Lifting Lug.xlsx

  • Uploaded by: Mas Arman Tewo
  • 0
  • 0
  • February 2021
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Lifting Lug.xlsx as PDF for free.

More details

  • Words: 2,708
  • Pages: 24
Loading documents preview...
KNM STEEL CONSTRUCTION SDN. BHD.

VENDOR DOC. NO.: K99087-E-C-006

200140X

Page 42

DESIGN CALCULATION FOR C-2432 C2C SUCTION DRUM 2ND STAGE

APPROVED

WITH COMMENT

REVIEWED

RESUBMIT

This approval or review does not relieve the vendor / subcontractor of his responsibilities to meet all requirements of the contract ORIGINAL

CHECKED

APPD (PRJ.)

SIGN DATE SAMSUNG ENGINEERING CO., LTD.

0

7/18/2013

FOR APPROVAL

REV.

ISSUE DATE

DESCRIPTION

PROJECT NAME SECL JOB NO. REQUISITION NO. LETTER OF INTENT NO.

: : : :

WINSON LIM

KS LAW

TC MOK

PREPARED BY CHECKED BY APPROVED BY

MALAYSIA OLEFINS PROJECT (MOP) SC0273 MFA-003-1 98-MOP-SEM-06

OWNER :

PURCHASER :

PLANT LOCATION :

KERTEH, MALAYSIA

OPTIMAL OLEFINS MALAYSIA SDN. BHD.

SAMSUNG ENGINEERING CO., LTD.

TABLE OF CONTENT 1.

Design pressure case

1

2.

Equivalent design pressure case

7

3.

M.A.W.P. case

13

4.

Skirt design calculation

19

5.

Nozzle design calculation

25

WIND LOAD CALCULATIONS TO - ASCE 7 - 1995 A ) AT OPERATING CONDITION 1 .0

1 .1

WIND DESIGN CALCULATION Design code Exposure category

: :

GEOMETRIC DATA Basic design wind speed, V As per ASCE 7, the wind pressure shall be determined as follows : Qw = Qz.Gh.Cf N/m² where Qz = Velocity pressure ( N/m² ) Gh = Gust response factor ( dimensionless ) Cf = Force coefficient ( dimensionless ) Calculate : Qz = 0.613.Kz.(I.V)² where I = Importance factor ( table 5 ) V = Basic design wind speed

1 .2

ASCE 7 - 95 C

= =

145.08 km/hr 40.30 m/s

= =

1 40.30 m/s

= =

274320 mm 7

case 4572mm  z  zg

Kz

= 2.58 ( z / zg )(2/a)

zg a

= 2.58 ( 4572 / zg )(2/a) case z < 4572mm = Gradient height ( table C6 ) = 900 ft = Ground surface roughness factor ( table C6 )

Gh where

= 0.65 + 3.65.Tz

Tz Do

= ( 2.35 Do1/2 )/( z/ 9144 )(1/a) = Surface drag coefficient ( table C6 )

Cf

= Force coefficient ( table 12 )

=

0.005

WIND FORCE CALCULATION PRESSURE VESSEL Height above average level of ground, z Velocity pressure, Qz Gust Response Factor, Gh Force Coefficient, Cf Wind design pressure, Qw

overall diameter h/D D*(Qz)^(1/2)

3000.4 mm 3.6161845 95.856227 >

= = = = =

0.7436031 2.5

10850 mm 1020.66 N/m² 1.242 0.74 942.55 N/m²

% OVER DIAMETER CALCULATION

Vessel diameter, ID Vessel thickness, ts Vessel diameter, OD Insulation thickness (if applicable) Vessel OD + insulation, Do'

: : : : :

2000 14 2028 140 2308

mm mm mm mm mm

The diameter to be used for section B calculation, D" or Larger of the two

= =

Do' Do'

=

3000

+ x

600 1.3

= =

2908 mm 3000 mm

mm

To convert the diameter used to the % over diameter D" - Do' Do'

= =

3000 30.00 %

2308

2308 over diameter

x

100 %

WEIGHT CALCULATION Equipment no: Equipment name: Equipment size:

09-F004 NH3 SEPARATOR ID 1500 T/T 2000

Description Ellip Head (top) Ellip Head (bottom) Shell plate Jacket head Jacket shell Lifting lugs Reinforcement Plate Nozzle, N1 Nozzle, N2 Nozzle, N3 Nozzle, N4 Nozzle, N5 Nozzle, N6A Nozzle, N6B Nozzle, N7 Nozzle, N8 Nozzle, N9A Nozzle, N9B Nozzle, N10 Nozzle, N11 Line pipe Demister Elbow N6B Elbow N9B Skirt & base ring Name plate Miscellaneous Total

Weight (kg) 286.74 560.21 1799.53 385.25 393.46 36 63 31 31 4 2.9 5.3 5.3 5.3 7.3 138.5 5.3 5.3 4.5 2.9 26 85 2.5 2.5 645.7 2 113.51 4650

Fabrication weight Empty weight Content weight Operating weight Water weight Hydrotest weight Full of water weight

4650 5580 2823 8403 4420 10230 10230

kg kg kg kg kg kg kg

PAGE ............ OF ................ C-2432

CALCULATION OF LIFTING FORCE

W = 1.5 * Wo, (1.5 = DYNAMIC LOAD FACTOR, Wo = TOTAL LIFTING WEIGHT) = 1.5 x 116699 = 175048 N,(USED W.T IS= Y=

3825 mm

X=

4225 mm

R=

1005 mm

LL = W*( Y*COSá + RSINá ) / ( ( X+Y )*COSá + R*SINá ) TL = W*( X*COSá ) / ( ( X+Y)*COSá + R*SINá) LV = LL*COSá LH = LL*SINá TV = TL*COSá TH = TL*SINá PV = 0.5*LH PH = PV*TAN15 °

175048

N)

PAGE ............ OF ................ C-2432

RESULT OF LIFTING FORCE ( á = 0° TO 90° )

DEG.à --------0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 ---------

LL LV LH TL TV TH PV PH ------------------ --------------------- -------------------- --------------------------- ----------------- ------------------ -------------------------- ------------83175 83175 0 91873 91873 0 0 0 84168 83847 7336 90880 90534 7921 3668 ## 85154 83860 14787 89894 88528 15610 7393 ## 86149 83213 22297 88899 85870 23009 11148 ## 87168 81911 29813 87880 82580 30057 14907 ## 88229 79963 37287 86819 78684 36691 18644 ## 89352 77381 44676 85696 74215 42848 22338 ## 90561 74183 51943 84487 69208 48460 25972 ## 91887 70389 59064 83161 63705 53455 29532 ## 93372 66024 66024 81676 57754 57754 33012 ## 95074 61112 72831 79974 51406 61264 36415 ## 97077 55681 79521 77971 44722 63870 39760 ## 99509 49755 86177 75539 37769 65418 43089 ## 102577 43351 92967 72470 30627 65680 46483 ## 106639 36473 100208 68408 23397 64283 50104 ## 112376 29085 108546 62672 16221 60537 54273 ## 121259 21056 119417 53789 9340 52972 59708 ## 137193 11957 136671 37855 3299 37711 68335 ## 175048 0 175048 0 0 0 87524 ## ---------------------------------------------------------------------------------------------------------

MAX. FORCE SUMMARY AT LIFTING AND TAILING LUGS FORCE ( N ), ANGLE ( DEG. )

FORCE --------ANGLE ---------

LL 175048 -------------90 --------------

LV 83860 ---------------5 ----------------

LH 175048 ---------------90 ----------------

TL 91873 --------------0 ---------------

TV 91873 -------------0 --------------

TH 65680 --------------65 ---------------

PV 87524 -----------------90 ------------------

PH ## ---90 ----

PAGE ............ OF ................ C-2432

************** *** ************** *** ************* * * LIFTING LUG * ************** *** ************** *** ************* * ERECTION WEIGHT (WT) : MATERIAL OF LUG : MATERIAL OF PAD : YIELD STRESS (LUG) : YIELD STRESS (PAD) : LUG THICKNESS (t) : PAD THICKNESS (tp) : 476 a = 200.0 w = 197.0 206 c = 91.0 e = 577.0 g = d' = 110.0 710 A = 394.0 E = 500.0 t1 = 22.0 leg ( 35 1. DESIGN LOAD PER LIFTING LUG

1.5 x 17650g

=

175047.8 SA 537 CL1 SA 240 304 334.8 118.9 22.0 14.0

MM MM b = MM d = MM f = MM h = MM B = MM tr = MM t2 = mm leg (

110.0 38.0 81.0 0.0 264.0 0.0 14.0 15

N

MPa MPa MM MM MM MM MM MM MM MM MM mm)

PK

262 182 444 Note : t1 and t2 are throat length

We had considered the 5o out of bending by dividing the max load with cos 5o

WT P=

=

87858 N

2 x COS 5° 2. STRENGTH OF LIFTING LUG 1) SHEAR STRESS P Ss = 2 ( t x f + 2tr x h ) =

t= =

24.7 MPa

< Sa = 0.4Sy =

Shear Stress, Ss x 2 49.30316 Mpa

133.9 MPa

<< OK >> Please note that P is not vertical load. P is the max load during lifting.

2) BENDING STRESS Pxg Sb = M / Z = t x a² / 6

0.5WT =

65.9 Mpa

< Sa = 0.66Sy =

220.9 MPa

o

0.5WT/cos(5 )

<< OK >>

3) BEARING STRESS, Sbr PIN DIAMETER USED = 70 mm 2 A= 3500 mm Sbr = P/A = = 25.10 MPa < Sa = 0.9Sy =

5

301.275 Mpa OK

X

X

Y

Y

At Y-Y section COMBINE STRESSES s1/2 = (sx + sy/2 = (Sb + Ss/2

= = =

SQRT[ (sx + sy2/4 + t2 ]



SQRT[ (Sb + Ss2/4 + t2 ]



65.89

+ 24.65 2 45.27 ± 66.94 112.21 OR -21.66326

± SQRT [ (

(

MPa < Sa = 0.9Sy =

65.89 +

24.65

301.275 Mpa OK

BENDING STRESS AT HORIZONTAL POSITION O P' = 1/2 x WT/2 COS 5 = 43595.66 N Sb' = M/Z

2

= P' x d' / (t1 x a /6) = 33.700165 MPa < Sa = 0.66Sy =

220.94 Mpa

2

) /4 + t ]

OK OK

2

PAGE ............ OF ................ C-2432

2. STRENGTH OF WELDMENT (PAD AND LUG) 1) CRITICAL WELD CROSS SECTION PROPERTIES b² + c² + d * c/2 n=

=

36.7 MM

a + 2b + 2c POLAR MOMENT OF INERTIA (J) (a - d)² J = (2.b [(b²/12) + r1²] + (a-d)[

+

n²]

12 d² + 2.c [(c²/12) + r2²] + d [

+ (c - n)²]).t1 12 =

bb WHERE,

r1² = (

-n)²+( 2

r2² = (

c -n)²+ 2

(

4 74063936 MM

a )²= 2 d )²= 2

10334 MM

438 MM

2) MAX. TORSIONAL STRESS S1 = P (e + b - n) rmax / J = WHERE, rmax = SQRT ( (b - n)² + (a/2)² ) = 122.8 MM Sv = S1 cosá = Sh = SI siná =

94.7 MPa

76.0 MPa 56.5 MPa

(b - n) WHERE, á = atan ( ----------) = a/2 3) DIRECT SHEAR STRESS S2 = P / (2*b*t1 + a*t1) = 4) MAX. SHEAR STRESS S = @SQRT ( (S2 + Sv)² + Sh² ) = 102.5 MPa < Sa = 0.55 x 0.6Sy =

36.6 °

9.5 MPa

110.5 MPa

<< OK >>

PAGE ............ OF ................ C-2432

3. STRENGTH OF WELDMENT (PAD AND SHELL) 1) TORSIONAL SHEAR STRESS S3 = P (E+B/2)/(2 A B t2) = 19.1 MPa 2) DIRECT SHEAR STRESS S4 = P /(2 (A+B) t2) = 4.8 MPa 3) MAX. SHEAR STRESS S = S3 + S4 =

23.8 MPa < Sa = 0.55 x 0.6Sy =

REFERENCE : PRESSURE VESSEL DESIGN HANDBOOK (H. BEDNAR) AISC - ALLOWABLE STRESS

110.5 MPa

<< OK >>

PAGE ............ OF ................ C-2432

************** *** ************** *** ************* * * TAILING LUG * ************** *** ************** *** ************* * MATERIAL : YIELD STRESS (Sy) : LOAD AT TAIL.LUG (P) TV : RADIUS (R) : HOLE DIAMETER (d) : LUG THICKNESS (t) : B : H = 2R : Lw = 2 H :

SA 537 CL1 334.8 MPa 91872.92 N 104.0 MM 60.0 MM 22.0 MM 60 MM 208.0 MM 416.0 MM

1. STRENGTH OF TAILING LUG 1) SHEAR STRESS P Ss = -----------2 (2tlt x(R-d/2) f + 2tr x h ) =

28.2 MPa < Sa = 0.4Sy =

133.9 MPa

<< OK >>

220.9 MPa

<< OK >>

2) BENDING STRESS PxB Sb = M / Z = --------------t x H² / 6 =

34.7 MPa < Sa = 0.66Sy =

2. STRENGTH OF WELDMENT 1) REQUIRED WELDMENT BY SHEAR P P Aw = ------- = ------------- = Sa 0.55x0.4 Sy

1248 MM²

2) LEG LENGTH Aw l = ---------------- = Lw USE LEG LENGTH

3.0 MM

=

16 MM

REFERENCE : PRESSURE VESSEL DESIGN HANDBOOK (H. BEDNAR) AISC - ALLOWABLE STRESS

<< OK >>

C-2432

PAGE ............ OF ................

TENSILE STRENGTH AT "A"

A= =

P x K2 (a x T) + ( 2 x c x t) 95.94 MPa

WHERE , a = d= b= a/d = T= c= t=

74 60 208 1.2333333 22 0 0

<

220.935 MPa ===>

K2 =

O.K!

1.7

PAGE ............ OF ................ C-2432

************ ** ************** *** ************** * ************* ********* ************ ** * STRENGTH OF BASE BLOCK * * DURING ERECTION * ************ ** ************** *** ************** *** ************* ********* ************ ** MATERIAL YIELD STRESS (Sy) ALLOW. STRESS (Sall.) LOAD (P = TV) Le = 0.55 SQRT ( Do x t2 ) HOLE DIAMETER (d ) Rm = MEAN RADIUS

l1 = l2 = l3 =

: : : : : : :

A 283 GR C 206.8 103.4 91872.92 70.8 41.0 857.5

100.0 MM,L1 = 84.0 MM,L2 = 125.6 MM,L3 =

MPa MPa N MM MM MM

200.0 MM,t1 = 320.8 MM,t2 = 112.0 MM,t3 =

1. CALCULATION OF N.A (L1xt1xl1) + (L2xt2xl2) + (L3xt3xl3) Y = = ---------------------------------------------------(L1xt1) + (L2xt2) + (L3xt3)

15.9 MM,A1 = 8.0 MM,A2 = 15.9 MM,A3 =

=

3180.0 MM² 2566.4 MM² 1780.8 MM²

100.6 MM

2. MOMENT OF INERTIA

I

(t1xL1^3 + L2xt2^3 + t3xL3^3) + A1x(Y-l1)² + A2x(Y-l2)² + A3x(Y-l3)² = -----------------------------------------------------12 =

1.4E+07 MM^4

3. SECTION MODULUS I Z = ------- = Y

142111 MM^3

4. BENDING STRESS OF BASE BLOCK DUE TO TV ( á = 0ø ) 1) BENDING MOMENT Mo = 1.5 w Rm² = 0.239 x P x Rm = 2) BENDING STRESS Mo Sb =-------= Z

1.9E+07 N-MM

132.5 MPA < Sa =0.66Sy =

136.5 MPa P

5. SHEAR STRESS

==>

Po

P = ¶ w Rm w = P / ¶ Rm

Mo 34.10 N/MM

Wo = 0.5 w Rm

14622.03 N w

6. COMBINED STRESSES Wo / A2 ± Sb

=

138.19008

THEREFORE, BRACING OF SHELL IS REF. : " FORMULAS FOR STRESS AND STRAIN"

> 1.5 Sall.

155.1 MPa NOT REQUIRED.

BY RAYMOND J.ROARK.

PAGE ............ OF ................ C-2432

7. CHECK FOR SHELL BRACING BRACING MATERIAL : YIELD STRESS Sy : SHELL I.D (L) : SIZE : AREA [A] :

P(TV)

A 106 GR B 206.844 MPa 6236 MM W 6" X 6" X 20 LB/FT 10389.52 MM²

:

91872.92 N

TENSILE STRESS ST = P / A

RADIUS OF GYRATION

COMPRESSION STRESS Pxw Sc = ----- = A WHERE; w =

=

(i) :

LAMDA 20 30 40 50 60 70 80 90 100 110

0 1 1.03 1.07 1.12 1.19 1.28 1.39 1.53 1.7 2.03

124.1064 MPa

O.K

67.39328 MM

9.5 MPA < Sa = 0.6Sy =

124.1 MPa

1.07 ; FROM TABLE 16-2 (JIS B8821)

L LAMDA =------ = n^0.5xi n=

8.842843 MPa < 0.6Sy

46.3

4

; WHEN BOTH FIXED.

1 1 1.03 1.07 1.13 1.20 1.29 1.40 1.54 1.73 2.08

2 1 1.04 1.08 1.13 1.20 1.30 1.41 1.56 1.76 2.13

3 1 1.04 1.08 1.14 1.21 1.31 1.43 1.58 1.79 2.14

THEREFORE, THIS BRACING IS SUITABLE. REFERENCE : FORMULAS FOR STRESS AND STRAIN (ROARK) JIS

4 1 1.05 1.09 1.15 1.22 1.32 1.44 1.59 1.81 2.20

5 1 1.05 1.09 1.16 1.23 1.33 1.46 1.61 1.87 2.40

6 1.01 1.05 1.10 1.17 1.24 1.34 1.47 1.63 1.90 2.47

7 1 ## ## ## ## ## ## ## ## ##

AISC

C-2432

PAGE ............ OF ................

STRENGTH OF WELDMENT (PAD AND LUG)

LIFTING IN HORIZONTAL POSITION, LV/2

L1 L2 D1 D2 e JOINT EFFICIENCY, n THROAT = 0.7 t1 = C1

= = = = = = =

41930.05

110 110 197 38 577 0.49 22

N y

x

AW1 = 2xC1x(C1+L1)+C1xD1+2xC1xL2

14982

r

= ((D1/2+C1)²+f2²)

144.2666

f1

= {2xC1x(C1+L1)²/2 + (D1-D2)xC1²/2 + 2xC1xL2²/2 + D2xC1 x(L2+C1/2)}/AW1 52.67401

f2 = C1 + L1 - f1

79.32599

Ix = 2x{(C1+L1)xC1^3/12 + (C1+L1)xC1x((C1+D1)/2)²} +2x{C1x((D1-D2)/2)^3/12 + C1x(D1-D2)/2x(D2/2+(D1-D2)/4)²} +2x{L2xC1^3/12+L2xC1x((D2-C1)/2)²} + C1xD2^3/12

69873628 + 13915919 + 605572 84395119

Iy = 2x{C1x(C1+L1)^3/12 + C1x(C1+L1)x((C1+L1)/2-f1)²} +2x{((D1-D2)/2xC1^3)/12 + (D1-D2)/2xC1x(f1-C1/2)²} +2x{C1xL2^3/12+C1xL2x(L2/2-f1)²} +{D2xC1^3/12 + D2xC1x(L2+C1/2-f1)²}

9464612 6216143 4906519 3936535 24523810

Ip = Ix + Iy

1.09E+08

+ + +

SHEAR STRESS DUE TO TORSIONAL MOMENT S1 = LV x (f2+e) x r / (Ip x n)

74.389

MPa <0.6*0.7*Sy =

140.595 MPa < OK >

5.712

MPa

<

140.595 MPa < OK >

80.101

MPa

<

140.595 MPa < OK >

SHEAR STRESS S2 = LV / (AW1xn) COMBINED SHEARING STRESS Ss = S1 + S2

LIFTING IN VERTICAL POSITION LIFTING IN VERTICAL POSITION, P

87858.23

N

SHEAR STRESS SV1 = P / (AW1xn)

11.968

<

140.595 < OK >

MPA

0.816

<

234.325 < OK >

MPA (0.7*Sy)

TENSILE STRESS SV2 = R1 / (AW1*n)

PAGE ............ OF ................ C-2432

5. STRENGTH OF WELDING JOINT OF LIB LIB MATERIAL YIELD STRENGTH , Sy t = L7 = f2 + e - ( g + t/2) L8 = t/2 + g + d/2

A283 Gr.C/ A285 Gr. C 206.844 MPa 16 MM 538.32599 MM 137 MM

R = P TAN 15° * (L7+L8)/L7

29532.691 N

R1 = R - PTAN 15°

5991.1491 N

COMPRESSIVE STRESS Sc = R / AW2

AW2 = a * t / 1.414

13.25

2229.14

MPa < 0.7 Sy =

MM2

144.7908 MPa

Related Documents

Lifting Side
January 2021 1
Lifting Lug
February 2021 1
Lifting Lug.xlsx
February 2021 1
Lifting Operation
March 2021 0
Lifting-lug.xls
February 2021 1
Lifting Plan
January 2021 1

More Documents from "Eko Kurniawan"