Graficas De Vel

  • Uploaded by: Alfonso
  • 0
  • 0
  • March 2021
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Graficas De Vel as PDF for free.

More details

  • Words: 5,232
  • Pages: 15
Loading documents preview...
344

CINEMÁTICA DE MECANISMOS

PARTE I

TABLA 8-1 Notación utilizada en este capítulo t = tiempo, segundos q = ángulo de árbol de levas, grados o radianes (rad) w = velocidad angular del árbol de levas, rad/s b = ángulo total de cualquier segmento, subida, bajada o detenimiento, grados o rad h = elevación total (subida o bajada) de cualquier segmento, unidades de

longitud

s o S = desplazamiento del seguidor = unidades de longitud v = ds/dq = velocidad del seguidor, longitud/rad V = dS/dt = velocidad del seguidor, longitud/s a = dV/dq = aceleración del seguidor, longitud/s2 A = dV/dt = aceleración del seguidor, longitud/s2 j = da/dq = golpeteo del seguidor, longitud/rad3 J = dA/dt = golpeteo del seguidor, longitud/s3 s v a j se refieren al grupo de diagramas, unidades de longitud contra radianes

8

S V A J se refieren al grupo de diagramas, unidades de longitud contra tiempo Rb = radio del círculo base, unidades de longitud Rp = radio del círculo primario, unidades de longitud Rf = radio del seguidor de rodillo, unidades de longitud e = excentricidad de leva-seguidor, unidades de longitud j = ángulo de presión, grados o radianes r = radio de curvatura de superficie de leva, unidades de longitud rprimitivo = radio de curvatura de curva de paso, unidades de longitud rmín = radio de curvatura mínimo de curva de paso o superficie de leva, unidades de longitud

8.1 TERMINOLOGÍA DE LEVAS Los sistemas leva-seguidor se clasifican de varias maneras: por el tipo de movimiento del seguidor, trasladante o rotatorio (oscilante); por el tipo de leva, radial, cilíndrica, tridimensional; por el tipo de cierre de junta, con cierre de forma o fuerza; por el tipo de seguidor, curvo o plano, rodante o deslizante; por el tipo de restricciones de movimiento, posición crítica extrema (CEP, por sus siglas en inglés), movimiento de trayectoria crítica (CPM, por sus siglas en inglés); por el tipo de programa de movimiento, subida-bajada (RF, por sus siglas en inglés), subida-bajada-detenimiento (RFD, por sus siglas en inglés), subida-detenimiento-bajada-detenimiento (RDFD, por sus siglas en inglés). A continuación se analizan cada uno de estos esquemas de clasificación con detalle.

Tipo de movimiento del seguidor La figura 8-1a muestra un sistema con un seguidor rotatorio u oscilante. La figura 8-1b muestra un seguidor trasladante. Éstos son análogos a los mecanismos de manivela-balancín de cuatro barras y de manivela-corredera de cuatro barras, respectivamente. Un mecanismo de cuatro barras efectivo puede sustituirse por el sistema de leva-seguidor para cualquier posición instantánea. Las ubicaciones instantáneas de los centros de curvatura del sistema leva-seguidor determinan las longitudes de los eslabones efectivos como se muestra en la figura 8-1. Las velocidades y aceleraciones del sistema leva-seguidor se encuentran al analizar el comportamiento del mecanismo efectivo en cualquier posición. Una comprobación de lo anterior se encuentra en la referencia [1]. Desde luego, los eslabones efectivos cambian de longitud conforme el sistema leva-seguidor se mueve, lo que le da una ventaja sobre un mecanismo puro ya que esto permite más flexibilidad al satisfacer las restricciones de movimiento deseado.

CAPÍTULO 8

DISEÑO DE LEVAS

2

extrema crítica en que de hecho definen cuántos detenimientos se presentan en el ciclo completo de movimiento, ninguno (RF), uno (RFD) o más de uno (RDFD). Los detenimientos, definidos como movimientos nulos de salida durante un periodo especificado de movimiento de entrada, son una característica importante de los sistemas leva-seguidor porque es fácil crear detenimientos exactos en estos mecanismos. La leva-seguidor es el tipo de diseño elegido siempre que se requiere un detenimiento. En la sección 3.9 (p. 131) se diseñaron mecanismos de detenimiento, y se concluyó que, en el mejor de los casos, se podría obtener sólo un detenimiento aproximado. Los mecanismos de detenimiento simple o doble tienden a ser bastante grandes para su movimiento de salida y son algo difíciles de diseñar. (Véase el programa Sixbar para algunos ejemplos incorporados de estos mecanismos de detenimiento.) Los sistemas leva-seguidor tienden a ser más compactos que los mecanismos para el mismo movimiento de salida. Si se requiere un movimiento de subida-bajada con posición extrema crítica (RF), sin detenimiento, entonces se deberá considerar un mecanismo de manivela-balancín en lugar de un sistema leva-seguidor para obtener todas las ventajas de los mecanismos articulados sobre las levas de seguridad, facilidad de construcción y costo más bajo discutidas en la sección 2.18 (p. 61). Si lo que se requiere es reducir el tamaño, valore esas consideraciones, entonces puede justificarse la elección de un sistema leva-seguidor en el caso de RF. Por otra parte, si la especificación de diseño es de movimiento de trayectoria crítica, y el movimiento y sus derivadas están definidas en el intervalo, entonces un sistema leva-seguidor es la elección lógica en el caso RF. Los casos de subida-bajada-detenimiento (RFD) y subida-detenimiento-bajada-detenimiento (RDFD) son las elecciones obvias para sistemas leva-seguidor por las razones antes citadas. Sin embargo, cada uno de estos casos tiene su propio conjunto de restricciones en el comportamiento de las funciones de leva en las interfases de contacto entre los segmentos que controlan la subida, la bajada y los detenimientos. En general, se deben igualar las condiciones de frontera (CF) de las funciones y sus derivadas en todas las caras de contacto entre los segmentos de la leva, lo cual se analizará a fondo en las siguientes secciones.

8.2

DIAGRAMAS S V A J

La primer tarea a realizar por el diseñador de levas es seleccionar las funciones matemáticas a utilizar para definir el movimiento del seguidor. La aproximación más fácil a este proceso es “linealizar” la leva, esto es, “desenrollarla” de su forma circular y considerarla como una función graficada en ejes cartesianos. Se grafica la función de desplazamiento s, su primera derivada velocidad v, su segunda derivada aceleración a y su tercera derivada golpeteo j, todas en ejes alineados como una función de ángulo de árbol de levas q, como se muestra en la figura 8-6. Es posible considerar que la variable independiente en estas gráficas es el tiempo t o el ángulo de árbol q, ya que se conoce la velocidad angular constante w del árbol de levas y facilita la conversión de ángulo a tiempo y viceversa. q = wt

(8.1)

La figura 8-6a muestra las especificaciones para una leva de cuatro detenimientos con ocho segmentos, RDFDRDFD. La figura 8-6b muestra las curvas s v a j de toda la leva durante 360 grados de rotación del árbol de levas. Un diseño de leva comienza con una definición de las funciones de leva requeridas y sus diagramas s v a j. Las funciones de los segmentos de leva de detenimiento nulo deben elegirse con base en sus características de velocidad, aceleración y golpeteo, y las relaciones en las interfases de contacto entre segmentos adyacentes, incluidos los detenimientos. Esas características de función deben investigarse conveniente y rápidamente mediante el programa Dynacam que generó los datos y gráficas mostradas en la figura 8-6.

8.3 DISEÑO DE LEVAS CON DOBLE DETENIMIENTO: SELECCIÓN DE LAS FUNCIONES S V A J Muchas aplicaciones de diseño de levas requieren múltiples detenimientos. El caso de doble detenimiento es bastante común. Quizás una leva de doble detenimiento impulsa una estación alimentadora

8

350

CINEMÁTICA DE MECANISMOS

seno modificada

Función: cicloidal

Segmento 1

2

3

trapezoidal modificada

4

5

PARTE I

armónica simple

6

7

8

s Número de segmento 1 2 3 4 5 6 7 8

Función utilizada

Ángulo inicial

Ángulo final

Ángulo delta

0 60 90 150 180 240 270 330

60 90 150 180 240 270 330 360

60 30 60 30 60 30 60 30

Subida cicloidal Detenimiento Bajada seno modificado Detenimiento Subida trapezoidal modificada Detenimiento Bajada armónica simple Detenimiento

v

a



j

a) Especificaciones del programa de leva 0

90

∞ 270

180

360

b) Diagramas s v a j de mecanismos de leva-seguidor FIGURA 8-6

8

Funciones de movimiento cicloidal, seno modificado, trapezoide modificado y armónico simple de una leva con cuatro detenimientos

de piezas en una máquina de producción que fabrica pastas dentales. Este seguidor de leva hipotética alimenta un tubo de pasta de dientes vacío (durante el detenimiento bajo), luego lo mueve a la estación de carga (durante la subida), lo mantiene totalmente inmóvil en una posición extrema crítica (CEP) mientras la pasta de dientes es vertida por el fondo abierto del tubo (durante el detenimiento alto), y luego retrae el tubo lleno de vuelta a la posición de inicio (cero) y lo mantiene en esta posición extrema crítica. En este punto, otro mecanismo (durante el detenimiento bajo) recoge el tubo y lo lleva a la siguiente operación, la cual podría ser sellar el fondo del tubo. Se podría utilizar también una leva similar para alimentar, alinear y retraer el tubo en la estación de sellado de fondo. Las especificaciones para una leva como ésta se muestran con frecuencia en un diagrama de temporización de tiempo, como en la figura 8-7, que representa los eventos especificados en el ciclo de máquina. Un ciclo de máquina se define como una revolución de su eje motriz maestro. En una máquina complicada, tal como una productora de pasta dental, habrá un diagrama de temporización por cada subensamble de la máquina. Las relaciones de tiempo entre los subensambles se definen por sus diagramas de temporización que se trazan sobre un eje de tiempo común. Obviamente, todas estas operaciones deben mantenerse en perfecta sincronía y fase de tiempo para que la máquina funcione. Este ejemplo simple mostrado en la figura 8-7 es un caso de posición extrema crítica (CEP), porque no se especifica nada sobre las funciones a utilizar para ir de la posición de detenimiento Movimiento mm o pulg Detenimiento alto

1 Detenimiento bajo

Subida

Bajada

0 0

90

180

270

360

Ángulo de leva q grados

0

0.25

0.50

0.75

1.0

Tiempo

t

s

CAPÍTULO 8

DISEÑO DE LEVAS FIGURA 8-7 Diagrama de temporización de una leva

351

352

CINEMÁTICA DE MECANISMOS

PARTE I

bajo (un extremo) a la posición de detenimiento alto (otro extremo). El diseñador tiene la libertad de elegir cualquier función que realice el trabajo. Observe que estas especificaciones contienen sólo información sobre la función de desplazamiento. Las derivadas superiores no están específicamente restringidas en este ejemplo. A continuación se utiliza este problema para investigar varias formas diferentes de satisfacer las especificaciones.

✍EJEMPLO 8-1 Diseño de leva por un novato. Una leva defectuosa. Problema:

Considérese la siguiente especificación CEP para el diseño de una leva. detenimiento subida detenimiento bajada w leva

en desplazamiento cero durante 90 grados (detenimiento bajo) 1 pulg (25 mm) en 90 grados en 1 pulg (25 mm) durante 90 grados (detenimiento alto) 1 pulg (25 mm) en 90 grados 2π rad/s = 1 rev/s

Solución: 1 El diseñador de levas inexperto podría proseguir con un diseño como el mostrado en la figura 8-8a. Al tomar literalmente las especificaciones dadas, se intenta sólo “conectar los puntos” en el diagrama de temporización para crear el diagrama de desplazamiento (s). (Después de todo, cuando se enrolla este diagrama s alrededor de un círculo para crear la leva propiamente dicha, se verá bastante plano a pesar de las esquinas puntiagudas en el diagrama s.) El error que un diseñador principiante comete en este caso es ignorar el efecto en las derivadas superiores de la función de desplazamiento que resulta de esta aproximación simplista. 2 La figura 8-8b, c y d muestra el problema. Obsérvese que debe tratarse cada segmento de la leva (subida, bajada, detenimiento) como una entidad distinta al desarrollar las funciones matemáticas para la leva. Si primero se considera el segmento de elevación (número 2), la función de desplazamiento en la figura 8-8a durante esta parte es una línea recta o un polinomio de primer grado. La ecuación general de una línea recta es: y mx b

(8.2)

donde m es la pendiente de la línea y b la intersección con el eje y. Si se sustituyen las variables apropiadas para este ejemplo en la ecuación 8.2, el ángulo q reemplaza a la variable independiente x y el desplazamiento s reemplaza a la variable dependiente y. Por definición, la pendiente constante m del desplazamiento es la constante de velocidad Kv. 3 Para el segmento de subida, la intersección b con el eje y es cero porque la posición de detenimiento bajo en general se considera como desplazamiento cero por convención. La ecuación 8.2 se convierte entonces: s Kv

(8.3)

4 La diferenciación con respecto a q da una función de velocidad durante la subida. v K v constante

(8.4)

5 La diferenciación de nuevo con respecto a q da una función de aceleración durante la subida. a 0

(8.5)

Esto parece demasiado bueno para ser cierto (y lo es). Aceleración cero significa fuerza dinámica cero. ¡Parece que esta leva no tiene fuerzas dinámicas o esfuerzos en ella! La figura 8-8 (p. 352) muestra lo que realmente sucede. Al volver a la función de desplazamiento y diferenciarla gráficamente, se observará que, por la definición de la derivada como la pendiente instantánea de la función, la aceleración es de hecho cero durante el intervalo. Pero, en las fronteras de intervalo, donde la subida encuentra al detenimiento bajo en un lado y detenimiento alto en el otro, se observa que la función de velocidad es multivalores. Existen discontinuidades en estas fronteras, el efecto de las cuales es crear una parte de la curva de velocidad que tenga pendiente infinita y duración cero. Esto produce las puntas infinitas de aceleración mostradas en esos puntos. Estas puntas son llamadas más propiamente funciones Delta de Dirac. En realidad, no se puede obtener una aceleración infinita, ya que requiere de una fuerza infinita. Claramente las fuerzas diná-

8

CAPÍTULO 8

DISEÑO DE LEVAS

353

s

Detenimiento alto

Subida h a)

Bajada

Detenimiento bajo 0 q grados

v b) 0

q grados a





c) 0

q grados



8

d)



0 grados 0

90

180

270

360

FIGURA 8-8 Diagramas s v a j de un “mal” diseño de leva

micas serán muy grandes en estas fronteras y crearán altos esfuerzos y un rápido desgaste. De hecho, si se construyera esta leva y funcionara a cualquier velocidad significativa, las esquinas afiladas en el diagrama de desplazamiento que crean estas aceleraciones teóricas infinitas se desgastarían con rapidez creando contornos más lisos por los esfuerzos insostenibles en los materiales. Éste no es un diseño aceptable. La inaceptabilidad de este diseño es reforzada por el diagrama de golpeteo que muestra valores teóricos de ±infinito en las discontinuidades (la función doblete). El problema se ha generado por la elección incorrecta de la función de desplazamiento. En realidad, al diseñador de la leva no debe interesarle tanto la función de desplazamiento como sus derivadas superiores.

Ley fundamental de diseño de levas

* Esta regla fue estable- cida por Neklutin,[2] pero reclamada por algunos otros autores.[3],[4] No obstante, según Neklutin, es una buena regla (y simple) para obtener buenos resultados dinámicos aceptables con levas de alta velocidad. Existen datos de simulación y evidencia experimental de que las funciones de golpeteo uniforme reducen las vibraciones residuales en sistemas leva-seguidor.[10]

Cualquier leva diseñada para operar a velocidades diferentes de las muy bajas debe diseñarse con las siguientes restricciones: La función de leva debe ser continua en la primera y segunda derivadas de desplazamiento a través de todo el intervalo (360 grados). Corolario La función de rapidez de aceleración debe ser finita a través de todo el intervalo (360 grados). En cualquier leva, excepto la más simple, el programa de movimiento no puede definirse por una sola expresión matemática, sino más bien debe definirse por varias funciones distintas, cada una de las cuales define el comportamiento del seguidor a través de un segmento, o pieza, de la leva. Estas expresiones en ocasiones se llaman funciones por secciones. Estas funciones deben tener continuidad de tercer grado (la función más dos derivadas) en todas las fronteras. Las funciones de desplazamiento, velocidad y aceleración no deben tener discontinuidades en ellas.*

354

CINEMÁTICA DE MECANISMOS

PARTE I

Si existen algunas discontinuidades en la función de aceleración, habrá puntas infinitas o funciones delta de Dirac, que aparecen en la derivada de aceleración, golpeteo. Por tanto, el corolario simplemente restablece la ley fundamental de diseño de levas. Un diseñador inexperto no reconocerá que si se inicia con un polinomio de grado bajo (lineal) como función de desplazamiento, aparecerán discontinuidades en las derivadas superiores. Las funciones polinomiales son una de las mejores opciones para levas, como se verá después, aunque presentan una falla que puede provocar problemas en esta aplicación. Cada vez que se diferencian, se reducen en un grado. Eventualmente, después de suficientes diferenciaciones, los polinomios se degeneran a grado cero (un valor constante), como lo muestra la función de velocidad en la figura 8-8b (p. 352). Por tanto, si se inicia con un polinomio de primer grado como función de desplazamiento, es inevitable que pronto aparezcan discontinuidades en sus derivadas. Para obedecer la ley fundamental de diseño de levas, habrá que iniciar con al menos un polinomio de quinto grado (quíntico) como función de desplazamiento para una leva de doble detenimiento, que degenerará en una función cúbica en la aceleración. La función de rapidez de aceleración parabólica tendrá discontinuidades y la derivada (sin nombre) de la rapidez de aceleración tendrá puntas infinitas en ella. Esto es aceptable, ya que la rapidez de aceleración aún es finita.

Movimiento armónico simple (MAS)

8

Un diseñador inexperto de levas reconoce su error al elegir una función de línea recta para el desplazamiento. También recuerda la familia de funciones que aprendió en un curso de cálculo que tienen la propiedad de permanecer continuas a través de cualquier número de diferenciaciones. Éstas son las funciones armónicas. Con diferenciación repetida, el seno se vuelve coseno, que a su vez se vuelve seno negativo, el que a su vez se vuelve coseno negativo, etc., hasta el infinito. Uno nunca se queda sin derivadas con la familia de curvas armónicas. De hecho, la diferenciación de una función armónica en realidad sólo equivale a un desplazamiento de fase de 90° de la función. Es como si, cuando la diferencia, se recortara con unas tijeras una parte diferente de la misma función de onda seno continua, la cual está definida de menos infinito a más infinito. Las ecuaciones de movimiento armónico simple (MAS) para un movimiento de subida son: s 

h 



  1 cos    2     

(8.6a)



v 

 h  2

 



sen

 

 cos      2

(8.6b)

2 a   h 2

3 hsen  

j –

3 2

(8.6c)

(8.6d )





donde h es la subida total, o elevación, q es el ángulo del árbol de levas y b es el ángulo total del intervalo de subida. Aquí se introdujo una notación para simplificar las expresiones. La variable independiente en las funciones de leva es q, el ángulo del árbol de levas. El periodo de cualquier segmento se define como el ángulo b. Su valor, desde luego, puede ser diferente para cada segmento. Se normaliza la variable independiente q al dividirla entre el periodo del segmento. Tanto q como b se miden en radianes (o

CAPÍTULO 8

DISEÑO DE LEVAS

en grados). El valor de q/b variará entonces de 0 a 1 a lo largo de cualquier segmento. Es una relación sin unidades. Las ecuaciones 8.6 definen el movimiento armónico simple y sus derivadas para este segmento de subida en función de q/b. Esta familia de funciones armónicas en primera instancia parece ser adecuada para el diseño de levas de la figura 8-7 (p. 350). Si se define la función de desplazamiento como una de las funciones armónicas, no deberían “faltar las derivadas” antes de alcanzar la función de aceleración.

355

356

CINEMÁTICA DE MECANISMOS

PARTE I

✍EJEMPLO 8-2

s

Diseño de una leva sofomórica:* Movimiento armónico simple, aun siendo una leva defectuosa.

v

Problema:

Considérese la misma especificación CEP para el diseño de leva del ejemplo 8-1 (p. 351). detenimiento subida detenimiento bajada w leva

a

j 0

b

Ángulo de leva q FIGURA 8-9 El movimiento armónico simple con detenimientos tiene aceleración discontinua

en desplazamiento cero durante 90 grados (detenimiento bajo) 1 pulg (25 mm) en 90 grados en 1 pulg (25 mm) durante 90 grados (detenimiento alto) 1 pulg (25 mm) en 90 grados 2π rad/s = 1 rev/s

Solución: 1 La figura 8-9 muestra una función armónica simple de subida completa† aplicada al segmento de subida del problema de diseño de leva. 2 Obsérvese que la función de velocidad es continua, ya que iguala la velocidad cero de los detenimientos en cada extremo. El valor pico de 6.28 pulg/s (160 mm/s) a la mitad de la subida. 3 Sin embargo, la función de aceleración no es continua. Es una función coseno de semiperiodo y tiene valores diferentes de cero al inicio y al final que son de ± 78.8 pulg/s 2 (2.0 m/s2). 4 Desafortunadamente, las funciones de detenimiento que colindan con esta subida a cada lado tienen aceleraciones cero, como se observa en la figura 8-6 (p. 350). Por tanto, existen discontinuidades en la aceleración en cada extremo del intervalo que utilizan esta función de desplazamiento armónico simple.

8

5 Esto viola la ley fundamental de diseño de levas y crea picos infinitos de golpeteo en los extremos de este intervalo de bajada. Éste también es un diseño inaceptable.

¿Qué salió mal? Si bien es cierto que las funciones armónicas son diferenciables hasta el infinito, en este caso no se trata de funciones armónicas simples. Nuestra función de leva a lo largo de todo el intervalo es una función por secciones (figura 8-6, p. 350) compuesta por varios segmentos, algunos de los cuales pueden ser partes de detenimiento u otras funciones. Un detenimiento siempre tendrá velocidad y aceleración cero. Por tanto, se requieren detenimientos de valor cero en los extremos de las derivadas de cualquier segmento sin detenimiento que colinden con ellas. La función de desplazamiento armónico simple, cuando se utiliza con detenimientos, no satisface la ley fundamental de diseño de levas. Su segunda derivada, la aceleración, es no cero en sus extremos y por tanto no iguala a los detenimientos requeridos en este ejemplo.

* Sofomórica, de sophomore, def. sabio tonto, del griego, sophos = sabio, moros = tonto. † Aunque en realidad ésta es una onda coseno de semiperiodo, se le llamará función armónica simple de elevación completa (o de bajada completa) para diferenciarla de la función armónica simple de media elevación (y de semibajada), la cual en realidad es un coseno de un cuarto de periodo.

El único caso en que la función de desplazamiento armónico simple satisface la ley fundamental es el caso RF sin retorno rápido, es decir, subida en 180° y bajada en 180° sin detenimiento. En ese caso, el perfil de la leva, si se mueve en contacto con un seguidor de cara plana, se vuelve una excéntrica, como se muestra en la figura 8-10. Como función continua única (no por secciones), sus derivadas también son continuas. La figura 8-11 muestra las funciones de desplazamiento (en pulgadas) y de aceleración (en g) de una leva excéntrica, como en realidad se mide sobre el seguidor. El ruido o “sonido” en la curva de aceleración se debe a pequeños e inevitables errores de fabricación. Las limitaciones de fabricación se analizarán en una sección posterior.

Desplazamiento cicloidal Los dos ejemplos de diseño deficiente de leva antes descritos deben llevar al diseñador a la conclusión de que es erróneo considerar sólo la función de desplazamiento cuando se diseña una leva. La mejor aproximación es considerar primero las derivadas superiores, en especial la aceleración. La función de aceleración, y en menor grado la función de golpeteo, deberán ser de primordial interés para el diseñador. En algunos casos, sobre todo cuando la masa del tren seguidor es grande o cuando existe una especificación de velocidad, esa función también debe diseñarse con cuidado. Con esto en mente, se rediseñará la leva con las mismas especificaciones del ejemplo anterior. Esta vez se inicia con la función de aceleración. La familia de curvas armónicas aún tiene ventajas

CAPÍTULO 8

DISEÑO DE LEVAS

357

250.00 m

a cos wt

-200.00 m 0.0

REV

r

1.0000

2.0000

w a FIGURA 8-10

-3.0000

Un seguidor de cara plana en contacto con una leva excéntrica tiene movimiento armó- nico simple.*

ACELERACIÓN 0.0

1.0000

REV

8

FIGURA 8-11

Desplazamiento y aceleración medidos en el seguidor de una leva

excéntrica

que la hace atractiva para estas aplicaciones. La figura 8-12 (p. 356) muestra una sinusoide de periodo completo aplicada como función de aceleración. Satisface la restricción de magnitud cero en cada extremo para igualar los segmentos de detenimiento que colindan con ella. La ecuación de una onda seno es:   a C sen 2  (8.7) 



 De nuevo se normaliza la variable independiente q al dividirla entre el periodo del segmento b;  con q y b medidos en radianes. El valor de q/b oscila de 0 a 1 en cualquier segmento y es una relación  adimensional. Como se requiere una onda seno de ciclo completo, debe multiplicarse el argumento * Se emplea un seguidor de por 2π. El argumento de la función seno variará entonces entre 0 y 2π sin importar el valor de b. La rodillo en lugar de un seguiconstante C define la amplitud de la onda seno. dor de cara plana, entonces el rastro del centro del seguidor Se integra para obtener la velocidad, de rodillo seguirá siendo excéntrico verdadero, pero la superficie de la leva no lo

dv   a  C sen 2      dv  C sen 2 d     d

v C



(8.8)

  cos 2 k

2







será. Esto se debe al error de adelanto-atraso del punto de contacto del rodillo con la superficie de la leva. Cuando va “colina arriba” el punto

1

donde k1 es la constante de integración. Para evaluar k1 se sustituye la condición de frontera v = 0 con q = 0, puesto que debe igualarse la velocidad cero del detenimiento en ese punto. La constante

de contacto se adelanta al centro del seguidor y cuando va “colina abajo”, se retrasa

de integración es entonces:  k C



358

y

1

2

v C  1  cos 2 2



 

CINEMÁTICA DE MECANISMOS PARTE I con respecto al centro. Esto distorsiona la forma de la superficie de la leva en un círculo excéntrico verdadero. Sin embargo, el movimiento del seguidor será armónico (8.9) simple, como se define en la figura 8-10, sin importar el tipo de seguidor.

CAPÍTULO 8

DISEÑO DE LEVAS

359

Obsérvese que al sustituir los valores de frontera en el otro extremo del intervalo, v = 0, q = b, se obtiene el mismo resultado para k1. Al volver a integrar se obtiene el desplazamiento:

s

v

v 

ds

    1 cos  2  2   



C

d

   



 



a

 ds   C 2 1  coos  2     d   







(8.10)



2 s C  C  sen 2   k2 2

j

2



4





b

0

Ángulo de leva q FIGURA 8-12 La aceleración senoidal produce desplazamiento cicloidal

Para evaluar k2 se sustituye la condición de frontera s = 0 con q = 0, puesto que desea igualarse el desplazamiento cero del detenimiento en ese punto. Para evaluar la constante de amplitud C, se sustituye la condición de frontera s = h con q = b, donde h es la subida máxima del seguidor (o ascenso) requerida en el intervalo y es una constante con cualquier especificación de leva. k2 0 h C 2 (8.11)

2

8

Al sustituir el valor de la constante C en la ecuación 8.7 (p. 355) para la aceleración, se obtiene:

2







h

a

2

sen  2    

(8.12a)

Al diferenciar con respecto a q se obtiene la expresión para el golpeteo. j



3





h

2

4

cos  2    

(8.12b)

Si se sustituyen los valores de las constante C y k1 en la ecuación para velocidad, se obtiene: v 

h 

 









1 cos 2      

(8.12c)

Esta función de velocidad es la suma de un término coseno negativo y un término constante. El coeficiente del término coseno es igual al término constante. Esto da por resultado una curva de velocidad que inicia y termina en cero y alcanza una magnitud máxima de b/2, como se observa en la figura 8-12. Al sustituir los valores de las constantes C, k1 y k2 en la ecuación 8.10 para desplazamiento, se obtiene: s h   1 sen  2  

2





 



(8.12d)



360

CINEMÁTICA DE MECANISMOS

PARTE I

Obsérvese que esta expresión de desplazamiento es la suma de una línea recta con pendiente h y una onda seno negativa. La onda seno en realidad está “envuelta alrededor” de la línea recta, como se aprecia en la figura 8-12. La ecuación 8-12d es la expresión para una cicloide. Esta función de leva se refiere a un desplazamiento cicloidal o aceleración senoidal. En la forma presentada, con q (en radianes) como la variable independiente, las unidades de la ecuación 8.12d son longitud, de la ecuación 8.12c, longitud/rad, de la ecuación 8.12a longitud/rad2 y de la ecuación 8.12b longitud/rad3. Para convertir estas ecuaciones a una base de tiempo, multiplique la velocidad v por la velocidad angular del árbol de levas w (en rad/s), multiplique la aceleración a por w 2 y el sacudimiento j por w 3.

CAPÍTULO 8

DISEÑO DE LEVAS

361

✍EJEMPLO 8-3 Diseño intermedio de una leva: desplazamiento cicloidal, una leva aceptable. Problema:

Considérese la misma especificación CEP para el diseño de una leva de los ejemplos 8-1 y 8-2. detenimiento subida detenimiento bajada w leva

en desplazamiento cero durante 90 grados (detenimiento bajo) 1 pulg (25 mm) en 90 grados en 1 pulg (25 mm) durante 90 grados (detenimiento alto) 1 pulg (25 mm) en 90 grados 2π rad/s = 1 rev/s

Solución: 1 La función de desplazamiento cicloidal es aceptable para esta especificación de leva de doble detenimiento. Sus derivadas son continuas hasta la función de aceleración, como se ve en la figura 8-12. La aceleración pico es de 100.4 pulg/s2 (2.55 m/s2). 2 La curva de golpeteo en la figura 8-12 es discontinua en sus fronteras, aunque de magnitud finita, y esto es aceptable. Su valor pico es de 2 523 pulg/s2 (64 m/s3). 3 La velocidad es uniforme e iguala los ceros de la detención en cada extremo. Su valor pico es de 8 pulg/s (0.2 m/s). 4 El único inconveniente de esta función es que tiene magnitudes relativamente grandes de aceleración y velocidad pico en comparación con algunas otras posibles funciones para el caso de doble detenimiento.

El lector puede abrir el archivo E08-03.cam con el programa Dynacam para examinar este ejemplo con más detalle.

8

Related Documents

Graficas De Vel
March 2021 0
Artes Graficas
January 2021 0
Test Artes Graficas 2010
January 2021 1
07 Optimizacion Y Graficas
February 2021 0

More Documents from "Ivonne Iris"