GROUTING FOOTING

WET SOIL MIXING

VIBRO REPLACEMENT

Bar Chart 4.7 Graphical Comparison for Safety Constraints The Bar Chart above indicates the comparison of each trade-offs with respect to their total settlement the trade-off with the largest value for the total settlement among the three is the Wet Soil Mixing with total settlement of 24.94464351 mm. The difference in total soil displacement between the governing trade-off between it is 0 mm.

344

4.7.2.3 Graphical Comparison of Final Estimates for Constructability Constraint CONSTRUCTABILITY CONSTRAI NTS

D U R A T IO N ( D A Y S )

4.97

2.01

5 4

VIBRO REPLACEMENT

2.68 WET SOIL MIXING

3 2 1

JET GROUTING

0 JET GROUTING

WET SOIL MIXING

VIBRO REPLACEMENT

Bar Chart 4.8 Graphical Comparison for CONSTRUCTABILITY Constraints The Bar Chart above indicates the comparison of each trade-offs with respect to their total construction duration. The trade-off with the slowest phase of construction duration among the three is the Vibro Replacement having a total construction duration of 4.9742 days. The difference in construction duration between the governing trade-off between it is 2.9634 days. 4.7.1.4 Graphical Comparison of Final Estimates for Sustainability Constraint

SUSTAINABILITY CONSTRAINTS

Bearing capacity (kPa)

774.76

1000

820.99

VIBRO REPLACEMENT

623.36

800 WET SOIL MIXING

600 400 JET GROUTING

200 0 JET GROUTING

WET SOIL MIXING

VIBRO REPLACEMENT

Bar Chart 4.9 Graphical Comparison for SUSTAINABILITY Constraints The Bar Chart above indicates the comparison of each trade-offs with respect to their total bearing capacity. The trade-off with the highest value for the bearing capacity among the three is the jet grouting having a total bearing capacity of 820.99 kPa. The difference maintenance cost between the governing trade-off between it is197.63 kPa.

345

4.7.1.5 Graphical Comparison of Final Estimates for Environmental Constraint

SUSTAINABILITY CONSTRAINTS

CO2 EMISSION (KG)

57589.3

VIBRO REPLACEMENT

60000 50000 40000 30000 20000 10000 0

31067.91

23280.24 WET SOIL MIXING JET GROUTING

JET GROUTING

WET SOIL MIXING

VIBRO REPLACEMENT

Bar Chart 4.10 Graphical Comparison for SUSTAINABILITY Constraints The Bar Chart above indicates the comparison of each trade-offs with respect to their total co2 emissions. The trade-off with the highest value for the co2 emission among the three is the VIbro Replacement having a total co2 emission of 57589.29792 kg. The difference maintenance cost between the governing trade-off between it is 34309.05984 kg. 4.8 Sensitivity Report 4.8.1 Structural Context 4.8.1.1 Economic vs Safety The table below shows that when the designers considered the construction cost of the Structural trade-offs and its effect to the settlement of the soil. The analysis of this graph between the economical and serviceability of the structure, the higher the amount of Material cost will lessen the chance of Deflection of the structure. Because of a high standard and quality of the materials can reduce the calculated deflection of the structure. ECONOMIC VS SAFETY

PERCENT INCREASE

0

SPECIAL MOMENT RESISTING FRAME

DUAL SYSTEM WITH INTERMEDIATE MOMENT FRAME

DUAL SYSTEM WITH SPECIAL MOMENT FRAME

COST (Php)

DEFLECTION (mm)

COST (Php)

DEFLECTION (mm)

COST (Php)

DEFLECTION (mm)

1,828,100

1.329

1,926,400.00

1.479

1,905,700.0 0

1.455

346

5

1,919,505

1.263

2,324,036.19

1.405

3,513,725.4 7

1.382

10

2,010,910

1.196

2,434,704.58

1.331

3,681,045.7 3

1.31

15

2,102,315

1.13

2,545,372.97

1.257

3,848,365.9 9

1.237

20

2,193,720

1.0632

2,656,041.36

1.183

4,015,686.2 5

1.164

25

2,285,125

0.998

2,766,709.75

1.109

4,183,006.5 1

1.091

Table 0.25 Economic vs Serviceability

Economic vs Deflection 4.5 4

Deflection (mm)

3.5 3 2.5 2 1.5 1 0.5 0

0

5

10

15

20

25

Cost Increased (%) SMRF

DS W/ IMF

DS W/ SMF

Line Graph 4.1 Economical vs Serviceability 4.8.1.2 Economical vs Constructability The table below shows that when the designers considered the construction cost of the Geotechnical tradeoffs and its effect to the duration of the structure. The analysis of this graph between the economical and duration of construction, the higher the amount of Material cost can accomplish the project beyond the 347

expected number of days of work. Because of a different mechanism or apparatus can help our project accomplish as soon as possible, but expecting the cost of that tools will consume a lot of cost.

ECONOMIC VS CONSTRUCTABILITY SPECIAL MOMENT RESISTING FRAME PERCENT INCREASE

MATERIAL COST (Php)

DURATIO N (days)

DUAL SYSTEM WITH INTERMEDIATE MOMENT FRAME MATERIAL COST(Php)

DURATIO N (days)

DUAL SYSTEM WITH SPECIAL MOMENT FRAME

MATERIAL COST(Php)

DURATION (days)

0

1,828,100

37

2,213,367.80

51

3,346,405.21

65

5

1,919,505

35

2,324,036.19

48

3,513,725.47

62

10

2,010,910

33

2,434,704.58

45

3,681,045.73

59

15

2,102,315

31

2,545,372.97

43

3,848,365.99

55

20

2,193,720

29

2,656,041.36

40

4,015,686.25

52

25

2,285,125

27

2,766,709.75

38

4,183,006.51

49

Table 0.26 Economic vs Constructability

348

Economic vs Constructability 90 80

Duration (days)

70 60 DS W/ SMF DS W/ IMF SMRF

50 40 30 20 10 0

0

10

15

20

25

Cost Increaded (%)

Line Graph 4.2 Economic vs Constructability 4.8.1.3 Economical vs Sustainability The table below shows that when the designers considered the construction cost of the Geotechnical tradeoffs and its effect to the maintenance of the structure. The analysis of this graph between the economical and sustainability of the structure, the higher the amount of Material cost will increase the bearing capacity. Because of a high standard and quality of the materials can reduce the maintenance of the structure.

ECONOMIC VS SUSTAINABILITY

PERCENT INCREASE

SPECIAL MOMENT RESISTING FRAME

DUAL SYSTEM WITH INTERMEDIATE MOMENT FRAME

DUAL SYSTEM WITH SPECIAL MOMENT FRAME

MATERIAL COST(PHP)

MAINTENANCE COST (PHP)

MATERIAL COST(PHP)

MAINTENANCE COST (PHP)

MATERIAL COST(PHP)

MAINTENANCE COST (PHP)

0

1,828,100

12,200

2,213,367.80

12,900

3,346,405.21

12,750

5

1,919,505

11,590

2,324,036.19

12,255

3,513,725.47

12,113

10

2,010,910

10,980

2,434,704.58

11,610

3,681,045.73

11,475

15

2,102,315

10370

2,545,372.97

10,965

3,848,365.99

10,838 349

20

2,193,720

9,760

2,656,041.36

10,320

4,015,686.25

10,200

25

2,285,125

9,150

2,766,709.75

9,675

4,183,006.51

9,563

Table 4.27 Economic vs Sustainability

Economic vs Sustainability 16,000

Maintenance Cost(Php)

14,000 12,000 10,000 8,000 6,000 4,000 2,000 0

0

5

10

15

20

25

Cost increased (%) SMRF

DS W/ SMF

DS W/ IMF

Line Graph 4.3 Economic vs Sustainability 4.8.1.4 Economical vs Environmental The table below shows that when the designers considered the construction cost of the Geotechnical tradeoffs and its effect to the vicinity or environment of the structure. The analysis of this graph between the economical and environment of the structure, the higher the amount of Material cost will lessen the CO2 Emissions. Because of a high standard and quality of the materials can reduce the maintenance of the structure.

Table 0-5 Economic vs Sustainability ECONOMIC VS ENVIRONMENTAL PERCENT INCREASE

SPECIAL MOMENT RESISTING FRAME

DUAL SYSTEM WITH INTERMEDIATE MOMENT FRAME

DUAL SYSTEM WITH SPECIAL MOMENT FRAME

350

CO2 EMISSION

CO2 EMISSION

MATERIAL COST (Php)

CO2 EMISSION (kg/km)

MATERIAL COST(Php)

0

1,828,100

35.94

2,213,367.80

43.13

3,346,405.21

40.25

5

1,919,505

34.14

2,324,036.19

40.97

3,513,725.47

38.24

10

2,010,910

32.35

2,434,704.58

38.82

3,681,045.73

36.23

15

2,102,315

30.55

2,545,372.97

36.66

3,848,365.99

34.21

20

2,193,720

28.75

2,656,041.36

34.5

4,015,686.25

32.2

25

2,285,125

26.96

2,766,709.75

32.35

4,183,006.51

30.19

MATERIAL COST(Php)

(kg/km)

(kg/km)

Table 0.28 Economic vs Sustainability

Chart Title 50 45

CO2 emission (kg/lm)

40 35 30 25 20 15 10 5 0

0

5

10

15

20

25

Cost Increased (%) SMRF

4.8.2 Geotechnical Context 4.8.2.1 Economical vs Safety

DS W/SMF

DS W/IMF

Line Graph 4.4 Economic vs Environment

The table below shows that when the designers considered the construction cost of the Geotechnical tradeoffs and its effect to the settlement of the soil. The analysis of this graph between the economical and serviceability of the structure, the higher the amount of Material cost will lessen the chance of settlement of 351

the soil. Because of a high standard and quality of the materials can reduce the calculated settlement of the soil.

ECONOMIC VS SAFETY PERCENT INCREASE

JET GROUTING

WET SOIL MIXING

VIBRO REPLACEMENT

COST (Php)

SETTLEMENT (mm)

COST (Php)

SETTLEMENT (mm)

COST (Php)

SETTLEMENT (mm)

0

4,470,550.4 0

21.72

2,213,367.80

24.94

3,346,405.2 1

7.9

5

4,694,077.9 2

20.63

2,324,036.19

23.69

3,513,725.4 7

7.51

10

4,917,605.4 4

19.55

2,434,704.58

22.45

3,681,045.7 3

7.11

15

5,141,132.9 6

18.46

2,545,372.97

21.20

3,848,365.9 9

6.72

20

5,364,660.4 8

17.38

2,656,041.36

19.95

4,015,686.2 5

6.32

25

5,588,188.0 0

16.29

2,766,709.75

18.71

4,183,006.5 1

5.93

Table 0.29 Economic vs Serviceability

352

Economical vs Serviceability 30

Deflection (mm)

25 20 15 10 5 0

0

5

10

15

20

25

Cost Increased (%) JET GROUTING

WET SOIL MIXING

VIBRO REPLACEMENT

Line Graph 4.5 Economical vs Serviceability 4.8.2.2 Economical vs Constructability The table below shows that when the designers considered the construction cost of the Geotechnical tradeoffs and its effect to the duration of the structure. The analysis of this graph between the economical and duration of construction, the higher the amount of Material cost can accomplish the project beyond the expected number of days of work. Because of a different mechanism or apparatus can help our project accomplish as soon as possible, but expecting the cost of that tools will consume a lot of cost. ECONOMIC VS CONSTRUCTABILITY PERCENT INCREASE

JET GROUTING

WET SOIL MIXING

VIBRO REPLACEMENT

MATERIAL COST

DURATIO N

MATERIAL COST

DURATIO N

MATERIAL COST

DURATION

0

4,470,550.40

2.68

2,213,367.80

2.01

3,346,405.21

4.97

5

4,694,077.92

2.55

2,324,036.19

1.91

3,513,725.47

4.72

10

4,917,605.44

2.41

2,434,704.58

1.81

3,681,045.73

4.47

15

5,141,132.96

2.28

2,545,372.97

1.71

3,848,365.99

4.22

20

5,364,660.48

2.14

2,656,041.36

1.61

4,015,686.25

3.98

25

5,588,188.00

2.01

2,766,709.75

1.51

4,183,006.51

3.73

353

Table 4.30 Economic vs Constructability

Economical vs Constructability 6

Duration (days)

5 4 3 2 1 0

0

5

10

15

20

25

Cost Increased (%) JET GROUTING

WET SOIL MIXING

VIBRO REPLACEMENT

Line Graph 4.6 Economic vs Constructability 4.8.2.3 Economical vs Sustainability The table below shows that when the designers considered the construction cost of the Geotechnical tradeoffs and its effect to the maintenance of the structure. The analysis of this graph between the economical and sustainability of the structure, the higher the amount of Material cost will increase the bearing capacity. Because of a high standard and quality of the materials can reduce the maintenance of the structure. ECONOMIC VS SUSTAINABILITY PERCENT INCREASE

JET GROUTING

WET SOIL MIXING

VIBRO REPLACEMENT

MATERIAL COST

BEARING CAPACITY

MATERIAL COST

BEARING CAPACITY

MATERIAL COST

BEARING CAPACITY

0

4,470,550.40

820.99

2,213,367.80

623.36

3,346,405.21

774.76

5

4,694,077.92

862.04

2,324,036.19

654.53

3,513,725.47

813.50

10

4,917,605.44

903.09

2,434,704.58

685.70

3,681,045.73

852.23

15

5,141,132.96

944.14

2,545,372.97

716.86

3,848,365.99

890.97 354

20

5,364,660.48

985.19

2,656,041.36

748.03

4,015,686.25

929.71

25

5,588,188.00

1,026.24

2,766,709.75

779.20

4,183,006.51

968.45

Table 0.31 Economic vs Sustainability

Economic vs Sustainability

Bearing Capacity (kPa)

1200 1000 800 600 400 200 0

0

5

10

15

20

25

Cost Increased (%) JET GROUTING

WET SOIL MIXING

VIBRO REPLACEMENT

LineGraph 4.7 Economic vs Sustainability 4.8.2.4 Economical vs Environmental The table below shows that when the designers considered the construction cost of the Geotechnical tradeoffs and its effect to the vicinity or environment of the structure. The analysis of this graph between the economical and environment of the structure, the higher the amount of Material cost will lessen the CO2 Emissions. Because of a high standard and quality of the materials can reduce the maintenance of the structure. ECONOMIC VS ENVIRONMENTAL PERCENT INCREASE 0

JET GROUTING

WET SOIL MIXING

VIBRO REPLACEMENT

MATERIAL COST

CO2 EMISSION

MATERIAL COST

CO2 EMISSION

MATERIAL COST

CO2 EMISSION

4,470,550.40

31,067.91

2,213,367.80

23,280.24

3,346,405.21

57,589.30

355

5

4,694,077.92

29,514.51

2,324,036.19

22,116.23

3,513,725.47

54,709.84

10

4,917,605.44

27,961.12

2,434,704.58

20,952.22

3,681,045.73

51,830.37

15

5,141,132.96

26,407.72

2,545,372.97

19,788.20

3,848,365.99

48,950.91

20

5,364,660.48

24,854.33

2,656,041.36

18,624.19

4,015,686.25

46,071.44

25

5,588,188.00

23,300.93

2,766,709.75

17,460.18

4,183,006.51

43,191.98

Table 0.32 Economic vs Sustainability

Economic vs Environment 70,000.00

CO2 Emission (kg)

60,000.00 50,000.00 40,000.00 30,000.00 20,000.00 10,000.00 0.00

0

5

10

15

20

25

Cost Increased (%) JET GROUTING

WET SOIL MIXING

VIBRO REPLACEMENT

Line Graph 4.8 Economic vs Environmet

356

4.9 NORMALIZATION 4.9.1 Structural Context Raw Data Design 1 2 3

PC1 (Cost in Pesos) 1,828,100.00 1,926,40 0.00 1,905,70 0.00

PC2 (Duration in days)

PC3 (Deflection)

PC4 (Maintenance Cost )

37

1.329

12,200.00

51

1.479

12,900.00

65

1.455

12,750.00

Normalized data

Table 3 PC 1 2 3 4

Design

PC1 (Cost in Pesos)

PC2 (Duration in days)

PC3 (Deflection)

PC4 (Maintenance Cost )

1

10

10

10

10

2

1.00

1

1

1

3

2.9

5.5

2.44

2.93

Weight (%) 0.4 0.3 0.2 0.1

D1 10 10 10 10

D2 1 1 1 1

D3 2.9 5.5 2.44 2.94

357

10

Weighte d Sum

1 3.59

Table 4 PC 1 2 3 4 Weighte d Sum

Weight (%) 0.38 0.28 0.22 0.12

D1 10 10 10 10 10

D2 1 1 1 1 1

D3 2.9 5.5 2.44 2.94 3.53

Table 5 PC 1 2 3 4 Weighte d Sum

Weight (%) 0.35 0.15 0.38 0.12

D1 10 10 10 10 10

D2 1 1 1 1 1

D3 2.9 5.5 2.44 2.94 3.12

4.9.2 Geotechnical Context 1. RAW DATA Design 1 2 3

PC1 (Cost in Pesos) 4,470,550.3 4 2,213,367.8 0 3,346,405.2 1

PC2 (Duration in days)

PC3 (Settlement)

PC4 (Bearing Capacity )

PC5 (CO2 EMISSION

2.68345

21.72372723

820.99

31067.91072

2.0108

24.94464351

623.36

23280.23808

4.9742

7.9

774.7574

57589.29792

358

2. Normalized data Design

PC1 (Cost in Pesos)

1

0

PC2 (Duration in days)

PC3 (Settlement)

PC4 (Bearing Capacity )

PC5 (CO2 EMISSION

7.957126949

2.700724718

1

7.957126949

10

1

10

10

3.105416182

1

1.0 10.0 2

0 5.4

Table 3 PC 1 2 3 4 5 Weighte d Sum Table 4 PC 1 2 3 4 5 Weighte d Sum

3

8

1

10

Weight (%) 0.3 0.2 0.1 0.3 0.1

D1 1 7.957126949 2.700724718 1 7.957126949

D2 10 10 1 10 10

D3 5.48 1 10 3.105416182 1

 

Weight (%) 0.23 0.22 0.12 0.33 0.1  

3.257210557

D1 1 7.957126949 2.700724718 1 7.957126949 2.634654895

9.1

D2 10 10 1 10 10

3.875624855

D3 5.48 1 10 3.105416182 1 7.92

3.70518734

Table 5 359

PC 1 2 3 4 5 Weighte d Sum

Weight (%) 0.3 0.15 0.12 0.33 0.1  

D1 1 7.957126949 2.700724718 1 7.957126949 2.147656009

D2 10 10 1 10 10

D3 5.48 1 10 3.105416182 1 7.92

4.01878734

360

CHAPTER 5: FINAL DESIGN

5.1 Final Design (Structural Context) The designer has come up to a design that conforms to the National Building Code of the Philippines and the National Structural Code of the Philippines. The structural parts of the design were able to pass the necessary test for adequacy needed for the design. Concluding up the design of the Two-Storey Fire Station, as proven from the previous chapters, the Special Moment Concrete Resisting Frame was the ruling trade-off. 5.1.1 Framing System Special Moment-Resisting Frame is a rectilinear assembly of beams and columns, rigidly connecting the beams to the column. Resistance to lateral forces is given primarily by rigid frame action and bending moment and shear force production in the frame members and joints. A moment frame cannot displace laterally without bending the beams or columns depending on the geometry of the connection, due to the rigid beam–column connections. Hence the frame members' bending rigidity and strength is the primary source of lateral stiffness and strength for the entire frame.

Figure 5.1 1st floor to Roof Deck Framing Plan

361

Figure 5.2 Foundation Plan

362

5.1.2 Beam Design

Figure 5.3 Typical Beam Design Along Long Span

Figure 5.4 Typical Beam Design Along Short Span

363

Figure 5.5 Beam Elevation Along Long Span

Figure 5.6 Beam Elevation Along Long Span

364

Figure 5.7 Beam Elevation Along Long Span

Figure 5.8 Beam Elevation Along Short Span

365

Figure 5.9 Beam Elevation Along Short Span

Figure 5.10 Beam Elevation Along Short Span

366

Figure 5.11 Beam Schedule

Figure 5.12 Bar Cutting Disk Along Long Span

367

Figure 5.13 Bar Cutting Disk Along Long Span (Continuation)

368

Figure 5.14 Bar Cutting Disk Along Long Span (Continuation)

369

Figure 5.15 Bar Cutting Disk Along Short Span

370

Figure 5.16 Bar Cutting Disk Along Short Span (Continuation)

371

Figure 5.17 Summary of Bar Cutting Disk

372

5.1.3 COLUMN DESIGN

Figure 5.18 Column Elevation

373

Figure 5.19 Column Schedule

374

Figure 5.20 Bar Cutting Disk

375

Figure 5.21 Bar Cutting Disk (Continuation)

376

Figure 5.22 Summary of Bar Cutting Disk 5.1.5 SLAB DESIGN

Figure 5.23 Slab Reinforcement Layout

377

Figure 5.24 Slab Schedule

378

Figure 5.25 Bottom Reinforcement Cutting Disk

379

Figure 5.26 Bottom Reinforcement Cutting Disk (Continuation) 380

Figure 5.27 Bottom Reinforcement Cutting Disk (Continuation)

381

Figure 5.28 Top Reinforcement Cutting Disk

382

Figure 5.29 Top Reinforcement Cutting Disk (Continuation)

383

Figure 5.30 Top Reinforcement Cutting Disk (Continuation) 384

5.2 Final Design (Geotechnical Context) The designer has come up to a design that conforms to the National Building Code of the Philippines and the National Structural Code of the Philippines. The Geotechnical parts of the design were able to pass the necessary test for adequacy needed for the design. Concluding up the design of the Two-Storey Fire Station, as proven from the previous chapters, the Wet Soil Mixing was the ruling trade-off. 5.2.1 Footing Details

Figure 5.31 Typical Schedule of Footings

Figure 5.32 Typical Details of Footings

385

5.2.2 Ground Improvement Details WET SOIL DESIGN Wet soil column diameter 0.80 horizontal spacing 1.00 vertical spacing 1.00 length of column 2.40 Number of Wet Soil Column per Footing 9.00 Figure 5.33 Typical Details of Wet Soil Column

m m m m pcs

Figure 5.34 Typical Details of Wet Soil Column

386

Figure 5.35 Perspective of Footing with Ground Improvement

387

APPENDIX A.1: COST ESTIMATES

STRUCTURAL CONTEXT

BOQ SUMMARY (ECONOMIC COST)   Project Name Special Moment Concrete Resisting Frame :   Element:  Beam (1st Floor to Roof   Deck)   No. Material Unit Quantity Rate ₱ Cost ₱ 1 Concrete C20 (cum) 29.52 4600.00 45264 Sub Total 29.52   2 Rebar #10 (Fy420) (kg) 1941.96 45.00 87388 3 Rebar #13 (Fy420) (kg) 148.05 45.00 6662.25 4 Rebar #16 (Fy420) (kg) 3184.59 45.00 143306.55 5 Rebar #16 (Fy420) (kg) 85.5 45.00 3847.5 6 Rebar #19 (Fy420) (kg) 1032.22 45.00 46449.9 7 Rebar #25 (Fy420) (kg) 237.48 45.00 10686.6 8 Rebar #25 (Fy420) (kg) 5057.73 45.00 227597.85 Sub Total 3899.80   (sq.m 9 Shuttering 83.64 58.00 4851.12 ) Sub Total           Total Cost     Design Metrics 1 Consumption: Reinforcement/Concrete ratio = 132.12 kg/cum 2 Consumption: Reinforcement/Plan area = 46.63 kg/sqm 3 Consumption: Concrete/Plan area = 0.35 cum/sqm 4 Concrete % C20 = 100.00 %  5 Shuttering  = 8.50 sqm/cum

Element:  Column  

₱ 135,792

₱ 525938.65

₱ 4,851.12 ₱ 666,581.77

 

388

No. Material Unit Quantity 1 Concrete C25 (cum) 27.54 Sub Total 27.54   2 Rebar #10 (Fy420) (kg) 2586.09 3 Rebar #16 (Fy420) (kg) 3049.00 4 Rebar #32 (Fy420) (kg) 4101.00 Sub Total 9736.09   5 Shuttering (sq.m) 227.52 Sub Total       Total Cost     Design Metrics 1 Consumption: Reinforcement/Concrete ratio 2 Consumption: Reinforcement/Plan area 3 Consumption: Concrete/Plan area 4 Concrete % C25 5 Shuttering 

Element:  Slab (1st Floor to Roof Deck)   No. Material 1 Concrete C20 Sub Total   2 Rebar #10 (Fy420) Sub Total   3 Shuttering Sub Total

Rate ₱ 5180.00

Cost ₱ 142657 ₱ 142,657

45.00 45.00 45.00

116374 137205 184545 ₱ 438,123

58.00  

13196  

₱ 13,196 ₱ 593,977

= = = = =

353.53 kg/cum 54.09 kg/sqm 0.15 cum/sqm 100.00 %  8.26 sqm/cum

       

  Unit (cum)

(kg)

(sq.)  

Quantity 75.9 75.9

Rate ₱ 4600.00

4646.88 4646.88

45.00

159.95  

58.00  

Cost ₱ 349140 ₱ 349,140 209109.6 ₱ 209,109.6 9277.1  

₱ 9,277.1 389

  Total Cost

₱ 567,526.7

    Design Metrics 1 Consumption: Reinforcement/Concrete ratio 2 Consumption: Reinforcement/Plan area 3 Consumption: Concrete/Plan area 4 Concrete % C20 5 Shuttering 

= = = = =

61 kg/cum 26.05 kg/sqm 0.47 cum/sqm 100.00 %  6.29 sqm/cum

       

GRAND TOTAL = ₱ 666,581.77 + ₱ 593,977 + ₱ 567,526.7 = ₱ 1,828,084.00

Project Name: DS WITH IMF   Element:  Beam (1st Floor to Roof Deck)   No. Material 1 Concrete C20 Sub Total   2 Rebar #10 (Fy420) 3 Rebar #13 (Fy420) 4 Rebar #16 (Fy420) 5 Rebar #16 (Fy420) 6 Rebar #19 (Fy420) 7 Rebar #25 (Fy420) 8 Rebar #25 (Fy420) Sub Total   9 Shuttering Sub Total  

  Unit Quantity (cum) 30.24 30.24 (kg) (kg) (kg) (kg) (kg) (kg) (kg)

(sq.m)  

Rate ₱ 4600.00

Cost ₱ 121578 ₱ 139,104

2010 378 3482 42.6 180.27 50.19 1142 7285.04

45.00 45.00 45.00 45.00 45.00 45.00 45.00

256.23  

58.00  

90450 17010 156690 1917 8112.15 2258.55 51390 ₱ 327,828 13030.86  

14,861.34

390

₱ 481,793.06

Total Cost     Design Metrics 1 Consumption: Reinforcement/Concrete ratio 2 Consumption: Reinforcement/Plan area 3 Consumption: Concrete/Plan area 4 Concrete % C20 5 Shuttering 

Element:  Column

= = = = =

240.91 kg/cum 28.42 kg/sqm 0.12 cum/sqm 100.00 %  8.50 sqm/cum

       

 

  No. Material 1

  2 3 4 5

  6

Concrete C25 Sub Total Total Rebar 10 (Fy420) Rebar 10 (Fy420) Rebar 16 (Fy420) Rebar 19 (Fy420) Sub Total Total Shuttering Sub Total Total

Unit (cum)

(kg) (kg) (kg) (kg)

(sq.m)  

Quantity Quantity Column Wall 13.60 33.15 13.60 33.15 46.75

Rate ₱

Cost ₱

5180.00

242165 ₱ 242,165

969.36 497.00 0.00 631.87 800.00 0.00 1220.00 5479.00 2989.36 6607.87 9597.23 127.00  

60.00 60.00 60.00 60.00

87982 37912 48000 401940 ₱ 575,833

234.50 361.50  

70.00

25305

 

 

₱ 25,305

  ₱ 843,303

Total Cost     Design Metrics

Column

1 Consumption: Reinforcement/Concrete ratio = 219.81 2 Consumption: Reinforcement/Plan area = 3 Consumption: Concrete/Plan area =

Wall

Total

199.33

205.29 53.32 0.26

kg/cum   kg/sqm   cum/sqm   391

4 Concrete % C25 5 Shuttering   

= 100.00 = 9.34

100.00 7.07

100.00 7.73

%    sqm/cum  

 

Element:  Slab (1st Floor to   Roof Deck)   No. Material Unit Quantity 1 Concrete C20 (cum) 71.94 Sub Total 71.94   2 Rebar #10 (Fy420) (kg) 5388.54 Sub Total 5388.54   3 Shuttering (sq.m) 479.61 Sub Total       Total Cost     Design Metrics 1 Consumption: Reinforcement/Concrete ratio 2 Consumption: Reinforcement/Plan area 3 Consumption: Concrete/Plan area 4 Concrete % C20 5 Shuttering 

Rate ₱ 4600.00

Cost ₱ 330924 ₱ 330,924

45.00

242484.3 ₱ 242,484.3

58.00  

27817  

₱ 27,817 ₱ 601,225.3

= = = = =

74.90 kg/cum 11.24 kg/sqm 0.06 cum/sqm 100.00 %  6.67 sqm/cum

       

GRAND TOTAL = ₱ 481,793.04 + ₱ 843,303 + ₱ 601,225.3 = ₱ 1,926,322.00

392

Element:  Beam     No. Material Unit Quantity 1 Concrete C20 (cum) 30.24 Sub Total 30.24   2 Rebar #10 (Fy420) (kg) 1743 3 Rebar #13 (Fy420) (kg) 378 4 Rebar #16 (Fy420) (kg) 3228 5 Rebar #16 (Fy420) (kg) 36 6 Rebar #19 (Fy420) (kg) 12 7 Rebar #19 (Fy420) (kg) 390 8 Rebar #25 (Fy420) (kg) 63 9 Rebar #25 (Fy420) (kg) 1017 Sub Total 6867   10 Shuttering (sq.m) 224.67 Sub Total       Total Cost     Design Metrics 1 Consumption: Reinforcement/Concrete ratio 2 Consumption: Reinforcement/Plan area 3 Consumption: Concrete/Plan area 4 Concrete % C20 5 Shuttering 

Element:  Column

Rate ₱ 4600.00

Cost ₱ 139104 ₱ 139,104

45.00 45.00 45.00 45.00 45.00 45.00 45.00 45.00

78435 17010 145260 1620 540 17550 2835 45765 ₱ 309,015

58.00  

13030.86  

₱ 13,030.86 ₱ 461,149

= = = = =

227.08 kg/cum 10.62 kg/sqm 0.05 cum/sqm 100.00 %  8.50 sqm/cum

       

 

  No. Material 1

Concrete C25 Sub Total

Unit (cum)

Quantity Quantity Column Wall 13.60 33.15 13.60 33.15

Rate ₱

Cost ₱

5180.00

242165

393

Total   2 3 4 5

  6

Rebar 10 (Fy420) Rebar 10 (Fy420) Rebar 16 (Fy420) Rebar 19 (Fy420) Sub Total Total Shuttering Sub Total Total

46.75 (kg) (kg) (kg) (kg)

(sq.m)  

₱ 242,165

969.36 497.00 0.00 631.87 800.00 0.00 1220.00 5479.00 2989.36 6607.87 9597.23 127.00  

60.00 60.00 60.00 60.00

87982 37912 48000 401940 ₱ 575,833

234.50 361.50  

70.00

25305

 

 

₱ 25,305

  ₱ 843,303

Total Cost     Design Metrics 1 2 3 4 5

Column

Consumption : Reinforcement/Concrete ratio = 219.81 Consumption : Reinforcement/Planarea = Consumption : Concrete/Planarea = Concrete % C25 = 100.00 Shuttering  = 9.34

Wall

Total

199.33

205.29 53.32 0.26 100.00 7.73

100.00 7.07

kg/cum kg/sqm cum/sqm %  sqm/cum

         

394

DETAILED CONSTRUCTION ACTIVITIES TRADE OFF 1 BUILDING PERMIT MOBILIZATION STAKE OUT CLEARING AND GRUBBING EXCAVATION DEWATERING (IF NECESSARY) POURING OF FOUNDATION DAMPROOF OF WATERPOOF AND SETTING TILE CONSTRUCTION OF WALLS CONSTRUCT ROUGH FRAMING INSTALLING OF LONGITUDINAL BAR BEAM AND COLUMN CONFINEMENT BAR SPLICING CONCRETE PLACEMENT INSTALLING INSULATON COMPLETION OF DRY WALL PRIME AND PAINTING MOLDING AND TRIM CERTIFICATION OF OCCUPANCY MODIFICATIONS MOVING IN

1                                          

2                                          

WEEK 1 4

3                                          

                                         

5                                          

6                                          

7                                          

APPENDIX A.2: DETAILS OF CONSTRUCTION ACTIVITIES

395

WEEK 2 8

9

                                         

10

                                         

                                         

22  

11                                          

23  

24  

12

13

                                         

WEEK 4 25  

                                         

                                         

26  

14                                          

27  

15

28  

                                         

29  

                                         

WEEK 3 18                                          

30

WEEK 5 30

16

 

17

 

19

20

                                         

                                         

1  

21                                          

2  

3  

4   396

                                       

                                       

5        

                                       

6        

                                       

7        

8        

WEEK 6 9        

                                       

                                       

                                       

10        

                                       

11        

                                       

12        

                                       

13        

14        

                                       

WEEK 7 15        

                                       

                                       

16        

                                       

17        

18         397

                                 

                                 

                                 

                                 

                                 

                                 

DETAILED CONSTRUCTION ACTIVITIES TRADE OFF 2 BUILDING PERMIT MOBILIZATION STAKE OUT CLEARING AND GRUBBING EXCAVATION DEWATERING (IF NECESSARY) POURING OF FOUNDATION

                                 

                                 

1              

                                 

2              

                               

                               

             

                                 

 

WEEK 1 4

3              

                             

5              

                                 

6              

7               398

DAMPROOF OF WATERPOOF AND SETTING TILE CONSTRUCTION OF WALLS CONSTRUCT ROUGH FRAMING INSTALLING OF LONGITUDINAL BAR BEAM AND COLUMN CONFINEMENT BAR SPLICING CONCRETE PLACEMENT POURING OF CONCRETE IN SHEAR WALL INSTALLING INSULATON COMPLETION OF DRY WALL PRIME AND PAINTING MOLDING AND TRIM CERTIFICATION OF OCCUPANCY MODIFICATIONS MOVING IN

                             

                             

                             

                             

                             

WEEK 2 8                    

9                    

10                    

11                    

12                    

13                    

14                    

15                    

16                    

17                    

WEEK 3 18                    

                             

                             

19                    

20                    

21                     399

                       

                       

                       

22                          

                       

23                          

24                          

                       

WEEK 4 25                          

                       

                       

26                          

                       

27                          

28                          

                       

                       

29                          

                       

WEEK 5 30

30                          

                       

                         

                       

1                          

                       

2                          

3                          

4                           400

                 

                 

5                                

                 

6                                

                 

7                                

8                                

WEEK 6 9                                

                 

                 

                 

10                                

                 

11                                

                 

12                                

                 

13                                

14                                

                 

WEEK 7 15                                

                 

                 

16                                

                 

17                                

18                                 401

           

           

           

19                                      

           

20                                      

21                                      

           

WEEK 8 22                                      

           

           

23                                      

       

24                                      

           

           

           

           

           

           

25                                       402

     

     

     

     

     

DETAILED CONSTRUCTION ACTIVITIES TRADE OFF 3 BUILDING PERMIT MOBILIZATION STAKE OUT CLEARING AND GRUBBING EXCAVATION DEWATERING (IF NECESSARY) POURING OF FOUNDATION DAMPROOF OF WATERPOOF AND SETTING TILE CONSTRUCTION OF WALLS CONSTRUCT ROUGH FRAMING INSTALLATION OF HOLDOWN POST FRAME ADJUSTMENT BAR SPLICING WEB PENETRATION FLANGE PENETRATION INSTALLING OF LONGITUDINAL BAR BEAM AND COLUMN CONFINEMENT CONCRETE PLACEMENT POURING OF CONCRETE IN SHEAR WALL INSTALLING INSULATON COMPLETION OF DRY WALL PRIME AND PAINTING

     

     

1                                            

2                                            

WEEK 1 4

3                                            

                                           

5                                            

6                                            

7                                             403

MOLDING AND TRIM CERTIFICATION OF OCCUPANCY MODIFICATIONS MOVING IN

       

       

       

       

       

                                               

WEEK 3 18                                                

WEEK 2 8                                                

9                                                

10                                                

11                                                

12                                                

13                                                

14                                                

15                                                

16                                                

17

       

       

19                                                

20                                                

21                                                 404

   

   

   

22                                                  

   

23                                                  

24                                                  

   

WEEK 4 25                                                  

   

   

26                                                  

   

27                                                  

28                                                  

   

   

29                                                  

   

WEEK 5 30

30                                                  

   

                                                 

   

1                                                  

   

2                                                  

3                                                  

4                                                   405

 

  5

                                                   

  6

                                                   

7                                                    

  WEEK 6 8 9                                                                                                         WEEK 8

 

 

 

10                                                    

 

11                                                    

  12

                                                   

 

13                                                    

14                                                    

  WEEK 7 15                                                    

 

 

16                                                    

 

17                                                    

18                                                    

WEEK 9 406

19                                                    

   

20                                                    

   

21                                                    

WEEK 10    

22                                                    

23                                                    

24                                                    

25                                                    

26                                                    

27                                                    

28                                                    

29                                                    

30                                                    

31                                                    

    407

                                                 

                                                 

                                                 

                                                 

408

APPENDIX A.3: FINAL ESTIMATES FOR SUSTAINABILITY (MAINTENANCE COST) Maintenance Cost Over 15 years Computation SMRF = Php 1,828,100 DS WITH IMRF = Php 1,926,400.00 DUAL SYSTEM = Php 1,905,700.00 SMRF

10 % Material Cost 15 years 10 %(1 Php1,828,100) Maintenance Cost = 15 years Maintenance Cost =Php 12200.00 Maintenance Cost =

DS W/ IMF 10 % Material Cost 15 years 10 %( Php 1,926,400.00) Maintenance Cost = 15 years Maintenance Cost =Php 12900.00 Maintenance Cost =

10 % Material Cost Maintenance Cost = 15 years 10 %( Php 1,905,700.00) Maintenance Cost = 15 years Maintenance Cost =Php 12750.00

DS

409

APPENDIX A.4: FINAL ESTIMATES FOR ENVIRONMENTAL ASSESSMENT (CO2 EMITTED) The amount of CO2 produced per liter or gallon of fuel is fairly consistent, so you just need to know the amount of fuel you used, the type of fuel and the number of miles or kilometers you’ve covered to calculate the total CO2 emitted. Diesel produces around 2.68kg per liter burned while petrol produces around 2.31kg per liter burned. Total kilogram pf CO2 produced per km = (Amount of fuel used x Type of fuel used) / Distance Travelled Type of fuel Diesel Type of fuel Diesel Type of fuel Diesel

Tradeoff 1 (Special Moment RC Frame) Amount of fuel CO2 Produced (kg) Total Distance used (L) Traveled(km) 25

67

3

Tradeoff 2 (Dual System with IMF) Amount of fuel CO2 Produced (kg) Total Distance used (L) Traveled(km) 30

80.4

3

Tradeoff 3 (Dual System w/ Special moment RC frame) Amount of fuel CO2 Produced (kg) Total Distance used (L) Traveled(km) 28

75.04

3

Total kilogram of CO2 produced per km 35.94 Total kilogram of CO2 produced per km 43.13 Total kilogram of CO2 produced per km 40.25

410

APPENDIX B.1: COMPUTATION OF BEAM (SMRF)

STRUCTURAL CONTEXT Sr.No. Symbol 1 α

=

2

Ach

=

3

Ag

=

4

Ash

=

5 6 7 8 9 10 11 12 13 14 15 16 17 18

Avd As As,min As,nominal Al Al,face At AstPrv Av Av,min Al,min Av Total Reqd Av Total Prv Ao

= = = = = = = = = = = = = =

19

Aoh

=

20 21

Ast Asr

= =

22

Asc

=

23

b

=

Definitions Angle formed with horizontal by diagonal reinforcement Cross sectional area of structural member measures to the outside edge of transverse reinforcement in sqmm Cross sectional area of concrete in sqmm Total cross sectional area transverse reinforcement (including cross ties) within spacing S in sqmm Area of diagonal reinforcement in coupler beam in sqmm Area of Tension reinforcement required in sqmm Minimum area of flexural reinforcement in sqmm Nominal area of reinforcement in sqmm Area of longitudinal reinforcement required to resist torsion in sqmm Area of longitudinal reinforcement required on each face to resist torsion in sqmm Area of one leg of a closed stirrup resisting torsion within spacing 's' in sqmm Area of longitudinal reinforcement provided at given section in sqmm Area of shear reinforcement required per meter length in sqmm Minimum area of shear reinforcement as per clause 11.4.6.1 in sqmm Minimum area of longitudinal torsional reinforcement as per clause 11.5.5.3 in sqmm Total area of shear reinforcement required, including that for torsion in sqmm Total area of shear reinforcement provided, including that for torsion in sqmm Gross area enclosed by shear flow path in sqmm Area enclosed by centerline of the outermost closed transverse torsional reinforcement sqmm, as per clause 11.5.3.1 Total area of longitudinal reinforcement calculated at a given section in sqmm Area of Skin reinforcement calculated for given section in sqmm Area of Compression reinforcement required for doubly reinforced section or if torsion exists in sqmm Width of the Beam in mm 411

24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53

bw b' bc Cc Cmin c' d d' D Ec Es fs Hf hx l Legs Mpr1 Mpr2 Mu Mubal Ptmin PtPrv Stirrup S SCalc Sprv Tcr Tu Ve φVc

= = = = = = = = = = = = = = = = = = = = = = = = = = = = = =

Width of Web in mm C/C distance between longitudinal reinforcement along B in mm Oustside dimension of transverse reinforcement in mm Effective Cover to tension reinforcement in mm Clear cover in mm Effective cover to reinforcement at compression face in mm Effective depth of Beam in mm C/C distance between longitudinal reinforcement along D in mm Depth of Beam in mm Modulus of elasticity of concrete in N/sqmm Modulus of elasticity of steel in N/sqmm Calculated tensile stress in reinforcement at service loads, N/sqmm Thickness of Flange in mm Maximum C/C horizontal spacing of hoops legs on all faces in mm Effective Length of Beam in mm Number of legs of the shear reinforcement Hogging moments of resistance of member at the joint faces in kNm Sagging moments of resistance of member at the joint faces in kNm Factored Bending Moment at a section in kNm Nominal flexural strength of Singly Reinforced Section At Balance Neutral Axis in kNm Minimum percentage steel as per clause 10.5 Provided percentage steel Bar mark representing shear stirrup spacing of confining links in mm Stirrup spacing calculated as per Asv in mm Stirrup spacing provided in mm Cracking torque under pure Torsion in kNm Factored Torsional Moment at a section in kNm Earthquake induced shear in kN Nominal shear strength provided by concrete in kN 412

54 Vu = Factored Shear Force at a section in kN 55 Vu-A1(sway Left) = VD+Lleft - (Mpr1left + Mpr2right / L ) in kN 56 Vu-A2(sway Left) = VD+Lleft + (Mpr2left + Mpr1right / L ) in kN 57 Vu-B1(sway Right) = VDLRight - (Mpr1left + Mpr2right / L ) in kN 58 Vu-B2(sway Right) = VDLRight + (Mpr2left + Mpr1right / L ) in kN 59 Vud = Design Shear Force in kN 60 Vs = Nominal shear strength provided by shear reinforcement in kN 61 Vu sway = Max (Vu-A1,Vu-A2) & (Vu-B1,Vu-B2) in kN 62 Φ = Strength reduction factor   All Forces are In kN, kNm, Stress in N/sqmm & Dimension are in mm.   Code References ACI 318M:2011 Sr.No. Item 1. Ptmax 2. Ptmin 3. Vc 4. Asv 5. Min Shear Reinf 6. Max Stirrup Spacing 7. Shear Reinf - Torsion 8. Side Face Reinforcement 9. Tcr                                  ACI 318M:2011 Chapter 21 Sr.No. Item 1. Ptmin 2. Asmin

: : : : : : : : :

Clause / Table 10.3.5 10.5.1 11.2 11.4.7.2 11.4.6 11.4.5.1 11.5.3.5 10.6.7 11.5.1

: :

Clause / Table 21.5.2.1 21.5.2.1 413

3.

Sclc

:

21.5.3.1 & 21.5.3.2

Group

: G2

Beam No

: B4

Analysis Reference (Member)

5.5m : 25

Beam Length Breadth (B) Depth (D) Effective Depth (d) Design Code Beam Type Grade Of Concrete (Fck) Grade Of Steel Clear Cover (Cmin) Es Mubal As,min (flex) (B) As,nominal (Bn)   For Longitudinal Reinf

Critical L/C - Analysis Critical L/C - RCDC Mu (kNm) As (flex) (sqmm) (C) Asc (flex) (sqmm) (A) Tu (kNm)

: : : : : : : : : : : : :

Left 46 11 113.348 1044.92 0.569

4999.99 mm 300 mm 400 mm 330 mm ACI 318M - 2011 Ductile Beam (Special Frame) C20 N/sqmm Fy420 N/sqmm 40 mm 2x10^5 N/sqmm 165.6 kNm 330 sqmm 198 sqmm

Beam Bottom Mid 38 3 83.152 733.79 0.534

Right 48 13 103.75 942.54 0.63

Left 40 5 205.335 1974.77 513.56 0.665

Beam Top Mid 48 13 67.2 580.82 0.631

Right 38 3 206.566 1986 524.8 0.534 414

Tcr/4 (kNm) Al, min(sqmm)(Tor.) (D) Al (sqmm) (Tor.) (E) Al (Dist) (sqmm) (D) Ast (sqmm) AstPrv (sqmm) Reinforcement

2.86 1044.92 1191.36 4-#16 2-#16

2.86 733.79 794.24 4-#16

2.86 1057.9 1191.36 4-#16 2-#16

2.86 1974.77 2115.81 3-#25 3-#16

2.86 580.82 595.68 3-#16

2.86 1986 2115.81 3-#25 3-#16

  Note: Calculation of Ast    Ast = Ast = Where, A = B = Bn = C = D = Ast (Dist) (sqmm)   For Transverse Reinf Critical L/C - RCDC PtPrv (%) Vu (kN) Mu-Sect (kNm) Vc (kN)

Max {B, C+D, A+D} (for Mu > 0) Bn (for Mu = 0) Asc (flex) As,min (flex) As,nominal As (flex) Al (Dist)

= = = = = =

Left 5 2.137 123.29 80.11

Compression reinforcement required for bending moment Min area of flexural reinforcement Nominal area of reinforcement Total area of longitudinal reinforcement calculated at a given section Distributed longitudinal torsional reinforcement at section considered Max(Al,min (Tor), Al (Tor)) x ((2B) / (2B + 2D))

Mid 3 2.137 117.36 104.6 63.12

Right 3 2.137 126.3 80.11 415

Vs (kN) VD+L (kN) Mh (kNm) Ms (kNm) Sway-Right (kN) Sway-Left (kN) Vu-Sway (kN) Vud (kN) Av (sqmm) Tu (kNm) Ao= Φ*Aoh At (sqmm) Legs Stirrup Rebar Asv Torsion (sqmm) Av Total Reqd (sqmm) Asv Reqd (sqmm) SCalc (mm) SPrv (mm) Av Total Prv (sqmm)

57.59 58.53 245.6 168.05 32.38 149.44 149.44 149.44 415.48 0.67 2 10 0 415.48 666.999 100 100 1417.6

72.33

61.59 58.29 245.6 168.05 149.2 32.62 149.2 149.2 444.4 0.53 2 10 0 444.4 664.706 100 100 1417.6

521.83 0.53 2 10 0 521.83 521.831 140 140 1012.57

  Maximum Spacing Criteria             Basic                                                Spc1                 Spc2   

= =

300 140

mm mm

416

       For Ductility (Special Frames)                Left Section,  Right Section               Spc3 = 6 x Small Longitudinal Dia               Spc4 = d / 4               Spc5              Provided Spacing             Mid Section               Provided Spacing       

= = = =

95.4 82 150 100

mm mm mm mm

=

165

mm

Skin reinforcement    Beam Width Beam Depth Depth

= 300 = 400 = 400 <= 1000

mm mm

   Group

: G2

Beam No

: B5

Analysis Reference (Member) Beam Length Breadth (B) Depth (D) Effective Depth (d) Design Code

5.5m : 26 : : : : :

4999.99 mm 300 mm 400 mm 330 mm ACI 318M - 2011 417

Beam Type Grade Of Concrete (Fck) Grade Of Steel Clear Cover (Cmin) Es Mubal As,min (flex) (B) As,nominal (Bn)   For Longitudinal Reinf

Critical L/C - Analysis Critical L/C - RCDC Mu (kNm) As (flex) (sqmm) (C) Asc (flex) (sqmm) (A) Tu (kNm) Tcr/4 (kNm) Al, min(sqmm)(Tor.) (D) Al (sqmm) (Tor.) (E) Al (Dist) (sqmm) (D) Ast (sqmm) AstPrv (sqmm) Reinforcement

: : : : : : : :

Left 46 11 94.16 843.66 1.478 2.86 1057.9 1191.36 4-#16 2-#16

Ductile Beam (Special Frame) C20 N/sqmm Fy420 N/sqmm 40 mm 2x10^5 N/sqmm 165.6 kNm 330 sqmm 198 sqmm

Beam Bottom Mid 38 3 70.794 614.68 1.463 2.86 614.68 794.24 4-#16

Right 48 13 88.63 787.97 1.5 2.86 958.62 1191.36 4-#16 2-#16

Left 40 5 194.959 1880.11 418.91 1.519 2.86 1880.11 2115.81 3-#25 3-#16

Beam Top Mid 48 13 60.641 519.86 1.504 2.86 519.86 595.68 3-#16

Right 38 3 188.203 1818.48 357.28 1.463 2.86 1818.48 1917.25 3-#25 2-#16

  Note: Calculation of Ast

418

   Ast Ast Where, A B Bn C D Ast (Dist) (sqmm)   For Transverse Reinf Critical L/C - RCDC PtPrv (%) Vu (kN) Mu-Sect (kNm) Vc (kN) Vs (kN) VD+L (kN) Mh (kNm) Ms (kNm) Sway-Right (kN) Sway-Left (kN) Vu-Sway (kN) Vud (kN) Av (sqmm) Tu (kNm)

= =

Max {B, C+D, A+D} (for Mu > 0) Bn (for Mu = 0)

= = = = =

Asc (flex) As,min (flex) As,nominal As (flex) Al (Dist)

= = = = = =

Left 5 2.137 118.44 80.11 51.11 58.4 245.6 168.05 29.71 149.31 149.31 149.31 368.74 1.52

Compression reinforcement required for bending moment Min area of flexural reinforcement Nominal area of reinforcement Total area of longitudinal reinforcement calculated at a given section Distributed longitudinal torsional reinforcement at section considered Max(Al,min (Tor), Al (Tor)) x ((2B) / (2B + 2D))

Mid 5 2.137 109.5 99.55 62.92 62.1

448.06 1.52

Right 3 1.937 118.11 77.57 54.04 58.42 232.83 168.05 146.53 32.49 146.53 146.53 389.92 1.46 419

Ao= Φ*Aoh At (sqmm) Legs Stirrup Rebar Asv Torsion (sqmm) Av Total Reqd (sqmm) Asv Reqd (sqmm) SCalc (mm) SPrv (mm) Av Total Prv (sqmm)

2 10 0 368.74 665.744 100 100 1417.6

2 10 0 448.06 448.062 140 140 1012.57

2 10 0 389.92 663.335 100 100 1417.6

  Maximum Spacing Criteria             Basic                                                Spc1                 Spc2           For Ductility (Special Frames)                Left Section,  Right Section               Spc3 = 6 x Small Longitudinal Dia               Spc4 = d / 4               Spc5              Provided Spacing             Mid Section               Provided Spacing     

= =

300 140

mm mm

= = = =

95.4 82 150 100

mm mm mm mm

=

165

mm

420

  Skin reinforcement    Beam Width Beam Depth Depth   

= 300 = 400 = 400 <= 1000

Group

: G2

Beam No

: B6

Analysis Reference (Member) Beam Length Breadth (B) Depth (D) Effective Depth (d) Design Code Beam Type Grade Of Concrete (Fck) Grade Of Steel Clear Cover (Cmin) Es Mubal As,min (flex) (B) As,nominal (Bn)   For Longitudinal Reinf

mm mm

5.5m : 27 : : : : : : : : : : : : :

4999.99 mm 300 mm 400 mm 330 mm ACI 318M - 2011 Ductile Beam (Special Frame) C20 N/sqmm Fy420 N/sqmm 40 mm 2x10^5 N/sqmm 165.6 kNm 330 sqmm 198 sqmm

Beam Bottom

Beam Top 421

Left 46 11 85.003 752 1.445 2.86 958.62 1191.36 4-#16 2-#16

Critical L/C - Analysis Critical L/C - RCDC Mu (kNm) As (flex) (sqmm) (C) Asc (flex) (sqmm) (A) Tu (kNm) Tcr/4 (kNm) Al, min(sqmm)(Tor.) (D) Al (sqmm) (Tor.) (E) Al (Dist) (sqmm) (D) Ast (sqmm) AstPrv (sqmm) Reinforcement

Mid 40 5 72.873 634.42 1.549 2.86 634.42 794.24 4-#16

Right 48 13 93.47 836.62 1.51 2.86 958.62 1191.36 4-#16 2-#16

Left 40 5 187.319 1810.42 349.22 1.549 2.86 1810.42 1917.25 3-#25 2-#16

Mid 46 11 57.247 488.74 1.445 2.86 488.74 595.68 3-#16

Right 38 3 186.055 1798.89 337.69 1.406 2.86 1798.89 1917.25 3-#25 2-#16

  Note: Calculation of Ast    Ast Ast Where, A B Bn C D Ast (Dist) (sqmm)  

= =

Max {B, C+D, A+D} (for Mu > 0) Bn (for Mu = 0)

= = = = =

Asc (flex) As,min (flex) As,nominal As (flex) Al (Dist)

= = = = = =

Compression reinforcement required for bending moment Min area of flexural reinforcement Nominal area of reinforcement Total area of longitudinal reinforcement calculated at a given section Distributed longitudinal torsional reinforcement at section considered Max(Al,min (Tor), Al (Tor)) x ((2B) / (2B + 2D))

422

For Transverse Reinf Critical L/C - RCDC PtPrv (%) Vu (kN) Mu-Sect (kNm) Vc (kN) Vs (kN) VD+L (kN) Mh (kNm) Ms (kNm) Sway-Right (kN) Sway-Left (kN) Vu-Sway (kN) Vud (kN) Av (sqmm) Tu (kNm) Ao= Φ*Aoh At (sqmm) Legs Stirrup Rebar Asv Torsion (sqmm) Av Total Reqd (sqmm) Asv Reqd (sqmm) SCalc (mm) SPrv (mm) Av Total Prv (sqmm)

Left 5 1.937 118.42 77.57 54.47 58.3 232.83 168.05 29.8 146.41 146.41 146.41 392.99 1.55 2 10 0 392.99 662.199 100 100 1417.6

Mid 5 1.937 109.49 91.92 62.74 62.33

449.72 1.55 2 10 0 449.72 449.716 140 140 1012.57

Right 3 1.937 115.73 77.57 50.87 58.52 232.83 168.05 146.62 29.59 146.62 146.62 367.03 1.41 2 10 0 367.03 664.253 100 100 1417.6

  423

Maximum Spacing Criteria             Basic                                                Spc1                 Spc2           For Ductility (Special Frames)                Left Section,  Right Section               Spc3 = 6 x Small Longitudinal Dia               Spc4 = d / 4               Spc5              Provided Spacing             Mid Section               Provided Spacing       

= =

300 140

mm mm

= = = =

95.4 82 150 100

mm mm mm mm

=

165

mm

Skin reinforcement    Beam Width Beam Depth Depth   

= 300 = 400 = 400 <= 1000

Group

: G8

Beam No

: B22

mm mm

424

Analysis Reference (Member)

5.5m : 116

Beam Length Breadth (B) Depth (D) Effective Depth (d) Design Code Beam Type Grade Of Concrete (Fck) Grade Of Steel Clear Cover (Cmin) Es Mubal As,min (flex) (B) As,nominal (Bn)   For Longitudinal Reinf

Critical L/C - Analysis Critical L/C - RCDC Mu (kNm) As (flex) (sqmm) (C) Asc (flex) (sqmm) (A) Tu (kNm) Tcr/4 (kNm) Al, min(sqmm)(Tor.) (D) Al (sqmm) (Tor.) (E) Al (Dist) (sqmm) (D) Ast (sqmm)

: : : : : : : : : : : : :

Left 49 14 113.991 1051.89 0.607 2.86 1051.89

3999.99 mm 300 mm 400 mm 330 mm ACI 318M - 2011 Ductile Beam (Special Frame) C20 N/sqmm Fy420 N/sqmm 40 mm 2x10^5 N/sqmm 165.6 kNm 330 sqmm 198 sqmm

Beam Bottom Mid 41 6 72.917 634.84 0.455 2.86 634.84

Right 47 12 104.49 950.36 0.77 2.86 950.36

Left 39 4 158.002 1576.94 0.921 2.86 1576.94

Beam Top Mid 47 12 60.996 523.13 0.77 2.86 523.13

Right 45 10 163.933 1656.65 0.518 2.86 1656.65 425

AstPrv (sqmm)

1191.36 4-#16 2-#16

Reinforcement

794.24 4-#16

1191.36 4-#16 2-#16

1719.12 3-#19 3-#19

595.68 3-#16

1719.12 3-#19 3-#19

  Note: Calculation of Ast    Ast Ast Where, A B Bn C D Ast (Dist) (sqmm)   For Transverse Reinf Critical L/C - RCDC PtPrv (%) Vu (kN) Mu-Sect (kNm) Vc (kN) Vs (kN) VD+L (kN) Mh (kNm) Ms (kNm) Sway-Right (kN)

= =

Max {B, C+D, A+D} (for Mu > 0) Bn (for Mu = 0)

= = = = =

Asc (flex) As,min (flex) As,nominal As (flex) Al (Dist)

= = = = = =

Left 4 1.736 110.81 75.05 47.68 34.56 217.98 168.05 143.3

Compression reinforcement required for bending moment Min area of flexural reinforcement Nominal area of reinforcement Total area of longitudinal reinforcement calculated at a given section Distributed longitudinal torsional reinforcement at section considered Max(Al,min (Tor), Al (Tor)) x ((2B) / (2B + 2D))

Mid 4 0.802 90.33 56.63 58.46 42.5

Right 6 1.736 116.68 75.05 55.51 43.34 217.98 168.05 65.4 426

Sway-Left (kN) Vu-Sway (kN) Vud (kN) Av (sqmm) Tu (kNm) Ao= Φ*Aoh At (sqmm) Legs Stirrup Rebar Asv Torsion (sqmm) Av Total Reqd (sqmm) Asv Reqd (sqmm) SCalc (mm) SPrv (mm) Av Total Prv (sqmm)

74.18 143.3 143.3 344 0.92 2 10 0 344 656.571 100 100 1417.6

152.08 152.08 152.08 400.5 0.46 2 10 0 400.5 741.035 100 100 1417.6

306.62 0.92 2 10 0 306.62 319.44 140 140 1012.57

  Maximum Spacing Criteria             Basic                                                Spc1                 Spc2           For Ductility (Special Frames)                Left Section,  Right Section               Spc3 = 6 x Small Longitudinal Dia               Spc4 = d / 4

= =

300 140

mm mm

= =

95.4 82

mm mm 427

              Spc5              Provided Spacing             Mid Section               Provided Spacing       

= =

150 100

mm mm

=

165

mm

Skin reinforcement    Beam Width Beam Depth Depth   

= 300 = 400 = 400 <= 1000

Group

: G8

Beam No

: B23

Analysis Reference (Member) Beam Length Breadth (B) Depth (D) Effective Depth (d) Design Code Beam Type Grade Of Concrete (Fck) Grade Of Steel Clear Cover (Cmin) Es Mubal

mm mm

5.5m : 104 : : : : : : : : : : :

3999.99 mm 300 mm 400 mm 330 mm ACI 318M - 2011 Ductile Beam (Special Frame) C20 N/sqmm Fy420 N/sqmm 40 mm 2x10^5 N/sqmm 165.6 kNm 428

As,min (flex) (B) As,nominal (Bn)   For Longitudinal Reinf

: 330 : 198

Left 49 14 99.949 903.01 0.622 2.86 903.01 1191.36 4-#16 2-#16

Critical L/C - Analysis Critical L/C - RCDC Mu (kNm) As (flex) (sqmm) (C) Asc (flex) (sqmm) (A) Tu (kNm) Tcr/4 (kNm) Al, min(sqmm)(Tor.) (D) Al (sqmm) (Tor.) (E) Al (Dist) (sqmm) (D) Ast (sqmm) AstPrv (sqmm) Reinforcement

sqmm sqmm

Beam Bottom Mid 41 6 63.494 546.24 0.666 2.86 546.24 794.24 4-#16

Right 47 12 95.73 859.65 0.55 2.86 859.65 1191.36 4-#16 2-#16

Left 39 4 155.772 1547.63 0.508 2.86 1547.64 1719.12 3-#19 3-#19

Beam Top Mid 47 12 58.37 499 0.551 2.86 499 595.68 3-#16

Right 41 6 148.865 1459.03 0.666 2.86 1459.02 1719.12 3-#19 3-#19

  Note: Calculation of Ast    Ast Ast Where, A B

= =

Max {B, C+D, A+D} (for Mu > 0) Bn (for Mu = 0)

= =

Asc (flex) As,min (flex)

= =

Compression reinforcement required for bending moment Min area of flexural reinforcement 429

Bn C D Ast (Dist) (sqmm)   For Transverse Reinf Critical L/C - RCDC PtPrv (%) Vu (kN) Mu-Sect (kNm) Vc (kN) Vs (kN) VD+L (kN) Mh (kNm) Ms (kNm) Sway-Right (kN) Sway-Left (kN) Vu-Sway (kN) Vud (kN) Av (sqmm) Tu (kNm) Ao= Φ*Aoh At (sqmm) Legs Stirrup Rebar Asv Torsion (sqmm) Av Total Reqd (sqmm)

= = =

As,nominal As (flex) Al (Dist)

= = = =

Left 4 1.736 108.77 75.05 44.97 39.61 217.98 168.05 148.35 69.13 148.35 148.35 324.44 0.51 2 10 0 324.44

Nominal area of reinforcement Total area of longitudinal reinforcement calculated at a given section Distributed longitudinal torsional reinforcement at section considered Max(Al,min (Tor), Al (Tor)) x ((2B) / (2B + 2D))

Mid 4 0.802 88.3 56.43 58.36 39.92

288.04 0.51 2 10 0 288.04

Right 6 1.736 107.87 75.05 43.76 38.28 217.98 168.05 70.46 147.02 147.02 147.02 315.72 0.67 2 10 0 315.72 430

Asv Reqd (sqmm) SCalc (mm) SPrv (mm) Av Total Prv (sqmm)

705.203 100 100 1417.6

300.614 140 140 1012.57

692.403 100 100 1417.6

  Maximum Spacing Criteria             Basic                                                Spc1                 Spc2           For Ductility (Special Frames)                Left Section,  Right Section               Spc3 = 6 x Small Longitudinal Dia               Spc4 = d / 4               Spc5              Provided Spacing             Mid Section               Provided Spacing       

= =

300 140

mm mm

= = = =

95.4 82 150 100

mm mm mm mm

=

165

mm

Skin reinforcement    Beam Width Beam Depth

= 300 = 400

mm mm 431

Torsion

Al Tor. (max) Asr SR provided Asr provided Provided Spacing    Spacing Criteria             Maximum Spacing               

= 0.67 > 0 kNm Beam Depth >1000 Or Torsion > 0, Hence SFR Provided = 0 sqmm = Max(Al(min)(Tor.), Al(Tor.)) x (2D / (2B+2D)) = 226.66 sqmm = 1-#13EF = 253.35 sqmm = 107.5 mm

= 280

Group

: G8

Beam No

: B24

Analysis Reference (Member) Beam Length Breadth (B) Depth (D) Effective Depth (d) Design Code Beam Type Grade Of Concrete (Fck) Grade Of Steel Clear Cover (Cmin)

mm

5.5m : 92 : : : : : : : : :

3999.99 mm 300 mm 400 mm 330 mm ACI 318M - 2011 Ductile Beam (Special Frame) C20 N/sqmm Fy420 N/sqmm 40 mm 432

Es Mubal As,min (flex) (B) As,nominal (Bn)   For Longitudinal Reinf

: : : :

Left 49 14 101.126 915.21 1.804 2.86 915.21 1191.36 4-#16 2-#16

Critical L/C - Analysis Critical L/C - RCDC Mu (kNm) As (flex) (sqmm) (C) Asc (flex) (sqmm) (A) Tu (kNm) Tcr/4 (kNm) Al, min(sqmm)(Tor.) (D) Al (sqmm) (Tor.) (E) Al (Dist) (sqmm) (D) Ast (sqmm) AstPrv (sqmm) Reinforcement

2x10^5 165.6 330 198

Beam Bottom Mid 39 4 79.547 698.6 1.756 2.86 698.6 794.24 4-#16

N/sqmm kNm sqmm sqmm

Right 47 12 121.44 1133.98 1.81 2.86 1133.98 1191.36 4-#16 2-#16

Left 39 4 161.528 1624 1.756 2.86 1624 1719.12 3-#19 3-#19

Beam Top Mid 49 14 67.522 583.84 1.804 2.86 583.84 595.68 3-#16

Right 45 10 163.706 1653.55 1.802 2.86 1653.55 1719.12 3-#19 3-#19

  Note: Calculation of Ast    Ast Ast Where,

= =

Max {B, C+D, A+D} (for Mu > 0) Bn (for Mu = 0)

433

A B Bn C D Ast (Dist) (sqmm)   For Transverse Reinf Critical L/C - RCDC PtPrv (%) Vu (kN) Mu-Sect (kNm) Vc (kN) Vs (kN) VD+L (kN) Mh (kNm) Ms (kNm) Sway-Right (kN) Sway-Left (kN) Vu-Sway (kN) Vud (kN) Av (sqmm) Tu (kNm) Ao= Φ*Aoh At (sqmm) Legs Stirrup Rebar Asv Torsion (sqmm)

= = = = =

Asc (flex) As,min (flex) As,nominal As (flex) Al (Dist)

= = = = = =

Left 4 1.736 117.44 75.05 56.53 43.06 217.98 168.05 151.8 65.68 151.8 151.8 407.83 1.76 2 10 0

Compression reinforcement required for bending moment Min area of flexural reinforcement Nominal area of reinforcement Total area of longitudinal reinforcement calculated at a given section Distributed longitudinal torsional reinforcement at section considered Max(Al,min (Tor), Al (Tor)) x ((2B) / (2B + 2D))

Mid 4 0.802 96.97 53.52 59.18 50.38

363.49 1.76 2 10 0

Right 6 1.736 111.96 75.05 49.22 34.84 217.98 168.05 73.9 143.58 143.58 143.58 355.11 1.85 2 10 0 434

Av Total Reqd (sqmm) Asv Reqd (sqmm) SCalc (mm) SPrv (mm) Av Total Prv (sqmm)

407.83 738.336 100 100 1417.6

363.49 378.048 140 140 1012.57

355.11 659.27 100 100 1417.6

  Maximum Spacing Criteria             Basic                                                Spc1                 Spc2           For Ductility (Special Frames)                Left Section,  Right Section               Spc3 = 6 x Small Longitudinal Dia               Spc4 = d / 4               Spc5              Provided Spacing             Mid Section               Provided Spacing       

= =

300 140

mm mm

= = = =

95.4 82 150 100

mm mm mm mm

=

165

mm

Skin reinforcement    Beam Width

= 300

mm 435

Beam Depth Depth

= 400 = 400 <= 1000

mm

APPENDIX B.2: COMPUTATION OF COLUMN(SMRF) Definitions Of Terms: All forces in units kN and m All reinforcement details like area, spacing in mm Neutral axis angle for resultant design moment is with respect to local major axis. Ratio to account for reduction of stiffness of columns due to sustained 1 βdns = axial loads 2 δns = Moment magnification factor for frames not braced against sidesway First-order relative deflection between the top and bottom of the story 3 Δo = due to Vu in mm Total factored vertical load in the story corresponding to the lateral 4 ∑Pu = loading case for which ∑Pu is greatest, kN (Clause 10.10.5) 5 δu = Design displacement in mm Modification factor reflecting the reduced mechanical properties of 6 λ = lightweight concrete 436

7

Φ

=

8

ac

=

9

Ach

=

10 Acv

=

11 Aj

=

12 13 14 15

= = = =

As Avmin B B'

16 bc

=

17 c 18 Cc

= =

19 Cm

=

20 D 21 D'

= =

22 d

=

23 d'

=

24 25 26 27 28 29

= = = = = =

Ec EI f'c fy fyt hw

Strength reduction factor Coefficient defining the relative contribution of concrete strength to nominal wall shear strength Cross-sectional area of a structural member measured to the outside edges of transverse reinforcement in sqmm Gross area of concrete section bounded by web thickness and length of section in the direction of shear force considered in sqmm Effective cross-sectional area within a joint in a plane parallel to plane of reinforcement generating shear in the joint in sqmm Area of non-prestressed longitudinal tension reinforcement in sqmm Minimum area of shear reinforcement within spacing 's' in sqmm Width of column/ wall in mm width of beam along B / column width in mm Cross-sectional dimension of member core measured to the outside edges of the transverse reinforcement composing area Ash in mm Distance from extreme compression fiber to neutral axis in mm Clear cover of reinforcement in mm Factor relating actual moment diagram to an equivalent uniform moment diagram Depth / diameter of column in mm Distance from extreme compression fiber to centroid of longitudinal tension reinforcement in mm Distance from extreme compression fiber to centroid of longitudinal compression reinforcement,mm Modulus of elasticity of concrete in N/sqmm Flexural stiffness of compression member in N-sqmm Specified strength of concrete cylinder in N/sqmm Specified yield strength of reinforcement in N/sqmm Specified yield strength fy of transverse reinforcement in N/sqmm Height of entire wall from base to top, or clear height of wall segment or 437

30 k 31 lc

= =

32 lg

=

33 34 35 36 37

= = = = =

lw lux luy MCap MRes

38 Mc

=

39 mm

=

40 Mux 41 Muy 42 M1

= = =

43 M1ns

=

44 M1s

=

45 M1sldr

=

46 M2 47 M2min

= =

48 M2ns

=

49 M2s

=

50 M2sldr

=

wall pier considered in mm Effective length factor for compression member Length of compression member in a frame in mm Moment of inertia of gross concrete section about centroidal axis neglecting reinforcement in mm4 Length of entire wall in mm Un-supported length for compression member along D in mm Un-supported length for compression member along B in mm Moment capacity of section for NA angle at design Pu in kNm Resultant design moment at angle to local major axis in kNm Factored moment amplified for the effects of member curvature used for design of compression member in kNm Factored moment modified to account for effect of axial compression in kNm Factored moment at section along D in kNm (From Analysis) Factored moment at section along B in kNm (From Analysis) Smaller factored end moment on a compression member in kNm Factored end moment on a compression member at the end at which M1 acts, due to loads that cause no appreciable sidesway in kNm Factored end moment on compression member at the end at which M1 acts, due to loads that cause appreciable sidesway in kNm Smaller factored end moment on a compression member due to slenderness effect in kNm Larger factored end moment on compression member in kNm Minimum value of M2 Factored end moment on compression member at the end at which M2 acts, due to loads that cause no appreciable sidesway in kNm Factored end moment on compression member at the end at which M2 acts, due to loads that cause appreciable sidesway in kNm Largest factored end moment on a compression member due to slenderness effect in kNm 438

51 52 53 54 55 56

Mnb Mnc Mnty Mnby Mntx Mnbx

= = = = = =

57 Nu

=

58 Pc

=

59 pt

=

60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75

= = = = = = = = = = = = = = = =

Pω Q r Vc Vj Vn Vn' Vus Vux Vux1 Vux2 Vuy Vuy1 Vuy2 β φ

Flexure Capacity for Beam Flexure Capacity for Column Flexure strength at top along column depth, kNm Flexure strength at bottom along column depth, kNm Flexure strength at top along column width, kNm Flexure strength at bottom along column width, kNm Factored axial force normal to cross section occurring simultaneously with Vu in kN Critical buckling load in kN Ratio of area of distributed transverse reinforcement to gross concrete area perpendicular to that reinforcement Ratio of As to B x d Stability index for storey Radius of gyration of cross section of a compression member in mm Nominal shear strength provided by concrete in kN Shear Force acting at the joint in kN Nominal shear strength in kN Nominal shear strength in kN Factored horizontal shear in a storey of section in kN Factored shear at section along D in kN (From Analysis) Shear induced due to column flexural capacity along width, kN Shear due to enhanced earthquake factor along width, kN Factored shear at section along B in kN (From Analysis) Shear induced due to column flexural capacity along depth, kN Shear due to enhanced earthquake factor along depth, kN It is a Neutral Axis angle corresponding to load angle to find out MCap Strength Reduction Factor

Code References: ACI 318M-2011 439

Sr.No 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Element Minimum area of longitudinal reinforcement for column Maximum area of longitudinal reinforcement for column Minimum longitudinal and transverse reinforcement for wall Minimum diameter of transverse ties Minimum spacing of transverse ties Maximum spacing of longitudinal and transverse reinforcement for wall Applicability of boundary element Area and spacing of special confining reinforcement Slenderness Moments Shear Strength provided by concrete for column Design of shear for non-ductile wall Design of shear for ductile wall Minimum Flexural Strength of Columns Shear Check at Column Joint Shear Strength of Column

: : : : :

Clause / table 21.6.3 21.6.3 21.9.2.1 7.10.5 7.10.5

:

21.9.2.1

: : : : : : : : :

21.9.6 21.6.4 10.10 11.2 11.9 21.9.4 21.6.2.2 21.7.4.1 21.3.3 & 21.5.4

    Sway Calculation (Stability Index) For Global-X Direction Level Load Name Story Height Gravity Load P Relative (m) (kN) Displacements (mm) A B C LOAD 1: EQ 0m to 2m 2 7421.55 3.401 X LOAD 1: EQ 2m to 5.5m 3.5 5806.09 13.183 X 5.5m to 8.5m LOAD 1: EQ 3 2690.636 7.752

Story Shear (kN) D

Stability Index Sway Condition B x C / (A x D)

1527.443

0.008

Non Sway

1386.367

0.016

Non Sway

768.459

0.009

Non Sway 440

X For Global-Y Direction Level Load Name

LOAD 2: EQ Z LOAD 2: EQ 2m to 5.5m Z LOAD 2: EQ 5.5m to 8.5m Z 0m to 2m

General Data Column No. Level Design Code Grade Of Concrete Grade Of Steel Consider Ductile Type of Frame Column B Column D Clear Cover Clear Floor Height @ lux Clear Floor Height @ luy No Of Floors No Of Columns In Group

Story Height Gravity Load P Relative (m) (kN) Displacements (mm) A B C

Story Shear (kN) D

Stability Index Sway Condition B x C / (A x D)

2

7421.55

3.092

1527.443

0.008

Non Sway

3.5

5806.09

12.06

1386.367

0.014

Non Sway

3

2690.636

6.838

768.459

0.008

Non Sway

: : = = = = = = = = = = = =

C5 0m To 2m ACI 318M - 2011 C25 Fy420 Yes Special 450 450 40 1600 1600 1 1

N/sqmm N/sqmm

mm mm mm mm mm

441

Load Data Analysis Reference No.

=

31

Critical Analysis Load Combination

:

49

Load Combination Critical Location Put Muxt Muyt Vuxt Vuyt Pub Muxb Muyb Vuxb Vuyb

= = = = = = = = = = = =

[14] : 0.68 (LOAD 3: DL) -1.25 (LOAD 2: EQ Z) Bottom Joint 184.83 1.44 46.8 150.55 2.37 191.32 6.17 -254.22 150.55 2.37

Effective Length Calculation Calculation Along Major Axis Of Column Joint Column Stiffness

Bottom Top

N-M 170.859 170.859

Beam Sizes Beam 1 Beam 2 (Length x Width x (Length x Width x Depth) Depth) mm mm No Beam No Beam 5000 x 300 x 400 No Beam

Beam Stiffness Beam 1 Beam 2 N-M 32

N-M -

kN kNm kNm kN kN kN kNm kNm kN kN

Beta

1 8.39

442

Sway Condition (as per Stability Index) Effective Length Factor along Major Axis Calculation Along Minor Axis Of Column Joint Column Stiffness

Bottom Top

N-M 170.859 170.859

Sway Condition (as per Stability Index) Effective Length Factor along Minor axis Check For Stability Index Along D        Q   Along B        Q

Slenderness Check Column Is Braced Along D Slenderness Check along D K r Kluy /r

= =

Non Sway 0.87

Beam Sizes Beam 1 Beam 2 (Length x Width x (Length x Width x Depth) Depth) mm mm No Beam No Beam 4000 x 300 x 400 4000 x 300 x 400 = =

Beam Stiffness Beam 1 Beam 2 N-M 40

Beta

N-M 40

1 3.356

Non Sway 0.87

= 0.008 0.008< 0.05, Column shall be designed as non-sway frame (Braced)       = 0.008 0.008< 0.05, Column shall be designed as non-sway frame (Braced)

= = =

0.87 129.9 10.72

mm

443

M1 M2 34 - 12 x (M1/M2) Column Is Braced Along B Slenderness Check along B K r Klux /r M1 M2 34 - 12 x (M1/M2)

= 1.44 = 6.17 = 31.19 10.72 < 31.19, Column not slender along D

= 0.87 = 129.9 = 10.72 = 46.8 = -254.22 = 36.21 10.72 < 36.21, Column not slender along B

Calculation of Design Moment Direction

Manalysis A 1.44 6.17 46.8 -254.22

Major Axis Mux (top) Major Axis Mux (bottom) Minor Axis Muy (top) Minor Axis Muy (bottom)

Msldr or Mc B -

kNm kNm

mm kNm kNm

Mdesign-final C 1.44 6.17 46.8 -254.22

Where A B C

= Moments from analysis = Moment due to slenderness effect = Final design Moment = Maximum of (Manalysis, Maximum of (Msldr or Mc))

  Final Critical Design Forces Critical Case - Axial Load & BiAxial Bending Pu

=

191.32

kN 444

Mux Muy Resultant Moment (Combined Action) Moment Capacity Check Pt Calculated Reinforcement Provided Load Angle MRes ( φ ) MCap Capacity Ratio

Design Of Shear Design for shear along D Critical Analysis Load Combination Critical Load Combination Nu Muy Vuy λ φ deff ρw mm Vcy Permissible Vuy Link For Shear Design Along D are not required  

= =

6.17 -254.22

= = = = = = = =

2.4 4-#32 + 8-#16 Tan-1(Muy/Mux) 88.61 254.3 415.25 MRes/ MCap 0.612 < 1

: = = = = = = = = = = <

46 [11] : 0.68 (LOAD 3: DL) +1.25 (LOAD 1: EQ X) 56.82 27.24 92.0121 1 0.65 394 0.012 17.25 190.04 Vcy Permissible

kNm kNm

deg kNm kNm

kN kN kNm kN

mm kNm kN

445

Design for shear along B Critical Analysis Load Combination

:

Critical Load Combination

=

Nu Mux Vux λ φ deff ρw mm Vcx Permissible Vux Link For Shear Design Along B are not required

= = = = = = = = = <

39 [4] : 1.42 (LOAD 3: DL) +0.5 (LOAD 4: LL) +1.25 (LOAD 2: EQ Z) 440.77 49 -152.1825 1 0.65 394 0.012 28.46 328.35 Vcx Permissible

kN kN kNm kN

mm kNm kN

Design Of Links Links in the zone where special confining links are not required Normal Links Diameter of link

= 10

    Criterion for spacing of normal links Min. Longitudinal Bar dia X 16 48 x diameter of links Provided spacing   Criterion for spacing of Ductile links:

> Max. longitudinal bar dia / 4 = 8 mm = 256 = 480 = 225

mm

mm mm mm

446

Min. Longitudinal Bar dia x 6 B/4 So Spacing Provided Spacing

= = = = =

96 112.5 191.67 150 75

mm mm mm mm mm

= = = = = =

4 75 202500 390 152100 173.08

mm sqmm mm sqmm sqmm

= = = = = = =

4 75 202500 390 152100 173.08 #10@75

mm sqmm mm sqmm sqmm c/c

  Special confining reinforcement as per ACI Along D No of bars along D S1 Ag dc2 Ach AshD Along B No of bars along B S1 Ag bc2 Ach AshB Provided Links   Table For Links

Link Dia. Spacing

Normal Design 10 225

Required Shear Design -----

Provided Ductile Design 10 75

Normal Zone 10 225

Ductile Zone 10 75

447

  General Data Column No. Level Design Code Grade Of Concrete Grade Of Steel Consider Ductile Type of Frame Column B Column D Clear Cover Clear Floor Height @ lux Clear Floor Height @ luy No Of Floors No Of Columns In Group

: : = = = = = = = = = = = =

C5 2m To 5.5m ACI 318M - 2011 C25 Fy420 Yes Special 450 450 40 3100 3100 1 1

Analysis Reference No.

=

35

Critical Analysis Load Combination

:

47

Load Combination Critical Location Put Muxt Muyt Vuxt Vuyt Pub

= = = = = = = =

[12] : 0.68 (LOAD 3: DL) +1.25 (LOAD 2: EQ Z) Bottom Joint 150.17 13.37 -228.25 -133.72 -6.49 161.53

N/sqmm N/sqmm

mm mm mm mm mm

Load Data

kN kNm kNm kN kN kN 448

Muxb Muyb Vuxb Vuyb

= = = =

Effective Length Calculation Calculation Along Major Axis Of Column Joint Column Stiffness

Bottom Top

N-M 97.634 97.634

Beam Sizes Beam 1 Beam 2 (Length x Width x (Length x Width x Depth) Depth) mm mm 5000 x 300 x 400 No Beam 5000 x 300 x 400 No Beam

Sway Condition (as per Stability Index) Effective Length Factor along Major Axis Calculation Along Minor Axis Of Column Joint Column Stiffness

Bottom Top

N-M 97.634 97.634

-9.33 239.63 -133.72 -6.49

= =

kNm kNm kN kN

Beam Stiffness Beam 1 Beam 2

N-M 32 32

N-M -

Beta

8.39 6.611

Non Sway 1

Beam Sizes Beam 1 Beam 2 (Length x Width x (Length x Width x Depth) Depth) mm mm 4000 x 300 x 400 4000 x 300 x 400 4000 x 300 x 400 4000 x 300 x 400

Beam Stiffness Beam 1 Beam 2

N-M 40 40

N-M 40 40

Beta

3.356 2.644

449

Sway Condition (as per Stability Index) Effective Length Factor along Minor axis Check For Stability Index Along D        Q   Along B        Q

Slenderness Check Column Is Braced Along D Slenderness Check along D K r Kluy /r M1 M2 34 - 12 x (M1/M2) Column Is Braced Along B Slenderness Check along B K r Klux /r M1 M2 34 - 12 x (M1/M2)

= =

Non Sway 1

= 0.016 0.016< 0.05, Column shall be designed as non-sway frame (Braced)       = 0.014 0.014< 0.05, Column shall be designed as non-sway frame (Braced)

= 1 = 129.9 = 23.86 = -9.33 = 13.37 = 42.37 23.86 < 42.37, Column not slender along D

= = = = = =

1 129.9 23.86 -228.25 239.63 45.43

mm kNm kNm

mm kNm kNm

450

23.86 < 45.43, Column not slender along B Calculation of Design Moment Direction

Manalysis A 13.37 -9.33 -228.25 239.63

Major Axis Mux (top) Major Axis Mux (bottom) Minor Axis Muy (top) Minor Axis Muy (bottom)

Msldr or Mc B -

Mdesign-final C 13.37 -9.33 -228.25 239.63

Where A B C

= Moments from analysis = Moment due to slenderness effect = Final design Moment = Maximum of (Manalysis, Maximum of (Msldr or Mc))

  Final Critical Design Forces Critical Case - Axial Load & BiAxial Bending Pu Mux Muy Resultant Moment (Combined Action) Moment Capacity Check Pt Calculated Reinforcement Provided Load Angle MRes ( φ ) MCap Capacity Ratio

= = =

161.53 -9.33 239.63

= = = = = = =

2.4 4-#32 + 8-#16 Tan-1(Muy/Mux) 87.77 239.81 410.78 MRes/ MCap

kN kNm kNm

deg kNm kNm 451

=

0.584 < 1

Design Of Shear Design for shear along D Critical Analysis Load Combination

:

Critical Load Combination

=

Nu Muy Vuy λ φ deff ρw mm Vcy Permissible Vuy Link For Shear Design Along D are not required   Design for shear along B Critical Analysis Load Combination Critical Load Combination Nu Mux Vux λ φ deff ρw mm

= = = = = = = = = <

38 [3] : 1.42 (LOAD 3: DL) +0.5 (LOAD 4: LL) +1.25 (LOAD 1: EQ X) 235.61 115.8 74.2114 1 0.65 394 0.012 74.39 150.98 Vcy Permissible

: = = = = = = = = =

45 [10] : 1.42 (LOAD 3: DL) -1.25 (LOAD 2: EQ Z) 293.79 225.14 132.0474 1 0.65 394 0.012 173.51

kN kN kNm kN

mm kNm kN

kN kN kNm kN

mm kNm 452

Vcx Permissible Vux Link For Shear Design Along B are not required

= <

150.21 Vcx Permissible

kN

Design Of Links Links in the zone where special confining links are not required Normal Links Diameter of link

= 10

mm

    Criterion for spacing of normal links Min. Longitudinal Bar dia X 16 48 x diameter of links Provided spacing   Criterion for spacing of Ductile links: Min. Longitudinal Bar dia x 6 B/4 So Spacing Provided Spacing

> Max. longitudinal bar dia / 4 = 8 mm = 256 = 480 = 225

mm mm mm

= = = = =

mm mm mm mm mm

96 112.5 191.67 150 75

  Special confining reinforcement as per ACI Along D No of bars along D S1 Ag

= 4 = 75 = 202500

mm sqmm 453

dc2 Ach AshD Along B No of bars along B S1 Ag bc2 Ach AshB Provided Links   Table For Links

Link Dia. Spacing

Normal Design 10 225

Required Shear Design -----

= 390 = 152100 = 173.08

mm sqmm sqmm

= = = = = = =

mm sqmm mm sqmm sqmm c/c

4 75 202500 390 152100 173.08 #10@75

Provided Ductile Design 10 75

Normal Zone 10 225

Ductile Zone 10 75

  General Data Column No. Level Design Code Grade Of Concrete Grade Of Steel Consider Ductile Type of Frame Column B Column D

: : = = = = = = =

C5 5.5m To 8.5m ACI 318M - 2011 C25 Fy420 Yes Special 450 450

N/sqmm N/sqmm

mm mm 454

Clear Cover Clear Floor Height @ lux Clear Floor Height @ luy No Of Floors No Of Columns In Group

= = = = =

40 2600 2600 1 1

mm mm mm

Analysis Reference No.

=

39

Critical Analysis Load Combination

:

39

Load Combination Critical Location Put Muxt Muyt Vuxt Vuyt Pub Muxb Muyb Vuxb Vuyb

= = = = = = = = = = = =

[4] : 1.42 (LOAD 3: DL) +0.5 (LOAD 4: LL) +1.25 (LOAD 2: EQ Z) Top Joint 131.74 kN 53.35 kNm -166.69 kNm -86.07 kN -32.19 kN 152.07 kN -43.18 kNm 91.45 kNm -86.07 kN -32.19 kN

Load Data

Effective Length Calculation Calculation Along Major Axis Of Column Joint Column Stiffness

Beam Sizes Beam 1 Beam 2 (Length x Width x (Length x Width x

Beam Stiffness Beam 1 Beam 2

Beta

455

Bottom Top

Depth) mm 5000 x 300 x 400 5000 x 300 x 400

N-M 113.906 113.906

Sway Condition (as per Stability Index) Effective Length Factor along Major Axis Calculation Along Minor Axis Of Column Joint Column Stiffness

Bottom Top

N-M 113.906 113.906

Sway Condition (as per Stability Index) Effective Length Factor along Minor axis Check For Stability Index Along D        Q   Along B        Q

= =

Depth) mm No Beam No Beam

N-M -

6.611 3.56

Non Sway 1

Beam Sizes Beam 1 Beam 2 (Length x Width x (Length x Width x Depth) Depth) mm mm 4000 x 300 x 400 4000 x 300 x 400 4000 x 300 x 400 4000 x 300 x 400 = =

N-M 32 32

Beam Stiffness Beam 1 Beam 2

N-M 40 40

N-M 40 40

Beta

2.644 1.424

Non Sway 1

= 0.009 0.009< 0.05, Column shall be designed as non-sway frame (Braced)       = 0.008 0.008< 0.05, Column shall be designed as non-sway frame (Braced)

456

Slenderness Check Column Is Braced Along D Slenderness Check along D K r Kluy /r M1 M2 34 - 12 x (M1/M2) Column Is Braced Along B Slenderness Check along B K r Klux /r M1 M2 34 - 12 x (M1/M2)

Calculation of Design Moment Direction Major Axis Mux (top) Major Axis Mux (bottom) Minor Axis Muy (top) Minor Axis Muy (bottom)

= 1 = 129.9 = 20.01 = -43.18 = 53.35 = 43.71 20.01 < 43.71, Column not slender along D

= 1 = 129.9 = 20.01 = 91.45 = -166.69 = 40.58 20.01 < 40.58, Column not slender along B

Manalysis A 53.35 -43.18 -166.69 91.45

Msldr or Mc B -

mm kNm kNm

mm kNm kNm

Mdesign-final C 53.35 -43.18 -166.69 91.45

Where

457

A B C

= Moments from analysis = Moment due to slenderness effect = Final design Moment = Maximum of (Manalysis, Maximum of (Msldr or Mc))

  Final Critical Design Forces Critical Case - Axial Load & BiAxial Bending Pu Mux Muy Resultant Moment (Combined Action) Moment Capacity Check Pt Calculated Reinforcement Provided Load Angle MRes ( φ ) MCap Capacity Ratio

Design Of Shear Design for shear along D Critical Analysis Load Combination Critical Load Combination Nu Muy Vuy λ φ

= = =

131.74 53.35 -166.69

= = = = = = = =

2.4 4-#32 + 8-#16 Tan-1(Muy/Mux) 72.25 175.02 379.91 MRes/ MCap 0.461 < 1

: = = = = = =

44 [9] : 1.42 (LOAD 3: DL) -1.25 (LOAD 1: EQ X) 169.58 43.91 -56.3209 1 0.65

kN kNm kNm

deg kNm kNm

kN kN kNm kN

458

deff ρw mm Vcy Permissible Vuy Link For Shear Design Along D are not required   Design for shear along B Critical Analysis Load Combination Critical Load Combination Nu Mux Vux λ φ deff ρw mm Vcx Permissible Vux Link For Shear Design Along B are not required

= = = = <

394 0.012 14.11 160.14 Vcy Permissible

mm

: = = = = = = = = = = <

45 [10] : 1.42 (LOAD 3: DL) -1.25 (LOAD 2: EQ Z) 136.35 82.89 79.2514 1 0.65 394 0.012 58.93 155.48 Vcx Permissible

kNm kN

kN kN kNm kN

mm kNm kN

Design Of Links Links in the zone where special confining links are not required Normal Links Diameter of link

= 10

mm

   

> Max. longitudinal bar dia / 4 = 8 mm 459

Criterion for spacing of normal links Min. Longitudinal Bar dia X 16 48 x diameter of links Provided spacing   Criterion for spacing of Ductile links: Min. Longitudinal Bar dia x 6 B/4 So Spacing Provided Spacing

= 256 = 480 = 225

mm mm mm

= = = = =

96 112.5 191.67 150 75

mm mm mm mm mm

= = = = = =

4 75 202500 390 152100 173.08

mm sqmm mm sqmm sqmm

= = = = = = =

4 75 202500 390 152100 173.08 #10@75

mm sqmm mm sqmm sqmm c/c

  Special confining reinforcement as per ACI Along D No of bars along D S1 Ag dc2 Ach AshD Along B No of bars along B S1 Ag bc2 Ach AshB Provided Links  

460

Table For Links

Link Dia. Spacing

Normal Design 10 225

Required Shear Design -----

Provided Ductile Design 10 75

Normal Zone 10 225

Ductile Zone 10 75

APPENDIX B.3: COMPUTAION OF SLAB(SMRF) Definitions Of Terms: : 1. αf

=

2.

=

βt

Ratio of flexural stiffness of beam section to flexural stiffness of slab. Ratio of torsional stiffness of edge beam section to flexural stiffness of slab. 461

3. 4. 5. 6.

Φt As As,min AstPrv

= = = =

7.

Ast

=

8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18.

b B1 to B4 Cc deff D1 to D4 Mu Ptmin PtPrv Vc Vu Vud

= = = = = = = = = = =

19. Ln

=

20. L2 21. lb1 to lb2 22. CA and CB

= = =

Strength reduction factor. Area of Tension reinforcement required in sqmm. Min area of flexural reinforcement in sqmm. Area of longitudinal reinforcement provided at given section in sqmm. Total area of longitudinal reinforcement calculated at a given section in sqmm. Width of the Slab in mm. Width of beams around slab in mm. Effective Cover to tension reinforcement in mm. Effective depth of slab in mm. Depth of beams around slab. Factored Bending Moment at a section in kNm. Minimum percentage steel as per clause 10. Provided percentage steel. Nominal shear strength provided by concrete in kN. Factored Shear Force at a section in kN. Design Shear Force in kN. Length of clear span in direction that moment are being determined in mm. Length of adjacent span of Ln in mm. Moment of inertia of beams around slab in mm 4. cross-sectional constant to define torsional properties of slab and beam.

       Design Code Grade Of Concrete Grade Of Steel Clear Cover

= = = =

ACI 318 - 2011 C20 Fy420 20.000 mm 462

Long Span, Ly Short Span, Lx Imposed Load Live Load, Qk Slab Thickness Effective Depth Along LX, Deffx Effective Depth Along LY, Deffy Self Weight Total Load, TL (ultimate) Span Load Combination  

Beam         B (mm)         D (mm)         Ib (mm4)    x106 Adjacent Slab         Thk (mm)         Span (mm)         Ib (mm4)    x106 αf lx, αf ly αf Ln (mm) L2 (mm) Total BM (kNm) Bottom

= = = = = = = = = = =

5.000 m 4.000 m 2.553 kN/sqm 2.400 kN/sqm 150.000 mm 125.000 mm 115.000 mm 3.750 kN/sqm 11.404 kN/sqm 2-Way 1.2 DL + 1.6 LL Short Span Side1 Side2

Long Span Side1 Side2

300 400 1600

300 400 1600

300 400 1600

562.5 2.84

150 5000 1265.62 1.26 3700 2650 51.71

300 400 1600

150 5000 1406.25 703.12 1.14 2.28 1.88 4700 2150 67.7

463

        Moment Coefficent 0.57         Distributed Moment (kNm) 29.48         CS Moment (kNm) 19.9         MS Moment (kNm) 9.58         Moment on Beam (kNm) 16.91         Design Moment M1, M3 (kNm) 2.98 Top         Moment Coefficent 0.7         Distributed Moment (kNm) 36.2         CS Moment (kNm) 24.43         MS Moment (kNm) 11.76         Moment on Beam (kNm) 20.77         Design Moment M2, M4 (kNm) 3.671 Design Moments: Short Span Positive Moment At Midspan M1 = 2.984 kNm Area Of Reinforcement = 63.563 kN/sqmm Required (BM) Reinforcement Provided = #10 @ 250 C/C   = 284.000 kN/sqmm Short Span Negative Moment At Continuous Support M2 = 3.665 kNm Area Of Reinforcement = 78.174 kN/sqmm Required (BM) Reinforcement Provided = #10 @ 250 C/C   = 284.000 kN/sqmm Long Span Positive Moment At Midspan M3 = 3.907 kNm Area Of Reinforcement = 90.766 kN/sqmm

0.57 38.59 26.05 12.54 22.14 3.91 0.7 47.39 31.99 15.4 27.19 4.8

464

Required (BM) Reinforcement Provided = #10 @ 250 C/C   = 284.000 kN/sqmm Long Span Negative Moment At Continuous Support M4 = 4.798 kNm Area Of Reinforcement = 111.721 kN/sqmm Required (BM) Reinforcement Provided = #10 @ 250 C/C   = 284.000 kN/sqmm Distribution Reinforcement @ 0.18% Area Of Reinforcement = 225.000 sqmm Required Reinforcement Provided = #10 @ 250 C/C = 284.000 kN/sqmm Shear Check : Along Short Span Vsx (TL(ultimate) x Lx / 4) = 11.404 kN Nominal Shear, Vc = 95.033 kN  > 11.404 Slab Is Safe In Shear Along Long Span Vsy (TL(ultimate) x Lx / 2 x (1 - = 13.684 kN (Lx / (2 x Ly)))) Nominal Shear, Vc = 87.430 kN  > 13.684 Slab Is Safe In Shear

465

APPENDIX B.4: COMPUTATION OF BEAM (DS W/ IMF) Group

: G3

Beam No

: B3

Analysis Reference (Member) Beam Length Breadth (B) Depth (D) Effective Depth (d) Design Code Beam Type Grade Of Concrete (Fck)

5.5m : 25 : : : : : : :

4999.99 mm 250 mm 400 mm 330 mm ACI 318M - 2011 Ductile Beam (Intermediate Frame) C20 N/sqmm 466

Grade Of Steel Clear Cover (Cmin) Es Mubal As,min (flex) (B) As,nominal (Bn)   For Longitudinal Reinf

Critical L/C - Analysis Critical L/C - RCDC Mu (kNm) As (flex) (sqmm) (C) Asc (flex) (sqmm) (A) Tu (kNm) Tcr/4 (kNm) Al, min(sqmm)(Tor.) (D) Al (sqmm) (Tor.) (E) Al (Dist) (sqmm) (D) Ast (sqmm) AstPrv (sqmm) Reinforcement

: : : : : :

Left 38 3 30.772 256.54 4.407 2.14 305.88 141.33 58.82 315.36 397.12 2-#16

Fy420 40 2x10^5 138 275 107.25

Beam Bottom Mid 37 2 59.877 520.59 3.865 2.14 323.27 123.95 62.17 582.76 595.68 3-#16

N/sqmm mm N/sqmm kNm sqmm sqmm

Right 470.18 595.68 3-#16

Left 40 5 20.716 170.43 3.42 2.14 337.54 109.67 64.91 275 397.12 2-#16

Beam Top Mid 42 7 16.456 134.64 4.171 2.14 313.48 133.74 60.28 253.4 397.12 2-#16

Right 38 3 122.382 1194.88 4.407 2.14 305.88 141.33 58.82 1253.7 1410.54 2-#25 2-#16

  Note: Calculation of Ast    Ast

=

Max {B, C+D, A+D} (for Mu > 0) 467

Ast = Where, A = B = Bn = C = D = Ast (Dist) (sqmm)   For Transverse Reinf Critical L/C - RCDC PtPrv (%) Vu (kN) Mu-Sect (kNm) Vc (kN) Vs (kN) VD+L (kN) Mh (kNm) Ms (kNm) Sway-Right (kN) Sway-Left (kN) Vu-Sway (kN) Vu (2*Eq Comb) (kN) Vud (kN) Av (sqmm) Tu (kNm) Ao= Φ*Aoh At (sqmm)

Bn (for Mu = 0) Asc (flex) As,min (flex) As,nominal As (flex) Al (Dist)

= = = = = =

Left 4 0.481 49.86 49.34 0.7 58.38 51.77 51.77 14.08 85.68 85.68 58.24 85.68 371.32 5.83 44550 366.3

Compression reinforcement required for bending moment Min area of flexural reinforcement Nominal area of reinforcement Total area of longitudinal reinforcement calculated at a given section Distributed longitudinal torsional reinforcement at section considered Max(Al,min (Tor), Al (Tor)) x ((2B) / (2B + 2D))

Mid 4 1.71 77.79 34.36 57.71 26.77

559.48 5.83 44550 366.3

Right 4 1.71 86.17 62.26 31.88 56.08 154.21 75.2 100.38 28.78 100.38 95.16 100.38 596.34 5.83 44550 366.3 468

Legs Stirrup Rebar Asv Torsion (sqmm) Av Total Reqd (sqmm) Asv Reqd (sqmm) SCalc (mm) SPrv (mm) Av Total Prv (sqmm)

2 10 366.3 371.32 371.32 100 100 1417.6

2 10 366.3 559.48 559.479 125 125 1134.08

2 10 366.3 596.34 721.643 100 100 1417.6

  Maximum Spacing Criteria             Basic                                                Spc1                 Spc2        For Torsion                                                  (X1 = 180, Y1 = 330)                 Spc3 = X1                 Spc4=(X1+Y1)/4           For Ductility (Intermediate Frames)                Left Section,  Right Section               Spc5 = 8 x Small Longitudinal Dia               Spc6 = 24 x ∅sv               Spc7 = d / 4               Spc8              Provided Spacing     

= =

250 127

mm mm

= =

180 125

mm mm

= = = = =

127.2 228 82 300 100

mm mm mm mm mm

469

       Mid Section               Provided Spacing       

=

165

mm

Skin reinforcement    Beam Width Beam Depth Torsion

Al Tor. (max) Asr SR provided Asr provided Provided Spacing    Spacing Criteria             Maximum Spacing            

= 250 mm = 400 mm = 5.83 > 0 kNm Beam Depth >1000 Or Torsion > 0, Hence SFR Provided = 337.54 sqmm = Max(Al(min)(Tor.), Al(Tor.)) x (2D / (2B+2D)) = 209.82 sqmm = 1-#13EF = 253.35 sqmm = 113.95 mm

= 280

mm

   Group

: G3

Beam No

: B4

470

Analysis Reference (Member)

5.5m : 26

Beam Length Breadth (B) Depth (D) Effective Depth (d) Design Code Beam Type Grade Of Concrete (Fck) Grade Of Steel Clear Cover (Cmin) Es Mubal As,min (flex) (B) As,nominal (Bn)   For Longitudinal Reinf

Critical L/C - Analysis Critical L/C - RCDC Mu (kNm) As (flex) (sqmm) (C) Asc (flex) (sqmm) (A) Tu (kNm) Tcr/4 (kNm) Al, min(sqmm)(Tor.) (D) Al (sqmm) (Tor.) (E) Al (Dist) (sqmm) (D) Ast (sqmm)

: : : : : : : : : : : : :

Left 470.18

4999.99 mm 250 mm 400 mm 330 mm ACI 318M - 2011 Ductile Beam (Intermediate Frame) C20 N/sqmm Fy420 N/sqmm 40 mm 2x10^5 N/sqmm 138 kNm 275 sqmm 107.25 sqmm

Beam Bottom Mid 37 2 39.648 334.61 0.466 2.14 334.61

Right 323.39

Left 40 5 99.871 930.19 0.281 2.14 930.19

Beam Top Mid 48 13 13.047 106.29 0.583 2.14 138.17

Right 38 3 102.271 957 1.467 2.14 957 471

AstPrv (sqmm)

595.68 3-#16

Reinforcement

397.12 2-#16

397.12 2-#16

1410.54 2-#25 2-#16

397.12 2-#16

1410.54 2-#25 2-#16

  Note: Calculation of Ast    Ast Ast Where, A B Bn C D Ast (Dist) (sqmm)   For Transverse Reinf Critical L/C - RCDC PtPrv (%) Vu (kN) Mu-Sect (kNm) Vc (kN) Vs (kN) VD+L (kN) Mh (kNm) Ms (kNm) Sway-Right (kN)

= =

Max {B, C+D, A+D} (for Mu > 0) Bn (for Mu = 0)

= = = = =

Asc (flex) As,min (flex) As,nominal As (flex) Al (Dist)

= = = = = =

Left 5 1.71 78.67 62.26 21.89 57.28 154.21 75.2 7.41

Compression reinforcement required for bending moment Min area of flexural reinforcement Nominal area of reinforcement Total area of longitudinal reinforcement calculated at a given section Distributed longitudinal torsional reinforcement at section considered Max(Al,min (Tor), Al (Tor)) x ((2B) / (2B + 2D))

Mid 1 1.71 53.04 17.98 61.79 -

Right 3 1.71 80.09 62.26 23.78 57.19 154.21 51.77 107.06 472

Sway-Left (kN) Vu-Sway (kN) Vu (2*Eq Comb) (kN) Vud (kN) Av (sqmm) Tu (kNm) Ao= Φ*Aoh At (sqmm) Legs Stirrup Rebar Asv Torsion (sqmm) Av Total Reqd (sqmm) Asv Reqd (sqmm) SCalc (mm) SPrv (mm) Av Total Prv (sqmm)

102.05 102.05 85.5 102.05 208.33 0.28 2 10 0 208.33 382.836 100 100 1417.6

12.41 107.06 86.91 107.06 208.33 1.47 2 10 0 208.33 430.965 100 100 1417.6

208.33 0.6 2 10 0 208.33 208.333 125 125 1134.08

  Maximum Spacing Criteria             Basic                                                Spc1                 Spc2           For Ductility (Intermediate Frames)                Left Section,  Right Section               Spc3 = 8 x Small Longitudinal Dia

= =

250 127

mm mm

=

127.2

mm 473

              Spc4 = 24 x ∅sv               Spc5 = d / 4               Spc6              Provided Spacing             Mid Section               Provided Spacing       

= = = =

228 82 300 100

mm mm mm mm

=

165

mm

Skin reinforcement    Beam Width Beam Depth Depth   

= 250 = 400 = 400 <= 1000

Group

: G3

Beam No

: B5

Analysis Reference (Member) Beam Length Breadth (B) Depth (D) Effective Depth (d) Design Code Beam Type Grade Of Concrete (Fck) Grade Of Steel Clear Cover (Cmin)

mm mm

5.5m : 27 : : : : : : : : :

4999.99 mm 250 mm 400 mm 330 mm ACI 318M - 2011 Ductile Beam (Intermediate Frame) C20 N/sqmm Fy420 N/sqmm 40 mm 474

Es Mubal As,min (flex) (B) As,nominal (Bn)   For Longitudinal Reinf

: : : :

Left 470.18 595.68 3-#16

Critical L/C - Analysis Critical L/C - RCDC Mu (kNm) As (flex) (sqmm) (C) Asc (flex) (sqmm) (A) Tu (kNm) Tcr/4 (kNm) Al, min(sqmm)(Tor.) (D) Al (sqmm) (Tor.) (E) Al (Dist) (sqmm) (D) Ast (sqmm) AstPrv (sqmm) Reinforcement

2x10^5 138 275 107.25

Beam Bottom Mid 38 3 54.723 472.07 3.183 2.14 340.96 102.06 65.57 537.64 595.68 3-#16

N/sqmm kNm sqmm sqmm

Right 38 3 20.41 167.8 3.18 2.14 340.96 102.06 65.57 275 397.12 2-#16

Left 40 5 114.035 1093.08 5.283 2.14 277.8 169.41 53.42 1146.51 1410.54 2-#25 2-#16

Beam Top Mid 44 9 14.704 120.03 5.023 2.14 286.16 161.06 55.03 227.58 397.12 2-#16

Right 37 2 25.26 209.05 4.191 2.14 312.83 134.38 60.16 282.11 397.12 2-#16

  Note: Calculation of Ast    Ast Ast Where,

= =

Max {B, C+D, A+D} (for Mu > 0) Bn (for Mu = 0)

475

A B Bn C D Ast (Dist) (sqmm)   For Transverse Reinf Critical L/C - RCDC PtPrv (%) Vu (kN) Mu-Sect (kNm) Vc (kN) Vs (kN) VD+L (kN) Mh (kNm) Ms (kNm) Sway-Right (kN) Sway-Left (kN) Vu-Sway (kN) Vu (2*Eq Comb) (kN) Vud (kN) Av (sqmm) Tu (kNm) Ao= Φ*Aoh At (sqmm) Legs Stirrup Rebar

= = = = =

Asc (flex) As,min (flex) As,nominal As (flex) Al (Dist)

= = = = = =

Left 4 1.71 84.25 62.26 29.32 56.26 154.21 75.2 28.95 100.55 100.55 88.47 100.55 586.55 5.96 44550 375.03 2 10

Compression reinforcement required for bending moment Min area of flexural reinforcement Nominal area of reinforcement Total area of longitudinal reinforcement calculated at a given section Distributed longitudinal torsional reinforcement at section considered Max(Al,min (Tor), Al (Tor)) x ((2B) / (2B + 2D))

Mid 4 0.481 64.53 5.04 49.34 20.26

521.17 5.96 44550 375.03 2 10

Right 4 0.481 51.78 49.34 3.26 58.21 51.77 51.77 85.51 13.91 85.51 56.5 85.51 398.57 5.96 44550 375.03 2 10 476

Asv Torsion (sqmm) Av Total Reqd (sqmm) Asv Reqd (sqmm) SCalc (mm) SPrv (mm) Av Total Prv (sqmm)

375.028 586.55 712.046 100 100 1417.6

375.028 521.17 521.171 125 125 1134.08

375.028 398.57 405.864 100 100 1417.6

  Maximum Spacing Criteria             Basic                                                Spc1                 Spc2        For Torsion                                                  (X1 = 180, Y1 = 330)                 Spc3 = X1                 Spc4=(X1+Y1)/4           For Ductility (Intermediate Frames)                Left Section,  Right Section               Spc5 = 8 x Small Longitudinal Dia               Spc6 = 24 x ∅sv               Spc7 = d / 4               Spc8              Provided Spacing             Mid Section               Provided Spacing

= =

250 127

mm mm

= =

180 125

mm mm

= = = = =

127.2 228 82 300 100

mm mm mm mm mm

=

165

mm 477

       Skin reinforcement    Beam Width Beam Depth Torsion

Al Tor. (max) Asr SR provided Asr provided Provided Spacing    Spacing Criteria             Maximum Spacing               

= 250 mm = 400 mm = 5.96 > 0 kNm Beam Depth >1000 Or Torsion > 0, Hence SFR Provided = 340.96 sqmm = Max(Al(min)(Tor.), Al(Tor.)) x (2D / (2B+2D)) = 209.82 sqmm = 1-#13EF = 253.35 sqmm = 113.95 mm

= 280

Group

: G9

Beam No

: B17

Analysis Reference (Member) Beam Length Breadth (B)

mm

5.5m : 115 : 3999.99 : 250

mm mm 478

Depth (D) Effective Depth (d) Design Code Beam Type Grade Of Concrete (Fck) Grade Of Steel Clear Cover (Cmin) Es Mubal As,min (flex) (B) As,nominal (Bn)   For Longitudinal Reinf

Critical L/C - Analysis Critical L/C - RCDC Mu (kNm) As (flex) (sqmm) (C) Asc (flex) (sqmm) (A) Tu (kNm) Tcr/4 (kNm) Al, min(sqmm)(Tor.) (D) Al (sqmm) (Tor.) (E) Al (Dist) (sqmm) (D) Ast (sqmm) AstPrv (sqmm) Reinforcement  

: : : : : : : : : : :

Left 49 14 13.619 111.03 0.287 2.14 144.34 397.12 2-#16

400 mm 330 mm ACI 318M - 2011 Ductile Beam (Intermediate Frame) C20 N/sqmm Fy420 N/sqmm 40 mm 2x10^5 N/sqmm 138 kNm 275 sqmm 107.25 sqmm

Beam Bottom Mid 37 2 26.686 221.26 0.901 2.14 275 397.12 2-#16

Right 47 12 4.67 37.62 0.5 2.14 264.75 397.12 2-#16

Left 39 4 51.955 446.33 0.994 2.14 446.34 573.04 2-#19

Beam Top Mid 49 14 9.866 80.05 0.287 2.14 107.25 397.12 2-#16

Right 41 6 63.059 550.98 0.78 2.14 550.98 573.04 2-#19

479

Note: Calculation of Ast    Ast Ast Where, A B Bn C D Ast (Dist) (sqmm)   For Transverse Reinf Critical L/C - RCDC PtPrv (%) Vu (kN) Mu-Sect (kNm) Vc (kN) Vs (kN) VD+L (kN) Mh (kNm) Ms (kNm) Sway-Right (kN) Sway-Left (kN) Vu-Sway (kN) Vu (2*Eq Comb) (kN) Vud (kN)

= =

Max {B, C+D, A+D} (for Mu > 0) Bn (for Mu = 0)

= = = = =

Asc (flex) As,min (flex) As,nominal As (flex) Al (Dist)

= = = = = =

Left 1 0.695 38.52 51.58 34.69 72.61 51.77 69.24 0.14 69.24 61.46 69.24

Compression reinforcement required for bending moment Min area of flexural reinforcement Nominal area of reinforcement Total area of longitudinal reinforcement calculated at a given section Distributed longitudinal torsional reinforcement at section considered Max(Al,min (Tor), Al (Tor)) x ((2B) / (2B + 2D))

Mid 1 0.481 31.71 2.82 49.34 -

Right 1 0.695 43.63 51.58 43.19 72.61 51.77 8.64 77.74 77.74 66.84 77.74 480

Av (sqmm) Tu (kNm) Ao= Φ*Aoh At (sqmm) Legs Stirrup Rebar Asv Torsion (sqmm) Av Total Reqd (sqmm) Asv Reqd (sqmm) SCalc (mm) SPrv (mm) Av Total Prv (sqmm)

208.33 0.81 2 10 0 208.33 208.333 100 100 1417.6

208.33 0.81 2 10 0 208.33 208.333 125 125 1134.08

208.33 0.81 2 10 0 208.33 251.666 100 100 1417.6

  Maximum Spacing Criteria             Basic                                                Spc1                 Spc2           For Ductility (Intermediate Frames)                Left Section,  Right Section               Spc3 = 8 x Small Longitudinal Dia               Spc4 = 24 x ∅sv               Spc5 = d / 4               Spc6              Provided Spacing     

= =

250 127

mm mm

= = = = =

127.2 228 82 300 100

mm mm mm mm mm 481

       Mid Section               Provided Spacing       

=

165

mm

Skin reinforcement    Beam Width Beam Depth Depth   

= 250 = 400 = 400 <= 1000

Group

: G9

Beam No

: B18

Analysis Reference (Member) Beam Length Breadth (B) Depth (D) Effective Depth (d) Design Code Beam Type Grade Of Concrete (Fck) Grade Of Steel Clear Cover (Cmin) Es Mubal As,min (flex) (B) As,nominal (Bn)  

mm mm

5.5m : 103 : : : : : : : : : : : : :

3999.99 mm 250 mm 400 mm 330 mm ACI 318M - 2011 Ductile Beam (Intermediate Frame) C20 N/sqmm Fy420 N/sqmm 40 mm 2x10^5 N/sqmm 138 kNm 275 sqmm 107.25 sqmm

482

For Longitudinal Reinf Left 49 14 11.998 97.61 0.55 2.14 126.9 397.12 2-#16

Critical L/C - Analysis Critical L/C - RCDC Mu (kNm) As (flex) (sqmm) (C) Asc (flex) (sqmm) (A) Tu (kNm) Tcr/4 (kNm) Al, min(sqmm)(Tor.) (D) Al (sqmm) (Tor.) (E) Al (Dist) (sqmm) (D) Ast (sqmm) AstPrv (sqmm) Reinforcement

Beam Bottom Mid 41 6 20.646 169.83 0.876 2.14 220.78 397.12 2-#16

Right 528.82 595.68 3-#16

Left 39 4 55.443 478.8 0.343 2.14 478.8 573.04 2-#19

Beam Top Mid 45 10 16.329 133.57 0.859 2.14 173.65 397.12 2-#16

Right 41 6 73.234 650.44 0.876 2.14 650.44 1586.46 2-#25 2-#19

  Note: Calculation of Ast    Ast Ast Where, A B Bn C D

= =

Max {B, C+D, A+D} (for Mu > 0) Bn (for Mu = 0)

= = = = =

Asc (flex) As,min (flex) As,nominal As (flex) Al (Dist)

= = = = =

Compression reinforcement required for bending moment Min area of flexural reinforcement Nominal area of reinforcement Total area of longitudinal reinforcement calculated at a given section Distributed longitudinal torsional reinforcement at section considered 483

Ast (Dist) (sqmm)   For Transverse Reinf Critical L/C - RCDC PtPrv (%) Vu (kN) Mu-Sect (kNm) Vc (kN) Vs (kN) VD+L (kN) Mh (kNm) Ms (kNm) Sway-Right (kN) Sway-Left (kN) Vu-Sway (kN) Vu (2*Eq Comb) (kN) Vud (kN) Av (sqmm) Tu (kNm) Ao= Φ*Aoh At (sqmm) Legs Stirrup Rebar Asv Torsion (sqmm) Av Total Reqd (sqmm) Asv Reqd (sqmm) SCalc (mm)

=

Left 1 0.695 36.69 51.58 31.74 72.61 51.77 92.69 9.31 92.69 59.47 92.69 208.33 0.58 2 10 0 208.33 395.499 100

Max(Al,min (Tor), Al (Tor)) x ((2B) / (2B + 2D))

Mid 1 0.481 33.53 5.52 49.34 -

208.33 0.58 2 10 0 208.33 208.333 125

Right 1 1.923 45.45 64.5 46.14 167.65 75.2 14.81 87.19 87.19 68.63 87.19 208.33 0.58 2 10 0 208.33 218.304 100 484

SPrv (mm) Av Total Prv (sqmm)

100 1417.6

125 1134.08

100 1417.6

  Maximum Spacing Criteria             Basic                                                Spc1                 Spc2           For Ductility (Intermediate Frames)                Left Section,  Right Section               Spc3 = 8 x Small Longitudinal Dia               Spc4 = 24 x ∅sv               Spc5 = d / 4               Spc6              Provided Spacing             Mid Section               Provided Spacing       

= =

250 127

mm mm

= = = = =

127.2 228 82 300 100

mm mm mm mm mm

=

165

mm

Skin reinforcement    Beam Width Beam Depth Depth

= 250 = 400 = 400 <= 1000

mm mm

485

   Group

: G9

Beam No

: B19

Analysis Reference (Member)

5.5m : 91

Beam Length Breadth (B) Depth (D) Effective Depth (d) Design Code Beam Type Grade Of Concrete (Fck) Grade Of Steel Clear Cover (Cmin) Es Mubal As,min (flex) (B) As,nominal (Bn)   For Longitudinal Reinf

Critical L/C - Analysis Critical L/C - RCDC Mu (kNm) As (flex) (sqmm) (C) Asc (flex) (sqmm) (A) Tu (kNm)

: : : : : : : : : : : : :

Left -

3999.99 mm 250 mm 400 mm 330 mm ACI 318M - 2011 Ductile Beam (Intermediate Frame) C20 N/sqmm Fy420 N/sqmm 40 mm 2x10^5 N/sqmm 138 kNm 275 sqmm 107.25 sqmm

Beam Bottom Mid 41 6 43.634 370.34 11.704

Right 40 5 46.35 394.9 14.95

Left 39 4 152.063 1471.86 254.19 11.654

Beam Top Mid 39 4 60.553 527.02 11.654

Right 486

Tcr/4 (kNm) Al, min(sqmm)(Tor.) (D) Al (sqmm) (Tor.) (E) Al (Dist) (sqmm) (D) Ast (sqmm) AstPrv (sqmm)

528.82 595.68 3-#16

Reinforcement

2.14 71.9 375.31 72.17 442.51 595.68 3-#16

2.14 32.16 479.37 92.19 487.09 595.68 3-#16

2.14 73.51 373.7 71.87 1543.73 1586.46 2-#25 2-#19

2.14 73.51 373.7 71.87 598.89 794.24 2-#16 2-#16

317.29 397.12 2-#16

  Note: Calculation of Ast    Ast Ast Where, A B Bn C D Ast (Dist) (sqmm)   For Transverse Reinf Critical L/C - RCDC PtPrv (%) Vu (kN) Mu-Sect (kNm) Vc (kN)

= =

Max {B, C+D, A+D} (for Mu > 0) Bn (for Mu = 0)

= = = = =

Asc (flex) As,min (flex) As,nominal As (flex) Al (Dist)

= = = = = =

Left 5 1.923 94.01 64.5

Compression reinforcement required for bending moment Min area of flexural reinforcement Nominal area of reinforcement Total area of longitudinal reinforcement calculated at a given section Distributed longitudinal torsional reinforcement at section considered Max(Al,min (Tor), Al (Tor)) x ((2B) / (2B + 2D))

Mid 5 0.963 80.72 54.81 49.2

Right 5 0.722 14.38 51.87 487

Vs (kN) VD+L (kN) Mh (kNm) Ms (kNm) Sway-Right (kN) Sway-Left (kN) Vu-Sway (kN) Vu (2*Eq Comb) (kN) Vud (kN) Av (sqmm) Tu (kNm) Ao= Φ*Aoh At (sqmm) Legs Stirrup Rebar Asv Torsion (sqmm) Av Total Reqd (sqmm) Asv Reqd (sqmm) SCalc (mm) SPrv (mm) Av Total Prv (sqmm)

39.35 114.36 167.65 75.2 149.14 47.83 149.14 98.2 149.14 1223.84 14.95 44550 939.94 2 10 939.94 1223.84 1376.449 100 100 1417.6

42.04

1243.25 14.95 44550 939.94 2 10 939.94 1243.25 1243.249 110 110 1288.73

36.48 51.77 75.2 71.27 30.05 71.27 8 71.27 939.94 14.95 44550 939.94 2 10 939.94 939.94 939.94 110 100 1417.6

  Maximum Spacing Criteria             Basic                                                Spc1                 Spc2

= =

250 127

mm mm 488

       For Torsion                                                  (X1 = 180, Y1 = 330)                 Spc3 = X1                 Spc4=(X1+Y1)/4           For Ductility (Intermediate Frames)                Left Section,  Right Section               Spc5 = 8 x Small Longitudinal Dia               Spc6 = 24 x ∅sv               Spc7 = d / 4               Spc8              Provided Spacing             Mid Section               Provided Spacing       

= =

180 125

mm mm

= = = = =

127.2 228 82 300 100

mm mm mm mm mm

=

165

mm

Skin reinforcement    Beam Width Beam Depth Torsion

Al Tor. (max) Asr SR provided

= 250 mm = 400 mm = 14.95 > 0 kNm Beam Depth >1000 Or Torsion > 0, Hence SFR Provided = 479.37 sqmm = Max(Al(min)(Tor.), Al(Tor.)) x (2D / (2B+2D)) = 295 sqmm = 1-#16EF 489

Asr provided Provided Spacing    Spacing Criteria             Maximum Spacing

= 397.11 = 113.95

sqmm mm

= 280

mm

APPENDIX B.5: COMPUTATION OF SHEAR WALL / COLUMN (DS W/ IMF) Sway Calculation (Stability Index) For Global-X Direction Level Load Name Story Height Gravity Load P Relative Story Shear Stability Index Sway Condition (m) (kN) Displacements (mm) (kN) A B C D B x C / (A x D) LOAD 1: EQ 0m to 2m 2 7721.609 0.91 2088.828 0.002 Non Sway X LOAD 1: EQ 2m to 5.5m 3.5 6050.522 3.274 1890.941 0.003 Non Sway X LOAD 1: EQ 5.5m to 8.5m 3 2799.534 3.135 1033.441 0.003 Non Sway X For Global-Y Direction Level Load Name

LOAD 2: EQ Z LOAD 2: EQ 2m to 5.5m Z LOAD 2: EQ 5.5m to 8.5m Z 0m to 2m

Story Height Gravity Load P Relative (m) (kN) Displacements (mm) A B C

Story Shear (kN) D

Stability Index Sway Condition B x C / (A x D)

2

7721.609

0.532

2088.828

0.001

Non Sway

3.5

6050.522

2.013

1890.941

0.002

Non Sway

3

2799.534

2.039

1033.441

0.002

Non Sway

490

General Data Wall No. Level Design Code Grade Of Concrete Grade Of Steel Wall B Wall D Clear Cover Clear Floor Height @ B Clear Floor Height @ D No Of Floors No Of Walls In Group

: : = = = = = = = = = =

C2 0m To 2m ACI 318M - 2011 C25 Fy420 300 5000 50 1600 1600 1 1

Analysis Reference No.

=

140

Critical Analysis Load Combination

:

46

Load Combination Critical Location Put Muxt Muyt Vuxt Vuyt Pub Muxb Muyb

= = = = = = = = = =

[11] : 0.68 (LOAD 3: DL) +1.25 (LOAD 1: EQ X) Bottom Joint 459.22 10489.18 -2.66 -1.42 2191.15 507.3 14870.33 0.17

N/sqmm N/sqmm mm mm mm mm mm

Load Data

kN kNm kNm kN kN kN kNm kNm 491

Vuxb Vuyb

= =

-1.42 2191.15

kN kN

Check For Requirement Of Boundary Element Check For Maximum Compressive Stress Having maxstress in between level's (2m - 8.5m) At level (2m) Load Combination

=

Maximum Stress 0.2 x Fck Maximum Stress in Wall > 0.2 x Fck Hence Boundary Element is applicable   At level (2m)

= =

Load Combination

=

Maximum Stress 0.15 x Fck Maximum Stress in Wall > 0.15 x Fck Hence Boundary Element is applicable

= =

Effective Length Calculation Calculation Along Major Axis Of Column Joint Column Stiffness

N-M

[3] : 1.42 (LOAD 3: DL) +0.5 (LOAD 4: LL) +1.25 (LOAD 1: EQ X) 12.66 N/sqmm 5 N/sqmm

[3] : 1.42 (LOAD 3: DL) +0.5 (LOAD 4: LL) +1.25 (LOAD 1: EQ X) 12.66 N/sqmm 3.75 N/sqmm

Beam Sizes Beam 1 Beam 2 (Length x Width x (Length x Width x Depth) Depth) mm mm

Beam Stiffness Beam 1 Beam 2 N-M

Beta

N-M 492

Bottom Top

156250 156250

No Beam No Beam 5000 x 250 x 400 5000 x 250 x 400

Sway Condition (as per Stability Index) Effective Length Factor along Major Axis Calculation Along Minor Axis Of Column Joint Column Stiffness

Bottom Top

N-M 562.5 562.5

Sway Condition (as per Stability Index) Effective Length Factor along Minor axis Check For Stability Index Along D        Q   Along B        Q

= =

26.667

1 1753.827

Non Sway 0.87

Beam Sizes Beam 1 Beam 2 (Length x Width x (Length x Width x Depth) Depth) mm mm No Beam No Beam 4000 x 250 x 400 No Beam = =

26.667

Beam Stiffness Beam 1 Beam 2

N-M 33.333

N-M -

Beta

1 8.839

Non Sway 0.87

= 0.002 0.002< 0.05, Wall shall be designed as non-sway frame (Braced)       = 0.001 0.001< 0.05, Wall shall be designed as non-sway frame (Braced)

Slenderness Check Column Is Braced Along D 493

Slenderness Check along D K r Kluy /r M1 M2 34 - 12 x (M1/M2) Column Is Braced Along B Slenderness Check along B K r Klux /r M1 M2 34 - 12 x (M1/M2)

Calculation of Design Moment Direction Major Axis Mux (top) Major Axis Mux (bottom) Minor Axis Muy (top) Minor Axis Muy (bottom)

= 0.87 = 1443.38 = 0.96 = 10489.18 = 14870.33 = 25.54 0.96 < 25.54, Wall not slender along D

mm kNm kNm

= 0.87 = 86.6 = 16.07 = 0.17 = -2.66 = 34.77 16.07 < 34.77, Wall not slender along B

Manalysis A 10489.18 14870.33 -2.66 0.17

mm kNm kNm

Msldr or Mc B -

Mdesign-final C 10489.18 14870.33 -2.66 0.17

Where A B

= Moments from analysis = Moment due to slenderness effect 494

C

= Final design Moment = Maximum of (Manalysis, Maximum of (Msldr or Mc))

  Final Critical Design Forces Critical Case - Axial Load & BiAxial Bending Pu Mux Muy

= = =

507.3 14870.33 0.17

= = = = = = = =

1.34 36-#19 + 34-#19 Tan-1(Muy/Mux) 0 14870.33 16913.09 MRes/ MCap 0.879 < 1

Check For Boundary Element Length of boundary element Ast provided in BE δu Hw lw c (due to deflection)

= = = = = =

700 20056.48 0.91 8500 5000 1190.48

Design Of Shear Design for shear along D Critical Analysis Load Combination Critical Load Combination

: =

39 [4] : 1.42 (LOAD 3: DL) +0.5 (LOAD 4: LL) +1.25 kN

Resultant Moment (Combined Action) Moment Capacity Check Pt Calculated Reinforcement Provided Load Angle MRes ( φ ) MCap Capacity Ratio

kN kNm kNm

deg kNm kNm

mm mm2 mm mm mm mm

495

Nu Muy Vuy λ φ d αc pt Vn (Maximum) Vcy Vuy Link For Shear Design Along D are not required   Design for shear along B Critical Analysis Load Combination

= = = = = = = = = = = <

:

Critical Load Combination

=

Nu Mux Vux λ φ b αc pt Vn (Maximum)

= = = = = = = = = = =

Vcx

(LOAD 2: EQ Z) 1067.89 60.99 13.67 1 0.65 4940.5 0.25 0.0067 0.83 x Sqrt(Fc) x ColB x d 6150.92 6086.84 Vcy Permissible

39 [4] : 1.42 (LOAD 3: DL) +0.5 (LOAD 4: LL) +1.25 (LOAD 2: EQ Z) 1088.85 0.26 2.78 1 0.65 240.5 0.17 0.0067 0.83 x Sqrt(Fc) x ColD x b 4990.38 5486.84

kN kNm kN

mm

kN

kN kN kNm kN

mm

kN 496

Vux Link For Shear Design Along D are not required

<

Vcx Permissible

Design Of Links  Main Links Links in the zone where special confining links are not required Normal Links Min. Horizontal Reinforcement Diameter of main horizontal steel Thus, Spacing  Spacing of horizontal reinforcement is minimum of following D/5 3xB Maximum Spacing considered   Table For Links Required Normal Design Shear Design Link Dia. 10 --Spacing 300 ---

= = = =

0.25% of cross sectional area 750 10 300

sqmm mm mm

= = = =

1000 900 450 300

mm mm mm mm

Provided Ductile Design 10 150

Normal Zone 10 300

Ductile Zone 10 150

  General Data Wall No. Level Design Code Grade Of Concrete

: : = =

C2 2m To 5.5m ACI 318M - 2011 C25

N/sqmm 497

Grade Of Steel Wall B Wall D Clear Cover Clear Floor Height @ B Clear Floor Height @ D No Of Floors No Of Walls In Group

= = = = = = = =

Fy420 300 5000 50 3100 3100 1 1

Analysis Reference No.

=

141

Critical Analysis Load Combination

:

46

Load Combination Critical Location Put Muxt Muyt Vuxt Vuyt Pub Muxb Muyb Vuxb Vuyb

= = = = = = = = = = = =

[11] : 0.68 (LOAD 3: DL) +1.25 (LOAD 1: EQ X) Bottom Joint 313.29 2921.4 -3.29 -1.4 2167.84 397.44 10506.82 1.6 -1.4 2167.84

N/sqmm mm mm mm mm mm

Load Data

kN kNm kNm kN kN kN kNm kNm kN kN

Check For Requirement Of Boundary Element Check For Maximum Compressive Stress 498

Having maxstress in between level's (2m - 8.5m) At level (2m) Load Combination

=

Maximum Stress 0.2 x Fck Maximum Stress in Wall > 0.2 x Fck Hence Boundary Element is applicable   At level (5.5m)

= =

Load Combination

=

Maximum Stress 0.15 x Fck Maximum Stress in Wall > 0.15 x Fck Hence Boundary Element is applicable

= =

[3] : 1.42 (LOAD 3: DL) +0.5 (LOAD 4: LL) +1.25 (LOAD 1: EQ X) 12.66 N/sqmm 5 N/sqmm

[3] : 1.42 (LOAD 3: DL) +0.5 (LOAD 4: LL) +1.25 (LOAD 1: EQ X) 9.05 N/sqmm 3.75 N/sqmm

Effective Length Calculation Calculation Along Major Axis Of Column Joint Column Stiffness

Bottom Top

N-M 89285.714 89285.714

Beam Sizes Beam 1 Beam 2 (Length x Width x (Length x Width x Depth) Depth) mm mm 5000 x 250 x 400 5000 x 250 x 400 5000 x 250 x 400 5000 x 250 x 400

Sway Condition (as per Stability Index) Effective Length Factor along Major Axis

= =

Beam Stiffness Beam 1 Beam 2

N-M 26.667 26.667

N-M 26.667 26.667

Beta

1753.827 1381.803

Non Sway 1

499

Calculation Along Minor Axis Of Column Joint Column Stiffness

Bottom Top

N-M 321.429 321.429

Sway Condition (as per Stability Index) Effective Length Factor along Minor axis Check For Stability Index Along D        Q   Along B        Q

Slenderness Check Column Is Braced Along D Slenderness Check along D K r Kluy /r M1 M2 34 - 12 x (M1/M2)

Beam Sizes Beam 1 Beam 2 (Length x Width x (Length x Width x Depth) Depth) mm mm 4000 x 250 x 400 No Beam 4000 x 250 x 400 No Beam = =

Beam Stiffness Beam 1 Beam 2

N-M 33.333 33.333

Beta

N-M -

8.839 6.964

Non Sway 1

= 0.003 0.003< 0.05, Wall shall be designed as non-sway frame (Braced)       = 0.002 0.002< 0.05, Wall shall be designed as non-sway frame (Braced)

= = = = = =

1 1443.38 2.15 2921.4 10506.82 30.66

mm kNm kNm

500

2.15 < 30.66, Wall not slender along D Column Is Braced Along B Slenderness Check along B K r Klux /r M1 M2 34 - 12 x (M1/M2)

= 1 = 86.6 = 35.8 = 1.6 = -3.29 = 39.84 35.8 < 39.84, Wall not slender along B

Calculation of Design Moment Direction

Manalysis A 2921.4 10506.82 -3.29 1.6

Major Axis Mux (top) Major Axis Mux (bottom) Minor Axis Muy (top) Minor Axis Muy (bottom)

mm kNm kNm

Msldr or Mc B -

Mdesign-final C 2921.4 10506.82 -3.29 1.6

Where A B C

= Moments from analysis = Moment due to slenderness effect = Final design Moment = Maximum of (Manalysis, Maximum of (Msldr or Mc))

  Final Critical Design Forces Critical Case - Axial Load & BiAxial Bending Pu Mux Muy

= = =

397.44 10506.82 1.6

kN kNm kNm 501

Resultant Moment (Combined Action) Moment Capacity Check Pt Calculated Reinforcement Provided Load Angle

= = = = = = = =

1.34 36-#19 + 34-#19 Tan-1(Muy/Mux) 0.01 10506.82 16726.13 MRes/ MCap 0.628 < 1

Check For Boundary Element Length of boundary element Ast provided in BE δu Hw lw c (due to deflection)

= = = = = =

700 20056.48 3.27 8500 5000 1190.48

Design Of Shear Design for shear along D Critical Analysis Load Combination

:

Critical Load Combination

=

Nu Muy Vuy λ φ d

= = = = = =

38 [3] : 1.42 (LOAD 3: DL) +0.5 (LOAD 4: LL) +1.25 (LOAD 1: EQ X) 859.39 10542.2 2161.81 1 0.65 4940.5

MRes ( φ ) MCap Capacity Ratio

deg kNm kNm

mm mm2 mm mm mm mm

kN kN kNm kN

mm 502

αc pt Vn (Maximum) Vcy Vuy Link For Shear Design Along D are not required   Design for shear along B Critical Analysis Load Combination

= = = = = <

0.25 0.0067 0.83 x Sqrt(Fc) x ColB x d 6150.92 6086.84 Vcy Permissible

:

38 [3] : 1.42 (LOAD 3: DL) +0.5 (LOAD 4: LL) +1.25 (LOAD 1: EQ X) 297.52 0.13 10 1 0.65 240.5 0.17 0.0067 0.83 x Sqrt(Fc) x ColD x b 4990.38 5486.84 Vcx Permissible

Critical Load Combination

=

Nu Mux Vux λ φ b αc pt Vn (Maximum)

= = = = = = = = = = = <

Vcx Vux Link For Shear Design Along D are not required

kN

kN kN kNm kN

mm

kN

Design Of Links  Main Links Links in the zone where special confining links are not required Normal Links 503

Min. Horizontal Reinforcement Diameter of main horizontal steel Thus, Spacing  Spacing of horizontal reinforcement is minimum of following D/5 3xB Maximum Spacing considered   Table For Links Required Normal Design Shear Design Link Dia. 10 --Spacing 300 ---

= = = =

0.25% of cross sectional area 750 10 300

sqmm mm mm

= = = =

1000 900 450 300

mm mm mm mm

Provided Ductile Design 10 150

Normal Zone 10 300

Ductile Zone 10 150

  General Data Wall No. Level Design Code Grade Of Concrete Grade Of Steel Wall B Wall D Clear Cover Clear Floor Height @ B Clear Floor Height @ D No Of Floors

: : = = = = = = = = =

C2 5.5m To 8.5m ACI 318M - 2011 C25 Fy420 300 5000 50 2600 2600 1

N/sqmm N/sqmm mm mm mm mm mm

504

No Of Walls In Group

=

1

Analysis Reference No.

=

142

Critical Analysis Load Combination

:

48

Load Combination Critical Location Put Muxt Muyt Vuxt Vuyt Pub Muxb Muyb Vuxb Vuyb

= = = = = = = = = = = =

[13] : 0.68 (LOAD 3: DL) -1.25 (LOAD 1: EQ X) Bottom Joint 76.83 29.54 -1.6 -1.51 -984.21 148.95 -2922.31 2.94 -1.51 -984.21

Load Data

kN kNm kNm kN kN kN kNm kNm kN kN

Check For Requirement Of Boundary Element Check For Maximum Compressive Stress Having maxstress in between level's (2m - 8.5m) At level (2m) Load Combination

=

Maximum Stress 0.2 x Fck Maximum Stress in Wall > 0.2 x Fck

= =

[3] : 1.42 (LOAD 3: DL) +0.5 (LOAD 4: LL) +1.25 (LOAD 1: EQ X) 12.66 N/sqmm 5 N/sqmm

505

Hence Boundary Element is applicable   At level (8.5m) Load Combination

=

Maximum Stress 0.15 x Fck Maximum Stress in Wall < 0.15 x Fck Hence Boundary Element is not applicable

= =

Effective Length Calculation Calculation Along Major Axis Of Column Joint Column Stiffness

Bottom Top

N-M 104166.667 104166.667

Beam Sizes Beam 1 Beam 2 (Length x Width x (Length x Width x Depth) Depth) mm mm 5000 x 250 x 400 5000 x 250 x 400 5000 x 250 x 400 5000 x 250 x 400

Sway Condition (as per Stability Index) Effective Length Factor along Major Axis Calculation Along Minor Axis Of Column Joint Column Stiffness

Bottom

N-M 375

[5] : 1.42 (LOAD 3: DL) +0.5 (LOAD 4: LL) -1.25 (LOAD 1: EQ X) 2.65 3.75

= =

Beam Stiffness Beam 1 Beam 2 N-M 26.667 26.667

N-M 26.667 26.667

Beta

1381.803 744.048

Non Sway 1

Beam Sizes Beam 1 Beam 2 (Length x Width x (Length x Width x Depth) Depth) mm mm 4000 x 250 x 400 No Beam

Beam Stiffness Beam 1 Beam 2 N-M 33.333

N-M -

Beta

6.964 506

Top

375

Sway Condition (as per Stability Index) Effective Length Factor along Minor axis Check For Stability Index Along D        Q   Along B        Q

Slenderness Check Column Is Braced Along D Slenderness Check along D K r Kluy /r M1 M2 34 - 12 x (M1/M2) Column Is Braced Along B Slenderness Check along B K r Klux /r M1

4000 x 250 x 400 = =

No Beam

33.333

-

3.75

Non Sway 1

= 0.003 0.003< 0.05, Wall shall be designed as non-sway frame (Braced)       = 0.002 0.002< 0.05, Wall shall be designed as non-sway frame (Braced)

= 1 = 1443.38 = 1.8 = 29.54 = -2922.31 = 34.12 1.8 < 34.12, Wall not slender along D

= = = =

1 86.6 30.02 -1.6

mm kNm kNm

mm kNm 507

M2 34 - 12 x (M1/M2)

= 2.94 = 40.52 30.02 < 40.52, Wall not slender along B

Calculation of Design Moment Direction

Manalysis A 29.54 -2922.31 -1.6 2.94

Major Axis Mux (top) Major Axis Mux (bottom) Minor Axis Muy (top) Minor Axis Muy (bottom)

kNm

Msldr or Mc B -

Mdesign-final C 29.54 -2922.31 -1.6 2.94

Where A B C

= Moments from analysis = Moment due to slenderness effect = Final design Moment = Maximum of (Manalysis, Maximum of (Msldr or Mc))

  Final Critical Design Forces Critical Case - Axial Load & BiAxial Bending Pu Mux Muy Resultant Moment (Combined Action) Moment Capacity Check Pt Calculated Reinforcement Provided Load Angle MRes

= = =

148.95 -2922.31 2.94

kN kNm kNm

= = = = =

1.34 36-#19 + 34-#19 Tan-1(Muy/Mux) 0.06 2922.31

deg kNm 508

( φ ) MCap Capacity Ratio

= = =

16303.07 MRes/ MCap 0.179 < 1

Design Of Shear Design for shear along D Critical Analysis Load Combination

:

Critical Load Combination

=

Nu Muy Vuy λ φ d αc pt Vn (Maximum)

= = = = = = = = = = = <

41 [6] : 1.42 (LOAD 3: DL) +0.5 (LOAD 4: LL) -1.25 (LOAD 2: EQ Z) 333.78 10.87 4.48 1 0.65 4940.5 0.25 0.0067 0.83 x Sqrt(Fc) x ColB x d 6150.92 6086.84 Vcy Permissible

Vcy Vuy Link For Shear Design Along D are not required   Design for shear along B Critical Analysis Load Combination

:

Critical Load Combination

=

Nu Mux Vux

= = =

41 [6] : 1.42 (LOAD 3: DL) +0.5 (LOAD 4: LL) -1.25 (LOAD 2: EQ Z) 76.83 1.6 1.51

kNm

kN kN kNm kN

mm

kN

kN kN kNm kN 509

λ φ b αc pt Vn (Maximum) Vcx Vux Link For Shear Design Along D are not required

= = = = = = = = <

Design Of Links  Main Links Links in the zone where special confining links are not required Normal Links Min. Horizontal Reinforcement Diameter of main horizontal steel Thus, Spacing  Spacing of horizontal reinforcement is minimum of following D/5 3xB Maximum Spacing considered   Table For Links Required Normal Design Shear Design Link Dia. 10 --Spacing 300 ---

1 0.65 240.5 0.17 0.0067 0.83 x Sqrt(Fc) x ColD x b 4990.38 5486.84 Vcx Permissible

mm

kN

= = = =

0.25% of cross sectional area 750 10 300

sqmm mm mm

= = = =

1000 900 450 300

mm mm mm mm

Provided Ductile Design -----

Normal Zone 10 300

Ductile Zone ----510

  General Data Column No. Level Design Code Grade Of Concrete Grade Of Steel Consider Ductile Type of Frame Column B Column D Clear Cover Clear Floor Height @ lux Clear Floor Height @ luy No Of Floors No Of Columns In Group

: : = = = = = = = = = = = =

C5 0m To 2m ACI 318M - 2011 C25 Fy420 Yes Intermediate 400 400 50 1600 1600 1 1

Analysis Reference No.

=

33

Critical Analysis Load Combination

:

48

Load Combination Critical Location Put Muxt Muyt Vuxt Vuyt

= = = = = = =

[13] : 0.68 (LOAD 3: DL) -1.25 (LOAD 1: EQ X) Bottom Joint 274.04 10.58 -5.44 -6.67 -25.07

N/sqmm N/sqmm

mm mm mm mm mm

Load Data

kN kNm kNm kN kN 511

Pub Muxb Muyb Vuxb Vuyb

= = = = =

279.17 -39.55 7.9 -6.67 -25.07

Effective Length Calculation Calculation Along Major Axis Of Column Joint Column Stiffness

Bottom Top

N-M 106.667 106.667

Beam Sizes Beam 1 Beam 2 (Length x Width x (Length x Width x Depth) Depth) mm mm No Beam No Beam 5000 x 250 x 400 5000 x 250 x 400

Sway Condition (as per Stability Index) Effective Length Factor along Major Axis Calculation Along Minor Axis Of Column Joint Column Stiffness

Bottom Top

N-M 106.667 106.667

= =

kN kNm kNm kN kN

Beam Stiffness Beam 1 Beam 2 N-M 26.667

N-M 26.667

Beta

1 3.148

Non Sway 0.87

Beam Sizes Beam 1 Beam 2 (Length x Width x (Length x Width x Depth) Depth) mm mm No Beam No Beam 4000 x 250 x 400 4000 x 250 x 400

Beam Stiffness Beam 1 Beam 2 N-M 33.333

N-M 33.333

Beta

1 2.511

512

Sway Condition (as per Stability Index) Effective Length Factor along Minor axis Check For Stability Index Along D        Q   Along B        Q

Slenderness Check Column Is Braced Along D Slenderness Check along D K r Kluy /r M1 M2 34 - 12 x (M1/M2) Column Is Braced Along B Slenderness Check along B K r Klux /r M1 M2

= =

Non Sway 0.87

= 0.002 0.002< 0.05, Column shall be designed as non-sway frame (Braced)       = 0.001 0.001< 0.05, Column shall be designed as non-sway frame (Braced)

= 0.87 = 115.47 = 12.06 = 10.58 = -39.55 = 37.21 12.06 < 37.21, Column not slender along D

= = = = =

0.87 115.47 12.06 -5.44 7.9

mm kNm kNm

mm kNm kNm 513

34 - 12 x (M1/M2)

= 42.27 12.06 < 42.27, Column not slender along B

Calculation of Design Moment Direction

Manalysis A 10.58 -39.55 -5.44 7.9

Major Axis Mux (top) Major Axis Mux (bottom) Minor Axis Muy (top) Minor Axis Muy (bottom)

Msldr or Mc B -

Mdesign-final C 10.58 -39.55 -5.44 7.9

Where A B C

= Moments from analysis = Moment due to slenderness effect = Final design Moment = Maximum of (Manalysis, Maximum of (Msldr or Mc))

  Final Critical Design Forces Critical Case - Axial Load & BiAxial Bending Pu Mux Muy Resultant Moment (Combined Action) Moment Capacity Check Pt Calculated Reinforcement Provided Load Angle MRes ( φ ) MCap

= = =

279.17 -39.55 7.9

kN kNm kNm

= = = = = =

1.21 4-#19 + 4-#16 Tan-1(Muy/Mux) 11.3 40.33 152.98

deg kNm kNm 514

Capacity Ratio

Design Of Shear Design for shear along D Critical Analysis Load Combination Critical Load Combination Nu Muy Vuy λ φ deff ρw mm Vcy Permissible Vuy Link For Shear Design Along D are not required   Design for shear along B Critical Analysis Load Combination Critical Load Combination Nu Mux Vux λ φ deff ρw mm

= =

MRes/ MCap 0.264 < 1

: = = = = = = = = = = <

37 [2] : 1.2 (LOAD 3: DL) +1.6 (LOAD 4: LL) 708.13 0.42 -0.7508 1 0.65 340.5 0.006 111.07 298.43 Vcy Permissible

: = = = = = = = = =

37 [2] : 1.2 (LOAD 3: DL) +1.6 (LOAD 4: LL) 708.13 1.88 -3.4044 1 0.65 340.5 0.006 109.61

kN kN kNm kN

mm kNm kN

kN kN kNm kN

mm kNm 515

Vcx Permissible Vux Link For Shear Design Along B are not required

= <

298.43 Vcx Permissible

kN

Design Of Links Links in the zone where special confining links are not required Normal Links Diameter of link

= 10

    Criterion for spacing of normal links Min. Longitudinal Bar dia X 16 48 x diameter of links Provided spacing   Criterion for spacing of Ductile links: Min. Longitudinal Bar dia x 8 24 x diameter of links B/2 Spacing Provided Spacing     Table For Links

> Max. longitudinal bar dia / 4 = 4.75 mm

Link Dia. Spacing

Normal Design 10 200

Required Shear Design -----

mm

= 256 = 480 = 200

mm mm mm

= = = = =

mm mm mm mm mm

128 240 200 300 125

Provided Ductile Design 10 125

Normal Zone 10 200

Ductile Zone 10 125 516

  General Data Column No. Level Design Code Grade Of Concrete Grade Of Steel Consider Ductile Type of Frame Column B Column D Clear Cover Clear Floor Height @ lux Clear Floor Height @ luy No Of Floors No Of Columns In Group

: : = = = = = = = = = = = =

C5 2m To 5.5m ACI 318M - 2011 C25 Fy420 Yes Intermediate 400 400 50 3100 3100 1 1

Analysis Reference No.

=

37

Critical Analysis Load Combination

:

40

Load Combination Critical Location Put Muxt Muyt Vuxt Vuyt

= = = = = = =

[5] : 1.42 (LOAD 3: DL) +0.5 (LOAD 4: LL) -1.25 (LOAD 1: EQ X) Top Joint 595.06 kN 45.78 kNm -31.68 kNm -15.18 kN -24.32 kN

N/sqmm N/sqmm

mm mm mm mm mm

Load Data

517

Pub Muxb Muyb Vuxb Vuyb

= = = = =

613.8 -39.32 21.43 -15.18 -24.32

Effective Length Calculation Calculation Along Major Axis Of Column Joint Column Stiffness

Bottom Top

N-M 60.952 60.952

Beam Sizes Beam 1 Beam 2 (Length x Width x (Length x Width x Depth) Depth) mm mm 5000 x 250 x 400 5000 x 250 x 400 5000 x 250 x 400 5000 x 250 x 400

Sway Condition (as per Stability Index) Effective Length Factor along Major Axis Calculation Along Minor Axis Of Column Joint Column Stiffness

Bottom Top

N-M 60.952 60.952

= =

kN kNm kNm kN kN

Beam Stiffness Beam 1 Beam 2 N-M 26.667 26.667

N-M 26.667 26.667

Beta

3.148 2.48

Non Sway 1

Beam Sizes Beam 1 Beam 2 (Length x Width x (Length x Width x Depth) Depth) mm mm 4000 x 250 x 400 4000 x 250 x 400 4000 x 250 x 400 4000 x 250 x 400

Beam Stiffness Beam 1 Beam 2 N-M 33.333 33.333

N-M 33.333 33.333

Beta

2.511 1.978

518

Sway Condition (as per Stability Index) Effective Length Factor along Minor axis Check For Stability Index Along D        Q   Along B        Q

Slenderness Check Column Is Braced Along D Slenderness Check along D K r Kluy /r M1 M2 34 - 12 x (M1/M2) Column Is Braced Along B Slenderness Check along B K r Klux /r M1 M2

= =

Non Sway 1

= 0.003 0.003< 0.05, Column shall be designed as non-sway frame (Braced)       = 0.002 0.002< 0.05, Column shall be designed as non-sway frame (Braced)

= 1 = 115.47 = 26.85 = -39.32 = 45.78 = 44.31 26.85 < 44.31, Column not slender along D

= = = = =

1 115.47 26.85 21.43 -31.68

mm kNm kNm

mm kNm kNm 519

34 - 12 x (M1/M2)

= 42.12 26.85 < 42.12, Column not slender along B

Calculation of Design Moment Direction

Manalysis A 45.78 -39.32 -31.68 21.43

Major Axis Mux (top) Major Axis Mux (bottom) Minor Axis Muy (top) Minor Axis Muy (bottom)

Msldr or Mc B -

Mdesign-final C 45.78 -39.32 -31.68 21.43

Where A B C

= Moments from analysis = Moment due to slenderness effect = Final design Moment = Maximum of (Manalysis, Maximum of (Msldr or Mc))

  Final Critical Design Forces Critical Case - Axial Load & BiAxial Bending Pu Mux Muy Resultant Moment (Combined Action) Moment Capacity Check Pt Calculated Reinforcement Provided Load Angle MRes ( φ ) MCap

= = =

595.06 45.78 -31.68

kN kNm kNm

= = = = = =

1.21 4-#19 + 4-#16 Tan-1(Muy/Mux) 34.68 55.67 144.83

deg kNm kNm 520

Capacity Ratio

Design Of Shear Design for shear along D Critical Analysis Load Combination Critical Load Combination Nu Muy Vuy λ φ deff ρw mm Vcy Permissible Vuy Link For Shear Design Along D are not required   Design for shear along B Critical Analysis Load Combination Critical Load Combination Nu Mux Vux λ φ deff ρw mm

= =

MRes/ MCap 0.384 < 1

: = = = = = = = = = = <

37 [2] : 1.2 (LOAD 3: DL) +1.6 (LOAD 4: LL) 663.1 11 -9.3354 1 0.65 340.5 0.006 93.4 293.05 Vcy Permissible

: = = = = = = = = =

37 [2] : 1.2 (LOAD 3: DL) +1.6 (LOAD 4: LL) 663.1 15.59 -12.5283 1 0.65 340.5 0.006 88.81

kN kN kNm kN

mm kNm kN

kN kN kNm kN

mm kNm 521

Vcx Permissible Vux Link For Shear Design Along B are not required

= <

293.05 Vcx Permissible

kN

Design Of Links Links in the zone where special confining links are not required Normal Links Diameter of link

= 10

    Criterion for spacing of normal links Min. Longitudinal Bar dia X 16 48 x diameter of links Provided spacing   Criterion for spacing of Ductile links: Min. Longitudinal Bar dia x 8 24 x diameter of links B/2 Spacing Provided Spacing     Table For Links

> Max. longitudinal bar dia / 4 = 4.75 mm

Link Dia. Spacing

Normal Design 10 200

Required Shear Design -----

mm

= 256 = 480 = 200

mm mm mm

= = = = =

mm mm mm mm mm

128 240 200 300 125

Provided Ductile Design 10 125

Normal Zone 10 200

Ductile Zone 10 125 522

  General Data Column No. Level Design Code Grade Of Concrete Grade Of Steel Consider Ductile Type of Frame Column B Column D Clear Cover Clear Floor Height @ lux Clear Floor Height @ luy No Of Floors No Of Columns In Group

: : = = = = = = = = = = = =

C5 5.5m To 8.5m ACI 318M - 2011 C25 Fy420 Yes Intermediate 400 400 50 2600 2600 1 1

Analysis Reference No.

=

41

Critical Analysis Load Combination

:

40

Load Combination Critical Location Put Muxt Muyt Vuxt Vuyt

= = = = = = =

[5] : 1.42 (LOAD 3: DL) +0.5 (LOAD 4: LL) -1.25 (LOAD 1: EQ X) Bottom Joint 227.17 kN 68.85 kNm -38.46 kNm -27.46 kN -46.16 kN

N/sqmm N/sqmm

mm mm mm mm mm

Load Data

523

Pub Muxb Muyb Vuxb Vuyb

= = = = =

243.23 -69.6 43.89 -27.46 -46.16

Effective Length Calculation Calculation Along Major Axis Of Column Joint Column Stiffness

Bottom Top

N-M 71.111 71.111

Beam Sizes Beam 1 Beam 2 (Length x Width x (Length x Width x Depth) Depth) mm mm 5000 x 250 x 400 5000 x 250 x 400 5000 x 250 x 400 5000 x 250 x 400

Sway Condition (as per Stability Index) Effective Length Factor along Major Axis Calculation Along Minor Axis Of Column Joint Column Stiffness

Bottom Top

N-M 71.111 71.111

= =

kN kNm kNm kN kN

Beam Stiffness Beam 1 Beam 2 N-M 26.667 26.667

N-M 26.667 26.667

Beta

2.48 1.335

Non Sway 1

Beam Sizes Beam 1 Beam 2 (Length x Width x (Length x Width x Depth) Depth) mm mm 4000 x 250 x 400 4000 x 250 x 400 4000 x 250 x 400 4000 x 250 x 400

Beam Stiffness Beam 1 Beam 2 N-M 33.333 33.333

N-M 33.333 33.333

Beta

1.978 1.065

524

Sway Condition (as per Stability Index) Effective Length Factor along Minor axis Check For Stability Index Along D        Q   Along B        Q

Slenderness Check Column Is Braced Along D Slenderness Check along D K r Kluy /r M1 M2 34 - 12 x (M1/M2) Column Is Braced Along B Slenderness Check along B K r Klux /r M1 M2

= =

Non Sway 1

= 0.003 0.003< 0.05, Column shall be designed as non-sway frame (Braced)       = 0.002 0.002< 0.05, Column shall be designed as non-sway frame (Braced)

= 1 = 115.47 = 22.52 = 68.85 = -69.6 = 45.87 22.52 < 45.87, Column not slender along D

= = = = =

1 115.47 22.52 -38.46 43.89

mm kNm kNm

mm kNm kNm 525

34 - 12 x (M1/M2)

= 44.52 22.52 < 44.52, Column not slender along B

Calculation of Design Moment Direction

Manalysis A 68.85 -69.6 -38.46 43.89

Major Axis Mux (top) Major Axis Mux (bottom) Minor Axis Muy (top) Minor Axis Muy (bottom)

Msldr or Mc B -

Mdesign-final C 68.85 -69.6 -38.46 43.89

Where A B C

= Moments from analysis = Moment due to slenderness effect = Final design Moment = Maximum of (Manalysis, Maximum of (Msldr or Mc))

  Final Critical Design Forces Critical Case - Axial Load & BiAxial Bending Pu Mux Muy Resultant Moment (Combined Action) Moment Capacity Check Pt Calculated Reinforcement Provided Load Angle MRes ( φ ) MCap

= = =

243.23 -69.6 43.89

kN kNm kNm

= = = = = =

1.21 4-#19 + 4-#16 Tan-1(Muy/Mux) 32.23 82.28 140.7

deg kNm kNm 526

Capacity Ratio

Design Of Shear Design for shear along D Critical Analysis Load Combination Critical Load Combination Nu Muy Vuy λ φ deff ρw mm Vcy Permissible Vuy Link For Shear Design Along D are not required   Design for shear along B Critical Analysis Load Combination Critical Load Combination Nu Mux Vux λ φ deff ρw mm

= =

MRes/ MCap 0.585 < 1

: = = = = = = = = = = <

44 [9] : 1.42 (LOAD 3: DL) -1.25 (LOAD 1: EQ X) 199.23 65.89 -44.3256 1 0.65 340.5 0.006 34.53 112.18 Vcy Permissible

: = = = = = = = = =

43 [8] : 1.42 (LOAD 3: DL) +1.25 (LOAD 2: EQ Z) 201.65 61.38 -43.5032 1 0.65 340.5 0.006 29.63

kN kN kNm kN

mm kNm kN

kN kN kNm kN

mm kNm 527

Vcx Permissible Vux Link For Shear Design Along B are not required

= <

112.35 Vcx Permissible

kN

Design Of Links Links in the zone where special confining links are not required Normal Links Diameter of link

= 10

    Criterion for spacing of normal links Min. Longitudinal Bar dia X 16 48 x diameter of links Provided spacing   Criterion for spacing of Ductile links: Min. Longitudinal Bar dia x 8 24 x diameter of links B/2 Spacing Provided Spacing     Table For Links

> Max. longitudinal bar dia / 4 = 4.75 mm

Link Dia. Spacing

Normal Design 10 200

Required Shear Design -----

mm

= 256 = 480 = 200

mm mm mm

= = = = =

mm mm mm mm mm

128 240 200 300 125

Provided Ductile Design 10 125

Normal Zone 10 200

Ductile Zone 10 125 528

  General Data Wall No. Level Design Code Grade Of Concrete Grade Of Steel Wall B Wall D Clear Cover Clear Floor Height @ B Clear Floor Height @ D No Of Floors No Of Walls In Group

: : = = = = = = = = = =

C6 0m To 2m ACI 318M - 2011 C25 Fy420 300 4000 50 1600 1600 1 1

Analysis Reference No.

=

128

Critical Analysis Load Combination

:

49

Load Combination Critical Location Put Muxt Muyt Vuxt Vuyt Pub Muxb

= = = = = = = = =

[14] : 0.68 (LOAD 3: DL) -1.25 (LOAD 2: EQ Z) Bottom Joint 359.64 -6131.78 -2.62 -1.39 1335.17 398.11 -8801.42

N/sqmm N/sqmm mm mm mm mm mm

Load Data

kN kNm kNm kN kN kN kNm 529

Muyb Vuxb Vuyb

= = =

-5.39 -1.39 1335.17

kNm kN kN

Check For Requirement Of Boundary Element Check For Maximum Compressive Stress Having maxstress in between level's (2m - 8.5m) At level (2m) Load Combination

=

Maximum Stress 0.2 x Fck Maximum Stress in Wall > 0.2 x Fck Hence Boundary Element is applicable   At level (2m)

= =

Load Combination

=

Maximum Stress 0.15 x Fck Maximum Stress in Wall > 0.15 x Fck Hence Boundary Element is applicable

= =

Effective Length Calculation Calculation Along Major Axis Of Column Joint Column Stiffness

[6] : 1.42 (LOAD 3: DL) +0.5 (LOAD 4: LL) -1.25 (LOAD 2: EQ Z) 11.92 N/sqmm 5 N/sqmm

[6] : 1.42 (LOAD 3: DL) +0.5 (LOAD 4: LL) -1.25 (LOAD 2: EQ Z) 11.92 N/sqmm 3.75 N/sqmm

Beam Sizes Beam 1 Beam 2 (Length x Width x (Length x Width x Depth) Depth)

Beam Stiffness Beam 1 Beam 2

Beta

530

Bottom Top

N-M 80000 80000

mm mm No Beam No Beam 4000 x 250 x 400 4000 x 250 x 400

Sway Condition (as per Stability Index) Effective Length Factor along Major Axis Calculation Along Minor Axis Of Column Joint Column Stiffness

Bottom Top

N-M 450 450

Sway Condition (as per Stability Index) Effective Length Factor along Minor axis Check For Stability Index Along D        Q   Along B        Q

= =

N-M 33.333

1 785.714

Non Sway 0.87

Beam Sizes Beam 1 Beam 2 (Length x Width x (Length x Width x Depth) Depth) mm mm No Beam No Beam 5000 x 250 x 400 No Beam = =

N-M 33.333

Beam Stiffness Beam 1 Beam 2 N-M 26.667

N-M -

Beta

1 8.839

Non Sway 0.87

= 0.001 0.001< 0.05, Wall shall be designed as non-sway frame (Braced)       = 0.002 0.002< 0.05, Wall shall be designed as non-sway frame (Braced)

Slenderness Check 531

Column Is Braced Along D Slenderness Check along D K r Kluy /r M1 M2 34 - 12 x (M1/M2) Column Is Braced Along B Slenderness Check along B K r Klux /r M1 M2 34 - 12 x (M1/M2)

Calculation of Design Moment Direction Major Axis Mux (top) Major Axis Mux (bottom) Minor Axis Muy (top) Minor Axis Muy (bottom)

= 0.87 = 1154.7 = 1.21 = -6131.78 = -8801.42 = 25.64 1.21 < 25.64, Wall not slender along D

mm kNm kNm

= 0.87 = 86.6 = 16.07 = -2.62 = -5.39 = 28.18 16.07 < 28.18, Wall not slender along B

Manalysis A -6131.78 -8801.42 -2.62 -5.39

mm kNm kNm

Msldr or Mc B -

Mdesign-final C -6131.78 -8801.42 -2.62 -5.39

Where A

= Moments from analysis 532

B C

= Moment due to slenderness effect = Final design Moment = Maximum of (Manalysis, Maximum of (Msldr or Mc))

  Final Critical Design Forces Critical Case - Axial Load & BiAxial Bending Pu Mux Muy

= = =

398.11 -8801.42 -5.39

= = = = = = = =

1.34 28-#19 + 28-#19 Tan-1(Muy/Mux) 0.04 8801.42 10741.99 MRes/ MCap 0.819 < 1

Check For Boundary Element Length of boundary element Ast provided in BE δu Hw lw c (due to deflection)

= = = = = =

575 16045.18 0.91 8500 4000 952.38

Design Of Shear Design for shear along D Critical Analysis Load Combination

:

39

Resultant Moment (Combined Action) Moment Capacity Check Pt Calculated Reinforcement Provided Load Angle MRes ( φ ) MCap Capacity Ratio

kN kNm kNm

deg kNm kNm

mm mm2 mm mm mm mm

533

Critical Load Combination

=

Nu Muy Vuy λ φ d αc pt Vn (Maximum)

= = = = = = = = = = = <

Vcy Vuy Link For Shear Design Along D are not required   Design for shear along B Critical Analysis Load Combination

:

Critical Load Combination

=

Nu Mux Vux λ φ b αc pt Vn (Maximum)

= = = = = = = = = =

[4] : 1.42 (LOAD 3: DL) +0.5 (LOAD 4: LL) +1.25 (LOAD 2: EQ Z) 779.02 5897.45 1322.22 1 0.65 3940.5 0.25 0.0067 0.83 x Sqrt(Fc) x ColB x d 4905.92 4869.48 Vcy Permissible

39 [4] : 1.42 (LOAD 3: DL) +0.5 (LOAD 4: LL) +1.25 (LOAD 2: EQ Z) 779.02 0.87 4.25 1 0.65 240.5 0.17 0.0067 0.83 x Sqrt(Fc) x ColD x b 3992.3

kN kN kNm kN

mm

kN

kN kN kNm kN

mm

534

Vcx Vux Link For Shear Design Along D are not required

= <

4389.48 Vcx Permissible

Design Of Links  Main Links Links in the zone where special confining links are not required Normal Links Min. Horizontal Reinforcement Diameter of main horizontal steel Thus, Spacing  Spacing of horizontal reinforcement is minimum of following D/5 3xB Maximum Spacing considered   Table For Links Required Normal Design Shear Design Link Dia. 10 --Spacing 300 ---

kN

= = = =

0.25% of cross sectional area 750 10 300

sqmm mm mm

= = = =

800 900 450 300

mm mm mm mm

Provided Ductile Design 10 150

Normal Zone 10 300

Ductile Zone 10 150

  General Data Wall No. Level Design Code

: : =

C6 2m To 5.5m ACI 318M - 2011 535

Grade Of Concrete Grade Of Steel Wall B Wall D Clear Cover Clear Floor Height @ B Clear Floor Height @ D No Of Floors No Of Walls In Group

= = = = = = = = =

C25 Fy420 300 4000 50 3100 3100 1 1

Analysis Reference No.

=

129

Critical Analysis Load Combination

:

49

Load Combination Critical Location Put Muxt Muyt Vuxt Vuyt Pub Muxb Muyb Vuxb Vuyb

= = = = = = = = = = = =

[14] : 0.68 (LOAD 3: DL) -1.25 (LOAD 2: EQ Z) Bottom Joint 237.46 -1759.23 2.21 -1.32 1256.96 304.78 -6157.41 -2.41 -1.32 1256.96

N/sqmm N/sqmm mm mm mm mm mm

Load Data

kN kNm kNm kN kN kN kNm kNm kN kN

Check For Requirement Of Boundary Element 536

Check For Maximum Compressive Stress Having maxstress in between level's (2m - 8.5m) At level (2m) Load Combination

=

Maximum Stress 0.2 x Fck Maximum Stress in Wall > 0.2 x Fck Hence Boundary Element is applicable   At level (5.5m)

= =

Load Combination

=

Maximum Stress 0.15 x Fck Maximum Stress in Wall > 0.15 x Fck Hence Boundary Element is applicable

= =

[6] : 1.42 (LOAD 3: DL) +0.5 (LOAD 4: LL) -1.25 (LOAD 2: EQ Z) 11.92 N/sqmm 5 N/sqmm

[6] : 1.42 (LOAD 3: DL) +0.5 (LOAD 4: LL) -1.25 (LOAD 2: EQ Z) 8.42 N/sqmm 3.75 N/sqmm

Effective Length Calculation Calculation Along Major Axis Of Column Joint Column Stiffness

Bottom Top

N-M 45714.286 45714.286

Beam Sizes Beam 1 Beam 2 (Length x Width x (Length x Width x Depth) Depth) mm mm 4000 x 250 x 400 4000 x 250 x 400 4000 x 250 x 400 4000 x 250 x 400

Sway Condition (as per Stability Index) Effective Length Factor along Major Axis

= =

Beam Stiffness Beam 1 Beam 2 N-M 33.333 33.333

N-M 33.333 33.333

Beta

785.714 619.048

Non Sway 1 537

Calculation Along Minor Axis Of Column Joint Column Stiffness

Bottom Top

N-M 257.143 257.143

Sway Condition (as per Stability Index) Effective Length Factor along Minor axis Check For Stability Index Along D        Q   Along B        Q

Slenderness Check Column Is Braced Along D Slenderness Check along D K r Kluy /r M1 M2

Beam Sizes Beam 1 Beam 2 (Length x Width x (Length x Width x Depth) Depth) mm mm 5000 x 250 x 400 No Beam 5000 x 250 x 400 No Beam = =

Beam Stiffness Beam 1 Beam 2 N-M 26.667 26.667

Beta

N-M -

8.839 6.964

Non Sway 1

= 0.002 0.002< 0.05, Wall shall be designed as non-sway frame (Braced)       = 0.003 0.003< 0.05, Wall shall be designed as non-sway frame (Braced)

= = = = =

1 1154.7 2.68 -1759.23 -6157.41

mm kNm kNm 538

34 - 12 x (M1/M2) Column Is Braced Along B Slenderness Check along B K r Klux /r M1 M2 34 - 12 x (M1/M2)

= 30.57 2.68 < 30.57, Wall not slender along D

= 1 = 86.6 = 35.8 = 2.21 = -2.41 = 45.02 35.8 < 45.02, Wall not slender along B

Calculation of Design Moment Direction

Manalysis A -1759.23 -6157.41 2.21 -2.41

Major Axis Mux (top) Major Axis Mux (bottom) Minor Axis Muy (top) Minor Axis Muy (bottom)

mm kNm kNm

Msldr or Mc B -

Mdesign-final C -1759.23 -6157.41 2.21 -2.41

Where A B C

= Moments from analysis = Moment due to slenderness effect = Final design Moment = Maximum of (Manalysis, Maximum of (Msldr or Mc))

  Final Critical Design Forces Critical Case - Axial Load & BiAxial Bending Pu Mux Muy

= = =

304.78 -6157.41 -2.41

kN kNm kNm 539

Resultant Moment (Combined Action) Moment Capacity Check Pt Calculated Reinforcement Provided Load Angle

= = = = = = = =

1.34 28-#19 + 28-#19 Tan-1(Muy/Mux) 0.02 6157.41 10615.47 MRes/ MCap 0.58 < 1

Check For Boundary Element Length of boundary element Ast provided in BE δu Hw lw c (due to deflection)

= = = = = =

575 16045.18 3.27 8500 4000 952.38

Design Of Shear Design for shear along D Critical Analysis Load Combination

:

Critical Load Combination

=

Nu Muy Vuy λ φ d

= = = = = =

40 [5] : 1.42 (LOAD 3: DL) +0.5 (LOAD 4: LL) -1.25 (LOAD 1: EQ X) 545.06 1092.1 912.98 1 0.65 3940.5

MRes ( φ ) MCap Capacity Ratio

deg kNm kNm

mm mm2 mm mm mm mm

kN kN kNm kN

mm 540

αc pt Vn (Maximum) Vcy Vuy Link For Shear Design Along D are not required   Design for shear along B Critical Analysis Load Combination

= = = = = <

0.25 0.0067 0.83 x Sqrt(Fc) x ColB x d 4905.92 4869.48 Vcy Permissible

:

40 [5] : 1.42 (LOAD 3: DL) +0.5 (LOAD 4: LL) -1.25 (LOAD 1: EQ X) 506.46 2.09 11.41 1 0.65 240.5 0.17 0.0067 0.83 x Sqrt(Fc) x ColD x b 3992.3 4389.48 Vcx Permissible

Critical Load Combination

=

Nu Mux Vux λ φ b αc pt Vn (Maximum)

= = = = = = = = = = = <

Vcx Vux Link For Shear Design Along D are not required

kN

kN kN kNm kN

mm

kN

Design Of Links  Main Links Links in the zone where special confining links are not required Normal Links 541

Min. Horizontal Reinforcement Diameter of main horizontal steel Thus, Spacing  Spacing of horizontal reinforcement is minimum of following D/5 3xB Maximum Spacing considered   Table For Links Required Normal Design Shear Design Link Dia. 10 --Spacing 300 ---

= = = =

0.25% of cross sectional area 750 10 300

sqmm mm mm

= = = =

800 900 450 300

mm mm mm mm

Provided Ductile Design 10 150

Normal Zone 10 300

Ductile Zone 10 150

  General Data Wall No. Level Design Code Grade Of Concrete Grade Of Steel Wall B Wall D Clear Cover Clear Floor Height @ B Clear Floor Height @ D No Of Floors

: : = = = = = = = = =

C6 5.5m To 8.5m ACI 318M - 2011 C25 Fy420 300 4000 50 2600 2600 1

N/sqmm N/sqmm mm mm mm mm mm

542

No Of Walls In Group

=

1

Analysis Reference No.

=

130

Critical Analysis Load Combination

:

41

Load Combination Critical Location Put Muxt Muyt Vuxt Vuyt Pub Muxb Muyb Vuxb Vuyb

= = = = = = = = = = = =

[6] : 1.42 (LOAD 3: DL) +0.5 (LOAD 4: LL) -1.25 (LOAD 2: EQ Z) Bottom Joint 173.9 kN 46.43 kNm 18.02 kNm -10.54 kN 637.81 kN 294.39 kN -1866.49 kNm -13.59 kNm -10.54 kN 637.81 kN

Load Data

Check For Requirement Of Boundary Element Check For Maximum Compressive Stress Having maxstress in between level's (2m - 8.5m) At level (2m) Load Combination

=

Maximum Stress 0.2 x Fck Maximum Stress in Wall > 0.2 x Fck

= =

[6] : 1.42 (LOAD 3: DL) +0.5 (LOAD 4: LL) -1.25 (LOAD 2: EQ Z) 11.92 N/sqmm 5 N/sqmm

543

Hence Boundary Element is applicable   At level (8.5m) Load Combination

=

Maximum Stress 0.15 x Fck Maximum Stress in Wall < 0.15 x Fck Hence Boundary Element is not applicable

= =

[6] : 1.42 (LOAD 3: DL) +0.5 (LOAD 4: LL) -1.25 (LOAD 2: EQ Z) 2.8 3.75

Effective Length Calculation Calculation Along Major Axis Of Column Joint Column Stiffness

Bottom Top

N-M 53333.333 53333.333

Beam Sizes Beam 1 Beam 2 (Length x Width x (Length x Width x Depth) Depth) mm mm 4000 x 250 x 400 4000 x 250 x 400 4000 x 250 x 400 4000 x 250 x 400

Sway Condition (as per Stability Index) Effective Length Factor along Major Axis Calculation Along Minor Axis Of Column Joint Column Stiffness

Bottom

N-M 300

= =

Beam Stiffness Beam 1 Beam 2 N-M 33.333 33.333

N-M 33.333 33.333

Beta

619.048 333.333

Non Sway 1

Beam Sizes Beam 1 Beam 2 (Length x Width x (Length x Width x Depth) Depth) mm mm 5000 x 250 x 400 No Beam

Beam Stiffness Beam 1 Beam 2 N-M 26.667

N-M -

Beta

6.964 544

Top

300

Sway Condition (as per Stability Index) Effective Length Factor along Minor axis Check For Stability Index Along D        Q   Along B        Q

Slenderness Check Column Is Braced Along D Slenderness Check along D K r Kluy /r M1 M2 34 - 12 x (M1/M2) Column Is Braced Along B Slenderness Check along B K r Klux /r M1

5000 x 250 x 400 = =

No Beam

26.667

-

3.75

Non Sway 1

= 0.002 0.002< 0.05, Wall shall be designed as non-sway frame (Braced)       = 0.003 0.003< 0.05, Wall shall be designed as non-sway frame (Braced)

= 1 = 1154.7 = 2.25 = 46.43 = -1866.49 = 34.3 2.25 < 34.3, Wall not slender along D

= = = =

1 86.6 30.02 -13.59

mm kNm kNm

mm kNm 545

M2 34 - 12 x (M1/M2)

= 18.02 = 43.05 30.02 < 43.05, Wall not slender along B

Calculation of Design Moment Direction

Manalysis A 46.43 -1866.49 18.02 -13.59

Major Axis Mux (top) Major Axis Mux (bottom) Minor Axis Muy (top) Minor Axis Muy (bottom)

kNm

Msldr or Mc B -

Mdesign-final C 46.43 -1866.49 18.02 -13.59

Where A B C

= Moments from analysis = Moment due to slenderness effect = Final design Moment = Maximum of (Manalysis, Maximum of (Msldr or Mc))

  Final Critical Design Forces Critical Case - Axial Load & BiAxial Bending Pu Mux Muy Resultant Moment (Combined Action) Moment Capacity Check Pt Calculated Reinforcement Provided Load Angle MRes

= = =

294.39 -1866.49 -13.59

kN kNm kNm

= = = = =

1.34 28-#19 + 28-#19 Tan-1(Muy/Mux) 0.42 1866.54

deg kNm 546

( φ ) MCap Capacity Ratio

= = =

10599.77 MRes/ MCap 0.176 < 1

Design Of Shear Design for shear along D Critical Analysis Load Combination

:

Critical Load Combination

=

Nu Muy Vuy λ φ d αc pt Vn (Maximum)

= = = = = = = = = = = <

40 [5] : 1.42 (LOAD 3: DL) +0.5 (LOAD 4: LL) -1.25 (LOAD 1: EQ X) 302.8 1124.12 385.98 1 0.65 3940.5 0.25 0.0067 0.83 x Sqrt(Fc) x ColB x d 4905.92 4869.48 Vcy Permissible

Vcy Vuy Link For Shear Design Along D are not required   Design for shear along B Critical Analysis Load Combination

:

Critical Load Combination

=

Nu Mux Vux

= = =

40 [5] : 1.42 (LOAD 3: DL) +0.5 (LOAD 4: LL) -1.25 (LOAD 1: EQ X) 285.19 0.62 1.23

kNm

kN kN kNm kN

mm

kN

kN kN kNm kN 547

λ φ b αc pt Vn (Maximum) Vcx Vux Link For Shear Design Along D are not required

= = = = = = = = <

Design Of Links  Main Links Links in the zone where special confining links are not required Normal Links Min. Horizontal Reinforcement Diameter of main horizontal steel Thus, Spacing  Spacing of horizontal reinforcement is minimum of following D/5 3xB Maximum Spacing considered   Table For Links Required Normal Design Shear Design Link Dia. 10 --Spacing 300 ---

1 0.65 240.5 0.17 0.0067 0.83 x Sqrt(Fc) x ColD x b 3992.3 4389.48 Vcx Permissible

mm

kN

= = = =

0.25% of cross sectional area 750 10 300

sqmm mm mm

= = = =

800 900 450 300

mm mm mm mm

Provided Ductile Design -----

Normal Zone 10 300

Ductile Zone ----548

549

APPENDIX B.6: COMPUTATION OF SLAB (DS W/ IMF)

Design Code Grade Of Concrete Grade Of Steel Clear Cover Long Span, Ly Short Span, Lx Imposed Load Live Load, Qk Slab Thickness Effective Depth Along LX, Deffx Effective Depth Along LY, Deffy Self Weight Total Load, TL (ultimate) Span Load Combination  

= = = = = = = = = = = = = = =

ACI 318 - 2011 C20 Fy420 20.000 mm 5.000 m 4.000 m 2.553 kN/sqm 2.400 kN/sqm 150.000 mm 125.000 mm 115.000 mm 3.750 kN/sqm 11.404 kN/sqm 2-Way 1.2 DL + 1.6 LL Short Span Side1 Side2

Beam         B (mm)         D (mm)         Ib (mm4)    x106 Adjacent Slab         Thk (mm)         Span (mm)         Ib (mm4)    x106

Long Span Side1 Side2

250 400 1333.33

250 400 1333.33

250 400 1333.33

250 400 1333.33

562.5

150 4850 1244.53

150 5000 1406.25

703.12 550

αf lx, αf ly 2.37 1.07 0.95 1.9 αf 1.57 Ln (mm) 3750 4750 L2 (mm) 2625 2125 Total BM (kNm) 52.62 68.34 Bottom         Moment Coefficent 0.57 0.57         Distributed Moment (kNm) 29.99 38.96         CS Moment (kNm) 20.25 26.3         MS Moment (kNm) 9.75 12.66         Moment on Beam (kNm) 17.21 22.35         Design Moment M1, M3 (kNm) 3.04 3.94 Top         Moment Coefficent 0.7 0.7         Distributed Moment (kNm) 36.83 47.84         CS Moment (kNm) 24.86 32.29         MS Moment (kNm) 11.97 15.55         Moment on Beam (kNm) 21.13 27.45         Design Moment M2, M4 (kNm) 3.731 4.84 Design Moments: Short Span Positive Moment At Midspan M1 = 3.037 kNm Area Of Reinforcement = 64.684 kN/sqmm Required (BM) Reinforcement Provided = #10 @ 250 C/C   = 284.000 kN/sqmm Short Span Negative Moment At Continuous Support M2 = 3.729 kNm 551

Area Of Reinforcement = 79.554 kN/sqmm Required (BM) Reinforcement Provided = #10 @ 250 C/C   = 284.000 kN/sqmm Long Span Positive Moment At Midspan M3 = 3.944 kNm Area Of Reinforcement = 91.638 kN/sqmm Required (BM) Reinforcement Provided = #10 @ 250 C/C   = 284.000 kN/sqmm Long Span Negative Moment At Continuous Support M4 = 4.844 kNm Area Of Reinforcement = 112.797 kN/sqmm Required (BM) Reinforcement Provided = #10 @ 250 C/C   = 284.000 kN/sqmm Distribution Reinforcement @ 0.18% Area Of Reinforcement = 225.000 sqmm Required Reinforcement Provided = #10 @ 250 C/C = 284.000 kN/sqmm Shear Check : Along Short Span Vsx (TL(ultimate) x Lx / 4) = 11.404 kN Nominal Shear, Vc = 95.033 kN  > 11.404 Slab Is Safe In Shear Along Long Span Vsy (TL(ultimate) x Lx / 2 x (1 - = 13.684 kN (Lx / (2 x Ly)))) Nominal Shear, Vc = 87.430 kN  > 13.684 Slab Is Safe In Shear 552

APPENDIX B.7: COMPUTATION OF BEAM (DS W/ SMF) Group

: G3

Beam No

: B3 553

Analysis Reference (Member)

5.5m : 25

Beam Length Breadth (B) Depth (D) Effective Depth (d) Design Code Beam Type Grade Of Concrete (Fck) Grade Of Steel Clear Cover (Cmin) Es Mubal As,min (flex) (B) As,nominal (Bn)   For Longitudinal Reinf

Critical L/C - Analysis Critical L/C - RCDC Mu (kNm) As (flex) (sqmm) (C) Asc (flex) (sqmm) (A) Tu (kNm) Tcr/4 (kNm) Al, min(sqmm)(Tor.) (D) Al (sqmm) (Tor.) (E) Al (Dist) (sqmm) (D)

: : : : : : : : : : : : :

Left 38 3 29.747 247.66 4.291 2.14 309.61 137.61 59.54

4999.99 mm 250 mm 400 mm 330 mm ACI 318M - 2011 Regular Beam C20 N/sqmm Fy420 N/sqmm 40 mm 2x10^5 N/sqmm 138 kNm 275 sqmm 107.25 sqmm

Beam Bottom Mid 37 2 59.877 520.59 3.865 2.14 323.27 123.95 62.17

Right -

Left 40 5 18.628 152.83 3.536 2.14 333.82 113.4 64.2

Beam Top Mid 42 7 13.755 112.15 4.054 2.14 317.2 130.01 61

Right 38 3 118.085 1141.88 4.291 2.14 309.61 137.61 59.54 554

Ast (sqmm) AstPrv (sqmm) Reinforcement

307.2 397.12 2-#16

582.76 595.68 3-#16

107.25 397.12 2-#16

275 397.12 2-#16

225.1 397.12 2-#16

1201.42 1410.54 2-#25 2-#16

  Note: Calculation of Ast    Ast = Ast = Where, A = B = Bn = C = D = Ast (Dist) (sqmm)   For Transverse Reinf Critical L/C - RCDC PtPrv (%) Vu (kN) Mu-Sect (kNm) Vc (kN) Vs (kN) Av (sqmm) Tu (kNm) Ao= Φ*Aoh

Max {B, C+D, A+D} (for Mu > 0) Bn (for Mu = 0) Asc (flex) As,min (flex) As,nominal As (flex) Al (Dist)

= = = = = =

Left 4 0.481 49.79 49.34 0.6 342.34 5.38 44550

Compression reinforcement required for bending moment Min area of flexural reinforcement Nominal area of reinforcement Total area of longitudinal reinforcement calculated at a given section Distributed longitudinal torsional reinforcement at section considered Max(Al,min (Tor), Al (Tor)) x ((2B) / (2B + 2D))

Mid 4 0.722 50.22 20.47 50.42 338.01 5.38 44550

Right 4 1.71 86.24 62.26 31.98 568.74 5.38 44550 555

At (sqmm) Legs Stirrup Rebar Asv Torsion (sqmm) Av Total Reqd (sqmm) Asv Reqd (sqmm) SCalc (mm) SPrv (mm) Av Total Prv (sqmm)

338.01 2 10 338.014 342.34 342.345 125 125 1134.08

338.01 2 10 338.014 338.01 355.774 125 125 1134.08

= 250 = 127

mm mm

= 180 = 125

mm mm

338.01 2 10 338.014 568.74 694.114 125 125 1134.08

  Maximum Spacing Criteria             Basic                                                Spc1                 Spc2        For Torsion                                                  (X1 = 180, Y1 = 330)                 Spc3 = X1                 Spc4=(X1+Y1)/4   Skin reinforcement    Beam Width Beam Depth Torsion

= 250 mm = 400 mm = 5.38 > 0 kNm Beam Depth >1000 Or Torsion > 0, Hence SFR Provided 556

Al Tor. (max) Asr

= = = = = =

SR provided Asr provided Provided Spacing    Spacing Criteria             Maximum Spacing            

333.82 sqmm Max(Al(min)(Tor.), Al(Tor.)) x (2D / (2B+2D)) 209.82 sqmm 1-#13EF 253.35 sqmm 113.95 mm

= 280

mm

   Group

: G3

Beam No

: B4

Analysis Reference (Member) Beam Length Breadth (B) Depth (D) Effective Depth (d) Design Code Beam Type Grade Of Concrete (Fck) Grade Of Steel Clear Cover (Cmin) Es Mubal As,min (flex) (B)

5.5m : 26 : : : : : : : : : : : :

4999.99 mm 250 mm 400 mm 330 mm ACI 318M - 2011 Regular Beam C20 N/sqmm Fy420 N/sqmm 40 mm 2x10^5 N/sqmm 138 kNm 275 sqmm 557

As,nominal (Bn)   For Longitudinal Reinf

: 107.25

Left 46 11 7.294 59 0.96 2.14 107.25 397.12 2-#16

Critical L/C - Analysis Critical L/C - RCDC Mu (kNm) As (flex) (sqmm) (C) Asc (flex) (sqmm) (A) Tu (kNm) Tcr/4 (kNm) Al, min(sqmm)(Tor.) (D) Al (sqmm) (Tor.) (E) Al (Dist) (sqmm) (D) Ast (sqmm) AstPrv (sqmm) Reinforcement

sqmm

Beam Bottom Mid 37 2 39.648 334.61 0.466 2.14 334.61 397.12 2-#16

Right 48 13 5.32 42.91 0.38 2.14 107.25 397.12 2-#16

Left 40 5 93.051 855.57 0.075 2.14 855.57 1410.54 2-#25 2-#16

Beam Top Mid 48 13 9.57 77.62 0.377 2.14 107.25 397.12 2-#16

Right 38 3 95.719 884.49 1.262 2.14 884.49 1146.08 2-#19 2-#19

  Note: Calculation of Ast    Ast Ast Where, A B Bn

= =

Max {B, C+D, A+D} (for Mu > 0) Bn (for Mu = 0)

= = =

Asc (flex) As,min (flex) As,nominal

= = =

Compression reinforcement required for bending moment Min area of flexural reinforcement Nominal area of reinforcement 558

C D Ast (Dist) (sqmm)   For Transverse Reinf

= =

Critical L/C - RCDC PtPrv (%) Vu (kN) Mu-Sect (kNm) Vc (kN) Vs (kN) Av (sqmm) Tu (kNm) Ao= Φ*Aoh At (sqmm) Legs Stirrup Rebar Asv Torsion (sqmm) Av Total Reqd (sqmm) Asv Reqd (sqmm) SCalc (mm) SPrv (mm) Av Total Prv (sqmm)

As (flex) Al (Dist)

= = =

Left 5 1.71 76 62.26 18.32 208.33 0.08 2 10 0 208.33 258.572 125 125 1134.08

Total area of longitudinal reinforcement calculated at a given section Distributed longitudinal torsional reinforcement at section considered Max(Al,min (Tor), Al (Tor)) x ((2B) / (2B + 2D))

Mid 1 0.481 28.75 17.53 47.01 208.33 0.6 2 10 0 208.33 208.333 125 125 1134.08

Right 3 1.389 77.42 58.89 24.71 208.33 1.26 2 10 0 208.33 281.314 125 125 1134.08

  Maximum Spacing Criteria      559

       Basic                                                Spc1                 Spc2  

= 250 = 127

mm mm

Beam Width Beam Depth Depth   

= 250 = 400 = 400 <= 1000

mm mm

Group

: G3

Beam No

: B5

Skin reinforcement   

Analysis Reference (Member) Beam Length Breadth (B) Depth (D) Effective Depth (d) Design Code Beam Type Grade Of Concrete (Fck) Grade Of Steel Clear Cover (Cmin) Es Mubal As,min (flex) (B) As,nominal (Bn)  

5.5m : 27 : : : : : : : : : : : : :

4999.99 mm 250 mm 400 mm 330 mm ACI 318M - 2011 Regular Beam C20 N/sqmm Fy420 N/sqmm 40 mm 2x10^5 N/sqmm 138 kNm 275 sqmm 107.25 sqmm

560

For Longitudinal Reinf Left 107.25 397.12 2-#16

Critical L/C - Analysis Critical L/C - RCDC Mu (kNm) As (flex) (sqmm) (C) Asc (flex) (sqmm) (A) Tu (kNm) Tcr/4 (kNm) Al, min(sqmm)(Tor.) (D) Al (sqmm) (Tor.) (E) Al (Dist) (sqmm) (D) Ast (sqmm) AstPrv (sqmm) Reinforcement

Beam Bottom Mid 37 2 55.065 475.26 4.191 2.14 312.83 134.38 60.16 535.42 595.68 3-#16

Right 38 3 20.1 165.24 3.43 2.14 337.23 109.99 64.85 275 397.12 2-#16

Left 40 5 110.995 1057.14 5.036 2.14 285.73 161.49 54.95 1112.09 1146.08 2-#19 2-#19

Beam Top Mid 44 9 12.485 101.63 4.775 2.14 294.08 153.13 56.55 205.64 397.12 2-#16

Right 37 2 25.26 209.05 4.191 2.14 312.83 134.38 60.16 275 397.12 2-#16

  Note: Calculation of Ast    Ast Ast Where, A B Bn C D

= =

Max {B, C+D, A+D} (for Mu > 0) Bn (for Mu = 0)

= = = = =

Asc (flex) As,min (flex) As,nominal As (flex) Al (Dist)

= = = = =

Compression reinforcement required for bending moment Min area of flexural reinforcement Nominal area of reinforcement Total area of longitudinal reinforcement calculated at a given section Distributed longitudinal torsional reinforcement at section considered 561

Ast (Dist) (sqmm)   For Transverse Reinf Critical L/C - RCDC PtPrv (%) Vu (kN) Mu-Sect (kNm) Vc (kN) Vs (kN) Av (sqmm) Tu (kNm) Ao= Φ*Aoh At (sqmm) Legs Stirrup Rebar Asv Torsion (sqmm) Av Total Reqd (sqmm) Asv Reqd (sqmm) SCalc (mm) SPrv (mm) Av Total Prv (sqmm)

=

Max(Al,min (Tor), Al (Tor)) x ((2B) / (2B + 2D))

Left 4 1.389 84.19 58.89 33.74 592.82 5.56 44550 349.41 2 10 349.41 592.82 694.799 125 125 1134.08

Mid 4 0.722 48.17 19.21 50.56 349.41 5.56 44550 349.41 2 10 349.41 349.41 349.41 125 125 1134.08

= 250

mm

Right 4 0.481 51.84 49.34 3.34 373.5 5.56 44550 349.41 2 10 349.41 373.5 381.28 125 125 1134.08

  Maximum Spacing Criteria             Basic                                                Spc1

562

                Spc2        For Torsion                                                  (X1 = 180, Y1 = 330)                 Spc3 = X1                 Spc4=(X1+Y1)/4  

= 127

mm

= 180 = 125

mm mm

Skin reinforcement    Beam Width Beam Depth Torsion

Al Tor. (max) Asr SR provided Asr provided Provided Spacing    Spacing Criteria             Maximum Spacing                Group

= 250 mm = 400 mm = 5.56 > 0 kNm Beam Depth >1000 Or Torsion > 0, Hence SFR Provided = 337.23 sqmm = Max(Al(min)(Tor.), Al(Tor.)) x (2D / (2B+2D)) = 209.82 sqmm = 1-#13EF = 253.35 sqmm = 123.4 mm

= 280

mm

: G9

563

Beam No Analysis Reference (Member)

: B17 5.5m : 115

Beam Length Breadth (B) Depth (D) Effective Depth (d) Design Code Beam Type Grade Of Concrete (Fck) Grade Of Steel Clear Cover (Cmin) Es Mubal As,min (flex) (B) As,nominal (Bn)   For Longitudinal Reinf

Critical L/C - Analysis Critical L/C - RCDC Mu (kNm) As (flex) (sqmm) (C) Asc (flex) (sqmm) (A) Tu (kNm) Tcr/4 (kNm) Al, min(sqmm)(Tor.) (D) Al (sqmm) (Tor.) (E)

: : : : : : : : : : : : :

Left 49 14 10.194 82.75 0.313 2.14 -

3999.99 mm 250 mm 400 mm 330 mm ACI 318M - 2011 Regular Beam C20 N/sqmm Fy420 N/sqmm 40 mm 2x10^5 N/sqmm 138 kNm 275 sqmm 107.25 sqmm

Beam Bottom Mid 37 2 26.686 221.26 0.901 2.14 -

Right 47 12 7.16 57.92 0.48 2.14 -

Left 39 4 46.796 398.98 0.969 2.14 -

Beam Top Mid 49 14 7.223 58.42 0.313 2.14 -

Right 41 6 57.815 501.08 0.805 2.14 564

Al (Dist) (sqmm) (D) Ast (sqmm) AstPrv (sqmm) Reinforcement  

107.57 397.12 2-#16

275 397.12 2-#16

107.25 397.12 2-#16

398.98 573.04 2-#19

107.25 397.12 2-#16

501.08 573.04 2-#19

Note: Calculation of Ast    Ast Ast Where, A B Bn C D Ast (Dist) (sqmm)   For Transverse Reinf Critical L/C - RCDC PtPrv (%) Vu (kN) Mu-Sect (kNm) Vc (kN) Vs (kN) Av (sqmm) Tu (kNm) Ao= Φ*Aoh

= =

Max {B, C+D, A+D} (for Mu > 0) Bn (for Mu = 0)

= = = = =

Asc (flex) As,min (flex) As,nominal As (flex) Al (Dist)

= = = = = =

Left 1 0.695 38.52 51.58 208.33 0.81 -

Compression reinforcement required for bending moment Min area of flexural reinforcement Nominal area of reinforcement Total area of longitudinal reinforcement calculated at a given section Distributed longitudinal torsional reinforcement at section considered Max(Al,min (Tor), Al (Tor)) x ((2B) / (2B + 2D))

Mid 1 0.481 25.76 12.21 47.8 208.33 0.81 -

Right 1 0.695 43.63 51.58 208.33 0.81 565

At (sqmm) Legs Stirrup Rebar Asv Torsion (sqmm) Av Total Reqd (sqmm) Asv Reqd (sqmm) SCalc (mm) SPrv (mm) Av Total Prv (sqmm)

2 10 0 208.33 208.333 125 125 1134.08

2 10 0 208.33 208.333 125 125 1134.08

= 250 = 127

mm mm

Beam Width Beam Depth Depth   

= 250 = 400 = 400 <= 1000

mm mm

Group

: G9

Beam No

: B18

2 10 0 208.33 208.333 125 125 1134.08

  Maximum Spacing Criteria             Basic                                                Spc1                 Spc2   Skin reinforcement   

566

Analysis Reference (Member)

5.5m : 103

Beam Length Breadth (B) Depth (D) Effective Depth (d) Design Code Beam Type Grade Of Concrete (Fck) Grade Of Steel Clear Cover (Cmin) Es Mubal As,min (flex) (B) As,nominal (Bn)   For Longitudinal Reinf

Critical L/C - Analysis Critical L/C - RCDC Mu (kNm) As (flex) (sqmm) (C) Asc (flex) (sqmm) (A) Tu (kNm) Tcr/4 (kNm) Al, min(sqmm)(Tor.) (D) Al (sqmm) (Tor.) (E) Al (Dist) (sqmm) (D) Ast (sqmm)

: : : : : : : : : : : : :

Left 49 14 8.487 68.75 0.487 2.14 107.25

3999.99 mm 250 mm 400 mm 330 mm ACI 318M - 2011 Regular Beam C20 N/sqmm Fy420 N/sqmm 40 mm 2x10^5 N/sqmm 138 kNm 275 sqmm 107.25 sqmm

Beam Bottom Mid 37 2 19.998 164.36 0.556 2.14 213.67

Right 47 12 2.41 19.39 0.08 2.14 107.25

Left 39 4 50.208 430.22 0.406 2.14 430.22

Beam Top Mid 45 10 13.805 112.57 0.796 2.14 146.34

Right 41 6 68.124 600.04 0.813 2.14 600.04 567

AstPrv (sqmm)

397.12 2-#16

Reinforcement

397.12 2-#16

397.12 2-#16

573.04 2-#19

397.12 2-#16

1586.46 2-#25 2-#19

  Note: Calculation of Ast    Ast Ast Where, A B Bn C D Ast (Dist) (sqmm)   For Transverse Reinf Critical L/C - RCDC PtPrv (%) Vu (kN) Mu-Sect (kNm) Vc (kN) Vs (kN) Av (sqmm) Tu (kNm) Ao= Φ*Aoh At (sqmm)

= =

Max {B, C+D, A+D} (for Mu > 0) Bn (for Mu = 0)

= = = = =

Asc (flex) As,min (flex) As,nominal As (flex) Al (Dist)

= = = = = =

Left 1 0.695 36.69 51.58 208.33 0.58 -

Compression reinforcement required for bending moment Min area of flexural reinforcement Nominal area of reinforcement Total area of longitudinal reinforcement calculated at a given section Distributed longitudinal torsional reinforcement at section considered Max(Al,min (Tor), Al (Tor)) x ((2B) / (2B + 2D))

Mid 1 0.481 27.58 4.48 49.34 208.33 0.58 -

Right 1 1.923 45.45 64.5 208.33 0.58 568

Legs Stirrup Rebar Asv Torsion (sqmm) Av Total Reqd (sqmm) Asv Reqd (sqmm) SCalc (mm) SPrv (mm) Av Total Prv (sqmm)

2 10 0 208.33 208.333 125 125 1134.08

2 10 0 208.33 208.333 125 125 1134.08

= 250 = 127

mm mm

Beam Width Beam Depth Depth   

= 250 = 400 = 400 <= 1000

mm mm

Group

: G9

Beam No

: B19

2 10 0 208.33 208.333 125 125 1134.08

  Maximum Spacing Criteria             Basic                                                Spc1                 Spc2   Skin reinforcement   

Analysis Reference (Member)

5.5m : 91

569

Beam Length Breadth (B) Depth (D) Effective Depth (d) Design Code Beam Type Grade Of Concrete (Fck) Grade Of Steel Clear Cover (Cmin) Es Mubal As,min (flex) (B) As,nominal (Bn)   For Longitudinal Reinf

Critical L/C - Analysis Critical L/C - RCDC Mu (kNm) As (flex) (sqmm) (C) Asc (flex) (sqmm) (A) Tu (kNm) Tcr/4 (kNm) Al, min(sqmm)(Tor.) (D) Al (sqmm) (Tor.) (E) Al (Dist) (sqmm) (D) Ast (sqmm) AstPrv (sqmm)

: : : : : : : : : : : : :

Left 107.25 397.12

3999.99 mm 250 mm 400 mm 330 mm ACI 318M - 2011 Regular Beam C20 N/sqmm Fy420 N/sqmm 40 mm 2x10^5 N/sqmm 138 kNm 275 sqmm 107.25 sqmm

Beam Bottom Mid 41 6 43.153 366 11.698 2.14 72.09 375.12 72.14 438.14 595.68

Right 40 5 46.59 397.1 14.18 2.14 7.48 454.7 87.44 484.54 595.68

Left 39 4 149.603 1449.42 231.75 11.66 2.14 73.32 373.89 71.9 1521.32 1586.46

Beam Top Mid 39 4 58.753 509.94 11.66 2.14 73.32 373.89 71.9 581.84 794.24

Right 107.25 397.12 570

2-#16

Reinforcement

3-#16

3-#16

2-#25 2-#19

2-#16 2-#16

2-#16

  Note: Calculation of Ast    Ast Ast Where, A B Bn C D Ast (Dist) (sqmm)   For Transverse Reinf Critical L/C - RCDC PtPrv (%) Vu (kN) Mu-Sect (kNm) Vc (kN) Vs (kN) Av (sqmm) Tu (kNm) Ao= Φ*Aoh At (sqmm) Legs

= =

Max {B, C+D, A+D} (for Mu > 0) Bn (for Mu = 0)

= = = = =

Asc (flex) As,min (flex) As,nominal As (flex) Al (Dist)

= = = = = =

Left 5 1.923 93.94 64.5 39.26 1174.79 14.18 44550 891.56 2

Compression reinforcement required for bending moment Min area of flexural reinforcement Nominal area of reinforcement Total area of longitudinal reinforcement calculated at a given section Distributed longitudinal torsional reinforcement at section considered Max(Al,min (Tor), Al (Tor)) x ((2B) / (2B + 2D))

Mid 5 0.963 73.95 28.81 52.85 28.13 1094.5 14.18 44550 891.56 2

Right 5 0.963 21.02 54.4 891.56 14.18 44550 891.56 2 571

Stirrup Rebar Asv Torsion (sqmm) Av Total Reqd (sqmm) Asv Reqd (sqmm) SCalc (mm) SPrv (mm) Av Total Prv (sqmm)

10 891.559 1174.79 1327.279 105 105 1350.1

10 891.559 1094.5 1094.505 125 125 1134.08

= 250 = 127

mm mm

= 180 = 125

mm mm

10 891.559 891.56 891.559 125 125 1134.08

  Maximum Spacing Criteria             Basic                                                Spc1                 Spc2        For Torsion                                                  (X1 = 180, Y1 = 330)                 Spc3 = X1                 Spc4=(X1+Y1)/4   Skin reinforcement    Beam Width Beam Depth Torsion

Al Tor. (max) Asr

= 250 mm = 400 mm = 14.18 > 0 kNm Beam Depth >1000 Or Torsion > 0, Hence SFR Provided = 454.7 sqmm = Max(Al(min)(Tor.), Al(Tor.)) x (2D / (2B+2D)) 572

SR provided Asr provided Provided Spacing    Spacing Criteria             Maximum Spacing

= = = =

279.81 1-#16EF 397.11 113.95

= 280

sqmm sqmm mm

mm

APPENDIX B.8: COMPUTATION OF SHEAR WALL / COLUMN (DS W/ SMF) Sway Calculation (Stability Index) For Global-X Direction Level Load Name Story Height Gravity Load P Relative (m) (kN) Displacements (mm) A B C LOAD 1: EQ 0m to 2m 2 7721.609 0.696 X LOAD 1: EQ 2m to 5.5m 3.5 6050.522 2.504 X LOAD 1: EQ 5.5m to 8.5m 3 2799.534 2.397 X

Story Shear (kN) D

Stability Index Sway Condition B x C / (A x D)

1597.339

0.002

Non Sway

1446.014

0.003

Non Sway

790.278

0.003

Non Sway

573

For Global-Y Direction Level Load Name

LOAD 2: EQ Z LOAD 2: EQ 2m to 5.5m Z LOAD 2: EQ 5.5m to 8.5m Z

Story Height Gravity Load P Relative (m) (kN) Displacements (mm) A B C

0m to 2m

Story Shear (kN) D

Stability Index Sway Condition B x C / (A x D)

2

7721.609

0.407

1597.339

0.001

Non Sway

3.5

6050.522

1.539

1446.014

0.002

Non Sway

3

2799.534

1.559

790.279

0.002

Non Sway

General Data Wall No. Level Design Code Grade Of Concrete Grade Of Steel Wall B Wall D Clear Cover Clear Floor Height @ B Clear Floor Height @ D No Of Floors No Of Walls In Group

: : = = = = = = = = = =

C2 0m To 2m ACI 318M - 2011 C25 Fy420 300 5000 40 1600 1600 1 1

Analysis Reference No.

=

140

Critical Analysis Load Combination

:

46

N/sqmm N/sqmm mm mm mm mm mm

Load Data

574

Load Combination Critical Location Put Muxt Muyt Vuxt Vuyt Pub Muxb Muyb Vuxb Vuyb

= = = = = = = = = = = =

[11] : 0.68 (LOAD 3: DL) +1.25 (LOAD 1: EQ X) Bottom Joint 458.68 8028.55 -2.59 -1.38 1676 506.76 11379.65 0.17 -1.38 1676

kN kNm kNm kN kN kN kNm kNm kN kN

Check For Requirement Of Boundary Element Check For Maximum Compressive Stress Having maxstress in between level's (2m - 8.5m) At level (2m) Load Combination

=

Maximum Stress 0.2 x Fck Maximum Stress in Wall > 0.2 x Fck Hence Boundary Element is applicable   At level (2m)

= =

Load Combination

=

Maximum Stress 0.15 x Fck

= =

[3] : 1.42 (LOAD 3: DL) +0.5 (LOAD 4: LL) +1.25 (LOAD 1: EQ X) 9.86 N/sqmm 5 N/sqmm

[3] : 1.42 (LOAD 3: DL) +0.5 (LOAD 4: LL) +1.25 (LOAD 1: EQ X) 9.86 N/sqmm 3.75 N/sqmm 575

Maximum Stress in Wall > 0.15 x Fck Hence Boundary Element is applicable Effective Length Calculation Calculation Along Major Axis Of Column Joint Column Stiffness

Bottom Top

N-M 156250 156250

Beam Sizes Beam 1 Beam 2 (Length x Width x (Length x Width x Depth) Depth) mm mm No Beam No Beam 5000 x 250 x 400 5000 x 250 x 400

Sway Condition (as per Stability Index) Effective Length Factor along Major Axis Calculation Along Minor Axis Of Column Joint Column Stiffness

Bottom Top

N-M 562.5 562.5

Sway Condition (as per Stability Index) Effective Length Factor along Minor axis

= =

N-M 26.667

N-M 26.667

Beta

1 1753.827

Non Sway 0.87

Beam Sizes Beam 1 Beam 2 (Length x Width x (Length x Width x Depth) Depth) mm mm No Beam No Beam 4000 x 250 x 400 No Beam = =

Beam Stiffness Beam 1 Beam 2

Beam Stiffness Beam 1 Beam 2

N-M 33.333

N-M -

Beta

1 8.839

Non Sway 0.87

Check For Stability Index 576

Along D        Q   Along B        Q

Slenderness Check Column Is Braced Along D Slenderness Check along D K r Kluy /r M1 M2 34 - 12 x (M1/M2) Column Is Braced Along B Slenderness Check along B K r Klux /r M1 M2 34 - 12 x (M1/M2)

Calculation of Design Moment Direction

= 0.002 0.002< 0.05, Wall shall be designed as non-sway frame (Braced)       = 0.001 0.001< 0.05, Wall shall be designed as non-sway frame (Braced)

= 0.87 = 1443.38 = 0.96 = 8028.55 = 11379.65 = 25.53 0.96 < 25.53, Wall not slender along D

mm kNm kNm

= 0.87 = 86.6 = 16.07 = 0.17 = -2.59 = 34.78 16.07 < 34.78, Wall not slender along B

Manalysis

mm kNm kNm

Msldr or Mc

Mdesign-final 577

A 8028.55 11379.65 -2.59 0.17

Major Axis Mux (top) Major Axis Mux (bottom) Minor Axis Muy (top) Minor Axis Muy (bottom)

B -

C 8028.55 11379.65 -2.59 0.17

Where A B C

= Moments from analysis = Moment due to slenderness effect = Final design Moment = Maximum of (Manalysis, Maximum of (Msldr or Mc))

  Final Critical Design Forces Critical Case - Axial Load & BiAxial Bending Pu Mux Muy Resultant Moment (Combined Action) Moment Capacity Check Pt Calculated Reinforcement Provided Load Angle MRes ( φ ) MCap Capacity Ratio

Check For Boundary Element Length of boundary element

= = =

506.76 11379.65 0.17

= = = = = = = =

0.76 36-#16 + 34-#13 Tan-1(Muy/Mux) 0 11379.65 12880.78 MRes/ MCap 0.883 < 1

=

700

kN kNm kNm

deg kNm kNm

mm 578

Ast provided in BE δu Hw lw c (due to deflection)

= = = = =

11455.05 0.7 8500 5000 1190.48

Design Of Shear Design for shear along D Critical Analysis Load Combination

:

Critical Load Combination

=

Nu Muy Vuy λ φ d αc pt Vn (Maximum)

= = = = = = = = = = = <

39 [4] : 1.42 (LOAD 3: DL) +0.5 (LOAD 4: LL) +1.25 (LOAD 2: EQ Z) 1072.29 29.34 9.61 1 0.65 4952 0.25 0.0038 0.83 x Sqrt(Fc) x ColB x d 6165.24 4280.61 Vcy Permissible

Vcy Vuy Link For Shear Design Along D are not required   Design for shear along B Critical Analysis Load Combination

:

Critical Load Combination

=

Nu

=

mm2 mm mm mm mm

kN kN kNm kN

mm

kN

39 [4] : 1.42 (LOAD 3: DL) +0.5 (LOAD 4: LL) +1.25 kN (LOAD 2: EQ Z) 1088.31 kN 579

Mux Vux λ φ b αc pt Vn (Maximum) Vcx Vux Link For Shear Design Along D are not required

= = = = = = = = = = <

Design Of Links  Main Links Links in the zone where special confining links are not required Normal Links Min. Horizontal Reinforcement Diameter of main horizontal steel Thus, Spacing  Spacing of horizontal reinforcement is minimum of following D/5 3xB Maximum

0.26 2.74 1 0.65 252 0.17 0.0038 0.83 x Sqrt(Fc) x ColD x b 5229 3680.61 Vcx Permissible

= = = =

0.25% of cross sectional area 750 10 300

= 1000 = 900 = 450

Spacing considered

= 300

Special confining reinforcement as per ACI Along D No of bars along D

= 3

kNm kN

mm

kN

sqmm mm mm mm mm mm mm

580

S1 Ag dc2 Ach AshD Along B No of bars along B S1 Ag bc2 Ach AshB Provided Links   Table For Links

Link Dia. Spacing

Normal Design 10 300

Required Shear Design -----

= = = = =

75 210000 640 153600 257.14

mm sqmm mm sqmm sqmm

= = = = = = =

6 75 210000 240 153600 96.43 #10@75

mm sqmm mm sqmm sqmm c/c

Provided Ductile Design 10 75

Normal Zone 10 300

Ductile Zone 10 75

  General Data Wall No. Level Design Code Grade Of Concrete Grade Of Steel Wall B Wall D

: : = = = = =

C2 2m To 5.5m ACI 318M - 2011 C25 Fy420 300 5000

N/sqmm N/sqmm mm mm 581

Clear Cover Clear Floor Height @ B Clear Floor Height @ D No Of Floors No Of Walls In Group

= = = = =

40 3100 3100 1 1

Analysis Reference No.

=

141

Critical Analysis Load Combination

:

46

Load Combination Critical Location Put Muxt Muyt Vuxt Vuyt Pub Muxb Muyb Vuxb Vuyb

= = = = = = = = = = = =

[11] : 0.68 (LOAD 3: DL) +1.25 (LOAD 1: EQ X) Bottom Joint 312.75 2246.15 -3.35 -1.43 1656.44 396.9 8042.14 1.67 -1.43 1656.44

mm mm mm

Load Data

Check For Requirement Of Boundary Element Check For Maximum Compressive Stress Having maxstress in between level's (2m - 8.5m) At level (2m) Load Combination =

kN kNm kNm kN kN kN kNm kNm kN kN

[3] : 1.42 (LOAD 3: DL) +0.5 (LOAD 4: LL) +1.25 582

Maximum Stress 0.2 x Fck Maximum Stress in Wall > 0.2 x Fck Hence Boundary Element is applicable   At level (5.5m)

= =

Load Combination

=

Maximum Stress 0.15 x Fck Maximum Stress in Wall > 0.15 x Fck Hence Boundary Element is applicable

= =

(LOAD 1: EQ X) 9.86 5

[3] : 1.42 (LOAD 3: DL) +0.5 (LOAD 4: LL) +1.25 (LOAD 1: EQ X) 7.08 N/sqmm 3.75 N/sqmm

Effective Length Calculation Calculation Along Major Axis Of Column Joint Column Stiffness

Bottom Top

N-M 89285.714 89285.714

Beam Sizes Beam 1 Beam 2 (Length x Width x (Length x Width x Depth) Depth) mm mm 5000 x 250 x 400 5000 x 250 x 400 5000 x 250 x 400 5000 x 250 x 400

Sway Condition (as per Stability Index) Effective Length Factor along Major Axis Calculation Along Minor Axis Of Column Joint Column Stiffness

= =

N/sqmm N/sqmm

Beam Stiffness Beam 1 Beam 2 N-M 26.667 26.667

N-M 26.667 26.667

Beta

1753.827 1381.803

Non Sway 1

Beam Sizes Beam 1 Beam 2

Beam Stiffness Beam 1 Beam 2

Beta

583

Bottom Top

N-M 321.429 321.429

Sway Condition (as per Stability Index) Effective Length Factor along Minor axis Check For Stability Index Along D        Q   Along B        Q

Slenderness Check Column Is Braced Along D Slenderness Check along D K r Kluy /r M1 M2 34 - 12 x (M1/M2)

(Length x Width x (Length x Width x Depth) Depth) mm mm 4000 x 250 x 400 No Beam 4000 x 250 x 400 No Beam = =

N-M 33.333 33.333

N-M -

8.839 6.964

Non Sway 1

= 0.003 0.003< 0.05, Wall shall be designed as non-sway frame (Braced)       = 0.002 0.002< 0.05, Wall shall be designed as non-sway frame (Braced)

= 1 = 1443.38 = 2.15 = 2246.15 = 8042.14 = 30.65 2.15 < 30.65, Wall not slender along D

mm kNm kNm

Column Is Braced Along B Slenderness Check along B 584

K r Klux /r M1 M2 34 - 12 x (M1/M2)

= 1 = 86.6 = 35.8 = 1.67 = -3.35 = 39.98 35.8 < 39.98, Wall not slender along B

Calculation of Design Moment Direction

Manalysis A 2246.15 8042.14 -3.35 1.67

Major Axis Mux (top) Major Axis Mux (bottom) Minor Axis Muy (top) Minor Axis Muy (bottom)

mm kNm kNm

Msldr or Mc B -

Mdesign-final C 2246.15 8042.14 -3.35 1.67

Where A B C

= Moments from analysis = Moment due to slenderness effect = Final design Moment = Maximum of (Manalysis, Maximum of (Msldr or Mc))

  Final Critical Design Forces Critical Case - Axial Load & BiAxial Bending Pu Mux Muy

= = =

396.9 8042.14 1.67

Resultant Moment (Combined Action) Moment Capacity Check Pt Calculated

=

0.76

kN kNm kNm

585

Reinforcement Provided Load Angle

= = = = = = =

36-#16 + 34-#13 Tan-1(Muy/Mux) 0.01 8042.15 12668.07 MRes/ MCap 0.635 < 1

deg kNm kNm

Check For Boundary Element Length of boundary element Ast provided in BE δu Hw lw c (due to deflection)

= = = = = =

700 11455.05 2.5 8500 5000 1190.48

mm mm2 mm mm mm mm

Design Of Shear Design for shear along D Critical Analysis Load Combination

:

Critical Load Combination

=

Nu Muy Vuy λ φ d αc pt Vn (Maximum)

= = = = = = = = =

38 [3] : 1.42 (LOAD 3: DL) +0.5 (LOAD 4: LL) +1.25 (LOAD 1: EQ X) 858.86 8077.52 1650.4 1 0.65 4952 0.25 0.0038 0.83 x Sqrt(Fc) x ColB x d

MRes ( φ ) MCap Capacity Ratio

kN kN kNm kN

mm

586

Vcy Vuy Link For Shear Design Along D are not required   Design for shear along B Critical Analysis Load Combination

= = <

6165.24 4280.61 Vcy Permissible

:

38 [3] : 1.42 (LOAD 3: DL) +0.5 (LOAD 4: LL) +1.25 (LOAD 1: EQ X) 300.7 0.73 8.01 1 0.65 252 0.17 0.0038 0.83 x Sqrt(Fc) x ColD x b 5229 3680.61 Vcx Permissible

Critical Load Combination

=

Nu Mux Vux λ φ b αc pt Vn (Maximum)

= = = = = = = = = = = <

Vcx Vux Link For Shear Design Along D are not required

Design Of Links  Main Links Links in the zone where special confining links are not required Normal Links Min. Horizontal Reinforcement Diameter of main horizontal steel

kN

= 0.25% of cross sectional area = 750 = 10

kN kN kNm kN

mm

kN

sqmm mm 587

Thus, Spacing  Spacing of horizontal reinforcement is minimum of following D/5 3xB Maximum

= 300

mm

= 1000 = 900 = 450

Spacing considered

= 300

mm mm mm mm

Special confining reinforcement as per ACI Along D No of bars along D S1 Ag dc2 Ach AshD Along B No of bars along B S1 Ag bc2 Ach AshB Provided Links   Table For Links

Link Dia. Spacing

Normal Design 10 300

Required Shear Design -----

= = = = = =

3 75 210000 640 153600 257.14

mm sqmm mm sqmm sqmm

= = = = = = =

6 75 210000 240 153600 96.43 #10@75

mm sqmm mm sqmm sqmm c/c

Provided Ductile Design 10 75

Normal Zone 10 300

Ductile Zone 10 75 588

  General Data Wall No. Level Design Code Grade Of Concrete Grade Of Steel Wall B Wall D Clear Cover Clear Floor Height @ B Clear Floor Height @ D No Of Floors No Of Walls In Group

: : = = = = = = = = = =

C2 5.5m To 8.5m ACI 318M - 2011 C25 Fy420 300 5000 40 2600 2600 1 1

Analysis Reference No.

=

142

Critical Analysis Load Combination

:

48

Load Combination Critical Location Put Muxt Muyt Vuxt Vuyt Pub Muxb

= = = = = = = = =

[13] : 0.68 (LOAD 3: DL) -1.25 (LOAD 1: EQ X) Bottom Joint 76.83 22.36 -1.6 -1.49 -754.3 148.96 -2239.95

N/sqmm N/sqmm mm mm mm mm mm

Load Data

kN kNm kNm kN kN kN kNm 589

Muyb Vuxb Vuyb

= = =

2.86 -1.49 -754.3

kNm kN kN

Check For Requirement Of Boundary Element Check For Maximum Compressive Stress Having maxstress in between level's (2m - 8.5m) At level (2m) Load Combination

=

Maximum Stress 0.2 x Fck Maximum Stress in Wall > 0.2 x Fck Hence Boundary Element is applicable   At level (8.5m)

= =

Load Combination

=

Maximum Stress 0.15 x Fck Maximum Stress in Wall < 0.15 x Fck Hence Boundary Element is not applicable

= =

Effective Length Calculation Calculation Along Major Axis Of Column Joint Column Stiffness

[3] : 1.42 (LOAD 3: DL) +0.5 (LOAD 4: LL) +1.25 (LOAD 1: EQ X) 9.86 N/sqmm 5 N/sqmm

[5] : 1.42 (LOAD 3: DL) +0.5 (LOAD 4: LL) -1.25 (LOAD 1: EQ X) 2.1 3.75

Beam Sizes Beam 1 Beam 2 (Length x Width x (Length x Width x Depth) Depth)

Beam Stiffness Beam 1 Beam 2

Beta

590

Bottom Top

N-M 104166.667 104166.667

mm mm 5000 x 250 x 400 5000 x 250 x 400 5000 x 250 x 400 5000 x 250 x 400

Sway Condition (as per Stability Index) Effective Length Factor along Major Axis Calculation Along Minor Axis Of Column Joint Column Stiffness

Bottom Top

N-M 375 375

Sway Condition (as per Stability Index) Effective Length Factor along Minor axis Check For Stability Index Along D        Q   Along B        Q

= =

N-M 26.667 26.667

1381.803 744.048

Non Sway 1

Beam Sizes Beam 1 Beam 2 (Length x Width x (Length x Width x Depth) Depth) mm mm 4000 x 250 x 400 No Beam 4000 x 250 x 400 No Beam = =

N-M 26.667 26.667

Beam Stiffness Beam 1 Beam 2 N-M 33.333 33.333

N-M -

Beta

6.964 3.75

Non Sway 1

= 0.003 0.003< 0.05, Wall shall be designed as non-sway frame (Braced)       = 0.002 0.002< 0.05, Wall shall be designed as non-sway frame (Braced)

Slenderness Check 591

Column Is Braced Along D Slenderness Check along D K r Kluy /r M1 M2 34 - 12 x (M1/M2) Column Is Braced Along B Slenderness Check along B K r Klux /r M1 M2 34 - 12 x (M1/M2)

Calculation of Design Moment Direction Major Axis Mux (top) Major Axis Mux (bottom) Minor Axis Muy (top) Minor Axis Muy (bottom)

= 1 = 1443.38 = 1.8 = 22.36 = -2239.95 = 34.12 1.8 < 34.12, Wall not slender along D

mm kNm kNm

= 1 = 86.6 = 30.02 = -1.6 = 2.86 = 40.71 30.02 < 40.71, Wall not slender along B

Manalysis A 22.36 -2239.95 -1.6 2.86

mm kNm kNm

Msldr or Mc B -

Mdesign-final C 22.36 -2239.95 -1.6 2.86

Where A

= Moments from analysis 592

B C

= Moment due to slenderness effect = Final design Moment = Maximum of (Manalysis, Maximum of (Msldr or Mc))

  Final Critical Design Forces Critical Case - Axial Load & BiAxial Bending Pu Mux Muy

= = =

148.96 -2239.95 2.86

= = = = = = = =

0.76 36-#16 + 34-#13 Tan-1(Muy/Mux) 0.07 2239.95 12187.81 MRes/ MCap 0.184 < 1

Design Of Shear Design for shear along D Critical Analysis Load Combination

:

Critical Load Combination

=

Nu Muy Vuy λ φ d

= = = = = =

38 [3] : 1.42 (LOAD 3: DL) +0.5 (LOAD 4: LL) +1.25 (LOAD 1: EQ X) 327.18 2171.38 732.45 1 0.65 4952

Resultant Moment (Combined Action) Moment Capacity Check Pt Calculated Reinforcement Provided Load Angle MRes ( φ ) MCap Capacity Ratio

kN kNm kNm

deg kNm kNm

kN kN kNm kN

mm 593

αc pt Vn (Maximum) Vcy Vuy Link For Shear Design Along D are not required   Design for shear along B Critical Analysis Load Combination

= = = = = <

0.25 0.0038 0.83 x Sqrt(Fc) x ColB x d 6165.24 4280.61 Vcy Permissible

:

38 [3] : 1.42 (LOAD 3: DL) +0.5 (LOAD 4: LL) +1.25 (LOAD 1: EQ X) 76.83 1.6 1.49 1 0.65 252 0.17 0.0038 0.83 x Sqrt(Fc) x ColD x b 5229 3680.61 Vcx Permissible

Critical Load Combination

=

Nu Mux Vux λ φ b αc pt Vn (Maximum)

= = = = = = = = = = = <

Vcx Vux Link For Shear Design Along D are not required

kN

kN kN kNm kN

mm

kN

Design Of Links  Main Links Links in the zone where special confining links are not required Normal Links 594

Min. Horizontal Reinforcement Diameter of main horizontal steel Thus, Spacing  Spacing of horizontal reinforcement is minimum of following D/5 3xB Maximum Spacing considered   Table For Links Required Normal Design Shear Design Link Dia. 10 --Spacing 300 ---

= = = =

0.25% of cross sectional area 750 10 300

sqmm mm mm

= = = =

1000 900 450 300

mm mm mm mm

Provided Ductile Design -----

Normal Zone 10 300

Ductile Zone -----

  General Data Column No. Level Design Code Grade Of Concrete Grade Of Steel Consider Ductile Type of Frame Column B Column D Clear Cover Clear Floor Height @ lux

: : = = = = = = = = =

C5 0m To 2m ACI 318M - 2011 C25 Fy420 Yes Special 400 400 40 1600

N/sqmm N/sqmm

mm mm mm mm 595

Clear Floor Height @ luy No Of Floors No Of Columns In Group

= = =

1600 1 1

mm

Analysis Reference No.

=

33

Critical Analysis Load Combination

:

40

Load Combination Critical Location Put Muxt Muyt Vuxt Vuyt Pub Muxb Muyb Vuxb Vuyb

= = = = = = = = = = = =

[5] : 1.42 (LOAD 3: DL) +0.5 (LOAD 4: LL) -1.25 (LOAD 1: EQ X) Bottom Joint 655.18 kN 9.42 kNm -8.22 kNm -7.93 kN -20.12 kN 665.89 kN -30.8 kNm 7.64 kNm -7.93 kN -20.12 kN

Load Data

Effective Length Calculation Calculation Along Major Axis Of Column Joint Column Stiffness

N-M

Beam Sizes Beam 1 Beam 2 (Length x Width x (Length x Width x Depth) Depth) mm mm

Beam Stiffness Beam 1 Beam 2 N-M

Beta

N-M 596

Bottom Top

106.667 106.667

No Beam No Beam 5000 x 250 x 400 5000 x 250 x 400

Sway Condition (as per Stability Index) Effective Length Factor along Major Axis

= =

Bottom Top

Beam Sizes Beam 1 Beam 2 (Length x Width x (Length x Width x Depth) Depth) mm mm No Beam No Beam 4000 x 250 x 400 4000 x 250 x 400

Sway Condition (as per Stability Index) Effective Length Factor along Minor axis Check For Stability Index Along D        Q   Along B        Q

= =

26.667

1 3.148

Beam Stiffness Beam 1 Beam 2

Beta

Non Sway 0.87

Calculation Along Minor Axis Of Column Joint Column Stiffness

N-M 106.667 106.667

26.667

N-M 33.333

N-M 33.333

1 2.511

Non Sway 0.87

= 0.002 0.002< 0.05, Column shall be designed as non-sway frame (Braced)       = 0.001 0.001< 0.05, Column shall be designed as non-sway frame (Braced)

Slenderness Check Column Is Braced Along D 597

Slenderness Check along D K r Kluy /r M1 M2 34 - 12 x (M1/M2) Column Is Braced Along B Slenderness Check along B K r Klux /r M1 M2 34 - 12 x (M1/M2)

Calculation of Design Moment Direction Major Axis Mux (top) Major Axis Mux (bottom) Minor Axis Muy (top) Minor Axis Muy (bottom)

= 0.87 = 115.47 = 12.06 = 9.42 = -30.8 = 37.67 12.06 < 37.67, Column not slender along D

= 0.87 = 115.47 = 12.06 = 7.64 = -8.22 = 45.16 12.06 < 45.16, Column not slender along B

Manalysis A 9.42 -30.8 -8.22 7.64

Msldr or Mc B -

mm kNm kNm

mm kNm kNm

Mdesign-final C 9.42 -30.8 -8.22 7.64

Where A B

= Moments from analysis = Moment due to slenderness effect 598

C

= Final design Moment = Maximum of (Manalysis, Maximum of (Msldr or Mc))

  Final Critical Design Forces Critical Case - Axial Load & BiAxial Bending Pu Mux Muy Resultant Moment (Combined Action) Moment Capacity Check Pt Calculated Reinforcement Provided Load Angle MRes ( φ ) MCap Capacity Ratio

Design Of Shear Design for shear along D Critical Analysis Load Combination Critical Load Combination Nu Muy Vuy λ φ deff ρw

= = =

665.89 -30.8 7.64

= = = = = = = =

1.21 4-#19 + 4-#16 Tan-1(Muy/Mux) 13.94 31.73 181.58 MRes/ MCap 0.175 < 1

: = = = = = = = =

37 [2] : 1.2 (LOAD 3: DL) +1.6 (LOAD 4: LL) 708.13 0.42 -0.7508 1 0.65 350.5 0.006

kN kNm kNm

deg kNm kNm

kN kN kNm kN

mm

599

mm Vcy Permissible Vuy Link For Shear Design Along D are not required   Design for shear along B Critical Analysis Load Combination Critical Load Combination Nu Mux Vux λ φ deff ρw mm Vcx Permissible Vux Link For Shear Design Along B are not required

= = <

110.18 307.2 Vcy Permissible

kNm kN

: = = = = = = = = = = <

37 [2] : 1.2 (LOAD 3: DL) +1.6 (LOAD 4: LL) 708.13 1.88 -3.4044 1 0.65 350.5 0.006 108.72 307.2 Vcx Permissible

kN kN kNm kN

mm kNm kN

Design Of Links Links in the zone where special confining links are not required Normal Links Diameter of link

= 10

    Criterion for spacing of normal links Min. Longitudinal Bar dia X 16

> Max. longitudinal bar dia / 4 = 4.75 mm = 256

mm

mm 600

48 x diameter of links Provided spacing   Criterion for spacing of Ductile links: Min. Longitudinal Bar dia x 6 B/4 So Spacing Provided Spacing

= 480 = 200

mm mm

= = = = =

96 100 191.67 150 75

mm mm mm mm mm

= = = = = =

3 75 160000 340 115600 174.89

mm sqmm mm sqmm sqmm

= = = = = = =

3 75 160000 340 115600 174.89 #10@75

mm sqmm mm sqmm sqmm c/c

  Special confining reinforcement as per ACI Along D No of bars along D S1 Ag dc2 Ach AshD Along B No of bars along B S1 Ag bc2 Ach AshB Provided Links   Table For Links Required

Provided 601

Link Dia. Spacing

Normal Design 10 200

Shear Design -----

Ductile Design 10 75

Normal Zone 10 200

Ductile Zone 10 75

  General Data Column No. Level Design Code Grade Of Concrete Grade Of Steel Consider Ductile Type of Frame Column B Column D Clear Cover Clear Floor Height @ lux Clear Floor Height @ luy No Of Floors No Of Columns In Group

: : = = = = = = = = = = = =

C5 2m To 5.5m ACI 318M - 2011 C25 Fy420 Yes Special 400 400 40 3100 3100 1 1

Analysis Reference No.

=

37

Critical Analysis Load Combination

:

40

Load Combination Critical Location Put Muxt

= = = =

[5] : 1.42 (LOAD 3: DL) +0.5 (LOAD 4: LL) -1.25 (LOAD 1: EQ X) Top Joint 598.34 kN 40.28 kNm

N/sqmm N/sqmm

mm mm mm mm mm

Load Data

602

Muyt Vuxt Vuyt Pub Muxb Muyb Vuxb Vuyb

= = = = = = = =

-31.61 -14.92 -20.91 617.09 -32.88 20.6 -14.92 -20.91

Effective Length Calculation Calculation Along Major Axis Of Column Joint Column Stiffness

Bottom Top

N-M 60.952 60.952

Beam Sizes Beam 1 Beam 2 (Length x Width x (Length x Width x Depth) Depth) mm mm 5000 x 250 x 400 5000 x 250 x 400 5000 x 250 x 400 5000 x 250 x 400

Sway Condition (as per Stability Index) Effective Length Factor along Major Axis Calculation Along Minor Axis Of Column Joint Column Stiffness

N-M

= =

kNm kN kN kN kNm kNm kN kN

Beam Stiffness Beam 1 Beam 2

N-M 26.667 26.667

N-M 26.667 26.667

Beta

3.148 2.48

Non Sway 1

Beam Sizes Beam 1 Beam 2 (Length x Width x (Length x Width x Depth) Depth) mm mm

Beam Stiffness Beam 1 Beam 2

N-M

Beta

N-M 603

Bottom Top

60.952 60.952

4000 x 250 x 400 4000 x 250 x 400 4000 x 250 x 400 4000 x 250 x 400

Sway Condition (as per Stability Index) Effective Length Factor along Minor axis Check For Stability Index Along D        Q   Along B        Q

Slenderness Check Column Is Braced Along D Slenderness Check along D K r Kluy /r M1 M2 34 - 12 x (M1/M2) Column Is Braced Along B Slenderness Check along B K r Klux /r

= =

33.333 33.333

33.333 33.333

2.511 1.978

Non Sway 1

= 0.003 0.003< 0.05, Column shall be designed as non-sway frame (Braced)       = 0.002 0.002< 0.05, Column shall be designed as non-sway frame (Braced)

= 1 = 115.47 = 26.85 = -32.88 = 40.28 = 43.79 26.85 < 43.79, Column not slender along D

= = =

1 115.47 26.85

mm kNm kNm

mm

604

M1 M2 34 - 12 x (M1/M2)

= 20.6 = -31.61 = 41.82 26.85 < 41.82, Column not slender along B

Calculation of Design Moment Direction

Manalysis A 40.28 -32.88 -31.61 20.6

Major Axis Mux (top) Major Axis Mux (bottom) Minor Axis Muy (top) Minor Axis Muy (bottom)

Msldr or Mc B -

kNm kNm

Mdesign-final C 40.28 -32.88 -31.61 20.6

Where A B C

= Moments from analysis = Moment due to slenderness effect = Final design Moment = Maximum of (Manalysis, Maximum of (Msldr or Mc))

  Final Critical Design Forces Critical Case - Axial Load & BiAxial Bending Pu Mux Muy Resultant Moment (Combined Action) Moment Capacity Check Pt Calculated Reinforcement Provided Load Angle

= = =

598.34 40.28 -31.61

kN kNm kNm

= = = =

1.21 4-#19 + 4-#16 Tan-1(Muy/Mux) 38.13

deg 605

MRes ( φ ) MCap Capacity Ratio

Design Of Shear Design for shear along D Critical Analysis Load Combination Critical Load Combination Nu Muy Vuy λ φ deff ρw mm Vcy Permissible Vuy Link For Shear Design Along D are not required   Design for shear along B Critical Analysis Load Combination Critical Load Combination Nu Mux Vux λ φ deff

= = = =

51.2 156.81 MRes/ MCap 0.327 < 1

: = = = = = = = = = = <

37 [2] : 1.2 (LOAD 3: DL) +1.6 (LOAD 4: LL) 663.1 11 -9.3354 1 0.65 350.5 0.006 92.57 301.66 Vcy Permissible

: = = = = = = =

37 [2] : 1.2 (LOAD 3: DL) +1.6 (LOAD 4: LL) 663.1 15.59 -12.5283 1 0.65 350.5

kNm kNm

kN kN kNm kN

mm kNm kN

kN kN kNm kN

mm 606

ρw mm Vcx Permissible Vux Link For Shear Design Along B are not required

= = = <

0.006 87.98 301.66 Vcx Permissible

kNm kN

Design Of Links Links in the zone where special confining links are not required Normal Links Diameter of link

= 10

mm

    Criterion for spacing of normal links Min. Longitudinal Bar dia X 16 48 x diameter of links Provided spacing   Criterion for spacing of Ductile links: Min. Longitudinal Bar dia x 6 B/4 So Spacing Provided Spacing

> Max. longitudinal bar dia / 4 = 4.75 mm = 256 = 480 = 200

mm mm mm

= = = = =

mm mm mm mm mm

96 100 191.67 150 75

  Special confining reinforcement as per ACI Along D No of bars along D

= 3 607

S1 Ag dc2 Ach AshD Along B No of bars along B S1 Ag bc2 Ach AshB Provided Links   Table For Links

Link Dia. Spacing

Normal Design 10 200

Required Shear Design -----

= = = = =

75 160000 340 115600 174.89

mm sqmm mm sqmm sqmm

= = = = = = =

3 75 160000 340 115600 174.89 #10@75

mm sqmm mm sqmm sqmm c/c

Provided Ductile Design 10 75

Normal Zone 10 200

Ductile Zone 10 75

  General Data Column No. Level Design Code Grade Of Concrete Grade Of Steel Consider Ductile Type of Frame

: : = = = = =

C5 5.5m To 8.5m ACI 318M - 2011 C25 Fy420 Yes Special

N/sqmm N/sqmm

608

Column B Column D Clear Cover Clear Floor Height @ lux Clear Floor Height @ luy No Of Floors No Of Columns In Group

= = = = = = =

400 400 40 2600 2600 1 1

mm mm mm mm mm

Analysis Reference No.

=

41

Critical Analysis Load Combination

:

40

Load Combination Critical Location Put Muxt Muyt Vuxt Vuyt Pub Muxb Muyb Vuxb Vuyb

= = = = = = = = = = = =

[5] : 1.42 (LOAD 3: DL) +0.5 (LOAD 4: LL) -1.25 (LOAD 1: EQ X) Bottom Joint 228.92 kN 59.72 kNm -37.38 kNm -26.96 kN -40.3 kN 244.99 kN -61.16 kNm 43.49 kNm -26.96 kN -40.3 kN

Load Data

Effective Length Calculation Calculation Along Major Axis Of Column Joint Column Stiffness

Beam Sizes

Beam Stiffness

Beta 609

Bottom Top

N-M 71.111 71.111

Beam 1 Beam 2 (Length x Width x (Length x Width x Depth) Depth) mm mm 5000 x 250 x 400 5000 x 250 x 400 5000 x 250 x 400 5000 x 250 x 400

Sway Condition (as per Stability Index) Effective Length Factor along Major Axis

= =

Bottom Top

Beam Sizes Beam 1 Beam 2 (Length x Width x (Length x Width x Depth) Depth) mm mm 4000 x 250 x 400 4000 x 250 x 400 4000 x 250 x 400 4000 x 250 x 400

Sway Condition (as per Stability Index) Effective Length Factor along Minor axis Check For Stability Index Along D        Q   Along B        Q

= =

Beam 2

N-M 26.667 26.667

N-M 26.667 26.667

2.48 1.335

Non Sway 1

Calculation Along Minor Axis Of Column Joint Column Stiffness

N-M 71.111 71.111

Beam 1

Beam Stiffness Beam 1 Beam 2

N-M 33.333 33.333

N-M 33.333 33.333

Beta

1.978 1.065

Non Sway 1

= 0.003 0.003< 0.05, Column shall be designed as non-sway frame (Braced)       =

0.002 610

0.002< 0.05, Column shall be designed as non-sway frame (Braced) Slenderness Check Column Is Braced Along D Slenderness Check along D K r Kluy /r M1 M2 34 - 12 x (M1/M2) Column Is Braced Along B Slenderness Check along B K r Klux /r M1 M2 34 - 12 x (M1/M2)

Calculation of Design Moment Direction Major Axis Mux (top) Major Axis Mux (bottom) Minor Axis Muy (top) Minor Axis Muy (bottom)

= 1 = 115.47 = 22.52 = 59.72 = -61.16 = 45.72 22.52 < 45.72, Column not slender along D

= 1 = 115.47 = 22.52 = -37.38 = 43.49 = 44.31 22.52 < 44.31, Column not slender along B

Manalysis A 59.72 -61.16 -37.38 43.49

Msldr or Mc B -

mm kNm kNm

mm kNm kNm

Mdesign-final C 59.72 -61.16 -37.38 43.49

611

Where A B C

= Moments from analysis = Moment due to slenderness effect = Final design Moment = Maximum of (Manalysis, Maximum of (Msldr or Mc))

  Final Critical Design Forces Critical Case - Axial Load & BiAxial Bending Pu Mux Muy Resultant Moment (Combined Action) Moment Capacity Check Pt Calculated Reinforcement Provided Load Angle MRes ( φ ) MCap Capacity Ratio

Design Of Shear Design for shear along D Critical Analysis Load Combination Critical Load Combination Nu Muy Vuy λ

= = =

244.99 -61.16 43.49

= = = = = = = =

1.98 4-#25 + 4-#19 Tan-1(Muy/Mux) 35.41 75.04 199.23 MRes/ MCap 0.377 < 1

: = = = = =

44 [9] : 1.42 (LOAD 3: DL) -1.25 (LOAD 1: EQ X) 200.98 56.75 -38.4637 1

kN kNm kNm

deg kNm kNm

kN kN kNm kN

612

φ deff ρw mm Vcy Permissible Vuy Link For Shear Design Along D are not required   Design for shear along B Critical Analysis Load Combination Critical Load Combination Nu Mux Vux λ φ deff ρw mm Vcx Permissible Vux Link For Shear Design Along B are not required

= = = = = <

0.65 347.5 0.01 25.29 116.72 Vcy Permissible

: = = = = = = = = = = <

43 [8] : 1.42 (LOAD 3: DL) +1.25 (LOAD 2: EQ Z) 202.83 54.27 -38.8676 1 0.65 347.5 0.01 22.51 117.03 Vcx Permissible

mm kNm kN

kN kN kNm kN

mm kNm kN

Design Of Links Links in the zone where special confining links are not required Normal Links Diameter of link

= 10

 

> Max. longitudinal bar dia / 4

mm

613

  Criterion for spacing of normal links Min. Longitudinal Bar dia X 16 48 x diameter of links Provided spacing   Criterion for spacing of Ductile links: Min. Longitudinal Bar dia x 6 B/4 So Spacing Provided Spacing

= 6.25

mm

= 304 = 480 = 200

mm mm mm

= = = = =

114 100 191.67 150 75

mm mm mm mm mm

= = = = = =

3 75 160000 340 115600 174.89

mm sqmm mm sqmm sqmm

= = = = = = =

3 75 160000 340 115600 174.89 #10@75

mm sqmm mm sqmm sqmm c/c

  Special confining reinforcement as per ACI Along D No of bars along D S1 Ag dc2 Ach AshD Along B No of bars along B S1 Ag bc2 Ach AshB Provided Links

614

  Table For Links

Link Dia. Spacing

Normal Design 10 200

Required Shear Design -----

Provided Ductile Design 10 75

Normal Zone 10 200

Ductile Zone 10 75

  General Data Wall No. Level Design Code Grade Of Concrete Grade Of Steel Wall B Wall D Clear Cover Clear Floor Height @ B Clear Floor Height @ D No Of Floors No Of Walls In Group

: : = = = = = = = = = =

C6 0m To 2m ACI 318M - 2011 C25 Fy420 300 4000 40 1600 1600 1 1

Analysis Reference No.

=

128

Critical Analysis Load Combination

:

49

Load Combination Critical Location Put

= = =

[14] : 0.68 (LOAD 3: DL) -1.25 (LOAD 2: EQ Z) Bottom Joint 359.35

N/sqmm N/sqmm mm mm mm mm mm

Load Data

kN 615

Muxt Muyt Vuxt Vuyt Pub Muxb Muyb Vuxb Vuyb

= = = = = = = = =

-4705.92 -2.25 -0.85 1022.03 397.82 -6749.43 -3.96 -0.85 1022.03

kNm kNm kN kN kN kNm kNm kN kN

Check For Requirement Of Boundary Element Check For Maximum Compressive Stress Having maxstress in between level's (2m - 8.5m) At level (2m) Load Combination

=

Maximum Stress 0.2 x Fck Maximum Stress in Wall > 0.2 x Fck Hence Boundary Element is applicable   At level (2m)

= =

Load Combination

=

Maximum Stress 0.15 x Fck Maximum Stress in Wall > 0.15 x Fck Hence Boundary Element is applicable

= =

[6] : 1.42 (LOAD 3: DL) +0.5 (LOAD 4: LL) -1.25 (LOAD 2: EQ Z) 9.33 N/sqmm 5 N/sqmm

[6] : 1.42 (LOAD 3: DL) +0.5 (LOAD 4: LL) -1.25 (LOAD 2: EQ Z) 9.33 N/sqmm 3.75 N/sqmm

616

Effective Length Calculation Calculation Along Major Axis Of Column Joint Column Stiffness

Bottom Top

N-M 80000 80000

Beam Sizes Beam 1 Beam 2 (Length x Width x (Length x Width x Depth) Depth) mm mm No Beam No Beam 4000 x 250 x 400 4000 x 250 x 400

Sway Condition (as per Stability Index) Effective Length Factor along Major Axis Calculation Along Minor Axis Of Column Joint Column Stiffness

Bottom Top

N-M 450 450

Sway Condition (as per Stability Index) Effective Length Factor along Minor axis Check For Stability Index Along D        Q

= =

N-M 33.333

N-M 33.333

Beta

1 785.714

Non Sway 0.87

Beam Sizes Beam 1 Beam 2 (Length x Width x (Length x Width x Depth) Depth) mm mm No Beam No Beam 5000 x 250 x 400 No Beam = =

Beam Stiffness Beam 1 Beam 2

Beam Stiffness Beam 1 Beam 2 N-M 26.667

N-M -

Beta

1 8.839

Non Sway 0.87

= 0.001 0.001< 0.05, Wall shall be designed as non-sway frame (Braced) 617

  Along B        Q

Slenderness Check Column Is Braced Along D Slenderness Check along D K r Kluy /r M1 M2 34 - 12 x (M1/M2) Column Is Braced Along B Slenderness Check along B K r Klux /r M1 M2 34 - 12 x (M1/M2)

Calculation of Design Moment Direction Major Axis Mux (top) Major Axis Mux (bottom)

 

 

 

= 0.002 0.002< 0.05, Wall shall be designed as non-sway frame (Braced)

= 0.87 = 1154.7 = 1.21 = -4705.92 = -6749.43 = 25.63 1.21 < 25.63, Wall not slender along D

mm kNm kNm

= 0.87 = 86.6 = 16.07 = -2.25 = -3.96 = 27.17 16.07 < 27.17, Wall not slender along B

Manalysis A -4705.92 -6749.43

mm kNm kNm

Msldr or Mc B -

Mdesign-final C -4705.92 -6749.43 618

Minor Axis Muy (top) Minor Axis Muy (bottom)

-2.25 -3.96

-

-2.25 -3.96

Where A B C

= Moments from analysis = Moment due to slenderness effect = Final design Moment = Maximum of (Manalysis, Maximum of (Msldr or Mc))

  Final Critical Design Forces Critical Case - Axial Load & BiAxial Bending Pu Mux Muy Resultant Moment (Combined Action) Moment Capacity Check Pt Calculated Reinforcement Provided Load Angle MRes ( φ ) MCap Capacity Ratio

Check For Boundary Element Length of boundary element Ast provided in BE δu Hw

= = =

397.82 -6749.43 -3.96

= = = = = = = =

0.63 32-#13 + 28-#13 Tan-1(Muy/Mux) 0.03 6749.43 6965.34 MRes/ MCap 0.969 < 1

= = = =

575 7600.61 0.7 8500

kN kNm kNm

deg kNm kNm

mm mm2 mm mm 619

lw c (due to deflection)

= =

4000 952.38

Design Of Shear Design for shear along D Critical Analysis Load Combination

:

Critical Load Combination

=

Nu Muy Vuy λ φ d αc pt Vn (Maximum)

= = = = = = = = = = = <

39 [4] : 1.42 (LOAD 3: DL) +0.5 (LOAD 4: LL) +1.25 (LOAD 2: EQ Z) 779.31 4471.58 1009.08 1 0.65 3953.5 0.25 0.0032 0.83 x Sqrt(Fc) x ColB x d 4922.11 3096.17 Vcy Permissible

Vcy Vuy Link For Shear Design Along D are not required   Design for shear along B Critical Analysis Load Combination

:

Critical Load Combination

=

Nu Mux Vux λ

= = = =

39 [4] : 1.42 (LOAD 3: DL) +0.5 (LOAD 4: LL) +1.25 (LOAD 2: EQ Z) 747.49 1.07 3.59 1

mm mm

kN kN kNm kN

mm

kN

kN kN kNm kN

620

φ b αc pt Vn (Maximum) Vcx Vux Link For Shear Design Along D are not required

= = = = = = = <

Design Of Links  Main Links Links in the zone where special confining links are not required Normal Links Min. Horizontal Reinforcement Diameter of main horizontal steel Thus, Spacing  Spacing of horizontal reinforcement is minimum of following D/5 3xB Maximum

0.65 253.5 0.17 0.0032 0.83 x Sqrt(Fc) x ColD x b 4208.1 2616.17 Vcx Permissible

= = = =

0.25% of cross sectional area 750 10 300

= 800 = 900 = 450

Spacing considered

= 300

Special confining reinforcement as per ACI Along D No of bars along D S1 Ag dc2

= = = =

3 75 172500 515

mm

kN

sqmm mm mm mm mm mm mm

mm sqmm mm 621

Ach AshD Along B No of bars along B S1 Ag bc2 Ach AshB Provided Links   Table For Links

Link Dia. Spacing

Normal Design 10 300

Required Shear Design -----

= 123600 = 206.92

sqmm sqmm

= = = = = = =

mm sqmm mm sqmm sqmm c/c

5 75 172500 240 123600 96.43 #10@75

Provided Ductile Design 10 75

Normal Zone 10 300

Ductile Zone 10 75

  General Data Wall No. Level Design Code Grade Of Concrete Grade Of Steel Wall B Wall D Clear Cover Clear Floor Height @ B Clear Floor Height @ D

: : = = = = = = = =

C6 2m To 5.5m ACI 318M - 2011 C25 Fy420 300 4000 40 3100 3100

N/sqmm N/sqmm mm mm mm mm mm 622

No Of Floors No Of Walls In Group

= =

1 1

Analysis Reference No.

=

129

Critical Analysis Load Combination

:

49

Load Combination Critical Location Put Muxt Muyt Vuxt Vuyt Pub Muxb Muyb Vuxb Vuyb

= = = = = = = = = = = =

[14] : 0.68 (LOAD 3: DL) -1.25 (LOAD 2: EQ Z) Bottom Joint 237.25 -1356.37 2.16 -1.17 962.89 304.57 -4725.58 -1.94 -1.17 962.89

Load Data

kN kNm kNm kN kN kN kNm kNm kN kN

Check For Requirement Of Boundary Element Check For Maximum Compressive Stress Having maxstress in between level's (2m - 8.5m) At level (2m) Load Combination

=

Maximum Stress 0.2 x Fck

= =

[6] : 1.42 (LOAD 3: DL) +0.5 (LOAD 4: LL) -1.25 (LOAD 2: EQ Z) 9.33 N/sqmm 5 N/sqmm 623

Maximum Stress in Wall > 0.2 x Fck Hence Boundary Element is applicable   At level (5.5m) Load Combination

=

Maximum Stress 0.15 x Fck Maximum Stress in Wall > 0.15 x Fck Hence Boundary Element is applicable

= =

[6] : 1.42 (LOAD 3: DL) +0.5 (LOAD 4: LL) -1.25 (LOAD 2: EQ Z) 6.62 N/sqmm 3.75 N/sqmm

Effective Length Calculation Calculation Along Major Axis Of Column Joint Column Stiffness

Bottom Top

N-M 45714.286 45714.286

Beam Sizes Beam 1 Beam 2 (Length x Width x (Length x Width x Depth) Depth) mm mm 4000 x 250 x 400 4000 x 250 x 400 4000 x 250 x 400 4000 x 250 x 400

Sway Condition (as per Stability Index) Effective Length Factor along Major Axis Calculation Along Minor Axis Of Column Joint Column Stiffness

N-M

= =

Beam Stiffness Beam 1 Beam 2

N-M 33.333 33.333

N-M 33.333 33.333

Beta

785.714 619.048

Non Sway 1

Beam Sizes Beam 1 Beam 2 (Length x Width x (Length x Width x Depth) Depth) mm mm

Beam Stiffness Beam 1 Beam 2

N-M

Beta

N-M 624

Bottom Top

257.143 257.143

Sway Condition (as per Stability Index) Effective Length Factor along Minor axis Check For Stability Index Along D        Q   Along B        Q

Slenderness Check Column Is Braced Along D Slenderness Check along D K r Kluy /r M1 M2 34 - 12 x (M1/M2) Column Is Braced Along B Slenderness Check along B K r Klux /r

5000 x 250 x 400 5000 x 250 x 400 = =

No Beam No Beam

26.667 26.667

-

8.839 6.964

Non Sway 1

= 0.002 0.002< 0.05, Wall shall be designed as non-sway frame (Braced)       = 0.003 0.003< 0.05, Wall shall be designed as non-sway frame (Braced)

= 1 = 1154.7 = 2.68 = -1356.37 = -4725.58 = 30.56 2.68 < 30.56, Wall not slender along D

= = =

1 86.6 35.8

mm kNm kNm

mm

625

M1 M2 34 - 12 x (M1/M2)

= -1.94 = 2.16 = 44.78 35.8 < 44.78, Wall not slender along B

Calculation of Design Moment Direction

Manalysis A -1356.37 -4725.58 2.16 -1.94

Major Axis Mux (top) Major Axis Mux (bottom) Minor Axis Muy (top) Minor Axis Muy (bottom)

kNm kNm

Msldr or Mc B -

Mdesign-final C -1356.37 -4725.58 2.16 -1.94

Where A B C

= Moments from analysis = Moment due to slenderness effect = Final design Moment = Maximum of (Manalysis, Maximum of (Msldr or Mc))

  Final Critical Design Forces Critical Case - Axial Load & BiAxial Bending Pu Mux Muy Resultant Moment (Combined Action) Moment Capacity Check Pt Calculated Reinforcement Provided Load Angle

= = =

304.57 -4725.58 -1.94

kN kNm kNm

= = = =

0.63 32-#13 + 28-#13 Tan-1(Muy/Mux) 0.02

deg 626

MRes ( φ ) MCap Capacity Ratio

= = = =

4725.58 6821.6 MRes/ MCap 0.693 < 1

kNm kNm

Check For Boundary Element Length of boundary element Ast provided in BE δu Hw lw c (due to deflection)

= = = = = =

575 7600.61 2.5 8500 4000 952.38

mm mm2 mm mm mm mm

Design Of Shear Design for shear along D Critical Analysis Load Combination

:

Critical Load Combination

=

Nu Muy Vuy λ φ d αc pt Vn (Maximum)

= = = = = = = = = = = <

40 [5] : 1.42 (LOAD 3: DL) +0.5 (LOAD 4: LL) -1.25 (LOAD 1: EQ X) 540.52 860.63 701.84 1 0.65 3953.5 0.25 0.0032 0.83 x Sqrt(Fc) x ColB x d 4922.11 3096.17 Vcy Permissible

Vcy Vuy

kN kN kNm kN

mm

kN

627

Link For Shear Design Along D are not required   Design for shear along B Critical Analysis Load Combination

:

Critical Load Combination

=

Nu Mux Vux λ φ b αc pt Vn (Maximum)

= = = = = = = = = = = <

Vcx Vux Link For Shear Design Along D are not required

Design Of Links  Main Links Links in the zone where special confining links are not required Normal Links Min. Horizontal Reinforcement Diameter of main horizontal steel Thus, Spacing  Spacing of horizontal reinforcement is minimum of following D/5

40 [5] : 1.42 (LOAD 3: DL) +0.5 (LOAD 4: LL) -1.25 (LOAD 1: EQ X) 479.2 2.11 8.57 1 0.65 253.5 0.17 0.0032 0.83 x Sqrt(Fc) x ColD x b 4208.1 2616.17 Vcx Permissible

= = = =

0.25% of cross sectional area 750 10 300

= 800

kN kN kNm kN

mm

kN

sqmm mm mm mm 628

3xB Maximum

= 900 = 450

Spacing considered

= 300

Special confining reinforcement as per ACI Along D No of bars along D S1 Ag dc2 Ach AshD Along B No of bars along B S1 Ag bc2 Ach AshB Provided Links   Table For Links

Link Dia. Spacing

Normal Design 10 300

Required Shear Design -----

mm mm mm

= = = = = =

3 75 172500 515 123600 206.92

mm sqmm mm sqmm sqmm

= = = = = = =

5 75 172500 240 123600 96.43 #10@75

mm sqmm mm sqmm sqmm c/c

Provided Ductile Design 10 75

Normal Zone 10 300

Ductile Zone 10 75

  629

General Data Wall No. Level Design Code Grade Of Concrete Grade Of Steel Wall B Wall D Clear Cover Clear Floor Height @ B Clear Floor Height @ D No Of Floors No Of Walls In Group

: : = = = = = = = = = =

C6 5.5m To 8.5m ACI 318M - 2011 C25 Fy420 300 4000 40 2600 2600 1 1

Analysis Reference No.

=

130

Critical Analysis Load Combination

:

41

Load Combination Critical Location Put Muxt Muyt Vuxt Vuyt Pub Muxb Muyb Vuxb Vuyb

= = = = = = = = = = = =

[6] : 1.42 (LOAD 3: DL) +0.5 (LOAD 4: LL) -1.25 (LOAD 2: EQ Z) Bottom Joint 173.8 kN 35.92 kNm 17.87 kNm -10.45 kN 496.39 kN 294.3 kN -1452.86 kNm -13.48 kNm -10.45 kN 496.39 kN

N/sqmm N/sqmm mm mm mm mm mm

Load Data

630

Check For Requirement Of Boundary Element Check For Maximum Compressive Stress Having maxstress in between level's (2m - 8.5m) At level (2m) Load Combination

=

Maximum Stress 0.2 x Fck Maximum Stress in Wall > 0.2 x Fck Hence Boundary Element is applicable   At level (8.5m)

= =

Load Combination

=

Maximum Stress 0.15 x Fck Maximum Stress in Wall < 0.15 x Fck Hence Boundary Element is not applicable

= =

Effective Length Calculation Calculation Along Major Axis Of Column Joint Column Stiffness

Bottom Top

N-M 53333.333 53333.333

[6] : 1.42 (LOAD 3: DL) +0.5 (LOAD 4: LL) -1.25 (LOAD 2: EQ Z) 9.33 N/sqmm 5 N/sqmm

[6] : 1.42 (LOAD 3: DL) +0.5 (LOAD 4: LL) -1.25 (LOAD 2: EQ Z) 2.29 3.75

Beam Sizes Beam 1 Beam 2 (Length x Width x (Length x Width x Depth) Depth) mm mm 4000 x 250 x 400 4000 x 250 x 400 4000 x 250 x 400 4000 x 250 x 400

Beam Stiffness Beam 1 Beam 2 N-M 33.333 33.333

N-M 33.333 33.333

Beta

619.048 333.333 631

Sway Condition (as per Stability Index) Effective Length Factor along Major Axis Calculation Along Minor Axis Of Column Joint Column Stiffness

Bottom Top

N-M 300 300

Sway Condition (as per Stability Index) Effective Length Factor along Minor axis Check For Stability Index Along D        Q   Along B        Q

Slenderness Check Column Is Braced Along D Slenderness Check along D K

= =

Non Sway 1

Beam Sizes Beam 1 Beam 2 (Length x Width x (Length x Width x Depth) Depth) mm mm 5000 x 250 x 400 No Beam 5000 x 250 x 400 No Beam = =

Beam Stiffness Beam 1 Beam 2

N-M 26.667 26.667

N-M -

Beta

6.964 3.75

Non Sway 1

= 0.002 0.002< 0.05, Wall shall be designed as non-sway frame (Braced)       = 0.003 0.003< 0.05, Wall shall be designed as non-sway frame (Braced)

=

1 632

r Kluy /r M1 M2 34 - 12 x (M1/M2) Column Is Braced Along B Slenderness Check along B K r Klux /r M1 M2 34 - 12 x (M1/M2)

Calculation of Design Moment Direction Major Axis Mux (top) Major Axis Mux (bottom) Minor Axis Muy (top) Minor Axis Muy (bottom)

= 1154.7 = 2.25 = 35.92 = -1452.86 = 34.3 2.25 < 34.3, Wall not slender along D

mm kNm kNm

= 1 = 86.6 = 30.02 = -13.48 = 17.87 = 43.05 30.02 < 43.05, Wall not slender along B

Manalysis A 35.92 -1452.86 17.87 -13.48

mm kNm kNm

Msldr or Mc B -

Mdesign-final C 35.92 -1452.86 17.87 -13.48

Where A B C

= Moments from analysis = Moment due to slenderness effect = Final design Moment = Maximum of (Manalysis, Maximum of (Msldr or Mc))

  Final Critical Design Forces 633

Critical Case - Axial Load & BiAxial Bending Pu Mux Muy

= = =

294.3 -1452.86 -13.48

= = = = = = = =

0.63 32-#13 + 28-#13 Tan-1(Muy/Mux) 0.53 1452.92 6804.36 MRes/ MCap 0.214 < 1

Design Of Shear Design for shear along D Critical Analysis Load Combination

:

Critical Load Combination

=

Nu Muy Vuy λ φ d αc pt Vn (Maximum)

= = = = = = = = =

40 [5] : 1.42 (LOAD 3: DL) +0.5 (LOAD 4: LL) -1.25 (LOAD 1: EQ X) 300.73 885.16 303.81 1 0.65 3953.5 0.25 0.0032 0.83 x Sqrt(Fc) x ColB x d

Resultant Moment (Combined Action) Moment Capacity Check Pt Calculated Reinforcement Provided Load Angle MRes ( φ ) MCap Capacity Ratio

kN kNm kNm

deg kNm kNm

kN kN kNm kN

mm

634

Vcy Vuy Link For Shear Design Along D are not required   Design for shear along B Critical Analysis Load Combination

= = <

4922.11 3096.17 Vcy Permissible

:

40 [5] : 1.42 (LOAD 3: DL) +0.5 (LOAD 4: LL) -1.25 (LOAD 1: EQ X) 271.18 1.81 1.95 1 0.65 253.5 0.17 0.0032 0.83 x Sqrt(Fc) x ColD x b 4208.1 2616.17 Vcx Permissible

Critical Load Combination

=

Nu Mux Vux λ φ b αc pt Vn (Maximum)

= = = = = = = = = = = <

Vcx Vux Link For Shear Design Along D are not required

Design Of Links  Main Links Links in the zone where special confining links are not required Normal Links Min. Horizontal Reinforcement Diameter of main horizontal steel

kN

= 0.25% of cross sectional area = 750 = 10

kN kN kNm kN

mm

kN

sqmm mm 635

Thus, Spacing  Spacing of horizontal reinforcement is minimum of following D/5 3xB Maximum Spacing considered   Table For Links Required Normal Design Shear Design Link Dia. 10 --Spacing 300 ---

= 300

mm

= = = =

mm mm mm mm

800 900 450 300

Provided Ductile Design -----

Normal Zone 10 300

Ductile Zone -----

636

APPENDIX B.9: COMPUTATION OF SLAB (DS W/ SMF)

Design Code Grade Of Concrete Grade Of Steel Clear Cover Long Span, Ly Short Span, Lx Imposed Load Live Load, Qk Slab Thickness Effective Depth Along LX, Deffx Effective Depth Along LY, Deffy Self Weight Total Load, TL (ultimate) Span Load Combination  

= = = = = = = = = = = = = = =

ACI 318 - 2011 C20 Fy420 20.000 mm 5.000 m 4.000 m 2.553 kN/sqm 2.400 kN/sqm 150.000 mm 125.000 mm 115.000 mm 3.750 kN/sqm 11.404 kN/sqm 2-Way 1.2 DL + 1.6 LL Short Span Side1 Side2

Beam         B (mm)         D (mm)         Ib (mm4)    x106 Adjacent Slab         Thk (mm)         Span (mm)

Long Span Side1 Side2

250 400 1333.33

250 400 1333.33

250 400 1333.33

250 400 1333.33

-

150 4850

150 5000

637

        Ib (mm4)    x106 562.5 1244.53 1406.25 703.12 αf lx, αf ly 2.37 1.07 0.95 1.9 αf 1.57 Ln (mm) 3750 4750 L2 (mm) 2625 2125 Total BM (kNm) 52.62 68.34 Bottom         Moment Coefficent 0.57 0.57         Distributed Moment (kNm) 29.99 38.96         CS Moment (kNm) 20.25 26.3         MS Moment (kNm) 9.75 12.66         Moment on Beam (kNm) 17.21 22.35         Design Moment M1, M3 (kNm) 3.04 3.94 Top         Moment Coefficent 0.7 0.7         Distributed Moment (kNm) 36.83 47.84         CS Moment (kNm) 24.86 32.29         MS Moment (kNm) 11.97 15.55         Moment on Beam (kNm) 21.13 27.45         Design Moment M2, M4 (kNm) 3.731 4.84 Design Moments: Short Span Positive Moment At Midspan M1 = 3.037 kNm Area Of Reinforcement = 64.684 kN/sqmm Required (BM) Reinforcement Provided = #10 @ 250 C/C   = 284.000 kN/sqmm Short Span Negative Moment At Continuous Support 638

M2 = 3.729 kNm Area Of Reinforcement = 79.554 kN/sqmm Required (BM) Reinforcement Provided = #10 @ 250 C/C   = 284.000 kN/sqmm Long Span Positive Moment At Midspan M3 = 3.944 kNm Area Of Reinforcement = 91.638 kN/sqmm Required (BM) Reinforcement Provided = #10 @ 250 C/C   = 284.000 kN/sqmm Long Span Negative Moment At Continuous Support M4 = 4.844 kNm Area Of Reinforcement = 112.797 kN/sqmm Required (BM) Reinforcement Provided = #10 @ 250 C/C   = 284.000 kN/sqmm Distribution Reinforcement @ 0.18% Area Of Reinforcement = 225.000 sqmm Required Reinforcement Provided = #10 @ 250 C/C = 284.000 kN/sqmm Shear Check : Along Short Span Vsx (TL(ultimate) x Lx / 4) = 11.404 kN Nominal Shear, Vc = 95.033 kN  > 11.404 Slab Is Safe In Shear Along Long Span Vsy (TL(ultimate) x Lx / 2 x (1 - = (Lx / (2 x Ly))))

13.684 kN

639

Nominal Shear, Vc

=  >

87.430 kN 13.684 Slab Is Safe In Shear

640

APPENDIX B.10: Bearing Capacity Computation of SMRF Structure

641

FIGURE: STRESS DISTRIBUTION DIAGRAM

642

APPENDIX B.11: Ground Improvement Using Jet Grouting jet grout column data

 

 

 

 

 

 

jet grout column diameter

D

1.00

m

 

 

 

horizantal spacing

Lx

1.00

m

 

 

 

vertical spacing

Ly

1.00

m

 

 

 

length of column

L

2.05

m

 

 

 

Pult

3,884.0

kN/m2

 

 

 

jet grout column target strength shear strength of the jet grout column

fJG

153.33

kN/m2

 

 

 

unit weight of jet grout

γJG

11.16

kN/m3

soil data

 

 

 

 

 

 

 

 

 

natural ground allowable stress bearing capacity of the ground is expected to

 

 

 

unit weight of soil

 

 

 

 

 

 

 

 

 

 

σs

  1088.0 0

σsb

284.00

kN/m2

γs

19.34

kN/m3

saffety factor

Sf

4.00

 

 

poisson rate

ν

0.41

 

 

 

cohesion

C

20.00

 

 

 

adhesion

cu

0.97

 

 

 

angle of internal friction

φ

23.00

 

kN/m2

kN/m2   drc

liquefaction data

 

 

 

 

 

 

SPT_N numbers

N

23

#

 

 

 

layer thick

H

10.00

m

 

 

 

correction factor due to surface

F

1.09

 

 

 

vertical stress

σ

v

40.46

kN/m2

 

 

 

σ

'v

28.69

kN/m2

 

 

 

effective vertical stress max. acceleration on the surface of the ground

amax

0.40

 

 

m/s2

643

644

Sr

ar

GR1 0

GR1 5

GR2 0

GR2 5

GR3 0

GR4 0

GR5 0

GR7 5

GR1 00

GR1 25

GR1 50

0.30

0.28

0.20

0.15

0.12

0.11

0.08

0.07

0.05

0.04

0.03

0.02

0.28

0.29

0.21

0.16

0.14

0.12

0.09

0.07

0.05

0.04

0.03

0.02

0.25

0.31

0.22

0.18

0.15

0.12

0.10

0.08

0.05

0.04

0.03

0.03

0.23

0.33

0.25

0.19

0.16

0.14

0.11

0.09

0.06

0.05

0.04

0.03

0.20

0.36

0.27

0.21

0.18

0.15

0.12

0.09

0.07

0.05

0.04

0.04

0.18

0.39

0.29

0.23

0.20

0.17

0.13

0.11

0.08

0.06

0.05

0.04

0.15

0.43

0.32

0.26

0.22

0.19

0.15

0.12

0.09

0.07

0.05

0.05

0.13

0.47

0.37

0.30

0.25

0.22

0.17

0.14

0.10

0.08

0.06

0.05

0.10

0.53

0.42

0.34

0.30

0.26

0.21

0.17

0.12

0.09

0.08

0.07

0.08

0.60

0.49

0.41

0.35

0.32

0.25

0.22

0.15

0.12

0.10

0.08

0.05

0.69

0.59

0.51

0.46

0.41

0.34

0.29

0.22

0.17

0.14

0.12

0.03

0.82

0.74

0.68

0.63

0.58

0.51

0.45

0.35

0.29

0.25

0.21

GR

10.31

ar

3.66

Sr

0.82

645

0.90 0.820 0.80 0.70

GR10 GR15 GR20 GR25 GR30 GR40 GR50 GR75 GR100 GR125 GR150 10.31

0.60

Sr

0.50 0.40 0.30 0.20 0.10

φ

Nc

Nq



0.0

5.7

1.0

0.0

2.5

6.5

1.3

0.2

5.0

7.3

1.6

0.4

7.5

8.5

2.2

0.8

10.0

9.6

2.7

1.2

12.5

11.3

3.6

1.9

15.0

12.9

4.4

2.5

17.5

15.3

5.9

3.8

20.0

17.7

7.4

5.0

23.0

22.1

10.6

7.8

25.0

25.1

12.7

9.7

27.5

31.2

17.6

14.7

30.0

37.2

22.5

19.7

32.5

47.6

31.8

30.9

35.0

58.0

41.0

42.0

37.5

77.0

61.0

71.0

40.0

96.0

81.0

100.0

42.5

134.0

127.0

199.0

45.0

172.0

173.0

298.0

47.5

260.0

294.0

725.5

50.0

348.0

415.0

1153.0

0.30

0.25

0.20

ar

0.15

0.10

0.05

0.00

-0.05

0.00

646

80.00

φ

23.0

Nc

22.1

Nq

10.6



7.8

77.0

70.00

71.0

60.00

61.0

50.00

30.00 22.14

20.00

10.58 7.82

10.00

JET GROUTING COLUMN DATA jet grout column diameter D horizontal spacing Lx vertical spacing Ly length of column L

1.00 1.00 1.00 2.05

4 0 .0 0

3 5 .0 0

3 0 .0 0

2 5 .0 0

φ

2 0 .0 0

1 5 .0 0

1 0 .0 0

5 .0 0

0.00 0 .0 0

A x is T it le

40.00

m m m m 647

Pul jet grout column strength target t 3,884.0 kN/m2 jet grout column shear strength fJG 153.33 kN/m2 jet grout unit weight γJG 11.16 kN/m2 FIGURE: Data Parameters for Jet Grout SOIL DATA natural ground allowable stress

σs 1088.00 σs bearing capacity of ground b 284.00 soil unit weight γs 19.34 safety factor FS 4.00 poisson's ratio ν 0.4 cohesion C 20.00 adhesion cu 0.97 angle of internal friction φ 23.00 FIGURE: Data Parameters for Soil

LIQUEFACTION DATA SPT N-Values N 23.00 Layer Thick H 10.00 Correction Factor due to Surface FS 1.09 Vertical Stress σv 40.46 Effective Vertical Stress σ'v 28.7 ama ground acceleration x 0.40 FIGURE: Data Parameters for Liquefaction

m m m m kN/m2 kN/m2 kN/m2 kN/m2

m m m m kN/m2 kN/m2

SOIL STRESS σsb σjs

284.0 0 820.9 9

kN/m

σsb > σjs

kN/m

ok

LOADINGS Pv Q

838.9 6 843.7 6

kN

Pv < Q

kN

ok

SLIP SAFETY Vcol

12.85 291.7 6

kN

Vcol < Vult

ok Vult kN FIGURE: Data Output of Jet Grouting

Qwp

JET GROUTING FINAL SETTLEMENT 574.29 Qwp 574.29 Qws

269.47 648

Qws 269.47 Cp 0.025 Cs 0.029 ᶓ 0.67 D 1 L 2.05 L 2.05 qp 838.96 qp 838.96 Ap 0.7854         Ep 29478000         Se1 6.68E-05 Se2 0.017113 Se3 0.004544 TOTAL SETTLEMENT 21.72372723 mm FIGURE: FINAL SETTLEMENT OF JET GROUT PER FOOTING

JET GROUT DESIGN jet grout column diameter horizontal spacing vertical spacing

1.00 m 1.00 m 1.00 m

length of column 2.05 m Number of Jet Grout Column per Footing 9.00 pcs FIGURE: FINAL DESIGN OF JET GROUT PER FOOTING

FIGURE: FINAL DESIGN OF JET GROUT PER FOOTING LAYOUT

649

APPENDIX B.12: Ground Improvement Using Wet Soil Mixing Using Lime wet soil mixing column data

 

 

 

 

 

 

 

wet soil column diameter

D

0.80

m

 

 

 

horizantal spacing

Lx

1.00

m

 

 

 

vertical spacing

Ly

1.00

m

 

 

 

length of column

L

2.40

m

 

 

 

Pult

3,884.0

kN/m2

 

 

 

wet soil column target strength shear strength of the wet soil column

fJG

57.01

kN/m2

 

 

 

unit weight of wet soil

γJG

13.61

kN/m3

soil data

 

 

 

 

 

 

 

 

 

natural ground allowable stress bearing capacity of the ground is expected to

 

 

 

unit weight of soil

 

 

 

 

 

 

 

 

σs

  1088.0 0

σsb

284.00

kN/m2

γs

19.34

kN/m3

saffety factor

Sf

4.00

 

 

poisson rate

ν

0.41

 

 

 

cohesion

C

20.00

 

 

 

adhesion

cu

0.97

 

 

 

angle of internal friction

φ

23.00

 

kN/m2

kN/m2   drc

liquefaction data

 

 

 

 

 

 

SPT_N numbers

N

23

#

 

 

 

layer thick

H

10.00

m

 

 

 

correction factor due to surface

F

1.09

 

 

 

vertical stress

σ

v

40.46

kN/m2

 

 

 

σ

'v

28.69

kN/m2

 

 

 

effective vertical stress max. acceleration on the surface of the ground

amax

0.40

 

 

m/s2

650

651

ar 0.3 0 0.2 8 0.2 5 0.2 3 0.2 0 0.1 8 0.1 5 0.1 3 0.1

GR1 0

GR1 5

GR2 0

GR2 5

GR3 0

GR4 0

GR5 0

GR7 5

GR10 0

GR12 5

GR15 0

0.28

0.20

0.15

0.12

0.11

0.08

0.07

0.05

0.04

0.03

0.02

0.29

0.21

0.16

0.14

0.12

0.09

0.07

0.05

0.04

0.03

0.02

0.31

0.22

0.18

0.15

0.12

0.10

0.08

0.05

0.04

0.03

0.03

0.33

0.25

0.19

0.16

0.14

0.11

0.09

0.06

0.05

0.04

0.03

0.36

0.27

0.21

0.18

0.15

0.12

0.09

0.07

0.05

0.04

0.04

0.39

0.29

0.23

0.20

0.17

0.13

0.11

0.08

0.06

0.05

0.04

0.43

0.32

0.26

0.22

0.19

0.15

0.12

0.09

0.07

0.05

0.05

0.47

0.37

0.30

0.25

0.22

0.17

0.14

0.10

0.08

0.06

0.05

0.53

0.42

0.34

0.30

0.26

0.21

0.17

0.12

0.09

0.08

0.07

652

0 0.0 8 0.0 5 0.0 3

0.60

0.49

0.41

0.35

0.32

0.25

0.22

0.15

0.12

0.10

0.08

0.69

0.59

0.51

0.46

0.41

0.34

0.29

0.22

0.17

0.14

0.12

0.82

0.74

0.68

0.63

0.58

0.51

0.45

0.35

0.29

0.25

0.21

GR

10.31

ar

1.01

Sr

0.82 0.90 0.820 0.80 0.70

GR10 GR15 GR20 GR25 GR30 GR40 GR50 GR75 GR100 GR125 GR150 10.31

0.60

Sr

0.50 0.40 0.30 0.20 0.10

φ

Nc

Nq



0.0

5.7

1.0

0.0

2.5

6.5

1.3

0.2

5.0

7.3

1.6

0.4

7.5

8.5

2.2

0.8

10.0

9.6

2.7

1.2

12.5

11.3

3.6

1.9

15.0

12.9

4.4

2.5

17.5

15.3

5.9

3.8

20.0

17.7

7.4

5.0

23.0

22.1

10.6

7.8

25.0

25.1

12.7

9.7

0.30

0.25

0.20

ar

0.15

0.10

0.05

0.00

-0.05

0.00

653

27.5

31.2

17.6

14.7

30.0

37.2

22.5

19.7

32.5

47.6

31.8

30.9

35.0

58.0

41.0

42.0

37.5

77.0

61.0

71.0

40.0

96.0

81.0

100.0

42.5

134.0

127.0

199.0

45.0

172.0

173.0

298.0

47.5

260.0

294.0

725.5

50.0

348.0

415.0

1153.0

φ

23.0

Nc

22.1

Nq

10.6



7.8

654

80.00

77.0

70.00

71.0

60.00

61.0

50.00

30.00 22.14

20.00

10.58 7.82

10.00

WET SOIL COLUMN DATA wet soil column diameter D 0.80 horizontal spacing Lx 1.00 vertical spacing Ly 1.00 length of column L 2.40 Pul wet soil column strength target t 3,884.0 wet soil column shear strength fJG 57.01 wet soil unit weight γJG 13.61 FIGURE: Data Parameters for Wet Soil

4 0 .0 0

3 5 .0 0

3 0 .0 0

2 5 .0 0

φ

2 0 .0 0

1 5 .0 0

1 0 .0 0

5 .0 0

0.00 0 .0 0

A x is T it le

40.00

m m m m kN/m2 kN/m2 kN/m2

655

SOIL DATA natural ground allowable stress

σs 1088.00 m σs bearing capacity of ground b 284.00 m soil unit weight γs 19.34 m safety factor FS 4.00 m poisson's ratio ν 0.4 kN/m2 cohesion C 20.00 kN/m2 adhesion cu 0.97 kN/m2 angle of internal friction φ 23.00 kN/m2 FIGURE: Data Parameters for Soil

LIQUEFACTION DATA SPT N-Values N 23.00 Layer Thick H 10.00 Correction Factor due to Surface FS 1.09 Vertical Stress σv 40.46 Effective Vertical Stress σ'v 28.7 ama ground acceleration x 0.40 FIGURE: Data Parameters for Liquefaction SOIL STRESS σsb σjs

284.0 0 623.3 6

kN/m

σsb > σjs

kN/m

Ok

m m m m kN/m2 kN/m2

LOADINGS Pv Q

639.7 8 655.9 9

kN

Pv < Q

kN

Ok

SLIP SAFETY Vcol

14.97 113.8 7

kN

Vcol < Vult

Ok Vult kN FIGURE: Data Output of Wet Soil WET SOIL MIXING FINAL SETTLEMENT Qwp 403.59 Qwp 403.59 Qws 262.92 Qws 262.92 Cp 0.025 Cs 0.03 ᶓ 0.67 D 0.8 L 2.4 L 2.4 qp 639.78 qp 639.78 Ap 0.5         Ep 29478000         Se1 9.44E-05 Se2 0.019713 Se3 0.005137 TOTAL SETTLEMENT 24.94464351 mm FIGURE: FINAL SETTLEMENT OF WET SOIL PER FOOTING 656

WET SOIL DESIGN 0.8 0 m 1.0 horizontal spacing 0 m 1.0 vertical spacing 0 m 2.4 length of column 0 m 9.0 pc Number of Wet Soil per Footing 0 s FIGURE: FINAL DESIGN OF WET SOIL PER FOOTING Wet soil column diameter

FIGURE: FINAL DESIGN OF WET SOIL MIXING PER FOOTING LAYOUT

657

APPENDIX B.13: Ground Improvement Using Vibro-Replacement

658

659

VIBRO-REPLACEMENT DESIGN stone column diameter 1.0 m horizontal spacing 1.00 m 660

vertical spacing length of column

1.00 m 3.8 m pc Number of Wet Ssoil per Column 9.00 s 774.757 kP Bearing Capacity 4 a FIGURE: FINAL DESIGN OF VIBRO-REPLACEMENT PER FOOTING

FIGURE: FINAL DESIGN OF STONE COLUMN PER FOOTING LAYOUT

661

APPENDIX B.14: Bearing Capacity Computation of DS w/ IMF Structure

DS w/ IMF (SPECIAL REINFORCED SHEAR WALL) PARAMETERS UNITS Mz 105.102 kN-m Mx 56.109 kN-m Q 2763.708 kN B 2 m ECCENTRICITY ex 0.020302072 m ez 0.038029343 m Bearing Capacity due to load qmin 687.7263174 kPa qmax 694.1276826 kPa FIGURE: DATA INPUT-OUTPUT FOR DS w/ IMF STRUCTURE 662

Normal Ground  c' (or cu)  mv E  Water Table  

19.3356 20 23 0.014 30 0.4125 0.8  

kN/m³ kN/m² deg m²/MN MN/m²   m  

Unit weight of soil (gamma) For undrained soils use phi' = 0 Angle of friction (phi') Coefficient of volume compressibility Young's Modulus Poisson's ratio Depth to Water Table  

Foundation Shape   Width Length Founding Depth   Load  

sq

 

Square 2 2

  m m

2

m  

  2776.51 1  

kN  

sq=Square, re=Rectangular, st=Strip Enter only a width for this foundation type Width of foundation Length not used for this foundation type Depth to Base of foundation   Applied load - includes weight of foundation  

Safety Factor  

4

 

Required safety factor

FIGURE: DATA INPUT FOR NATURAL GROUND

Results   Square foundation 2m x 2m   Drained Analysis   Actual Bearing Stress 694 kN/m² Net Bearing Stress 655 kN/m² Ultimate Bearing Stress

     

     

 

 

 

 

971 kN/m² Allowable Bearing Stress 272 kN/m² Actual Safety Factor 1.4   FAIL!   Actual Bearing Stress > Allowable   Settlement Elastic  

 

 

 

 

   

   

 

  3

mm

663

Consolidation

 

Total

 

4 1 7 5 1

mm mm

FIGURE: DATA OUTPUT FOR NATURAL GROUND

FIGURE: STRESS DISTRIBUTION DIAGRAM

664

APPENDIX B.15: Ground Improvement Using Jet Grouting jet grout column data

 

 

 

 

 

 

jet grout column diameter

D

1.35

m

 

 

 

horizantal spacing

Lx

1.50

m

 

 

 

vertical spacing

Ly

1.50

m

 

 

 

length of column

L

2.60

m

 

 

 

Pult

3,884.0

kN/m2

 

 

 

jet grout column target strength shear strength of the jet grout column

fJG

153.33

kN/m2

 

 

 

unit weight of jet grout

γJG

11.16

kN/m3

soil data

 

 

 

 

 

 

 

 

 

natural ground allowable stress bearing capacity of the ground is expected to

 

 

 

unit weight of soil

 

 

 

 

 

 

 

 

 

 

σs

 

1088.00

kN/m2

694.00

kN/m2

γs

19.34

kN/m3

saffety factor

Sf

4.00

 

 

poisson rate

ν

0.41

 

 

 

cohesion

C

20.00

 

 

 

adhesion

cu

0.97

 

 

 

angle of internal friction

φ

23.00

σsb

 

kN/m2   drc

liquefaction data

 

 

 

 

 

 

SPT_N numbers

N

23

#

 

 

 

layer thick

H

10.00

m

 

 

 

F

1.09

 

 

 

vertical stress

σ

 

 

 

σ

 

 

 

effective vertical stress max. acceleration on the surface of the ground

 

 

v

40.46

kN/m2

'v

28.69

kN/m2

amax

0.40

m/s2

665

666

ar 0.3 0 0.2 8 0.2 5 0.2 3 0.2 0 0.1 8 0.1 5 0.1 3 0.1 0 0.0 8 0.0 5 0.0 3

GR1 0

GR1 5

GR2 0

GR2 5

GR3 0

GR4 0

GR5 0

GR7 5

GR10 0

GR12 5

GR15 0

0.28

0.20

0.15

0.12

0.11

0.08

0.07

0.05

0.04

0.03

0.02

0.29

0.21

0.16

0.14

0.12

0.09

0.07

0.05

0.04

0.03

0.02

0.31

0.22

0.18

0.15

0.12

0.10

0.08

0.05

0.04

0.03

0.03

0.33

0.25

0.19

0.16

0.14

0.11

0.09

0.06

0.05

0.04

0.03

0.36

0.27

0.21

0.18

0.15

0.12

0.09

0.07

0.05

0.04

0.04

0.39

0.29

0.23

0.20

0.17

0.13

0.11

0.08

0.06

0.05

0.04

0.43

0.32

0.26

0.22

0.19

0.15

0.12

0.09

0.07

0.05

0.05

0.47

0.37

0.30

0.25

0.22

0.17

0.14

0.10

0.08

0.06

0.05

0.53

0.42

0.34

0.30

0.26

0.21

0.17

0.12

0.09

0.08

0.07

0.60

0.49

0.41

0.35

0.32

0.25

0.22

0.15

0.12

0.10

0.08

0.69

0.59

0.51

0.46

0.41

0.34

0.29

0.22

0.17

0.14

0.12

0.82

0.74

0.68

0.63

0.58

0.51

0.45

0.35

0.29

0.25

0.21

GR

10.31

ar

1.75

Sr

0.82

667

0.90 0.820 0.80 0.70

GR10 GR15 GR20 GR25 GR30 GR40 GR50 GR75 GR100 GR125 GR150 10.31

0.60

Sr

0.50 0.40 0.30 0.20 0.10

φ

Nc

Nq



0.0

5.7

1.0

0.0

2.5

6.5

1.3

0.2

5.0

7.3

1.6

0.4

7.5

8.5

2.2

0.8

10.0

9.6

2.7

1.2

12.5

11.3

3.6

1.9

15.0

12.9

4.4

2.5

17.5

15.3

5.9

3.8

20.0

17.7

7.4

5.0

23.0

22.1

10.6

7.8

25.0

25.1

12.7

9.7

27.5

31.2

17.6

14.7

30.0

37.2

22.5

19.7

32.5

47.6

31.8

30.9

35.0

58.0

41.0

42.0

37.5

77.0

61.0

71.0

40.0

96.0

81.0

100.0

42.5

134.0

127.0

199.0

45.0

172.0

173.0

298.0

47.5

260.0

294.0

725.5

0.30

0.25

0.20

ar

0.15

0.10

0.05

0.00

-0.05

0.00

668

50.0

348.0

80.00

415.0

1153.0

φ

23.0

Nc

22.1

Nq

10.6



7.8

77.0

70.00

71.0

60.00

61.0

50.00

30.00 22.14

20.00

10.58 7.82

10.00

JET GROUTING COLUMN DATA jet grout column diameter D horizontal spacing Lx vertical spacing Ly

4 0 .0 0

3 5 .0 0

3 0 .0 0

2 5 .0 0

φ

2 0 .0 0

1 5 .0 0

1 0 .0 0

5 .0 0

0.00 0 .0 0

A x is T it le

40.00

1.35 m 1.50 m 1.50 m 669

length of column

L 2.60 Pul jet grout column strength target t 3,884.0 jet grout column shear strength fJG 153.33 jet grout unit weight γJG 11.16 FIGURE: Data Parameters for Jet Grout SOIL DATA natural ground allowable stress

σs 1088.00 σs bearing capacity of ground b 694.00 soil unit weight γs 19.34 safety factor FS 4.00 poisson's ratio ν 0.4 cohesion C 20.00 adhesion cu 0.97 angle of internal friction φ 23.00 FIGURE: Data Parameters for Soil

LIQUEFACTION DATA SPT N-Values N 23.00 Layer Thick H 10.00 Correction Factor due to Surface FS 1.09 Vertical Stress σv 40.46 Effective Vertical Stress σ'v 28.7 ama ground acceleration x 0.40 FIGURE: Data Parameters for Liquefaction

m kN/m2 kN/m2 kN/m2

m m m m kN/m2 kN/m2 kN/m2 kN/m2

m m m m kN/m2 kN/m2

SOIL STRESS σsb σjs

694.0 0 716.6 8

kN/m

σsb > σjs

kN/m

ok

LOADINGS Pv Q

1654. 07 1670. 42

kN

Pv < Q

kN

ok

SLIP SAFETY Vcol

36.37 531.7 3

kN

Vcol < Vult

ok Vult kN FIGURE: Data Output of Jet Grouting JET GROUTING FINAL SETTLEMENT 670

Qwp 1209.03 Qwp 1209.03 Qws 461.39 Qws 461.39 Cp 0.025 Cs 0.029 ᶓ 0.67 D 1.35 L 2.6 L 2.6 qp 1654.07 qp 1654.07 Ap 1.43         Ep 29478000         Se1 9.36E-05 Se2 0.013536 Se3 0.003111 TOTAL SETTLEMENT 16.74088953 mm FIGURE: FINAL SETTLEMENT OF JET GROUT PER FOOTING JET GROUT DESIGN jet grout column diameter 1.35 m horizontal spacing 1.50 m vertical spacing 1.50 m length of column 2.6 m Number of Jet Grout Column per Footing 4.00 pcs FIGURE: FINAL DESIGN OF JET GROUT PER FOOTING

FIGURE: FINAL DESIGN OF JET GROUT PER FOOTING LAYOUT

671

`

APPENDIX B.16: Ground Improvement Using Wet Soil Mixing Using Lime wet soil mixing column data

 

 

 

 

 

 

 

wet soil column diameter

D

1.10

m

 

 

 

horizantal spacing

Lx

1.25

m

 

 

 

vertical spacing

Ly

1.25

m

 

 

 

length of column

L

2.45

m

 

 

 

Pult

3,884.0

kN/m2

 

 

 

wet soil column target strength shear strength of the wet soil column

fJG

57.01

kN/m2

 

 

 

unit weight of wet soil

γJG

13.61

kN/m3

soil data

 

 

 

 

 

 

 

 

 

natural ground allowable stress bearing capacity of the ground is expected to

 

 

 

unit weight of soil

 

 

 

 

 

 

 

 

σs

  1088.0 0

σsb

694.00

kN/m2

γs

19.34

kN/m3

saffety factor

Sf

4.00

 

 

poisson rate

ν

0.41

 

 

 

cohesion

C

20.00

 

 

 

adhesion

cu

0.97

 

 

 

angle of internal friction

φ

23.00

 

kN/m2

kN/m2   drc

liquefaction data

 

 

 

 

 

 

SPT_N numbers

N

23

#

 

 

 

layer thick

H

10.00

m

 

 

 

correction factor due to surface

F

1.09

 

 

 

vertical stress

σ

v

40.46

kN/m2

 

 

 

σ

'v

28.69

kN/m2

 

 

 

effective vertical stress max. acceleration on the surface of the ground

amax

0.40

 

 

m/s2

672

673

ar 0.3 0 0.2 8 0.2 5 0.2 3 0.2 0 0.1 8 0.1 5 0.1 3 0.1 0 0.0 8 0.0 5 0.0 3

GR1 0

GR1 5

GR2 0

GR2 5

GR3 0

GR4 0

GR5 0

GR7 5

GR10 0

GR12 5

GR15 0

0.28

0.20

0.15

0.12

0.11

0.08

0.07

0.05

0.04

0.03

0.02

0.29

0.21

0.16

0.14

0.12

0.09

0.07

0.05

0.04

0.03

0.02

0.31

0.22

0.18

0.15

0.12

0.10

0.08

0.05

0.04

0.03

0.03

0.33

0.25

0.19

0.16

0.14

0.11

0.09

0.06

0.05

0.04

0.03

0.36

0.27

0.21

0.18

0.15

0.12

0.09

0.07

0.05

0.04

0.04

0.39

0.29

0.23

0.20

0.17

0.13

0.11

0.08

0.06

0.05

0.04

0.43

0.32

0.26

0.22

0.19

0.15

0.12

0.09

0.07

0.05

0.05

0.47

0.37

0.30

0.25

0.22

0.17

0.14

0.10

0.08

0.06

0.05

0.53

0.42

0.34

0.30

0.26

0.21

0.17

0.12

0.09

0.08

0.07

0.60

0.49

0.41

0.35

0.32

0.25

0.22

0.15

0.12

0.10

0.08

0.69

0.59

0.51

0.46

0.41

0.34

0.29

0.22

0.17

0.14

0.12

0.82

0.74

0.68

0.63

0.58

0.51

0.45

0.35

0.29

0.25

0.21

GR

10.31

ar

1.55

Sr

0.82

674

0.90 0.820 0.80 0.70

GR10 GR15 GR20 GR25 GR30 GR40 GR50 GR75 GR100 GR125 GR150 10.31

0.60

Sr

0.50 0.40 0.30 0.20 0.10

φ

Nc

Nq



0.0

5.7

1.0

0.0

2.5

6.5

1.3

0.2

5.0

7.3

1.6

0.4

7.5

8.5

2.2

0.8

10.0

9.6

2.7

1.2

12.5

11.3

3.6

1.9

15.0

12.9

4.4

2.5

17.5

15.3

5.9

3.8

20.0

17.7

7.4

5.0

23.0

22.1

10.6

7.8

25.0

25.1

12.7

9.7

27.5

31.2

17.6

14.7

30.0

37.2

22.5

19.7

32.5

47.6

31.8

30.9

35.0

58.0

41.0

42.0

37.5

77.0

61.0

71.0

40.0

96.0

81.0

100.0

42.5

134.0

127.0

199.0

45.0

172.0

173.0

298.0

47.5

260.0

294.0

725.5

0.30

0.25

0.20

ar

0.15

0.10

0.05

0.00

-0.05

0.00

675

50.0

348.0

80.00

415.0

1153.0

φ

23.0

Nc

22.1

Nq

10.6



7.8

77.0

70.00

71.0

60.00

61.0

50.00

30.00 22.14

20.00

10.58 7.82

10.00

WET SOIL COLUMN DATA wet soil column diameter D horizontal spacing Lx vertical spacing Ly

4 0 .0 0

3 5 .0 0

3 0 .0 0

2 5 .0 0

φ

2 0 .0 0

1 5 .0 0

1 0 .0 0

5 .0 0

0.00 0 .0 0

A x is T it le

40.00

1.1 m 1.25 m 1.25 m 676

length of column

L 2.45 Pul wet soil column strength target t 3,884.0 wet soil column shear strength fJG 57.01 wet soil unit weight γJG 13.61 FIGURE: Data Parameters for Wet Soil

m kN/m2 kN/m2 kN/m2

SOIL DATA natural ground allowable stress

σs 1088.00 m σs bearing capacity of ground b 694.00 m soil unit weight γs 19.34 m safety factor FS 4.00 m poisson's ratio ν 0.4 kN/m2 cohesion C 20.00 kN/m2 adhesion cu 0.97 kN/m2 angle of internal friction φ 23.00 kN/m2 FIGURE: Data Parameters for Soil

LIQUEFACTION DATA SPT N-Values N 23.00 Layer Thick H 10.00 Correction Factor due to Surface FS 1.09 Vertical Stress σv 40.46 Effective Vertical Stress σ'v 28.7 ama ground acceleration x 0.40 FIGURE: Data Parameters for Liquefaction

m m m m kN/m2 kN/m2

SOIL STRESS σsb σjs

694.0 0 697.1 4

kN/m

σsb > σjs

kN/m

ok

LOADINGS Pv Q

1120. 97 1127. 49

kN

Pv < Q

kN

ok

SLIP SAFETY Vcol

23.86 215.2 6

kN

Vcol < Vult

ok Vult kN FIGURE: Data Output of Wet Soil WET SOIL MIXING FINAL SETTLEMENT 677

Qwp 773.21 Qwp 773.21 Qws 354.28 Qws 354.28 Cp 0.025 Cs 0.029 ᶓ 0.67 D 1.1 L 2.45 L 2.45 qp 1120.97 qp 1120.97 Ap 0.95         Ep 29478000         Se1 8.84E-05 Se2 0.015677 Se3 0.003741 TOTAL SETTLEMENT 19.50594644 mm FIGURE: FINAL SETTLEMENT OF WET SOIL PER FOOTING

WET SOIL DESIGN Wet soil column diameter

1.1 m 1.2 horizontal spacing 5 m 1.2 vertical spacing 5 m 2.4 length of column 5 m 4.0 pc Number of Wet Soil per Footing 0 s FIGURE: FINAL DESIGN OF WET SOIL PER FOOTING

FIGURE: FINAL DESIGN OF WET SOIL PER FOOTING LAYOUT

678

APPENDIX B.17: Ground Improvement Using Vibro-Replacement

679

680

VIBRO-REPLACEMENT DESIGN jet grout column diameter 1.0 m horizontal spacing 1.00 m vertical spacing 1.00 m length of column 4 m pc Number of Wet Ssoil per Column 9.00 s 774.757 kP Bearing Capacity 4 a FIGURE: FINAL DESIGN OF VIBRO-REPLACEMENT PER FOOTING

681

FIGURE: FINAL DESIGN OF STONE COLUMN PER FOOTING LAYOUT

682

APPENDIX B.18: Bearing Capacity Computation of DS

DS (SPECIAL REINFORCED CONCRETE SHEAR WALL PARAMETERS UNITS Mz 81.741 kN-m Mx 43.652 kN-m Q 2268.575 kN B 2 m ECCENTRICITY ex 0.019242035 m ez 0.03603187 m Bearing Capacity due to load qmin 564.7844552 kPa qmax 569.5030448 kPa 683

FIGURE: DATA INPUT-OUTPUT FOR SMRF STRUCTURE

Normal Ground  c' (or cu)  mv E  Water Table  

19.335 6 20 23 0.014 30 0.4125 -0.8  

kN/m ³ kN/m ² deg m²/M N MN/m ²   m  

Unit weight of soil (gamma) For undrained soils use phi' = 0 Angle of friction (phi') Coefficient of volume compressibility Young's Modulus Poisson's ratio Depth to Water Table  

Foundation Shape

sq

  Width

Square 2

  m

2

m

2   2278.0 1  

m  

Length Founding Depth   Load  

 

kN  

sq=Square, re=Rectangular, st=Strip Enter only a width for this foundation type Width of foundation Length not used for this foundation type Depth to Base of foundation   Applied load - includes weight of foundation  

Safety Factor  

4

 

Required safety factor

FIGURE: DATA INPUT FOR NATURAL GROUND

Results   Square foundation 2m x 2m   Drained Analysis   Actual Bearing Stress kN/m 570 ² Net Bearing Stress kN/m 531 ² Ultimate Bearing Stress kN/m 971 ² Allowable Bearing Stress kN/m 272 ² Actual Safety Factor 1.8  

     

     

 

 

 

 

 

 

 

 

 

 

684

FAIL!   Actual Bearing Stress > Allowable   Settlement Elastic

 

Consolidation

 

Total

 

 

 

 

  2 7 1 4 4 1

m m m m m m

FIGURE: DATA OUTPUT FOR NATURAL GROUND

FIGURE: STRESS DISTRIBUTION DIAGRAM

685

APPENDIX B.19: Ground Improvement Using Jet Grouting jet grout column data

 

 

 

 

 

 

jet grout column diameter

D

0.80

m

 

 

 

horizantal spacing

Lx

1.00

m

 

 

 

vertical spacing

Ly

1.00

m

 

 

 

length of column

L

2.20

m

 

 

 

Pult

3,884.0

kN/m2

 

 

 

jet grout column target strength shear strength of the jet grout column

fJG

153.33

kN/m2

 

 

 

unit weight of jet grout

γJG

11.16

kN/m3

soil data

 

 

 

 

 

 

 

 

 

natural ground allowable stress bearing capacity of the ground is expected to

 

 

 

unit weight of soil

 

 

 

 

 

 

 

 

 

 

σs

 

1088.00

kN/m2

570.00

kN/m2

γs

20.83

kN/m3

saffety factor

Sf

4.00

 

 

poisson rate

ν

0.41

 

 

 

cohesion

C

20.00

 

 

 

adhesion

cu

0.97

 

 

 

angle of internal friction

φ

23.00

σsb

 

kN/m2   drc

liquefaction data

 

 

 

 

 

 

SPT_N numbers

N

23

#

 

 

 

layer tick

H

10.00

m

 

 

 

correction factor due to surface

F

1.09

 

 

 

vertical stress

σ

v

40.46

kN/m2

 

 

 

σ

'v

28.69

kN/m2

 

 

 

effective vertical stress max. acceleration on the surface of the ground

amax

0.40

 

 

m/s2

686

687

ar 0.3 0 0.2 8 0.2 5 0.2 3 0.2 0 0.1 8 0.1 5 0.1 3 0.1 0 0.0 8 0.0 5 0.0 3

GR1 0

GR1 5

GR2 0

GR2 5

GR3 0

GR4 0

GR5 0

GR7 5

GR10 0

GR12 5

GR15 0

0.28

0.20

0.15

0.12

0.11

0.08

0.07

0.05

0.04

0.03

0.02

0.29

0.21

0.16

0.14

0.12

0.09

0.07

0.05

0.04

0.03

0.02

0.31

0.22

0.18

0.15

0.12

0.10

0.08

0.05

0.04

0.03

0.03

0.33

0.25

0.19

0.16

0.14

0.11

0.09

0.06

0.05

0.04

0.03

0.36

0.27

0.21

0.18

0.15

0.12

0.09

0.07

0.05

0.04

0.04

0.39

0.29

0.23

0.20

0.17

0.13

0.11

0.08

0.06

0.05

0.04

0.43

0.32

0.26

0.22

0.19

0.15

0.12

0.09

0.07

0.05

0.05

0.47

0.37

0.30

0.25

0.22

0.17

0.14

0.10

0.08

0.06

0.05

0.53

0.42

0.34

0.30

0.26

0.21

0.17

0.12

0.09

0.08

0.07

0.60

0.49

0.41

0.35

0.32

0.25

0.22

0.15

0.12

0.10

0.08

0.69

0.59

0.51

0.46

0.41

0.34

0.29

0.22

0.17

0.14

0.12

0.82

0.74

0.68

0.63

0.58

0.51

0.45

0.35

0.29

0.25

0.21

GR

9.57

ar

1.01

Sr

0.82 0.90 0.820 0.80 0.70

GR10 GR15 GR20 GR25 GR30 GR40 GR50 GR75 GR100 GR125 GR150 9.57

0.60

Sr

0.50 0.40 0.30 0.20 0.10

0.30

0.25

0.20

ar

0.15

0.10

0.05

0.00

-0.05

0.00

688

φ

Nc

Nq



0.0

5.7

1.0

0.0

2.5

6.5

1.3

0.2

5.0

7.3

1.6

0.4

7.5

8.5

2.2

0.8

10.0

9.6

2.7

1.2

12.5

11.3

3.6

1.9

15.0

12.9

4.4

2.5

17.5

15.3

5.9

3.8

20.0

17.7

7.4

5.0

23.0

22.1

10.6

7.8

25.0

25.1

12.7

9.7

27.5

31.2

17.6

14.7

30.0

37.2

22.5

19.7

32.5

47.6

31.8

30.9

35.0

58.0

41.0

42.0

37.5

77.0

61.0

71.0

40.0

96.0

81.0

100.0

42.5

134.0

127.0

199.0

45.0

172.0

173.0

298.0

47.5

260.0

294.0

725.5

50.0

348.0

415.0

1153.0

φ

23.0

Nc

22.1

Nq

10.6



7.8

689

80.00

77.0

70.00

71.0

60.00

61.0

50.00

30.00 22.14

20.00

10.58 7.82

10.00

JET GROUTING COLUMN DATA jet grout column diameter D 0.80 horizontal spacing Lx 1.00 vertical spacing Ly 1.00 length of column L 2.20 Pul jet grout column strength target t 3,884.0 jet grout column shear strength fJG 153.33 jet grout unit weight γJG 11.16 FIGURE: Data Parameters for Jet Grout

4 0 .0 0

3 5 .0 0

3 0 .0 0

2 5 .0 0

φ

2 0 .0 0

1 5 .0 0

1 0 .0 0

5 .0 0

0.00 0 .0 0

A x is T it le

40.00

m m m m kN/m2 kN/m2 kN/m2

690

SOIL DATA natural ground allowable stress

σs 1088.00 σs bearing capacity of ground b 570.00 soil unit weight γs 19.34 safety factor FS 4.00 poisson's ratio ν 0.4 cohesion C 20.00 adhesion cu 0.97 angle of internal friction φ 23.00 FIGURE: Data Parameters for Soil

LIQUEFACTION DATA SPT N-Values N 23.00 Layer Thick H 10.00 Correction Factor due to Surface FS 1.09 Vertical Stress σv 40.46 Effective Vertical Stress σ'v 28.7 ama ground acceleration x 0.40 FIGURE: Data Parameters for Liquefaction

m m m m kN/m2 kN/m2 kN/m2 kN/m2

m m m m kN/m2 kN/m2

SOIL STRESS σsb σjs

570.0 0 623.3 6

kN/m

σsb > σjs

kN/m

Ok

LOADINGS Pv Q

635.7 0 636.6 9

kN

Pv < Q

kN

Ok

SLIP SAFETY Vcol

14.82 186.7 3

kN

Vcol < Vult

Ok Vult kN FIGURE: Data Output of Jet Grouting

Qwp Qws ᶓ L Ap Ep

JET GROUTING FINAL SETTLEMENT 400.44 Qwp 400.44 Qws 236.25 Cp 0.025 Cs 0.67 D 0.8 L 2.2 qp 635.7 qp 0.5       29478000      

236.25 0.03 2.2 635.7     691

Se1 8.34E-05 Se2 0.019685 Se3 0.005068 TOTAL SETTLEMENT 24.83617572 mm FIGURE: FINAL SETTLEMENT OF JET GROUT PER FOOTING

JET GROUT DESIGN jet grout column diameter horizontal spacing vertical spacing

0.8 m 1.00 m 1.00 m

length of column 2.2 m Number of Jet Grout Column per Footing 9.00 pcs FIGURE: FINAL DESIGN OF JET GROUT PER FOOTING

FIGURE: FINAL DESIGN OF JET GROUT PER FOOTING LAYOUT

692

APPENDIX B.20: Ground Improvement Using Wet Soil Mixing Using Lime wet soil mixing column data

 

 

 

 

 

 

 

wet soil column diameter

D

0.85

m

 

 

 

horizantal spacing

Lx

1.10

m

 

 

 

vertical spacing

Ly

1.10

m

 

 

 

length of column

L

2.50

m

 

 

 

Pult

3,884.0

kN/m2

 

 

 

wet soil column target strength shear strength of the wet soil column

fJG

57.01

kN/m2

 

 

 

unit weight of wet soil

γJG

13.61

kN/m3

soil data

 

 

 

 

 

 

 

 

 

natural ground allowable stress bearing capacity of the ground is expected to

 

 

 

unit weight of soil

 

 

 

 

 

 

 

 

σs

 

1088.00

kN/m2

570.00

kN/m2

γs

19.34

kN/m3

saffety factor

Sf

4.00

 

 

poisson rate

ν

0.41

 

 

 

cohesion

C

20.00

 

 

 

adhesion

cu

0.97

 

 

 

angle of internal friction

φ

23.00

σsb

 

kN/m2   drc

liquefaction data

 

 

 

 

 

 

SPT_N numbers

N

23

#

 

 

 

layer thick

H

10.00

m

 

 

 

correction factor due to surface

F

1.09

 

 

 

vertical stress

σ

v

40.46

kN/m2

 

 

 

σ

'v

28.69

kN/m2

 

 

 

effective vertical stress max. acceleration on the surface of the ground

amax

0.40

 

 

m/s2

693

694

ar 0.3 0 0.2 8 0.2 5 0.2 3 0.2 0 0.1 8 0.1 5 0.1 3 0.1 0 0.0 8 0.0 5 0.0 3

GR1 0

GR1 5

GR2 0

GR2 5

GR3 0

GR4 0

GR5 0

GR7 5

GR10 0

GR12 5

GR15 0

0.28

0.20

0.15

0.12

0.11

0.08

0.07

0.05

0.04

0.03

0.02

0.29

0.21

0.16

0.14

0.12

0.09

0.07

0.05

0.04

0.03

0.02

0.31

0.22

0.18

0.15

0.12

0.10

0.08

0.05

0.04

0.03

0.03

0.33

0.25

0.19

0.16

0.14

0.11

0.09

0.06

0.05

0.04

0.03

0.36

0.27

0.21

0.18

0.15

0.12

0.09

0.07

0.05

0.04

0.04

0.39

0.29

0.23

0.20

0.17

0.13

0.11

0.08

0.06

0.05

0.04

0.43

0.32

0.26

0.22

0.19

0.15

0.12

0.09

0.07

0.05

0.05

0.47

0.37

0.30

0.25

0.22

0.17

0.14

0.10

0.08

0.06

0.05

0.53

0.42

0.34

0.30

0.26

0.21

0.17

0.12

0.09

0.08

0.07

0.60

0.49

0.41

0.35

0.32

0.25

0.22

0.15

0.12

0.10

0.08

0.69

0.59

0.51

0.46

0.41

0.34

0.29

0.22

0.17

0.14

0.12

0.82

0.74

0.68

0.63

0.58

0.51

0.45

0.35

0.29

0.25

0.21

GR

10.31

ar

0.88

Sr

0.82

695

0.90 0.820 0.80 0.70

GR10 GR15 GR20 GR25 GR30 GR40 GR50 GR75 GR100 GR125 GR150 10.31

0.60

Sr

0.50 0.40 0.30 0.20 0.10

φ

Nc

Nq



0.0

5.7

1.0

0.0

2.5

6.5

1.3

0.2

5.0

7.3

1.6

0.4

7.5

8.5

2.2

0.8

10.0

9.6

2.7

1.2

12.5

11.3

3.6

1.9

15.0

12.9

4.4

2.5

17.5

15.3

5.9

3.8

20.0

17.7

7.4

5.0

23.0

22.1

10.6

7.8

25.0

25.1

12.7

9.7

27.5

31.2

17.6

14.7

30.0

37.2

22.5

19.7

32.5

47.6

31.8

30.9

35.0

58.0

41.0

42.0

37.5

77.0

61.0

71.0

40.0

96.0

81.0

100.0

42.5

134.0

127.0

199.0

45.0

172.0

173.0

298.0

47.5

260.0

294.0

725.5

0.30

0.25

0.20

ar

0.15

0.10

0.05

0.00

-0.05

0.00

696

50.0

348.0

80.00

415.0

1153.0

φ

23.0

Nc

22.1

Nq

10.6



7.8

77.0

70.00

71.0

60.00

61.0

50.00

30.00 22.14

20.00

10.58 7.82

10.00

WET SOIL COLUMN DATA wet soil column diameter D horizontal spacing Lx vertical spacing Ly

4 0 .0 0

3 5 .0 0

3 0 .0 0

2 5 .0 0

φ

2 0 .0 0

1 5 .0 0

1 0 .0 0

5 .0 0

0.00 0 .0 0

A x is T it le

40.00

0.85 m 1.10 m 1.10 m 697

length of column

L 2.50 Pul wet soil column strength target t 3,884.0 wet soil column shear strength fJG 57.01 wet soil unit weight γJG 13.61 FIGURE: Data Parameters for Wet Soil

m kN/m2 kN/m2 kN/m2

SOIL DATA natural ground allowable stress

σs 1088.00 m σs bearing capacity of ground b 570.00 m soil unit weight γs 19.34 m safety factor FS 4.00 m poisson's ratio ν 0.4 kN/m2 cohesion C 20.00 kN/m2 adhesion cu 0.97 kN/m2 angle of internal friction φ 23.00 kN/m2 FIGURE: Data Parameters for Soil

LIQUEFACTION DATA SPT N-Values N 23.00 Layer Thick H 10.00 Correction Factor due to Surface FS 1.09 Vertical Stress σv 40.46 Effective Vertical Stress σ'v 28.7 ama ground acceleration x 0.40 FIGURE: Data Parameters for Liquefaction

m m m m kN/m2 kN/m2

SOIL STRESS σsb σjs

570.0 0 599.8 1

kN/m

σsb > σjs

kN/m

Ok

LOADINGS Pv Q

745.0 8 746.6 8

kN

Pv < Q

kN

Ok

SLIP SAFETY Vcol

18.84 128.5 3

kN

Vcol < Vult

Ok Vult kN FIGURE: Data Output of Wet Soil WET SOIL MIXING FINAL SETTLEMENT 698

Qwp 467.33 Qwp 467.33 Qws 279.35 Qws 279.35 Cp 0.025 Cs 0.03 ᶓ 0.67 D 0.85 L 2.5 L 2.5 qp 745.08 qp 745.08 Ap 0.57         Ep 29478000         Se1 9.74E-05 Se2 0.018448 Se3 0.004499 TOTAL SETTLEMENT 23.04417841 mm FIGURE: FINAL SETTLEMENT OF WET SOIL PER FOOTING

WET SOIL DESIGN 0.8 5 m 1.1 horizontal spacing 0 m 1.1 vertical spacing 0 m 2.5 length of column 0 m 9.0 pc Number of Wet Soil per Footing 0 s FIGURE: FINAL DESIGN OF WET SOIL PER FOOTING Wet soil column diameter

FIGURE: FINAL DESIGN OF WET SOIL PER FOOTING LAYOUT

699

APPENDIX B.20: Ground Improvement Using Vibro-Replacement

700

701

VIBRO-REPLACEMENT DESIGN jet grout column diameter 1.0 m horizontal spacing 1.00 m vertical spacing 1.00 m length of column 2.6 m pc Number of Wet Ssoil per Column 9.00 s 774.757 kP Bearing Capacity 4 a FIGURE: FINAL DESIGN OF VIBRO-REPLACEMENT PER FOOTING

702

FIGURE: FINAL DESIGN OF STONE COLUMN PER FOOTING LAYOUT

703

APPENDIX B.21: Footing Calculation using Geo5

704

705

APPENDIX B.22: Trade off Estimate The computation of Cost Estimate is by measuring the volume of the actual column and multiplying it to the cost of the trade-off per cubic meter. As the cost of the equipment and operator are already considered in the cost per cubic meter of the trade-off. SMRF Tradeoffs Area Height No. of Column Price Cost No. of Footing Jet Grouting 0.7854 2.05 9 19282.074 4470550.399 16 Wet Soil Mixing 0.5027 2.4 9 12740.04519 2213367.8 16 Stone Column 0.7854 3.8 9 7786.486622 3346405.208 16

Tradeoffs Jet Grouting Wet Soil Mixing Stone Column

DS w/ IMF Area Height No. of Column Price Cost No. of Footing 1.4314 2.6 4 19282.074 4592700.024 16 0.9503 2.45 4 12740.04519 1898356.424 16 0.7854 4 9 7786.486622 3522531.798 16

DS Tradeoffs Jet Grouting Wet Soil Mixing Stone Column

      Area Height No. of Column 0.5027 2.2 0.5675 2.5 0.7854 2.6

  No. of Footing 9 9 9

 

  Cost 19282.074 3070773.636 12740.04519 2602791.233 7786.486622 2289645.669

Price 16 16 16

The method used to compute the constructability is by measuring the actual volume of the trade-off and multiplying it to the discharge per cubic meter of the machine/equipment as the time used to get the equipment is not considered. SMRF Tradeoffs Area Height No. of Column No. of Footing Duration of Jet Grout Duration (days) Jet Grouting Wet Soil Mixing Stone Column

0.7854 0.5027 0.7854

2.05 2.4 3.8

Tradeoffs Jet Grouting Wet Soil Mixing Stone Column DS Tradeoffs

Area Height 1.4314 2.6 0.9503 2.45 0.7854 4     Area Height

Jet Grouting Wet Soil Mixing Stone Column

0.5027 0.5675 0.7854

2.2 2.5 2.6

9 9 9

16 16 16

0.011574074 0.011574074 0.011574074

2.68345 2.0108 4.9742

DS w/ IMF No. of Column No. of Footing Duration of Jet Grout Duration (days) 4 16 0.011574074 2.75677037 4 16 0.011574074 1.724618519 9 16 0.011574074 5.236         No. of Column No. of Footing Duration of Jet Grout Duration (days) 9 9 9

16 16 16

0.011574074 0.011574074 0.011574074

1.843233333 2.364583333 3.4034

706

More Documents from "Andres Tamayo"