Lifting Lug

  • Uploaded by: Art G. Enzi
  • 0
  • 0
  • February 2021
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Lifting Lug as PDF for free.

More details

  • Words: 1,878
  • Pages: 7
Loading documents preview...
1 .0

LIFTING LUG DESIGN CALCULATION

(B) SCHEMATIC DIAGRAM OF 2 NOS LUGS WITH NO TAILING LUG C2 Cz2 Cx2

q

C.O.G

W dsg

q Hcg

Hll

Hcg.cos q Hlp.cos q Qu

Cy1

C1 Hl1 ß1 Cx1 SI

Cx2

C2

Hl2

g1

Cz2 Cy2

LI Lifting Lugs Arrangement

g1 Cy2

1 .1

1 .2

q (°) 0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0 50.0 55.0 60.0 65.0 70.0 75.0 80.0 85.0 90.0

GEOMETRIC DATA Number of lifting lug, Nl Distance between lifting point on spreader bar, Sl Distance between lifting lug, Ll Lifting angle of spreader, ß1 ( 0° < ß1 < 90° ) Lifting angle of lifting lug, g1 ( g1° = 90° ) Height of lifting, Hl1 Height of lifting, Hl2 Percentage of out of plane loading, al If no spreader bar, then let (SI, ß1°= 0) or (ß1°= g1°) REMARK:

= = = = = = = =

2 3403 3403 60 90 2947 user length 5.00

mm mm ° ° mm mm %

Distance between lifting point on spreader bar, St Lifting angle of spreader, ß2 ( 0° < ß1 < 90° ) Height of lifting, Ht1 Height of c.o.g from Datum Line, Hcg Distance from lifting point to Datum Line, Hlp

= = = = =

0 90 0 550 1635

mm ° mm mm mm

DERIVATION OF COMPONENT FORCES Empty weight of vessel, W e ( @ 6,650 Impact load factor, p Design load, W dsg ( = p.W e )

= = =

65,237 N 2 130,473 N

Component forces at lifting as follows :Qu C1 (N) (N) 31960 18452 38678 22331 44622 25763 49997 28866 54952 31727 59603 34412 64042 36975 68347 39460 72588 41909 76830 44358 81139 46846 85584 49412 90244 52102 95212 54971 100604 58084 106572 61529 113322 65426 121145 69943 130473 75329

kg )

lugs during lifting from q = 0° to q = 90° are computed Cx1 (N) 9226 11165 12881 14433 15863 17206 18487 19730 20954 22179 23423 24706 26051 27485 29042 30765 32713 34972 37664

Cy1 (N) 15980 19339 22311 24999 27476 29801 32021 34174 36294 38415 40570 42792 45122 47606 50302 53286 56661 60572 65237

C2 (N) 15980 19339 22311 24999 27476 29801 32021 34174 36294 38415 40570 42792 45122 47606 50302 53286 56661 60572 65237

Cx2 (N) 15980 19265 21972 24147 25819 27009 27731 27993 27803 27164 26078 24545 22561 20119 17204 13791 9839 5279 0

Cy2 (N) 0 1685 3874 6470 9397 12595 16010 19601 23329 27164 31078 35053 39077 43146 47268 51470 55800 60342 65237

Cz2 (N) 799 967 1116 1250 1374 1490 1601 1709 1815 1921 2028 2140 2256 2380 2515 2664 2833 3029 3262

LIFTING LUG DESIGN CALCULATION FOR VERTICAL VESSEL 2 .0 2 .1

LIFTING LUG DESIGN CALCULATION GEOMETRIC DATA

Cy2 Ls Cz2

x d

q

rL

Cx2 hL P

R

Lr T.L.

tr

htl H1

wL

K

r hc

Lw x

tL LIFTING LUG FOR VERTICAL VESSEL

2 .2

GEOMETRIC DATA FOR VERTICAL VESSEL Lug radius, rL Lug thickness, tL Lug base width, wL Diameter of hole, d Diameter of cheek ring, dc Cheek ring thickness, tc ( < 0.75 tL ) Height from hole centre to base, Hl

= = = = = = =

100 16 200 70 0 0 760

mm mm mm mm mm mm mm

GEOMETRIC DATA FOR VERTICAL VESSEL ONLY Distance from lug hole to base, hL Distance from base to T.L., htl Distance, hc Length of lug weld base, Lw Length of shackle acting point from lug hole, Ls Corner radius, r

= = = = = =

100 480 180 80 74.50 35.00

mm mm mm mm mm mm

Rib plate thickness, trp Unbraced length of rib, Lrp Cross sectional area of rib, Ar ( = wL.trp ) Radius of gyration, Rx-x

= = = =

16 110 3200 4.62

mm mm mm² mm

LIFTING LUG BASE PROPERTIES Cross sectional area of lug, At ( = wL.tL ) Section modulus, Zz-z ( = tL.wL²/6) Section modulus, Zx-x ( = ( wL.tL² )/6 )

= = =

3200 mm² 106667 mm³ 8533 mm³

2 .3

2 .4

MATERIAL & MECHANICAL PROPERTIES Material used Specified yield stress, Sy Specified tensile stress, St Modulus of elasticity, E

= A 516 GR. 70 or EQ. = 262.01 N/mm² = 482.65 N/mm² = 200000 N/mm²

ALLOWABLE STRESSES Allowable tensile stress, St.all ( = 0.45Sy ) Allowable bearing stress, Sbr.all ( = 0.9Sy ) Allowable shear stress, Ss.all ( = 0.4Sy ) Allowable compressive stress, Sc.all ( for vertical vessel rib only )

= = = =

Pin size, Dp

=

56.00 mm

=

65237 N

VERTICAL VESSEL LUGS EYE THICKNESS AND SIZING CALCS. 2 .1 STRESS CHECK AT LUG EYE (a) Maximum combined force Maximum combined force acting on lug eye, Fc

117.90 235.81 104.80 145.46

N/mm² N/mm² N/mm² N/mm²

(b) Tensile Stress Combined force, Fc = Cross sectional area of lug eye, Ae ( = [2rL -d].tL + 2[dc-d].tc ) = Tensile stress, St = Since St < St.all, therefore the lug size is satisfactory.

65237 N 2080 mm² 31 N/mm²

(c) Bearing Stress Combined force, Fc = Cross sectional area of lug eye, Ae ( = Dp.[ tL+2.( min(tL/2 , tc) )] ) = Bearing stress, Sbr = Since Sbr < Sbr.all,therefore the lug size is satisfactory.

65237 N 896 mm² 73 N/mm²

(d) Shear Stress Combined force, Fc Cross sectional area of lug eye, Ae ( = (2rL-d).tL ) Shear stress, Sbr Since Sbr < Sbr.all,therefore the lug size is

65237 N 2080 mm² 31 N/mm²

5 .1 q (°) 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90

= = = satisfactory.

VERTICAL VESSEL - ROTATIONAL LIFTING LUGS BASE THICKNESS AND SIZING CALCS. COMPONENT FORCES & MOMENTS Cx2 (N) 15980 19265 21972 24147 25819 27009 27731 27993 27803 27164 26078 24545 22561 20119 17204 13791 9839 5279 0

Cy2 (N) 0 1685 3874 6470 9397 12595 16010 19601 23329 27164 31078 35053 39077 43146 47268 51470 55800 60342 65237

Cz2 (N) 799 967 1116 1250 1374 1490 1601 1709 1815 1921 2028 2140 2256 2380 2515 2664 2833 3029 3262

Mx2 (N) 1597999 1926525 2197216 2414673 2581908 2700927 2773092 2799332 2780285 2716360 2607758 2454451 2256097 2011911 1720430 1379145 983907 527923 0

My2 (N) 59525 71763 81846 89947 96176 100610 103298 104275 103566 101184 97139 91428 84040 74944 64086 51373 36651 19665 0

Mz2 (N) 79900 102973 125987 149094 172386 195922 219743 243882 268372 293260 318613 344533 371171 398747 427585 458157 491160 527636 569188

P (N) 938 1146 1333 1507 1670 1825 1976 2124 2271 2419 2569 2723 2884 3054 3238 3438 3662 3919 4222

R (N) 18765 22623 25801 28355 30319 31716 32564 32872 32648 31898 30622 28822 26493 23625 20203 16195 11554 6199 0

5 .2 q (°) 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90

STRESS CHECK AT LUG BASE sx (N/mm²) 4.99 6.02 6.87 7.55 8.07 8.44 8.67 8.75 8.69 8.49 8.15 7.67 7.05 6.29 5.38 4.31 3.07 1.65 0.00

sy (N/mm²) 0.00 0.53 1.21 2.02 2.94 3.94 5.00 6.13 7.29 8.49 9.71 10.95 12.21 13.48 14.77 16.08 17.44 18.86 20.39

sz (N/mm²) 0.25 0.30 0.35 0.39 0.43 0.47 0.50 0.53 0.57 0.60 0.63 0.67 0.71 0.74 0.79 0.83 0.89 0.95 1.02

sbx (N/mm²) 14.98 18.06 20.60 22.64 24.21 25.32 26.00 26.24 26.07 25.47 24.45 23.01 21.15 18.86 16.13 12.93 9.22 4.95 0.00

sty (N/mm²) 3.66 4.41 5.03 5.52 5.91 6.18 6.34 6.40 6.36 6.21 5.96 5.61 5.16 4.60 3.94 3.15 2.25 1.21 0.00

sly (N/mm²) 3.66 4.41 5.03 5.52 5.91 6.18 6.34 6.40 6.36 6.21 5.96 5.61 5.16 4.60 3.94 3.15 2.25 1.21 0.00

sbz (N/mm²) 9.36 12.07 14.76 17.47 20.20 22.96 25.75 28.58 31.45 34.37 37.34 40.38 43.50 46.73 50.11 53.69 57.56 61.83 66.70

sc 29.50 36.65 43.16 49.09 54.48 59.36 63.74 67.64 71.08 74.07 76.62 78.77 80.55 81.99 83.15 84.12 84.99 85.92 87.11

where sx sy sz sbx sty sly sbz

= Shearing stress ( = Cx2 / At ) = Tensile stress ( = Cy2 / At ) = Shearing stress ( = Cz2 / At ) = Bending stress ( = Mx2 / Zz-z ) = Transverse shearing stress ( = ( My/(2.rL.tL²))[ 3+1.8( tL/(2.rL))] ) = Longitudinal shearing stress ( = ( My/(2.rL.tL²))[ 3+1.8( tL/(2.rL))] ) = Bending stress, ( = Mz2 / Zx-x )

sc = Combined stress ( = ((sy+sbx+sbz)² + 3([sx + sz + sty]² + sly² ))½ ) Allowable combined stress, Sc ( = 0.75Sy ) Since sc < Sc, therefore the lug size is 5 .3

STRESS CHECK AT RIB Maximum compressive force, Pmax Compressive stress, Pmax sc = Ar Since sc < Sc.all, therefore the rib size is

=

196.51 N/mm²

satisfactory.

=

= satisfactory.

4,222 N

1.32 N/mm²

6 .1

6 .2

6 .3

6 .4 q (°) 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90

VERTICAL VESSEL - ROTATIONAL LIFTING WELD LEG AT LUG-TO-SHELL CALCS. GEOMETRIC DATA Weld leg , w Weld throat thickness, tr

= =

MATERIAL & MECHANICAL PROPERTIES Material Specified yield stress, Sy Allowable stress, Sall ( = 0.6 S )

: = =

WELD CROSS-SECTIONAL PROPERTIES Area of weld, Aw ( = 2.tr. (2Lw + rL - 2r + 0.5pr) ) Centre of gravity of weld, CG ( = tr. ( 2Lw² + rLw(p-2) + (3-p)r² )/ Aw ) Section Modulus at X axis, Zx-x Polar moment of inertia of weld at centroid, Ji-i Radius, Ri-i ( = [ rL² + ( max (CG,(Lw-CG)))² ]½ )

= = = = =

10 mm 7.07 mm

A 516 GR 70 262.01 N/mm² 157.21 N/mm²

3464 32.29 170789 19918116 110.80

mm² mm mm³ mm4 mm

WELD LEG DESIGN Cx2 (N) 15980 19265 21972 24147 25819 27009 27731 27993 27803 27164 26078 24545 22561 20119 17204 13791 9839 5279 0

Cy2 (N) 0 1685 3874 6470 9397 12595 16010 19601 23329 27164 31078 35053 39077 43146 47268 51470 55800 60342 65237

Cz2 (N) 799 967 1116 1250 1374 1490 1601 1709 1815 1921 2028 2140 2256 2380 2515 2664 2833 3029 3262

sx (N/mm²) 4.61 5.56 6.34 6.97 7.45 7.80 8.01 8.08 8.03 7.84 7.53 7.09 6.51 5.81 4.97 3.98 2.84 1.52 0.00

stx (N/mm²) 64.69 77.98 88.94 97.74 104.51 109.33 112.25 113.31 112.54 109.96 105.56 99.35 91.33 81.44 69.64 55.83 39.83 21.37 0.00

sy (N/mm²) 0.00 0.49 1.12 1.87 2.71 3.64 4.62 5.66 6.73 7.84 8.97 10.12 11.28 12.46 13.65 14.86 16.11 17.42 18.83

where sx stx sy sz stz Since s.max

= Shearing stress ( = Cx2 / Aw ) = Torsional stress ( = Cx2.(hL+htl+hp+hc-CG).Ri-i / J ) = Shearing stress ( = Cy2 / Aw ) = Shearing stress ( = Cz2.(Ls.sin q +hL)/((htl+hp+hc-CG).Aw) ) = Torsional stress ( = Cz2.Ls.cos q.rL / Ix-x ) = ( Cz2.ls.cos q / Zxx ) <

Sall, therefore the weld size is

satisfactory.

sz (N/mm²) 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.12 0.13 0.15 0.16 0.17 0.18 0.20 0.21 0.23 0.24 0.26

stz (N/mm²) 0.35 0.42 0.48 0.53 0.56 0.59 0.60 0.61 0.61 0.59 0.57 0.54 0.49 0.44 0.38 0.30 0.21 0.12 0.00

Related Documents

Lifting Lug
February 2021 1
Design Of Lifting Lug
February 2021 1
Lifting Lug Sample
January 2021 1
Lifting Lug Metso.xls
January 2021 1
Lifting Side
January 2021 1
Lifting Lug.xlsx
February 2021 1

More Documents from "Mas Arman Tewo"