Pm Scania.pdf

  • Uploaded by: strong hold
  • 0
  • 0
  • January 2021
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Pm Scania.pdf as PDF for free.

More details

  • Words: 64,051
  • Pages: 382
Loading documents preview...
Mechanic Development

SCANIA PREVENTIVE MAINTENANCE

PT SAPTAINDRA SEJATI 0

MaMS: SOP INK

SIS Maintenance Management System (SIS-MMS)

CUSTOMER SATISFACTION

INTERNAL MAINTENANCE SIS Maintenance Management System (SIS-MMS)

MAINTENANCE STARTEGY

5

MAINTENANCE IMPROVEMENT

PRODUCTION PLAN

CURRENT EQUIPMENT

MAINTENANCE PLANNING & BUDGETING

1

CORRECTIVE MAINTENANCE (UNSCHEDULE BD)

3

COMPONENT RECONDITION (REBUILD COMPONENT) FABRICATION - ADDITIONAL COMPONENT COMPLETION

USED EQUIPMENT

TYRE MANAGEMENT SYSTEM PREVENTIVE MAINTENANCE (PS, MIDLIFE, OVH)

FAILURE ANALYSIS

BACKLOG MANAGEMENT

PREDICTIVE MAINTENANCE (PAP, PPM, PPU, PPA, INSPECTION, VHMS) TROUBLE SHOOTING & REPAIR ACTIVITIES

MAN POWER MANAGEMENT - Mechanic Development - Staff Development - Man Power Planning

6

AUDIT SYSTEM - Maintenance Process - People - Equipment

TOOLS & FACILITIES - Workshop & Facility - Tools

7

EQUIPMENT MANAGEMENT -

Eq. Selection Warranty Claim Insurance Dispose EMC

PERFORMANCE MEASUREMENT

NEW EQUIPMENT

2

MAINTENANCE PROCESS

DATA MANAGEMENT

EQUIPMENT

4

MAINTENANCE STANDARIZATION

9

8

SHE AWARNESS

STANDARD OPERATION PROCEDURE Topik Pemilik Proses Pengendali Dokumen Berlaku Untuk

PLANNED MAINTENANCE Plant Operation Department QA Partner All/Semua

Nomor Dokumen Tanggal Efektif Tingkat Kerahasiaan

PLO/09/008/SOP

Disusun Oleh :

Plant Operation Dept. Head

QA Certified Partner

Revisi : 0 Hal : 1 / 12

GREEN Disetujui Oleh :

Plant Director

1. TUJUAN Standard Operation Procedure (SOP) ini bertujuan untuk : 1.1. Mengatur mekanisme pelaksanaan program Planned Maintenance. 1.2. Memberikan pedoman kepada PIC (Person In Charge) dalam melaksanakan proses planned maintenance. 1.3. Mengendalikan proses planned maintenance agar sesuai dengan sistem manajemen yang telah ditetapkan. 2. RUANG LINGKUP SOP ini digunakan untuk mengatur mekanisme pelaksanaan planned maintenance dari mulai proses pembuatan budget, koordinasi, kebutuhan part, pemenuhan part sampai dengan pelaksanaan planned maintenance tersebut. Adapun ruang lingkupnya meliputi Section: Plant, Production, Engineering dan Supplier. 3. REFERENSI 3.1 Element ISO 9001 : 2008, elemen : 3.1.1. Pengendalian Catatan Mutu 3.1.2. Fasilitas 3.1.3. Lingkungan Kerja 3.1.4. Perencanaan untuk Merealisasikan Proses 3.1.5. Produksi dan Penyediaan Jasa 3.1.6. Validasi Proses Produksi dan Penyediaan Jasa 3.1.7. Identifikasi dan Penelusuran 3.1.8. Pengukuran dan Pemantauan Proses 3.1.9. Continual Improvement 3.1.10. Tindakan Perbaikan 3.2. SOP No. LOG/09/003/SOP Credit / Return Request. 3.3. SOP No. PLO/09/009/SOP Schedule Overhaul Process 3.4. SOP No. PLO/09/010/SOP Remove & Install Overhaul Process 3.5. SOP No. PLO/09/011/SOP Program Midlife Overhaul 3.6. SOP No. PLO/09/012/SOP Full Maintenance Contract (FMC) 3.7. SOP No. PLO/09/013/SOP Normal Component Exchange Overhaul 3.8. SOP No. PLO/09/014/SOP Pelaksanaan Program Component Exchange 3.9. SOP No. PLO/09/015/SOP Pelaksanaan Program Tukar Alat (PTA) 3.10. SOP No. PLO/09/016/SOP Fitment Defitment Component 4. DEFINISI 4.1. Hour Meter (HM) Adalah lamanya equipment dioperasikan oleh operator dalam satuan jam alat.

STANDARD OPERATION PROCEDURE PLANNED MAINTENANCE

Topik Nomor Dokumen

PLO/09/008/SOP

Revisi :

Tanggal Efektif

Hal : 2 / 12

4.2. Program Pemeriksaan Undercarriage (PPU) Adalah salah satu program perawatan equipment yang dilakukan secara berkala (sesuai HM) dengan melakukan pengukuran terhadap komponen undercarriage untuk mengetahui tingkat keausan komponen sehingga waktu penggantian/rebuild komponen dapat direncanakan. 4.3. Ready For Use (RFU) Adalah equipment siap dioperasikan kembali. 4.4. Program Planned Maintenance Adalah program perencanaan perawatan equipment secara berkala (sesuai HM) yang meliputi Periodic Service (PS), Program Analisa Pelumas (PAP), Program Pemeriksaan Mesin (PPM), dan Program Pemeriksaan Undercarriage (PPU). 4.5. Periodic Service (PS) Adalah salah satu program perawatan equipment yang dilakukan secara berkala (sesuai HM) dengan melakukan penggantian oli dan filter serta pengecekan visual sesuai check list terhadap kondisi unit. Periodic Service dilakukan setiap HM kelipatan 250 jam, dan dibagi dalam 4 program yaitu: PS 250 (1) : Service yang dilakukan setelah mencapai HM 250 jam. PS 500 (2) : Service yang dilakukan setelah mencapai HM 500 jam. PS 1000 (3): Service yang dilakukan setelah mencapai HM 1000 jam. PS 2000 (4): Service yang dilakukan setelah mencapai HM 2000 jam. Periodic Service bagi equipment yang tidak memiliki ukuran HM untuk operating statistiknya dilakukan setiap kelipatan hari operasi sesaui dengan ketentuan yang ada dalam Operation Maintenance & Manual (OMM). 4.6. Backlog Adalah suatu pekerjaan yang tertunda pelaksanaannya dikarenakan secara analisa teknis gejala kerusakan tersebut tidak mengganggu operational unit baik performance dan faktor safety. Perbaikan backlog yang dikategorikan sebagai schedule backlog adalah : 1. Pelaksanaan perbaikannya dilakukan pada saat unit tidak produktif (tidak memotong jam operasi unit). 2. Pelaksanaan perbaikan bersamaan waktunya dengan periodic service dan hal ini perlu dikomunikasikan dahulu dengan pihak produksi dan engineering mengenai estimasi durasi perbaikannya (saat daily koordinasi). 3. Pelaksanaan perbaikan memotong jam operasi unit, tapi 1 hari sebelumnya sudah dikomunikasikan ke pihak produksi (saat daily koordinasi) dan tidak mempengaruhi setting fleet. 4.7. Program Analisa Pelumas (PAP) Adalah program perawatan equipment secara berkala (sesuai HM) melalui pengambilan oli sample pada component untuk mengetahui kondisi oli, kandungan keausan logam dalam suatu component. 4.8. Program Pemeriksaan Mesin (PPM) Adalah salah satu program perawatan equipment yang dilakukan secara berkala (sesuai HM) dengan melakukan pengukuran dan diagnostik serta pelaksanaan minor repair dan adjustment untuk kondisi abnormal(tidak sesuai standar) yang sifatnya mendesak, yang ditujukan untuk mempertahankan performance unit sesuai dengan standar.

STANDARD OPERATION PROCEDURE PLANNED MAINTENANCE

Topik Nomor Dokumen

4.9.

PLO/09/008/SOP

Revisi :

Tanggal Efektif

Hal : 3 / 12

Work Order (WO) adalah form perintah kerja yang dikeluarkan melalui Ellipse yang memuat deskripsi pekerjaan yang akan dilakukan yang meliputi nomor equipment, status equipment, problem yang terjadi, tipe maintenance, nama komponen, penanggung jawab pekerjaan, dll.

4.10. Maintenance Scheduling Adalah salah satu program perawatan equipment yang dilakukan secara berkala sesuai hour meter dengan melakukan pekerjaan sesuai jenis pekerjaannya dan dipandu dengan standard job dari manual book. 4.11. Master Plan Overhaul Adalah rencana komponen Overhaul dalam satu tahun kedepan berdasarkan standar umur komponen dan Service Meter Reading (Service Meter Reading) yang di susun pada akhir bulan Oktober tahun berjalan. 4.12. Schedule Overhaul Adalah schedule overhaul dalam satu tahun kedepan berdasarkan standar umur komponen dan Service Meter Reading (Service Meter Reading). 4.13. Redo PS Adalah laporan hasil aktivitas monitoring kualitas output PS. Kualitas output PS diukur dengan ukuran % Redo PS (prosentase PS yang mengalami redo terhadap aktual PS yang terlaksana).

4.14. Program Midlife Overhaul Adalah salah satu program perawatan equipment yang dilakukan secara berkala sesuai HM maupun sesuai dengan kondisi dengan melakukan overhaul subcomponent seperti Turbocharger, Starting motor, Water pump, Alternator Air compressor dan attachement dari equipment yang bertujuan untuk mempertahankan performance unit sesuai dengan standar. 4.15. Ground Engaged Tool (GET) Adalah peralatan dari equipment yang bersentuhan langsung dengan tanah. Contoh: tooth bucket, cutting edge, dll. 4.16. Consumable Goods Adalah material dari warehous yang habis dipakai. Contoh: CRC, WD, dll. 4.17. Summary Monthly Maintenance Planning Adalah summary dari perencanaan maintenance selama satu bulan ke depan. 4.18. Weekly Committal Meeting Adalah meeting koordinasi mingguan yang dihadiri oleh semua section di jobsite untuk membahas Weekly Maintenance Planning.

STANDARD OPERATION PROCEDURE PLANNED MAINTENANCE

Topik Nomor Dokumen

PLO/09/008/SOP

Revisi :

Tanggal Efektif

Hal : 4 / 12

4.19. Daily Maintenance Planning Adalah perencanaan maintenance selama satu minggu ke depan yang digunakan sebagai dasar dalam daily coordination. 4.20. Daily Coordination Adalah meeting koordinasi yang dilaksanakan oleh section Plant, Produksi dan Logsitik untuk membahas mengenai aktivitas operasional harian, termasuk Daily Maintenance Planning. 4.21. Master Plan (Yearly) Maintenance Planning Adalah rencana perawatan equipment yang mencakup program PS, Midlife, dan Overhaul dalam satu tahun kedepan berdasarkan standar umur komponen dan Service Meter Reading (Service Meter Reading) yang di susun pada akhir bulan Oktober tahun berjalan. 4.22. Purchase Requisition (PR) Adalah permohonan pemenuhan kebutuhan barang yang termasuk Stock Item melalui sistem. 4.23. Purchase Order (PO) Adalah dokumen pembelian yang sah (dokumen perjanjian jual beli), yang digunakan sebagai bukti permintaan barang atau perintah kerja kepada supplier/pihak ketiga. PO antara lain berisi : - Tanggal, bulan, dan waktu diadakannya perjanjian jual beli. - Nama dan alamat jelas penjual dan pembeli. - Jenis, tipe, dan merk barang / service yang ditransaksikan. - Jumlah barang/pekerjaan. - Harga satuan/borongan. - Jumlah yang harus dibayarkan. - Cara pembayaran. - Cara penyerahan dan jangka waktu penyerahan. 5. KEBIJAKAN 5.1. Plant Planner harus bertanggung jawab pada Maintenance Scheduling Task yang meliputi: 5.1.1 Penyusunan Master Schedule overhaul setiap akhir tahun dilakukan berdasarkan : 1. Historical HM unit akhir tahun. 2. Accumulative lifetime component akhir tahun. 3. Last component overhaul. 4. Melihat rencana rata-rata jam kerja alat untuk tahun depan. 5. Rencana unit scrap. 6. Historical unit berdasarkan trend PPM, PAP, PPU, Backlog, trouble, Oil consumption & Cost). 5.2. Yearly planning dibuat oleh Planner dan disubmit oleh Section Head masing-masing Jobsite ditujukan ke Budget, PA & Cost Control Section Head dan Plant Operation Department.

STANDARD OPERATION PROCEDURE PLANNED PLANNED MAINTENANCE MAINTENANCE

Topik Nomor Dokumen

PLO/09/008/SOP

Revisi : 0

Tanggal Efektif

Hal : 5 / 12

5.3. Untuk penentuan yearly planning tahun selanjutnya dimulai bulan september kemudian diselesaikan pada bulan Oktober pada tahun berjalan. Yearly planning mencakup: • PS • Midlife dan Overhaul • Program Plant lainnya 5.4. Budget, PA & Cost Control Section Head melakukan konsilidasi budget tingkat nasional. Pembahasan antara Plant Operation HO ini dilakukan bersama-sama dengan masing-masing planner Jobsite. Kemudian di submit ke Corporate Planning untuk mendapat persetujuan dari BOD. Setelah bugdet dan aktivitas disetujui oleh BOD maka Plant Operation HO menginformasikan hasilnya ke Jobsite masing-masing (Planner& Section Head). 5.5. Untuk membahas rencana overhaul 3 bulan kedepan dan mereview detail bulan depan diadakan Monthly meeting yang diikuti oleh Plant Operation di HO dan masing-masing Distributor / Supplier. 5.6. Jobsite juga melaksanakan Monthly meeting yang dihadiri oleh Planner, Plant Supervisor, Plant Section Head Logistic Section Head dan Distributor/Supplier. 5.7. Monthly meeting juga dilakukan dalam rangka memfinalisasi rencana satu bulan kedepan termasuk realisasi PO. 5.8. Setiap equipment yang sudah mencapai Hour Meter (HM) untuk program maintenance harus dipersiapkan oleh Production Dept. dan Plant Dept bertanggung jawab atas kebersihan equipment sebelum menjalani program maintenance yang meliputi: Periodical Service (PS), backlog, midlife overhaul, dan General Overhaul (GOH) sehingga program maintenance dapat segera dilaksanakan tepat sesuai jadwal. Koordinasi untuk planned maintenance antara Production Section, Plant Section dan Logsitic Section dilakukan melaui meeting coordination. 5.9. Ketentuan untuk proses Periodical Service (PS) adalah sebagai berikut: 5.9.1. Batas toleransi keterlambatan maksimum eqipment untuk menjalani PS adalah 50 jam operasi dari jadwal yang seharusnya, apabila lebih dari batas tersebut maka equipment tidak diperkenankan untuk dioperasikan. 5.9.2. Program Periodic Service untuk equipment Wheel Type dilaksanakan di workshop, sedangkan untuk equipment Track Type dapat dilaksanakan di field maupun di workshop. 5.9.3. Equipment dinyatakan Ready For Use (RFU) dari proses PS oleh Plant setelah proses final check menyatakan bahwa equipment siap dioperasikan. Waktu RFU adalah waktu saat MCR menerima laporan equipment RFU dari Plant. 5.9.4. Apabila equipment tidak segera dioperasikan setelah dinyatakan RFU oleh Plant maka equipment dinyatakan dalam status stand by. 5.9.5. Periodic service harus dilaksanakan dengan proses dan peralatan yang terjaga kebersihannya dari kontaminasi. 5.9.6. Perawatan kebersihan tools dan fasilitas periodic service (grease pump, oil pump, kompresor, hose reel, grease line, oil line, air-pressure line, tangki penampungan oli, dan tools umum lainnya) dilakukan setiap hari. Pelaksanaan perawatan, pemeriksaan kelengkapan, dan kebersihan dikoordinasi oleh Group Leader.

STANDARD OPERATION PROCEDURE PLANNED PLANNED MAINTENANCE MAINTENANCE

Topik Nomor Dokumen

PLO/09/008/SOP

Revisi : 0

Tanggal Efektif

Hal : 6 / 12

5.9.7. Group Leader bertanggung jawab atas pengendalian kualitas pekerjaan selama proses periodic service. 5.10. Ketentuan dalam pelaksanaan PPU adalah sebagai berikut: 5.10.1. Interval PPU untuk dozer dilakukan setiap 500 jam operasi. Interval PPU untuk excavator, shovel, dan drilling dilaksanakan setiap 1000 jam operasi. 5.10.2. Apabila PIC pelaksanaan PPU berhalangan maka PIC dapat digantikan oleh mechanic yang berkompeten. 5.10.3. Report hasil PPU harus dikirimkan ke Head Office setiap periode mingguan. 5.11. Ketentuan dalam pelaksanaan PPM adalah sebagai berikut: 5.11.1. PPM dilaksanakan setiap interval 1000 jam operasi dan dilaksanakan bersamaan waktunya dengan schedule periodic service. 5.11.2. PPM dapat dilakukan diluar interval 1000 jam jika memang diperlukan segera untuk melakukan tes kondisi equipment. 5.11.3. Apabila PIC pelaksanaan PPM berhalangan maka PIC dapat digantikan oleh mechanic yang berkompeten. 5.12. Ketentuan dalam pelaksanaan pengambilan sampel oil PAP adalah sebagai berikut: 5.12.1. Setiap equipment harus diambil sampel oli PAP-nya saat menjalani program periodic service sesuai periode pengambilan sampel. 5.12.2. Sampel oli PAP dapat diambil diluar jadwal periodic service jika memang diperlukan segera untuk menganalisa kondisi oli pelumas. 5.12.3. Pengambilan sampel oli PAP untuk komponen yang memiliki program extend oil-life tetap dilaksanakan sesuai dengan standar interval pengambilan sampel oli PAP 5.12.4. Pengambilan sampel dilakukan dengan kondisi sebagai berikut : - Komponen masih dalam kondisi panas. - Belum terjadi pengendapan oli. - Tool, botol, dan cara pengambilan sampel harus dijaga kebersihannya dari kontaminasi. - Kartu sampel diisi dengan lengkap sesuai permintaan isian. 5.12.5. Group Leader bertanggung jawab atas pengendalian kualitas proses pengambilan sample PAP. 5.12.6. Pengiriman sampel PAP dari saat pengambilan sampel sampai ke Logistics maksimal 1 hari. 5.12.7. Hasil analisa laboratorium setiap equipment/komponen harus dikompilasi oleh Planner. 5.12.8. Spare parts yang tersisa ex WO overhaul harus dikembalikan ke Logistik Section sesuai dengan SOP No. LOG/09/003/SOP Credit / Return Request. 6. PROSEDUR & ALUR PROSES Untuk menjelaskan proses mekanisme planned maintenance dapat dilihat pada alur proses hal 9/12 sampai dengan 12/12.

STANDARD OPERATION PROCEDURE PLANNED PLANNED MAINTENANCE MAINTENANCE

Topik Nomor Dokumen

PLO/09/008/SOP

Revisi : 0

Tanggal Efektif

7. DOKUMEN PENDUKUNG

7.1. PLO/09/001/INK Pelaksanaan Backlog 7.2. PLO/09/004/INK Pelaksanaan PS 7.3. PLO/09/005/INK Pelaksanaan PPM 7.4. PLO/09/006/INK Pelaksanaan PPU 7.5. PLO/09/007/INK Pengambilan Contoh Oli 7.6. PLO/09/008/INK Pelaksanaan PPA 7.7. PLO/09/009/INK Final Check dalam PS 7.8. PLO/09/010/INK Pelaksanaan PS Axle Trailer 7.9. PLO/09/011/INK Pemeriksaan Bearing Axle Trailer 7.10. PLO/09/012/INK Pemeriksaan Kondisi Spindle, Hub, Drum, Spring Axle Trailer 7.11. PLO/09/013/INK Penyusunan Master Schedule Overhaul 7.12. PLO/09/014/INK Component Overhaul 7.13. PLO/09/015/INKPemeriksaan dan Pemasangan Komponen 7.14. PLO/09/004/STD Parameter Oil Sampling 7.15. PLO/09/005/STD Parameter Kontrol Program PS 7.16. PLO/09/006/STD Life Time Component Overhaul 7.17. PLO/09/007/STD Mid Life Component 7.18. Formulir No. PLO/09/F-015 Mechanic Order List 7.19. Formulir No. PLO/09/F-022 s/d PLO/09/F-028 Daily Inspection 7.20. Formulir No. PLO/09/F-029 s/d PLO/09/F-090 PS 7.21. Formulir No. PLO/09/F-091 s/d PLO/09/F-125 PPM 7.22. Formulir No. PLO/09/F-126 s/d PLO/09/F-136 PPU 7.23. Formulir No. PLO/09/F-137 s/d PLO/09/F-140 List Pit Stop 7.24. Formulir No. PLO/09/F-141 s/d PLO/09/F-143 Pit Stop Inspection 7.25. Formulir No. PLO/09/F-144 Program service Tahunan 7.26. Formulir No. PLO/09/F-145 Daily Plan PS 7.27. Formulir No. PLO/09/F-146 Schedule Overhaul Tahunan 7.28. Formulir No. PLO/09/F-149 Daily Equipment Activity Report 7.29. Formulir No. PLO/09/F-150 Summary Monthly Equipment Repair Delay Report 7.30. Formulir No. PLO/09/F-151 Monthly Equipment Maint Performance Report 7.31. Formulir No. PLO/09/F-152 Monthly Equipment Failure Report 7.32. Formulir No. PLO/09/F-153 Summary Monthly Equipment Avaibility Report 7.33. Formulir No. PLO/09/F-155 Monthly Report Plant 7.34. Formulir No. PLO/09/F-156 PAP Lead Time Monitoring 7.35. Formulir No. PLO/09/F-157 Daily Pit Stop Report 7.36. Formulir No. PLO/09/F-158 Daily Activity Record 7.37. Formulir No. PLO/09/F-159 Maintenance Management System Audit SIS 7.38. Formulir No. PLO/09/F-160 MMCR 7.39. Formulir No. PLO/09/F-161 Summary Backlog Job 7.40. Formulir No. PLO/09/F-162 Daily Breakdown Report 7.41. Formulir No. PLO/09/F-163 Daily Maintenance Planning 7.42. Formulir No. PLO/09/F-164 Summary PA Monthly Maintenance Planning

Hal : 7 / 12

STANDARD OPERATION PROCEDURE PLANNED PLANNED MAINTENANCE MAINTENANCE

Topik Nomor Dokumen

PLO/09/008/SOP

Revisi : 0

Tanggal Efektif

7.43. Formulir No. PLO/09/F-165 Summary Budget Monthly Maintenance Planning 7.44. Formulir No. PLO/09/F-166 Summary PA Weekly Maintenance Planning

8. RIWAYAT PERUBAHAN Not Available (N/A).

Hal : 8 / 12

INSTRUKSI KERJA PELAKSANAAN PERIODIC SERVICE

Topik Nomor Dokumen

PLO/09/004/INK

Revisi : 0

URUTAN KERJA MEKANIK

Cek Kelengkapan Dokumen ?

GROUP LEADER 1. Adanya jadwal periodic service berdasarkan hour meter equipment, 2. Mekanik cek kelengkapan dokumen PS (Form PS, JobCard, Daily Plan Service, Hasil PAP) - Jika ya, cek kelengkapan part.

Form PS

- Jika tidak, konfirmasi ke Group Leader utk melengkapi

Jobcard

Tidak

Daily Plan PAP Report

3. Mekanik konfirmasi kekurangan dokumen ke Group Leader,

Konfirmasi ke Group Leader Melengkapi Dokumen Service

Part PS Lengkap?

4. Group Leader melengkapi dokumen Periodic Service yang kurang, 5. Mekanik periksa kembali kelengkapan part PS yang diperlukan, apakah sudah lengkap atau belum?

Tidak

- Jika ya, periksa kelengkapan Tolols Peridoic Service,, - Jika tidak, mekanik konfirmasi ke Group Leader.

Ya Konfirmasi ke Group Leader

6. Mekanik konfirmasi kekurangan part PS ke Group Leader, Melengkapi part PS

Ya

Hal : 2/5

KETERANGAN

Adanya Jadwal PS Equipment

Ya

Tanggal Efektif

7. Group Leader konfirmasi kekurangan part ke Logistic agar segera dilengkapi. 8. Mekanik memeriksa kembali kesiapan tools yang diperlukan:

Tools PS Siap?

- Jika ya, mekanik mencuci equipment, - Jika tidak, mekanik konfirmasi ke Group Leader.

Tidak

Konfirmasi ke Group Leader

9. Mekanik konfirmasi kekurangan tool ke Group Leader Melengkapi Tools

Cuci Equipment

10. Group Leader menyiapkan kekurangan tool yang diperlukan. Ref: INK PLT/08/005/INK, Peminjaman Workshop Tools dan Facilities. 11. Mencuci equipment sebelum dilakukan program PS oleh washing man,

Tidak Equipment Bersih ?

12. Mekanik memeriksa kebersihan equipment sebelum dilakukan program PS, - Jika ya, mekanik memposisikan equipment di lokasi PS,

Ya

- Jika tidak, cuci kembali equipment, A

(A bersambung ke aktivitas 13)

INSTRUKSI KERJA PELAKSANAAN PERIODIC SERVICE

Topik Nomor Dokumen

Revisi : 0

PLO/09/004/INK

URUTAN KERJA

Tanggal Efektif

Hal : 3/5

KETERANGAN

MEKANIK A

(A sambungan dari aktivitas 13)

Posisikan Equipment

14. Mekanik memposisikan equipment pada lokasi service, mengaktifkan parking brake, lock out, dan memasang ganjal ban,

Cek Equipment Sebelum PS

15. Mekanik melakukan visual check terhadap kondisi equipment sebelum dilakukan PS, 16. Mekanik memeriksa hour meter aktual equipment dan mencatatnya pada Form PS,

Cek hour meter aktual mencatatnya Form PS

17. Mekanik mengisi data-data awal pada Form PS,

Isi data-data awal pada Form PS Form PS

18. Mekanik mengambil contoh oli untuk PAP, Referensi: 1. Standard Parameter No: PLT/08/001/STD, Kriteria Contoh Oli – PAP,

Ambil Sampel PAP

2. INK No: PLT/08/003/INK, Pengambilan Contoh Oli,

Pelaksanaan Program PS

Pelaksanaan Pekerjaan Backlog

19. Mekanik melaksanakan pekerjaan Periodic Service sesuai item pada Form PS, Melaksanakan pekerjaan Backlog dari hasil inspeksi, dan condition monitoring yang telah dilakukan, pekerjaan Backlog dilakukan secara paralel dengan Periodic Service jika memungkinkan, 20. Mekanik langsung memberi tanda (V) pada Form PS untuk setiap item yang telah selesai dikerjakan,

Langsung Beri Tanda (V) Form PS

Ada jadwal PPM, PPU, PPA?

21. Mekanik memeriksa apakah ada jadwal PPM, PPU atau PPA,

Tidak

- Jika ya, mekanik melakukan proses PPM, PPU atau PPA, - Jika tidak, mekanik melengkapi pengisian dokumen,

Ya B C

(B bersambung ke aktivitas 22) (C bersambung ke aktivitas 23)

INSTRUKSI KERJA PELAKSANAAN PERIODIC SERVICE

Topik Nomor Dokumen

Revisi : 0

PLO/09/004/INK

Tanggal Efektif

URUTAN KERJA MEKANIK

Hal : 4/5

KETERANGAN GROUP LEADER (B sambungan dari aktivitas 21)

B

22. Melakukan proses PPM, PPU, PPA sesuai dengan jadwal yang telah disepakati, Ref INK No: PLO/09/005/INK Pelaksanaan PPM/VHMS PLO/09/006/INK Pelaksanaan PPU PLO/09/008/INK Pelaksanaa PPA (C sambungan dari aktivitas 21)

Proses PPM, PPU PPA C

Lengkapi dokumen

23. Mekanik melengkapi pengisian dokumen, baik itu pada form PS maupun Jobcard, Form PS Jobcard

Form PS

24. Mekanik menyerahkan dokumen, baik itu pada form PS maupun Jobcard, ke Group Leader,

Form PS Jobcard

Jobcard

25. Group Leader melakukan Final Inspeksi, Final Inspeksi

Tidak

F

Hasil Bagus?

Analisa Perbaikan

Perlu Part?

Ya

Tidak

Proses Order

Ya

Part Available? Tidak

Melakukan Perbaikan Tidak

Dapat Operasi? Ya

D Ground Test

E

Ya

26. Group Leader meneliti hasil inspeksi, apakah bagus atau tidak? - Jika ya, maka dilanjutkan melaksanakan ground test, - Jika tidak, maka Group Leader mengistruksikan mekanik untuk melakukan analisa lebih lanjut, 27. Mekanik melakukan analisa perbaikan lebih lanjut, 28. Mekanik meneliti apakah perlu spare part? - Jika ya, (RFU, Ready For Use) maka memproses order spare part, - Jika tidak,maka mekanik melakukan perbaikan, 29. Group Leader melakukan proses order spare part, 30. Apakah spare part available? - Jika ya, maka mekanik melakukan perbaikan, - Jika tidak,maka meneliti apakah unit layak untuk diioperasikan, 31. Mekanik melakukan perbaikan unit, sesuai dengan instruksi group leader, 32. Group Leader meneliti kelayakan dan keselamatan unit, apabila dioperasikan: - Jika ya, maka dilanjutkan melaksanakan ground test, - Jika tidak,maka unit dijadikan status breakdown menunggu spare part dan menjadi B/D unschedule, (D bersambung ke aktivitas 35) 33. Melakukan ground test dengan bantuan operator/driver, (E bersambung ke aktivitas 34)

INSTRUKSI KERJA PELAKSANAAN PERIODIC SERVICE

Topik Nomor Dokumen

Revisi : 0

PLO/09/004/INK

Tanggal Efektif

URUTAN KERJA MEKANIK

Hal : 5/5

KETERANGAN GROUP LEADER (E sambungan dari aktivitas 33)

E

Ya

34. Meneliti apakah equipment bisa dinyatakan di RFU (Ready for Use)? - Jika ya, maka dilanjutkan menandatangani persetujuan report, - Jika tidak, maka Group Leader mengistruksikan mekanik untuk melakukan analisa lebih lanjut,

RFU ? Tidak

(F bersambung ke aktivitas 27)

F D

Unit Parkir Unschedule Maintenance

Tandatangani persetujuan dokumen report

(D sambungan dari aktivitas 32) 35. Memarkir unit dan menunggu spare part datang, 36. Melaksanakan Unschedule Maintenance, Ref SOP No. PLO/09/005/SOP Work Order Unschedule Maintenance 37. Group Leader menandatangani dokumen report Periodic Service,

Form PS Jobcard Follow-up PAP

Pembersihan dan Penyimpanan Tools

38. Mekanik membersihkan dan menyimpan kembali tool service,

Pembersihan Lokasi PS

39. Mekanik membersihkan lokasi service,

Proses Periodic Service Selesai

40. Proses pelaksanaan periodic service selesai.

INSTRUKSI KERJA PENGAMBILAN CONTOH OLI

Topik Nomor Dokumen Tanggal Efektif Pemilik Proses Pengendali Dokumen Berlaku Untuk Tingkat Kerahasiaan

Revisi : 0 Hal : 1/3 Plant Operation Department QA Partner Semua/All GREEN PLO/09/007/INK

Disusun Oleh :

Disetujui Oleh :

BIP – Work & Asset Steram

Plant Operation Dept. Head

URUTAN KERJA DAN ILUSTRASI MEKANIK

KETERANGAN A. METODE POMPA

Adanya Program PAP

1.

Adanya kebutuhan pengambilan contoh oli untuk pelaksanaan PAP.

Persiapan Alat

2.

Menyiapkan alat yang diperlukan dalam pengambilan contoh oli. • Pengambilan contoh oli berdasarkan Standard Parameter No: PL0/09/004/STD Parameter Oil Sampling. • Periksa pompa vacuum, botol dan selang sebelum dipakai pastikan dalam kondisi bersih, • Siapkan wadah penampungan oli yang sesuai sebelum membuka segala macam kompartemen yang mengandung cairan, • Siapkan peralatan untuk pengambilan contoh oli. Ukur dan potong selang baru sesuai dengan dipstick.

Mengatur Equipment & Alat

3.

Mengatur peralatan dan equipment untuk proses pengambilan sampel oli. • Pastikan equipment berada pada permukaan yang keras dan rata, dengan ganjal yang terpasang. • Pastikan engine telah dimatikan (dilakukan 5 menit setelah engine mati). • Masukkan selang melalui kepala pompa vacuum dan kencangkan sekrupnya. • Selang harus dipanjangkan sampai 4 cm (2 inchi) diluar dari dasar kepala pompa vacuum. • Longgarkan plug secara perlahan terlebih dahulu untuk melepasakan tekanan sebelum mengambil contoh oli. • Pasang botol baru ke pompa vacuum.

 A

AWAS OLI PANAS !!!

(A bersambung ke aktivitas nomor 4)

Instruksi Kerja (INK) ini bagian dari: SOP No. PLO/09/008/SOP Planned Maintenance

INSTRUKSI KERJA PENGAMBILAN CONTOH OLI

Topik Nomor Dokumen

PLO/09/007/INK

Revisi : 0

Tanggal Efektif

URUTAN KERJA DAN ILUSTRASI

Hal : 2/3

KETERANGAN

MEKANIK A

Mengambil Contoh Oli

(A sambungan dari aktivitas nomer 3) 4.

Mengambil contoh oli dari yiapkan alat yang diperlukan dalam pengambilan contoh oli. • Contoh oli didapat dengan pompa vacuum melalui filler plug. • Masukkan ujung selang kedalam oli (jangan sampai selang menyentuh bagian bawah dari kompartemen). • Lakukan pemompaan pada pompa vacuum untuk menimbulkan vacuum. • Pegang pompa dengan tegak lurus (jika terbalik, akan menyebabkan pompa akan terkontaminasi oleh oli). • Jika oli telah mulai masuk ke botol, hentikan pemompaan. • Isi botol dengan oli sampai ¾ (tiga perempat) botol. Jangan diisi sampai penuh !!! • Tarik selang dari kompartemen. • Lepaskan botol dari vacuum pump dan pasang tutup pada botol. • Tutup botol segera dengan erat dan jangan menyentuh atau mengusap bagian botol yang berhubungan dengan contoh oli dengan jari, sarung tangan maupun kain. • Pasang tanda pada samping botol. • Bersihkan pompa untuk pengambilan contoh oli selanjutnya.

Pencatatan Contoh Oli

5.

Melakukan pencatatan contoh oli pada botol contoh oli. • Isi tagging dari PAP Oil Analysis dengan lengkap. • Catat contoh oli sebelum dikirim untuk dianalisa oleh laboratorium yang ditunjuk.

6.

Pengambilan contoh oli selesai dilakukan.

Selesai PASTIKAN UNTUK MEMBUANG SELANG BEKAS PENGAMBILAN CONTOH OLI PADA TEMPAT YANG TELAH DISEDIAKAN!!!

Instruksi Kerja (INK) ini bagian dari: SOP No. PLO/09/008/SOP Planned Maintenance

INSTRUKSI KERJA PENGAMBILAN CONTOH OLI

Topik Nomor Dokumen

PLO/09/007/INK

Revisi : 0

Tanggal Efektif

URUTAN KERJA MEKANIK Adanya Program PAP

Menyiapkan Alat

Mengatur Equipment & Alat

Hal : 3/3

KETERANGAN B. METODE DRAIN 1.

Adanya kebutuhan pengambilan contoh oli untuk pelaksanaan PAP.

2.

Menyiapkan alat yang diperlukan dalam pengambilan contoh oli (tools, botol dan tagging).

3.

Mengatur peralatan dan equipment untuk proses pengambilan contoh oli. • Pastikan equipment berada pada permukaan yang keras dan rata, dengan ganjal yang terpasang. • Bersihkan dan keringkan daerah di sekitar tutup pembuangan (drain plug) dari kontaminasi debu, air, solar atau kotoran lainnya. • Pengambilan contoh oli berdasarkan Standard Parameter No: PL0/09/004/STD Parameter Oil Sampling. • Siapkan wadah penampungan oli yang sesuai sebelum membuka segala macam kompartemen yang mengandung cairan.

Membuka Drain Plug

4.

Membuka drain plug. • Pastikan engine telah dimatikan, pengambilan contoh oli ini dilakukan 5 menit setelah engine dimatikan. • Membuang oli paling sedikit ¼ liter terlebih dahulu sebelum mengambil contoh oli. • Pengambilan pada saat pelumas sudah separuh terbuang adalah yang terbaik.

 Mengambil Contoh Oli

5.

AWAS OLI PANAS !!!

Mengambil contoh oli untuk PAP, botol diisi sampai ¾ (tiga per empat) botol, • Menutup botol segera dengan erat dan jangan menyentuh atau mengusap bagian botol yang berhubungan dengan contoh oli dengan jari, sarung tangan maupun kain.

Pencatatan Contoh Oli

6.

Melakukan pencatatan contoh oli pada botol. • Isi tagging pada PAP Oil Analysis dengan lengkap, • Catat contoh oli sebelum dikirim untuk dianalisa oleh laboratorium yang ditunjuk.

Selesai

7.

Pengambilan contoh oli selesai dilakukan.

Instruksi Kerja (INK) ini bagian dari: SOP No. PLO/09/008/SOP Planned Maintenance

STANDAR PARAMETER PARAMETER OIL SAMPLING

Topik

Revisi : 1 Nomor Dokumen PLO/09/004/STD Tanggal Efektif Hal : 1/5 Pemilik Proses Plant Operation Department Pengendali Dokumen QA Partner Berlaku Untuk Semua/All Tingkat Kerahasiaan GREEN

MAIN MODEL

MODEL KOMATSU D375

TYPE OF SERVICE PS250 PS500 PS1000 PS2000

KOMATSU D85ESS-2 BULLDOZER KOMATSU D155A-6

PS250 PS500 PS1000 PS2000 PS250 PS500 PS1000 PS2000

CATERPILLAR 24M

PS250 PS500 PS1000 PS2000

CATERPILLAR 16M

PS250 PS500

Disusun Oleh :

Plant Development Section

Disetujui Oleh :

Plant Operation Dept. Head

SAMPLE OIL ENGINE ENGINE, POWER TRAIN (T/M + T/C + BEVEL GEAR), FINAL DRIVE, HYDRAULIC ENGINE, POWER TRAIN (T/M + T/C + BEVEL GEAR), FINAL DRIVE, HYDRAULIC ENGINE, POWER TRAIN (T/M + T/C + BEVEL GEAR), FINAL DRIVE, HYDRAULIC ENGINE ENGINE, POWER TRAIN, FINAL DRIVE, HYDRAULIC ENGINE, POWER TRAIN, FINAL DRIVE, HYDRAULIC ENGINE, POWER TRAIN, FINAL DRIVE, HYDRAULIC ENGINE ENGINE, POWER TRAIN (T/M + T/C + BEVEL GEAR), FINAL DRIVE, HYDRAULIC ENGINE, POWER TRAIN (T/M + T/C + BEVEL GEAR), FINAL DRIVE, HYDRAULIC ENGINE, POWER TRAIN (T/M + T/C + BEVEL GEAR), FINAL DRIVE, HYDRAULIC ENGINE ENGINE, HYDRAULIC, TANDEM DRIVE (RH & LH), TRANSMISSION, DIFFERENTIAL ENGINE, HYDRAULIC, TANDEM DRIVE (RH & LH), CIRCLE DRIVE (RH/LH), TRANSMISSION, DIFFERENTIAL ENGINE, HYDRAULIC, TANDEM DRIVE (RH & LH), CIRCLE DRIVE (RH/LH), TRANSMISSION, DIFFERENTIAL ENGINE ENGINE, HYDRAULIC, TANDEM DRIVE (RH & LH), TRANSMISSION, DIFFERENTIAL, WHEEL BEARING (front-RH/LH)

QUANTITY OF BOTTLE 1 5 5 5 1 5 5 5 1 5 5 5 1 6 8 8 1 8

PS250

ENGINE, HYDRAULIC, TANDEM DRIVE (RH & LH), CIRCLE DRIVE (RH/LH), TRANSMISSION, DIFFERENTIAL, WHEEL BEARING (frontRH/LH) ENGINE, HYDRAULIC, TANDEM DRIVE (RH & LH), CIRCLE DRIVE (RH/LH), TRANSMISSION, DIFFERENTIAL, WHEEL BEARING (frontRH/LH) ENGINE ENGINE, TRANSMISSION, FINAL DRIVE, TANDEM, HYDRAULIC ENGINE, TRANSMISSION, FINAL DRIVE, TANDEM, HYDRAULIC ENGINE, TRANSMISSION, FINAL DRIVE, TANDEM, HYDRAULIC ENGINE ENGINE, TRANSMISSION, FINAL DRIVE, CIRCLE REVERSE GEAR, HYDRAULIC, TANDEM ENGINE, TRANSMISSION, FINAL DRIVE, CIRCLE REVERSE GEAR, HYDRAULIC, TANDEM ENGINE, TRANSMISSION, FINAL DRIVE, CIRCLE REVERSE GEAR, HYDRAULIC, TANDEM ENGINE

PS500

ENGINE, TRANSMISSION, HYDRAULIC, BRAKE, AXLE (FRONT & REAR)

6

PS1000

ENGINE, TRANSMISSION, HYDRAULIC, BRAKE, AXLE (FRONT & REAR)

6

WHEEL LOADER Standar Parameter (STD) ini bagian PS2000 dari: SOPENGINE, No. PLO/09/008/SOP Planned Maintenance TRANSMISSION, HYDRAULIC, BRAKE, AXLE (FRONT & REAR)

6

PS1000 MOTOR GRADER PS2000 KOMATSU GD825A

KOMATSU GD705A

PS250 PS500 PS1000 PS2000 PS250 PS500 PS1000 PS2000

KOMATSU WA800-3

10

10 1 7 7 7 1 8 8 8 1

STANDAR PARAMETER PARAMETER OIL SAMPLING

Topik Nomor Dokumen MAIN MODEL

MODEL KOMATSU WA800-3

WHEEL LOADER KOMATSU WA500-3

WHEEL DOZZER

Revisi : 1

PLO/09/004/STD

KOMATSU WD600-3

KOMATSU HM400-1

TYPE OF SERVICE

QUANTITY OF BOTTLE 1

PS500

ENGINE, TRANSMISSION, HYDRAULIC, BRAKE, AXLE (FRONT & REAR)

6

PS1000

ENGINE, TRANSMISSION, HYDRAULIC, BRAKE, AXLE (FRONT & REAR)

6

PS2000

ENGINE, TRANSMISSION, HYDRAULIC, BRAKE, AXLE (FRONT & REAR)

6

PS250 PS500 PS1000 PS2000 PS250 PS500 PS1000 PS2000 PS250

ENGINE ENGINE, TRANSMISSION, HYDRAULIC, AXLE (FRONT & REAR) ENGINE, TRANSMISSION, HYDRAULIC, AXLE (FRONT & REAR) ENGINE, TRANSMISSION, HYDRAULIC, AXLE (FRONT & REAR) ENGINE ENGINE, TRANSMISSION, HYDRAULIC, AXLE (FRONT & REAR) ENGINE, TRANSMISSION, HYDRAULIC, AXLE (FRONT & REAR) ENGINE, TRANSMISSION, HYDRAULIC, AXLE (FRONT & REAR) ENGINE ENGINE, TRANSMISSION, BRAKE COOLING, DIFFERENTIAL (FRONT, CENTER, REAR), FINAL DRIVE (FRONT, CENTER, REAR) ENGINE, TRANSMISSION, BRAKE COOLING, DIFFERENTIAL (FRONT, CENTER, REAR), FINAL DRIVE (FRONT, CENTER, REAR) ENGINE, TRANSMISSION, BRAKE COOLING, DIFFERENTIAL (FRONT, CENTER, REAR), FINAL DRIVE (FRONT, CENTER, REAR) ENGINE ENGINE, TRANSMISSION

1 4 4 4 1 4 4 4 1

PS2000

CAT740

SAMPLE OIL

2/5

ENGINE

PS1000

ARTICULATED DUMP TRUCK

Hal :

PS250

PS500

VOLVO A40D

Tanggal Efektif

PS250 PS500

12 12 12 1 2

PS1000

ENGINE, TRANSMISSION, DROP BOX, AXLE (DRIVE, FRONT,REAR), FINAL DRIVE (DRIVE, FRONT,REAR), HYDRAULIC, BRAKE COOLING

14

PS2000

ENGINE, TRANSMISSION, DROP BOX, AXLE (DRIVE, FRONT,REAR), FINAL DRIVE (DRIVE, FRONT,REAR), HYDRAULIC, BRAKE COOLING

14

PS250 PS500 PS1000 PS2000

ENGINE ENGINE, DIFFERENTIAL, FINAL DRIVE, HOIST & BRAKE, STEERING, TRANSMISSION, TRANSFER GEAR ENGINE, DIFFERENTIAL, FINAL DRIVE, HOIST & BRAKE, STEERING, TRANSMISSION, TRANSFER GEAR ENGINE, DIFFERENTIAL, FINAL DRIVE, HOIST & BRAKE, STEERING, TRANSMISSION, TRANSFER GEAR

Standar Parameter (STD) ini bagian dari: SOP No. PLO/09/008/SOP Planned Maintenance

1 14 14 14

STANDAR PARAMETER PARAMETER OIL SAMPLING

Topik Nomor Dokumen

Revisi : 1

PLO/09/004/STD KOMATSU HD785-7

PS250

PS2000 A

ENGINE

1

B

ENGINE, GEAR BOX, MIDDLE AXLE, REAR AXLE, STEERING HYDRAULIC

4

C

ENGINE, GEAR BOX, MIDDLE AXLE, REAR AXLE, STEERING HYDRAULIC

4

PS250 PS500

ENGINE, COMPRESSOR ENGINE, COMPRESSOR, PUMP DRIVE GEAR BOX, HYDRAULIC ENGINE, COMPRESSOR, PUMP DRIVE GEAR BOX, HYDRAULIC, FINAL DRIVE ENGINE, COMPRESSOR, PUMP DRIVE GEAR BOX, HYDRAULIC, FINAL DRIVE ENGINE, COMPRESSOR ENGINE, COMPRESSOR, PUMP DRIVE GEAR BOX, HYDRAULIC ENGINE, COMPRESSOR, PUMP DRIVE GEAR BOX, HYDRAULIC, FINAL DRIVE ENGINE, COMPRESSOR, PUMP DRIVE GEAR BOX, HYDRAULIC, FINAL DRIVE

2 4

PS200

ENGINE

1

PS600

ENGINE, COMPRESSOR, FINAL DRIVE, TRANSFER GEAR, HYDRAULIC

6

PS1200

ENGINE, COMPRESSOR, FINAL DRIVE, TRANSFER GEAR, HYDRAULIC

6

PS2400

ENGINE, COMPRESSOR, FINAL DRIVE, TRANSFER GEAR, HYDRAULIC

6

PS2000 PS250 PS500 PS1000 PS2000

RIGID DUMP TRUCK

PS250 PS500 PS1000 PS2000

KOMATSU HD465-7

PS250 PS500 PS1000

RENAULT KERAX350

DRILLTECH D245S

PS1000 PS2000 DRILLTECH D50KS

PS250 PS500 PS1000

DRILLING MACGINE

PS2000 TAMROCK PANTERA1100

3/5 1

PS1000

KOMATSU HD465-5

Hal :

ENGINE ENGINE, TRANSMISSION + BRAKE COOLING, DIFFERENTIAL, FINAL DRIVE, HYDRAULIC ENGINE, TRANSMISSION + BRAKE COOLING, DIFFERENTIAL, FINAL DRIVE, HYDRAULIC ENGINE, TRANSMISSION + BRAKE COOLING, DIFFERENTIAL, FINAL DRIVE, HYDRAULIC ENGINE ENGINE, TRANSMISSION, BRAKE COOLING, DIFFERENTIAL, FINAL DRIVE, HYDRAULIC ENGINE, TRANSMISSION, BRAKE COOLING, DIFFERENTIAL, FINAL DRIVE, HYDRAULIC ENGINE, TRANSMISSION, BRAKE COOLING, DIFFERENTIAL, FINAL DRIVE, HYDRAULIC ENGINE ENGINE, TRANSMISSION, REAR BREAK COOLING, DIFFERENTIAL, FINAL DRIVE, HYDRAULIC (STEERING, HOIST) ENGINE, TRANSMISSION, REAR BREAK COOLING, DIFFERENTIAL, FINAL DRIVE, HYDRAULIC (STEERING, HOIST) ENGINE, TRANSMISSION, REAR BREAK COOLING, DIFFERENTIAL, FINAL DRIVE, HYDRAULIC (STEERING, HOIST) ENGINE ENGINE, TRANSMISSION, DIFFERENTIAL, FINAL DRIVE, HYDRAULIC (STEERING, HOIST) ENGINE, TRANSMISSION, DIFFERENTIAL, FINAL DRIVE, HYDRAULIC (STEERING, HOIST) ENGINE, TRANSMISSION, DIFFERENTIAL, FINAL DRIVE, HYDRAULIC (STEERING, HOIST)

PS500

KOMATSU HD785-5

Tanggal Efektif

Standar Parameter (STD) ini bagian dari: SOP No. PLO/09/008/SOP Planned Maintenance

6 6 6 1 7 7 7 1 7 7 7 1 6 6 6

6 6 2 4 6 6

STANDAR PARAMETER PARAMETER OIL SAMPLING

Topik Nomor Dokumen MAIN MODEL

MODEL FURUKAWA HCR1500ED

DRILLING MACHINE

PRIME MOVER

Revisi : 1

PLO/09/004/STD

SANDVIK DP1100

VOLVO FH16

TYPE OF SERVICE

Tanggal Efektif

Hal :

SAMPLE OIL

4/5 QUANTITY OF BOTTLE

PS250

ENGINE

1

PS500 PS1000 PS2000 PS200

ENGINE, COMPRESSOR ENGINE, COMPRESSOR, HYDRAULIC, DRIVE MOTOR ENGINE, COMPRESSOR, HYDRAULIC, DRIVE MOTOR ENGINE

2 5 5 1

PS600

ENGINE, COMPRESSOR, FINAL DRIVE, TRANSFER GEAR, HYDRAULIC

6

PS1200

ENGINE, COMPRESSOR, FINAL DRIVE, TRANSFER GEAR, HYDRAULIC

6

PS2400

ENGINE, COMPRESSOR, FINAL DRIVE, TRANSFER GEAR, HYDRAULIC

6

PS250 PS500

ENGINE ENGINE, GEAR BOX, DRIVEN FRONT AXLE + REAR AXLE

1 4

PS1000

ENGINE, GEAR BOX, DRIVEN FRONT AXLE + REAR AXLE, HYDRAULIC

5

PS2000

ENGINE, GEAR BOX, DRIVEN FRONT AXLE + REAR AXLE, HYDRAULIC

5

Standar Parameter (STD) ini bagian dari: SOP No. PLO/09/008/SOP Planned Maintenance

STANDAR PARAMETER PARAMETER OIL SAMPLING

Topik Nomor Dokumen MAIN MODEL

Revisi : 1

PLO/09/004/STD MODEL LIEBHERR R9250

TYPE OF SERVICE PS250

PS250

ENGINE

1

PS500 PS1000 PS2000 PS250 PS500 PS1000 PS2000 PS250 PS500 PS1000 PS2000 PS250

ENGINE, SWING, PTO, FINAL DRIVE, HYDRAULIC ENGINE, SWING, PTO, FINAL DRIVE, HYDRAULIC ENGINE, SWING, PTO, FINAL DRIVE, HYDRAULIC ENGINE ENGINE, SWING, FINAL DRIVE, HYDRAULIC ENGINE, SWING, FINAL DRIVE, HYDRAULIC ENGINE, SWING, FINAL DRIVE, HYDRAULIC ENGINE ENGINE, SWING, FINAL DRIVE, HYDRAULIC ENGINE, SWING, FINAL DRIVE, HYDRAULIC ENGINE, SWING, FINAL DRIVE, HYDRAULIC ENGINE, PUMP TRANSMISSION GEAR ENGINE, PUMP TRANSMISSION GEAR, SWING REDUCTION GEAR, TRAVEL REDUCTION GEAR, HYDRAULIC ENGINE, PUMP TRANSMISSION GEAR, SWING REDUCTION GEAR, TRAVEL REDUCTION GEAR, HYDRAULIC ENGINE, PUMP TRANSMISSION GEAR, SWING REDUCTION GEAR, TRAVEL REDUCTION GEAR, HYDRAULIC ENGINE, PUMP TRANSMISSION GEAR ENGINE, PUMP TRANSMISSION GEAR, SWING REDUCTION GEAR, TRAVEL REDUCTION GEAR, HYDRAULIC ENGINE, PUMP TRANSMISSION GEAR, SWING REDUCTION GEAR, TRAVEL REDUCTION GEAR, HYDRAULIC ENGINE, PUMP TRANSMISSION GEAR, SWING REDUCTION GEAR, TRAVEL REDUCTION GEAR, HYDRAULIC

7 7 7 1 6 6 6 1 6 6 6 2

KOMATSU PC1250-7 PS250 PS500 PS1000 PS2000 KOMATSU PC1250-8 PS250 PS500 PS1000 PS2000 KOMATSU PC2000-8 PS250 PS500 PS1000 PS2000 KOMATSU PC3000-6 PS250 PS500 PS1000 PS2000

KOMATSU PC400-7

KOMATSU PC200-7

HITACHI EX1200-5

PS500 PS1000 PS2000 HITACHI EX2500-5

QUANTITY OF BOTTLE

PS250 PS500 PS1000 PS2000

PS2000

KOMATSU PC750-7 & PC800-7

SAMPLE OIL

5/5

1

PS1000

EXCAVATOR

Hal :

ENGINE ENGINE, SWING GEAR (RH & LH), TRAVEL GEAR (RH & LH), HYDRAULIC ENGINE, SWING GEAR (RH & LH), TRAVEL GEAR (RH & LH), HYDRAULIC ENGINE, SWING GEAR (RH & LH), TRAVEL GEAR (RH & LH), HYDRAULIC, SPLITTERBOX ENGINE ENGINE, SWING, PTO, FINAL DRIVE, HYDRAULIC ENGINE, SWING, PTO, FINAL DRIVE, HYDRAULIC ENGINE, SWING, PTO, FINAL DRIVE, HYDRAULIC ENGINE ENGINE, SWING, PTO, FINAL DRIVE, HYDRAULIC ENGINE, SWING, PTO, FINAL DRIVE, HYDRAULIC ENGINE, SWING, PTO, FINAL DRIVE, HYDRAULIC ENGINE ENGINE, SWING, PTO, FINAL DRIVE, HYDRAULIC ENGINE, SWING, PTO, FINAL DRIVE, HYDRAULIC ENGINE, SWING, PTO, FINAL DRIVE, HYDRAULIC ENGINE ENGINE ENGINE, PUMP DISTRIBUTOR GEARS, SLEW GEAR, TRAVEL GEAR, HYDRAULIC ENGINE, PUMP DISTRIBUTOR GEARS, SLEW GEAR, TRAVEL GEAR, HYDRAULIC ENGINE ENGINE, PTO, SWING MACHINARY, FINAL DRIVE, HYDRAULIC ENGINE, PTO, SWING MACHINARY, FINAL DRIVE, HYDRAULIC ENGINE, PTO, SWING MACHINARY, FINAL DRIVE, HYDRAULIC

PS500

KOMATSU PC1800-6

Tanggal Efektif

PS250 PS500 PS1000 PS2000

Standar Parameter (STD) ini bagian dari: SOP No. PLO/09/008/SOP Planned Maintenance

6 6 7 1 7 7 7 1 7 7 7 1 7 7 7 1 1 6 6 1 7 7 7

7 7 7 2 7 7 7

INSTRUKSI KERJA PELAKSANAAN PPM

Topik Nomor Dokumen

PLO/09/005/INK

Revisi : 0

Tanggal Efektif

Hal : 2/2

Definisi : 1. PPM ( Program Pemeriksaan Mesin ) Program pemeriksaan equipment yang dilakukan secara berkala (sesuai HM) dengan melakukan pengukuran dan diagnostik serta pelaksanaan minor repair dan adjustment untuk kondisi abnormal (tidak sesuai standar) yang sifatnya mendesak, yang ditujukan untuk mempertahankan performance unit sesuai dengan standard.

2. VHMS (Vehicle Health Monitoring System) Merupakan teknologi informasi yang diproduksi oleh komatsu berfungsi untuk memonitor kondisi kesehatan pada komponen-komponen utama (major components)

equipment.

Data – data yang dapat diperoleh

diantaranya adalah engine oil

pressure and temperature, fault code and description history, pay load meter dan lain-lain.

3. Backlog Suatu pekerjaan perawatan yang ditunda pelaksanaannya dikarenakan secara analisa teknis gejala kerusakan tersebut tidak mengganggu operational unit baik performance dan faktor safety. Pekerjaan ini direncanakan berdasarkan hasil inspeksi ataupun program prediktif yang dilakukan.

4. Download Merupakan aktivitas mentransfer data yang tersimpan dalam memori modul VHMS pada unit ke komputer user dengan bantuan media kabel atau dengan satelit (wireless).

Instruksi Kerja (INK) ini bagian dari: SOP No. PLO/09/008/SOP Planned Maintenance

INSTRUKSI KERJA PELAKSANAAN PPM & VHMS

Topik Nomor Dokumen Tanggal Efektif Pemilik Proses Pengendali Dokumen Berlaku Untuk Tingkat Kerahasiaan

Revisi : 1 Hal : 1/1

PLO/09/005/INK Plant Operation Dept. QA Partner Semua/ All GREEN

Disusun Oleh :

Disetujui Oleh :

BIP - Work & Asset Stream

Plant Operation Dept.

URUTAN KERJA

KETERANGAN

JOB SITE PLANNER

MECHANIC

GROUP LEADER

1. Adanya HM unit yang memenuhi ketentuan PPM (Program Pemeriksaan Mesin) berdasarkan pengamatan HM harian,

HM Unit Memenuhi

Tidak

2. Memeriksa apakah unit dilengkapi dengan VHMS: – apabila tidak, maka dilanjutkan dengan pelaksanaan PPM, – apabila ya, maka memeriksa proses down load data VHMS,

Unit dilengkapi VHMS?

Pemeriksaan PPM

3. Melaksanakan PPM yang dilakukan setiap 1000 hours, dengan alat yang ada, dibawah pengawasan dari Group Leader, Ref: Form PPM dan Shop Manual

Ya

Ya

4. Memeriksa apakah down load data VHMS dilakukan secara wireless: −apabila tidak, maka dilanjutkan dengan proses download data VHMS, −apabila ya, maka memeriksa hasil PPM ataupun data hasil download VHMS,

VHMS Wireless?

Tidak

5. Melaksanakan download data VHMS secara manual, download manual data VHMS ini dilakukan setiap 250 hours, Ref: INK “Download Manual Data VHMS”

Down Load Data VHMS

6. Memeriksa data hasil PPM ataupun data hasil download VHMS,

Hasil Pemeriksaan

Sesuai Standard?

Ya

7. Memeriksa kesesuaian hasil pemeriksaan terhadap standar: –apabila tidak, maka memeriksa apakah dapat dilakukan penyesuaian/adjustment, –apabila ya, maka mengisi laporan PPM,

Tidak

Tidak

Bisa Disesuaikan ? Ya Penyesuaian

Daftar Backlog Laporan PPM/VHMS

8. Memeriksa apakah dapat disesuikan terhadap standar: −apabila ya, maka menyesuaikan terhadap standar, . Ref: Form PPM, standard VHMS, −apabila tidak, maka membuat daftar untuk Backlog, 9. Melakukan penyesuaian terhadap standar dengan menggunakan alat yang sesuai dibawah pengawasan Group Leader, Ref: Form PPM, Shop Manual, standard VHMS, 10. Pembuatan daftar Backlog dengan validasi dari Group Leader, 11. Mengisi laporan PPM/VHMS,

Laporan PPM/VHMS

12. Menyerahkan laporan PPM/VHMS kepada Planner beserta dengan daftar Backlognya jika ada,

VHMS/PPM Selesai

13. Pelaksanaan PPM/VHMS telah selesai.

Instruksi Kerja (INK) ini bagian dari: SOP No. PLO/09/008/SOP Planned Maintenance

INSTRUKSI KERJA PELAKSANAAN PPA

Topik

Revisi : 0 Hal : 1/2 Plant Operation Department QA Partner Semua/ All GREEN

Nomor Dokumen Tanggal Efektif Pemilik Proses Pengendali Dokumen Berlaku Untuk Tingkat Kerahasiaan

PLO/09/008/INK

Disusun Oleh :

Disetujui Oleh :

BIP – Work & Asset

Plant Operation Dept. Head

URUTAN KERJA

KETERANGAN

JOB SITE PLANT SECTION MECHANIC

GROUP LEADER

1. Equipment menjalani program Periodic Service. Ref. INK No. PLO/09/004/INK Pelaksanaan Periodic Service.

Pelaksanaan Periodic Service Equipment

2. Melakukan pengecekan visual & pengukuran bagian-bagian dari attachement . Ref: Form PPB No. PLO/09/F-170 Program Pemeriksaan Bucket (PPB).

Pengecekan Visual & Pengukuran Attachement

Tidak

Ya

A

Bisa/ Harus langsung Diperbaiki ?

C

(A bersambung ke aktivitas 12) 4. Memeriksa apakah bisa/harus diperbaiki langsung : - Jika Ya, maka memeriksa apakah perlu penggantian part - Jika Tidak , maka melakukan proses perbaikan/pencegahan.

Tidak

B

Ya

Tidak

3. Memeriksa adanya kerusakan atau kondisi tidak standar pada Bucket : - Jika Ya, maka memeriksa apakah bisa/harus langsung diperbaiki - Jika Tidak, maka melengkapi form PPA.

Ada Kerusakan atau kondisi tidak standar

(B bersambung ke aktivitas 10)

5. Memeriksa apakah memerlukan part : - Jika Ya, maka memproses order part - Jika Tidak, maka melakukan proses perbaikan/pencegahan.

Perlu Part ?

(C bersambung ke aktivitas 11)

Ya

6. Membuat recommended part.

Recommended part

Menyetujui Recommended part Ya Proses Order Part

D

Tidak

7. Memeriksa recommend part, apakah bisa disetujui ? - Jika Ya, maka memproses order part - Jika Tidak, maka melakukan proses perbaikan/ pencegahan.

8. Memproses order part.

(D bersambung ke aktivitas 9)

Instruksi Kerja (INK) ini bagian dari: SOP No. PLO/09/008 Planned Maintenance

INSTRUKSI KERJA PELAKSANAAN PPA

Topik Nomor Dokumen

Revisi : 0

PLO/09/008/INK

Tanggal Efektif

URUTAN KERJA

Hal : 2/2

KETERANGAN

JOBSITE PLANT SECTION MECHANIC

GROUP LEADER

(D sambungan dari aktivitas 8)

D

Tidak B

Part langsung tersedia ? Ya

9. Memeriksa apakah part langsung tersedia ? - Jika Ya, maka melakukan proses perbaikan/ pencegahan - Jika Tidak, maka melanjutkan ke proses backlog.

(B sambungan dari aktivitas 4 ) 10. Proses pengisian backlog dan di-file dalam history per Code Number unit.

Proses Backlog

(C sambungan dari aktivitas 5) Proses perbaikan/ Pencegahan

11. Melakukan proses perbaikan/Pencegahan (Welding Reinforcement, Hard facing/Liner surfacing, Parts replacement, Modification, etc.)

C

(A sambungan dari aktivitas 3) Pengisian laporan pada Form PPA

12. Mengisi secara lengkap laporan dalam Form PPA. Ref. Form. No. PLO/09/F-170 Program Pemeriksaan Bucket (PPB).

A

Memeriksa & mengkompilasi Form PPA

Proses PPA Selesai

13. Memeriksa & mengkompilasi form PPA.

14. Proses PPA selesai.

Instruksi Kerja (INK) ini bagian dari: SOP No. PLO/09/008 Planned Maintenance

INSTRUKSI KERJA PELAKSANAAN PPU

Topik Nomor Dokumen Tanggal Efektif Pemilik Proses Pengendali Dokumen Berlaku Untuk Tingkat Kerahasiaan

Revisi : 0 Hal : 1/2 Plant Operation Department QA Partner Semua/ All GREEN PLO/09/006/INK

Disusun Oleh :

Disetujui Oleh :

BIP – Work & Asset stream

Plant Operation Dept. Head

KETERANGAN KETERANGAN

URUTAN KERJA URUTAN KERJA HEAD OFFICE

JOB SITE

PLD OFFICER

PLANT SECTION MEKANIK

PPU OFFICER / GL

PLANNER Adanya Jadwal Tahunan PPU

Perencanaan Bulanan

Perencanaan Bulanan

Perencanaan Mingguan

Perencanaan Mingguan

Pengecekan Visual

Ada Kerusakan?

Perencanaan Bulanan

2. Planner membuat perencanaan bulanan PPU yang didistribusikan kepada PPU Officer dan Plant Development Officer di Haed Office,

Perencanaan Mingguan

3. Planner membuat perencanaan mingguan PPU yang didistribusikan kepada PPU Officer dan Plant Development Officer di Haed Office,

HM unit memenuhi

4. HM unit yang memenuhi persyaratan PPU (Program Pemeriksaan Undercarriage) berdasarkan pengamatan HM harian. 5. Melakukan pengecekan visual terhadap bagian tertentu dari Undercarriage (U/C) yang dapat dilakukan tanpa menggunakan alat, 6. Memeriksa adanya kerusakan pada komponen U/C unit : - Apabila ya, maka memeriksa apakah dapat diperbaiki langsung, - Apabila tidak, maka melakukan pemeriksaan oli,

Ya

Tidak A

(A bersambung ke aktivitas ) 7. Memeriksa jenis kerusakan apakah dapat diperbaiki langsung: - Apabila ya, maka memeriksa apakah membutuhkan spare part, - Apabila tidak, maka melakukan pemeriksaan oli,

Perbaikan Langsung?

Tidak

1. Adanya jadwal tahunan pelaksanaan PPU,

Ya B

(B bersambung ke aktivitas 10) Butuh Spare Part ?

8. Memeriksa kebutuhan spare part : - Apabila ya, maka memeriksa apakah tersedia digudang atau bisa disediakan dengan cepat (maksimal 48 jam), - Apabila tidak, maka langsung memperbaiki kerusakan,

Ya

Tidak

(C bersambung ke aktivitas 12)

C

Proses Order Part

D

9. Group Leader melakukan proses order spare part, Ref.: SOP No. LOG/09/012/SOP Online Purchase Requisition. (D bersambung ke aktivitas 10)

Instruksi Kerja (INK) ini bagian dari: SOP No. PLO/09/008/SOP Planned Maintenance

INSTRUKSI KERJA PELAKSANAAN PPU

Topik Nomor Dokumen

PLO/09/006/INK

Revisi : 0

Tanggal Efektif

URUTAN KERJA JOB SITE MEKANIK

GROUP LEADER

PLANNER

KETERANGAN TRACK SPV & LOG. SPV

HEAD OFFICE PLANT DEV. OFFICER

D

(D sambungan dari aktivitas 9) 9. Memeriksa ketersediaan spare part di gudang : - Apabila ya, maka melanjutkan ke proses order part, - Apabila tidak, maka memeriksa apakah masih layak dioperasikan atau tidak,

Ya

Part Available? Tidak

B Layak Dioperasikan ?

Hal : 2/2

(B sambungan dari aktivitas 7) 10. Memeriksa apakah unit masih layak untuk dioperasikan : - Apabila ya, maka melakukan pemeriksaan oli. - Apabila tidak, maka unit break down

Ya

Tidak

Unit Breakdown

11. Unit breakdown, ref SOP No. PLO/09/005/SOP Work Order Unschedule Maintenance (C sambungan dari aktivitas 8)

C

Perbaikan

12. Mekanik memperbaiki kerusakan pada unit hasil pengecekan visual,

Pemeriksaan Oli

13. Mekanik melakukan pemeriksaan oli komponen Undercarriage,

Measurement Component

14. Mekanik melakukan pengukuran keausan terhadap komponen Undercarriage berdasarkan form list pengukuran Undercarriage, 15. Mengisi hasil pengukuran Undercarriage dalam form list pengukuran undercarriage, data ini selanjutnya akan digunakan sebagai bahan untuk laporan PPU,

Undercarriage Insp. Report

Input Data Dalam Program

Sch. Comp U/C Replacement

Sch. Comp U/C Replc.

16. Input data list pengukuran undercarriage ke dalam program aplikasi. Sch. U/C Replacement

Sch. U/C Replacement

Proses PPU Selesai

Instruksi Kerja (INK) ini bagian dari: SOP No. PLO/09/008/SOP Planned Maintenance

17. Pembuatan dan pengiriman schedule component U/C replacement oleh Planner kepada PPU Officer/GL, Track Supervisor, Logistic Supervisor dan Plant Development Officer Head Office, 18. Pelaksanaan Program Pemeriksaan Undercarriage selesai.

STANDARD OPERATION PROCEDURE Topik Pemilik Proses Pengendali Dokumen Berlaku Untuk

PROGRAM MIDLIFE OVERHAUL Plant Operation Department QA Partner Semua/All

Nomor Dokumen Tanggal Efektif Tingkat Kerahasiaan

Disusun Oleh :

Plant Operation Dept. Head

QA Certified Partner

PLO/09/011/SOP

Revisi : 0 Hal : 1 /4

GREEN Disetujui Oleh :

Plant Director

1. TUJUAN Standard Operation Procedure (SOP) ini bertujuan untuk : 1.1. Memberikan pedoman kepada PIC (Person In Charge) yang terkait dengan proses pelaksanaan Program Midlife Overhaul Sub Component (Small Component). 1.2. Memastikan bahwa proses pelaksanaan Program Midlife Overhaul Sub Component sesuai dengan Sistem Manajemen yang telah ditetapkan. 2. RUANG LINGKUP SOP ini digunakan sebagai acuan dalam pelaksanaan Program Midlife Overhaul Sub Component (small component Engine) sejak dibuatnya Monthly Plan, pemeriksaan mesin, pembuatan laporan, sampai dengan pengisian tabel achievement MIDLIFE. Adapun ruang lingkupnya untuk di jobsite meliputi section : Produksi, Plant dan Logistik. 3. REFERENSI 3.1. Elemen ISO 9001 : 2008 - Sub Pasal 4.2.4 Pengendalian Catatan Mutu - Sub Pasal 7.5.3. Identifikasi dan Penelusuran 3.2. SOP No. PLO/09/008/SOP Planned Maintenance 3.3. SOP No. PLO/09/009/SOP Schedule Overhaul Process 4. DEFINISI 4.1. Hour Meter (HM) Adalah lamanya equipment dioperasikan oleh operator dalam satuan jam alat. 4.2. Program Midlife Overhaul Sub Component Adalah salah satu program perawatan equipment (khususnya Engine) yang dilakukan secara berkala sesuai HM maupun sesuai dengan kondisi dengan melakukan overhaul sub component. Sub component yang dimaksud adalah Turbocharger, Starting motor, Water Pump, Alternator, Air Compressor, Nozzle dan attachment lainnya yang bertujuan untuk mempertahankan performance unit sesuai dengan standar. 4.3. Ready For Use (RFU) Adalah equipment siap dioperasikan kembali. 4.4. Program Periodic Service (PS) Adalah salah satu program perawatan equipment yang dilakukan secara berkala (sesuai HM) dengan melakukan penggantian oli, coolant, filter, inspeksi, serta pelaksanaan minor repair dan adjustment untuk kondisi abnormal (tidak sesuai standar) yang langsung ditemukan maupun yang telah direncana kan, yang ditujukan untuk mempertahankan performance unit sesuai standard. Periodical Service bagi equipment yang memiliki ukuran HM untuk operating statistiknya dilakukan setiap HM kelipatan 250 jam, dan dibagi dalam 4 program yaitu:

STANDARD OPERATION PROCEDURE PROGRAM ROGRAM MIDLIFE MIDLIFEOVERHAUL OVERHAUL

Topik Nomor Dokumen

PL0/09/011/SOP

Revisi : 0

Tanggal Efektif

Hal : 2 /4

PS 250 (1) : Service yang dilakukan setelah mencapai HM 250 jam. PS 500 (2) : Service yang dilakukan setelah mencapai HM 500 jam. PS 1000 (3): Service yang dilakukan setelah mencapai HM 1000 jam. PS 2000 (4): Service yang dilakukan setelah mencapai HM 2000 jam. Periodical Service bagi equipment yang tidak memiliki ukuran HM untuk operating statistiknya dilakukan setiap kelipatan hari operasi sesuai dengan ketentuan yang ada dalam Operation Maintenance & Manual (OMM).

5. KEBIJAKAN 5.1. Plant Section bertanggung jawab atas pelaksanaan pencucian unit sebelum dilaksanakan Midlife. 5.2. Pelaksanaan program Midlife Overhaul Sub Component diprioritaskan untuk unit production equipment. 5.3. Plant Group leader bertanggung jawab atas pengendalian kualitas pekerjaan selama proses Overhaul Midlife Sub Component. 5.4. Schedule program Midlife dilaksanakan saat umur Sub Component 1/2 dari umur Main Component. 6. ALUR PROSES Program Midlife Overhaul secara lebih rinci dapat dilihat pada alur proses pada halaman 3/4 sampai dengan halaman 4/4. 7. DAFTAR DOKUMEN PENDUKUNG 7.1. 7.2. 7.3. 7.4. 7.5. 7.6. 7.7. 7.8. 7.9. 7.10. 7.11. 7.12. 7.13. 7.14. 7.15.

Instruksi Kerja No. PLD/09/002/INK Peminjaman Workshop Tools & Facilities Instruksi Kerja No. PLO/09/004/INK Pelaksanaan PS Instruksi Kerja No. PLO/09/005/INK Pelaksanaan PPM Instruksi Kerja No. PLO/09/006/INK Pelaksanaan PPU Instruksi Kerja No. PLO/09/013/INK Penyusunan Master Schedule Overhaul Instruksi Kerja No. PLO/09/014/INK Pelaksanaan Overhaul Komponen Instruksi Kerja No. PLO/09/016/INK Follow Up PAP Formulir No. PLO/09/F-016 Job Card Formulir No. PLO/09/F-146 Schedule Overhaul Tahunan Formulir No. PLO/09/F-161 Summary Backlog Job Formulir No. PLO/09/F-162 Daily Breakdown Report Formulir No. PLO/09/F-163 Daily Maintenance Planning Formulir No. PLO/09/F-164 Summary PA Monthly Maintenance Planning Formulir No. PLO/09/F-166 Summary PA Weekly Maintenance Planning Formulir No. PLO/09/F-173 Job Schedule Sheet Overhaul (JSS)

8. RIWAYAT PERUBAHAAN Not Available (N/A).

STANDARD OPERATION PROCEDURE PROGRAM ROGRAM MIDLIFE MIDLIFE OVERHAUL OVERHAUL

Topik Topik Nomor Dokumen

PIC NO

ACTIVITIES 1.

Adanya kebutuhan pelaksanaan MIDLIFE.

2.

Menjalankan Maintenance scheduling di modul Ellipse MSQ700.

3.

Melakukan pengecekan stock midlife di Warehouse.

5.

Memberikan konfirmasi stock midlife di Warehouse.

6.

Menggabungkan plan midlife ke plan service yg terdekat menggunakan Mincom Work Planner (MWP). Ref: SOP No. PLO/09/008/SOP Planned Maintenance.

8.

9.

10.

11.

Tanggal Efektif

Mendistirbusikan daily plan PS ke GL produksi dan GL Plant.

PROD SECT. GROUP LEADER

MECHANIC

GROUP LEADER

12.

Melaksanakan program midlife.

13.

Membuat dan mendistribusikan report midlife.

(A bersambung ke aktivitas 14)

PLANNER

SECT. HEAD

INVENTORY

Adanya rencana MIDLIFE Component MSQ700 Maintenance Scheduling MWP Monthly Plan

Monthly Plan

Proses pengecekan stock midlife

Konfirmasi stock midlife MWP Plan midlife Daily plan PS (manual)

Daily plan PS (manual)

Daily plan PS (manual) MSQ620/MSQ140 WR/WO

MSQ620 Work Order MSQ140 Proses pemenuhan midlife

Mengirimkan Warehouse Requistion dan stock midlife dikirim ke Group leader plant untuk diteruskan ke mekanik.

(B sambungan dari aktivitas 14 & 19)

LOGISTIC SECT.

PLANT SECTION

Membuat WO melalui modul Ellipse MSQ620 atau WR by MSQ140 dan mendistribusikan ke group leader plant. Ref: SOP No. LOG/09/005/SOP Repairable Item Management Memproses pemenuhan part/component Midlife melalui modul Ellipse MSQ140.

Operator menyerahkan unit dan mengisi formulir Jobcard untuk dilakukan service dan midlife secara bersamaan.

Hal : 3/4

JOB SITE

Membuat dan mendistribusikan Plan bulanan Midlife menggunakan Mincom Work Planner (MWP). Asli : Planner. Copy 1 : Inventory.

4.

7.

Revisi : 0

PLO/09/011/SOP

Warehouse Requisition MIDLIFE Unit

Unit

Jobcard

Jobcard

Warehouse Requisition MIDLIFE

B Program Midlife comp.

Report midlife

Report midlife

A

Warehouse Requisition MIDLIFE

STANDARD OPERATION PROCEDURE PROGRAM ROGRAM MIDLIFE MIDLIFE OVERHAUL OVERHAUL

Topik Topik Nomor Dokumen

Revisi : 0

PLO/09/011/SOP PIC

NO. ACTIVITIES

Tanggal Efektif JOB SITE

OPERATOR

GROUP LEADER

GROUP LEADER

MECHANIC

B

- Jika ya, maka menginformasikan unit RFU.

Tidak

- Jika tidak, maka menindaklanjuti hasil ketidaksesuaian midlife.

16.

Mengembalikan midlife comp. Ref : SOP No. LOG/09/005/SOP Repairable Item Management. Melengkapi formulir Fabrication Request dan menyerahkannya ke logistic.

17.

18.

19.

Proses pengembalian

Form Fab. Request Ex-midlife Ground Test

Memeriksa apakah setuju dengan hasil perbaikan ?

Unit beroperasi.

B Ya

- Jika Tidak, maka melaksanakan program midlife lagi.

21.

Tidak

Setuju

- Jika Ya, maka mengisi form.

Menyerahkan unit ke operator.

Sesuai Standar?

Informasi RFU

Informasi RFU

Ref : Formulir No. PLO/09/F-021 Fabrication Request. Melakukan ground test.

20.

SECT. HEAD

Ya

(B bersambung ke aktivitas 12) Menginformasikan bahwa unit sudah RFU.

PLANNER

A

Memeriksa hasil midlife apakah sesuai dengan standar ?

15.

LOGISTIC SECT.

PLANT SECTION

PRODUCTION SECT.

(A sambungan dari aktivitas 13) 14.

Hal : 4 /4

Form

Unit

Unit Beroperasi

Unit

Form Fab. Request Ex-midlife

STANDAR PARAMETER MIDLIFE COMPONENT

Topik Nomor Dokumen Tanggal Efektif Pemilik Proses Pengendali Dokumen Berlaku Untuk Tingkat Kerahasiaan

Revisi : 0 Hal : 1/4 Plant Operation Department QA Partner Semua/ All GREEN PLO/09/007/STD

Disusun Oleh :

Disetujui Oleh :

BIP – WA Stream

Plant Operation Dept. Head

MIDLIFE COMPONENT NO

EQUIPMENT

EGI

1.

BULDOZER D375A-5

D375A-5

2.

BULDOZER D155A-6

D155A-6

3.

BULDOZER D85ESS-2

D85ESS-2

4.

BULDOZER D65P-12

D65P-12

BULDOZER D9R

D9R

5.

6.

7.

8.

DRILLING MACHINE D245S

D245S

DRILLING MACHINE D50KS

D50KS

DUMP TRUCK HD785-5

HD785-5

COMPONENT INJECTOR TURBOCHARGER WATER PUMP FAN COOLING & TENSION STARTING MOTOR ALTERNATOR TURBOCHARGER WATER PUMP FAN COOLING & TENSION STARTING MOTOR ALTERNATOR TURBOCHARGER WATER PUMP FAN COOLING & TENSION STARTING MOTOR ALTERNATOR INJECTOR TURBOCHARGER WATER PUMP FAN COOLING & TENSION STARTING MOTOR ALTERNATOR INJECTOR TURBOCHARGER WATER PUMP FAN COOLING & TENSION STARTING MOTOR ALTERNATOR TURBOCHARGER STARTING MOTOR ALTERNATOR ROCK DRILL / DRIFTER WATERPUMP TURBOCHARGER STARTING MOTOR ALTERNATOR ROCK DRILL / DRIFTER WATERPUMP INJECTOR TURBOCHARGER WATER PUMP FAN COOLING & TENSION STARTING MOTOR ALTERNATOR DAMPER

LIFE TIME 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 7000 7000 7000 7000 7000 7000 7000 7000 7000 7000 7000 7000 8000 8000 8000 8000 8000 8000 6000 6000 6000 8000 8000 6000 6000 6000 8000 9000 9000 9000 9000 9000 9000 9000

NO

EQUIPMENT

EGI

9.

ARTICULATED DT A40D

A40D

10.

DUMP TRUCK HD785-7

HD785-7

11.

DUMP TRUCK TR100

TR100

12. DUMP TRUCK FM9

FM9

13.

EXCAVATOR PC3000-6

PC3000-6

14.

EXCAVATOR PC2000-8

PC2000-8

15.

EXCAVATOR PC1800-6

PC1800-6

16.

WHEEL LOADER WA500-3

WA500-3

Standar Parameter (STD) ini bagian dari: SOP No. PLO/09/011/SOP Program Midlife Overhaul

COMPONENT TURBOCHARGER WATERPUMP FAN COOLING MOTOR STARTING MOTOR ALTENATOR TURBOCHARGER WATER PUMP FAN COOLING & TENSION STARTING MOTOR ALTERNATOR DAMPER INJECTOR TURBOCHARGER WATER PUMP FAN COOLING & TENSION STARTING MOTOR ALTERNATOR DAMPER INJECTOR TURBOCHARGER WATER PUMP FAN COOLING & TENSION STARTING MOTOR ALTERNATOR TURBOCHARGER WATER PUMP FAN COOLING & TENSION STARTING MOTOR ALTERNATOR TURBOCHARGER WATER PUMP FAN COOLING & TENSION STARTING MOTOR ALTERNATOR TURBOCHARGER WATER PUMP FAN COOLING & TENSION STARTING MOTOR ALTERNATOR TURBOCHARGER WATER PUMP FAN COOLING & TENSION STARTING MOTOR ALTERNATOR INJEKTOR

LIFE TIME 8000 8000 8000 8000 8000 9000 9000 9000 9000 9000 9000 8000 8000 8000 8000 6000 6000 8000 8000 8000 8000 8000 6000 6000 9000 9000 9000 9000 9000 9000 9000 9000 9000 9000 9000 9000 9000 9000 9000 8000 8000 8000 8000 8000 8000

STANDAR PARAMETER STD List MIDLIFE FA Workshop COMPONENT Equipment

Topik Nomor Dokumen

PLO/09/007/STD

NO

EQUIPMENT

EGI

17.

EXCAVATOR PC1250-8

PC1250-8

18.

EXCAVATOR PC1250-7

PC1250-7

19.

EXCAVATOR PC400LCSE-7

20.

EXCAVATOR EX2500

EX2500

21.

MOTOR GRADER GD825A-2

GD825A-2

22.

PC400LC SE-7

WHEEL DOZER WD600-3 WD600-3

23.

WHEEL LOADER 992C

WL992C

24.

WHEEL LOADER WA800-3

WA800-3

25.

26.

27.

DUMP TRUCK ACTROS 4046

WATER TRUCK HD785-7

WATER TRUCK HD465-5

ACTROS 4046

HD7857WT

HD4655WT

Revisi : 0

COMPONENT LIFE TIME TURBOCHARGER 8000 WATER PUMP 8000 FAN COOLING & TENSION 8000 STARTING MOTOR 8000 ALTERNATOR 8000 TURBOCHARGER 8000 WATER PUMP 8000 FAN COOLING & TENSION 8000 STARTING MOTOR 8000 ALTERNATOR 8000 TURBOCHARGER 7000 WATER PUMP 7000 FAN COOLING & TENSION 7000 STARTING MOTOR 7000 ALTERNATOR 7000 TURBOCHARGER 9000 WATER PUMP 9000 FAN COOLING & TENSION 9000 STARTING MOTOR 9000 ALTERNATOR 9000 TURBOCHARGER 7000 WATER PUMP 7000 FAN COOLING & TENSION 7000 STARTING MOTOR 7000 ALTERNATOR 7000 TURBOCHARGER 8000 WATER PUMP 8000 FAN COOLING & TENSION 8000 STARTING MOTOR 8000 ALTERNATOR 8000 INJEKTOR 8000 TURBOCHARGER 9000 WATER PUMP 9000 FAN COOLING & TENSION 9000 STARTING MOTOR 9000 ALTERNATOR 9000 WATER PUMP 9000 FAN COOLING & TENSION 9000 STARTING MOTOR 9000 ALTERNATOR 9000 TURBOCHARGER 8000 WATER PUMP 8000 FAN COOLING & TENSION 8000 STARTING MOTOR 8000 ALTERNATOR 8000 WATER PUMP 8000 DIFFERENTIAL ADJUSMENT 8000 INJECTOR 9000 TURBOCHARGER 9000 WATER PUMP 9000 FAN COOLING & TENSION 9000 STARTING MOTOR 9000 ALTERNATOR 9000 DAMPER 9000 INJECTOR 8000 TURBOCHARGER 8000 WATER PUMP 8000 FAN COOLING & TENSION 8000 STARTING MOTOR 8000 ALTERNATOR 8000 DAMPER 8000

Tanggal Efektif

Hal

NO

EQUIPMENT

EGI

28.

FUEL TRUCK ACTROS 4046

ACT4046FT

29.

WATER TRUCK ACTROS 4046

ACT4046WT

WASHING 30. TRUCK ACTROS ACT4046WS 4046

31.

WATER PUMP MFVC-420

MFVC-420

32.

WATER PUMP MFC-390H

MF390

33.

WATER PUMP ETAN200X150X350

E2X1.5X3.5

34.

WATER PUMP 4X6-13

4X6-13

35.

WATER PUMP ETAN200X150X315

E2X1.5X3.15

36.

FUEL TRUCK FM380

FM380FT

37.

FUEL TRUCK FM9

FM9FT

38.

GENSET EGS300-6

EGS300-6

Standar Parameter (STD) ini bagian dari: SOP No. PLO/09/011/SOP Program Midlife Overhaul

COMPONENT TURBOCHARGER WATER PUMP FAN COOLING & TENSION STARTING MOTOR ALTERNATOR WATER PUMP DIFFERENTIAL ADJUSMENT TURBOCHARGER WATER PUMP FAN COOLING & TENSION STARTING MOTOR ALTERNATOR WATER PUMP DIFFERENTIAL ADJUSMENT TURBOCHARGER WATER PUMP FAN COOLING & TENSION STARTING MOTOR ALTERNATOR WATER PUMP DIFFERENTIAL ADJUSMENT TURBOCHARGER WATER PUMP STARTING MOTOR ALTERNATOR VACUUM TURBOCHARGER WATER PUMP STARTING MOTOR ALTERNATOR VACUUM TURBOCHARGER WATER PUMP STARTING MOTOR ALTERNATOR VACUUM TURBOCHARGER WATER PUMP STARTING MOTOR ALTERNATOR VACUUM TURBOCHARGER WATER PUMP STARTING MOTOR ALTERNATOR VACUUM TURBOCHARGER WATER PUMP FAN COOLING & TENSION STARTING MOTOR ALTERNATOR DAMPER DIFFERENTIAL ADJUSMENT TURBOCHARGER WATER PUMP FAN COOLING & TENSION STARTING MOTOR ALTERNATOR DIFFERENTIAL ADJUSMENT STARTING MOTOR ALTENATOR STARTING MOTOR ALTENATOR

: 2/4 LIFE TIME 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 8000 8000 8000 6000 6000 8000 8000 8000 8000 8000 6000 6000 8000 8000 8000 8000 8000

STANDAR PARAMETER STD List MIDLIFE FA Workshop COMPONENT Equipment

Topik Nomor Dokumen NO

39.

40.

EQUIPMENT

CRANE TRUCK FM9

CRANE TRUCK ACTROS 4046

CRANE TRUCK 41. RT190

42.

LUBE TRUCK FM9

43.

BACHOE LOADER MLB625

44. GENSET PL250 45. GENSET PL200 46. GENSET PL100 47.

GENSET PL30

48. GENSET PL27,5

PLO/09/007/STD

Revisi : 0

EGI

COMPONENT

LIFE TIME

FM9CT

TURBOCHARGER WATER PUMP FAN COOLING & TENSION STARTING MOTOR ALTERNATOR WATER PUMP DIFFERENTIAL ADJUSMENT

8000 8000 8000 8000 8000 8000 8000

TURBOCHARGER WATER PUMP FAN COOLING & TENSION ACT4046CT STARTING MOTOR ALTERNATOR WATER PUMP DIFFERENTIAL ADJUSMENT TURBOCHARGER WATER PUMP FAN COOLING & TENSION RT190 STARTING MOTOR

8000 8000 8000 8000 8000 8000 8000 8000 8000 8000

FM9LT

MLB625

PL250

ALTERNATOR WATER PUMP DIFFERENTIAL ADJUSMENT TURBOCHARGER WATER PUMP FAN COOLING & TENSION STARTING MOTOR ALTERNATOR WATER PUMP DIFFERENTIAL ADJUSMENT WATER PUMP FAN COOLING & TENSION STARTING MOTOR ALTERNATOR STARTING MOTOR

8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 6000 8000 8000 8000 8000 8000

ALTERNATOR STARTING MOTOR PL200 ALTERNATOR STARTING MOTOR PL100 ALTERNATOR STARTING MOTOR PL30 ALTERNATOR STARTING MOTOR PL27,5 ALTERNATOR STARTING MOTOR PL9 ALTERNATOR STARTING MOTOR SQ-3300 ALTERNATOR STARTING MOTOR KJ-T130DX ALTERNATOR

8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000

STARTING MOTOR ALTERNATOR STARTING MOTOR ALTERNATOR

8000 8000 8000 8000

49.

GENSET PL9

50.

GENSET SQ3300

51.

GENSET KJT130DX

52.

GENSET YDG5001SE

YDG5001

53.

TOWER LAMP L8

L8

Tanggal Efektif

Hal

NO

EQUIPMENT

EGI

54.

TOWER LAMP LS46000

LS46000

55. FORKLIFT PFD50T-1

PFD50T1

56.

FORKLIFT MHT10160L

MHT101 60L

57.

FORKLIFT 027FDA50

027FDA50

58.

ARTICULATED DT CAT740

CAT740

59.

LUBE TRUCK ACTROS 4046

ACT4046 LT

60. PRIME MOVER FH16

61.

62.

PRIME MOVER MB3854SLT

FH16

MB3854 SLT

PRIME MOVER CLR CLR866 866 RSX RSX

63. PRIME MOVER R580

R580

64. FUEL TRUCK FH16

FH16FT

Standar Parameter (STD) ini bagian dari: SOP No. PLO/09/011/SOP Program Midlife Overhaul

COMPONENT STARTING MOTOR ALTERNATOR STARTING MOTOR ALTERNATOR WATER PUMP FAN COOLING & TENSION STARTING MOTOR ALTERNATOR TURBOCHARGER WATERPUMP FAN COOLING MOTOR STARTING MOTOR ALTENATOR TURBOCHARGER WATER PUMP FAN COOLING & TENSION STARTING MOTOR ALTERNATOR WATER PUMP DIFFERENTIAL ADJUSMENT TURBOCHARGER WATER PUMP FAN COOLING & TENSION STARTING MOTOR ALTERNATOR WATER PUMP DIFFERENTIAL ADJUSMENT TURBOCHARGER WATER PUMP FAN COOLING & TENSION STARTING MOTOR ALTERNATOR WATER PUMP DIFFERENTIAL ADJUSMENT TURBOCHARGER WATER PUMP FAN COOLING & TENSION STARTING MOTOR ALTERNATOR WATER PUMP DIFFERENTIAL ADJUSMENT TURBOCHARGER WATER PUMP FAN COOLING & TENSION STARTING MOTOR ALTERNATOR WATER PUMP DIFFERENTIAL ADJUSMENT TURBOCHARGER WATER PUMP FAN COOLING & TENSION STARTING MOTOR ALTERNATOR WATER PUMP DIFFERENTIAL ADJUSMENT

: 3/4 LIFE TIME 8000 8000 6000 6000 8000 8000 6000 6000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 6000 8000 8000 8000 8000 8000 8000 6000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 6000 8000 8000 8000 8000 8000 8000 8000

STANDAR PARAMETER STD List MIDLIFE FA Workshop COMPONENT Equipment

Topik Nomor Dokumen

NO

EQUIPMENT

PLO/09/007/STD

Revisi : 0

Tanggal Efektif

EGI

COMPONENT LIFE TIME STARTING MOTOR 8000 ALTENATOR 8000 65. GENSET EGS630-3 EGS630-3 STARTING MOTOR 8000 ALTENATOR 8000 TURBOCHARGER 7000 WATER PUMP 7000 EXCAVATOR PC200FAN COOLING & TENSION 7000 66. PC200-7 7 STARTING MOTOR 7000 ALTENATOR 7000 INJEKTOR 7000 TURBOCHARGER 8000 WATER PUMP 8000 67. EXCAVATOR EX1200 EX1200 FAN COOLING & TENSION 8000 STARTING MOTOR 8000 ALTENATOR 8000 TURBOCHARGER 8000 WATER PUMP 8000 MOTOR GRADER 68. 24M FAN COOLING & TENSION 8000 24M STARTING MOTOR 8000 ALTENATOR 8000 TURBOCHARGER 9000 WATER PUMP 9000 WHEEL LOADER 69. 992G FAN COOLING & TENSION 9000 992G STARTING MOTOR 9000 ALTENATOR 9000

Standar Parameter (STD) ini bagian dari: SOP No. PLO/09/011/SOP Program Midlife Overhaul

Hal

: 4/4

STANDARD OPERATION PROCEDURE Topik Pemilik Proses Pengendali Dokumen Berlaku Untuk

SCHEDULE OVERHAUL PROCESS Plant Operation Department QA Partner Semua/All

Nomor Dokumen Tanggal Efektif Tingkat Kerahasiaan

PLO/09/009/SOP

Disusun Oleh :

Plant Operation Dept. Head

Revisi : 0 Hal : 1 /4

GREEN Disetujui Oleh :

QA Certified Partner

Plant Director

1. TUJUAN Standard Operation Procedure (SOP) ini bertujuan untuk : 1.1. Memberikan pedoman kepada PIC (Person In Charge) yang terkait dalam melaksanakan Schedule Overhaul . 1.2. Memastikan bahwa proces penyusunan Schedule Overhaul melalui Sistem Manajemen yang disepakati bersama. 1.3. Mengingatkan agar program overhaul komponen dilaksanakan sesuai standard life component yang dibakukan oleh management perusahaan. 1.4. Minimize terjadinya pelaksanaan overhaul akibat dari brake down unschedule. 1.5. Mengatur pelaksanaan extended life component yang sudah jatuh tempo dari standard life component yang ditentukan. 2. RUANG LINGKUP SOP ini digunakan untuk membantu dalam memonitor proses pelaksanaan component overhaul. Proses diawali dengan penyusunan Master Plan Overhaul untuk satu tahun kemudian dicontrol dengan FIX schedule N1 (untuk satu bulan kedepan), dan tentative schedule overhaul N2 (untuk dua bulan kedepan), N3 (untuk tiga bulan kedepan) dan N6 (untuk enam bulan kedepan) yang dihitung saat N0 (pada bulan berjalan). Adapun ruang lingkup SOP ini meliputi untuk Head Office adalah departemen Plant People Dev. & RC, Plant Operation Dept. dan Plant Development. Sedangkan untuk jobsite adalah Section Plant, Produksi, Logistik, Project Manager dan Supplier. 3. REFERENSI 3.1. Elemen ISO 9001:2008 3.1.1. Sub Pasal 4.2.4. Pengendalian Catatan Mutu 3.1.2. Sub Pasal 8.3. Pengendalian Ketidaksesuaian 3.2. SOP No. PLO/09/008/SOP Planned Maintenance 3.3. SOP No. PLO/09/014/SOP Pelaksanaan Program Component Exchange 3.4. SOP No. PLO/09/015/SOP Pelaksanaan Program Tukar Alat (PTA) 3.5. SOP No. PLO/09/010/SOP Remove & Install Overhaul Process 3.6. SOP No. LOG/09/003/SOP Credit Requisition 3.7. SOP No. LOG/09/004/SOP Warehouse Requisition 4. DEFINISI

4.1. Component Overhaul Adalah proses pemeliharaan berjangka (Periodical Maintenance) untuk meremajakan kondisi komponen yang mengalami penurunan fungsi kerja dalam kurun waktu tertentu yang sudah direncanakan sesuai dengan standardyang direkomendasikan oleh Perusahaan.

STANDARD OPERATION PROCEDURE Topik Nomor Dokumen

SCHEDULE APL MANAGEMENT OVERHAUL SYSTEM PROCESS PLO/09/009/SOP

Revisi : 0

Tanggal Efektif

Hal : 2 /4

4.2. Master Plan Overhaul Adalah rencana komponen Overhaul dalam satu tahun kedepan berdasarkan standar umur komponen dan Service Meter Reading (Service Meter Reading) yang di susun pada akhir bulan Oktober tahun berjalan. 4.3 Overhaul bulan berjalan (N0) Adalah overhaul yang terjadi pada bulan berjalan. 4.4. Fix Schedule Overhaul untuk satu bulan kedepan (N1) Adalah overhaul yang direncanakan jatuh tempo pada satu bulan kedepan. 4.5. Tentative schedule overhaul dua bulan (N2), tiga bulan (N3) dan enam bulan (N6) Adalah overhaul yang direncanakan jatuh tempo pada dua, tiga dan enam bulan kedepan. 5. KEBIJAKAN 5.1. Plant Planner harus bertanggung jawab pada : 5.1.1. Penyusunan Master Schedule overhaul setiap akhir tahun berdasarkan : a. Historical HM unit akhir tahun. b. Accumulative life component akhir tahun. c. Last component overhaul. d. Melihat rencana rata-rata jam kerja alat untuk tahun depan. e. Rencana unit scrap. f. Historical unit (PPM,PAP,PPU,Back Log,Trouble,Oil consumption & Cost). 5.1.2. Plant Planner Jobsite harus membuat permintaan komponen (Component Requisition “CR”) ke Overhaul and supply component pada awal bulan “N0” untuk kebutuhan pada bulan “N1”, melalui fasilitas Email. 5.1.3. Plant Planner harus menyiapkan spare parts Remove Install komponen (N1,N2 dan N3). 5.2. PHS, Budget, PA & Cost Control Section akan mengkompilasi schedule yang diterima dan mengirimkan pada minggu kedua ke Rebuild Center Section. 5.3. Component Exchange Officer memberikan feed back atas CR yang diajukan paling lambat 1 (satu) minggu setelah CR diterima dan akan menginformasikan ke jobsite mengenai pengiriman komponen RFU. 5.4. Order parts susulan diharapkan hanya terjadi dua (2) kali saja yaitu delapan (8) hari setelah pembongkaran. 5.5. Komponen yang mengalami overhaul di Rebuild Center adalah : Engine, PTO/Gear Box, Transmission, Torque Converter, Differential, Final drive , Brake, Piston Pump, Motor, Swing Machinery dan lain-lain. 5.6. Proses overhaul harus dilaksanakan sesuai dengan INK (Intruksi Kerja) yang ada. 5.7. Group Leader harus memeriksa dan menanda tangani Form Jobcard yang sudah diisi oleh Mekanik setiap proses perkerjaan yang dijadikan critical item. Group Leader harus membuat laporan pekerjaan selesai. 5.8. Selama proses overhaul harus mengutamakan hal Kebersihan, Kesehatan, Keselamatan dan Lingkungan kerja sesuai pedoman Saptanirbaya yang telah diprogramkan oleh SHE Department. 5.9. Komponen harus melalui Final Test Performance (Test Load di Test Bench ) sebelum komponen dinyatakan R F U. 5.10. Spare parts yang tersisa ex WO overhaul harus dikembalikan ke Logistik Sect. dengan menggunakan Fasilitas SOP No. LOG/09/003/SOP Credit Requisition. Paling lambat 7 hari setelah selesai overhaul dilaksanakan. 5.11. Sistem Ellipse akan dibuat automatic cyclic time dengan mengirim schedule overhaul via email ke Planner di Jobsite. 5.12. PHS, Budget, PA & Cost Control Section Head melakukan meeting dengan supplier mengenai Planning Plant selama 3 bulan ke depan.

STANDARD OPERATION PROCEDURE SCHEDULE APL MANAGEMENT OVERHAUL SYSTEM PROCESS

Topik Nomor Dokumen

PLO/09/009/SOP

Revisi : 0

Tanggal Efektif

6. PROSEDUR & ALUR PROSES Proses Schedule Overhaul secara lebih jelas dapat dilihat pada alur proses halaman 4/4. 7. DAFTAR DOKUMEN PENDUKUNG 7.1. Instruksi Kerja No. PLO/09/013/INK Penyusunan Master Schedule Overhaul 7.2. Instruksi Kerja No. PLO/09/014/INK Pelaksanaan Overhaul Komponen 7.3. Instruksi Kerja No. PLO/09/015/INK Pemeriksaan dan Pemasangan Komponen 8. RIWAYAT PERUBAHAN Not Available (N/A).

Hal : 3 /4

STANDARD OPERATION PROCEDURE SCHEDULE APL MANAGEMENT OVERHAUL SYSTEM PROCESS

Topik Nomor Dokumen

PLO/09/009/SOP PIC

NO. ACTIVITIES 1.

Adanya kebutuhan overhaul based on life hours component sesuai Master Schedule.

2.

Review schedule overhaul melalui Mincom Work Planner (MWP) dan system Manual untuk bulan keenam (N6).

3.

Mengirimkan tentative sch O/H (N2,N3 dan N6) sebagai konfirmasi kepastian O/H berdasarkan life component dan HM.

4.

Membandingkan tentative sch.ovh dengan kondisi unit melalui pemeriksaan berdasarkan parameter (, PAP, PPM, PPU,Trouble,Back Log dan Cost per hours) sehingga dapat mengatur jatuh tempo unit yang kondisinya sudah parah.

5.

Meminta persetujuan ke PM untuk menetapkan FIX schedule O/H satu bulan kedepan (N1), tentative O/H untuk dua bulan kedepan (N2) dan tiga bulan kedepan (N3).

6.

Mengevaluasi Sch. O/H (N1,N2,N3) apakah sesuai dengan kebutuhan atau tidak ? -Jika Ya, maka mengembalikan Fix sch. dan tentative sch. O/h untuk bulan ke dua dan ketiga yang akan datang. - Jika Tidak, maka merevisi Fix sch. dan tentative sch O/h untuk bulan ke dua dan ketiga yang akan datang.

HEAD OFFICE PLANT OP. PLANT DEV. DEPT. DEPT. PHS, BUDGET, PA & DEPT. HEAD COST CONTROL SH

7.

Membuat Comex Requisition (CR) untuk kebutuhan component satu bulan kedepan (FIX sch N1).

8.

Mendistribusikan data Fix Schedule soft copy untuk N1+ CR dan tentative Sch fix(N1+CR) Tent.N2,N3 O/H Untuk bulan N2, N3 dari hasil kompilasi. Ref : SOP No. PLO/09/014/SOP Pelaksanaan Program Component Exchange.

9

Mempersiapkan Spare Parts APL OVH melalui Ellipse MSQ140.

10

Mengkompilasi dan mengirimkan data fix sch (N1) & tent N2, N3.

11.

Melakukan proses Remove & Install. Ref : INK No. PLO/09/015/INK Pemeriksaan dan Pemasangan Komponen.

12.

Mendistribusikan sch. fix soft copy (N1) Tent N2, N3 untuk pengerjaan damage core.

13.

14.

Create APL OVH melalui Ellipse MSQ140.

Revisi : 0

Tanggal Efektif

Hal : 4 /4 JOBSITE

LOG SECT.

PLANT SECT. PM

SECT. HEAD

PLANNER

SUPPLIER

SEC. HEAD

Monitoring Ovh. program MWP Review

Sch N2,N3 & N6

Sch N2,N3 & N6

Review by Condition

Fix Sch (N1) & Tent.N2,N3

Tidak

Sch Fiix+CR & tent.N2,N3

Evaluasi Ya

Create CR

Sch.Fix+CR & tent.N2,N3 Sch fix(N1+CR) Tent.N2,N3

Mengkompilasi Fix Sch. & Tent.N2,N3

D MSQ140 Persiapan Spare parts APL O/H

Proses R&I

Sch fix(N1) Tent.N2,N3

MSQ140 Create APL OVH

Proses schedule overhaul selesai. Selesai

Sch fix(N1) Tent.N2,N3

STANDAR PARAMETER LIFE TIME COMPONENT OVERHAUL

Topik Nomor Dokumen Tanggal Efektif Pemilik Proses Pengendali Dokumen Berlaku Untuk Tingkat Kerahasiaan

Revisi : 0 Hal : 1/4 Plant Operation Department QA Partner Semua/ All GREEN PLO/09/006/STD

Disusun Oleh :

Disetujui Oleh :

BIP – WA Stream

Plant Operation Dept. Head

LIFE TIME COMPONENT OVERHAUL NO EQUIPMENT

EGI

COMPONENT TRANSMISSION ENGINE ARTICULATED 1. A40D DROP BOX DT A40D DIFFERENTIAL FINAL DRIVE TRANSMISSION ENGINE FINAL DRIVE DIFFERENTIAL BULDOZER 2. D375A-5 D375A-5 STEER PACK ALL HYDRAULIC CYLINDER REBUILD & RECONDITION BLADE UNDERCARRIAGE TRANSMISSION ENGINE FINAL DRIVE BULDOZER 3. D155A-6 DIFFERENTIAL D155A-6 STEER PACK ALL HYDRAULIC CYLINDER UNDERCARRIAGE TRANSMISSION ENGINE ARTICULATED 4. CAT740 DROP BOX DT CAT740 DIFFERENTIAL FINAL DRIVE TRANSMISSION ENGINE FINAL DRIVE DIFFERENTIAL BULDOZER 5. D85ESS-2 D85ESS-2 STEER PACK UNDERCARIAGE ALL HYDRAULIC CYLINDER REBUILD & RECONDISI BLADE TRANSMISSION ENGINE FINAL DRIVE DIFFERENTIAL BULDOZER 6. D65P-12 D65P-12 STEER PACK UNDERCARIAGE ALL HYDRAULIC CYLINDER REBUILD & RECONDISI BLADE TRANSMISSION ENGINE FINAL DRIVE BULDOZER 7. D9R DIFFERENTIAL D9R STEER PACK ALL HYDRAULIC CYLINDER UNDERCARIAGE

LIFETIME 16000 16000 12000 16000 16000 16000 16000 16000 16000 16000 8000 16000 4000 16000 16000 16000 16000 16000 8000 4000 16000 16000 16000 16000 16000 14000 14000 14000 14000 14000 3000 8000 14000 14000 14000 14000 14000 14000 3000 8000 14000 16000 16000 16000 16000 16000 8000 4000

NO EQUIPMENT

EGI

8.

DUMP TRUCK HD785-5 HD785-5

9.

DUMP TRUCK HD785-7 HD785-7

DRILLING MACHINE D50KS

D50KS

11

DUMP TRUCK FM9

FM9

12.

EXCAVATOR PC3000-6 PC3000-6

10.

Standar Parameter (STD) ini bagian dari SOP No : PLO/09/009/SOP Schedule Overhaul Process

COMPONENT LIFETIME TORQUE CONVERTER 18000 TRANSMISSION 18000 ENGINE 18000 FINAL DRIVE 18000 STEERING SYSTEM 18000 FINAL DRIVE 18000 DIFFERENTIAL 18000 HYDRAULIC PUMP 18000 SUSPENSION 9000 DAMPER ASSY 18000 ALL HYDRAULIC CYLINDER 9000 TORQUE CONVERTER 18000 TRANSMISSION 18000 ENGINE 18000 FINAL DRIVE 18000 STEERING SYSTEM 18000 FINAL DRIVE 18000 DIFFERENTIAL 18000 HYDRAULIC PUMP 18000 SUSPENSION 18000 DAMPER ASSY 18000 ALL HYDRAULIC CYLINDER 9000 FINAL DRIVE 12000 UNDERCARRIAGE 8000 MAIN PUMP 12000 COMPRESSOR DRILLING 12000 ROCK DRILL / DRIFTER / ROTARY 12000 ROD CHANGER DRILLING 16000 DUST COLLECTOR DRILL 16000 CHAIN FEED DRILLING 16000 ENGINE 12000 GEARBOX 12000 FEED DRILLING 16000 ALL HYDRAULIC CYLINDER 16000 ENGINE 16000 FINAL DRIVE 6000 STEERING SYSTEM 6000 FINAL DRIVE 6000 DIFFERENTIAL 6000 HYDRAULIC PUMP 16000 TRANSMISSION 6000 ENGINE 16000 UNDERCARRIAGE 20000 SWING MACHINERY 12000 SWING & TRAVEL MOTOR 18000 PTO 18000 SWING & TRAVEL MOTOR 18000 ALL HYDRAULIC CYLINDER 9000 FINAL DRIVE 18000

STANDAR PARAMETER LIFE STDTIME List COMPONENT FA Workshop Equipment OVERHAUL

Topik Nomor Dokumen NO EQUIPMENT

13.

14.

15.

16.

PLO/09/006/STD EGI

EXCAVATOR PC2000PC2000-8 8

EXCAVATOR PC1800PC1800-6 6

EXCAVATOR PC1250PC1250SP-8 8

EXCAVATOR PC1250PC1250SP-7 7

EXCAVATOR PC400L 17. PC400LCSE-7 CSE-7

18.

EXCAVATOR PC200-7 PC200-7

19.

EXCAVATOR EX2500 EX2500

20.

EXCAVATOR EX1200 EX1200

21.

MOTOR GRADER GD825A-2

GD825A -2

Revisi : 0

COMPONENT ENGINE UNDERCARRIAGE SWING MACHINERY SWING&TRAVEL MOTOR PTO SWING & TRAVEL MOTOR ALL HYDRAULIC CYLINDER FINAL DRIVE ENGINE PTO PUMPS ASSY SWING & TRAVEL MOTOR ALL HYDRAULIC CYLINDER REBUILD & RECONDITION BUCKET FINAL DRIVE ENGINE PTO SWING MACHINERY SWING & TRAVEL MOTOR ALL HYDRAULIC PUMPS ALL HYDRAULIC CYLINDER REBUILD & RECONDITION BUCKET FINAL DRIVE ENGINE PTO SWING MACHINERY SWING & TRAVEL MOTOR ALL HYDRAULIC PUMPS ALL HYDRAULIC CYLINDER REBUILD & RECONDITION BUCKET FINAL DRIVE ENGINE PTO ALL HYDRAULIC PUMPS SWING & TRAVEL MOTOR ALL HYDRAULIC CYLINDER REBUILD & RECONDITION BUCKET FINAL DRIVE ENGINE PTO ALL HYDRAULIC PUMPS SWING & TRAVEL MOTOR ALL HYDRAULIC CYLINDER REBUILD & RECONDITION BUCKET FINAL DRIVE ENGINE PTO ALL HYDRAULIC PUMPS SWING & TRAVEL MOTOR ALL HYDRAULIC CYLINDER REBUILD & RECONDITION BUCKET FINAL DRIVE ENGINE PTO ALL HYDRAULIC PUMPS SWING MACHINERY SWING & TRAVEL MOTOR ALL HYDRAULIC CYLINDER FINAL DRIVE DIFFERENTIAL ENGINE TRANSMISSION TANDEM DRIVE ALL HYDRAULIC CYLINDER

LIFETIME 18000 18000 18000 18000 18000 18000 9000 18000 18000 18000 18000 18000 9000 18000 18000 16000 16000 16000 16000 16000 9000 18000 16000 16000 16000 16000 16000 16000 9000 18000 16000 14000 14000 14000 14000 8000 16000 14000 14000 14000 14000 14000 8000 14000 14000 18000 18000 18000 18000 9000 18000 18000 16000 16000 16000 16000 16000 8000 16000 14000 14000 14000 14000 8000

Tanggal Efektif

Hal

NO

EQUIPMENT

EGI

22.

MOTOR GRADER 24M

24M

23.

WHEEL DOZER WD600WD600-3 3

24.

WHEEL LOADER WA500WA500-3 3

25.

WHEEL LOADER WL992C 992C

26.

WHEEL LOADER WA800WA800-3 3

27.

WHEEL LOADER CAT 992G WL992G

28.

29.

DUMP TRUCK ACTROS 4046

ACTRO S4046

DRILLING D245S MACHINE D245S

Standar Parameter (STD) ini bagian dari: SOP No. PLO/09/009/SOP Schedule Overhaul Process

: 2/4

COMPONENT LIFETIME DIFFERENTIAL 16000 ENGINE 16000 TRANSMISSION 16000 DIFFERENTIAL 16000 TANDEM DRIVE 16000 ALL HYDRAULIC CYLINDER 16000 TRANSMISSION 16000 ENGINE 16000 STEERING SYSTEM 16000 FINAL DRIVE 16000 REAR DIFFERENTIAL 16000 ALL CYLINDER HYDROULIC 8000 REBUILD & RECONDITION BLADE 16000 TRANSMISSION 16000 ENGINE 16000 STEERING SYSTEM 16000 FINAL DRIVE 16000 REAR DIFFERENTIAL 16000 ALL CYLINDER HYDRAULIC 8000 REBUILD & RECONDITION BUCKET 16000 TRANSMISSION 18000 ENGINE 18000 STEERING SYSTEM 18000 FINAL DRIVE 18000 REAR DIFFERENTIAL 18000 FINAL DRIVE 18000 DIFFERENTIAL 18000 ALL CYLINDER 18000 REBUILD & RECONDITION BUCKET 18000 TRANSMISSION 18000 ENGINE 18000 STEERING SYSTEM 18000 FINAL DRIVE 18000 REAR DIFFERENTIAL 18000 CYLINDER 9000 TRANSMISSION 18000 ENGINE 18000 STEERING SYSTEM 18000 FINAL DRIVE 18000 REAR DIFFERENTIAL 18000 FINAL DRIVE 18000 REAR DIFFERENTIAL 18000 ALL CYLINDER 18000 REBUILD & RECONDITION BUCKET 18000 TRANSMISSION 12000 ENGINE 12000 FINAL DRIVE 12000 STEERING SYSTEM 12000 DIFFERENTIAL ASSY 12000 HYDRAULIC PUMP 12000 RADIATOR 12000 VESSEL ASSY 12000 HOIST CYLINDER LH/RH 12000 FINAL DRIVE 12000 UNDERCARRIAGE 8000 MAIN PUMP 12000 COMPRESSOR DRILLING 12000 ROCK DRILL / DRIFTER / ROTARY 12000 ROD CHANGER DRILLING 16000 DUST COLLECTOR DRILL 16000 CHAIN FEED DRILLING 16000 ENGINE 12000 GEARBOX 12000 FEED DRILLING 16000 ALL HYDRAULIC CYLINDER 16000

STANDAR PARAMETER LIFE STDTIME List COMPONENT FA Workshop Equipment OVERHAUL

Topik Nomor Dokumen NO EQUIPMENT

PLO/09/006/STD EGI

COMPONENT TRANSMISSION ENGINE FINAL DRIVE PRIME STEERING SYSTEM FH16 30. MOVER FH16 DIFFERENTIAL HYDRAULIC PUMP SMALL COMPONENT HOIST CYLINDER LH/RH TRANSMISSION ENGINE FINAL DRIVE PRIME STEERING SYSTEM MOVER MB3854SLT 31. DIFFERENTIAL MB3854SLT HYDRAULIC PUMP SMALL COMPONENT HOIST CYLINDER LH/RH TRANSMISSION ENGINE FINAL DRIVE PRIME CLR 866 STEERING SYSTEM 32. MOVER CLR RSX DIFFERENTIAL 866 RSX HYDRAULIC PUMP SMALL COMPONENT HOIST CYLINDER LH/RH TRANSMISSION ENGINE FINAL DRIVE PRIME STEERING SYSTEM R580 33. MOVER R580 DIFFERENTIAL HYDRAULIC PUMP SMALL COMPONENT HOIST CYLINDER LH/RH TRANSMISSION ENGINE FINAL DRIVE STEERING SYSTEM FUEL TRUCK FH16FT FINAL DRIVE 34. FH16 DIFFERENTIAL HYDRAULIC PUMP SMALL COMPONENT HOIST CYLINDER LH/RH TRANSMISSION ENGINE FINAL DRIVE STEERING SYSTEM CRANE TRUCK ACT4046CT DIFFERENTIAL ASSY 35. ACTROS 4046 HYDRAULIC PUMP RADIATOR VESSEL ASSY HOIST CYLINDER LH/RH 36. GENSET PL30 GS PL30 ENGINE GENSET EGS630-3 ENGINE 37. EGS630-3 GENSET EGS300-6 ENGINE 38. EGS300-6 GENSET PL250 39. ENGINE PL250 GENSET PL200 40. ENGINE PL200 GENSET PL100 41. ENGINE PL100 GENSET PL27,5 42. ENGINE PL27,5 PL9 43. GENSET PL9 ENGINE

Revisi : 0

Tanggal Efektif

Hal

LIFETIME 14000 16000 16000 16000 12000 16000 16000 16000 12000 16000 16000 16000 12000 16000 16000 16000 16000 16000 16000 16000 12000 16000 16000 16000 14000 16000 16000 16000 16000 16000 16000 16000 16000 16000 16000 16000 16000 12000 16000 16000 16000 12000 14000 12000 12000 12000 12000 12000 12000 12000 16000

NO

16000

48.

WATER PUMP MFVC-420

49.

WATER PUMP E2X1.5X3.15 ETAN200X150X315

50

WATER PUMP ETAN200X150X350

E2X1.5X3.5

51.

WATER PUMP 4X6-13

4X6-13

16000

WATER TRUCK HD785-7WT HD785-7

45.

WATER TRUCK HD465-5WT HD465-5

46.

WATER TRUCK ACT4046WT ACTROS4046

47.

16000 16000 16000

EGI

44.

16000 16000

EQUIPMENT

WASHING TRUCK ACTROS4046

ACTS4046W S

MFVC-420

Standar Parameter (STD) ini bagian dari: SOP No. PLO/09/009/SOP Schedule Overhaul Process

COMPONENT TORQUE CONVERTER TRANSMISSION ENGINE FINAL DRIVE STEERING SYSTEM ALL CYLINDER HYDRAULIC FINAL DRIVE DIFFERENTIAL HYDRAULIC PUMP SUSPENSION RADIATOR VESSEL ASSY 5-7 HOIST CYLINDER LH/RH DAMPER ASSY TORQUE CONVERTER TRANSMISSION ENGINE FINAL DRIVE STEERING SYSTEM ALL CYLINDER HYDRAULIC FINAL DRIVE DIFFERENTIAL HYDRAULIC PUMP SUSPENSION RADIATOR VESSEL ASSY 5-7 HOIST CYLINDER LH/RH DAMPER ASSY TRANSMISSION ENGINE FINAL DRIVE STEERING SYSTEM DIFFERENTIAL ASSY HYDRAULIC PUMP RADIATOR VESSEL ASSY HOIST CYLINDER LH/RH TRANSMISSION ENGINE FINAL DRIVE STEERING SYSTEM DIFFERENTIAL ASSY HYDRAULIC PUMP RADIATOR VESSEL ASSY HOIST CYLINDER LH/RH ENGINE VACUUM PUMP ASSY VACUUM ENGINE PUMP VACUUM ENGINE PUMP VACUUM ENGINE PUMP VACUUM

: 3/4 LIFETIME 18000 18000 18000 18000 18000 9000 18000 18000 18000 9000 18000 18000 18000 18000 16000 16000 16000 16000 16000 9000 16000 16000 16000 9000 16000 16000 16000 16000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000

STANDAR PARAMETER LIFE STDTIME List COMPONENT FA Workshop Equipment OVERHAUL

Topik Nomor Dokumen

NO

52.

53.

54.

55.

56.

57. 58. 59.

60.

EQUIPMENT

PLO/09/006/STD

EGI

Revisi : 0

COMPONENT LIFETIME TRANSMISSION 12000 ENGINE 12000 FINAL DRIVE 12000 FUEL TRUCK FM380FT STEERING SYSTEM 12000 FM380 DIFFERENTIAL ASSY 12000 HYDRAULIC PUMP 12000 RADIATOR 12000 VESSEL ASSY 12000 TRANSMISSION 12000 ENGINE 14000 FINAL DRIVE 12000 STEERING SYSTEM 12000 FUEL TRUCK DIFFERENTIAL 12000 FM9FT FM9 HYDRAULIC PUMP 12000 RADIATOR 12000 VESSEL ASSY 12000 HOIST CYLINDER LH/RH 12000 DAMPER & CLUTCH ASSY 12000 TRANSMISSION 12000 ENGINE 12000 FINAL DRIVE 12000 STEERING SYSTEM 12000 FUEL TRUCK DIFFERENTIAL 12000 ACTS4046FT ACTROS 4046 HYDRAULIC PUMP 12000 RADIATOR 12000 VESSEL ASSY 12000 HOIST CYLINDER LH/RH 12000 DAMPER & CLUTCH ASSY 12000 TRANSMISSION 12000 ENGINE 14000 FINAL DRIVE 12000 STEERING SYSTEM 12000 CRANE DIFFERENTIAL 12000 FM9CT TRUCK FM9 HYDRAULIC PUMP 12000 RADIATOR 12000 VESSEL ASSY 12000 HOIST CYLINDER LH/RH 12000 DAMPER & CLUTCH ASSY 12000 ENGINE 16000 FINAL DRIVE 16000 TRANSMISSION 16000 STEERING SYSTEM 16000 BACHOE DIFFERENTIAL 16000 LOADER MLB625 MLB625 HYDRAULIC PUMP 16000 RADIATOR 16000 TELESCOPIC CYLINDER LH/RH 16000 BOOM CYLINDER LH/RH 16000 BUCKET 16000 GENSET SQSQ-3300 ENGINE 16000 3300 TOWER LAMP L8 L8 ENGINE 16000 TOWER LAMP LS4-6000 ENGINE 16000 LS4-6000 ENGINE 16000 TRANSMISSION 16000 STEERING SYSTEM 16000 FINAL DRIVE 16000 FORKLIFT PFD50T-1 DIFFERENTIAL 16000 PFD50T-1 HYDRAULIC PUMP 16000 RADIATOR 16000 TRANSMISSION 16000 FORK 16000

Tanggal Efektif

NO

EQUIPMENT

61.

FORKLIFT MHT10160L

62.

FORKLIFT 027FDA50

63.

LUBE TRUCK ACRTOS 4046

64.

CRANE TRUCK RT190

65.

LUBE TRUCK FM9

66.

WATER PUMP MFC 390

67.

68.

Hal

: 4/4

EGI

COMPONENT LIFETIME ENGINE 16000 FINAL DRIVE 16000 TRANSMISSION 16000 STEERING SYSTEM 16000 DIFFERENTIAL 16000 MHT10160L HYDRAULIC PUMP 16000 RADIATOR 16000 TELESCOPIC CYL. LH/RH 16000 BOOM CYLINDER LH/RH 16000 FORK 16000 ENGINE 16000 FINAL DRIVE 16000 TRANSMISSION 16000 STEERING SYSTEM 16000 DIFFERENTIAL 16000 02-7FDA50 HYDRAULIC PUMP 16000 RADIATOR 16000 TELESCOPIC CYL. LH/RH 16000 BOOM CYLINDER LH/RH 16000 FORK 16000 TRANSMISSION 12000 ENGINE 12000 FINAL DRIVE 12000 STEERING SYSTEM 12000 DIFFERENTIAL 12000 ACT4046LT HYDRAULIC PUMP 12000 RADIATOR 12000 VESSEL ASSY 12000 HOIST CYLINDER LH/RH 12000 DAMPER & CLUTCH ASSY 12000 ENGINE 16000 FINAL DRIVE 16000 STEERING SYSTEM 16000 RT190 DIFFERENTIAL 16000 HYDRAULIC PUMP 16000 TRANSMISSION 16000 ENGINE 12000 FINAL DRIVE 12000 TRANSMISSION 12000 STEERING SYSTEM 12000 FINAL DRIVE 12000 FM9LT DIFFERENTIAL 12000 HYDRAULIC PUMP 12000 RADIATOR 12000 VESSEL ASSY 12000 HOIST CYLINDER LH/RH 12000 ENGINE 12000 PUMP 12000 MFC 390 VACUUM 12000 VACUUM 12000

GENSET KJT130DX

KJ-T130DX

ENGINE

16000

GENSET YDG5001SE

YDG5001SE ENGINE

16000

Standar Parameter (STD) ini bagian dari: SOP No. PLO/09/009/SOP Schedule Overhaul Process

STANDARD OPERATION PROCEDURE Topik Pemilik Proses Pengendali Dokumen Berlaku Untuk

WORK ORDER UNSCHEDULED MAINTENANCE Plant Operation Department QA Partner Semua /All

Nomor Dokumen Tanggal Efektif Tingkat Kerahasiaan

Disusun Oleh :

Plant Operation Department Head

PLO/09/005/SOP

Revisi : 0 Hal : 1/ 8

GREEN Disetujui Oleh :

QA Certified Partner

Plant Director

1. TUJUAN Standard Operation Procedure (SOP) ini bertujuan untuk : 1.1. Memberikan pedoman kepada PIC (Person In Charge) dalam mencatat work order unschedule maintenance. 1.2. Memastikan bahwa semua data work order unschedule maintenance dapat dipakai oleh semua pihak yang berkepentingan dan tidak ada standar ganda. 1.3. Memastikan bahwa pencatatan work order unschedule maintenance sudah sesuai dengan sistem manajemen yang telah ditetapkan. 2. RUANG LINGKUP Proses SOP ini adalah dimulai dari adanya laporan operator (Work Request) dari operasi akibat unit breakdown sampai dengan pencatatan breakdown unschedule di sistem oleh pihak Plant serta pembuatan laporan availability alat. Adapun ruang lingkupnya berada di jobsite khususnya di : Plant, Production dan Engineering Section. 3. REFERENSI 3.1. ISO 9001: 2008 3.1.1. Sub Pasal 4.2.4. Pengendalian Catatan Mutu. 3.1.2. Pasal 6. Manajemen Sumber Daya. 3.1.3. Pasal 7. Realisasi Produk. 3.1.4. Pasal 8. Pengukuran, Analisis, dan Penyempurnaan. 3.1.5. Sub Pasal 8.2.3 Pengukuran dan Pemantauan Proses. 3.2. ISO 14001: 2004 3.2.1. Sub Pasal 4.5.4. Pengendalian Catatan. 3.2.2. Sub Pasal 4.4.1. Sumber Daya, Peranan, Tanggungjawab dan Kewenangan. 3.2.3. Sub Pasal 4.4.6. Pengendalian Operasional. 3.2.4. Sub Pasal 4.5.1. Pemantauan dan Pengukuran. 3.3. OHSAS 18001: 2007 3.3.1. Sub Pasal 4.5.4. Pengendalian Catatan. 3.3.2. Sub Pasal 4.4.1. Sumber Daya, Peranan, Tanggungjawab, Akuntabilitas dan Kewenangan. 3.3.3. Sub Pasal 4.4.6. Pengendalian Operasional. 3.3.4. Sub Pasal 4.5.1. Pemantauan dan Pengukuran. 3.4. SOP No. LOG/09/004/SOP Warehouse Requisition

STANDARD OPERATION PROCEDURE Topik Nomor Dokumen

WORK ORDER APL MANAGEMENT UNSCHEDULED SYSTEM MAINTENANCE PLO/09/005/SOP

Revisi : 0

Tanggal Efektif

Hal : 2/ 8

4. DEFINISI 4.1. Breakdown Adalah tidak dapat beroperasinya equipment (alat) secara optimal dan aman sesuai fungsi utama, sehingga perlu dilakukan pengecekan dan perbaikan. 4.2. Unschedule Breakdown Adalah breakdown yang tidak direncanakan atau dijadwalkan. 4.3. Unschedule Down Time Adalah total waktu dimulai sejak alat dilaporkan breakdown oleh Group Leader Production ke MCR sampai selesai dilakukan perbaikan dan dinyatakan RFU oleh Plant Department dan dilaporkan ke MCR. 4.4. Job Card Adalah kartu instruksi kerja yang dikeluarkan sesuai nomor work order yang bersangkutan, yang memuat nomor work order beserta deskripsinya, safety instruction, job instruction dan completion instruction. 4.5. Field Job Card Adalah jenis formulir Jobcard yang digunakan di lapangan (field) tanpa proses pencetakan oleh sistem dengan tujuan untuk mengurangi downtime unit. 4.6. Respon Time Adalah waktu mekanik dalam merespon unit breakdown terhitung dari saat pelaporan MCR ke Adm. Planner sampai dengan eksekusinya (± 30 menit). 4.7. RFU (Ready For Use) Adalah suatu kondisi dimana alat dapat dioperasikan sesuai fungsi utamanya. 4.8. MCR Adalah tempat khusus untuk mencatat semua data aktivitas produksi (perjam s/d perhari), data down time equipment, dan informasi-informasi lain (accident, keadaan lingkungan tambang, dll), serta memberikan masukan atau informasi bila ada keadaan yang membutuhkan corrective action dari departemen terkait. 4.9. Symptom Adalah gejala awal problem unit yang digunakan untuk menganalisa kerusakan unit. 4.10. Failure Analysis Adalah analisa yang dilakukan berdasarkan temuan symptom dalam proses perbaikan unit. 4.11. Ground Test Adalah proses uji coba unit setelah dilakukan perbaikan untuk memastikan kondisi unit sudah RFU. 4.12. Overshift Adalah pergantian shift pada jam kerja karyawan. 4.13. Mechanic Order List (MOL) Adalah list / dokumen permintaan part atau komponen dari mekanik. 4.14. Work Order (WO) Adalah dokumen perintah kerja untuk mekanik yang juga sebagai acuan Warehouse Requisition. 4.15. Warehouse Requisition (WR) Adalah dokumen yang berisi permintaan part atau komponen dari pihak Plant ke pihak Logistik. 5. KEBIJAKAN 5.1. Breakdown unschedule mulai berlaku dan harus segera dicatat saat informasi diterima oleh petugas MCR. 5.2. RFU mulai berlaku saat petugas MCR menerima informasi dari Plant Section, bahwa unit siap beroperasi. 5.3. Petugas MCR bertanggung jawab untuk memastikan bahwa semua informasi telah diterima oleh pihak yang dituju.

STANDARD OPERATION PROCEDURE WORK ORDER APL MANAGEMENT UNSCHEDULED SYSTEM MAINTENANCE

Topik Nomor Dokumen

PLO/09/005/SOP

Revisi : 0

Tanggal Efektif

Hal : 3/8

5.4. Penerbitan permintaan perbaikan dari operator (Work Request) dilakukan oleh MCR di bawah engineering section job site untuk Work Order Unscheduled Maintenance. 5.5. Kriteria Perbaikan Unschedule di Field atau di bawa ke Workshop. 5.5.1. Wheel Untuk pekerjaan unschedule dibawah 4 jam dikerjakan di Field, selebihnya akan dibawa ke workshop dengan catatan equipment bisa dimobilisasi. 5.5.2. Track Untuk pekerjaan unschedule dibawah 4 jam dikerjakan di Field, selebihnya dibawa ke workshop besar atau pit shop. 5.6. Operator akan menunggu maksimal selama 30 menit sejak masuknya laporan ke MCR. MCR harus segera menginformasikan kepada Adm. Planner apabila ada laporan masuk dari operator. Apabila melewati dari 30 menit Operator boleh meninggalkan equipment. 5.7. Untuk kerusakan yang perbaikannya diestimasikan dalam 30 menit maka Operator wajib menunggu. 5.8. Satu jam sebelum menyelesaikan pekerjaan GL Plant wajib memberikan informasi estimasi kepada MCR atau kepada GL Produksi untuk menyiapkan Operator. 5.9. Standard respon time untuk menunggu ground test oleh GL Operation dan Operator setelah equipment dinyatakan RFU oleh Plant adalah 30 menit. 5.10. Apabila ground test telah selesai dan dinyatakan unit siap dipakai maka status equipment menjadi working. Apabila terjadi kegagalan pada saat test maka status No Operator (S9) dihapus dan status equipment tetap dinyatakan breakdown unschedule. 5.11. Pada saat serah terima unit breakdown dan serah terima unit RFU, GL Plant atau mekanik dengan operator harus menandatangani jobcard atau field jobcard. 6. PROSEDUR & ALUR PROSES Untuk lebih menjelaskan proses pencatatan work order unschedule maintenance dapat dilihat pada halaman 4/8 sampai dengan 8/8. 7. DAFTAR DOKUMEN PENDUKUNG 7.1. Standart Parameter No. PROC/09/001/STD Batas Kewenangan WR, PR, dan PO 7.2. Formulir No. PLO/09/F-015 Mechanic Order List 7.3. Formulir No. PLO/09/F-016 Job Card 8. RIWAYAT PERUBAHAN Not Available (N/A).

STANDARD OPERATION PROCEDURE WORK ORDER APL MANAGEMENT UNSCHEDULED SYSTEM MAINTENANCE

Topik

PLO/09/005/SOP

Nomor Dokumen

Revisi : 0

Tanggal Efektif JOBSITE

PIC PRODUCTION SECT.

ACTIVITIES OPERATOR 1.

Adanya temuan unschedule breakdown pada unit.

2.

Melaporkan kerusakan unit ke MCR dengan menggunakan radio.

3.

Mengevaluasi tempat eksekusi perbaikan unit: a. Jika di workshop, operator akan membawa unit ke workshop. b. Jika di field, operator akan standby di field. Operator akan menunggu maksimal selama 30 menit sejak masuknya laporan ke MCR, setelah lebih dari 30 menit operator boleh meninggalkan unit.

4.

Menginput data work request (MSQ541).

5.

Menginput data start downtime (MSO435), tanggal, HM, Priority Trouble Unit.

6.

Menginformasikan kerusakan unit melalui radio ke Adm. Planner (status job duration code B4: waiting for mechanic).

7.

Menginformasikan kerusakan unit melalui radio ke GL Plant (Unplanned GL).

Hal : 4/8

GL. PRODUKSI

ENG SECT. SUPERVISOR PIT

MCR

PLANT SECT. MEKANIK

Menyampaikan estimasi durasi pekerjaan ke Adm. Planner, mengisi Field Job Card.

9.

Membuat WO dan melengkapi: a. Employee ID dari GL yang pertama kali nantinya melaksanakan serah terima equipment dan memulai pekerjaan pada WO task ellipse. b. Plan Start dan Finish Date & Time. c. Update status Delay Code.

10.

Mencetak Jobcard, GL Plant mengambil Jobcard untuk serah terima unit breakdown dengan operator.

11.

Mengisi nomor WO, nomor equipment & deskripsi WO (symptom) pada formulir untuk serah terima unit breakdown dengan operator. (A bersambung ke aktivitas 12)

ADM PLANNER

Unschedule breakdown pada unit

Melaporkan kerusakan unit ke MCR Workshop Membawa unit ke workshop

Field atau workshop? Field

Standby di unit (field)

MSQ541 Menginput data work request MSO435 Menginput data start downtime, tanggal, HM & Priority Trouble unit

Menginformasikan kerusakan unit ke Adm Planner (Status: B4) Menginformasikan kerusakan unit ke GL Plant (Unplanned GL) Field atau workshop?

8.

GL PLANT

Field

Workshop

Menyampaikan estimasi durasi pekerjaan ke Adm. Planner

Melengkapi ID GL, Plan Start, Finish Date & Time

Mencetak Job Card Mengisi nomor WO, nomor equipment & deskripsi WO pada Jobcard A

STANDARD OPERATION PROCEDURE WORK ORDER APL MANAGEMENT UNSCHEDULED SYSTEM MAINTENANCE

Topik

PLO/09/005/SOP

Nomor Dokumen

Revisi : 0

Tanggal Efektif JOBSITE

PIC PRODUCTION SECT.

ACTIVITIES OPERATOR (A sambungan dari aktivitas 11)

12.

Melakukan serah terima equipment yang mengalami kerusakan. Operator menandatangani Job Card untuk serah terima, serta mengisi waktu serah terima dan uraian kerusakan.

13.

Melapor kepada Adm. Planner bahwa serah terima telah dilaksanakan.

14.

Mengupdate status downtime (MSO435) sesuai dengan kondisi nyata saat itu.

15.

Melakukan pengecekan awal perbaikan unit.

16.

Mengupdate status downtime (MSO435) sesuai dengan kondisi saat itu.

17.

Mengevaluasi ada tidaknya kebutuhan sparepart atau tidak: a. Jika ada, mekanik mengisi formulir Mechanic Order List (MOL). b. Jika tidak, dilanjutkan ke proses pekerjaan selanjutnya.

Hal : 5/8

GL. PRODUKSI

ENG SECT. SUPERVISOR PIT

MCR

PLANT SECT. MEKANIK

GL PLANT

ADM PLANNER

A

Serah terima equipment yang mengalami kerusakan

Melapor kepada Adm. Planner

MSO435 Mengupdate status downtime Pengecekan awal perbaikan unit

MSO435 Mengupdate status downtime menjadi on process

Tidak

Ada kebutuhan sparepart ? Ada Mengisi Mechanic Order List

18.

Menyetujui MOL yang diisi oleh mekanik. Menyetujui MOL

19.

Membuat Warehouse Requisition (WR) yang mengacu pada SOP No: LOG/09/004/SOP Warehouse Requisition dan STD No : PROC/09/001/STD Batas Kewenangan WR, PR dan PO.

20. Mengambil sparepart di Warehouse atau warehouse keeper mengantar spare part.

(B bersambung ke aktivitas 21)

Membuat Warehouse Requisition (WR)

Mengambil Sparepart

B

STANDARD OPERATION PROCEDURE WORK ORDER APL MANAGEMENT UNSCHEDULED SYSTEM MAINTENANCE

Topik

PLO/09/005/SOP

Nomor Dokumen

Revisi : 0

Tanggal Efektif JOBSITE

PIC NO

Hal : 6/8

PRODUCTION SECT.

ACTIVITIES OPERATOR

(B sambungan dari aktivitas 20 & 41)

21.

Melakukan perbaikan unit dengan diawasi oleh GL Plant.

22.

Mengevaluasi apakah perbaikan unit selesai dalam 1 shift: a. Jika ya, GL Plant melakukan final check. b. Jika tidak, GL Plant menyerahkan Jobcard kepada GL shift berikutnya pada saat overshift di workshop.

GL. PRODUKSI

ENG SECT. SUPERVISOR PIT

MCR

PLANT SECT. MEKANIK

GL PLANT

ADM PLANNER

B

Melakukan perbaikan unit

Perbaikan selesai dalam shift tersebut?

Ya

Tidak Menyerahkan Jobcard ke GL Plant shift berikutnya

23.

Menyerahkan Jobcard ke GL Plant shift berikutnya.

24.

Mekanik shift perbaikan unit.

25.

Melakukan final check setelah equipment selesai diperbaiki.

26.

Senior mekanik melakukan ground test yang diawasi oleh GL Plant.

27.

Menginformasikan kepada Adm. Planner melalui radio bahwa unit telah selesai diperbaiki dan diground tes.

28.

Menginformasikan kesiapan unit ke MCR melalui radio dan mengganti status unit menjadi standby no operator (S9).

Menginformasikan unit selesai diperbaiki ke MCR

29.

Mengupdate tanggal, jam unit selesai diperbaiki dan status down time menggunakan (MS0435) dan mengupdate status unit RFU di modul Ellipse.

MSO435 Mengupdate tanggal, jam unit selesai diperbaiki & status down time

berikutnya

melanjutkan

(C bersambung ke aktivitas 30)

Melanjutkan perbaikan unit

Melakukan final check

Melakukan ground test

Menginformasikan Adm Planner bahwa unit selesai diperbaiki

C

STANDARD OPERATION PROCEDURE WORK ORDER APL MANAGEMENT UNSCHEDULED SYSTEM MAINTENANCE

Topik

Revisi : 0

PLO/09/005/SOP

Nomor Dokumen

Tanggal Efektif

Hal : 7/8

JOBSITE

PIC PRODUCTION SECT.

ACTIVITIES OPERATOR

GL PRODUKSI

ENG SECT. SUPERVISOR PIT

MCR

PLANT SECT. MEKANIK

GL PLANT

ADM PLANNER

(C sambungan dari aktivitas 29)

kesiapan

C

30.

Menginformasikan Supervisor Pit.

unit

ke

31.

Menginformasikan kesiapan unit ke GL Produksi.

32.

Mengevaluasi apakah terdapat operator: a. Jika ya, Operator dan GL Produksi melakukan ground test. b. Jika tidak, GL Produksi menginformasikan ke GL Plant untuk reschedule ground test.

33.

Menginformasikan ke GL Plant untuk reschedule ground test.

34.

Menginformasikan perubahan status melalui radio kepada Adm. Planner.

35.

Mengevaluasi apakah ground test melebihi standar respon time: a. Jika ya, mekanik meninggalkan unit dan melapor ke Adm. Planner mengenai perubahan status. b. Jika tidak, Operator dan GL Produksi melakukan ground test.

36.

Meninggalkan unit dan melapor ke Adm. Planner mengenai perubahan status.

37.

Melakukan koordinasi reschedule ground test dengan GL Plant.

38.

Operator dan GL Produksi melakukan ground test.

39.

Mengevaluasi apakah durasi ground test akibat waiting operator lebih besar dari 1 shift: a. Jika ya, GL Plant menyerahkan jobcard ke GL shift berikutnya. b. Jika tidak, GL Produksi menandatangani unschedule field jobcard.

40.

Menyerahkan jobcard ke GL Plant shift berikutnya.

(D bersambung ke aktivitas 41)

Menginformasikan kesiapan unit ke Supervisor Pit Menginformasikan kesiapan unit ke GL Produksi

Ya

Ada operator? Tidak Menginformasikan ke GL Plant untuk reschedule ground test Menginformasik an perubahan status kepada Adm Planner

Melebihi standar respon time (>30 menit)? Ya Meninggalkan unit dan melapor ke Adm Planner mengenai perubahan status Melakukan koordinasi reschedule ground test

Melakukan ground test

Durasi ground test > 1 Shift? Tidak

D

Ya

Menyerahkan jobcard ke GL shift berikutnya

Tidak

STANDARD OPERATION PROCEDURE WORK ORDER APL MANAGEMENT UNSCHEDULED SYSTEM MAINTENANCE

Topik

PLO/09/005/SOP

Nomor Dokumen

Revisi : 0

Tanggal Efektif JOBSITE

PIC NO

Hal : 8/8

PRODUCTION SECT.

ACTIVITIES OPERATOR

ENG SECT. SUPERVISOR PIT

GL PRODUKSI

MCR

PLANT SECT. MEKANIK

GL PLANT

ADM PLANNER

D

(D sambungan dari aktivitas 40) (B bersambung ke aktivitas 21) 41.

42.

a. Apabila ground test telah selesai dan dinyatakan Unit Ready for Used (RFU) maka status equipment menjadi working, GL Produksi akan menandatangani unschedule field jobcard. b. Apabila terjadi kegagalan pada saat test maka status No Operator (S9) dihapus dan status equipment tetap dinyatakan breakdown unschedule.

Tidak Unit RFU

B

Ya

Menandatangani jobcard. Menandatangani field jobcard

43.

Melapor ke Adm. Planner bahwa ground test telah dilakukan.

44.

Melapor ke MCR bahwa ground test sudah selesai dilakukan dan menginformasikan bahwa unit telah RFU.

45.

Mengupdate status di ellipse (MSO435) bahwa ground test telah selesai.

46.

Melengkapi data failure analysis dan data lainnya di Jobcard.

47.

Melakukan validasi data Jobcard.

48.

Menyerahkan Jobcard ke Adm. Planner setiap akhir shift.

49.

Menyerahkan Jobcard ke MCR setiap awal shift untuk melengkapi data downtime unit di ellipse.

50.

Menutup WO (MSQ620) di sistem Ellipse.

Melapor ke Admin Planner bahwa ground test telah dilakukan

Melapor ke MCR bahwa ground test telah selesai

MSO435 Mengupdate status di ellipse bahwa ground test telah selesai Melengkapi data failure analysis di Jobcard

Melakukan validasi data Jobcard Menyerahkan Jobcard ke Adm Planner Menyerahkan copy Jobcard ke MCR

MSQ620 Menutup WO di sistem Ellipse

51.

Proses pelaksanaan pekerjaan pencatatan unschedule down time selesai dilakukan.

Selesai

INSTRUKSI KERJA PELAKSANAAN BACKLOG

Topik Nomor Dokumen Tanggal Efektif Pemilik Proses Dokumen Berlaku Untuk Tingkat Kerahasiaan

Revisi : 0 Hal : 1/4 Plant Operation Department QA Partner Semua/ All GREEN PLO/09/001/INK

Disusun Oleh :

Disetujui Oleh :

BIP – Work & Asset stream

Plant Operation Dept. Head

URUTAN KERJA

KETERANGAN

JOB SITE PLANT SECTION MEKANIK

GROUP LEADER

PLANNER Potensi Kerusakan dari P2H, dan Conditon Monitoring

Potensi Kerusakan Pada Saat PS & Unschedule

1 Adanya temuan potensi kerusakan pada saat Periodical

Service, Unschedule oleh mekanik dan dari Program Pemeriksaan Harian dan Condition Monitoring (PAP, PPM/VHMS, PPU, PPA) yang diserahkan oleh Adm Planner,

2 Mekanik menyerahkan uraian temuan Backlog yang sudah

Menyerahkan Temuan Potensi Kerusakan & Part Recommended

dilengkapi dengan kebutuhan spare part pada kepada Group Leader,

Menyerahkan Temuan Potensi Kerusakan dari P2H, dan Conditon Monitoring

3 Planner menyerahkan uraian temuan potensi kerusakan dari P2H dan Condition Monitoring kepada Group Leader,

4 GL melakukan validasi potensi kerusakan dari Periodic

Validasi Temuan Potensi Kerusakan & Part Recommended

Service, Unschedule maintenance, P2H,dan hasil Condition Monitoring, kemudian melengkapi dengan kebutuhan sparepart,

5 Group Leader menentukan tingkat prioritas pekerjaan

Penentuan Prioritas Backlog

Backlog, termasuk mengestimasi kapan akan dilakukan perbaikan tersebut,

6 Mengevaluasi backlog apakah harus dikerjakan langsung : Ya

A

- Jika ya, masuk ke proses Unschedulled Maintenance, - Jika tidak, melanjutkan dengan input list Backlog ke dalam sistem ellipse,

Harus Dikerjakan Langsung?

Tidak

(A bersambung ke aktivitas 20)

7 Planner mencatat semua daftar Backlog yang sudah Daftar Backlog

MSQ620 Pembuatan Work Order

B

divalidasi dan ditentukan prioritasnya oleh Group Leader,

8 Planner membuat work order backlog melalui modul work order di sistem ellipse (MSQ620). a) Uraian temuan, b) Nomor equipment., c) Nama GL plant yang melaporkan backlog, d) Estimasi durasi pelaksanaan pekerjaan, e) Prioritas, f) Estimasi tanggal pelaksanaan pekarjaan backlog, (B bersambung ke aktifitas 9)

Instruksi Kerja (INK) ini bagian dari: SOP No. PLO/09/008/SOP Planned Maintenance

INSTRUKSI KERJA PELAKSANAAN BACKLOG

Topik Nomor Dokumen

Revisi : 0

PLO/09/001/INK

Tanggal Efektif

URUTAN KERJA

Hal : 2/4

KETERANGAN

JOB SITE MEKANIK

GROUP LEADER

PLANNER B

(B sambungan dari aktivitas 8)

9 Planner memeriksa apakah backlog tersebut membutuhkan Ya

Butuh Material?

Tidak

D

material untuk perbaikannya. - Jika ya, mekanik mengisi Machanic Order List (MOL) dengan kebutuhan sparepart, - Jika tidak, melakukan koordinasi dengan produksi untuk menentukan waktu pelaksanaan backlog.

(D bersambung ke aktivitas 19)

10 Mekanik mengisi Mechanic Order List (MOL) berdasarkan list Mengisi MOL

C

backlog yang telah divalidasi oleh Group Leader dan masukkan dari Planner,

(C bersambung ke aktivitas 11)

Instruksi Kerja (INK) ini bagian dari: SOP No. PLO/09/008/SOP Planned Maintenance

INSTRUKSI KERJA PELAKSANAAN BACKLOG

Topik Nomor Dokumen

PLO/09/001/INK

Revisi : 0

Tanggal Efektif

URUTAN KERJA PLANT SECTION

JOB SITE LOGISTIC SECTION

PLANNER

WAREHOUSE

Hal : 3/4

KETERANGAN SUPPLIER

C

(C sambungan dari aktivitas 10) 11. Planner membuat Warehouse Requitition (WR) untuk pengambilan sparepart diwarehouse (MSO140),

MSO140 Membuat WR

12. Warehouse menerima informasi adanya kebutuhan material berdasarkan Warehouse Requisition (WR),

Menerima Informasi berdasarkan WR

Ya

13. Warehouse melakukan pengecekan apakah ada stock di gudang? - Jika stock ada, maka warehouse memberikan estimasi kesiapan part di logistik, - Jika stock tidak ada, maka warehouse menginformasikan part ke Supplier,

Stock Ada ?

Tidak

Menerima Informasi & Menyiapkan Part

Estimasi kesiapan Part di Logistik

14. Suplier menerima informasi adanya kebutuhan material berdasarkan Warehouse Requisition (WR) dan memberiikan informasi kapan spare part dapat disupply, 15. Warehouse memberikan estimasi kesiapan part backlog ke plant,

Menjadwalkan WO Backlog

16. Menjadwalkan WO backlog sesuai Jadwal Service : - Summary backlog job weekly plan, - Koordinasi mingguan dengan logistik,

Koordinasi Harian Kepastian Material

17. Planner melakukan koordinasi harian (Daily Meeting) untuk membahas kesiapan material untuk pelaksanaan pekerjaan backlog, dibantu oleh Warehouse, Supplier dan Group Leader.

Material Siap ?

Ya

Tidak

18. Material yang dibutuhkan full supply? − Jika Ya, melakukan koordinasi kepastian pekerjaan. − Jika Tidak, menunggu kepastian kesiapan material. (D bersambung ke aktivitas 20)

D

Instruksi Kerja (INK) ini bagian dari: SOP No. PLO/09/008/SOP Planned Maintenance

INSTRUKSI KERJA PELAKSANAAN BACKLOG

Topik Nomor Dokumen

PLO/09/001/INK

Revisi : 0

Tanggal Efektif

Hal : 4/4

URUTAN KERJA PLANNER

JOB SITE GROUP LEADER

MEKANIK (A sambungan dari aktivitas 6)

A

Unschedulled Maintenance

19. Pekerjaan masuk dalam kategori Unschedule Maintenance, ref SOP No. PLO/09/005/SOP Work Order Unschedule Maintenance,

(D sambungan dari aktivitas 9, 18)

D

20. Planner melakukan koordinasi dengan Produksi untuk membahas kepastian pelaksanaan pekerjaan backlog,

Koordinasi Kepastian Pekerjaan

Disetujui? Ya

21. Pelaksanaan pekerjaan backlog disepakati : − Jika Ya, melakukan pekerjaan backlog, − Jika Tidak, menunggu kepastian pelaksanaan pekerjaan backlog,

Tidak

Intruksi Pelaksanaan Pekerjaan Backlog

22. Group Leader menginstruksikan kepada mekanik untuk melakukan pekerjaan backlog, dan mencatat aktivitas perbaikan yang dilakukan dalam Jobcard. Melakukan Pekerjaan Backlog

23. Mekanik melakukan pekerjaan backlog, dan mencatat aktivitas perbaikan yang dilakukan dalam Jobcard.

Jobcard

Inform RFU

Monitor Backlog Achievement

Selesai

24. Group Leader menginformasikan ke MCR (Engineering Dept.) bahwa unit sudah RFU dan menginformasikan ke Production Dept, 25. Group Leader memonitor pencapaian pelaksanaan program backlog, dibantu oleh Planner, Section Head , Supervisor, dan Logistik.

26. Proses pelaksanaan pekerjaan backlog selesai dilakukan.

Instruksi Kerja (INK) ini bagian dari: SOP No. PLO/09/008/SOP Planned Maintenance

FUEL OIL WATER AIR GREASE

PREVENTIVE MAINTENANCE FUEL REFINING PROCESS OF CRUDE OIL

Fuel merupakan salah satu bagian oil yang didapatkan dari crude oil dengan proses refining pada suatu titik didih (boiling point) tertentu. Ketika crude oil dipanaskan, komponen-komponen yang mempunyai titik didih lebih rendah akan menguap terlebih dahulu, kemudian diikuti secara berurutan oleh komponen berikutnya sesuai titik didihnya yang semakin tinggi. Gambar diatas menunjukkan penggambaran sederhana mengenai suatu proses refining crude oil secara sederhana. Bagian dalam tower fractionating terdiri dari beberapa ruang penampungan yang berbedabeda sesuai tingkatannya. Crude oil dimasukkan dari bagian atas tower fractionating, dan kemudian dipanaskan pada bagian bawah-nya. Saat proses ini terjadi, temperature bagian atas tower fractionating lebih rendah daripada temperature bagian bawah, sehingga pada ruang bagian atas dari tower fractionating, komponen-komponen yang mempunyai titik didih rendah akan menguap lebih dulu, dan komponen-komponen sisanya mengalir turun ke ruang dibagian bawahnya.

Komponen-komponen crude oil yang mengalir turun ke ruang berikutnya juga akan menguap pada temperatur penguapan yang lebih tinggi, dan komponen-komponen sisanya terus mengalir turun ke ruangan dibawahnya. Dengan cara demikian, saat crude oil mengalir dari atas tower fractionating sampai ke bagian terbawahnya, komponen dengan titik didih yang lebih rendah akan berurutan menguap. Oil yang diuapkan akan dikelompokkan pada setiap tingkatan, dan kemudian didinginkan untuk mendapatkan jenis-jenis fuel oil. Oil yang mengalir keluar dari bagian yang paling bawah merupakan residual oil (asphalt).

PREVENTIVE MAINTENANCE TYPES OF FUEL KEROSENE Kerosine adalah bahan bakar dengan rentang titik didih dari 170o sampai 250oC, dan digunakan untuk bahan bakar pesawat udara. Jika kerosene digunakan sebagai bahan bakar engine diesel, akan terjadi problem-problem sebagai berikut. 1. Fuel bekerja melumasi bagian-bagian dari system fuel yang bergesekan, seperti plunger dalam pompa injeksi atau injector nozzle. Akan tetapi, kerosene mempunyai viscosity rendah, sehingga tidak dapat melumasi bagian2 yang bergesekan secara sempurna. Hal ini berarti bahwa tidak terdapat film oil dan akan terjadi kerusakan atau keausan yang abnormal.

2. Dibandingkan dengan oil diesel/fuel (light/heavy), output power dengan menggunakan kerosene turun 5 ~ 10%. Injeksi fuel pada engine diesel, yang dikontrol adalah volume fuel. Kerosene mempunyai suatu pembangkit panas yang besar per-satuan beratnya, tetapi berat persatuan volume (specific gravity/berat jenis) rendah, sehingga akibatnya, jumlah energy panas persatuan volume menjadi turun.

FUEL (Light Diesel Oil) Fuel ini adalah bahan bakar dengan rentang titik didih dari 240o sampai 350oC, dan didistilasi setelah kerosene. Dari semua jenisjenis bahan bakar, fuel ini mempunyai sifatsifat yang paling cocok untuk ignition, combustion, dan viscosity yang diperlukan oleh engine diesel high-speed yang kecil, sehingga hampir semua engine diesel high-speed, termasuk engine untuk unit konstruksi, menggunakan fuel (light diesel oil). FUEL (Heavy Diesel Oil) Fuel ini mengandung light diesel oil yang masih bercampur minyak residu (residual oil), dan rentang titik didihnya sama dengan light diesel oil. Minyak diesel berat ini digunakan sebagai bahan bakar boiler (mesin uap), heating furnace (tungku pemanas), atau engine diesel medium-speed ukuran besar atau medium. Tetapi dibandingkan dengan fuel/ light Diesel oil, heavy oil mempunyai beberapa problem sebagai berikut, sehingga minyak ini hampir tidak pernah digunakan sebagai bahan bakar engine untuk diesel putaran tinggi (highspeed):

1. Banyak mengandung kotoran, sehingga system bahan bakar pada engine mudah menjadi buntu. 2. Mempunyai viscosity tinggi, sehingga partikel-partikel fuel saat diinjeksikan ukurannya cenderung besar, yang akan menyebabkan pembakaran kurang sempurna (incomplete combustion) dan menghasilkan partikel carbon. Sehingga bagian2 yang bergesekan mengalami keausan lebih cepat, dan exhaust gas berwarna hitam (black smoke). 3. Kandungan sulfur tinggi, sehingga lebih menambah keausan korosif.

PREVENTIVE MAINTENANCE CRITERIA OF FUEL SELECTION 1. VISCOSITY dan DENSITY Viscosity dan density secara langsung dikaitkan dengan performance engine, emission dan umur engine. Viscosity dan density rendah mengurangi output power, karena fuel juga harus berfungsi sebagai pelumas terhadap komponen komponen fuel system. Jika kinematic viscosity lebih rendah daripada 1.4cSt akan mempercepat kerusakan (scuffing dan seizure) pada injection pump, injector, dll. Interval viscosity dan density yang dianjurkan adalah: • Viscosity : 1.5cST -- 4.5 cSt pada 40oC : 810 -- 860 kg/m3 pada 15oC • Density 2. DISTILLATION (PENYULINGAN) Boilling range (tingkatan didih) adalah suatu sifat yang penting yang menentukan kualitas fuel. Penentuan dari boiling range ditentukan dengan penggunaan ASTM Test Method D86 atau D2887 (Gas Chromotography Test Method). Meskipun banyak spesifikasi berisi hanya sebagian hasil-hasil distilasi (contoh temperatur distilasi pada 90% Recovered), ini tidak cukup untuk menentukan kualitas dan kecocokan dari fuel untuk penggunaan pada engine diesel. Hasil fuel-fuel yang dicampur dengan unsur-unsur yang mempunyai titik didih tinggi dapat mempengaruh pembakaran. Hanya fuelfuel dengan minimum 99% perolehan dengan destilasi yang harus digunakan. (90% temperature distillasi : Temperatur dimana 90% dari fuel test menguap) 3. FINAL BOILING POINT Fuel dapat terbakar didalam suatu engine hanya setelah diuapkan secara sempurna. Temperatur dimana fuel teruapkan secara sempurna disebut sebagai “End Point Temperature” pada ASTM D86 Distillation Test Method. Temperatur titik didih dari fuel harus cukup rendah untuk mendapatkan penguapan sempurna pada temperatur ruang bakar.

Temperatur ruang bakar tergantung pada temperatur ambient, putaran engine, dan beban. Penguapan yang kurang baik lebih banyak terjadi selama operasi musim dingin, idling yang terlalu lama dan/atau beban ringan. Dengan demikian, engine yang beroperasi dengan kondisi-kondisi ini harus menggunakan fuel dengan temperature ”distillation end point” yang lebih rendah.

PREVENTIVE MAINTENANCE 4. KANDUNGAN SULFUR Kandungan sulfur didalam fuel sangat mempengaruhi keausan engine dan emissi exhaust gas. Sulfur teroksidasi (bereaksi dengan oxygen) ketika terjadi proses pembakaran membentuk sulfur dioksida (SO2), dan sebagian lebih lanjut teroksidasi menjadi sulfur trioksida (SO3). Reaksi (1) S + O2  SO2 Reaksi (2) 2SO2+ O2  2SO3 Reaksi ini dipengaruhi beberapa factor seperti temperatur pembakaran, temperatur exhaust gas, luas penampang partikel, kelembaban relatif, dan air-fuel ratio. SO2 berubah ke SO3 didalam ruang bakar engine ketika temperatur gas turun tiba-tiba pada saat langkah ekspansi. Maka, jika pembakaran didalam ruang bakar tidak merata (uniform), reaksi ini mudah terjadi. SO3 yang dihasilkan kemudian bereaksi dengan uap air (H2O) hasil pembakaran dan membentuk asam sulfat (H2SO4). Reaksi (3) SO3 + H2O  H2SO4 Disamping itu, sejumlah kecil SO3 didalam gas pembakaran akan mempengaruhi dan menaikan titik embun (dew point) dari uap air (uap air berkondensasi biarpun pada temperatur tinggi). Uap air yang berkondensasi tadi akan bereaksi dengan gas SO3 menjadi H2SO4, dan hasilnya terjadi keausan korosi pada piston dan liner. Keausan korosi juga terjadi karena adanya soot yang ditimbul-kan karena pembakaran (atom carbon bebas) yang menyerap asam sulfat dan kemudian menempel pada piston groove atau dinding dalam cylinder liner.

PREVENTIVE MAINTENANCE 5. POUR POINT (TITIK TUANG) Jika pour point tinggi dan temperatur turun, paraffin didalam fuel memisah secara mudah. Bila kristal-kristal dari endapan paraffin mencapai beberapa percent, aliran minyak menjadi sangat rendah dan paraffin membuntukan bagian dalam system bahanbakar. Jika temperatur saat dimana kristal paraffin memisah lebih tinggi dari pada temperatur pada saat dimana engine bisa di-start, kristal-kristal paraffin sudah terpisahkan ketika engine di-start. Hal ini akan menahan injeksi fuel yang tepat, dan sebagai akibatnya, engine susah dihidupkan, atau jika hidup, kecepatan putar (rpm) tidak bisa naik, dan engine akan segera berhenti. Aliran minyak rendah

Untuk itu, untuk engine-engine putaran tinggi sangat diperlukan beberapa alat pemanas fuel. Untuk daerah dingin, dianjurkan menggunakan minyak diesel khusus cuaca dingin yang mengandung kadar paraffin rendah, dan titik didih yang jauh lebih rendah.

Engine susah dihidupkan di daerah dingin

Pour point tinggi

Paraffin memisah secara mudah

System bahan bakar mudah buntu

6. KANDUNGAN CARBON RESIDU (RESIDUAL CARBON CONTENT) Kandungan residu carbon secara basic tidak termasuk didalam minyak diesel light (residu carbon terkandung didalam heavy oil). Sebagai suatu ukuran kecenderungan untuk deposit carbon dari pembakaran, fuel dikabutkan dan dibakar dibawah kondisi tertentu untuk menghasilkan carbon, dan kandungan residu carbon digunakan untuk menunjukan hasil test. Deposit carbon besar

Keausan cylinder atau valve valve ruang bakar cepat

Kandungan residu carbon tinggi Exhaust gas hitam (black smoke)

Pencemaran udara

PREVENTIVE MAINTENANCE 7. CETANE NUMBER (CETANE INDEX) Cetane number adalah suatu nilai yang digunakan untuk menunjukan kemampuan penyalaan dari fuel, dan suatu index yang penting pengaruhnya terhadap kemudahan untuk menghidupkan engine dan pembakaran( output) pada engine diesel putaran tinggi.

Nilai cetana rendah

Nilai cetana tinggi sekali

Ignition kurang

Ignition lambat

Terlalu mudah ignition

8. KANDUNGAN ABU (ASH) Ash didalam fuel secara umum terdiri dari tiga macam: partikel-partikel padat, larutan garam anorganik, dan campuran oil-larutan organic. Kandungan ash didalam fuell (light) sangat kecil. Didalam heavy oil, kandungan ash lebih tinggi dari pada light diesel oil, tetapi biarpun demikian, tingkat rata-rata sekitar 0.02 ~ 0.03 %. 9. KANDUNGAN AIR Air secara basic bukan komponen dari fuel, tetapi jika masuk kedalam fuel sebagai embun didalam udara atau melalui keteledoran dalam menangani fuel. Pelumasan kurang baik Kandungan air tinggi

Rust dihasilkan Filter buntu

Khususnya didaerah dingin, suatu nilai cetane tinggi diperlukan untuk memudahkan starting, warming up, dan mengurangi timbulnya gas buang warna putih (white smoke). Starting susah didaerah dingin Detonasi (Pmax besar)

Tamparan (slap) berlebihan

Pembakaran tidak sempurna

Oli diilution karena Fuel tidak terbakar

Knocking terjadi didalam ruang bakar

Beban pada crankshaft berlebihan

Jika kandungan ash meningkat, hal ini disebabkan terutama karena karat (rust), pasir, atau lumpur yang berasal dari luar. Kandungan ash tinggi

Fuel menjadi kotor

Air didalam fuel menyebabkan rusaknya pelumasan pada bagian-bagian yang sliding dari system fue, pengkaratan pada bagianbagian dari metal, dan fuel filter akan tersumbat lebih cepat, sehingga kandungan air harus serendah mungkin.

PREVENTIVE MAINTENANCE FUEL SPESIFICATION for diesel engine recomended by Komatsu

*1) Mengindikasikan ambient temperature terendah dalam sebulan. *2) Untuk unit yang dipasangi Cummins engine sebagai berikut. Min. 1.6mm2/s at 30°C Min. 1.4mm2/s at 40°C *3) Jika kandungan sulfur lebih dari 0.5%, gunakan diagram dibawah. *4) Harus terpenuhi salah satu-nya. Jika kandungan sulfur dalam fuel melebihi 05%, perpendek interval penggantian engine oil sesuai dengan diagram disamping, dan pastikan kondisi oil berada dalam standard value yang digunakan saat menentukan tingkat kerusakan oil (deterioration). • Selalu gunakan CD class atau di atasnya (CD, CE, CF) untuk engine oil. • Jika total base number (TBN) sebesar 20 mgKOH/g, sulfated ash dalam engine oil harus di bawah 2.7%. • Untuk Cummins engine, high TBN oil dengan kandungan sulfated ash diatas 1.85% harus dihindari. TBN (Total Base Number):  Jumlah kandungan acid (perchloric atau hydrochloric) yang dibutuhkan untuk me-neutralize semua atau sebagian kandungan dalam oil lubricant, biasanya digunakan KOH. (ASTM 32896)

PREVENTIVE MAINTENANCE CETANE NUMBER Cetane number atau cetane index digunakan sebagai suatu ukuran untuk menunjukan kemampuan nyala dari fuel. Cetane number adalah suatu angka (index) yang menunjukan kemudahan penyalaan (ignition), sedangkan octane number yang digunakan untuk fuel pada engine gasoline adalah suatu indicator yang menunjukan kesukaran penyalaan. Kedua angka-angka ini mempunyai hubungan yang berlawanan. Nilai cetane ditentukan dengan penggunaan suatu engine CFR (engine test untuk mengukur cetane number) dan pembanding kemampuan nyala fuel yang di- test cetane numbernya ialah ditentukan dengan kemampuan nyala dari fuel referensi yang digunakan untuk penentuan (setting) cetane number. Cetanan Number 45%

Α-methyl Naphthalene 55%

Fuel referensi dibuat dengan pencampuran normal cetane (cetane number 100) kemampuan nyala sangat tinggi dengan alphamethyl naphthalene (cetane number 0) yang mempunyai kemampuan penyalaan sangat rendah. Besarnya percentage volume dari normal cetane yang dimasukan didalam fuel referensi yang memberikan kemampuan nyala sama seperti fuel uji diambil sebagai cetane number.

Sama kemampuan nyalanya

Fuel referensi

Cetane Number 45% Fuel test

Contoh penentuan cetane number dari fuel test Pengujian seperti diatas agak susah untuk mengukur cetane number, sehingga sekarang ini cetane number hampir tidak pernah diukur. Penggantinya, ASTM menggunakan derajat API dan 50% temperatur (oF) penyulingan (distillation) dan suatu formula cetane index yang tetap. Tidak masalah jika kita menganggap cetane index disamakan sebagai cetane number. Keterangan • API degree Suatu satuan yang digunakan oleh American Petroleum Institute untuk menunjukan penentuan specific gravity petroleum, dan merupakan index yang biasa digunakan di USA. • 50% distillation temperature Temperature dimana 50% dari fuel yang ditest menguap (evaporate).  Fuel classification dinyatakan oleh ASTM (American Society of Testing and Material.

PREVENTIVE MAINTENANCE EFFECT ON ENGINE OF PRODUCTS FORMED BY COMBUSTION

PREVENTIVE MAINTENANCE OIL FUNCTION OF OIL 1. COOLING, membuang panas dari piston, liner, dll. 2. LUBRICATION, melumasi dua bidang kontak 3. ANTI CORROSION, melindungi pengaruh senyawa sulfur dan oksidasi. 4. GAS SEALING, mencegah kebocoran gas antara liner dan piston. 5. CLEANING, membersihkan carbon dan lumpur. 6. ANTI WEAR, mencegah keausan

PREVENTIVE MAINTENANCE BASE OIL COMPOSITION Base (bahan dasar) oli terdiri dari suatu campuran senyawa2 hydrocarbon dengan bermacam2 komposisi. Senyawa hydrocarbon diklasifikasikan menjadi hydrocarbon paraffinic, hydrocarbon naphthenic, dan hydrocarbon aromatic. Karena hydrocarbon paraffinic memiliki karakteristik kekentalan yang terbaik, maka paraffinic-rich base oil yang biasanya digunakan oli pelumas.

HYDROCARBON PARAFFINIC

HYDROCARBON NAPHTHENIC

HYDROCARBON AROMATIC

PREVENTIVE MAINTENANCE ADDITIVE COMPOSITION Engine oil, gear oil dan hydraulic oil diproduksi dengan menambahkan additive2 tertentu yang berlainan kedalam base oil. Tipe additive yang digunakan seperti dalam tabel berikut.

ENGINE OIL

Pabrik oli mengembangkan pelumas aslinya dengan mencampur atau memadukan tipe-tipe additive yang berlainan, atau dengan melakukan proses refining base oil dengan berbagai metode. Sehingga ada beberapa perbedaan performance untuk setiap merek oli (oil brand).

GEAR OIL

Detergents, dispersants, ZnDTP, viscosity index improver

EP additives

HYDRAULIC OIL Oxidation inhibitors, Rust inhibitors, dan EP inhibitors

ADDITIVE FOR OIL Type of additive Detergent: Calcium sulphonanate, Magnesium Sulphonate, Calcium phenate, Magnesium phenate, etc.

Oxidization inhibitor, anti wear

Performance Detergency

Acid neutralization

Oxidization inhibittor Antiwear

Dispersant, succinimide

Dispersancy

VI Improver : OCP ( Olefin Copolymer )

Improvement of viscosity index

Silicon oil: Antifoam agent

Antifoam

Extreme pressure additive (EP agent)

Load-carrying capacity

Mechanism Sejenis sabun, additive ini membersihkan dan melarutkan jelaga (soot), pernis (lacquer), dan partikel-partikel keausan pada temperatur tinggi. Sehingga additive mencegah ring piston melekat. Asam sulfat dan asam organik yang ditimbulkan oleh pembakaran bahan bakar atau oksidasi oli, menyebabkan metal korosi. Sifat alkali dari additive-additive ini dapat me-netralkan asam dan mencegah korosi. Oksidasi oli menghasilkan lumpur (sludge) dan kemudian menyebabkan kenaikan viscocity. Additive ini menguraikan oksida-oksida dan mencegah oksidasi oli. Selanjutnya, menahan timbulnya resin, varnish, dan lumpur. Sulphur, phosphorus, dan zink, yang terkandung dalam ZnDTP , mencegah kerusakan dan keausan dari metal. Additive ini memiliki kesamaan struktur kimia dengan deterjen dirumah tangga. Ini dapat melarutkan lumpur didalam oli pada temperatur rendah. OCP menaikan viscosity pada temperatur tinggi. OCP mencegah kerusakan metal engine dan mengurangi konsumsi oli. Adanya busa pada oli mengakibatkan cavitation dan kerusakan pada film oli. Sejumlah kecil silicon dapat memecah gelembung dan busa. Gabungan fosfor dan sulfur biasanya digunakan pada gear oil sebagai extreme pressure additive. ZnDTP yang digunakan pada oli engine juga merupakan additive extreme pressure. Dibawah kondisi beban gesek berat, EP agents mengurai pada permukaan metal dan membentuk besi sulfida dan besi posfat. Kedua produk senyawa tadi mengurangi gesekan dan mencegah kerusakan.

PREVENTIVE MAINTENANCE STANDARD AND CATEGORY OF OIL Viskositas dan kualitas oli diklasifikasikan berdasarkan standard SAE (The Society of Automotive Engineers). SAE VISCOSITY(cP) at TEMP. (0C), MAX Viscocity Grade CRANKING PUMPING 30.000 at -35 3250 pada -30 0W

STABLE POUR POINT 0C -

VISCOSITY(cSt) at 1000C min max 3.8 -

5W

3500 pada -25

30.000 at -30

-35

3.8

-

10 W

3500 pada -20

30.000 at -25

-30

4.1

-

15 W

3500 pada -15

30.000 at -20

-

5.6

-

20 W

4500 pada -10

30.000 at -15

-

5.6

-

25 W

6500 pada - 5

30.000 at -10

-

9.3

-

20

--

-

5.6

< 9.5

30

--

-

9.3

<12.5

-

12.5

<16.3

40 NOTE: 1 cP = 100 cSt 1 cSt = 1mm2/s VISCOCITY CLASSIFICATION Klasifikasinya tampak seperti dalam tabel. Huruf “W” artinya “winter” yang menjamin oil pada saat temperature rendah, tetap mudah mengalir. Sebagai contoh, Multigrade SAE 15W-40, oil ini mempunyai kemampuan pelumasan yang baik sampai 15oC, dan memiliki viskositas yang sama seperti oli SAE 40 pada saat temperature 100oC.

PREVENTIVE MAINTENANCE CATEGORIZATION BY QUALITY Oli diklasifikasikan kedalam C Series (class CA sampai CE) untuk engine diesel, dan S series (class SA sampai SG) untuk engine gasolin. Engine oil class CD telah melewati test charger (pembebanan) pada engine diesel turbocharger silinder tunggal. Uji engine ini bertujuan untuk mengevaluasi kemampuan pencegahan terhadap melekatnya (stuck) ring piston . Oil class CE semakin banyak terlihat dipasaran, tentu saja juga boleh digunakan. Oil class CE ini telah diuji pada engine Cummin dan truck Mack disamping class CD. 

Light Duty For Diesel engine SAE/API Classification

CA

CB

CC

NOT TO BE USED

Light Duty CD

CE-(CF-4) TO BE USED

TO BE USED WHEN CHANGING OIL IN HALF INTERVAL OIL CLASSIFICATION Class

Remark - usage

CA

Untuk engine gasolin dan engine diesel natural aspiration yang menggunakan fuel dengan kadar sulfur rendah. Untuk engine gasolin dan engine diesel natural aspiration yang menggunakan fuel dengan kadar sulfur tinggi. Mencegah corrosi pada bearing dan timbulnya deposit pada temperatur tinggi. Untuk engine diesel supercharger low output dan engine gasolin beban tinggi. Diguanakan untuk truck,mesin industri,tractor pertanian dan mesin konstruksi. Mempunyai sifat anti korosi. Untuk engine diesel supercharger putaran tinggi dan high output. Mempunyai sifat anti-friction, anti-korosi,dan ant-deposi.Engine dengan menggunakan fuel kadar sulfur tinggi. Untuk engine diesel supercharger heavy duty yang dibuat tahun mulai tahun1983. Untuk engine dengan putaran rendah dan tinggi dan dengan beban tinggi. Memperbaiki oil consumption, anti-deposit dan sludge yang sifatnya lebih baik dari klas CD. Untuk engine 4 langkah. Dapat digunakan sebagai pengganti CC, CD, CE, dan cocok untuk heavy-duty truck. Mempunyai fungsi pengontrolan oil consumption dan antipiston- deposit.

CB CC CD CE CF-4

Oil classification dinyatakan oleh API (American Petroleum Institute)

PREVENTIVE MAINTENANCE DETERIORATION LIMIT OF ENGINE OIL Tabel berikut menunjukan batas deteriorasi hanya untuk engine KOMATSU USABLE AREA

TEST SUBJECTS EO10-CD

EO20-CD

FLASH POINT oC VISCOCITY mm2/s (cSt) TOTAL ACID NUMBER mg KOH/g HYDRO CHLOR ACID TOTAL METHOD BASE NO PERCHLORIC mgKOH/g ACID METHOD n-PENTAN INSOLUBLES,mg% MOISTURE

REMARKS : *1 ASTM D664 *2 ASTM D2676

EO30-CD

EO40-CD

EO10W30CD

EO15W -40CD

8 - 16

10 - 20

180 - 270 55 - 9

8 - 12

9 - 15

12 - 18

8 MAX 3 MIN REFERENCE 5 MIN 3 MAX 0.2 MAX

PREVENTIVE MAINTENANCE FLASHING POINT (Fuel Dilution) Flashing point (titik nyala) diesel oil (fuel) sekitar 70oC, sedangkan flashing point untuk engine oil adalah 180oC - 270oC. Dan jika fuel masuk bercampur dengan oli engine, maka flashing point-nya akan turun. Oleh karena itu, kita dapat mendeteksi pencairan bahan bakar (fuel dilution) dengan pengukuran flash point. Jika jumlah fuel didalam oli mencapai 4%, flashing point turun sekitar 15% dan viskositas juga turun sekitar 20%. Fuel bisa masuk bercampur dengan oli disebabkan karena injection timing kurang tepat, kebocoran fuel line, atau kegagalan yang berulang-ulang saat engine start. Jika kandungan fuel dalam oil menjadi tinggi, akan menyebabkan piston scuffing dan juga akan mengakibatkan keausan bearing. KINEMATIC VISCOSITY Viscosity dinyatakan sebagai Absolut Viscosity (P: Poise atau cP:centi-Poise) dan Kinematic Viscosity (cSt: Centistoke) Hubungannya adalah: 1cP = 0.01 P 1cSt = 1 cP/100 Penurunan viscosity disebabkan karena telah terjadi fuel dilution atau karena pencampuran dengan oil yang lain. Kenaikan viscosity disebabkan karena oksidasi oli, atau karena kontaminasi jelaga (soot), pasir, atau karena pencampuran dengan viscosity oil yang lain. Viscosity oil yang terlalu tinggi atau terlalu rendah, keduanya sama-sama mempunyai effect yang merugikan pada engine.

PREVENTIVE MAINTENANCE TOTAL ACID NUMBER (TAN) Total Acid Number menunjukan kondisi oksidasi oli. Jika nilai TAN meningkat, hal ini menunjukkan kerusakan (deterioration) oli dan penurunan performance oli. Nilai Total Acid Number menunjukan berat potassium (KOH) dalam mg (miligram) yang diperlukan untuk menetralkan asam yang terkandung dalam 1 gram oil test, dan dinyatakan sebagai mg KOH/g. Karena beberapa additive memiliki ke-asaman yang lemah, umumnya nilai TAN oli baru adalah 2-4 mg KOH/g. Berikut adalah penyebab terjadinya oksidasi; 1. Oksidasi melalui kontak dengan air atau udara. 2. Peningkatan oksidasi karena masuknya partikel-partikel metal. 3. Peningkatan oksidasi akibat kenaikan oil temperature. Jika nilai TAN diatas 8 (max. 8), akan mengakibatkan lead (timah) pada bearing metal mengelupas, kemudian rusak (macet), atau menyebabkan keausan abnormal pada metal (logam) engine, perhatikan batas nilai TAN yang diizinkan.

TOTAL BASE NUMBER (TBN) Nilai TBN menunjukan sifat alkali dari additive didalam oli. Angka TBN menyatakan jumlah basa yang diperlukan untuk menetralisir acid yang dimasukan dalam 1 gram oil, dan mengkonversikannya ke mg (milligram) potassium hydroxide (KOH). Nilai ini dinyatakan dalam satuan mg.KOH/g. Nilai untuk oli baru pada umumnya adalah 6.0-13.0 mg.KOH/g. Bila angka TBN menjadi dibawah 2.0 kinerja penetral asam dari oli hilang dan dengan cepat meningkatkan korosif dan terjadi keausan. Metode pengukuran Total Base Number ada dua metode : 1. Metode hydrochloric acid (ASTM D664) 2. Metode perchloric acid (ASTM D2896).

Karena metode perchloric acid memperhitung kan basa yang lemah, maka nilai TBN yang diperoleh lebih tinggi. Oleh karena itu, perlu ditetapkan metode perhitungan mana yang digunakan. Jika nilai TAN melewati batas, oli mesin jangan pernah tetap menggunakan engine oil tersebut meskipun sisa nilai TBN masih tinggi.

PREVENTIVE MAINTENANCE n - PENTANE INSOLUBLE Nilai n-pentane insoluble terutama dikaitkan dengan jumlah jelaga (soot) didalam oil engine. Jika terjadi kenaikan soot dalam engine oil, maka kondisi oil akan memburuk karena deterioration dan nilai TAN naik. Jika nilai n-pentane insoluble melebihi batas, akan timbul kerusakan pada bearing, piston dan liner rusak(aus) atau filter mudah buntu. Kenaikan soot diakibatkan karena kualitas fuel yang rendah, atau pembakaran tidak sempurna karena kerusakan injection pump dan nozle/injector, atau karena Air system buntu.

MOISTURE Air dapat masuk ke dalam oli dengan berbagai cara: • Bila temperatur didalam crankcase turun, maka uap air yang ada didalam crankcase akan menjadi embum (moisture) / butiran air dan mengkontaminasi oli di dalam crankcase. Uap air berasal dari kelembaban (hummidity) udara dan dari gas hasil pembakaran yang masuk ke crankcase lewat ring piston (blow-by) • Kebocoran seal cylinder liner, dari cooling system. Jika air yang mengkontaminasi oli bertambah, maka akan menyebabkan terjadinya berbagai problem kerusakan. Misalnya, air (moisture) yang terbawa oli ke lubricating system bearing connecting rod saat menguap lagi, akan menyebabkan pitting, bunyi, atau bearing jammed. Batas kandungan air didalam engine oil (didalam crankcase) harus dibawah 0.2%.

PREVENTIVE MAINTENANCE

PREVENTIVE MAINTENANCE EXAMPLE OF FAILURE PISTON RING STUCK

SEIZURE OF PISTON

SEIZURE OF CRANKSHAFT

PITTING, PEELING OF BEARING

PREVENTIVE MAINTENANCE FUEL EFFECT ON OIL Kandungan sulfur di dalam fuel sangat mempercepat dan meningkatkan proses oil oxidation. Pada umumnya semua engine diesel disarankan untuk menggunakan fuel dengan kandungan sulfur dibawah 0.5%. Jika tidak memungkinkan untuk menggunakan fuel dengan kandungan dibawah 0.5%, maka penggantian oli harus dilakukan setengah dari interval penggantian yang dianjurkan. Fuel yang direkomendasikan adalah fuel dengan klasifikasi standard ASTM D 975 No. 2D. SULFUR CONTENT (FUEL) AND TBN Gambar diagram disebelah kanan menunjukkan hubungan antara kandungan sulfur yang terdapat dalam fuel dengan nilai basa/alkali (TBN). Nilai TBN akan turun bila kadar (%) sulfur dalam fuel semakin tinggi. Oleh karena itu, sangat penting untuk mengetahui kandungan sulfur saat memilih fuel yang tepat untuk digunakan.

SULFUR CONTENT (FUEL) AND N-PENTANE ISOLUBE Fuel dengan kadar sulfur tinggi akan menghasilkan banyak sekali jelaga (soot) dari hasil pembakarannya. Bila jumlah soot meningkat, viskositas-nya akan naik, akibatnya fungsi oil sebagai lubricant akan turun. Hal ini menyebabkan berbagai masalah atau kerusakan, misalnya akan terjadi keausan abnormal dan kebuntuan pada oil filter.

PREVENTIVE MAINTENANCE SULFUR CONTENT - COMPLETED COMBUSTION FUEL(CnH2n) SULFUR (S max. 0.5 %)

UDARA (21%O2,78%N 2,1% Others)

Sulfur yang terkandung didalam fuel pada proses pembakaran akan teroksidasi (bereaksi dengan oxygen O2) dan membentuk gas SO2 (sulfur dioxide), dan sebagian akan berubah menjadi SO3 (sulfur trioxide), jika temperature pembakaran drop secara cepat ketika langkah expansion (power). Selanjutnya gas SO3 akan bereaksi dengan embun H2O yang dihasilkan pembakaran dan membentuk asam sulfat (H2SO4) yang sangat korosif. S + O2  SO2 (gas) (1) 2SO2 + O2  2SO3 (gas) (2) SO3 + H2O(embun)  H2SO4 (cair) (3) Asam sulfat yang dihasilkan bisa terbentuk didalam ruang pembakaran dan/atau diluar ruang bakar. Kalau proses (2) dan (3) berlangsung didalam crankcase, karena selama engine beroperasi selalu terjadi blow-by (kebocoran gas hasil pembakaran lewat piston ring), asam sulfat yang terbentuk akan mencemari oil. Akibatnya nilai TBN turun dan fungsi oil tidak sempurna. INCOMPLETED COMBUSTION Dalam hal ini, dapat terjadi karena disebabkan antara lain : kualitas fuel jelek (kandungan sulfur tinggi), fuel injection pump rusak, injector/nozzle rusak, atau Air restriction dari Air cleaner besar (over-fueling), maka hasil pembakaran selain dihasilkan gas-gas CO2, H2O(uap), SO2, SO3, juga timbul partikelpartikel carbon (C) dan sulfur (S) yang berupa jelaga (soot). Soot ini akan mencemari oil, sehingga n-pentane naik.

EXHAUST GAS CO2+H2O+SO2+N2

PREVENTIVE MAINTENANCE VISCOSITAS AND TEMPERATURE Kemampuan dan ketebalan oil film berbedabeda sesuai dengan viscositas grade suatu oil. Bila oli berviskositas rendah digunakan pada high temperature, maka oil film akan pecah, dan menyebabkan kerusakan pada bearing. Gambar sebelah kanan menunjukkan hubungan antara viscositas grade dengan temperatur kerusakan/jammed-nya suatu bearing. Jadi sangat penting untuk memilih dan menentukan oil yang digunakan agar sesuai dengan ambient temperature-nya, dan harus diperhatikan terhadap perubahan viskositas yang disebabkan karena engine overheating atau pendinginan (oil cooling effect) yang kurang sempurna. OIL LIFE AND TEPERATURE Bila oil temperature naik, tidak hanya mengakibatkan oil viscosity menurun, tetapi umur oli-pun akan berkurang. Seperti dapat dilihat dari gambar sebelah kanan, umur oli engine berkurang kira-kira 50% kalau oli digunakan pada temperatur 10oC diatas specified temperature. Oleh karena itu, harus diperhatikan untuk mencegah terjadinya kenaikan oil temperature yang disebabkan terjadinya overheating karena kerusakan water pump, radiator buntu, atau air pendingin kurang. Jika engine oil temperature naik, anda harus menemukan penyebabnya dan lakukan perbaikan.

PREVENTIVE MAINTENANCE MULTIGRADE OIL Multigrade oil dibuat dari low-viscosity base oil dan viscosity index-nya dinaikan, sehingga mudah mengalir pada temperature rendah dan viskositasnya tetap tinggi pada temperatur tinggi. Sebagai contoh SAE 10W/30 dan SAE 15W/40 dan jika multigrade oil digunakan pada engine, mempunyai kelebihan sebagai berikut: 1. Dibandingkan dengan oil yang berviskositas rendah seperti oil SAE10W, oil film pada multigrade lebih kental dan tidak terjadi penurunan ketahanan engine meskipun pada temperatur tinggi. Sehingga hasilnya oli memberikan suatu rentang temperature penggunaan yang luas dan dapat digunakan lebih lama. 2. Viskositas cenderung stabil meskipun terjadi perubahan temperature. Kemampuan start untuk multigrade oil lebih baik dari pada single grade oil yang berviskositas tinggi seperti oil SAE30 atau SAE40, dan akan berdampak terhadap penurunan fuel consumption. 3. Oil consumption lebih rendah dibandingkan dengan single grade oil yang berviskositas tinggi seperti SAE30 atau SAE40. WARNING Multigrade oil juga dapat digunakan untuk hydraulic system. Tetapi jangan menggunakan multigrade oil untuk transmission dan final drive. Alasannya adalah clutch bekerja berdasarkan friction (gesekan) dengan putaran tinggi dan temperature tinggi, sedangkan gear mendapat tekanan-beban permukaan yang sangat tinggi, sehingga additive2 yang ditambahkan untuk meningkatkan viscosity index, justru secara mekanikal akan kehilangan fungsinya dalam waktu yang singkat. Akibatnya, viskositas menurun dan hal ini akan menyebabkan kerusakan seperti clutch cepat aus, atau scuffing, atau terjadi keausan abnormal pada teeth gear.

MEMPERPANJANG UMUR ENGINE • Gunakan oli yang tepat. • Hindari kontaminasi. • Gunakan fuel yang tepat. • Ganti oli secara periodik. • Hindari overheat yang terus menerus. • Hindari temperatur gas buang yang terlalu tinggi.

PREVENTIVE MAINTENANCE WATER COOLING SYSTEM Panas yang timbul dari hasil proses pembakaran di dalam engine sangat tinggi, sehingga diperlukan sistim pendinginan untuk mengatur temperature kerja engine, supaya engine bekerja dengan performance yang optimum dan dapat menghindari kerusakan pada komponen akibat panas yang tinggi tadi.

Energi yang diserap oleh sistem pendingin sekitar 20% dari panas yang dihasilkan pembakaran guel, dibuang sebagai exhaust gas sekitar 42%, dan yang diubah menjadi tenaga mekanis sekitar 38%. Pada umumnya yang dipakai sebagai media pendingin (coolant) digunakan air, karena air mempunyai “cooling effect”yang baik. Gambar dibawah memperlihatkan cooling system pada engine diesel secara umum.

To extend engine life Prevent overheating and overcooling Use good quality cooling water

Change the cooling water periodically and flush the system Use the appropriate antifreeze and additive

Periodically clean and inspect the radiator, engine area dan cooling system

PREVENTIVE MAINTENANCE AIR (WATER) Air merupakan media yang paling baik untuk digunakan dalam cooling system, disamping itu mudah didapatkan, namun air natural secara umum mempunyai sifat yang selalu mengandung zat-zat organik, zat anorganik, atau zat kimia lain yang dapat menghasilkan endapan (scale) pada permukaan sisi dalam cooling system, disamping air sendiri dapat menyebabkan korosif pada besi atau logam lainya. Zat zat yang terkandung didalam air natural dan sifat-sifatnya berbeda menurut tempatnya . QUALITY OF WATER ACCORDING TO LOCATION

Sea water (air laut)

Fresh water (air tawar)

Artificially treated (air olahan)

City water

Surface water / air permukaan

Subterranean water / air bawah tanah

Well water (air sumur)

Industrial water

Spring water (mata air)

River water (air sungai)

Lake water (air danau)

CATEGORY OF WATER ACCORDING TO QUALITY

Hardness

Hard water

pH value

Soft water

Acid water (air asam)

Alkaline water (air basa)

PREVENTIVE MAINTENANCE VARIOUS CHARACTERISTIC OF NATURAL WATER TYPE AND QUANTITIES OF IMPURITIES (kandungan kotoran) • Sodium chlorida (NaCl), garam-garam senyawa antara calcium (Ca), magesium (Mg), iron (Fe), mangan (Mn) dengan chlorida, sulphat, carbonat, nitrat, nitrit, dan zat-zat organik, dll. ACTION OF CARBONIC ACID (pengaruh asam carbonat) • Asam carbonat dapat menguraikan senyawasenyawa sulfida, menghasilkan hydrogen sulfida. Zat ini menyebabkan pencemaran pada air bawah tanah. SOLLUBILITY AND MUTUAL REACTION OF SALT (daya larut garam) • Reaksi mutual dari garam sangat mempengaruhi kemampuan air untuk melarutkan zat-zat. Sehingga didalam air garam, zat-zat lebih mudah melarut. CORROTION ACTION OF WATER (korosi yang dipengaruh air) • Jika metal dicelupkan kedalam air, timbul suatu perbedaan electric potential, dan hal ini seperti suatu cell (accu) yang kecil yang menghasilkan arus listrik. Jika ada oxygen terurai didalam air (peristiwa elektrolisa), akan menyebabkan terjadinya peng-oksidasi-an hydrogen, yang mengakibat kan korosif. Lapisan tipis air yang melekat pada permukaan material komponen mesin akan menimbulkan karat dan meningkatkan korosif.

HARDNESS • Besi dan mangan pada umumnya terkandung dalam air hanya dalam kuantitas yang kecil. Hardness (kekerasan) air terbentuk karena adanya kandungan limestone (CaCO3, calcium carbonat), dan magnesia (MgCO3, magnesium carbonat). Kekerasan dari air ditentukan dengan banyaknya zat-zat ini yang larut didalam air. Senyawa2 kimia ini larut dan membentuk scale (kerak) dan endapan. Hardness air dinyatakan dengan : 1. German Hardness 10, artinya jika 10 gram lime (CaO) larut dalam 1 m3 (1.000.000 ml) air. Suatu factor CaO/MgO = 1.4 (7.14 gram magnesium oxida (MgO) bila ada 10 gram Calcium oxida (CAO) digunakan untuk mengkoresikan ke limestone hardness. 2. French hardness 10, artinya jika 10 gram Calcium carbonat (CaCO3) larut dalam 1m3 air. Jika dikonversikan dalam German hardness sama dengan 0.56. 3. British hardness 10, artinya jika 10 gram Calcium carbonat (CaCO3) larut dalam 0.7 m3 air. Jika dikonversikan dalamGerman hardness sama dengan 0.8. CATEGORY OF WATER HARDNESS (German hardness) • Extremely soft water 0 ~ 4 Ppm • Soft water 4 ~ 8 Ppm • Medium water 8 ~ 12 Ppm • Slightly hard water 12 ~ 18 Ppm • Hard water 18 ~ 30 Ppm • Extremely hard water diatas 30 Ppm Note:  1 Ppm, sama dengan 1 gram material yang terkandung dalam 1 m3 fluid.  Hardness air misalkan 8, artinya 8 gram CaO (lime) terkandung dalam 1 m3 (1.000.000 ml) air.  Ppm singkatan dari part per million

PREVENTIVE MAINTENANCE GOOD WATER AND BAD WATER AS COOLANT AIR YANG BAIK SEBAGAI COOLANT • Mengandung tingkat pencemaran / kotoran yang rendah. • Air tawar yang tidak mengandung garam. • Air dengan tingkat kekerasan (hardness) yang rendah. • Atau air yang memenuhi standard kualitas untuk : City water (air ledeng) Air suling Air yang telah diolah dengan alat pelunak air (water treatment) atau alat pembersih (purifying). AIR YANG JELEK SEBAGAI COOLANT • Mengandung tingkat pencemaran yang tinggi. • Air dengan tingkat kekerasan yang tinggi. • Air yang mengandung garam : air sungai, air pompa, air sumur, air laut, air dari kolam. STANDARD KUALITAS CITY WATER • Nilai pH : 6.8 - 7.5 • Total hardness (CaO) : Max. 5 Ppm • Mengandung ion sulfat (SO42-) : Max. 5 Ppm • Mengandung ion chlorida (Cl-) : Max. 5 Ppm

PREVENTIVE MAINTENANCE PROBLEM ARISING WHEN BAD WATER IS USED, AND THE CAUSES OF THE PROBLEMS RUST - Penyebab Udara (oxigen), garam dan exhaust gas yang larut di dalam air akan menghasilkan oxigen dan ion chlor (Cl-), ion asam sulfat (SO42-), dan hal ini merusak besi. Bila temperatur air yang mengandung garam naik, proses korosi berlangsung secara cepat. Hal ini terjadi karena ion Cl- dan ion SO42yang menempel pada permukaan besi akan menyebabkan besi teroksidasi. Akibatnya terjadi karat diberbagai tempat pada permukaan yang dilewati coolant. SCALE - Penyebab Magnesium- dan calcium-bicarbonat yang terkandung didalam air mengurai karena pengaruh panas dan membentuk scale. Calcium bicarbonat dan/atau magnesoum bicarbonat masing-masing mengurai menjadi calcium carbonat (CaCO3) dan magnesium carbonat(MgCO3), dan bila menyentuh besi yang panas garam2 carbonat akan membentuk scale. (Ion-ion korosif : Cl- dan SO42-). bicarbonat (NaHCO3) Bila sodium berhubungan dengan temperatur tinggi, akan membentuk sodiumcarbonat Na2CO3 dan larut dalam air, namun tidak membentuk scale. Bila cooling system ditambahkan antifreeze yang berkualitas jelek, silika (pasir) akan mengendap dan membentuk scale. Silika merupakan partikel-partikel batu, tidak larut didalam air tetapi tetap bercampur. Jika menempel pada dinding yang panas menjadi scale yang keras, dan sukar untuk dilepas dari dinding tadi. Pada air yang mempunyai keasaman lebih tinggi, dan air yang lebih keruh, scale lebih mudah untuk dilepas dari dinding. Akibat penempelan scale pada permukaan dinding saluran pendingin, cooling effect menjadi turun fungsinya, sehingga terjadi problem: • Overheating, karena scale menghambat heat transfer. • Kerusakan piston dan liner. • Pitting.

PREVENTIVE MAINTENANCE BOILING POINT OF WATER Grafik dibawah ini memperlihatkan hubungan antara titik didih air (boiling point) dengan altitude (ketinggian diatas permukaan laut). Boiling point at atmospheric pressure

Actuating temperature of pressure valve (pressure difference 0.75 kg/cm2)

4000

3000 Altitude (meter) 2000

1000

0

80

90

100 Temperature oC

Pada sea level (tekanan atmosfer 760 mmHg) air mendidih pada temperature 100oC, jika ketinggian suatu tempat permukaan semakin tinggi, misalnya diatas gunung, tekanan atmosfer lebih rendah, dibawah 760 mmHg, titik didih air akan semakin rendah, dibawah 100oC. Bila unit beroperasi di daerah ketinggian, misalkan pada tempat dengan ketinggian 4000m (Freeport) diatas permukaan laut, titik didih sekitar 86oC, sedangkan temperature optimum kerja engine antara 70oC-95oC, maka air radiator akan mendidih dan menyebabkan engine rusak (overheating). Untuk mencegah hal diatas, titik didih air didalam radiator tidak boleh dipengaruhi oleh tekanan udara luar, dan selama engine hidup tekanan (udara) didalam radiator harus lebih besar daripada tekanan udara luar (differential pressure), agar supaya titik didih air naik diatas 100oC.

110

Pada grafik, jika diatas air diberikan tekanan sebesar 0.75 kg/cm2 (differential pressure), maka titik didih air naik menjadi 115oC, pada sea level. Untuk menjaga supaya tekanan udara didalam radiator tidak dipengaruhi tekanan atmosfer, pada radiator dilengkapi dengan radiator valve, yang berfungsi menjaga dan membatasi tekanan (diff. Pressure) dan mencegah terjadi ke-vacuum-an didalam radiator saat engine menjadi dingin. Pada umumnya tekanan didalam radiator dijaga sekitar 0.75 kg/cm2. Antifreeze dapat ditambahkan kedalam sistim pendingin, karena selain untuk menurunkan freezing point, juga menaikan boiling point.

PREVENTIVE MAINTENANCE RADIATOR VALVE RADIATOR VALVE terdiri dari: • Pressure Relief Valve Valve ini bekerja untuk menyekat tekanan udara didalam radiator dengan udara luar sampai pada batas perbedaan tekanan yang diizinkan, pada umumnya tekanan kerja valve di-set 0.75 kg/cm2 (differential pressure). Dengan demikian pada temperatur kerja engine, air pendingin tidak akan mendidih, dan tidak meluap. Dengan adanya tekanan didalam radiator yang tersekat, akan lebih susah air membentuk gelembung-gelembung yang akan menempel dinding luar liner atau gelembung karena putaran water pump, sehingga pitting cavitation atau corrosion dapat dicegah. Jika tekanan didalam radiator diset lebih tinggi, akan mengakibatkan tegangan dalam (internal stress) yang bekerja pada komponen-komponen engine menjadi naik, sehingga merusak komponen-komponen tsb. • Vacuum Valve Setelah engine berhenti, dan temperatur dari sistim pendingin menjadi turun, menyebabkan terjadi negative pressure didalam sistim pendingin, maka mencegah hal itu radiator valve bekerja sebagai vacuum valve, sehingga internal stress karena kevacuuman dapat dicegah. • Radiator Cap Pada umumnya radiator valve dipasang assy dengan cap radiator, sehingga cap membawa peran yang sangat penting dalam pengontrolan temperatur kerja sistim pendingin. Secara periodik cap radiator atau radiator valve harus diperiksa, jika opening pressure diluar specifikasi ganti cap. • TOOL untuk test radiator valve atau cap radiator: RADIATOR CAP TESTER.

PREVENTIVE MAINTENANCE CORROSION RESISTOR Corrosion resistor dipasang dalam sistim pendingin engine, bertujuan supaya “cooling effect” sistim pendingin menjadi lebih baik, sehingga dapat meningkatkan ketahanan dan memperpanjang umur engine, liner, dan oil cooler. Juga untuk mencegah terjadinya pitting yang disebabkan karena cavitation. Coolant yang telah bersih dan Inhibitor yang telah larut ke dalam coolant INHIBITOR Zat kimia padat berwarna putih yang larut dalam air dan membentuk lapisan film pada permukaan luar silinder liner, dan juga membuat lebih sukar untuk scale melekat pada permukaan cylider dan block. Zat kimia tsb. Dapat membuyarkan scale dan mencampurkan dalam air, dan membuangnya bersama air pendingin saat penggantian air. Jika zat kimia yang dilarutkan terlalu lama dan telah menjadi lebih rendah concentrate-nya atau encer karena sering penambahan air pada sistim pendingin, secara bertahap akan hilang efeknya.

INHIBITORS

BUFFER AGENT IRON CORROSION INHIBITOR CAVITATION PITTING INHIBITOR ALUMINIUM CORROSION INHIBITOR COPPER, COPPER ALLOY CORROSION INHIBITOR ANTI-SCALE ADDITIVE ANTI-FOAM AGENT

PAPER ELEMENT

Element berfungsi sebagai penyaring kotoran dan partikel partikel scale atau rust dalam coolant. Dengan demikian, element tsb dapat mengurangi scale atau rust yang menempel pada saluran sistim pendingin, dan juga melindungi seal water pump.

Composition of inhibitors Meningkatkan sifat alkali/basa pada air, sehingga dapat mencegah korosi pada cast iron, tidak berfungsi untuk aluminium. Membuat lapisan film pada permukaan (liner) cast iron, untuk mencegah corrosion. Mencegah cavitation pada aluminium Mencegah korosi pada aluminium Mencegah korosi pada copper (tembaga) dan pada brass (kuningan). Mencegah terbentuknya scale Mencegah terjadi cavitation mengurangi buih dalam air

dengan

Compo sition

Prop or tion

Corotion Resistance Effect of Coolant

AL

Fc

Borate

40





Nitrate

2025

-----



Silicate

5-15



-----

Nitrate

2030



-----

Triazole

5-10

Polymer Special additive

2-5 Max . 0,5

--------

--------

Note :  : no corrosion resistance effect, causes corrosion,  : good,  : excellent

PREVENTIVE MAINTENANCE MECHANISM OF CORROSION RESISTANCE

 Pencegahan cavitation pada engine cylinder liner didapatkan dengan secara bersamaan oleh empat type inhibitor : cavitation pitting inhibitor, PH adjustment agent, iron corrosion inhibitor dan copper, copper alloy corrosion inhibitor.  Porsi penggunaan inhibitor yang tepat dapat mencegah corrosion tidak hanya pada cast iron dan copper, tetapi juga pada aluminium, solder, brass (kuningan) dan berbagai metal lainnya.

PREVENTIVE MAINTENANCE MECHANISM OF PITTING

Saat piston bergerak naik, cylinder liner juga akan tertekan oleh piston dan cenderung bergerak sedikit ke kanan

Timbul gelembung2 udara (bubble) pada permukaan cylinder liner sisi sebelahnya

ECHO EFFECT Echo (gema) getaran semakin meningkatkan pembentukan dan peledakan bubble

Saat piston mulai bergerak turun, liner akan bergerak sedikit, sehingga bubble akan terpukul oleh permukaan liner dan meledak, yang menimbulkan high pressure dan merusak liner CORROSION Karena kerusakan pada permukaan liner tersebut, akan mempermudah terbentuknya bubble, sehingga mempercepat proses kerusakan dan cavitaion pitting

Pressure yang dihasilkan saat bubble meledak, akan menghilang kan corrosion prevention film, sehingga mempermudah timbulnya corrosion pada permukaan liner

PREVENTIVE MAINTENANCE PREVENTION OF CORROTION BY ALKANITY

Jika water coolant dibuat alkaline (bersifat basa), maka akan mencegah corrosion pada iron dan cast iron (untuk perbandingan yang lebih detail, lihat halaman berikutnya)

PREVENTIVE MAINTENANCE PREVENTION OF CORROTION BY ALUMINIUM

Pada rentang pH neutral 6.8-7.5 besi lebih mudah korosif dibandingkan aluminium, sama halnya dengan nilai pH kecil (asam). • Dengan ditambahkan buffer agent pada corrosion resistor, coolant menjadi bersifat basa (alkali), sehingga dapat menghambat proses korosif pada besi, sebaliknya untuk aluminium malah mudah berkarat (kororsif), untuk itu pada corrosion resistor ditambahkan “powerfull aluminium corrosion inhibitor”, dengan concentrate yang sesuai dapat menghambat korosif pada aluminium.

• Pada grafik terlihat dengan penambahan inhibitor tadi grafik korosif aluminium bergeser kekanan (daerah yang diarsir). Inhibitor Komatsu lebih kuat dibanding dengan inhibitor yang biasa, • Dari grafik dapat dilihat nilai pH yang baik untuk cooling system ada pada rentang 9.011, dimana aman untuk besi maupun untuk aluminium.

Sketsa perbandingan pemakaian Al-inhibitor (Komatsu) dengan general Al-inhibitor. Water flow

Protective film dibentuk oleh general aluminiium corrosion inhobitor

 Pengukuran dilakukan dengan memasukkan inhibitor yang juga mencegah corrosion pada copper dan solder.

Speed of water

Protective film dibentuk oleh Komatsu exclusive corrosion inhobitor

PREVENTIVE MAINTENANCE TESTING WATER

QUALITY WATER TREATMENT

Saat pertama kali anda memilih air untuk radiator coolant, selalu lakukan water quality test untuk menentukan apakah water qualitynya sesuai yang standart. Water quality yang baik harus selalu anda gunakan, tetapi jika anda terpaksa menggunakan water quality yang jelek, berarti anda harus melakukan water treatment atau menurunkan interval penggantian radiator coolant.

Jika hanya tersedia hard water, anda dapat menggunakan water softener untuk memperlunak air-nya, atau dapat juga menambahkan additive ke dalam air untuk mencegah terjadinya scale atau corrosion. Water softener atau scale & corrosion prevention additive banyak dipasaran yang dibuat oleh pabrik2 water treatment equipment. Tetapi jika anda kesulitan mendapatkan keduanya, dan hard water yang terpaksa anda gunakan, anda dapat memanaskannya terlebih dahulu, kemudian setelah dingin, gunakan hanya bagian air yang diatas. Saat anda mendidihkannya, kandungan seperti calcium bicarbonate akan terurai oleh panas menjadi calcium carbonate yang berupa endapan di bagian bawah air. Pemanasan air sampai mendidih juga mengurangi jumlah oxygen yang terlarut dalam air. Jika anda menggunakan air yang mengandung silica, biarkan selama beberapa hari dalam suatu tempat yang tidak bisa berkarat, kemudian gunakan hanya air bagian atasnya saja.

STANDARTS FOR WATER QUALITY STANDARTS OF USE FOR CORROSION RESISTOR (INHIBITOR)

PREVENTIVE MAINTENANCE EXAMPLE OF PROBLEM THAT CAUSE TROUBLE WITH COOLING WATER

PREVENTIVE MAINTENANCE EXAMPLES OF PROBLEMS Contoh jika corrosion resistor tidak digunakan dan saat program maintenance tidak dilakukan secara tepat dan benar.

Corrosion terjadi merata pada semua permukaan liner

Pitting pada permukaan liner

Corrosion di antara cast iron pada permukaan cylinder block

Corrosion pada impeller water pump

Scale yang menempel pada permukaan cylinder liner

PREVENTIVE MAINTENANCE ANTI FREEZE Anti freeze digunakan untuk mencegah kerusakan engine yang disebabkan karena membekunya water coolant pada daerah yang bertemperature dingin (winter). Air membeku pada 0oC, tetapi jika beberapa additive dilarutkan dalam air, titik beku (freezing point) akan menjadi lebih rendah. Air laut mengandung garam, sehingga air laut membeku sekitar –2.5oC. Jika pada kandungan (concentrate) garam dalam air dinaikan, maka titik beku air akan menjadi rendah lagi. Akan tetapi, kita tidak dapat melakukan penambahan garam pada coolant system, karena garam bersifat sangat korosif, yang akan merusak komponen engine.

Oleh sebab itu, untuk daerah dingin dimana temperature udara luar dibawah 0oC, harus ditambahkan ANTI FREEZE untuk mencegah pembekuan. Jika air membeku volumenya akan bertambah 1.1 kali; energy yang dihasilkan karena pembekuan air didalam saluran coolant akan memecahkan cyllinder liner, water jacket, radiator bocor dll yang berhubungan dengan water coolant. Freezing temperature dapat berbeda-beda sesuai dengan jumlah (concentrate) antifreeze yang dicampurkan, juga tergantung jenis antifreeze & manufacturenya.

PROPORTION OF ANTIFREEZE AND FREEZING POINT Secara normal, freezing temperature dapat diturunkan dengan menambahkan lebih banyak anti-freeze, tetapi jika terlalu banyak yang ditambahkan, freezing point justru akan menjadi lebih tinggi. Cara untuk menentukan seberapa banyak antifreeze yang digunakan adalah dengan memper hatikan temperature terendah yang terjadi dan diturunkan sekitar 10oC untuk pertimbangan keamanan. Untuk detail perbandingan antifreeze, perhatikan MSDS-nya.

PREVENTIVE MAINTENANCE COMPARISON OF TYPE AND COMPOSITION OF ANTI-FREEZE CHARACTERISTICS

BOILING POINT OF MIXTURE

TYPE

COMPOSITION

TOXICITY

Semi-Permanent type (SPT)

Campuran ethylene glycol dan methyl alcohol (glycol type + alcohol type) (corro sion resistance agent, anti foamant) ethylene glycol (glycol type) (corrosion resistance agent, anti foamant)

Jika anda minum mengakibatkan kebutaan

Mudah sekali menguap

Dibawah 100oC

Beracun jika diminum

Tidak mudah menguap

Diatas 100oC

Permanent type (PT)

Note  Untuk Anti-freeze permanent type, tidak terjadi masalah jika anda mencampurnya antara 2 merek yang berbeda, tetapi anda tidakboleh mencampur antara anti-freeze permananent type (PT) dengan semipermanent type (SPT). PROPORTION OF ANTIFREEZE AND BOILING POINT Diagram disamping merupakan contoh hubung an antara boiling point yang berubah sesuai dengan proporsi penambahan anti-freeze ke dalam water coolant. Tampak jika jumlah antifreeze (permanent type) meningkat, maka boiling point juga akan meningkat, tetapi untuk semi-permanent type, boiling point-nya justru turun. Jika unit mempunyai pressurized radiator, meskipun coolant temperature naik dan cenderung akan mendidih, maka internal pressure-nya akan naik. Sehingga boiling point-nya juga akan naik, dan air tidak bisa mendidih. Jika radiator dapat berpressure sampai dengan 1.8 atm, bayangkan berapa tingginya boiling point akan naik. Lihat kecenderungan grafiknya.

PREVENTIVE MAINTENANCE RELATIONSHIP BETWEEN TEMPERATURE AND VISCOSITY, AND TEMPERATURE AND SPESIFIC HEAT OF ANTIFREEZE Jika anti-freeze ditambahkan ke dalam air, maka viscositas air akan berubah. Dalam beberapa kasus, aliran air akan berubah, mengurangi cooling effect dan menyebabkan kecepatan alir air menjadi lebih lambat, sehingga mengurangi tingkat mechanical corrosion. Karena jumlah anti-freeze, specific heat air akan turun, dan cooling effectnya juga berkurang. Jika terjadi kecenderungan over heat, anti-freeze dapat anda ganti dengan air.

PREVENTIVE MAINTENANCE AIR INTAKE SYSTEM COMPLETE COMBUSTION AND INCOMPLETE COMBUSTION Pada engine, fuel didalam combustion cylinder akan dibakar untuk menghasilkan expansion power dari gas yang terbakar dan menimbulkan putaran. Oleh karena itu, jika combustion yang terjadi hanya rendah, maka akan terjadi penurunan rotating power. Agar fuel dapat terbakar, tentu saja membutuhkan oxygen. Udara bebas di sekeliling kita sebenarnya merupakan sumber oxygen. Oxygen terkandung sebanyak 21% dalam udara bebas.

Composition of Air

Yang biasa kita sebut sebagai oxygen sebenarnya merupakan kumpulan molecule2 oxygen. Oxygen molecule (02) terbentuk dari penggabungan dua oxygen atom (0). Fuel terdiri dari kumpulan molecul dalam jumlah yang besar dan terbentuk karena penggabungan antara carbon atom (C) dan hydrogen atom (H). Jika digambarkan berbagai atom itu sebagai bola, maka oxygen dan fuel molecule akan tampak seperti pada gambar disamping.

Typical diagram of molecular structure

PREVENTIVE MAINTENANCE Saat fuel dan oxygen berada dalam suatu ruangan yang bertemperature dan berpressure tinggi, maka fuel molecule akan dibebaskan dari kesatuannya dan terpisah menjadi carbon atom (C) dan hydrogen atom (H). Saat berulang kali menghasilkan panas, carbon atom (C) dan hydrogen atom (H) akan bereaksi dan lebih mudah bergabung dengan oxygen atoms (O) untuk membentuk carbon dioxide gas (C02) and water (H20: water vapor at high temperature). 2nCxHx + 3/2n02  2nCO2 + n H2O Reaction tersebut yang disebut combustion. Jika semua carbon dan hydrogen molecule dalam fuel bisa bergabung dengan oxygen dengan cara di atas, maka akan terjadi complete combustion. Tetapi jika terjadi kekurangan oxygen, atau carbon molecule gagal bertemu dengan oxygen molecules sebelum combustion terjadi secara sempurna, maka carbon monoxide (CO) juga akan terbentuk disamping carbon dioxide (C02), atau carbon molecules (C) tetap berdiri bebas dan tidak bereaksi dengan oxygen molecule. Hal inilah yang disebut incomplete combustion. Gas carbon dioxide (CO2) dan water vapor (H20) yang terbentuk dari penggabungan antar molecule tidak akan membahayakan makluk hidup, tetapi carbon monoxide (CO) merupakan unstable molecule yang dapat bereaksi dan bergabung dengan oxygen untuk menghasilkan carbon dioxide gas, yang berbahaya bagi makluk hidup. Parahnya, carbon monoxide tidak berwarna atau berbau, so tidak dapat anda lihat meskipun terkandung dalam exhaust gas. Carbon molecule yg bebas tersebut muncul berbentuk carbon particle (soot), dan bercampur dengan exhaust gas yang berupa black smoke, yang mencemari lingkungan sekitarnya. Salah satu keuntungan diesel engine adalah carbon monoxide gas dalam exhaust gas lebih sedikit dari pada gasoline engine. Untuk memastikan terjadinya fuel terbakar sempurna, diperlukan suatu system yang menyediakan sejumlah oxygen yang sesuai dengan jumlah fuel.

Jumlah udara (dihitung) minimum yang dibutuhkan oleh sejumlah fuel disebut Theoretical Air. Jika memungkinkan terjadinya complete combustion terhadap fuel dengan theoretical Air, maka semua fuel yang diinjeksikan ke combustion chamber akan menjadi carbon dioxide gas dan water vapor, dan tidak terjadi carbon monoxide atau free carbon, serta semua oxygen yang masuk ke combustion chamber akan digunakan sepenuhnya, so tidak ada oxygen yang tersisa. Untuk mendapatkan complete combustion untuk 1gram fuel, diperhitungkan diperlukan 14.5 gram udara. Secara sederhana, 14.5 gram udara untuk setiap 1 gram fuel, jika dikonversikan menjadi volume udara, berarti diperlukan sekitar 12 liter udara, pada level permukaan air laut.

PREVENTIVE MAINTENANCE EXCESS AIR RATIO Saat melakukan proses pembakaran fuel didalam engine cylinder, satu cycle combustion time-nya relative pendek, maka jika hanya theoretical Air yang dimasukkan ke dalam combustion chamber, molecule fuel tidak cukup punya waktu untuk bertemu dengan oxygen sebelum combustion terjadi dengan sempurna. Yang justru menyebabkan terjadinya incomplete combustion. (sebagai contoh, jika engine speed 1800 rpm, waktu yang diperlukan untuk satu combustion cycle sekitar 1180 detik.) Untuk mencegah terjadinya incomplete combustion, actual-nya harus lebih banyak jumlah udara daripada theoretical Air yang dimasukkan untuk memastikan terjadinya completed combustion (pembakaran yang sempurna). Excess Air Ratio digunakan sebagai index untuk menunjukkan seberapa banyak kelebihan udara yang dimasukkan ke dalam combustion chamber. Excess Air Ratio menunjukkan seberapa kali jumlah udara yang sebenarnya di supply ke dalam combustion chamber lebih besar dari theoretical Air. Sebagai contoh, jika 18 liter udara dimasukkan untuk setiap 1gram fuel, dan theoretical Air adalah 12 liter, maka excess air ratio-nya adalah 1.5. Pada engine, ukuran diameter cylinder tidak bisa berubah2, maka jumlah udara yang bisa dihisapnya tentu saja juga constant. Sehingga keterkaitan antara fuel injected dan excess air ratio seperti berikut.  Lebih banyak fuel yang di-injected, maka excess air ratio menjadi lebih kecil  Lebih sedikit fuel yang di-injected, maka excess air ratio menjadi lebih besar Diesel engine yang dipasang pada construction equipment, excess air ratio telah di-set sekitar 1.5 sampai 2.0 untuk saat jumlah maksimum fuel yang di-injected. Excess air ratio berbeda-beda sesuai karateristik dan spesifikasi masing masing engine.

Excess Air sangat diperlukan untuk kerja engine, tujuannya adalah: • Pembakaran fuel selama engine bekerja tetap sempurna, sehingga menghasilkan power yang optimum pada semua kondisi kerja engine. • Excess air juga menyerap panas hasil pembakaran, sehingga temperatur exhaust gas relative rendah (sebagai cooler).

PREVENTIVE MAINTENANCE EXCESS AIR RATIO Jika Excess Air Ratio bertambah kecil maka akan mengakibatkan kenaikan temperature gas exhaust, dan akan mencapai peak temperatur saat Excess Air Ratio mendekati 1, jika kondisi tersebut terjadi terus menerus, akan menyebabkan terjadi problem: • Cylinder head cracks, valve melting, • Piston melting atau crack, piston dan liner lecet (peeling), • Turbocharger membara / cracks, • Overheat pada lube system dan cooling system, • Cepat terjadi soot, dll.

Excess Air Ratio terlalu kecil disebabkan karena: 1. Problem pada AIR INTAKE SYSTEM • Air restriction dari Air Cleaner terlalu besar (air cleaner buntu); batas air restriction maximum pada sea level adalah 25 inchH2O (650 mmH2O). • Turbocharger rusak atau ada kebocoran pada saluran udara antara turbochager dan intake manifold. • Valve timing. 2. Problem pada FUEL SYSTEM • Quantity bahan bakar yang diinjeksikan melebihi batas maximum standarnya (over fueling), akan terjadi power cenderung lebih tinggi selama air restriction masih rendah (air cleaner bersih), jika air restriction makin besar selama engine bekerja temperatur gas buang makin tinggi (excess air ratio makin rendah) dan seandainya air cleaner makin kotor akan terjadi pembakaran tidak sempurna sehingga kabut fuel hasil injeksi berubah menjadi partikel carbon/ jelaga (soot). Jadi, bila overfueling kemungkinan terjadinya temperatur exhaust gas terlalu tinggi dan soot akan terjadi lebih cepat dibandingkan dengan kondisi fuel supply normal, walaupun air restriction dari air cleaner masih dibawah 25 inch H2O. Akibat hal ini, banyak terjadi problem engine seperti cylinder head retak, exhaust manifold atau turbocharger membara retak, valve melting, dll. Overheat pada lube dan cooling system, penaikan viskositas oli karena bercampur dengan soot (n-pentane insoluble naik) sehingga pelumasan tidak sempurna. • Injection Timing tidak tepat.

PREVENTIVE MAINTENANCE SUPERCHARGER Jumlah udara yang dihisap kedalam cylinder engine ditentukan sesuai piston stroke (piston displacement) di dalam cylinder, sehingga ada batasan jumlah fuel yang dapat dibakar sesuai udara yang masuk ke dalam cylinder. Jika fuel yang di-injection-kan lebih banyak dari limit, kelebihan fuel justru akan menyebabkan incomplete combustion, yang menghasilkan black exhaust gas dan kenaikan exhaust temperature, tetapi tanpa terjadi kenaikan output power engine. Reference Total engine displacement dihitung dengan mengkalikan piston displacement satu cylinder dengan jumlah cylinder. Sedangkan piston displacement satu cylinder dihitung dengan mengkalikan luas penampang (crosssectional area) cylinder dengan piston stroke. Sehingga engine ber-large piston displacement dapat menhisap udara yang lebih banyak daripada engine ber-small piston displacement, dan lebih banyak fuel yang dapat di-injectionkan, untuk menghasilkan power yang lebih besar. Tetapi meskipun piston displacement engine besar, jika jumlah fuel injection dikurangi, output powernya tentu saja akan turun. Pada naturally aspirated diesel engine untuk alat berat. maximum power untuk setiap 1000 cm3 piston displacement adalah sekitar 7.4 12.5 kW (10-17 PS). Jika ingin menghasilkan power yang lebih besar dari power seharusnya yang sesuai dengan besarnya piston displacement, tidak cukup dengan menghisap udara ke dalam combustion chamber, tetapi harus memasukkan lebih banyak udara ke dalamnya. Jika hal ini yang dilakukan, dapat memungkinkan untuk membakar lebih banyak fuel yang sebanding dengan kenaikan jumlah Air Intake, sehingga output power akan meningkat. Methode menekan masuk udara ke dalam combustion chamber disebut supercharging. Satu contoh device yang digunakan untuk menekan udara adalah turbocharger

Pada high altitude (dataran tinggi), density tingkat kepadatan udara menjadi lebih rendah, jika dibandingkan dengan low altitude. Berat udara dengan volume yang sama akan lebih ringan. Pada low altitude, 1 liter udara : 1.2 gram, tetapi pada 3800 m, beratnya hanya 0.77 gram. Oleh karena itu, jika engine yang dirancang untuk low altitude, digunakan pada high altitude, akan terjadi kekurangan udara, yang menghasilkan penurunan power, peningkatan black exhaust smoke, dan kenaikan exhaust temperature. Hal tersebut karena Excess Air ratio-nya berkurang. Tetapi pada engine yang excess air ratio-nya lebih banyak, maka efek dan problem diatas dapat dihindari. Fuel adjustment yang diperlukan pada high altitude berbeda sesuai dengan setiap engine model, dan meski model-nya sama juga berbeda sesuai dengan setting maximum output. Pada unumunya, fuel adjustment dilakukan untuk ketinggian diatas 1000m, tetapi pada beberapa engine yang tidak memerlukan fuel adjustment sampai dengan ketinggian 3000m.

PREVENTIVE MAINTENANCE FUEL MIST QUALITY OF AIR Jika udara di-compresse, pressure dan temperature akan naik secara bersamaan. Jika di-compresse secara perlahan, panas akan terbebas ke sisi luar, maka tidak terjadi kenaikan temperature dan pressure akan naik sesuai dengan compression ratio. Jenis compression seperti diatas disebut isothermal compression. Jika air di-compresse-kan dengan cepat, maka panas tidak cukup punya waktu untuk terbebas ke sisi luar, sehingga temperature juga akan naik dengan cepat, dengan kenaikan pressure yang lebih tinggi daripada saat isothermal compression. Nah kondisi tersebut disebut adiabatic compression. Gambar disamping menunjukkan perbandingan antara isothermal compression dan adiabatic compression saat udara ber-temperature 25°C di-compressed sampai 1/16 (CR:16). Pada isothermal compression, temperature tetap 25°C dan pressure naik mencapai 1.6 kPa (16 atm), sedangkn saat adiabatic compression, temperature naik mencapai 630°C dan pressure mencapai 4.9 kPa (49 atm), so tampak adanya perbedaan yang sangat besar. Contoh diatas, di-assumsi-kan tidak terjadi kebocoran udara, tetapi jika udara bocor selama compression, tentu saja nilai diatas akan lebih rendah. Didalam cylinder engine, saat udara dicompresse, panas akan diteruskan ke cylinder wall dan piston, dan dibebaskan, tetapi udara juga bocor keluar melalui celah antara piston dan cylinder, maka kondisi yang sebenarnya terjadi adalah tengah-tengah antara isothermal compression dan adiabatic compression. Tetapi pada saat high speed, kondisinya lebih mendekati ke adiabatic compression. Sebagai contoh, saat 4-cycle engine berputar pada 2000rpm, compression stroke terjadi dalam 0.015sec, maka nyaris tidak ada waktu untuk udara sempat bocor ataupun panas terbebaskan. Disamping itu, engine juga panas, dan nyaris tidak ada perbedaan temperature dengan combustion temperature, so kondisinya lebih mendekati adiabatic compression.

Isothermal compression And Adiabatic compression

PREVENTIVE MAINTENANCE FUEL MIST Saat engine pada low speed atau saat starting, maka kondisinya akan terbalik. Engine cenderung dingin dan putarannya lambat, sehingga panas mudah terbebas dan juga kebocoran udara mudah terjadi, so kondisinya lebih mendekati isothermal compression. Alasan mengapa fuel sulit terbakar saat engine anda start adalah berhubungan dengan kondisi diatas. Pada suatu kondisi, jika piston ring atau sisi dalam cylinder liner sudah aus atau valve dan valve seat tidak kontak dengan tepat, maka udara menajdi lebih mudah membebaskan diri dan akan semakin sulit engine untuk hidup. Gambar disamping menunjukkan pressure dan temperature didalam combustion chamber saat starting engine yang tergantung dengan jumlah kebocoran udara.

Pressure and temperature inside combustion chamber when starting

PREVENTIVE MAINTENANCE EXHAUST SMOKE Saat terjadi complete combustion (pembakaran sempurna), exhaust gas akan tampak mendekati bersih atau jernih. Tetapi jika ada suatu particle yang tercampur dalam jumlah yang banyak dalam exhaust gas, akan menjadi asap (smoke) dan dapat terlihat. Exhaust smoke dapat dibagi menjadi dalam 3 type, yaitu : Black smoke Akan terjadi saat engine pada kondisi beban berat (high load) atau akselerasi cepat (rapid acceleration), dan smoke yang muncul berwarna hitam (black) atau abu2 (gray). (particle size: sekitar. 0.05) Blue smoke Akan terjadi saat engine pada kondisi light load, dan smoke yang muncul berwarna biru muda (light blue) dan berbau menyengat hidung) (particle size: sekitar. 0.4) White smoke Akan terjadi saat ambient temperature rendah, sesaat setelah engine dihidupkan. Juga akan terjadi pada engine yang cylinder liner-nya aus, dan muncul asap putih tipis. (particle size: 1 dan lebih besar) BLACK SMOKE Saat berada pada high temperature, fuel akan terurai menjadi carbon dan hydrogen. Keduanya akan bereaksi dengan oxygen menjadi carbon dioxide gas CO2 dan water H2O (uap air), tetapi jika terjadi kekurangan oxygen, carbon atom akan saling bergabung, dan carbon molecule tersebut saling melekat berupa soot. Carbon dioxide dan uap air kedua berupa transparent gas, tetapi soot terdiri dari black particle, so saat soot tercampur dalam exhaust gas, dan jika jumlahnya banyak, maka asap akan berwarna hitam (black smoke). Pada umumnya, black smoke disebabkan karena kurangnya oxygen (misal karena kebocoran air intake)). Tetapi dapat juga disebabkan karena terlalu banyak fuel yang diinjected-kan, meski problem tersebut juga dapat disebabkan oleh berbagai factor lainnya, so anda harus melakukan pemeriksaan yang lebih detail.

PREVENTIVE MAINTENANCE BLUE SMOKE Saat fuel terbakar, kandungan kotoran (impurities) yang ikut masuk ke dalam combustion chamber juga akan turut terbakar pada saat yang bersamaan. Impurities tersebut mengandung component selain carbon dan hydrogen, sehingga reaksi pembakaran akan menghasilkan yang lainnya selain carbon dioxide gas dan air. Jika oil dari oil pan masuk ke dalam combustion chamber, oil tidak mudah terbakar seperti fuel oil, dan sebagian oil akan dikeluarkan berupa kabut tanpa terbakar, dan saat bersama-sama dengan exhaust gas, maka akan terjadi asap biru (blue smoke). Blue smoke sering kali mengindikasikan adanya oil yang berasal dari oil pan yang turut terbakar. WHITE SMOKE Saat engine tidak mengalami pemanasan awal (warm up) yang cukup, sebagian besar fuel yang di-injected-kan ke combustion chamber tidak akan terurai oleh panas (meskipun terurai oleh panas, tetapi tetap terjadi incomplete combustion), dan akan dikeluarkan berupa kabut yang berwarna putih. Hal ini sering kali terjadi sesaat setelah engine dihidupkan dan saat engine sedang warming up. Akan tetapi, jika injection timing tidak tepat, hal ini mungkin juga akan terjadi selama normal operation, jika combustion chamber tidak segera naik mencapai temperature kerjanya. Disamping itu, jika ada air yang dikeluarkan juga berupa kabut (mist), juga dapat muncul berupa white smoke. hal ini mungkin sesaat setelah engine dihidupkan dan saat engine sedang warming up tetap uap air yang dihasilkan dari combustion masih dingin. Akan tetapi, hal ini juga dapat saja terjadi jika terdapat kandungan air didalam fuel dan semuanya tidak berubah menjadi uap air di dalam combustion chamber. White smoke selama normal operation mengindikasikan fuel injection timing tidak tepat atau ada air yang tercampur dalam fuel.

PREVENTIVE MAINTENANCE AIR CLEANER Jika engine menghisap masuk debu yang berterbangan di udara bebas, maka akan terjadi keausan yang parah pada cylinder liner dan piston ring, yang menyebabkan kehilangan power engine dan terjadi black exhaust smoke. Pada saat yang bersamaan, juga menyebabkan problem yang lain seperti misalnya oil consumption akan meningkat. Air cleaner berfungsi untuk menyaring debu dan kotoran lainnya, dan dapat menyediakan udara yang bersih untuk engine, sehingga dapat mempertahankan engine performance dan juga memperpanjang umur engine.

Apakah yang dapat disaring oleh Air cleaner? Debu, pasir dan kotoran lainnya yang terdapat di udara bebas.

DUST AND SAND IN ATMOSPHERE Kotoran dan debu yang beterbangan di udara bebas terdiri dari pasir, tetapi kandungan utamanya berupa silica, alumina, dan iron oxide. Semuanya merupakan bahan yang sangat keras, dan keausan pada engine cylinder liner dan piston disebabkan oleh debu keras tersebut yang terhisap masuk bersama dengan udara. Jumlah dan komposisi kimia debu yang terdapat dalam udara bebas bervariasi tergantung dengan cuaca dan lokasinya, tetapi secara umum, seperti ditunjukkan pada table disebelah.

Amount of dust (in 1m3 of air) Amount of dust Environment Paved road 0.5 - 5 10 - 50 Unpaved road 80 - 350 Dusty jobsite

PREVENTIVE MAINTENANCE

PREVENTIVE MAINTENANCE AIR CLEANER TYPE Berikut adalah jenis Air cleaner, tetapi unit Komatsu sebagian besar menggunakan Dry type Category Structure Example of use Menggunakan dry paper element Udara yang dihisap dari sekeliling sisi luar element akan mengalir Trucks, masuk ke sisi dalam element, sehingga debu akan menempel disisi construction Dry type luar element. equipment Tergantung dengan besarnya engine dan banyaknya debu, maka ada 2 type : single element type and double element Semi-dry Menggunakan viscous element yag terdiri dari paper element yang Automobiles type dibasahi dengan oil. Biasanya juga disebut oil bath type. Terdapat oil bath dibagian bawah air cleaner, dan saat udara kontak Trucks Wet type dengan oil, debu yang terdapat dalam udara akan terserap oil. Disamping itu, partikel oil ikut yang terhisap akan membasahi element, sehingga mampu menangkap debu lebih banyak. Air cleaner with built-in cyclone Komatsu menggunakan sebagian besar type Air cleaner seperti gambar di bawah. Dengan kelebihannya berupa built-in cyclone untuk memisahkan particle debu yang besar dan kasar dari udara dan juga dilengkapi dengan evacuator valve yang bekerja secara automatic untuk membuang debu yang terkumpul dalam housing cleaner. (Gambar untuk double element type.) Air flow Udara yang terhisap masuk oleh negative pressure engine akan mengalir sambil berpusar karena adanya cyclone yang dipasang ditengah outer element. Centrifugal force yang timbul dari pusaran udara akan memisahkan particle debu yang lebih besar, dan kotoran tersebut dikumpulkan di dust case. Selanjutnya udara dengan debu yang lebih halus akan disaring oleh outer element and inner element, sehingga udara bersih yang dialirkan ke engine. Pada air cleaner ini, terdapat vane disisi luar element, so pada awalnya lebih banyak udara yang mengalir melalui bagian yang tidak terdapat vene-nya dan bagian tersebut akan cepat buntu. Saat resistance pada bagian tersebut menjadi lebih besar, udara akan mengalir ke bagian yang ber-vane dimana resistance-nya lebih rendah, sehingga akhirnya kebuntuan juga akan merata.

PREVENTIVE MAINTENANCE PRECLEANER Khusus untuk unit yang beroperasi pada daerah yang berdebu, dipasang Pre-cleaner sebelum Air cleaner untuk mencegah kebuntuan Air cleaner yang terlalu cepat dan untuk meningkatkan efficiency pemisahan debu dari udara yang masuk. Ada beberapa type precleaner, tetapi semuanya bekerja berdasarkan prinsip menimbulkan pusaran atau cyclone effect pada sisi intake yang meghasilkan centrifugal force untuk memisahkan debu dari udara. Jika dipasang precleaner, biasanya Air cleaner bertype cyclone-less. Dengan alasan karena kemampuan memisahkan (separating capacity) precleaner sudah bagus, sehingga tidak perlu lagi untuk menimbulkan cyclone effect, dan dapat mencegah terjadinya kenaikan resistance pada sisi intake. US PRECLEANER TYPE Cyclone effect yang dihasilkan oleh vane pada Air intake port, akan menimbulkan centrifugal force untuk memisahkan debu kasar dari udara, dan debu akan terkumpul di sisi luar dust case. Case harus diperiksa dan debu dibersihkan setiap 50 hour, tepai jika debu telah terkumpul melebihi specified level sebelum waktunya, precleaner harus segera anda bersihkan. Filtering efficiency Precleaner Overall air cleaner system

40-50% More than 99.9%

US pre-cleaner : Brand name

PREVENTIVE MAINTENANCE PRECLEANER - KOMACLONE TYPE Komaclone type menghasilkan cyclone effect pada inlet port dengan cara yang sama dengan US precleaner dan memisahkan debu-nya didalam Komaclone. Precleaner ini juga memanfaatkan negative pressure yang ditimbulkan oleh venturi yang terdapat pada muffler outlet port untuk secara automatic membuang debu yang sudah terpisah melalui muffler. Jumlah udara yang mengalir ke muffler sudah dipertimbangkan terhadap suction efficiency engine dan exhaust pressure, dan precleanernya di-set sekitar 10% intake air flow. Filtering efficiency Precleaner Overall air cleaner system

80-90% More than 99.9%

DUST INDICATOR Agar operator dapat mengetahui kondisi dan tingkat kebuntuan Air cleaner, maka dipasang dust indicator di antara Air cleaner dan intake manifold. Saat Air cleaner mulai menjadi buntu, negative pressure akan terjadi antara Air cleaner dan intake manifold. Jika negative pressure melebihi specified levelnya, maka red piston didalam dust indicator akan terhisap ke bawah untuk menginformasikan kepada operator bahwa Air cleaner-nya telah buntu. Red piston mempunyai notch, sehingga meskipun engine dimatikan, piston tidak bisa bergerak balik. Sehingga operator tetap dapat menge-check-nya meskipun setelah engine dimatikan. Ada dua type dust indicator dengan specified pressure sebagai berikut. 635mmH20 760mmH2O

PREVENTIVE MAINTENANCE OIL FILTER Engine oil berfungsi untuk me-lubricate, membersihkan, mendinginkan, dan mencegah kebocoran (sealing) pada bagian2 engine yang berputar dan bergerak sliding. Jika terdapat kotoran atau air yang tercampur dalam oil, maka akan terjadi keausan atau kerusakan abnormal pada piston atau bearing. Oil fitter akan menyaring kotoran dan moisture agar oil dapat menjalankan fungsinya dengan tepat, sehingga dapat mempertahankan engine performance dan memperpanjang engine life.

Hubungan antara ukuran partikel debu dan besarnya keausan piston ring tampak seperti dalam table di bawah. Yang merupakan hasil penge-test-an, dengan methode debu dimasukkan bersama dengan Air intake untuk mengetahui keausan piston ring.

PREVENTIVE MAINTENANCE

PREVENTIVE MAINTENANCE FUEL FILTER Fuel juga me-lubricate injection pump dan injector atau nozzle, karena component tersebut yang dibuat dengan saat saat presisi. Jika terdapat kotoran atau embun (moisture) dalam fuel yang mengalir melalui injection pump atau nozzle / injector, akan menyebabkan keausan pada injection pump atau kebuntuan pada nozzle. Fuel filter menyaring kotoran atau moisture, dan men-supply fuel yang bersih untuk mempertahankan engine performance dan untuk mempertahankan engine life.

Apa saja yang disaring oleh fuel filter? • Kotoran yang terkandung dalam fuel • Kotoran yang berasal dari fuel container • Debu yang masuk ke dalam fuel saat refueling pada daerah yang berdebu. • Kotoran dari refueling tool • Embun dari udara di dalam fuel tank yang berkondensasi dan bercampur dengan fuel • Karat yang terjadi dalam fuel tank

PREVENTIVE MAINTENANCE CARTRIDGE TYPE FILTER Filter seperti tampak di gambar samping merupakan fuel filter yang digunakan oleh Komatsu. Dengan kelebihannya yang berupa cartridge type, yang terdiri dari element dan case yang dapat anda ganti sebagai satu kesatuant, sehingga dapat mencegah fuel tumpah. I FUEL FLOW Fuel yang mengalir masuk dari bagian atas filter akan menuju sekeliling luar element, dan setelah kotoran dan embun disaring, fuel bersih akan mengalir ke sisi dalam element. Kemudian mengalir keluar dari bagian tengah atas filter. ELEMENT Element dalam main filter dirancang untuk mampu menyaring sekitar 95% kotoran 5 dan yang lebih besar. Element menggunakan filter paper, hampir sama dengan Air cleaner element, untuk memperbesar filtering area, filter paper dilipat2 dalam gulungan, dan dimasukkan kedalam cylinder dan diberikan wave treatment untuk mencegah lipatan saling menempel. FILTER WITH SEPARABLE ELEMENT AND CASE Pada small engine, filter yang digunakan berupa separable element dan filter case seperti gambar disamping. Pada filter type ini, hanya element yang anda ganti.

PREVENTIVE MAINTENANCE LUBRICATING GREASE Lubricating grease pada umumnya digunakan di tempat yang sulit saat penambahan oil atau melakukan inspection. Oleh karena itu, jika terjadi kerusakan karena lubrication yang tidak sesuai dan tepat, penemuan gejala kerusakan yang terlalu lambat atau tindakan yang seharusnya tidak segera anda lakukan setelah problem yang pertama kali diketahui, sehingga terjadi kecenderungan timbulnya kerusakan yang parah pada bagian yang tidak berfungsi normal. Disamping itu, jika terjadi physical dan chemical deterioration pada grease, maka lubricating effect dan sealing effect akan berkurang karena masuknya kotoran. Berdasarkan pengalaman, masalah yang ditimbulkan oleh lubricating grease pada unit alat berat, cenderung terjadi karena kurangnya pengetahuan mengenai grease daripada akibat kerusakan (deterioration) pada grease-nya sendiri.

Sebagian besar masalah yang ditimbulkan karena kurangnya pengetahuan tentang grease adalah kesalahan mendasar saat pemilihan grease, atau ketidak tepatan penyimpanan yang menyebabkan kotoran (impurities) dapat masuk ke dalam grease. So untuk memperpanjang umur lubricated part, sangat perlu buat anda untuk memahami characteristics of grease, dan melakukan pemilihan dan penanganan grease secara tepat. Selanjutnya, juga harus melakukan tindakan yang diperlukan sesegera mungkin setelah ditemukan suatu kerusakan.

PREVENTIVE MAINTENANCE BASIC CHARACTERISTICS OF GREASE Grease terdiri dari liquid lubricant (mineral oil atau synthetic lubricating oil) sebagai base oil, yang dicampur dengan solid (berisi metal soap) yang sangat kuat saling mengikat dengan oil, yang disebut thickening agent (bahan pengental) untuk menghasilkan semi-solid lubricant, dan additive atau filler yang ditambahkan untuk meningkatkan suatu kemampuan tertentu (special ability).

Base oil + thickening agent + Additive Grease berupa semi-solid, dan tidak bisa mengalir saat external pressure-nya rendah, tetapi saat external pressure meningkat dan melebihi certain limit, maka grease mulai dapat mengalir. External pressure yang bekerja pada grease adalah force yang mencoba untuk menindih dan menghilangkan lubricating film pada grease, dan external force tersebut disebut shear force.

 Grease

Shear force tesebut merupakan force yang terjadi pada grease, misalnya saat grease dimasukkan antara shaft dan bearing. Saat shear speed meningkat, viscosity grease akan berkurang, sampai mendekati viscosity lubricating oil, dan akan bekerja seperti layaknya liquid lubricant. Saat shear force menghilang, viscosity akan naik kembali ke viscositas awalnya, dan grease juga kembali menjadi bentuk semi-solid.

ACTION OF GREASE

Model of grease flow

Flow characteristic of grease

Jika menggunakan cara mudah untuk memahaminya, grease anda umpamakan seperti karet busa (sponge) yang dibasahi dengan lubricating oil. Thickening agent (karet busa) --------------------------------- > Mempengaruhi daya tahan grease Base oil (lubricating oil untuk mencelup sponge) ---------- > Mempengaruhi daya lubricating grease Jika anda memeras karet busa yang dibasahi lubricating oil, maka oil akan keluar. Kondisi tersebut sama dengan kondisi saat grease menerima shear force. Tingkat kekentalannya sebanding dengan tingkat kekerasan karet busa. Pada tempat dimana terjadi shear force yang besar, maka anda harus menggunakan thickening agent (sponge) yang lebih keras.

PREVENTIVE MAINTENANCE FEATURES OF GREASE LUBRICATION ADVANTAGE (Keuntungan) 1. Grease tidak mudah mengalir dari dalam bearing, sehingga dapat melumasi dalam waktu yang lebih lama, tanpa menambahkan grease (sebagai pelumas padat) 2. Grease juga bekerja seperti seal dan dapat mencegah kotoran atau air masuk ke dalam bagian yang dilumasi. 3. Mempunyai kemampuan melumasi yang baik pada berbagai tempat, misalnya bagian yang berputar lambat, bagian yang menerima beban berat, high temperature, beban kejut dan bagian yang saling bergesekan. 4. Melumasi bagian yang tidak dioperasikan untuk jangka waktu yang lama tanpa adanya oil film, sehingga mencegah terjadinya karat atau korosi. (sebagai pelindung karat). DISADVANTAGE (Kerugian) 1. Lebih sulit dalam penanganan grease saat penambahan, penggantian, atau pencucian. 2. Jika air, debu atau kotoran lainnya masuk ke dalam grease, sulit untuk memisahkannya. 3. Tidak bisa meradiasikan atau meneruskan panas dengan baik, so hanya memiliki cooling effect yang relative kecil, dan hambatan saat diaduk (menerima shear force) akan menghasilkan panas yang tinggi. 4. Terjadi perubahan kekentalan yang mencolok saat menerima panas atau beban geser (shearing), dan tidak mudah kembali ke kondisi semula, sehingga tidak bisa digunakan untuk bagian yang berputar dengan kecepatan tinggi.

PREVENTIVE MAINTENANCE PROPERTIES PROVIDED BY DIFFERENT TYPES OF THICKENING AGENTS Thickening agent bekerja dengan cara sebagai berikut. 1. Mempertahankan kemampuan saling mengikat yang sesuai dengan base oil, menyebar secara merata dan menjadi satu kesatuan dalam base oil, dan menghasilkan semisolid dengan tingkat kekerasan (hardness) yang sesuai. 2. Mempertahankan mesh structure yang stabil saat menerima panas, shearing, dan uap air (moisture).

Pada umumnya, grease dikategorikan berdasarkan type thickening agent-nya. Dengan mempertimbangkan sifat2 dasar-nya, misalnya sifat physical grease, yang berupa heat resistance, water resistance, dan mechanical stability, yang sangat dipengaruhi oleh type thickening agent. Karena itu, sangat penting anda mengetahui characteristic masing2 thickening agent saat memilih grease. Grease yang digunakan untuk automobile hampir semuanya berupa soap-based grease; sedangkan non-soap-based grease digunakan untuk kondisi yang tidak biasa dimana soapbased grease tidak bisa digunakan, misalnya grease untuk pesawat terbang.

 Kategori berdasarkan perbedaan type thickening agent Lithium soap grease Calcium soap grease Soap-based grease

Sodium soap grease Aluminium soap grease Others Organic grease (urea compound, etc.)

Non-soap-based grease Non-organic (main component is bentonite, silica gel, etc. ) Bentuk thickening agent didalam grease Tampilan grease saat anda lihat, berkaitan berukuran micron, so tidak dapat anda lihat dengan panjang soap particle, dan soap particle kecuali dengan electron microscope, tetapi yang lebih panjang, maka lebih mudah untuk thickening agent dalam particular soap, tampak membentuk seperti benang, sedangkan soap terurai menyebar dan bentuknya berupa fiber particle yang lebih pendek, akan menjadikan tipis panjang seperti crystal. Tergantung grease seperti mentega. Semua particle tersebut dengan type soap, ukuran dan bentuk particlesaling terjalin dalam oil, dan menahan oil tetap nya juga berbeda-beda. berada di ruang antara jalinan. Soap : Merupakan thickener (pengental) grease (zat yang mengikat base oil), yang dibuat dari asam lemak (fatty acid) - (calcium, sodium, Ilthium chloride, etc.) dari jaringan lemak binatang atau tumbuhan.

PREVENTIVE MAINTENANCE ADVANTAGES OF GREASE ACCORDING TO TYPES OF THICKENING AGENTS 1. Lithium soap grease Merupakan type grease yang paling umum, dan bentuknya bervariasi. Jika anda lihat, grease ini dapat seperti mentega atau serat fiber, dan viscosity-nya mantap. Pada grease ini, mesh structure tetap stabil pada temperature yang tinggi jika dibandingkan dengan soap grease lainnya, dan dropping point-nya tinggi sekitar 180o sampai 220°C, sehingga tetap mantap terhadap panas dan juga bersifat water resistance. Temperature tertinggi penggunaan mencapai 150oC untuk short-term dan 130oC untuk long-term. Disamping itu, daya tahan grease type ini juga sempurna. Unit alat berat Komatsu menggunakan lithium soap grease yang mengandung extreme pressure agent. 2. Calcium soap grease Calcium soap grease mengandung sejumlah kecil moisture (0.3 - 2.0%) sebagai structure stabilizing agent. Oleh karena itu, normal dropping point-nya rendah (kurang dari 100°C), sehingga heat resistance-nya rendah, tidak tahan panas tinggi. Akan tetapi water resistance-nya sangat tinggi, sehingga cocok digunakan pada bagian yang berhubungan dengan air, atau pada bagian yang bertemperature rendah, low speed, atau yang berbeban ringan. Unit alat berat Komatsu tidak meggunakan grease bertype ini. 3. Sodium soap grease Sodium soap grease biasanya terdiri dari grease yang disebut fiber grease, yang mempunyai kulit lapisan plastic fiber, dan seperti mentega yang lembut. Sodium soap mempunyai kelemahan mudah terurai di dalam air, sehingga water resistance-nya sangat rendah. Jika type grease ini digunakan pada bagian yang berhubungan dengan air atau uap panas (steam), maka grease akan ber-emulsi dan mudah mengalir. Unit alat berat Komatsu tidak meggunakan grease bertype ini.

4. Aluminium soap grease Aluminium soap grease terlihat seperti gulagula (gulali) yang transparan dan berkilau, dan dapat anda tarik menjadi seperti benang. Dibandingkan dengan soap lainnya, grease type ini lebih mudah teruarai dalam mineral oil, tetapi mempunyai viscosity yang bagus dan water resistance untuk metal. Sayangnya dropping point-nya rendah (sekitar 80o 90°C), dan heat resistance-nya rendah, maka daripada aluminium soap digunakan sendirian, lebih baik digunakan secara bersamaan dengan metal soap lainnya. Unit alat berat Komatsu tidak meggunakan grease bertype ini. 5. Non-soap-based grease Non-soap-based grease merupakan sebutan umum untuk grease yang dibuat dari sebagian besar mineral oil dan non-soapbased thickening agent. Pada umumnya, dropping point-nya tinggi, sehingga heat resistance-nya juga tinggi. Contoh type grease ini adalah urea grease. Non-soapbased grease digunakan untuk kondisi yang tidak biasa dimana soap-based grease tidak bisa digunakan, misalnya grease untuk pesawat terbang Unit alat berat Komatsu menggunakan type grease hanya pada sedikit bagian yang sangat terbatas.

PREVENTIVE MAINTENANCE PROPERTIES ACCORDING TO TYPE OF BASE OIL Sifat dasar grease, kemampuan me-lubricate, kemampuan pada low temperature, oxidization stability dan kerugian akibat penguapan (evaporation loss) sangat dipengaruhi oleh base oil. General grease mengandung sekitar 80% liquid lubricant (base oil), dan liquid lubricant tersebut menentukan kemampuan lubricating suatu grease. Base oil untuk grease sebagian besar adalah mineral oil dan pada awalnya naphthene-based oil yang digunakan karena mudah untuk membuat grease. Tetapi sekarang, paraffinbased oil yang lebih banyak digunakan. Viscosity range untuk mineral oil yang digunakan sebagai base oil diperpanjang sampai melebihi range untuk oil dengan low viscosity, seperti misalnya spindle oil, menjadi oil ber-high viscosity, dan penggunaan masing2 type oil ditentukan sesuai dengan kegunaannya. Mineral oil hanya dapat digunakan dalam temperature range dari -30°C sampai +150°C, maka untuk grease yang digunakan untuk kondisi yang diluar range temperature tersebut, synthetic lubricating oil yang sesuai (khusus) digunakan sebagai base oil.

Mineral oil: Oil yang dibuat dari petroleum (minyak bumi), dan sebagian besar digunakan untuk industrial purpose. Synthetic lubricating oil: Mengacu pada lubricating oil dari mineral oil yang telah disuling, molecular structure dipelajari, dicontoh dan dibentuk ulang dengan suatu cara khusus untuk meningkatkan kemampuan sifat dasarnya dan mempunyai characteristic yang lebih baik sebagai lubricant.

Table berikut menunjukkan perbandingan ciri-ciri utama mineral oil dan typical synthetic lubricating oil. Base oil Mineral oil Synthetic lubricating oil Thickening agent Type grease yang paling banyak Grease type ini menggunakan dipakai, dengan menggunakan synthetic lubricating oil sebagai base mineral oil sebagai base oil, dan oil-nya, dan dapat digunakan pada hanrganya lebih murah daripada kondisi lingkungan sebagai berikut. grease dengan synthetic oil.  Terus digunakan pada low tempePada umumnya high-viscosity rature dibawah -30°0, atau pada mineral oil cocok sebagai lubricant high temperature diatas 130°C Soap-based grease untuk low speed, high load, dan high  Bagian yang berhubungan dengan temperature, sedangkan low-viscosity karet-rubber atau plastic mineral oil lebih cocok sebagai  Bagian yang menggunakan bahan lubricant untuk high speed, low load kimia (chemical) atau radiation. dan low temperatures. Type grease ini juga digunakan pada Keduanya digunakan pada alat berat alat berat Komatsu. Komatsu.

PREVENTIVE MAINTENANCE IMPROVEMENT IN PROPERTIES ACCORDING TO ADDITIVE Additive yang digunakan dalam grease kurang lebih sama dengan yang digunakan untuk lubricating oil. Yang meliputi antioxidant, extreme-pressure agent, dan rust prevention agent. Solid lubricating agents juga digunakan sebagai additive sesuai dengan keperluannya. Sebagai contoh, untuk grease yang digunakan pada bagian yang menerima high load dan impact load, maka digunakan extreme-pressure agent, sedangkan grease yang digunakan pada bagian yang memerlukan long life, seperti sealed bearing, maka digunakan oxidation stabilizing agent atau rust-prevention agent. Additive yang paling banyak digunakan untuk grease, tampak seperti dalam table berikut. Type of additive Extreme-pressure agent Oxidation stabi lizing agent Rust prevention agent

Oily agent

Action of additive Mampu bereaksi dengan permukaan metal yang meneriman beban gesek (friction) dan membentuk lapisan film yang tipis berupa soft metallic compound. Berfungsi sebagai solid lubricant type dan mencegah keausan, pemaksaan kontak (seizure) dan goresan (scoring) pada permukaan bidang gesek (friction surface) saat terjadi high load. Mencegah terjadinya reaksi berantai oxidation, dan menghilangkan peroxide. Membentuk lapisan peredam (adsorbent) yang sangat kuat pada permukaan metal, dan mencegah terjadinya kontak langsung antara permukaan metal dengan embun (moisture), oxygen, dan zat corrosive lainnya yang dapat menyebabkan karat. Menimbulkan lapisan peredam pada metal surface secara nyata (physic) atau kimia (chemically) untuk melakukan fungsi lubricating dan mengurangi gesekan. Akan tetapi, jika temperature naik melebihi certain high level, lapisan peredam (absorbent layer) akan rusak dan kehilangan effect-nya.

PREVENTIVE MAINTENANCE PROPERTIES OF GREASE (Lihat Specification Table pada halaman ) Properties of grease

Index used to indicate property

Cone penetration Hardness

Kinematic viscosity

Dropping point Heat resistance Amount of evaporation Leakage Load resistance

Timken OK load

Oil separation (Oil separation rate)

Water resistance (Water resistance when washing)

Mechanics) stability (Mixture stability)

Oxidation stability (Degree of oxidation stability)

Explanation Index yang berhubungan dengan viscositas lubricating oil, dan merupakan hal yang paling mendasar dari semua sifat grease Penetration diukur dengan menempatkan sebuah cone (dengan ukuran dan dan berat tertentu) diatas permukaan grease dan membiarkannya menembus masuk ke dalam grease secara tegak lurus berdasarkan berat-nya sendiri selama 5 detik. Penetrationnya adalah nilai yang dihitung dari kedalaman masuknya cone ke dalam grease (dalam satuan mm dikalikan 10). Semakin besar nilainya, semakin lunak grease. (lihat table di halaman berikut) Merupakan kinematic viscosity base oil sebelum dicampur dengan thickening agent untuk membuat grease. Yang menunjukkan besarnya hambatan (resistance) saat base oil mengalir berdasarkan gaya gravitasi. Nilai kinematic viscosity merupakan hasil pembagian (quotient) yang didapatkan dengan membagi viscosity dengan density base oil, pada kondisi yang sama (temperature, pressure) Index yang berhubungan dengan melting point suatu grease. Untuk menentukan dropping point, temperature grease dinaikkan secara bertahap untuk menemukan temperature saat grease berubah menjadi liquid (cairan) dan mulai menetes. Dropping point dapat digunakan sebagai panduan perkiraan temperature dimana grease dapat digunakan, tetapi bukan berarti, hal ini tidak berkaitan dengan factor tersebut. Hal ini lebih disebabkan oleh penguapan (evaporation) base oil dan ditunjukkan berupa percentage mass (berat) yang hilang dari grease melalui penguapan saat dipanaskan. Base oil merupakan main component untuk lubricating film, so evaporation loss yang semakin rendah berarti lebih baik. Front hub pada automobile berputar dengan kondisi tertentu, dan jumlah grease yang bocor dari dalam hub diukur dalam satuan gram. Merupakan nilai yang menunjukkan pressure atau maximum load dimana lubrication dapat dipertahankan tanpa bearing atau sliding surface menerima akibat yang berlebihan hingga rusak seperti aus atau meleleh Jika grease dibiarkan dalam jangka waktu yang lama atau digunakan pada high temperature, oil mungkin akan memisahkan diri dari grease structure. Gejala seperti itu disebut oil separation, atau bleeding, atau synerisys. Jika terjadi high rate oil separation saat digunakan pada high temperature, hal ini menjadikan ciri yang tidak diinginkan karena akan menurunkan umur pakai bearing. Oil separation ditunjukkan berupa percentage dari massa oil yang memisahkan diri dari grease saat cone-shaped metal mesh dilewatkan melalui grease pada suatu kondisi tertentu. Untuk menunjukkan apakah grease akan mudah teruarai didalam air. Water resistance saat pencucian ditunjukkan berupa percentage pengurangan massa grease saat air disemprotkan kedalam ball bearing yang sedang bepuatar dengan kondisi tertentu. Grease dalam bearing dicampur dan menjadi lembut atau lunak. Grease yang tidak mudah menjadi lunak, dianggap mempunyai mechanical stability yang baik. Mixture stability menunjukkan perubahan dalam penetration (perbedaan kekerasan) saat grease diaduk 100.000 kali dengan churning device khusus untuk testing. Nilai yang semakin rendah, berarti semakin baik. Jika grease dibiarkan di udara terbuka untuk jangka waktu yang lama atau digunakan pada high temperature, akan mudah terjadi oxidize (bereaksi dengan oxygen). Jika grease ter-oxidize, akan menimbulkan bau yang tidak enak dan menghasilkan zat corrosive oxidized, dan juga akan menjadi keras atau lunak, so pada dasarnya yang diinginkan adalah agar tidak tidak terjadi oxidize. Tingkat oxidation stability ditunjukkan sebagai drop in pressure yang disebabkan penurunan oxygen didalam container saat grease menyerap oxygen pada suatu kondisi tertentu.

PREVENTIVE MAINTENANCE TABLE : PENETRATION NUMBER AND USE OF GREASE NLGI Penetration Grade

Mixture Penetration 25oC

Main use

000 00 0 1 2 3 4 5 6

445 – 475 400 – 430 355 – 385 310 – 340 265 – 295 220 – 250 175 – 205 130 – 160 85 - 115

Centralized oil filling, concrete pump Centralized oil filling (small type) Centralized oil filling (large type) Centralized oil filling(large type) chassis grease General bearing, wheel bearing General bearing at slightly high temp. wheel bearing High temperature, heating surface Block grease (Almost never use)

Saat memilih grease, type thickening agent dan penetration (hardness) harus ditentukan dengan tepat. Grading penetration system yang paling banyak digunakan didunia adalah NLGI penetration. Hampir selalu Grade 1 atau Grade 2 grease yang digunakan. Komatsu hanya menggunakan Grade 2, NLG1: National Lubricating Grease Institute, USA OTHER TERMS USED IN RELATION TO GREASE. Term (istilah) dibawah merupakan term yang akan muncul saat anda membicarakan tentang characteristics dan properties grease, dengan penjelasan sederhananya untuk tambahan pengetahuan anda. Adhesive force Menunjukkan kekuatan (strength) daya lekat (adhesion) suatu grease terhadap metal. Gelatian Mengenai gejala penyebaran zat kimia secara menyeluruh di dalam liquid yang membuatnya menjadi semi-solid gel. Milling Mengenai pemotongan untaian yang dihasilkan soap menjadi ukuran yang sesuai dan menghancurkan soap particle untuk membuat semuanya menjadi sama. Saponification Penambahan caustic soda (NaOH) ke asam lemak jenuh (fatty acids) yang terkandung dalam oily fat untuk membuat soap.

PREVENTIVE MAINTENANCE GREASE SELECTION Type of grease

* : Komatsu original code ** : Temperature yang memungkinkan penggunaan selama 1000 hrs terus-menerus. General standards for selecting grease

 : Recommended, : Possible X : Not applicable  Pilihlah grease berdasarkan table di atas sesuai dengan situasi dan kondisi greasing point.

PREVENTIVE MAINTENANCE SPECIFICATIONS OF GREASE RECOMMENDED BY KOMATSU Grease for general areas

Grease for extrernely cold areas

Gunakan ASTM U4950 wheel bearing grease GC class

PREVENTIVE MAINTENANCE MOLYBDENUM DISULFIDE (MOST) LUBRICANT Molybdenum disulfide lubricant berbeda dengan grease, tetapi telah lama digunakan sebagai extremepressure lubricant. Khususnya untuk bolt yang memerlukan tightening torque yang besar, atau untuk mating part yang memerlukan high pressing fitting force. Molybdenum disulfide lubricant mempunyai effect khusus dalam pencegahan seizure dan harganya lebih mahal daripada grease.

Recommended overseas brands

PREVENTIVE MAINTENANCE DETERIORATION AND LIFE OF GREASE  Saat memutuskan umur pakai grease, ada banyak factor yang memerlukan pengamatan, dan pada kenyataanya, keputusan biasanya diambil berdasarkan pengamatan dari luar atau karena adanya abnormal temperature atau bunyi aneh. Normalnya, pabrik alat berat sudah menentukan greasing interval atau interval penggantian dan standard untuk unit-nya berdasarkan pengalaman bertahun tahun, so jalan paling aman adalah mengikuti petunjuk maintenance yang diberikan dalam instruction manual yang disediakan oleh pabrik. 1. Deterioration of grease because of mechanical shear Saat grease menerima shear force selama jangka waktu yang panjang didalam rotating bearing, grease akan menjadi lunak dan mencair dan grease mengalir keluar dari lubricating system, yang menyebabka kerusakan dan keausan pada bearing. Alasan grease menjadi lebih lunak karena shear force adalah karena perubahan perbandingan antara panjang dan lebar strand (untaian) thickening agent (ultra-line strands atau particles bergabung bersama membentuk three-dimensional mesh structure) yang membentuk structure grease. Saat grease menerima shear force, soap strand akan putus menjadi bagian yang lebih pendek dan grease menjadi lebih lunak. 2. Deterioration of grease due to heat Dibandingkan dengan liquid lubricants, grease mempunyai cooling effect yang rendah, sehingga mudah dipengaruhi oleh panas. Jika digunakan untuk waktu yang lama pada high temperature, grease akan menjadi lunak dan mulai mencair atau justru menjadi keras (solid). Hal ini merupakan akibat dari gabungan beberapa factor, seperti oxidation, atau pemisahan atau penguapan oil yang terkandung dalam grease. (1) Separation of oil and evaporation Oil dipertahankan diantara mesh Structure yang dibentuk oleh soap strand di dalam grease, tetapi saat temperature naik, pergerakkan soap dan oil molecule menjadi lebih aktif, sehingga grease semakin mencair dan pemisahan oil semakin besar. Terdapat perbedaan yang besar dalam kehilangan massa saat penguapan (evaporation loss) sesuai dengan type base oil, tetapi dengan cara yang sama pada saat oil memisahkan diri, evaporation loss akan meningkat saat temperature naik. (2) Deterioration due to oxidation Dengan cara yang sama dengan lubricant lainnya, jika grease digunakan untuk waktu yang lama pada high temperatures, oxidation compound (senyawa) akan terbentuk, dan akan menimbulkan bau yang tidak sedap (menyengat) atau corrosion. Disamping itu, oxidation compound akan mengakibatkan dropping point semakin rendah, dan perubahan kesatuan soap particle. Akhirnya structure grease menjadi hancur dan menjadi lunak atau mencair. Jadi grease akan lebih mudah ter-oxidize daripada base oil-nya sendiri. Oleh karena itu saat anda menambah grease, buang semua grease yang lama dan ganti semuanya dengan grease yang baru. 3. Deterioration of grease due to entry of water Jika air masuk ke dalam grease, grease akan menjadi lunak dan mencair, dan akan mengalir keluar dari lubricating system, atau sebaliknya, grease akan menjadi keras dan menyebabkan lubrication yang jelek. Oleh karena itu, harus diupayakan untuk mencegah air agar tidak masuk ke dalam grease saat penyimpanan. Disamping itu, pada bagian dimana air atau lumpur dapat menempel, disarankan anda melakukan greasing lebih sering, tanpa memperhatikan standard greasing interval, dan jika grease telah mengalami deteriorated karena masuknya debu atau air, segera ganti dengan grease yang baru.

PREVENTIVE MAINTENANCE LIFE OF GREASE

PREVENTIVE MAINTENANCE BASE ON MAINTENANCE MANUAL

Volumes

Fuel, lubricants and fluids Volumes The values are approximate. Check the levels and top up as necessary. Component Cab tilt pump Tag axle lift Fluid reservoir for washers Power steering

Type

Coolant Note: The coolant volume increases when components are connected to the coolant system: - retarder +20 litres - oil cooler and hose - auxiliary heater Webasto - heating system bus Clutch control

9-litre engine with 5 cylinders 9-litre engine 11-litre engine 12-litre engine 14-litre engine 16-litre engine

Torque converter

Truck Bus

Truck Bus KH424 3

0.4 depending on body type 25 43

GR900, GRS900 / 890 / 920 GRSH900, GRSO900 GR900R, GRSO900R GRS900R / 890R / 920R GR801 GR801R G701 EG600 / 601 / 620 / 621 EG603 / 604 / 606 EG610 / 611 / 612 EK300 / 310 EK330 / 340 / 630 / 640

15.7 15.7 16.8 16.8 8.9 9.8 13.0 1.7 2.5 (1.3 at oil change) 0.5 1.1 2.0

ZF Transmatic - Gearbox - Torque converter - Retarder Manual gearbox Note: A further 1.0 litres are required for oil cooling

Power take-offs

00:03-09

Volume in litres 0.8 3.6-5.0 14.5 4 6-9, depending on body type approx. 30 approx. 40 approx. 50 approx. 50 approx. 80 approx. 80

 Scania CV AB 2005, Sweden

3

Volumes

Component Scania Retarder

Type

Transfer box Allison automatic gearbox

GTD800 / 900 GA750/751/752 Standard Bus and AWD Additional for cooler, see below the table.1 GA851 / 852 Standard oil sump, with PTO Standard oil sump, without PTO Low oil sump, with PTO Low oil sump, without PTO Additional for cooler, see below the table.1

ZF automatic gearbox

Axle gear

Axle gear with bogie gear

Hub reduction gears

4

R560 / 660 / 780 RP730 RP731 RP735 RP832 RP835 RD760 (portal axle) RB660 / RBP730 RBP731 RBP735 RBP 832 RBP 835 RH730 RH731 RH735 RH832 RH835

 Scania CV AB 2005, Sweden

Volume in litres When changing oil: 5 Total volume: 7.5 6.5 When changing oil: approx. 20 Total volume: approx. 27 Total volume: approx. 25

When changing oil: approx. 34 Total volume: approx. 48 Total volume: approx. 45 Total volume: approx. 41 Total volume: approx. 38

When changing oil: approx. 15 Total volume: approx. 30 12.5 10.0 13.5 8.0 14.0 9.0 19.5 14.0 17.0 11.0 14.0 (+ 1.0 at overhaul) 12.0 2.0 0.8 2.0 2.0 2.0

00:03-09

Volumes

Component Axle gear with bogie gear

ZF hub

Type RB660 / RBP730 RBP731 RBP735 RBP832 RBP835 ADA 1350 ASA 100X

Hydraulic cooling fan

Volume in litres 14.0 17.0 11.0 14.0 (+ 1.0 at overhaul) 12.0 0.7 When changing oil: approx. 8 Total volume: approx. 15 2.8

Articulation control system for articulated bus

1) Additional for cooler With direct mounted cooler, without Retarder: 1.0 litres Without direct mounted cooler, without Retarder: 2.6 litres Without direct mounted cooler, with Retarder: 2.6 litres Additional for vehicles with Retarder and ACC: 1.2 litres (GA750 / 751 / 752) Additional for vehicles with Retarder and ACC: 0.6 litres (GA851 / 852)

00:03-09

 Scania CV AB 2005, Sweden

5

Volumes

Fluid volumes in the engine The values in the tables below are in litres. Vehicle

Engine

Truck Truck Bus Truck Truck K bus Truck K bus N/L-bus

D16 DC11/D12 DC11/D12 OSC11 D9 with 5 cyl. D9 with 5 cyl. D9 D9 D9

Max. level* 38 38 26.7 30 37 39 32.5 29 39



* = The fluid volume that should be added when an engine has never been filled with oil. For example after an overhaul.



** = The oil volume that is added when changing oil without renewing the oil filter. Note: If the oil filter is renewed, the oil filter volume must be included.

Vehicle Truck Truck Bus

Engine DSC11 DSC14 DSC11

Difference, Max.Min. (oil dipstick) 6.0 7.5 9.0 8.0 7.0 6.5 9.5 8.0

Max. level** 30 33 20 33 34 27.5 23 29

Oil filter volume 1.6 2.0 2.0 2.0 2.0 2.0 2.0 2.0

Max. level 23 - 30 22 - 30 23 - 30

Note: All values are approximate since there is a great variation between different engines and there can be a difference of up to 2-3 litres on the same engine type. The values are on the low side since it is preferable to top up with engine oil rather than drain it. Turn the oil dipstick so that it goes down to the correct position.

6

 Scania CV AB 2005, Sweden

00:03-09

Fuel

Fuel Diesel

Approved exhaust values

!

WARNING!

Diesel is harmful to the skin and eyes. Wear protective gloves and goggles.

The quality of the diesel is very important for the operation and service life of the engine and the injection pump, and also for the engine performance. Quality requirements If the engines are to attain their stated performance characteristics and comply with the emission requirements of public authorities, the diesel used should comply with one of the following specifications: •

European standard: EN 590



Diesel fuel complying with Swedish environmental classification: SS 15 54 35

00:03-09

Short term use of fuel with a higher sulphur content than 0.05% by weight will not cause permanent damage to the catalytic converter. However, it will not be possible to comply with the emission values certified by or approved by public authorities. It is also possible that the catalytic converter may require fuel with a low sulphur content for some time thereafter to regain its normal efficiency. Addition of RME Scania approves the addition of up to 5% by volume of RME (Rape Methyl Ester) to diesel. The RME used must comply with either standard DIN V 51 606 or standard SS 15 54 36. The diesel should comply with the quality requirements already given. For further information on RME see RME (Rape Methyl Ester).

 Scania CV AB 2005, Sweden

7

Fuel

In extreme temperatures

At temperatures lower than those specified for the diesel, paraffin wax may precipitate from the fuel and block filters and pipes. The engine can then lose power or stop. The diesel is adapted for use in the specific climate of each country. If the vehicle is to be driven to a zone that is colder than normal, first find out the temperature characteristics for the fuel to be used. If the diesel fuel is not suitable for the expected temperature, and diesel that meets the temperature requirements is not available, an electric fuel heater may be installed as a precaution. IMPORTANT: It is not permitted to mix kerosene with diesel that is already adapted for the climate concerned. The injection pump may be damaged. For one-off acute cases, the low temperature characteristics of the diesel can be improved by adding kerosene to the diesel as a precaution. A maximum of 20% may be added in such cases. When refuelling, the kerosene should be added first, so that it mixes thoroughly with the diesel. Note: It is prohibited to use kerosene in engine fuel in some countries. IMPORTANT: All use of paraffin other than kerosene is forbidden, as it causes engine damage. IMPORTANT: It is not permitted to mix petrol or alcohol with the diesel. Long term usage of petrol and alcohol cause wear to the closetolerance injection pumps, and in extreme cases even the engines.

8

 Scania CV AB 2005, Sweden

00:03-09

Fuel

Water and micro-organisms A certain amount of water may be found in the fuel. Small amounts of water do not affect the operation of the engine. If however, the fuel is stored incorrectly for a long period of time and water is allowed to collect, micro-organisms and bacteria can form. The micro-organisms get their nourishment from the diesel and growth occurs between the layers of water and diesel. If water and bacteria are transferred with the fuel into the vehicle fuel tank, they can block the fuel filter. De-contamination Thoroughly clean the fuel system in order to prevent re-contamination. Rinse the fuel lines and blow them dry. Change the fuel filter and clean the fuel tank. If the contamination was very serious, it may be necessary to inspect the injectors and injection pump and remove any deposits that may have formed. Experience has shown that biological tissue can penetrate the fuel filter and may create deposits in those parts of the system beyond the filter. Establish the cause of contamination and take the necessary action.

00:03-09

 Scania CV AB 2005, Sweden

9

Fuel

Fuel properties Permissible limits for e.g. density, viscosity, CET rating and filtration ability of diesel are indicated in the European standard EN 590. Density Fuel density is measured in kg/m3. Fuel of lower density has a lower energy content and gives less engine output. Warm fuel has a lower density than cold fuel. This means that the engine output falls as the fuel temperature rises. Therefore winter fuel usually has a lower density than summer fuel. Viscosity Viscosity is a measure of how slowly or how quickly a fuel freely flows (thickness). The density and viscosity normally correspond to one another. CET rating The CET rating is a measure of the ability of the diesel to ignite. If the CET rating is below the recommended values according to EN 590, the vehicle may be difficult to start. In extreme cases, engine damage may occur. Filtration ability This refers to the lowest temperature at which the diesel can be used without clogging the fuel filter and fuel lines.

10

 Scania CV AB 2005, Sweden

00:03-09

Fuel

Calculating the engine output The engines are tested in the factory using fuel with a density of 840 kg/m3. If fuel of a different density is used, the change in output can be calculated using the following formula:

Necorr

=

Output with the fuel used

Ne

=

Specified output

P

=

Density of the current fuel in kg/m3 at +15°C

840

=

Density of the fuel used in factory tests

E.g. Density of the current fuel 810 kg/m3. Specified engine power: 500 hp.

This formula does not take viscosity into account, which also has an effect on the output. IMPORTANT: It is illegal to reset the injection pump in order to compensate for a loss in output. There is a risk of serious engine damage if, following adjustment, fuel of higher density and viscosity is used.

00:03-09

 Scania CV AB 2005, Sweden

11

Fuel

Ethanol Scania approves only ethanol according to part no. 1 412 812 as propellant in the engines DSI11 E01 and DSI9 E01. Content of ethanol fuel

12



Ethanol (E95)



Beraid (improves ignition)



Denaturant



Colorant (only for Sweden)



Corrosion inhibitor

 Scania CV AB 2005, Sweden

00:03-09

Fuel

RME (Rape Methyl Ester) What is RME?

Other properties of RME

Pure vegetable oils are not suitable to be used as vehicle fuel. Rape Methyl Ester (RME) is made from methanol and rape seed oil and is sold in certain countries.

RME is biodegradable.

What emissions come from RME? Scania has conducted tests using standard engines that have not been adjusted or adapted, in order to investigate what happens when a vehicle is run on RME, or various mixtures of diesel and RME. The results show that emissions of hydrocarbons, carbon monoxide and particles are reduced, when compared with diesel. The net amount of carbon dioxide emitted into the atmosphere is also less, because RME is not a fossil fuel. However, the emissions of nitrogen oxide, NOX, rise by up to 30% when the vehicle is run on RME only. If a 5% mixture of RME is used, the increase in NOX emission is negligible. At higher mixtures of up to 100% RME, the increase in NOX emissions clearly exceeds the certified or approved levels.

00:03-09

RME has poorer low temperature characteristics than diesel. RME cannot be used to full effect at temperatures of minus 5°C and lower. For use at lower temperatures (down to minus 20°C) special additives are required. The injection pumps, gaskets, and hoses currently in use have not been adapted for RME, and must therefore be replaced. Certain types of ancillary equipment e.g. Eberspächer and Webasto auxiliary heaters cannot be driven using RME without first being modified. Addition of RME The Scania warranty applies as usual for diesel containing a maximum of 5% by volume RME on condition that the fuel meets the quality requirements described under Diesel, Quality requirements. Scania cannot accept responsibility for the operation and service life of the engine if a volume in excess of 5% RME has been used. This also applies to optional equipment, such as auxiliary heaters.

 Scania CV AB 2005, Sweden

13

Oils

Oils Engine oil

Quality requirements after change interval

Viscosity requirements

Basic requirements

Viscosity SAE 30

The following requirements must be complied with if the intervals between oil changes as per the table in Maintenance program, Preface are to apply:

SAE 40

Outside temperature 0°C - +10°C +10°C - >+30°C

SAE 5W-30

<-30°C -

+10°C

SAE 10W-30

-20°C -

+10°C

SAE 5W-40

<-30°C - >+30°C

SAE 10W-40

-20°C - >+30°C

SAE 15W-40

-15°C - >+30°C

< = less than > = greater than For Scania LDF approved oils with viscosity SAE 5W-30 or SAE 10W-30, refer to the table below. Viscosity SAE 5W-30

Outside temperature <-30°C - +30°C

SAE 10W-30

-20°C -

Euro 1 and Euro 2 engines ACEA E3 ACEA E4 ACEA E5 DHD-1 Scania LDF Euro 3 engines ACEA E5 ACEA E7 DHD-1 Scania LDF

+30°C

Note: For Scania LDF approved oils, see Workshop manual group 00, Scania LDF oils. IMPORTANT: Make sure that the oil is suitable for all variations in outside temperature that are likely to occur before the next oil change.

14

 Scania CV AB 2005, Sweden

00:03-09

Oils

Alternative specifications that mean shorter change intervals If oils complying with the basic requirements are not available, the following oil grades may be used if the change intervals are halved: Euro 1 and Euro 2 engines ACEA E2 API CH-4 Euro 3 engines ACEA E3 ACEA E4

Gas engines OSC11 G03 and OSC9 G01 Oil grade: The oil should be formulated for heavy duty engines with spark plugs. Petrol or diesel engine oil must NOT be used! The engine oil must meet with the following specification: •

Viscosity SAE 15 W-40



Ash content max 1.0% by weight



Sulphur content max 0.4% by weight

Engine oil filled from factory: Mobil Pegasus 1.

IMPORTANT: Do not mix additives with the oil. Intervals between oil changes Determined by engine type and use category, see booklet Maintenance program, Preface. IMPORTANT: If the sulphur content in the fuel exceeds 0.2% by weight, then all the intervals between oil changes must be halved.

00:03-09

 Scania CV AB 2005, Sweden

15

Oils

Transmission oil Viscosity requirements

Manual gearboxes

Manual gearbox with torque converter GRSH900 Viscosity SAE 75W-140 or SAE 85W-140. ZF Transmatic

Viscosity SAE 90 SAE 85W-90 SAE 140

Outside temperature +30°C -10°C -10°C -

+30°C

0°C -

>+30°C

See the ZF list of lubricants which can be downloaded from the ZF home page, www.zf.com. Click on the heading Information, select Technical Information, Select List of Lubricants, select the list of lubricants required TE-ML XX.

SAE 75W-90

<-30°C -

+30°C

SAE 75W-140

-25°C -

>+30°C

SAE 80W-90

-15°C -

+20°C

SAE 80W-140

-10°C -

>+30°C

G701 - ZF gearbox for bus model F (ZF type designation S6 1550).

SAE 85W-140

0°C -

>+30°C

Vehicles with chassis number up to and including 3 553 413

< = less than

Transmission oil API GL-4 or see the ZF list of lubricants TE-ML 02, class 02C***).

In order to facilitate gear changing in cold climates, synthetic oil of viscosity SAE 75W-90 is recommended.

API GL-4 contains (compared with API GL-5) fewer additives which are aggressive towards the synchromeshes in the G701. Vehicles with chassis number from 3 553 414 Semi-synthetic oil, viscosity SAE 80W-90, class 02B***)

> = greater than

IMPORTANT: Make sure that the oil is suitable for all variations in outside temperature that are likely to occur before the next oil change.

***) See the ZF list of lubricants which can be downloaded from the ZF home page, www.zf.com. Click on the heading Information, select Technical Information, Select List of Lubricants, select the list of lubricants required TE-ML XX.

16

 Scania CV AB 2005, Sweden

00:03-09

Oils

Axle gears and hub reduction gears The viscosity requirements for oil used in axle gears are different in comparison to that used in gearboxes. Viscosity SAE 90 SAE 140

Outside temperature +10°C -30°C 0°C -

>+30°C

SAE 75 W-140

<-30°C -

>+30°C

SAE 80W-140

-30°C -

>+30°C

SAE 85W-140

-10°C -

>+30°C

< = less than > = greater than In extreme conditions such as carrying a heavy load, operating at high or low speed or in high or low temperatures, synthetic oil SAE 75W-140 is recommended. IMPORTANT: Make sure that the oil is suitable for all variations in outside temperature that are likely to occur before the next oil change.

00:03-09

 Scania CV AB 2005, Sweden

17

Oils

Oil specifications The oil should comply with the requirements for each respective type according to the table below. Type Requirement Transmission 1. API fluid STO*) 1:0 2. Shear stability

3. Filtration ability

Transmission oil

4. Thermal stability and oxidation stability ASTM L-60-1 test procedure. Purity requirements**) API

Limits GL-5 As a maximum the same reduction in viscosity as oil RL 181 after 20 hrs according to CEC-L-45-T-93. The same test bearing is to be used. (Kinematic viscosity at 100°C.) Min. 90% in stage ll according to RP 124 H, CETOP with average pore diameter of 5 micrometers. Pressure: 1.0 bar min 7.5 carbon (large gears only) min 9.4 sludge (all gears)

GL-5

*) Scania Transmission Oil **) limits according to MIL-PRF-2105E Intervals between oil changes The required interval between oil changes depends on the type of use and the quality of oil used. See Workshop manual group 00, Maintenance program, Preface.

18

 Scania CV AB 2005, Sweden

00:03-09

Oils

Oils and fluids for other components Component Scania retarder

Oil grade ATF oil according to Allison C4 or engine oil SAE 5W-30, SAE 10W-30 that comply with Allison C4

Clutch Torque converter KH424 3

SAE J 1703 (D.O.T. 3 or 4 Brake Fluid ATF Type A Suffix A ATF Dexron II ATF Dexron III See the ZF list of lubricants TE-ML 02, class 02C*).

ZF Transmatic

Transfer box ZF automatic gearbox Allison automatic gearbox Power steering Tag axle steering Tag axle lift Cab tilt pump

Hydraulic cooling fan

Articulation control system ZF portal axle ZF wheel hub

API GL-5 See the ZF list of lubricants TE-ML 14, class 14C*). ATF Dexron III or oil that complies with Allison C4 ATF Type A Suffix A ATF Dexron II At temperatures above -20°C (F): Hydraulic fluid viscosity class 22 or 32 cSt at +40°C, or ATF fluid type Dexron II or III. At temperatures below -20°C (F): Hydraulic fluid, viscosity class 1500 cST at -40°C. Engine oil SAE 5W-40 API CD - CE, ACEA E4 Engine oil SAE 15W-40 API CD - CE, ACEA E2 ATF Dexron II D

Remarks Note: ATF or engine oil that does not comply with Allison C4 can clog the channels with sludge and damage the operation of the retarder.

An oil system for gearboxes, retarders and torque converters.

ATF = Automatic Transmission Fluid

<-30°C - >+30°C 0°C - >+30°C

See the ZF list of lubricants TE-ML 12, class 12E*). See the ZF list of lubricants TE-ML 12, class 12E*).

< = less than > = greater than *) See the ZF list of lubricants which can be downloaded from the ZF home page, www.zf.com. Click on the heading Information, select Technical Information, Select List of Lubricants, select the list of lubricants required TE-ML XX.

00:03-09

 Scania CV AB 2005, Sweden

19

Chassis

Chassis Summary of components and lubricants Component Lubricant Chassis lubrication Vehicles with ACL: Lithium based grease with consistency NLGI 0-2 Vehicles without ACL: Lithium based grease with consistency NLGI 2 Wheel hubs Lithium base grease and a consistency of NLGI 2 Brake system

Special grease part no 329 481

Maintenance-free propeller

Special grease part no 584 128

Remarks See Chassis grease for further information on grease quality. See Chassis grease for further information on grease quality. Grease for the anchor bolt bearings of the brake shoes For lubricating sliding joints

Because grease is not a fluid, its viscosity cannot be measured in the same way as that of oils. Grease has therefore been given a separate classification by the American NLGI (National Lubrication Grease Institute) which categorises grease into different classes, covering semi-fluid to the almost totally solid.

Washer fluid Component Washer reservoir

20

Liquid Ethanol (maximum 40%)

 Scania CV AB 2005, Sweden

Remarks During sub-zero periods, ethanol (max. 40%) should be added to the washer reservoir. Higher concentrations may damage the paint finish.

00:03-09

Chassis

Chassis grease Requirements and testing norms Properties Flow pressure maintained at the lowest usage-temperature for Scania ACL. Grease consistency, Scania ACL Soap

Base oil viscosity at +40°C Penetration at +25°C Worked 60 times Worked 100,000 times Rig testing Corrosion inhibitor (including salt water) Lubrication, shearing stability, mm Vibration stability Water content Melting point Oil separation in storage Consistency Operating temperature

Requirements Max. 1.4 bar

Test method DIN 51805

NLGI 0 - NLGI 2 Lithium

Soaps other than lithium are allowed provided that all other stipulated requirements are met. Relevant information should be provided by the supplier to prevent grease with different gelling agents from being mixed. 2 Min 160 mm /s (cSt) ISO 3104, SS 02 35 10, ASTM D 445 265-295 ISO 2137 (NLGI-class 2) SS 15 51 11 +10% ASTM D 217 No Corrosion Approved Approved (for truck) Max. 0.1g/100 g Min. 180°C Max. 5% No lumps or solids Min. -30°C Max. +100°C

SKF Emcor test SS 15 51 30 IP 220/67 SKF Grease test R2F test A+B SKF Wheel bearing grease test WBG ISO 3733, SS 15 51 50, ASTM D 95 ISO 2176, SS 15 51 53, ASTM D 566 IP 121/75, ASTM D 1742

Testing standards for ACL Lubrication points receive a greater amount of washing action when grease of NLGI-class 0, 00 and 000 is used. Such grease should therefore only be used when absolutely necessary, for instance, when temperatures are unfavourable.

00:03-09

 Scania CV AB 2005, Sweden

21

Air conditioning

Air conditioning Refrigerant

!

Compressor oil For refrigerant R134a, PAG oil part no 584 110 must be used. WARNING!

The refrigerant can cause frostbite on contact with skin. Always use protective equipment when handling refrigerant.

IMPORTANT: Do not expose the oil to air for long periods. IMPORTANT: Opened packages of compressor oil must be disposed of correctly after use. They must not be saved.

IMPORTANT: Only R134a refrigerant may be used. IMPORTANT: Work on the air conditioning system must be carried out in compliance with the legislation of the country in question. Always use the requisite special equipment when working on the air conditioning system. Trucks using refrigerant R134a should use Scania dehydrator part no 1 337 496. The amount of refrigerant is stated on a label on the vehicle air conditioning unit, situated behind the front grille panel.

22

 Scania CV AB 2005, Sweden

00:03-09

Cooling system

Cooling system Coolant

Coolant filter

!

Scania coolant filters no longer contain corrosion inhibitor. Therefore, always use coolant with corrosion inhibitor when changing the coolant filter.

WARNING!

Avoid skin contact with coolant, it may cause irritation. Hot coolant can cause burns. Use protective equipment. Ethylene glycol is highly poisonous and can be fatal if swallowed.

The coolant should be composed of water and one of the following additives: •

35-45% by volume of Scania Anti-freeze, in countries where the temperature falls below 0°C. Scania anti-freeze must not exceed 60% by volume in pre-mixed coolant.



8-12% by volume Scania corrosion inhibitor, in countries where the temperature does not fall below 0°C.

The amount of corrosion inhibitor is stated in the booklet Maintenance instructions part 1. If the vehicle is equipped with a coolant filter and the coolant filter functions are to be retained, the coolant filter must be replaced during each L Inspection. As from August 2000, the coolant filter has been discontinued and is not fitted to vehicles manufactured later than that date.

Note: Scania anti-freeze contains corrosion inhibitor. 40% by volume of Scania anti-freeze provides sufficient protection against corrosion. IMPORTANT: Only use Scania approved antifreeze and corrosion inhibitors. Further information about anti-freeze and corrosion inhibitor is provided in the booklet Cooling system 02:02-01.

00:03-09

 Scania CV AB 2005, Sweden

23

Cooling system

Material quality requirements in coolant

Water The water used should be water free from sludge and particles. Anti-freeze Only Scania anti-freeze 1 745 202 or antifreeze approved by Scania may be used. Anti-freeze agents approved by Scania Havoline XLC Glysantin G48 Glysantin G30

Manufacturer ChevronTexaco\Arteco BASF BASF

Different approved products may be mixed, but in order to obtain optimal corrosion protection, products from the same manufacturer and of the same type should be used. The protection level will correspond to that of the product with the lowest value, regardless of any amount of other anti-freeze products added. Anti-freeze agents recommended by Scania are designed for Scania engines. Scania can largely control and influence the contents of antifreeze agents with Scania part numbers. Approved anti-freeze agents should consist of ethylene glycol.

24

 Scania CV AB 2005, Sweden

00:03-09

Cooling system

Corrosion inhibitor Only Scania corrosion inhibitor 1 745 199 or corrosion inhibitor approved by Scania must be used, and only if there is no risk of freezing. Corrosion inhibitors approved by Scania Havoline XLI Glysacorr G93

Manufacturer ChevronTexaco\Arteco BASF

The coolant should contain water and 8-12% by volume Scania corrosion inhibitor. IMPORTANT: If there is too much corrosion inhibitor in the coolant, it may become viscous. Viscous coolant can damage the water pump.

00:03-09

 Scania CV AB 2005, Sweden

25

Cooling system

Topping up Coolant is topped up using pre-mixed coolant. The Scania anti-freeze content should be 35-45% by volume in the pre-mixed coolant. The coolant should contain 8-12% by volume of Scania corrosion inhibitor. This applies to countries where the temperature does not fall below 0°C.

26

 Scania CV AB 2005, Sweden

00:03-09

Cooling system

Mixing coolant with glycol

The mixing of Scania anti-freeze agent with the coolant should be 35-45% by volume. The percentage varies depending on the need for anti-freeze. Measure the glycol content with Coolant and battery charge tester 588 227. As the coolant starts to freeze the water in the coolant starts to crystallize out and the glycol percentage in the coolant therefore rises. If the freezing leads to a significant increase in the quantity of ice, this can result in circulation problems, but there is no risk of damage by freezing if the amount of Scania anti-freeze is at least 30% by volume. Anti-freeze properties % by volume of Scania Anti-freeze Temperature when the mixture begins to freeze (°C) Lowest temperature for protection against damage by freezing (°C)

30 -16 -30

40 -25 *)

50 -46 *)

60 -55 *)

*) With a Scania anti-freeze content of at least 30% by volume, there is no risk of damage by freezing.

00:03-09

 Scania CV AB 2005, Sweden

27

Cooling system

Risk of freezing IMPORTANT: The engine should not be subjected to heavy loads when ice starts to build up in the cooling system. Minimal ice formation in the coolant sometimes causes minor problems without any risk of damage. For example, the auxiliary heater may not work for up to 0.5-1 hour after the engine has been started. % by volume of anti-freeze 20

10

30

40

60%

50

o

-10 C

1

o

-16 C o -20 C o

-30 C

3

2

o

-40 C o

o

-60 C B

A

121 134

-50 C

Curve A: Freezing starts. Malfunctions may arise Curve B: Risk of damage by freezing. 1 Safe range 2 Ice build up 3 Coolant will not circulate. There is risk of damage by freezing Example: At temperatures around -16°C a risk of damage by freezing exists if the percentage of anti-freeze glycol is 20% by volume. At 30% by volume the coolant does not contain any ice.

28

 Scania CV AB 2005, Sweden

00:03-09

Cooling system

Changing the coolant Cooling system It is only necessary to change the coolant if it is contaminated with oil or grease. The corrosion inhibiting function is maintained by adding Scania corrosion inhibitor. In countries with temperatures below 0°C, Scania Anti-freeze may instead be used. Procedure 1 Drain the cooling system. 2 Fill the cooling system with hot water. 3 Run the engine until warm to open the thermostat. 4 Drain the water. 5 Top up with pre-mixed coolant according to specification. Refer to Workshop Manual group 2.

00:03-09

 Scania CV AB 2005, Sweden

29

00:03-07/1 Issue 11

en

Maintenance instructions part 1 4 series

100309

Group 0 - 9

1 585 442

© Scania CV AB 2005, Sweden

Contents

Contents Changes from the previous issue .................... 4

0 General

Inspection form ............................................... 5 Safety .............................................................. 6 0-01 Chassis lubrication .......................................... 8 0-02 Tool kit .......................................................... 24 0-03 Correct Operator's Manual ............................ 25

1 Engine

1-01 1-02 1-03 1-04 1-05 1-06 1-07 1-08 1-09 1-10 1-11 1-12 1-13

2

Oil change ..................................................... 27 Oil cleaner ..................................................... 29 Renewal of insert filter.................................. 38 Crankcase ventilation.................................... 39 Checking the poly-V-belt .............................. 39 Checking belt tension.................................... 41 Valve clearances and PDE unit injectors, 9 litre engine with 5 cylinders....................... 42 Valve clearances 9, 11 and 12 litre engines, engines with 6 cylinders ................................ 48 Valve clearances 14 and 16 litre engines ...... 50 Scania PDE unit injectors ............................. 53 Scania HPI unit injectors .............................. 56 Air cleaner..................................................... 58 Intake manifold ............................................. 60

2 Cooling system

2-01 Coolant .......................................................... 61 2-02 Renewing the coolant filter ........................... 63 2-03 Measuring corrosion inhibitor....................... 63

3 Fuel and exhaust systems

3-01 Renewal of fuel filter, bleeding..................... 70 3-02 Gas engine..................................................... 79 3-03 Scania particle filter ...................................... 83

4 Clutch

4-01 4-02 4-03 4-04

Fluid level in clutch control .......................... 85 Renewing the clutch fluid ............................. 86 Checking clutch wear.................................... 87 Torque converter, checking the oil level ....... 88 Oil change and filter renewal ........................ 88 Checking torque limitation ........................... 90

5 Gearbox

5-01 5-02 5-03 5-04 5-05

Manual gearbox............................................. 91 Automatic gearbox........................................ 93 Opticruise .................................................... 100 Transfer box ................................................ 100 ZF-transmatic .............................................. 101

6 Propeller shafts

6-01 Checking propeller shafts, support bearings and universal joint cross ............... 104 6-02 Checking bearing retainers.......................... 104

© Scania CV AB 2005, Sweden

00:03-07/1

Contents

7 Front axles

7-01 7-02 7-03 7-04

8 Rear axles

8-01 Changing oil in axle gear ............................ 110 8-02 Tag axle lift ................................................. 112 8-03 Tag axle 6x2, 8x2 ........................................ 112

9 Hubs and Wheels

9-01 9-02 9-03 9-04

00:03-07/1

Changing oil in axle gear ............................ 105 Hub reduction gears .................................... 106 Checking front vehicle unit......................... 107 Measuring toe-in ......................................... 109

Hub reduction gears .................................... 113 Checking front wheel bearings ................... 116 Check tightening wheel nuts ....................... 117 Checking the tyres....................................... 118

© Scania CV AB 2005, Sweden

3

Changes

Changes from the previous issue 1-02 Oil cleaner, new design, page 33-37. 1-07 Valve clearances, 9-litre engine, page 42-47. 3-01 Changing fuel filter, bleeding, 9 litre engine, page 75. 5-01 Changed oil volumes, page 92.

4

© Scania CV AB 2005, Sweden

00:03-07/1

Safety

Safety Vehicles with air suspension Always support vehicles with air suspension under the frame. Otherwise, the vehicle may drop as the air pressure in the bellows is reduced. Do not walk under a vehicle that is raised on a jack only. Follow the instructions in the Workshop Manual, Lifting and supporting on stands.

Safety measures •

Use reliable and correctly dimensioned stands, struts and locks with standard locking devices.



Stands and struts must be sturdy.



Lifting tools must have been inspected and approved for use.

For more information on safety measures, see Workshop Manual, Safety in the workshop, main group 00.

6

© Scania CV AB 2005, Sweden

00:03-07/1

General

0-01 Chassis lubrication Lubricating with an oil can •

Front grille hinges and latches



Cab tilt lock



Door stop



Door hinges



Linkage for load-sensing valve



Storage compartment latch



Bonnet latch (T vehicles)

Lubricating with grease gun Use universal grease for lubrication points on the chassis and for wheel bearings and spring bearings. Grease grade: Grease consistency NLGI 0 to NLGI 2. Note: When lubricating with grease, make sure grease exudes from all the bearing cups. This will ensure good lubrication.

8

© Scania CV AB 2005, Sweden

00:03-07/1

General

Lubrication points

2 3 4 18 6 1 2 3 4

1

1

1

2 3 4 6

2 3 4

2 3 4

1 2

6 6

3 4 8

8

6

7

7

9

9

100 877

7 6

100742

1

1 Spring bolt 2 Brake slack adjuster 3 Brake camshaft 4 King pin bearing (with raised front axle) 6 Spring shackle 7 Universal joint 8 Support bearing 9 Sliding joint 18 Steering arm See Lubricating with a grease gun

00:03-07/1

© Scania CV AB 2005, Sweden

9

General

Lubrication points 4x4 Z, 6x6 Z

1

1

2

2

3

3

4

4

15

15 6

7

9 6 7 7

124 649

9

1 Spring bolt 2 Brake slack adjuster 3 Brake camshaft 4 King pin bearing (with raised front axle) 6 Spring shackle 7 Universal joint 9 Sliding joint 15 Halfshaft joint (AMD 900) See Lubricating with a grease gun

10

© Scania CV AB 2005, Sweden

00:03-07/1

General

Lubrication points 4x2 A/B

7 2

3

3 00_1526

2

2 Brake slack adjuster 3 Brake camshaft 7 Universal joint See Lubricating with a grease gun

00:03-07/1

© Scania CV AB 2005, Sweden

11

General

Lubrication points 4x2 Z, 4x4 Z

1

1

7 2

3

3

6

6

100 809

2

1 Spring bolt 2 Brake slack adjuster 3 Brake camshaft 6 Spring shackle 7 Universal joint See Lubricating with a grease gun

12

© Scania CV AB 2005, Sweden

00:03-07/1

General

Lubrication points 6x2 A/B, 8x2 A/B

7 2 3

2

3

3

3

2

00_1525

2

2 Brake slack adjuster 3 Brake camshaft 7 Universal joint See Lubricating with a grease gun

00:03-07/1

© Scania CV AB 2005, Sweden

13

General

Lubrication points 6x2 Z, 8x2 Z

1

1 7 3

3

2

2

6

6

10 11

10

3 2

100258

3 2

1 Spring bolt 2 Brake slack adjuster 3 Brake camshaft 6 Spring shackle 7 Universal joint 10 Balance arm 11 Tag axle lift See Lubricating with a grease gun

14

© Scania CV AB 2005, Sweden

00:03-07/1

General

Lubrication points 6x4 Z, 6x6 Z, 8x4 Z, 8x8 Z

7 2

2

3

3

7 9 17

17 7

2

3

3 100741

2

2 Brake slack adjuster 3 Brake camshaft 7 Universal joint 9 Sliding joint 17 Spring bearing See Lubricating with a grease gun

00:03-07/1

© Scania CV AB 2005, Sweden

15

General

Lubrication points 6x4 A/B, 8x4 A/B

7 2

2

3

3

7 9

7 2

3

3 100740

2

2 Brake slack adjuster 3 Brake camshaft 7 Universal joint 9 Sliding joint See Lubricating with a grease gun

16

© Scania CV AB 2005, Sweden

00:03-07/1

General

Lubrication points 6x2/4 A/B, 8x2/4 A/B

7 18 2

2

3

3

4

4 9

7 2

3

3 104 865

2

2 Brake slack adjuster 3 Brake camshaft 4 King pin bearing (with raised axle) 7 Universal joint 9 Sliding joint 18 Steering arm and drop arm See Lubricating with a grease gun

00:03-07/1

© Scania CV AB 2005, Sweden

17

General

Lubrication points 6x2*4 A/B, 8x2*6 A/B

9 7 2

2

3

3

4

4

2

3

3 104 866

2

2 Brake slack adjuster 3 Brake camshaft 4 King pin bearing (with raised axle) 7 Universal joint 9 Sliding joint See Lubricating with a grease gun

18

© Scania CV AB 2005, Sweden

00:03-07/1

General

Lubrication points 8x4*4 A/B

2 Brake slack adjuster 3 Brake camshaft 4 King pin bearing (with raised axle) 7 Universal joint 9 Sliding joint See Lubricating with a grease gun

00:03-07/1

© Scania CV AB 2005, Sweden

19

General

104 912

Lubrication points, fifth wheel

Clean surface of fifth wheel and check it for wear before greasing. See group 19-02 Fifth wheel. See Lubricating with a grease gun. Note: Grease the surface of the fifth wheel with grease which can withstand high pressure e.g. EP with MoS2 or grease with added graphite. IMPORTANT! Grease fifth wheels with teflon-coated surfaces with an extremely thin layer of grease after cleaning.

20

© Scania CV AB 2005, Sweden

00:03-07/1

General

104 913

Lubrication points, tow hook

Lubricate with thin oil. Use preferably VBG Mekolja, a specially produced oil with anti-rust and lubricating properties or another thin-bodied oil. Note: Never use grease due to its sticky consistency.

00:03-07/1

© Scania CV AB 2005, Sweden

21

General

Automatic Chassis Lubrication, ACL Testing the lubrication system Grease grade: Grease consistency, Scania ACL NLGI 0 - NLGI 2

100295

Steps 1-4 apply if the lubrication system is completely empty.

1 Fill the system by detaching the hose to the outlet union on the pump. Connect a grease gun to the hose and fill the system.

2 Make sure there is no lubricant exuding from the overflow valve and that the indicator pin is moving.

100299

3 The indicator pin is located on the righthand side of the main distributor block.

4 Fill until the lubricant exudes from the various lubrication points in the chassis.

6 Connect the grease gun to the filler nipple on the lubricant reservoir. 7 Fill the lubricant reservoir with lubricant.

100300

5 Stop filling the lubrication system.

8 Disconnect the grease gun.

22

© Scania CV AB 2005, Sweden

00:03-07/1

General

100295

9 Start the pump manually by starting the engine and pushing the button behind the plastic cover in the housing under the lubricant reservoir.

10 The pump will start. Walk around the chassis and inspect for leaks.

11 Conduct a road test and make sure none of the hoses are damaged at their end positions for the moving parts.

12 Relevant lubrication points: see group 19, "Automatic Chassis Lubrication ACL". Other points such as universal joints and sliding joints are lubricated with a grease gun.

00:03-07/1

© Scania CV AB 2005, Sweden

23

General

0-02 Tool kit

00_1528

The vehicle tool kit can vary depending on the specification.

1 Bulbs and fuses 2 Screwdriver handle with three bits. One with blade for straight slot at one end and Phillips cross at the other. Two bits for the Torx system. 3 Jack 4 Handle for the jack, rim nut wrench and cab tilting.

24

Disc wheel 5 Rim nut wrench 6 Support for rim nut wrench

Spoke wheel 7 Locking tool 8 Opening tool 9 Handle for rim nut wrench 10 Rim nut wrench

© Scania CV AB 2005, Sweden

00:03-07/1

Engine

1 Engine 1-01 Oil change Oil grade: Oils, refer to booklet 00:03-09.

!

WARNING!

Beware of hot oil! Wear protective gloves and goggles.

IMPORTANT! Help protect our environment! Avoid spillage. Use a collecting vessel.

1 Drain the oil. 2 Change the oil filter. 3 Clean the magnet and renew the sealing washer. Fill with oil, see next page for oil capacities.

00:03-07/1

© Scania CV AB 2005, Sweden

27

Engine

Oil capacities Engine type

Volume

9 litre engine, 5 cylinders

30-37 litres

9 litre engine

23-30 litres

11 litre engine, 2 valves per cylinder

23-30 litres

11 and 12 litre engines, 4 valves per cylinder

28-35 litres

14 litre engine

22-30 litres

16 litre engine

26-32 litres

Note: The values are approximate. Check with dipstick and top up if necessary. Place the oil dipstick in the correct position. You should be able to feel the dipstick, and not the handle, "stop" in the oil sump. IMPORTANT! Make sure that the oil is suitable for all variations in outdoor temperature that are likely to occur before the next oil change.

28

© Scania CV AB 2005, Sweden

00:03-07/1

Engine

1-02 Oil cleaner Cleaning Old design Oil cleaner, old design. After these instructions, there are also instructions corresponding to the new design. Identify the design of the vehicle's oil cleaner, and follow the corresponding instructions.

100263

1 Clean the cover. Unscrew the nut and remove the cover.

2 Lift out the rotor and loosen the nut on the rotor bowl three turns.

01 1286

x3

3 If the nut is jammed:

x3

01 1287

Clamp the nut (but on no account the rotor) in a vice and turn the rotor three turns by hand or with a screwdriver.

00:03-07/1

© Scania CV AB 2005, Sweden

29

Engine

01 1288

4 Tap the nut lightly with your hand or a plastic hammer, to detach the rotor bowl from the bottom plate.

01 1289

5 Unscrew the nut and remove the rotor bowl. Prize carefully to detach the strainer from the bottom plate.

01 1290

6 Scrape off any deposits inside the rotor bowl. If the deposits are thicker than 26 mm, the oil cleaner should be serviced more often.

30

© Scania CV AB 2005, Sweden

00:03-07/1

Engine

7 Wash all parts in diesel oil.

!

WARNING!

01 1291

Wear protective gloves.

01 1292

8 Fit the O-ring in the rotor bowl. The O-ring must not be damaged.

01 1293

9 Reassemble the rotor.

00:03-07/1

© Scania CV AB 2005, Sweden

31

Engine

01 1294

10 Tighten the rotor nut firmly by hand.

11 Refit the rotor.

01 1419

Make sure that it spins easily.

12 Check that the O-ring in the bowl is undamaged.

100264

Refit the bowl and tighten the lock nut to 10 Nm.

32

© Scania CV AB 2005, Sweden

00:03-07/1

Engine

Newer version Oil cleaner, new design. Identify the design of the vehicle's oil cleaner, and follow the corresponding instructions. There should be a certain amount of deposited dirt apparent in the rotor bowl during cleaning of the oil cleaner. If this is not the case, it indicates that the rotor is not spinning. The cause must be established immediately. If the dirt deposit exceeds 28 mm at the recommended intervals, the rotor bowl should be cleaned more often

1 Clean the cover. Undo the nut securing the outer lid. 2 Let the oil run out from the rotor.

x 1.5

133 315

3 Lift out the rotor. Wipe off the outside. Undo the rotor nut and screw it about one and a half turns to protect the bearing.

00:03-07/1

© Scania CV AB 2005, Sweden

33

Engine

4 If the rotor nut is difficult to get loose, turn the rotor upside down and fasten the rotor nut in a vice. Turn the rotor one and a half turns counterclockwise by hand or use an M20 nut as illustrated.

M20

x 1.5

133 316

IMPORTANT! The rotor must not be put in a vice. Never strike the rotor bowl. This may cause damage resulting in imbalance.

5 Remove the rotor bowl by grasping the rotor in both hands and tapping the rotor nut against the table. Never strike the rotor directly as this may damage its bearings.

34

© Scania CV AB 2005, Sweden

00:03-07/1

Engine

133 317

6 Remove the strainer from the rotor bowl. If the strainer has seized, pry carefully with a screwdriver between the rotor bowl and the strainer.

7 Scrape away the deposits inside the bowl with a knife.

8 Wash the parts.

10 Make sure the bearings are not damaged.

00:03-07/1

© Scania CV AB 2005, Sweden

127 878

9 Inspect the two nozzles on the rotor. Make sure they are not blocked or damaged. Renew any damaged nozzles.

35

Engine 11 Fit the strainer to the rotor. 12 Fit a new O-ring by sliding it over the strainer. 13 Refit the rotor bowl. Make sure that the O-ring sits correctly on the inside.

127 881

14 Refit the rotor nut and tighten by hand.

15 Make sure the shaft is not loose. Secure with locking compound 561 200 if it is loose. First clean thoroughly using a suitable solvent. Tighten the rotor shaft using socket 99 520. Tightening torque 34 Nm.

127 882

16 Refit the rotor and spin it by hand to make sure it rotates easily.

36

© Scania CV AB 2005, Sweden

00:03-07/1

Engine 17 Inspect the O-ring on the oil cleaner housing lid and fit it. Torque tighten the lock nut to 15 Nm.

Functional inspection A functional inspection need only be carried out if the lubricating oil cleaner is suspected not to work properly, e. g. if there is an abnormally small amount of deposit in the oil cleaner in relation to the distance travelled. The rotor rotates very fast and should continue to turn when the engine has stopped.

2 Stop the engine and listen for the sound from the rotor. Use your hand to feel if the filter housing is vibrating.

100265

1 Run the engine until it is warm.

3 If the filter housing is not vibrating, dismantle and check the oil cleaner.

00:03-07/1

© Scania CV AB 2005, Sweden

37

Engine

1-03 Renewal of insert filter 1 Unscrew the filter cover with socket 588 475. 2 The filter housing will drain automatically once the filter has been removed. 3 Renew the O-ring in the cover. Lubricate the O-ring with engine oil.

IMPORTANT! Fit the filter insert into the cover before placing it in the filter housing or the filter insert might be damaged. 4 Fit the filter insert and the cover in the filter housing and tighten the cover to 25 Nm +/5 Nm.

38

© Scania CV AB 2005, Sweden

00:03-07/1

Engine

1-04 Crankcase ventilation Renewing the filter

116 826

Clean the filter housing and renew the filter.

1-05 Checking the poly-V-belt

105 874

IMPORTANT! Do not change the direction of rotation of the poly-V-belt when it is refitted.

Small cracks in the poly-V-belt can be accepted.

00:03-07/1

© Scania CV AB 2005, Sweden

39

Engine

Loosen the poly-V-belt from the pulleys, but leave it around the fan shaft, so that the direction of rotation of the poly-V-belt is not changed.



Check the poly-V-belt carefully. If the poly-V-belt has one or more cracks, renew it.

105 875



If there are large cracks or if pieces of the poly-V-belt are missing, renew it.

Also check wear on the poly-V-belt.

112 931



112 932

The poly-V-belt shows signs of wear. Can be refitted.

The poly-V-belt is worn down to the chord. The poly-V-belt must be renewed.

40

© Scania CV AB 2005, Sweden

00:03-07/1

Engine

1-06 Checking belt tension

Automatic belt tensioner The belt tensioner must not be adjusted, opened, repaired or modified in any way. If the belt tensioner does not provide sufficient tensioning of the poly-V-belt, it must be renewed.

Noise in the belt drive Check the belt tensioner by slowly pressing it from the belt until it stops. Then, slowly bring the belt tensioner back to the initial position. Repeat 2-3 times. Jamming or jerking of the belt tensioner is not permissible.

Measurement Recommended belt tension for FO belts New belt

370 Nm

Used belt

310 Nm

New V-belts need a higher tension since they are stiffer.

00:03-07/1

© Scania CV AB 2005, Sweden

41

Engine

1-07 Valve clearances and PDE unit injectors, 9 litre engine with 5 cylinders Specifications Unit injector measurement (cold engine)

66.9+/-0.1 mm

Valve clearance, intake valve

0.45 mm

Valve clearance, exhaust valve

0.70 mm

Tightening torques Adjusting screw lock nut on rocker arm for unit injector

39 Nm

Adjusting screw lock nut on rocker arm for valves

35 Nm

Note: Check and adjust the valve clearance and unit injectors with the engine cold.

42

© Scania CV AB 2005, Sweden

00:03-07/1

Engine

Order of adjustment Adjustment applies to a 9 litre engine with 5 cylinders. In order for the adjusting to be carried out on the correct revolution, proceed as follows: 1 Rotate the flywheel so that the 72° mark on the flywheel can be seen in the lower window of the flywheel housing whilst valve overlap occurs on cylinder 5. 2 Then turn the flywheel clockwise so that it passes TDC Down (0°) by about 20° and then turn it anticlockwise until TDC Down (0°) is visible in the bottom window on the flywheel housing. The reason for turning past TDC down (0°) and then back is to counteract any play in the gears. You are now on the first revolution and can adjust the valves and unit injectors according to the following table. 3 Rotate the flywheel anti-clockwise using tool 99 309 so that the mark on the flywheel is visible in the lower window of the flywheel housing.

00:03-07/1

© Scania CV AB 2005, Sweden

43

Engine

Mark on flywheel (degrees)

TDC Down 0

Revolution

Adjust unit Adjust intake and injector rocker exhaust valves on arm on cylinder cylinder

1

2

Valve overlap on cylinder

1

2

1

144

1

4

2

504

2

288

1

648

2

4

72

1

5

432

2

216

1

576

2

2 5

4

3

5 3

1

3

216

144

288

TDC Down 0

*

134 537

72

Flywheel seen from the rear of the engine. * Direction of rotation when adjusting. The solid line shows the order to take the angles on the first round and the broken line the order for round 2.

44

© Scania CV AB 2005, Sweden

00:03-07/1

Engine

The flywheel is also marked at 240°/600° and 120°/480°; these marks apply to 6 cylinder engines. 1 Start by rotating the flywheel so that the mark on the flywheel is visible in the lower window as illustrated. Never read off the flywheel mark in the top window - this reading will be completely wrong. 2 Fit adjusting tool 99 414 with the metal plate around the unit injector.

!

WARNING!

66.9

124 856

When the unit injector is checked and the measurement is outside 66.9+/-0.5 mm, it is necessary to be very careful when handling this unit injector. The spring is pre-tensioned and can come loose, causing personal injury.

Setting tool 99 414 acts as a gauge with the measurement 66.9 mm.

00:03-07/1

© Scania CV AB 2005, Sweden

45

Engine

3 When adjusting, loosen the lock nut and adjust the unit injector with adjusting screw 1. The unit injector is correctly set when the small piston 2 is level with the flat upper surface of the tool. Check using a finger. It is possible to feel differences of less than a millimetre. The setting dimension is 66.9 +/-0.1 mm. Refer to tables in Order of adjustment for unit injectors.

The setting tool piston is above or below the flat upper surface of the tool. Adjust the unit injector.

The setting tool piston is level with the flat upper surface of the tool. The unit injector is correctly adjusted.

4 Torque tighten the lock nut to 39 Nm after adjusting. 5 Remove tool 99 414.

46

© Scania CV AB 2005, Sweden

00:03-07/1

Engine

IMPORTANT! Fit the cables so that they face in the correct direction when fitting them on the unit injector.

IMPORTANT! Use torque screwdriver 588 179 to avoid the risk of shearing off the screws. The entire unit injector must be renewed if the screws shear off. 7 If the cables to the unit injector are too long, they can be clamped round the solenoid valve on the unit injector.

118 482

6 Reconnect the cables on the unit injectors. Their relative position is not important. Use torque screwdriver 588 179 to tighten the screws to 2 Nm.

588 179

8 Refit the upper rocker cover and torque tighten the bolts to 18 Nm.

10 Fill and bleed the fuel system, refer to Bleeding the fuel system.

00:03-07/1

© Scania CV AB 2005, Sweden

107 675

9 Close the bleeder nipple and tighten the banjo screw.

47

Engine

1-08 Valve clearances 9, 11 and 12 litre engines with 6 cylinders Note: Check and adjust on cold engine.

Checking Check the valve clearance. The clearance should be: 9 and 11 litre engines: Intake valves 0.45 mm and exhaust valves 0.80 mm. DC9, DC11 and 12 litre engines: Intake valves 0.45 mm and exhaust valves 0.70 mm.

Adjusting The following alternative methods of adjustment are possible:

99 309

Alternative A: •

Adjust all the valves for each cylinder when in TDC after the compression stroke. Rotate the crankshaft 1/3 turn each time with tool 99 309. Adjust the valve clearance in the same order for injection: 1-5-3-6-2-4

10 101 333

T DC DOWN

48

© Scania CV AB 2005, Sweden

00:03-07/1

Engine

Alternative B: 1 Put cylinder 1 at exact TDC after the compression stroke. Adjust the following valves. cyl 1

Intake and exhaust

cyl 2

Intake

cyl 3

Exhaust

2

cyl 4

Intake

cyl 5

Exhaust

3

4

6

5

01 1393

1

2 Turn the crankshaft exactly one revolution. Adjust the following valves. Exhaust

cyl 3

Intake

cyl 4

Exhaust

cyl 5

Intake

cyl 6

Intake and exhaust

00:03-07/1

1

2

3

4

5

6 01 1394

cyl 2

A 12 litre engine is illustrated Ο Intake valve ⊗ Exhaust valve

© Scania CV AB 2005, Sweden

49

Engine

1-09 Valve clearances 14 and 16 litre engines Note: Check and adjust on cold engine.

Checking Check the valve clearance. The clearance should be: 14 litre engine: Intake valves 0.45 mm and exhaust valves 0.80 mm. 16 litre engine: Intake valves 0.45 mm and exhaust valves 0.70 mm.

01_1182

The following two alternative methods of adjustment are possible.

Cylinder numbering

14 litre engine The following alternative methods of adjustment are possible: Alternative A: •

Adjust all valves for each cylinder. Start with cylinder 1 at TDC after the compression stroke. Rotate the crankshaft 1/4 turn each time with tool 99 309. Adjust the valves in the injection order:

99 309

101379

1-5-4-2-6-3-7-8

50

© Scania CV AB 2005, Sweden

00:03-07/1

Engine Alternative B: 1 Rotate the crankshaft in the direction of rotation until the piston in cylinder 1 is at 20° after TDC in the combustion stroke. There is a mark ⊥ at this degree. 2 Adjust the following valves: Right-hand side cyl 1

Exhaust and intake

cyl 2

Exhaust

cyl 4

Exhaust

Left-hand side cyl 5

Intake and exhaust

cyl 7

Intake

cyl 8

Intake

3 Turn the crankshaft exactly one revolution in the direction of rotation. Then the piston in cylinder 1 is at 20° after TDC in the intake stroke. Adjust the following valves: Right-hand side cyl 2

Intake

cyl 3

Exhaust and intake

cyl 4

Intake

Ο Intake valve ⊗ Exhaust valve

Left-hand side cyl 6

Intake and exhaust

cyl 7

Exhaust

cyl 8

Exhaust

Torque tighten the valve lock nut to 35 Nm after adjusting. 00:03-07/1

© Scania CV AB 2005, Sweden

51

Engine

16 litre engine Rotate the flywheel using tool 99 309 so that the mark on the flywheel is visible in the bottom window according to the table below.

Mark on flywheel Valve change on (degrees) cylinder

Adjust intake Adjust exhaust valve on cylinder valve on cylinder

TDC Down 0°

6

7 and 8

4 and 5

TDC Up 180°

7

1 and 5

2 and 6

TDC Down 360°

1

2 and 4

3 and 7

TDC Up 540°

4

3 and 6

1 and 8

It is a good idea to mark the rocker arm with a pen after adjustment to keep track of what has already been adjusted. Torque tighten the valve lock nut to 35 Nm after adjusting.

5 6 7 8

1 2 3

106 007

4

Cylinder numbering

52

© Scania CV AB 2005, Sweden

00:03-07/1

Engine

1-10 Scania PDE unit injectors (6 or 8 cylinders) Checking and adjusting spring height Note: Check and adjust on cold engine. 4 Clean the rocker cover and around the rocker cover. 5 Remove the rocker cover.

WARNING!

UP TDC

Always place axle stands under the frame when working underneath vehicles with air suspension. Empty the air bellows. If the vehicle has a tag axle, it should be lowered.

VALVE 3.4 VALVE 2.5

6 Rotate the flywheel using tool 99 309 so that the mark on the flywheel is visible in the bottom window according to the table below. Never read off the flywheel mark in the top window - this reading will be completely wrong.

99 309

110 578

!

6 cylinder engine Mark on flywheel (degrees) TDC Down 0° Valve 2, 5,120° Valve 3, 4,240° TDC Down 0° Valve 2, 5,120° Valve 3, 4,240°

00:03-07/1

Valve overlap on cylinder 1 5 3 6 2 4

Adjust unit injector rocker arm on cylinder 2 4 1 5 3 6

© Scania CV AB 2005, Sweden

53

Engine 8 cylinder engine Mark on flywheel (degrees) TDC Down 0° TDC Up 180° TDC Down 360° TDC Up 540°

Valve overlap on cylinder 6 7 1 4

Adjust unit injector rocker arm on cylinder 4 and 5 2 and 6 3 and 7 1 and 8

7 Fit adjusting tool 99 414 with the metal plate around the unit injector. Check dimension 66.9 +/- 0.5 mm

124 856

66.9

Setting tool 99 414 acts as a gauge with the measurement 66.9 mm.

54

© Scania CV AB 2005, Sweden

00:03-07/1

Engine

8 When adjusting, loosen the lock nut and adjust the unit injector with adjusting screw 1. The unit injector is correctly set when the small piston 2 is level with the flat upper surface of the tool. Check using a finger. It is possible to feel differences of less than a millimetre. The setting dimension is 66.9 +/-0.1 mm.

The setting tool piston is above or below the flat upper surface of the tool. Adjust the unit injector.

The setting tool piston is level with the flat upper surface of the tool. The unit injector is correctly adjusted.

9 Torque tighten the adjusting screw lock nut to 39 Nm.

00:03-07/1

© Scania CV AB 2005, Sweden

55

Engine

1-11 Scania HPI unit injectors Note: Adjust on cold engine.

Adjusting OBL (Outer Base Load) preload Adjustment is carried out at the same time as checking or adjusting valve clearances. 1 Clean the rocker cover and around the rocker cover. 2 Remove the rocker cover.

WARNING!

Always place axle stands under the frame when working underneath vehicles with air suspension. Empty the air bellows. If the vehicle has a tag axle, it should be lowered.

VALVE 3.4 VALVE 2.5

3 Rotate the flywheel using tool 99 309 so that the mark on the flywheel is visible in the bottom window according to the table below. Never read off the flywheel mark in the top window - this reading will be completely wrong. Mark on flywheel (degrees) TDC Down 0° 120°/480° 240°/600° TDC Down 360° 120°/480° 240°/600°

56

Valve overlap on cylinder 6 2 4 1 5 3

© Scania CV AB 2005, Sweden

99 309

110 578

!

UP TDC

Adjust rocker arm on cylinder (OBL) 4 1 5 3 6 2

00:03-07/1

Engine

4 Loosen the lock nut and the adjusting screw. 5 Lubricate the adjusting screw, tighten to 6 Nm and angle tighten a further 60°. Tighten the lock nut to 39 Nm.

00:03-07/1

© Scania CV AB 2005, Sweden

57

Engine

1-12 Air cleaner Air is drawn through the aperture in the side of the air cleaner. It is filtered through the paper filter and is drawn through the upper aperture to the turbocharger.

01_1298

There is a rubber valve underneath the air cleaner that acts as a drain. Water that enters the air cleaner is collected at this point. The rubber valve opens when the pressure exerted by the water is greater than the pressure in the air cleaner.

00_1655

The right-hand bumper cover must be removed in order to renew the filter. It is fastened with three bolts. This does not apply to vehicles with steel bumpers.

00_1531

Loosen the clips that hold the filter cover in place.

Renew the filter element.

00 1532

Note: Do not forget to reset the vacuum indicator, see Vacuum indicator.

58

© Scania CV AB 2005, Sweden

00:03-07/1

Engine

Vacuum indicator P/R vehicles: The vacuum indicator is located inside the right-hand boarding step. T vehicles: The vacuum indicator is located inside the right-hand service step.

00_1533

Engine output will be affected if the filter admits insufficient air to the engine. Other related effects are increases in fuel consumption and the amount of carbon particles in the exhaust, both of which are caused by the reduced output being compensated for by increased throttle. There is also an increased risk of damage to the turbocharger.

The vacuum indicator has two windows, the smaller of which indicates the need for a new filter by changing colour; the larger window is graduated. When the vacuum indicator shows 5.0 kPa, the filter element should be changed.

00_1534

Note: Reset the vacuum indicator by pressing the centre as illustrated.

00:03-07/1

© Scania CV AB 2005, Sweden

59

Engine

1-13 Intake manifold Retightening straps Retighten the straps on the air intake pipe between the air cleaner and the turbocharger. The straps, two on each air intake pipe, must be tightened by hand to 4.5+/-1 Nm.

109 517

Use torque screwdriver 588 179.

The illustration shows the straps on a 12-litre engine

60

© Scania CV AB 2005, Sweden

00:03-07/1

Cooling system

2 Cooling system 2-01 Coolant

!

The coolant can normally be used as long as it is pure and clear. Use only Scania or Scania approved antifreeze glycol for frost protection; refer to Workshop Manual 00:03-09 Fuel, lubricants and fluids. Different approved products may be mixed, but in order to obtain optimal corrosion protection, products from the same manufacturer and of the same type should be used. The protection level will correspond to that of the product with the lowest value, regardless of any amount of other anti-freeze products added.

WARNING!

Hot coolant can cause burns. Ethylene glycol is highly dangerous if ingested and can prove fatal. It has a toxic effect on the skin, particularly when the coolant is hot. Wear protective gloves. Scania corrosion inhibitor is dangerous if imbibed.

Anti-freeze agents approved by Scania are designed for Scania engines. Scania can largely control and influence the contents of anti-freeze agents with Scania part numbers.

1 Measure the level of glycol anti-freeze (ethylene glycol) with Coolant and battery tester 588 227.

(70%) (66%)

-48 (61%)

1.400

-48

(57%)

-42

1.350

GOOD

-37

1.300

FAIR

1.250

(47%) (45%)

(58%) (54%)

-30

(53%)

(50%)

-33 -30

(61%)

-42 -36

(50%)

-27

(47%)

-24

(44%)

-21

(41%)

-18

(38%)

-27

(42%)

-24

(40%)

-21

(36%)

-18

(33%)

-15

-15

(29%)

-12

(34%)

1.200

-12 RECHARGE

1.150

1.100

(25%)

-9

(24%)

-6

(18%)

-3

(9%)

(20%)

-6

(15%)

BATTERY CHARGE

-3

SPECIFIC GRAVITY

(9%) PROPYLENE GLYKOL

ETHYLENE GLYKOL

+0

(30%)

-9

+0

(0%)

(0%)

C

00:03-07/1

© Scania CV AB 2005, Sweden

121 091

FREEZE POINT % GLUKOLE BY VOLYME

61

Cooling system

Ethylene glycol concentration table If the glycol content is below 40%-by volume, the corrosion protection is not sufficient. Freezing point °C Ethylene glycol (% by vol) Ethylene glycol (litres)

62

-6 15

-9 20

-12 25

-18 33

-21 36

-24 40

-30 45

-37 50

Cooling system volume in litres

5 6 6 7 8 9 9 10 11 12 12 13 14 15 15 16 17 18 18 19

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

8 9 10 12 13 14 15 17 18 19 20 22 23 24 25 27 28 29 30 32

9 11 12 14 15 17 18 20 21 23 24 26 27 29 30 31 32 34 35 37

11 13 14 16 18 20 21 23 25 27 28 30 32 34 35 37 40 41 42 44

12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50

14 16 18 21 23 25 27 30 32 34 36 39 41 43 45 48 50 52 54 57

15 18 20 23 25 28 30 33 35 38 40 43 45 48 50 53 55 58 60 63

30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125

© Scania CV AB 2005, Sweden

00:03-07/1

Cooling system

2-02 Renewing the coolant filter Tools Filter tongs

587 025

1 Close the drain tap and renew the coolant filter.

If the vehicle is fitted with a coolant filter, the filter must be renewed at every L-inspection in order to uphold the functionality of the filter.

Valve open

02_0351

02_0350

2 Open the drain tap.

Closed tap

Scania coolant filters no longer contain corrosion inhibitor. As of August 2000 the coolant filter has been discontinued and is therefore not fitted to vehicles manufactured after that date.

2-03 Measuring corrosion inhibitor IMPORTANT! For cooling systems with corrosion inhibitor only, without glycol.

Tools Corrosion inhibitor gauge

588 572

Refer to Workshop Manual Main Group 2 for calibrating the corrosion inhibitor gauge.

00:03-07/1

!

WARNING!

Hot coolant can cause burns. Wear protective gloves. A mixture of different corrosion inhibitors could result in accumulation of sludge and poorer protection against corrosion. Scania corrosion inhibitor is dangerous if imbibed.

© Scania CV AB 2005, Sweden

63

Cooling system

IMPORTANT! Note the obtained values in order to check for correct corrosion protection in the corrosion inhibitor table. 1 Extract some coolant from the expansion tank. 2 Spray some coolant into a cup or equivalent.

122 122

3 Allow the coolant to cool down to 40°C.

122 114

ON OFF

4 Fit corrosion inhibitor gauge 588 572. It has to be switched on for at least 5 minutes before measuring.

122 124

5 Remove the protection cover from the probe electrodes on corrosion inhibitor gauge 588 572.

64

© Scania CV AB 2005, Sweden

00:03-07/1

Cooling system

122 116

6 Clean the probe electrodes with distilled water and denatured alcohol. Wipe off the electrodes.

7 When checking different coolants, rinse the probe electrodes in distilled water and denatured alcohol before the next measurement.

122 117

8 Place corrosion inhibitor gauge 588 572 in the vertical container.

122 118

9 Place the container or equivalent with coolant under the corrosion inhibitor gauge 588 572 and dip the probe electrodes completely in the coolant.

00:03-07/1

© Scania CV AB 2005, Sweden

65

Cooling system

10 Wait a couple of minutes for the value in the display of the corrosion inhibitor gauge 588 572 to stabilise.

122 467

11 Read and note the value.

12 Check the level of corrosion inhibitor in the Corrosion inhibitor diagram. 13 The level should be 8-12% by volume. The standard value should be 10% by volume. 14 After use the corrosion inhibitor gauge 588 572 should be cleaned in distilled water and denatured alcohol. 15 Do not forget to fit the protection cover and switch off the corrosion inhibitor gauge 588 572.

66

© Scania CV AB 2005, Sweden

00:03-07/1

Cooling system

Corrosion inhibitor diagram After measuring the conductivity value with the corrosion inhibitor gauge 588 572, check the conductivity value in mS against the corrosion protection in % by volume. The corrosion inhibitor should be 8-12% by volume when checked. 14,0 13,0 12,0 11,0 10,0 9,0 8,0 7,0 6,0 5,0 4,0 3,0 2,0 1,0

2

3

4

5

6

7

8 Min

00:03-07/1

9

10 11

12

13

Max.

© Scania CV AB 2005, Sweden

14 15 122 657

1

67

Cooling system

Corrosion inhibitor concentration table

Note: Scania corrosion inhibitor with a level of 10% by volume is equivalent to 40% by volume of Scania glycol anti-freeze. Corrosion inhibitor (% by vol) Corrosion inhibitor. (litres)

68

0

2

4

6

8

10

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6

1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0 5.2

1.8 2.1 2.4 2.7 3.0 3.3 3.6 3.9 4.2 4.5 4.8 5.1 5.4 5.7 6.0 6.3 6.6 6.9 7.2 7.5 7.8

2.4 2.8 3.2 3.6 4.0 4.4 4.8 5.2 5.6 6.0 6.4 6.8 7.2 7.6 8.0 8.4 8.8 9.2 9.6 10.0 10.4

3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 10.5 11.0 11.5 12.0 12.5 13.0

© Scania CV AB 2005, Sweden

Cooling system volume in litres. 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130

00:03-07/1

Cooling system

Topping up with coolant Note: Do not top up with water only. In countries where the temperature never drops below 0°C: The coolant must consist of 1/10 corrosion inhibitor and 9/10 freshwater without visible impurities. Other countries: The coolant must contain 30-60% glycol and freshwater without visible impurities.

00:03-07/1

© Scania CV AB 2005, Sweden

69

Fuel system

3 Fuel and exhaust systems 3-01 Renewal of fuel filter, bleeding IMPORTANT! Help protect our environment! Avoid spillage. Use a collecting vessel. IMPORTANT! Engines with unit injectors must be fitted with fuel filters marked HIGH PERFORMANCE.

X

X

X

XX

HIGH

PERFORMANCE

X

X

X

X X

114 614

HIGH PERFORMANCE

03_0808

1 Clean the fuel filter and the filter retainer.

2 Unscrew the fuel filter.

03_0809

Use filter tongs, e.g. 587 025.

70

© Scania CV AB 2005, Sweden

00:03-07/1

Fuel system

03_0810

3 Lubricate the O-ring of the fuel filter and screw the new fuel filter into place by hand until the gasket comes into contact with the retainer. Tighten a further half turn. Bleed the fuel system as described below.

Engines with injection pump 1 Turn the starter key to the drive position. Undo the banjo screw on top of the fuel filter a few turns. Place a suitable receptacle under the fuel filter. Pump with the hand pump until clean fuel appears that is free from air bubbles. Tighten the banjo screw.

03_0806

Bleeding

03 0811

2 Open the overflow valve on the fuel valve a few turns. Pump with the hand pump until the fuel coming out of the open overflow valve is free of air bubbles.

3 Close the overflow valve 1. Keep pumping for a while 2. The air in the injection pump will then be pushed out through the overflow valve.

1 2

03_0812

4 Start the engine and check for leaks.

00:03-07/1

© Scania CV AB 2005, Sweden

71

Fuel system

Renewal of insert filter on engines with PDE 1 Open the bleeder nipple on the fuel filter to release any remaining pressure. 2 Unscrew the filter cover with socket 588 475. 3 The filter housing will drain automatically once the filter insert has been removed. 4 Wipe the fuel filter base clean. 5 Renew the O-ring in the cover. Lubricate the O-ring with O-ring grease 1 402 039. IMPORTANT! Fit the filter insert into the cover before placing it in the filter housing or the filter insert might be damaged. 6 Fit the filter insert and the cover in the filter housing and tighten the cover to 25 Nm+/-5 Nm. Bleed the fuel system as described below.

72

© Scania CV AB 2005, Sweden

00:03-07/1

Fuel system

Bleeding of DC16 engines with PDE 1 Attach a clear plastic hose to the bleeder nipple on the filter housing. 2 Open the bleeder nipple and pump with the hand pump until fuel comes out of the hose. 3 Close the bleed nipple and remove the hose. 4 Continue pumping by hand until a resistance is felt, which will be after approximately 20 pump strokes.

116 268

5 Start the engine and check for leaks.

00:03-07/1

© Scania CV AB 2005, Sweden

73

Fuel system

Bleeding of DC11 and DC12 engines with PDE 1 Attach a clear plastic hose to the bleeder nipple at the front of the fuel manifold. 2 Open the bleeder nipple and pump with the hand pump until fuel comes out of the hose. • If the system is completely empty, it will take approximately 250 strokes. • After renewing the fuel filter, it will take approximately 170 strokes.

3 Pump an additional 20 strokes to remove the air.

116 545

• Approximately 150 strokes are required to bleed the fuel manifold.

4 Close the bleeder nipple and remove the hose. Pump with the hand pump until the pressure relief valve opens, approximately 20 strokes. 5 Start the engine and check for leaks.

74

© Scania CV AB 2005, Sweden

00:03-07/1

Fuel system

Bleeding of 9 litre engines, 5 cylinders, with PDE 1 Attach a clear plastic hose to the bleeder nipple on the fuel filter housing. 2 Open the bleeder nipple and pump with the hand pump until fuel comes out of the hose. When the fuel system is empty, it is necessary to pump approximately 100 strokes in order to draw fuel up to the bleeder nipple. 3 Pump until fuel without air bubbles comes out, approximately 20 strokes. 4 Close the bleed nipple and remove the hose. 5 Transfer the plastic hose to the fuel manifold bleeder nipple.

7 Pump with the hand pump until fuel without air bubbles comes out, approximately 50 strokes.

135208

6 Open the fuel manifold ventilating valve.

8 Close the bleeder nipple on the fuel manifold and remove the plastic hose. 9 Pump approximately 20 strokes with the hand pump until the overflow valve opens. A hissing sound should be heard. 10 Start the engine. The engine should be easy to start.

00:03-07/1

© Scania CV AB 2005, Sweden

75

Fuel system

Renewal of insert filter on engines with HPI 1 Open the bleeder nipple on the filter to release any remaining pressure. It may be difficult to unscrew the filter cover if the system pressure has not fallen enough. Note: Fuel will come out of the bleeder nipple and this should be collected in a suitable manner. 2 Unscrew the filter cover with socket 588 475.

25 Nm

3 The filter housing will drain automatically (slowly) once the filter element has been removed. Note: If the drain is not working, the remaining fuel should be removed. 4 Unscrew the overflow valve and blow the strainer in the filter housing clean. 5 Also wipe the bottom of the filter housing.

IMPORTANT! Fit the filter element into the cover before placing it in the housing or the filter element might be damaged.

B 119 290

6 Fit a new O-ring on the cover. Lubricate the O-ring with O-ring grease.

7 Press down the filter element into the housing with the cover. Screw on the filter cover firmly with sleeve 588 475. Tightening torque 25 Nm. 8 Bleed the fuel system

76

© Scania CV AB 2005, Sweden

00:03-07/1

Fuel system

Bleeding of engines with HPI 1 Attach a clear plastic hose to the bleeder nipple on the fuel filter housing. IMPORTANT! Do not crank with the starter motor for longer than 30 seconds at a time. 2 Open the bleeder nipple fully and crank with the starter motor until the fuel system is purged free of air. Run until all the air has been removed and there is a good flow of fuel. 3 Close the bleed nipple and remove the hose.

B 119 292

4 Start the engine and check for leaks.

00:03-07/1

© Scania CV AB 2005, Sweden

77

Fuel system

Water separating fuel filter A fuel filter with water separation is available as an accessory. It can be used instead of the usual type of fuel filter. The same interval between renewal applies as for an ordinary fuel filter.

105 915

Drain at every inspection.

32: Drain valve

Auxiliary water separating fuel filter Some vehicles are equipped with an additional water separating fuel filter attached to the chassis. Note: Close the drain tap when renewing the additional water separating fuel filter. The same interval between renewal applies as for an ordinary fuel filter.

109 700

Drain at every inspection.

1 Shut-off cock 2 32: Drain valve

78

© Scania CV AB 2005, Sweden

00:03-07/1

Fuel system

3-02 Gas engine

!

WARNING!

Beware of the risk of fire. Make sure there is nothing glowing and there are no sparks, naked flames or similar in the vicinity when working on the gas system.

IMPORTANT! For all work on the gas system, the specific laws and regulations of the country concerned regarding gas and the handling of gas equipment must be followed.

The integrity of the gas system Check the gas system integrity in the direction of flow with leak detection spray or soapy water.

Checking spark plugs Check the electrode gap. Correct electrode gap aids the engine combustion and reduces the risk of flashover. Distance between the electrodes should be 0,35-0,50 mm. Tightening torque 30 +/-5 Nm.

00:03-07/1

© Scania CV AB 2005, Sweden

79

Fuel system

Checking lambda at idle speed Test equipment Tool no

Description

588 460

Lambda sensor

588 462

Cable harness

588 461

Test control unit

588 094

Multimeter (included in kit 588 093)

IMPORTANT! The engine temperature must be around 80°C when checking and adjusting the lambda. 1 Run the engine until it reaches normal operating temperature. 2 Check that the idling speed is approx. 550 rpm. Adjust idling speed as required by turning the idling screw 1.

3 Take a sensor voltage reading with the multimeter. It should read between 1.60 V and 1.90 V at 550 rpm. 4 Adjust the lambda value if necessary by turning the mixture screw 1 on the gas mixer. If the correct lambda value cannot be set, take off the outer diaphragm of the gas mixer and remove or add shims on the gas valve.

80

© Scania CV AB 2005, Sweden

00:03-07/1

Fuel system

Checking lambda with the engine under load. 1 Attach the test equipment as described in "Fitting the test equipment". 2 Set restrictor 1 on the gas mixer inlet half way between the L and R marks if the engine has not been adjusted before. 3 Measure at wide open throttle acceleration in a high gear from approx. 1000 r/min till 2000 r/min. Read the sensor voltage at 200 rpm intervals from 1000 rpm. 4 Make a copy of the diagram and plot the readings. The existing curves indicate minimum and maximum values. The thin-line curves indicate limits at 150 bar gas pressure and the bold ones at 50 bar gas pressure.

The X axis shows the engine speed in rpm The Y axis shows the sensor voltage in volts

00:03-07/1

© Scania CV AB 2005, Sweden

81

Fuel system

5 Adjust the gas pressure if the sensor voltage is too high or too low across the whole engine speed range. 6 Unscrew the plugs and adjust the gas pressure with the set screws on the low pressure regulators. Adjust both regulators the same amount. Turning clockwise will increase the gas pressure and lower the sensor voltage. Do not screw in the set screw more than 16 turns from fully unscrewed position.

Note: Screwing in the set screw more than 16 turns will cause the spring seat to come loose from the screw. IMPORTANT! The plugs must be refitted in the low pressure regulators before testing. Leaks can affect the lambda value. 7 If the adjustment range of the screw is insufficient, the regulator spring should be renewed.

82

© Scania CV AB 2005, Sweden

00:03-07/1

Scania particle filter

3-03 Scania particle filter Cleaning the filter unit IMPORTANT! Handle the filter unit with care. The filter unit consists of a ceramic material and is impact and shock sensitive. 1 Remove the side cover and place a jack with a large plate under the filter unit.

Note: The filter unit should be turned 180 degrees when fitted.

!

121 252

2 Mark the direction in which the filter is installed.

WARNING!

A face mask and protective goggles must be worn when cleaning the particle filter.

121 253

The particle filter is very hot.

3 Remove the upper V-clamp holding the filter unit in place. 4 Lower and remove the filter unit. Remove the lower V-clamp and the exhaust pipe bracket screws.

00:03-07/1

© Scania CV AB 2005, Sweden

83

Scania particle filter

5 Check for traces of soot on the filter unit outlet side. If this is the case, the filter unit probably is damaged and must be changed. 6 Clean the filter unit as follows: 7 Carefully shake the filter unit to remove all loose ash deposits from the filter unit cells. 8 Using an industrial vacuum cleaner, remove all ash deposits and soot from visible surfaces both on the catalytic converter and the filter unit. 9 Inspect the surfaces on the catalytic converter and filter unit to check for: - Cracks in the surface or pitting. - That the ceramic filter is firmly seated in the outer container.

11 Connect an extractor to the exhaust pipe. Start the engine and rev it a couple of times. This prevents any ash residues from penetrating into the workshop after the filter unit has been turned.

121 254

10 If no defects can be found on the filter unit, turn it 180 degrees and fit it. Refer to the illustration.

Discarded particle filters and filter units, and ash deposits and soot from the filter must be disposed of according to local legislation.

84

© Scania CV AB 2005, Sweden

00:03-07/1

Clutch

4 Clutch 4-01 Fluid level in clutch control Fluid grade: SAE J 1703 (D.O.T. 3/4 Brake Fluid).

!

100669

Check that the fluid level is between the marks on the reservoir.

WARNING!

The fluid is harmful if ingested. Avoid contact with the skin. Wear protective gloves and goggles.

00:03-07/1

© Scania CV AB 2005, Sweden

85

Clutch

4-02 Renewing the clutch fluid Change the clutch fluid by bleeding the clutch hydraulic system. The work description below is for vehicles with a bleeder nipple. For vehicles without a bleeder nipple and for bleeding without replenishing equipment, refer to Workshop Manual main group 04, Clutch and clutch control, function and work descriptions. Bleeding using replenishing equipment 587 949

!

WARNING!

Wear protective goggles. Hydraulic fluid is corrosive and can cause permanent eye damage.

Replenishing equipment connected to the hydraulic fluid reservoir.

IMPORTANT! Use new hydraulic fluid of the type SAE J 1703 D.O.T: 3-4 Brake Fluid. 1 Fill the reservoir of the replenishing equipment with hydraulic fluid. The reservoir volume is 5 litres. 2 Connect the replenishing equipment according to the illustrations and connect a supply of compressed air. Bleeding container of replenishing equipment 587 949 connected to bleeder nipple 1 at the gearbox.

86

© Scania CV AB 2005, Sweden

00:03-07/1

Clutch

3 Fill and bleed the hydraulic system by opening bleeder nipple 1 on the gearbox. Repeat the bleeding until all the air has been removed and only pure hydraulic fluid flows from the bleeder nipple. The hydraulic system volume is approx. 0.5 litres. IMPORTANT! Ensure that the hydraulic fluid reservoir does not become empty during bleeding.

4-03 Checking clutch wear Use gauge 99 315, which indicates the minimum dimension of the clutch lining. A new disc is 10 mm thick. A worn disc is 7 mm thick. Remove the sound proofing cover. Remove the protection cover over the inspection opening on the bottom of the flywheel housing. Fit the gauge 99 315 and make sure the lining is more than 7 mm thick. It may be difficult to reach the disc with the gauge in some cases. If so, turn the crankshaft using turning tool 99 309.

99 315

00:03-07/1

© Scania CV AB 2005, Sweden

04 0464

The same measurement method is used for the new clutch with external slave cylinder.

87

Torque converter

4-04 Torque converter Checking the oil level 1 Start the engine and run it at idle speed with the gearbox in neutral. 2 Check the oil level with the dipstick. The dipstick is behind the cab on P/R vehicles or in the engine compartment on T vehicles.

Oil change and filter renewal Oil grade: Oils, refer to booklet 00:03-09. The drain plugs in both the filter housing and the torque converter cover must be removed when changing oil. IMPORTANT! Help protect our environment! Avoid spillage. Use a collecting vessel. Drain plug for filter housing

1 Rotate the flywheel with the tool 99 309 to access the drain plug in the torque converter cover through the opening in the flywheel housing.

3 Remove the drain plug (10 mm internal hexagon) on the bottom of the filter housing and allow the fluid to run out.

104 903

2 Undo the cover on the bottom of the flywheel housing so that the oil can run out.

Drain plug for torque converter cover

88

© Scania CV AB 2005, Sweden

00:03-07/1

Torque converter 4 Remove the drain plug (6 mm hexagon) from the torque converter cover and allow the oil to run out. Take care not to drop the drain plug between the torque converter and the flywheel housing. 5 Check the O-ring on the torque converter drain plug. Renew if necessary. Refit the drain plug. Tightening torque 20 Nm. 6 Wipe the cover and refit it to the bottom of the flywheel housing. 7 Undo the bolts and remove the filter housing. 8 Clean the filter housing and the magnet, see arrow. 9 Fit a new filter and gasket. 10 Refit the filter housing and the drain plug. Use new gaskets. Tightening torque 50 Nm. 11 Fill with approx. 10 litres oil. If more oil is filled, it will run out of the vent in the torque converter.

00:03-07/1

© Scania CV AB 2005, Sweden

89

Torque converter

!

WARNING!

Make sure the gearbox is in neutral before starting the engine.

12 Start the engine and run it at idle speed. 13 Fill with an additional approx. 8 litres of oil until the oil level is correct on the oil dipstick. Oil capacity when changing oil is about 18 litres. Note: The values are approximate. Check with oil dipstick. Top up if necessary.

Checking torque limitation 1 Apply the parking brake. 2 Start the engine and run it at idle speed. 3 Engage top gear in low-range and release the clutch. 4 Accelerate carefully and feel how the vehicle "strains" against the brake. 5 Depress the clutch pedal slightly but not enough to declutch. A transition should now be felt as the torque is limited and the engine speed drops.

90

© Scania CV AB 2005, Sweden

00:03-07/1

Gearbox

5 Gearbox 5-01 Manual gearbox Oil grade: Oils, refer to booklet 00:03-09. 1 Remove the noise shield, see illustration. 2 Place a collecting vessel under the gearbox.

!

100268

Tip: Oil can run onto the exhaust pipe on vehicles with left-hand mounted exhaust outlet. Form a piece of metal plate to guide the fluid past the exhaust pipe and into the collecting vessel.

WARNING!

Beware of hot oil! Wear protective gloves and goggles.

3 Remove the drain plugs and level plugs. Drain the oil when it is hot. 4 Clean the magnet on the drain plugs and level plugs. 5 Unscrew the filter. Note: Check that the old gasket is attached when the filter is removed. 1 Level plug 2 Drain plug 3 Filter

00:03-07/1

© Scania CV AB 2005, Sweden

91

Gearbox

6 Lubricate the rubber gasket for the new filter with oil. 7 Screw on the filter by hand until the gasket rests against the gearbox housing. Tighten the filter a further half turn.

Oil capacities Gearbox with oil capacities GR 801

approx. 9.0 litres

8 Refit the drain plug and tighten to 100 Nm. Top up the level hole with oil.

GR, GRS, GRSH 900, GRSO 900

approx. 15.7 litres

9 Refit the level plug and torque tighten to 100 Nm.

GRS 890, 920

approx. 15.7 litres

GRS 890R, 920R

approx. 16.8 litres

GR, GRS 900R, GRSO 900R approx. 16.8 litres

Note: GRS920: The oil cooler, which has an oil capacity of approx. 2.0 litres, is not drained when changing transmission oil. Power take-off EG610 / 611 / 612

0.5 litres

EG603 / 604 / 606

1.3 litres

EG600 / 601 / 620 / 621

1.7 litres

EK300 / 310

1.1 litres

EK330 / 340 / 630 / 640

2.0 litres

Note: The values are approximate. Check the oil level and top up as necessary. An oil level down to 5 mm below the level hole is acceptable.

92

© Scania CV AB 2005, Sweden

00:03-07/1

Gearbox

5-02 Automatic gearbox IMPORTANT! A correct fluid level is essential for the function and service life of the gearbox. Both too high and too low a fluid level is harmful for the gearbox.

Checking a cold gearbox The objective of checking on a cold gearbox is to determine whether the correct amount of fluid is in the gearbox so that it can be safely warmed up. A final check of the fluid level can only be carried out when the gearbox is warm.

Dipstick location

1 Start the engine and run it at idle speed for about one minute.

!

WARNING!

Depress the brake pedal before proceeding to step 2 below! It is not enough to only use the parking brake to keep the vehicle stationary.

2 Select position D and increase the engine speed to 1000-1500 rpm for 30 seconds. Then, select position R to remove any air from the system. Air in the system can give incorrect results. 3 Then, select neutral N and leave the engine idling.

00:03-07/1

© Scania CV AB 2005, Sweden

93

Gearbox

!

WARNING!

Disengage the power take-off if applicable so that the rotating shaft is stationary. The shaft is located close to the oil dipstick and can cause personal injury if rotating.

4 Adjust the oil level so that it is in the range between "COLD FULL" and "COLD ADD". Fill through the oil filler pipe (or the dipstick pipe). Drain off fluid if the level is too high.

Dipstick graduation

5 Warm up the gearbox and carry out a final check of the fluid level as described in "Checking a warm gearbox".

Checking a warm gearbox The gearbox must be warm in order to check the fluid level reliably. The check can be carried out in two ways: either using the oil dipstick in the same way as for a cold gearbox check, or electronically from the driver's seat. The following description applies to checking the fluid level electronically. 1 The following conditions must be fulfilled irrespective of control type: - The engine must be idling and the vehicle on flat ground - The oil temperature must be between 60°C and 100°C - The drive mode selector must be in position N - The propeller shaft must be stationary - The fluid level sensor must be free from faults 94

© Scania CV AB 2005, Sweden

00:03-07/1

Gearbox

2 Lever control, old design: Press once on the diagnostic switch 1. Use a blunt pen or similar. If the above requirements are fulfilled, the control unit will start to count down from 8 to 1 for about two minutes.

2

3 Lever control, new design: Press once on the Logotype switch 4.

1

If all the conditions are fulfilled, the control unit will start to measure the oil level. This takes approximately 2 minutes. The countdown will be terminated if the conditions are no longer fulfilled and a fault code will be displayed in the display. Refer to the table Fault codes when checking oil levels.

102894

4 Button control: Depress the switches for shifting up and down 4 once simultaneously.

Older lever control 1 Diagnostics switch 2 Display

1 2 MODE

3

PERF

108 627

4

1 2 3 4

New lever control Diagnostics switch MODE switch Display Logotype switch

1 2

3 PERF

R

MODE

N

4 108 626

D

1 2 3 4 00:03-07/1

Button control Diagnostics switch MODE switch Display Up and down shifting

© Scania CV AB 2005, Sweden

95

Gearbox

5 After 2 minutes, the display will show one of the codes in the table.

Information codes - oil level

6 Cease measuring as follows depending on the type of drive mode selector: On the older control, press twice on the diagnostic switch 1. On the new control, press twice on the Logotype switch 4. On the button control, press the N switch (Neutral).

Code

Action

(OL-OK) o,L,o,K

Oil level correct

(LO-01) o,L,L,o,1

Fill with one litre oil

(LO-02) o,L,L,o,2

Fill with two litres oil

(HI-01) o,L,H,I,1

Drain off one litre oil

(HI-02) o,L,H,I,2

Drain off two litres oil

Codes in brackets apply to vehicles with older type of control.

Note: The maximum measuring range for the electronic oil level sensor is shown in the table.

Gearbox

Oil level Low

High

GA750/751/752

(LO-04) L,o,4

(HI-04) H,I,4

GA851/852

(LO-06) L,o,6

(HI-07) H,I,7

Codes in brackets apply to vehicles with older type of control.

96

© Scania CV AB 2005, Sweden

00:03-07/1

Gearbox

The drive position selector display indicates one letter or number at a time. If none of the information codes are shown in the display, a fault may have occurred, refer to the table.

Fault codes when checking oil levels Code

Fault

o,L,0,X

Setting time is too short

(OL-50) Engine speed too low o,L,-,5,0 (OL-59) Engine speed too high o,L,-,5,9 (OL-65) The drive position selector is not o,L,-,6,5 in position N (OL-70) Oil temperature too low o,L,-,7,0 (OL-79) Oil temperature too high o,L,-,7,9 (OL-89) Propeller shaft rotating o,L,-,8,9 (OL-95) Oil level sensor faulty o,L,-,9,5

Codes in brackets apply to vehicles with older type of control.

00:03-07/1

© Scania CV AB 2005, Sweden

97

Gearbox

Oil change and filter renewal Oil grade: Oils, refer to booklet 00:03-09. The oil and filter should be changed while the gearbox is warm. Warm fluid runs faster and it will be possible to remove more of it from the gearbox.

!

WARNING!

Beware of hot oil. Wear protective gloves and goggles.

1 Warm up the gearbox so that the oil temperature is between 70 and 90°C. Select position N and turn off the engine. 2 Place a collecting vessel under the gearbox. Clean around the drain plug and the filter cover. 3 Unscrew the drain plug on the sump and allow the fluid to drain. Use a 3/8" square box spanner. 4 Inspect the condition of the oil. See if there are any traces of water, metal particles or coolant. Water or coolant in the oil may indicate that the oil cooler has leaks. If this is the case, the oil cooler must be renewed. Metal particles in the oil may indicate internal damage in the gearbox. If this is the case, get in touch with a local Allison dealer before taking any further measures.

1 Drain plug (3/8") 2 Gearbox filter

5 The gearbox is fitted with two filters. Remove the screws on the filter covers. Remove the covers, O-rings, gaskets and filters.

98

© Scania CV AB 2005, Sweden

00:03-07/1

Gearbox

6 Lubricate and fit O-rings, gaskets and filter (shorter oil filter for vehicles with all-wheel drive) to each filter cover. Position the filters in the oil sump using the screwholes as guides and press them in by hand. IMPORTANT! Do not use the screws to press the covers in place. Do it by hand, otherwise the oil sump, filter covers or seals can be damaged. 7 Fit the screws for the filter covers and tighten them to 60 Nm. 103109

8 Clean the drain plug and renew the O-ring. 9 Fit the drain plug and O-ring. Tighten the drain plug to 30 Nm. 10 Fill oil through the oil filler pipe (or the oil dipstick pipe). The volumes specified in "Oil capacity when changing fluid and filter" must be followed when changing oil. 11 Check the oil level by checking on a cold gearbox, refer to the section Checking a cold gearbox. Adjust the oil level and then run the gearbox until warm. Make a final check of the oil level only when the gearbox has reached a temperature between 70 and 90°C.

00:03-07/1

Note: If the oil in a gearbox with retarder is being changed, the fluid volume indicated in the table must be increased with approx. 1 litre

Oil capacities when changing fluid and filter Gearbox

Oil capacity

GA750/751/752

approx. 20 litres

GA750, all wheel drive

approx. 18 litres

GA851/852

approx. 34 litres

GA851/852 on vehicles with all-wheel-drive

approx. 27 litres

© Scania CV AB 2005, Sweden

99

Gearbox

5-03 Opticruise Oil level in longitudinal stroke cylinder

Top up with automatic transmission fluid if necessary.

05 5390

Remove the level plug and make sure the oil reaches up to the level hole.

5-04 Transfer gearbox Oil level Unscrew the oil level plug 4. The oil should reach up to the level hole. Note: If the oil level is too high, drive the vehicle and check again before draining off.

Oil change Oil grade: Oils, refer to booklet 00:03-09. 1 Place a collecting vessel under the transfer box. 2 Unscrew the lower 1 and the upper 2 drain plugs. 3 Drain off oil, refit the plugs and tighten to 80 Nm. 4 Clean the bleeder nipple 5. 5 Unscrew the filler plug 3 and level plug 4. Fill with oil up to the level hole, approx. 6.5 litres. Note: All oil must be filled through the filler hole 3 in order to obtain the correct volume of oil in the transfer box. 6 Replace the filler and level plugs and tighten to 80 Nm.

100

© Scania CV AB 2005, Sweden

00:03-07/1

Gearbox

5-05 ZF-transmatic

125976

125975

1 Drain the oil through the three plugs.

125990

2 Remove the filter housing.

3 Remove the bolt holding the filter and remove the filter.

00:03-07/1

125974

4 Clean the filter housing.

© Scania CV AB 2005, Sweden

101

Gearbox

125978

5 Fit a new gasket, new filter and the cleaned filter housing.

125990

Note: Make sure that the filter housing is the right way round.

125979

6 Top up with oil. The oil tank holds 43 litres.

102

© Scania CV AB 2005, Sweden

00:03-07/1

Gearbox

Checking oil level Note: Check the oil level when the gearbox is warm. 1 Place the vehicle on the level.

!

WARNING!

Place chocks on the wheels and apply the parking brake to prevent the vehicle from moving. Danger of personal injury.

2 Start the engine and run it at idling speed for 2 - 3 minutes. Engage top gear (8H). Note: Top gear must be engaged in order to limit the power. The gear must be engaged so that the oil level will be remain level. 3 Release the clutch. 4 Remove the level plug and check the oil level through the level hole 1. 5 Top up with more oil if necessary. 6 Engage neutral gear and switch off the engine. 7 Tighten the level plug.

00:03-07/1

© Scania CV AB 2005, Sweden

103

Propeller shafts

6 Propeller shafts 6-01 Checking propeller shafts, support bearings and universal joint cross 1 Check that the propeller shaft and intermediate shaft are not damaged. 2 Check that there is no play in the universal joints or the support bearing. 3 Check-tighten the bolts in the support bearing bracket and make sure the rubber in the bearing seat is not damaged.

Support bearing clamp

Tightening torques

06 0292

Support bearing clamp: 47 Nm

6-02 Checking bearing retainers

Bearing cap bolts

Check-tighten the bearing cap bolts. Tightening torques Bolts, bearing cap

P300, 105 Nm P400, P500 P600

1

170 Nm 20 Nm 100 952

Bolt, end yoke cover

2

1 Bearing cap bolts 2 End yoke cover bolt

104

© Scania CV AB 2005, Sweden

00:03-07/1

Front axles

7 Front axles 7-01 Changing oil in axle gear Driving front axle AMD900 Oil grade: Oils, refer to booklet 00:03-09. In extremely demanding conditions, we recommend SAE 75W-140 synthetic oil.

!

WARNING!

Beware of hot oil! Wear protective gloves and goggles.

105 092

1 Place a collecting vessel under the axle gear. 2 Drain the oil when it is hot. 3 Clean the magnet on the drain plugs and level plugs.

Drain plug

4 Refit the drain plug and tighten to 100 Nm. Top up the level hole with oil. 5 Refit the level plug and torque tighten to 100 Nm.

RP 731

13.5 litres

RBP 731

17.0 litres

Note: The values are approximate. Check the oil level. Top up if necessary. The oil should reach up to the level hole.

00:03-07/1

© Scania CV AB 2005, Sweden

105 093

Oil capacity

Level plug

105

Front axles

7-02 Hub reduction gears Oil change Oil grade: Oils, refer to booklet 00:03-09. 1 Place a collecting vessel under the hub reduction gear.

1

2

2 Clean the hub cover. 3 Rotate the hub until the drain plug 3 points straight down. Refer to illustration Draining.

3

104 909

4 Remove the drain plugs and filler plugs 2 and 3. Drain the oil.

Draining 1 Marking line 2 Filler plug 3 Drain plug

5 Turn the hub until the cover marking line 1 is in a horizontal position. Refer to illustration Filling. 6 Add oil through the upper hole 2 until oil runs out of the lower hole 3.

2

1

7 Replace the drain and filler plugs and tighten to 10 Nm. Oil capacity 0.8 litres

3

104 910

RH 731

Filling

106

© Scania CV AB 2005, Sweden

00:03-07/1

Front axles

7-03 Checking front vehicle unit •



It is important that approved axle stands are used and that they are standing securely when working on the front axle.

1

2

3

The air bellows must be empty when working underneath vehicles with air suspension.

Check the front vehicle unit as described on the following pages.

Make sure the dust cover, track rod, guide arm, draglink and draglink arm are not damaged.

4

1 2 3 4

101 164

Dust cover and linkage system

Steering arm Drag link Drag link arm Track rod

King pin bearings 1 Raise the front axle on supports under the front springs. 2 Remove the hub cap from the wheel bearing. 587 571

3 Apply the brakes to prevent play in the wheel bearings from affecting the measurement.

Note: Move the wheel smoothly so that the position of entire front vehicle unit is not disturbed.

00:03-07/1

101 170

4 Measure the vertical play at the outer tip of the stub axle while moving the wheel sideways. Use a dial indicator. Movement of king pin bearing A max = 1.0 mm Indicator stand 587571

© Scania CV AB 2005, Sweden

107

Front axles

Ball joint 1 Lower the front wheels into straight-ahead position. 2 Place an indicator dial in line with the ball joint pin. 3 Clamp the ball joint with adjustable pliers and read off the play. 4 Repeat the measurement on the other ball joints. 113 254

Note: If the play is greater than 2.0 mm, the ball joint must be replaced. Play in ball joint: max. 2.0 mm

108

© Scania CV AB 2005, Sweden

00:03-07/1

Front axles

7-04 Measuring toe-in Gauge rod (part no. 587 690) 1 Drive the vehicle forward and come to a standstill on a level surface with the front wheels pointing straight ahead. 2 Measure distance a. See illustration. 3 Mark the points of measurement on the rims. 4 Move the vehicle forward so that the measuring points are in position to measure b, i.e. half a revolution forward. 5 Measure distance b. See illustration. Note: This method is not as accurate as measuring with laser.

07_0271

The following setting values apply at maximum axle weight Steering axle

Toe-in measured with gauge rod

All

0 to +1.5 mm

113 255

Measuring with laser is always recommended on vehicles with crane mounted behind the cab and on vehicles with heavy bodywork at the rear. Refer to group 13 in the Workshop Manual.

00:03-07/1

© Scania CV AB 2005, Sweden

109

Rear axles

8 Rear axles 8-01 Changing oil in axle gear Oil grade: Oils, refer to booklet 00:03-09. In extremely demanding conditions, we recommend SAE 75W-140 synthetic oil.

!

WARNING!

Beware of hot oil! Wear protective gloves and goggles.

1 Place a collecting vessel under the axle gear.

1

2

2 Drain the oil when it is hot. 3 Clean the magnet on the drain plugs and level plugs.

Note: Check that the old gasket is attached when the filter is removed. 5 Lubricate the rubber gasket for the new filter with oil. 6 Screw on the filter by hand until the gasket rests against the housing. Tighten the filter a further half turn. Refit the protection cover.

3

100 873

4 If there is a filter on the axle: Remove the filter.

1 Oil filter with protection cover 2 Level plug 3 Drain plug

7 Refit the drain plug and fill with oil through the level hole. Tighten to 100 Nm. 8 Refit the level plug and torque tighten to 100 Nm.

110

© Scania CV AB 2005, Sweden

00:03-07/1

Rear axles

128 243

The oil circulates between hub reduction gears type RH 735, RH 835 and central gears type RP/RBP 735, 835. The oil in both the hub reduction gears and the central gears must therefore be drained before new oil is filled.

Oil capacities

Oil filter position on axle gears type RBP 735, 835

Oil capacities

Litres

RP 730

10.0

R 560, 660, 780 (Filter)

12.5

RBP 730, RB 660 (Filter)

14.0

RP 832

14.0

RBP 832

14.0

RP 735 (Filter)

8.0

RP 835 (Filter)

9.3

RBP 735 (Filter)

11.2

RBP 835 (Filter)

12.0

Note: The values are approximate. Check the oil level. Top up if necessary. Oil level down to 10 mm below the level hole is acceptable.

00:03-07/1

© Scania CV AB 2005, Sweden

111

Rear axles

8-02 Tag axle lift Oil level Oil grade: Oils, refer to booklet 00:03-09.

100912

When the tag axle is lowered, the oil level should be between the dipstick marks.

8-03 Tag axle 6x2, 8x2 Check-tightening the balance arm bearing nut. 1 Remove the protection cover with the gasket for balance arm bearing. 2 Bend up the lock plate. 3 Tighten the nut to 425 Nm, see illustration. 4 Bend the lock plate against one of the nut flats and fit the protection cover.

112

© Scania CV AB 2005, Sweden

00:03-07/1

Hubs and wheels

9 Hubs and Wheels 9-01 Hub reduction gears Oil change RH 730,731,832 Oil grade: Oils, refer to booklet 00:03-09.

2

1

1 Place a collecting vessel under the hub reduction gear. 2 Clean the hub cover.

100910

3 Rotate the hub until the drain plug 3 points straight down. Refer to illustration Draining.

3 Draining 4 Remove the drain plugs and filler plugs 2 and 3. Drain the oil. 5 Turn the hub until the cover marking line 1 is in a horizontal position. Refer to illustration Filling. 6 Add oil through the upper hole 2 until oil runs out of the lower hole 3. 7 Replace the filler and drain plugs and tighten to 10 Nm. Litres

RH 730, 832

2.0

RH 731

0.8

1

2

3 08 1564

Oil capacity

1 Marking line 2 Filler plug 3 Drain plug

Filling

00:03-07/1

© Scania CV AB 2005, Sweden

113

Hubs and wheels

Oil change RH 735, 835 The oil circulates between the hub reduction gears RH735/835 and the central gear RBP/RP735/835. The oil level in the hub reduction gears may therefore vary depending on how the vehicle has been driven before it was brought into the workshop. Refer to function description for hub reduction gears in the Workshop Manual, main group 9.

!

WARNING!

Use protective goggles when draining oil from the hub reduction gear. Oil can spray out at high pressure.

Help protect our environment. Dispose of excess oil in accordance with workshop procedures. Draining oil Note: The oil in both the central gear and the hub reduction gear must be drained before new oil can be filled. 1 Place a collecting vessel under the hub reduction gear. 2 Turn the hub reduction gear so that the oil plug 1 is at the lowest level.

1

114

© Scania CV AB 2005, Sweden

127 269

3 Drain the oil.

00:03-07/1

Hubs and wheels

Filling with oil Oil grade: Oils, refer to booklet 00:03-09. 1 Turn the hub reduction gear so that the oil level mark 2 on the hub cover is in a horizontal position.

2

2 Fill up with oil.

IMPORTANT! Check the oil level in both hub reduction gears and in the central gear after filling. Refer to the section on Checking oil level.

1 Oil capacity

Litres

RH 735, 835

2.0

127 270

3 Refit the oil plug 1. Tightening torque 40 Nm.

Checking oil level Oil grade: Oils, refer to booklet 00:03-09. 1 Place collecting vessels under both hub reduction gears and the central gear. 2 Check the oil level in both hub reduction gears and the central gear. 3 Top up with oil if the oil level is too low. Drain oil if the oil level is too high.

00:03-07/1

© Scania CV AB 2005, Sweden

115

Hubs and wheels

9-02 Checking front wheel bearings 1 Support the front vehicle unit by placing supports under the front axle and release the parking brake. 105 805

2 Rotate the wheels with a wheel spinner. Listen for any noise from the bearings. 3 Check for grease leaks. 4 Unscrew the plug from the centre hole of the hub cap and screw in a 50 mm long fully threaded M20 bolt. Tighten the screw until the cover comes off. 5 Position dial gauge 98 075 and magnetic foot 587 250 as illustrated. The measuring tip should be placed along the centre line of the shaft journal. 105 806

6 Press and turn the hub by hand simultaneously until the wheel bearings fit. Zero the dial gauge. 7 Pull out and turn the hub simultaneously. Read the bearing play. Take the measurement several times and work out an average value.

105 807

8 If the play is greater than 0.2 mm, the bearing must be renewed.

Maximum axial clearance Front axle

116

0.2 mm

© Scania CV AB 2005, Sweden

00:03-07/1

Hubs and wheels

9-03 Check tightening wheel nuts 1 When tightening wheels with disc rims, use a torque socket or an impact nut runner which provides 1500-2700 Nm with torque socket 98 661.

3 Tighten the nuts in the order shown in the illustrations.

2 7 4

9 3 8 1

10 5

09_0464

2 Tighten aluminium plate rims and spoke wheels with a torque wrench.

6

4 For vehicles with spoke wheels: Check-tighten the nuts for the brake drum. Disc wheel

Special tools 98 661

Socket, spoke wheel

588 117 113 256

Torque socket, disc wheel

Tightening torques

Spoke wheel, old model

Disc wheel

600 Nm

Spoke wheel 28 inches

315 Nm

Other spoke wheels

350 Nm

Brake drum secured in spoke wheel hub

270 Nm

00:03-07/1

© Scania CV AB 2005, Sweden

117

Hubs and wheels

9-04 Checking the tyres 1 Check that tyre wear is even and evenly distributed across the whole tread. 2 Check tread depth: The tread depth must not be below 3 mm if the tyres are to be retreaded. Regarding traffic safety the minimum tread depth is 3.0 mm. The worntyre warning is for 1.6 mm. 3 Check the tyre pressure. Refer to Operator's Manual OM-25 Wheel change instructions and tyre manufacturer's instructions. Observe also applicable legislation and regulations. Note: Pay attention to legislation regarding tread depth. It may vary between countries.

118

© Scania CV AB 2005, Sweden

00:03-07/1

00:03-07/2 Issue 11

en

Maintenance instructions part 2 4 series

100309

Group 10 - 19

1 585 442

© Scania CV AB 2005, Sweden

Contents

Contents Changes from the previous issue .................... 4

Introduction

2

Safety .............................................................. 5

10 Brake system

10-01 Air dryer ......................................................... 7 10-02 Drum brakes ................................................. 14 10-03 Basic setting of brake piston stroke ............. 16 10-04 Disc brakes ................................................... 18 10-05 Scania retarder.............................................. 25 10-06 Checking warning lamps and sensors .......... 26 10-07 Operating pressure, integrity and check valve ............................................................. 28 10-08 Front circuit and rear circuit......................... 30 10-09 Trailer relay valve ........................................ 31 10-10 Rear circuit load-sensing valve, air suspension .................................................... 32 10-11 Brake starting pressure ................................. 39 10-12 Checking secondary brake valve.................. 40 10-13 Liquid separator ........................................... 41

11 Frame

11-01 Engine and gearbox brackets ....................... 42 11-02 Drilling holes................................................ 45

12 Suspension

12-01 Clamp bolts and retaining bolts.................... 48 12-02 Clamp bolt nuts ............................................ 50 12-03 Balance tandem ............................................ 57 12-04 Torque rod, air suspension ........................... 57 12-05 Air suspension.............................................. 58

13 Steering system

13-01 Oil level in power steering ........................... 64 13-02 Checking front axle weight, double front axles ............................................................. 65

© Scania CV AB 2005, Sweden

00:03-07/2

Contents

16 Electrical system

16-01 Fluid level in batteries .................................. 66 16-02 Charging condition....................................... 67 16-03 Headlamp adjustment................................... 68 16-04 Check and delete fault codes using a PC ..... 69 16-05 EDC, electronically controlled fuel injection........................................................ 71 16-06 Opticruise ..................................................... 73 16-07 Allison automatic gearbox ........................... 76 16-08 Bosch ABS/TC "CP12"................................ 80 16-09 Bosch EBS ................................................... 82 16-10 Wabco ABS/TC "D"..................................... 84 16-11 Retarder ........................................................ 88 16-12 ELC, electronically-controlled air suspension .................................................... 90

18 Cab

18-01 Cab tilt mechanism....................................... 93 18-02 Cab tilt pump................................................ 95 18-03 Checking and adjusting the drive level ........ 96 18-04 Renewing the filter in the heater .................. 99 18-05 Scania Interactor 500.................................. 100

19 Accessories

19-01 Bodywork, general ..................................... 101 19-02 Fifth wheel ................................................. 102 19-03 Tow hook.................................................... 104

00:03-07/2

© Scania CV AB 2005, Sweden

3

Changes

Changes from the previous issue 10-04 New bushing, brake caliper page 19. 10-05 Retarder, changed torque values under Oil change and filter renewal page 25. 11-01 Draw beam towards frame, changed bolt dimension page 44. 18-02 Cab tilt pump, checking oil level, Topline page 95. 18-03 Rear cab suspension with wedge lock has been added page 97.

4

© Scania CV AB 2005, Sweden

00:03-07/2

Safety

Introduction Safety Vehicles with air suspension Always support vehicles with air suspension under the frame. Otherwise, the vehicle may drop as the air pressure in the bellows is reduced. Do not walk under a vehicle that is raised on a jack only. Follow the directions given in the Workshop Manual.

Safety measures •

Use reliable and correctly dimensioned stands, struts and locks with standard locking devices.



Stands and struts must be sturdy.



Lifting tools must have been inspected and approved for use.

For more information on safety measures, see Workshop Manual, Safety in the workshop, main group 00.

00:03-07/2

© Scania CV AB 2005, Sweden

5

Brake system

10 Brake system 10-01 Air dryer



Drain the compressed air tanks and check whether water runs out. Small amounts of water may be present. Larger amounts of water indicate that the air dryer is not working or that the desiccant should be renewed.



Start the engine and fill the brake system with air. Check that the drain valve in the bottom of the air dryer does not leak when the compressor is charging.



Check that the air dryer is blowing air through the drain valve when the compressor is relieved.

104 919

Function

Wabco

Check the function of the heating coil





Cool the heating coil (with cold water, snow or temperature reduction spray) to activate the integrated thermostat. It should activate at approx. +7 °C.

10_2313

Check that the heating coil (H4) is working in the winter.

Haldex

Start the engine and touch the lower part of the air dryer with your hand. It should feel warm within a few minutes. The temperature of the air dryer should rise to 20-30 °C, which is the switch-off temperature of the thermostat.

00:03-07/2

© Scania CV AB 2005, Sweden

7

Brake system

Measuring the resistance •

Remove the P2/H contact in the central electric unit.



Use a multimeter for measuring resistance. Measure between earth and the green wire marked 61C on pin 12 in the H contact.

!

WARNING!

Bleed air from the braking system.



Tilt the cab or open the bonnet. Remove the cover over the air dryer.



Remove the desiccant container.



Cool the bottom of the air dryer. Use e.g. temperature reduction spray to below +7 °C, which is the cut-in temperature of the thermostat. Cool in intervals to allow time for the cold to propagate through the material.



Measure the resistance at the contact. The resistance should be 5.0-7.5 ohm at temperatures below + 7 °C.

Haldex design 1

Haldex design 2

Wabco

If the air dryer does not work as above, it must be rectified, see main group 10 in the Workshop manual, Supply circuit, Components.

8

© Scania CV AB 2005, Sweden

00:03-07/2

Brake system

Renewing the desiccant, Haldex

!

WARNING!

There is a risk of injury if the instructions below are not followed.

1 Evacuate the air from the system. 2 Release any remaining air in the air dryer via the brake system filler nipple. Use a screwdriver. 3 Tilt the cab fully or open the bonnet.

104 920

4 Loosen the screws on the cover of the boarding step, lift the cover and remove it. (Does not apply to T vehicles and vehicles with a folding footstep).

10 2328

5 Loosen the bolts, press in the locking tangs and remove the protection cover (does not apply to T vehicles or more recent P and R vehicles).

00:03-07/2

© Scania CV AB 2005, Sweden

9

Brake system

T-vehicles: If necessary, remove the service platform 1.

6 Remove the air dryer container by undoing the bolts. Note: The nuts in the air dryer housing on vehicles with chassis numbers lower than 1 218 254 are loose. It is possible for them to fall out and are difficult to refit. The nuts have been secured on vehicles with higher chassis numbers.

7 Place the container on a workbench, filter insert down. Push down the container about 5 mm and turn it anti-clockwise about 10°.

8 Clean the container and the air dryer housing.

10

© Scania CV AB 2005, Sweden

1 2 10 2645

Note: On older vehicles, there is a loose spring between the desiccant cartridge and the container. The new desiccant cartridge does not have this loose spring and its function has been integrated in the cartridge instead.

00:03-07/2

Brake system

Refer to Service Manual main group 10 for fitting a desiccant cartridge with loose spring. The following work description is for desiccant cartridges with integrated spring function. 9 Fit the new desiccant cartridge, press down as far as possible and turn clockwise until it locks.

10 Fit a new O-ring. See picture. Lubricate the O-rings with brake grease 319 308. The other O-ring is fastened to the bottom of the desiccant cartridge. 11 Position the container. Renew the screws and tighten them to 40 Nm. 12 Put in place the protection covers. (Does not apply to T vehicles). T-vehicles: Refit the service platform if previously removed. 13 Tilt the cab and start the engine. Run the engine until the compressor is relieved and the dryer is drained. Check that no leaks occur during this time.

00:03-07/2

© Scania CV AB 2005, Sweden

11

Brake system

Renewing the desiccant, Wabco

!

WARNING!

There is a risk of injury if the instructions below are not followed.

1 Bleed air from the braking system. 2 Release any remaining air in the air dryer via the brake system filler nipple. Use a screwdriver. 3 Tilt the cab fully or open the bonnet.

104 920

4 Loosen the screws on the cover of the boarding step, lift the cover and remove it. (Does not apply to T vehicles and vehicles with a folding footstep).

10 2328

5 Loosen the bolts, press in the locking tangs and remove the protection cover (does not apply to T vehicles or more recent P and R vehicles).

12

© Scania CV AB 2005, Sweden

00:03-07/2

Brake system

T-vehicles: If necessary, remove the service platform 1.

6 Remove the air dryer container.

7 Renew the O-ring and lubricate it using brake grease 319 308.

9 Lubricate the container rubber gasket using brake grease. Tighten the container by hand until it is against the contact surface and then tighten a further 1/3 turn.

104 921

8 Clean the contact surface for the container rubber gasket.

10 Put in place the protection covers (does not apply to T vehicles). T-vehicles: Refit the service platform if previously removed. 11 Tilt the cab and start the engine. Run the engine until the compressor is relieved and the air dryer is drained. Check that no leaks occur during this time.

00:03-07/2

© Scania CV AB 2005, Sweden

13

Brake system

10-02 Drum brakes Brake lining thickness Check using the indicator

1

2

10_2314

The brake slack adjusters are fitted with a wear indicator. When the brake linings are new, the indicator points towards the front of the vehicle and when the linings are worn, it points straight down. When the indicator passes the "seven o'clock" position ("five o'clock" on the other side), make the measurement. See "Measuring".

Measurement

!

WARNING!

Secure the wheels of the vehicle using chocks in front of and behind the wheels

1 Release the parking brake.

100273

2 Push the inspection cover to one side.

100304

3 Lift out and pull the cover off at the other end.

14

© Scania CV AB 2005, Sweden

00:03-07/2

Brake system

100305

The thickness of the brake linings must not be less than 8 mm (10 mm if the linings are oversized). Check the brake lining thickness against the wear indicator. If the thickness of the brake linings on the same axle differs by more than 3 mm, check the wheel brakes.

Brake lining with wear indicator Minimum thickness of lining Standard lining

8 mm

Oversize lining

10 mm

!

WARNING!

Non-genuine linings can lead to: -

Up to 5 times greater wear on the brake drum

-

Cracks and parts of broken off brake lining, which can result in extensive damage and at the worst lead to a complete loss of braking capacity

-

Temperature increases, causing fading and loss of braking capacity

-

Vibrations

-

Driving ban

-

Legal liability

00:03-07/2

© Scania CV AB 2005, Sweden

15

Brake system

10-03 Basic setting of brake piston stroke Equipment: sliding caliper. Release the parking brake. Note: The parking brake must be released with a pressure of at least 6.0 bar. Check basic setting L. Note: Measure towards the surface of the chamber. Depress the brake pedal. Measure the brake position L1. Note: The brake pedal must be depressed fully. Calculate the brake piston stroke L2 = L1 - L.

16

© Scania CV AB 2005, Sweden

Check the stroke. (Stroke L2 = L1-L)

00:03-07/2

Brake system

Cylinder size

Outer diameter (above strap)

Basic setting L

Brake position L1 Stroke L2

16

165 mm

69-71 mm

94-115 mm

25-44 mm

20

176 mm

69-71 mm

94-115 mm

25-44 mm

24

186 mm

69-71 mm

94-115 mm

25-44 mm

30

210 mm

69-71 mm

99-122 mm

30-51 mm

24

Rear on 186 mm HK-vehicles and all-wheel- 210 mm drive vehicles

214-216 mm

239-260 mm

25-44 mm

214-216 mm

244-267 mm

30-51 mm

On the second 186 mm rear axle on 210 mm 6x4 heavyduty tractors

259-261 mm

284-305 mm

25-44 mm

259-261 mm

289-321 mm

30-51 mm

30 24 30

00:03-07/2

© Scania CV AB 2005, Sweden

17

Brake system

10-04 Disc brakes Check the brake pads using Scania Diagnos. How much remains of the pad friction material is shown by the wear indicators T39, T40 and so on in a horizontal bar chart. If the bar chart column is lower than 60%, carry out a visual inspection. Note: In order to check the brake pads and the brake disc the brake shield must be removed first on some vehicles. Specifications Control measurements

18

Minimum permissible brake disc thickness

37 mm

Maximum permissible thickness variance per brake disc

0.08 mm

Maximum permissible run-out

0.20 mm

Minimum permissible brake pad thickness

2 mm

Minimum permissible brake pad thickness with 37-40 mm brake disc

4 mm

© Scania CV AB 2005, Sweden

00:03-07/2

Brake system

Checking brake pad wear Brake calipers with short rubber bushings (new version)

1

1 Check how far the rubber bushing is protruding. The rubber bushing shows the wear of the brake disc and the brake pads. If the rubber bushing indicates maximum wear, remove the wheel and check the wear on the brake pads and brake disc as described in Workshop Manual main group 10.

124 590

2

1 Minimum wear 2 Maximum wear Brake caliper with DU bushing 1 Check the wear indicator between the brake caliper and the brake pad carrier. The indicator shows the wear of the brake disc and the brake pads. If the wear indicator indicates maximum wear, remove the wheel and check the wear on the brake pads and brake disc as described in Workshop Manual main group 10.

1 Minimum wear 2 Maximum wear

00:03-07/2

© Scania CV AB 2005, Sweden

19

Brake system

Measuring brake pad wear 1 Measure the wear on the brake pads with Scania Diagnos 2 (SD2). 2 If the above measurement shows 60% or less: measure the thickness of the brake disc and the dimension A in the figure (the dimension between the guide pin and the brake caliper) using a sliding caliper. The rubber guards can easily be pressed together during the measurement. Measure to the machined surface C on the caliper.

Measure between the guide pin and the machined surface C on the caliper.

3 Refer to the table on the following page and compare the percentage in the table with the percentage you obtained with SD2. The table shows how much of the outer pad is left. SD2 shows how much of both pads is left.

20

© Scania CV AB 2005, Sweden

00:03-07/2

Brake system

4 If both results are the same, the outer and inner pads are evenly worn. If the difference is greater than 15%, this indicates that the pads are unevenly worn, probably because the caliper or pistons are binding.

Example SD2 shows 50% wear. Disc thickness = 42 mm Dimension A = 16 mm According to the table, the lines for 42 mm and 16 mm meet at about 52% (see the broken line). The table value (52%) and the SD2 value (50%) are within the 15% tolerance. The wear is acceptable. If uneven wear is found, perform the following operations: •

Remove the wheels on the axle in question.



Remove the brake pads.



Clean the brake calipers.



Check that the caliper slides as intended.



Check the play in the loose guide pin.

A = Position of guide pin relative to the caliper, measured in millimetres. B = Thickness of brake disc in millimetres. The example is shown by broken lines

00:03-07/2

© Scania CV AB 2005, Sweden

21

Brake system

Brake calipers with short rubber bushings (old version) 1 Measure the protrusion of the guide pin.

2 In order to measure the brake disc thickness without removing the wheel, the sliding caliper must be modified as illustrated.

1 Grind off the tips for internal measurement. 2 Grind a recess in order to reach over the edge of the brake disc.

3 Measure the brake disc thickness with the modified sliding caliper. 4 Read the remaining wear in the graph below. 5 Check the brake disc for cracks and scratches. Note: Scratches should not be deeper than 1.5 mm. Any cracks must be no longer than 40 mm, and they must not run as far out as the edge of the brake disc.

22

© Scania CV AB 2005, Sweden

00:03-07/2

Brake system Brake calipers with long rubber bushings 1 Measure the distance between the edge of the rubber bushing to the outer edge of the guide pin.

2 Measure the brake disc thickness with the modified sliding caliper. 3 Read the remaining wear in the graph below. 4 Check the brake disc for cracks and scratches. Note: Scratches should not be deeper than 1.5 mm. Any cracks must be no longer than 40 mm, and they must not run as far out as the edge of the brake disc.

00:03-07/2

© Scania CV AB 2005, Sweden

23

Brake system

Graph Note: The diagram does not apply to the new short rubber bushing. On brake calipers with short rubber bushings: If the protrusion of the guide pin is 0 mm or less, remove the wheel to check the wear more thoroughly. On brake calipers with long rubber bushings: if the guide pin is 18 mm or more inside the rubber edge, remove the wheel to check the wear more thoroughly. Renew the brake disc if you think that the minimum permissible brake disc thickness will be reached before the next inspection. On vehicles of operation type 0 and 1, remove the wheel for a more thorough check when the wear reaches the 30% area in the graph. The A measurement applies to the position of the guide pin in relation to the edge of the rubber bushing. Measurements within brackets applies to brake calipers with long rubber bushings. The B measurement applies to the brake disc thickness.

24

© Scania CV AB 2005, Sweden

00:03-07/2

Brake system

10-05 Scania retarder

Checking oil level

Oil grade: Oils, refer to booklet 00:03-09.

1 Carry out a road test and brake using the retarder.

Oil and filter change

2 After driving: Depress the diagnostics switch to empty the accumulator.

Observe strict cleanliness. The retarder is sensitive to dirt and contaminants.

!

Proceed as follows: 1 Turn the starter key to the drive position, press the diagnostics switch. This empties out most of the oil volume of the accumulator so that all the oil ends up in the retarder sump. 2 Place a suitable container under the retarder.

!

WARNING!

Beware of hot oil! Wear protective gloves and goggles.

3 Remove the level plug and check the oil level. Oil level down to 10 mm below the level hole is acceptable. Torque tighten the level plug to 26 Nm.

WARNING!

Beware of hot oil! Wear protective gloves and goggles.

3 Drain the oil. Clean the magnetic drain plug and then tighten it to 40 Nm.

1

4 Renew the retarder oil filter. Check the O-ring of cover. Renew if necessary. Tighten the fastening bolts crosswise to 22 Nm.

2

5 Fill oil in the level hole (approx. 5 litres) and tighten the level plug to 26 Nm.

3

10:2283

4 1 2 3 4

00:03-07/2

© Scania CV AB 2005, Sweden

Oil top up Oil level Oil filter Oil drainage

25

Brake system

10-06 Checking warning lamps and sensors

Front circuit Equipment: Pressure gauge,

15 bar

1 Fill the brake system with air.

P

2 Remove the protection cover if applicable. BRAKE AIR

10_2277

3 Connect the pressure gauge to test connection 12. 4 Disconnect the sensors on the circuits not to be tested. 5 Drain the front circuit tank until the pressure is between 4.5 and 5.5 bar, which is the operating range of the pressure monitor. The warning lamp lights up and the buzzer sounds.

Rear circuit 1 Fill the brake system with air. 2 Connect the pressure gauge to test connection 2. 3 Disconnect the sensors on the circuits not to be tested. 4 Drain the rear circuit tank until the pressure is between 4.5 and 5.5 bar. The warning lamp lights up and the buzzer sounds.

26

© Scania CV AB 2005, Sweden

00:03-07/2

Brake system

Parking brake circuit, supply 1 Fill the brake system with air. 2 Connect the pressure gauge to test connection 4.

4

3 Disconnect the sensors on the circuits not to be tested. 4 Drain the parking brake tank until the pressure is between 4.5 and 5.5 bar. The warning lamp lights up and the buzzer sounds.

2

100315

12

Test connection in the left corner of the cab P and R cabs

Parking brake circuit, control

4 2 12

1 Fill the brake system with air.

105 813

2 Apply the parking brake. The parking brake lamp lights up.

Test connection in the left corner of the cab T cab

00:03-07/2

© Scania CV AB 2005, Sweden

27

Brake system

10-07 Operating pressure, integrity and check valve in overflow valve Operating pressure Equipment: 3 pressure gauges

15 bar

Vehicles with load handling tanks Connect 15 bar pressure gauges to test connections 12, 1 and 1A. 1 Start the engine and charge the system. 2 Check that the relief pressure at test connection 1A is 12.0-12.4 bar by observing when the pressure at test connection 1 drops. Check that the pressure limiting valve pressure is 9.1-9.5 bar at test connection 12.

Test connections 1A and 14

3 Decrease the system pressure by draining the first load handling tank. 4 Note the pressure at test connection 1A (should be 10.4-11.5 bar) when the compressor starts charging. The compressor starts charging when the pressure rises at test connection 1. Calculate the difference in pressure. Check valve in overflow valve 1 Move the pressure gauge from test connection 1A to test connection 14.

100668

2 Drain the first load handling tank. The pressure at test connection 14 must not drop.

Test connection 1, earlier version

28

© Scania CV AB 2005, Sweden

00:03-07/2

Brake system

Test connection 1, new version

Test connection 1, new version

Vehicles without load handling tanks 1 Connect the pressure gauges to test connections 12 and 1. Start the engine and charge the system. 2 Check that the relief pressure at test connection 12 is 9.1-9.5 bar by observing when the pressure at test connection 1 drops. 3 Decrease the system pressure by repeatedly depressing the brake pedal.

10 2526

4 Check that the compressor start pressure at test connection 12 is 7.9-8.9 bar, when the pressure at test connection 1 increases. Calculate the difference in pressure.

12

Test connection 12

Tightness 1 Fill the system to working pressure. Switch off the engine. 2 Depress the brake pedal fully and read the pressure at test connection 12 after 30 seconds and after 1.5 minutes. The pressure decrease must not be greater than 0.2 bar.

00:03-07/2

© Scania CV AB 2005, Sweden

29

Brake system

10-08 Front circuit and rear circuit Equipment: 2 pressure gauges

2.5 bar

Note: Does not apply if the vehicle is fitted with EBS. 1 Connect the pressure gauges to test connections 5 and 6. If the vehicle has a load-sensing valve at the rear, this should be set to fully open. This is done on vehicles with leaf suspension by loosening the spring on the load-sensing valve. In vehicles with air suspension, the rear air suspension is emptied.

Test connection 5

Note: When measuring increasing pressure, the brake pedal must either be depressed or kept still. If the brake pedal is released while measuring increasing pressure, the result of the measurement will be incorrect. When measuring dropping pressure, the brake pedal must either be released or kept still. If the brake pedal is depressed while measuring falling pressure, the result of the measurement will be incorrect. 2 Measure the deviation between the front circuit and the rear circuit. The pressure at the front circuit's test connection 5 must not deviate by more than 0.3 bar from the rear circuit's test connection 6 within the measurement range 0.5-2.0 bar.

30

© Scania CV AB 2005, Sweden

Test connection 6

00:03-07/2

Brake system

10-09 Trailer relay valve Equipment: 2 pressure gauges

2.5 bar

1 Connect the pressure gauges to test connections 3 and 8. Note: When measuring increasing pressure, the brake pedal must either be depressed or kept still. If the brake pedal is released while measuring increasing pressure, the result of the measurement will be incorrect.

Test connection 3

When measuring dropping pressure, the brake pedal must either be released or kept still. If the brake pedal is depressed while measuring falling pressure, the result of the measurement will be incorrect. 2 Measure the pressure between the rear and trailer brake circuits. The pressure level is set at the factory to 0.3 bar and should normally not be changed. For more information, see main group 10 in the Workshop Manual, Trailer brake circuit, Components.

Test connection 8

00:03-07/2

© Scania CV AB 2005, Sweden

31

Brake system

10-10 Rear circuit load-sensing valve, air suspension

Note: Does not apply to vehicles with EBS.

Equipment: 2 pressure gauge

15 bar

2 pressure gauges

2.5 bar

The alignment chart for the load-sensing valve is located on the inside of the storage hatch above the passenger seat. The outlet pressure P2 can be read at a specific rear axle or bogie load 2 and air pressure value in the rear bellows P3. If the air pressure in the rear bellows cannot be obtained via the operation unit, the vehicle must be loaded.

1 2 3 4 5

32

© Scania CV AB 2005, Sweden

Example of alignment chart Input pressure P1 should be 6.0 bar. Rear axle or bogie load x 1000 kg Air pressure in rear bellows P3. Outlet pressure P2. Diagram part number.

00:03-07/2

Brake system

Checking maximum reduction 1 Connect 2.5 bar pressure gauges to test connections 6 and 10, and a 15 bar pressure gauge to test connection 3.

Test connection 3

Test connection 6

Test connection 10

2 Set the bellows pressure with the operation unit so that the pressure gauge on test connection 10 shows the following: 1.0 bar for 2-axle vehicles. 0.5 bar for other vehicles. If the bellows pressure increases, disconnect the pressure gauge.

00:03-07/2

© Scania CV AB 2005, Sweden

33

Brake system

3 Depress the brake pedal so that the pressure gauge at test connection 3 shows 6.0 bar.

1

2

4 Read the pressure gauge at test connection 6. Note the pressure.

5 Adjust the pressure using the adjusting screw on the load-sensing valve.

113 259

The pressure should be 1.6-1.9 bar.

Old version of load-sensing valve.

Mark the screw, stop nut and valve housing with paint after adjustment.

+

1

2 124 368

+

-

-

New version of load-sensing valve. 1 Brake pressure adjusting screw 2 Adjusting screw for maximum reduction

34

© Scania CV AB 2005, Sweden

00:03-07/2

Brake system

Checking brake pressure 1 Set the bellows pressure with the operation unit so that the pressure gauge on test connection 10 shows: Min 1.5 bar for 2-axle vehicles. Min. 0.8 bar for other vehicles

Checking the brake protection valve 1 Evacuate the rear air suspension. 2 Depress the brake pedal until the pressure gauge at test connection 3 shows 6.0 bar. 3 Read the pressure gauge at test connection 6. The pressure should be 5.8-6.1 bar.

If the bellows pressure increases, disconnect the pressure gauge. 2 Depress the brake pedal so that the pressure gauge at test connection 3 shows 6.0 bar. 3 Read the pressure gauge at test connection 6. Note the pressure. Compare the pressure with the alignment chart for the load-sensing valve in the vehicle. 4 Adjust the pressure using the adjusting screw on the load-sensing valve. 5 Mark the screw, stop nut and housing with paint after adjustment.

00:03-07/2

© Scania CV AB 2005, Sweden

35

Brake system

The rear circuit load-sensing valve, leaf spring suspension Equipment: 2 pressure gauges

15 bar

The alignment chart for the load-sensing valve is located on the inside of the storage hatch above the passenger seat.

The position of the arm above the zero position and the pressure at the outlet P2 are obtained for a given rear axle or bogie load 4, A or B curve and arm length. 1 2 3 4 5 6 7

36

© Scania CV AB 2005, Sweden

Example of alignment chart The vehicle type determines which line should be read. The A curve for tractors, the B line for trucks. Arm length R is determined by the spring configuration. Input pressure P1 from the service brake valve should be 6.0 bar. Rear axle or bogie load x 1000 kg Position of the arm above zero position. The topmost digit in each column indicates the arm length. Outlet pressure P2. Diagram part number.

00:03-07/2

Brake system

Checking the valve 1 Connect the pressure gauges to test connections 3 and 6.

2 Loosen the link to the load-sensing valve arm. The valve then sets itself to max. position, no reduction. 3 Depress the brake pedal so that the pressure gauge at test connection 3 shows 6.0 bar. Read the pressure gauge at test connection 6 and note the pressure. The pressure should be 5.8-6.0 bar.

Test connection 3

4 Read the arm vertical travel (R) between the maximum and minimum positions on the alignment chart in the cab. 5 Tie up the arm on the half vertical travel (R/2). 6 Depress the brake pedal so that the pressure gauge at test connection 3 shows 6.0 bar. Read the pressure gauge at test connection 6 and note the pressure. The pressure should be 2.7-2.9 bar. 7 Tie up the arm at the minimum position of half the vertical travel (max position - R).

Test connection 6

Note: Minimum position according to the alignment chart, not the minimum valve position. 8 Depress the brake pedal so that the pressure gauge at test connection 3 shows 6.0 bar. Read the pressure gauge at test connection 6 and note the pressure. The pressure should be 1.5-1.7 bar. 9 Replace the link on the valve arm.

00:03-07/2

© Scania CV AB 2005, Sweden

37

Brake system

Checking the setting 1 Check the arm length as shown on the alignment chart. 2 In order to read the alignment chart, the vehicle may have to be loaded until the desired rear axle or bogie load is reached. 3 Connect the pressure gauges to test connections 3 and 6.

Test connection 3

4 Depress the brake pedal so that the pressure gauge at test connection 3 shows 6.0 bar. 5 Read the pressure gauge at test connection 6 and make a note. Compare the reading with the alignment chart. 6 If the reading deviates more than +/-10% from the alignment chart, the link system between the driving axle and the valve must be adjusted. For adjustment of the link system, see main group 10 in the Workshop Manual, "Front and rear circuits, Components".

38

© Scania CV AB 2005, Sweden

Test connection 6

00:03-07/2

Brake system

10-11 Brake starting pressure Equipment: 1 pressure gauge

2.5 bar

1 Connect the pressure gauge to the test connection (5 on the front axle, 6 on the rear axle). 2 Jack up the vehicle so that the wheel to be measured is unloaded. 3 Hold the pressure gauge in one hand and rotate the wheel with the other. Ask a colleague to slowly depress the brake pedal. 4 Read the pressure gauge when the brakes start to grip. If the starting pressure is higher than the maximum brake pressure or if the difference on the same axle is greater than 0.2 bar, the brakes must be rectified in accordance with the booklet "Wheel brake components" in the Workshop Manual, group 10. Note the values measured. Maximum brake pressure irrespective of cylinder size Disc brake

0.3-0.5 bar

Drum brake with vibration damper

0.4-0.6 bar

Drum brake without vibration damper

0.2-0.4 bar

5 Measure on all wheels.

00:03-07/2

© Scania CV AB 2005, Sweden

39

Brake system

10-12 Checking secondary brake valve Note: Only applies to certain vehicles. Wheel configuration 4x2 and EBS gen. 2.2, without spring brake on front axle. Check the secondary brake valve using Scania Diagnos.

Equipment: 1 pressure gauge

2.5 bar

1 pressure gauge

15 bar

Test connection 3

122 382

1 Connect a 2.5 bar pressure gauge to test connection 5 on the left brake cylinder on the front axle and a 15 bar pressure gauge to test connection 3, rear circuit.

Test connection 5, front axle 2 Apply a pressure of 0.5 bar to the left side with Scania Diagnos. 3 Apply the front left brake when the pressure in the rear circuit increases. Apply the footbrake to 1.0-1.5 bar on the front brake. 4 Activate the secondary brake valve via Scania Diagnos. The front left brake should return to a pressure of 0.5 bar.

40

© Scania CV AB 2005, Sweden

00:03-07/2

Brake system

10-13 Liquid separator The liquid separator needs regular cleaning if it is to work properly. Intervals in accordance with L-inspection. The outside must be kept clean so that the cooling fins do not get clogged, and the internal cyclone must be kept clean of contaminants. Note: If severe oil transfer from the compressor occurs, e.g. because of wear, it may be necessary to clean the separator more often.

Cleaning 1 Evacuate the compressed air system. 2 Clean the liquid separator externally. 3 Dismantle the separator and take out the cyclone; see illustration. 4 Suspend the valve part of the separator (to avoid damaging the cable). 5 Clean the parts, including the filter in the valve part. 6 Assemble the separator. Use new O-rings and locknuts. Tighten the bolts to a torque of 5 Nm. 7 Fill the compressed air system and check that there is no leakage. 8 Perform a function check; see below. Functional inspection Every time the brake light comes on, the valve on the liquid separator opens and the liquid is drained from the container. 1 Depress the brake pedal. A hissing sound should be heard from the valve on the separator.

00:03-07/2

© Scania CV AB 2005, Sweden

41

Frame

11 Frame

Check tighten all the bolts on the engine brackets and gearbox brackets to the specified torque. Check the vibration damper rubbers for cracks.

00_1536

11-01 Engine and gearbox brackets

Tightening torques

Vibration insulator to frame

M10

47 Nm

Bracket to engine and to vibration insulator

M10

47 Nm

M12

84 Nm

M14

135 Nm

M16

210 Nm

M16

270 Nm

16 litre engine

42

© Scania CV AB 2005, Sweden

00_1537

Engine:

00:03-07/2

Frame

Vibration insulator to frame

M14

135 Nm

Bracket to gearbox and M16 to vibration insulator

210 Nm

00_1539

Also check-tighten the nuts that secure the clutch housing to the flywheel housing (not illustrated). Tightening torque 47 Nm.

00_1538

Manual gearbox

Automatic gearbox Vibration insulator to frame

M14

112 Nm

Bracket to flywheel cover M14

112 Nm

Bracket to gearbox

M16

180 Nm

Bracket to vibration insulator

M18x1.5 270 Nm

00:03-07/2

© Scania CV AB 2005, Sweden

105 792

M14x1.5 120 Nm

43

Frame

Transfer box M14

135 Nm

Bracket to transfer box M16 and to vibration insulator

210 Nm

104 927

Vibration insulator to frame

Torque converter Vibration insulator to frame

M12

135 Nm

104 928

Bracket to torque M14 converter and to vibration insulator

70 Nm

Towbar and towing hook M16

135 Nm

104 929

Draw beam to frame

44

© Scania CV AB 2005, Sweden

00:03-07/2

Frame

11-02 Drilling holes All attachments must be made by means of bolted joints in the middle surface of the side members. IMPORTANT! It is not permitted to drill holes in the frame flanges. There must be no welding in the chassis frame for the purpose of attaching bodywork. The flanges take the greatest stresses, and holes act as kerfs. The only exception to this is holes in the rear overhang, which are located so far back that they do not affect the strength of the frame. 00 1519

Hole patterns as shown below must be used. The picture shows the minimum distance between holes and flanges and between holes.

No holes may be drilled in the frame flange

A Distance hole - frame flange must be at least 3 x D B At least 4 x D C At least 3 x D

00:03-07/2

© Scania CV AB 2005, Sweden

45

Frame

Bolted joints

Design the bolted joint with the same dimensions as a friction joint. The bolt in a friction joint must be pretensioned. Bolts in bodywork attachments are usually short, which means that the working length of the bolt is short. When the layers of paint in the friction joint are worn away, the pretensioning of the bolts will be reduced. The bolts must be re-tightened if the friction joint is to operate correctly. It is important that the layers of paint are as thin as possible.

113 283

Bolted joints can act as both friction joints and clamp joints. Clamp joints must be made using tight-fit bolts, which require reaming. The unthreaded waist of the tight-fit bolt must pass through both the frame and the bracket (see illustration).

Use a tight-fit bolt

A lock nut will not prevent the pretensioning from being reduced, as the nut does not move in relation to the bolt. On the other hand, a lock nut will prevent the nut from working loose and coming undone when the pretensioning is reduced. Washers must be used to reduce the surface pressure beneath the bolt head and nut. The hardness of the washers must be at least 200 HB. For more detailed information, see: "Bodywork manual" or contact our service organization.

46

© Scania CV AB 2005, Sweden

00:03-07/2

Suspension

12 Suspension 12-01 Clamp bolts and retaining bolts

Shock absorber bracket

Clamp bolt

Retaining bolts

M14

112 Nm

M16

210 Nm

Front

84 Nm

Rear

135 Nm

8.8

135 Nm

12_0768

Tightening torques

10.9 (6x2Z) 170 Nm

Tightening torques

113 257

Check that the tightness of the shock absorber attachment corresponds to the torque stated. Fig. A

Upper attachment, fig. A

M14

70 Nm

M16

90 Nm

Other attachments, fig. B

M16

210 Nm

M20

350 Nm

104 930

Check that there are no signs of internal leakage in the shock absorbers.

Fig. B

48

© Scania CV AB 2005, Sweden

00:03-07/2

Suspension

Spring bolt, vehicles with air suspension Does not apply to tag axles on 6x2/4-vehicles. Check-tighten the spring bolt if the wear washers rotate. Tightening torques 800 Nm + closest split pin hole 104 931

M30

00:03-07/2

© Scania CV AB 2005, Sweden

49

Suspension

12-02 Clamp bolt nuts Check-tighten the U-bolt nuts to the specified torque when the vehicle is loaded so that the spring is straight. Note: Does not apply to vehicles with tag axle or vehicles with balance tandem. Tighten these with unloaded spring. IMPORTANT! Support the vehicle with stands under the frame and axles when renewing nuts and U-bolts. Special tools Torque wrench 200-1400 Nm (20-140 kpm) 587 302 or torque wrench 500-1500 Nm (50-150 kpm) 587 943 Torque wrench support

99 121

Waisted socket 30 mm

587 299

Waisted socket 32 mm

587 300

Sleeve 36 mm

587 637

Sleeve 46 mm

587 301

Vehicles with leaf suspension rear balance tandem BT 200/201 (6x4/8x4) Check-tighten the clamp bolt nuts in two stages: 400 Nm in the first stage and 760 Nm in the second. If any nut in the joint moves before the first torque has been attained, both U-bolts must be removed and checked before being re-used, but the nuts must be renewed. If any nut in the joint moves between the first or second torque, tighten according to steps 6 8, see Work description when renewing nuts BT200/201.

Tightening torques

50

M22

620 Nm

M24

760 Nm

M30

1150 Nm

© Scania CV AB 2005, Sweden

00:03-07/2

Suspension

Work description for renewing U-bolt nuts, BT 200 1 Check that the contact surfaces between the spring and the bracket are undamaged. 2 Lubricate the threads of the nut and the U-bolt.

587 302 587 637 150 Nm 400 Nm 570 Nm 760 Nm + 180 o 500 Nm

4 Tighten the bolts in the spring support, which holds the spring laterally, alternately to 500 Nm.

113 030

3 Tighten all four nuts in a cross pattern to 150 Nm.

BT200

5 Tighten the two nuts on the rear U-bolt to 400 Nm. 6 Tighten the nuts on the front springbolt alternately in three stages: 400 Nm, 570 Nm and 760 Nm. 7 Tighten the nuts on the rear clamp bolt in a further two stages: 570 Nm and 760 Nm. 8 Tighten all four U-bolt nuts by a further 180°. Start with the front U-bolt.

00:03-07/2

© Scania CV AB 2005, Sweden

51

Suspension

Work description for renewing U-bolt nuts, BT 201, parabolic spring

1 Check that the contact surfaces between the spring and the bracket are undamaged. 2 Lubricate the threads of the nut and the U-bolt. 3 Tighten all the nuts to 150 Nm. 4 Tighten the two nuts on the rear U-bolt to 400 Nm. 5 Tighten the two nuts on the front U-bolt as per following step: 400 Nm, 570 Nm and 760 Nm. 6 Tighten the rear U-bolt to 760 Nm. 7 Tighten all four U-bolt nuts by a further 180°. Start with the front U-bolt. BT201

52

© Scania CV AB 2005, Sweden

00:03-07/2

Suspension

Vehicles with leaf suspension rear balance tandem BT 300 and BT 201 multi-leaf spring Check-tighten the U-bolt nuts to 1150 Nm. If any nuts in the joint move, both U-bolts must be removed and checked before being re-used, but the nuts must be renewed.

Work description for renewing nuts, BT 300 and BT 201 multi-leaf spring 1 Check that the contact surfaces between the spring and the bracket are undamaged. 2 Lubricate the threads of the nut and the U-bolt.

1 200 Nm

2 200 Nm

3 Tighten all nuts diagonally to 200 Nm.

4 500 Nm + 1000 Nm

3 500 Nm

4 Tighten the two nuts on the rear U-bolt to 500 Nm.

o 6 + 120

5 1000 Nm 7 + 120

o

5 Tighten the two nuts on the front U-bolt as per following step: 500 Nm, 1000 Nm. 6 Tighten the rear U-bolt to 1000 Nm. 7 Tighten all four U-bolt nuts by a further 120°. Start with the front U-bolt. 587 301

127 044

587 943

00:03-07/2

© Scania CV AB 2005, Sweden

53

Suspension

Vehicles with air suspension - rear driving axle / tag axle, except tag axle 6x2/4 and 8x2/4 Check-tighten the clamp bolt nuts in two stages: 500 Nm in the first stage and 760 Nm in the second. If any nut in the joint moves before the first torque has been attained, both U-bolts must be removed and checked before being re-used, but the nuts must be renewed.

Work description for renewing nuts 1 Check that the contact surfaces between the spring, the lower bracket and the axle are undamaged. 2 Lubricate the threads of the nut and the U-bolt. 3 Tighten all four nuts to 150 Nm, as per the figure. 4 Tighten all the nuts to 400 Nm. Start with the front U-bolt as illustrated. 5 Tighten all the nuts to 760 Nm. Start with the front U-bolt as illustrated.

54

© Scania CV AB 2005, Sweden

00:03-07/2

Suspension

6 Tighten all four U-bolt nuts by a further 180°. Start with the front U-bolt as illustrated. 7 Check distance B at the U-bolt. The difference between dimension B at the left and right hand sides of the U-bolt must not exceed 3 mm. If the dimension deviates or if the U-bolt is resting against the bracket C, renew the U-bolt and retighten. Note: The U-bolts must not be retightened on account of the angle tightening.

00:03-07/2

© Scania CV AB 2005, Sweden

55

Suspension

Vehicle with air suspension - rear tag axle 6x2/4 and 8x2/4 Check-tighten the clamp bolt nuts in two stages: 470 Nm in the first stage and 620 Nm in the second. If any nut in the joint moves before the first torque has been attained, both U-bolts must be removed and checked before being re-used, but the nuts must be renewed. 1 Tighten all four nuts to 120 Nm, as per the figure. 2 Tighten all the nuts to 300 Nm. Start with the front U-bolt as illustrated. 3 Tighten all the nuts to 470 Nm. Start with the front U-bolt as illustrated. 4 Tighten all the nuts to 620 Nm. Start with the front U-bolt as illustrated.

56

© Scania CV AB 2005, Sweden

00:03-07/2

Suspension

12-03 Balance tandem BT200/201/300 Check-tighten bolted joint between trunnion bracket and frame. For BT200: Also checktighten the cap bolts.

Bracket BT200/201/300 M20

450 Nm

Cap BT200 M20

420 Nm

113 258

Tightening torques

BT200

12-04 Torque rod, air suspension Check the torque rod attachment and bracket

Front torque rod

Transverse torque rod

00:03-07/2

© Scania CV AB 2005, Sweden

57

Suspension

12-05 Air suspension Operation unit (ELC)

There are nine buttons and two lamps on the operation unit. The left lamp indicates if button No. 2 is activated and the right lamp indicates if button 3 is activated. Button 4 is not used. 1 Lamps indicating if button 2 or 3 (raising/ lowering, front or rear) are activated.

1 3 2 4 6 7

5 9

M1

M2

10 8

STOP

104 654

The operation unit allows the vehicle to be raised or lowered to the desired level. The operation unit contains a separate microprocessor. The control box communicates with the control unit by digital signals.

2 Raising/lowering, front. 3 Raising/lowering, rear. 4 Not used. 5 M1. Memory for individually programmed level. Must be combined with button 2 and/or 3. 6 M2. Memory for individually programmed level. Must be combined with button 2 and/or 3. 7 Setting normal drive level. Must be combined with button 2 and/or 3. 8 Raising. Must be combined with button 2 and/or 3. 9 Lowering. Must be combined with button 2 and/or 3. 10 Stop. Cancels started function (5-7). Also used to activate the standby function and when programming M1 and M2. Interrupts release of the front spring brake when this function is activated.

58

© Scania CV AB 2005, Sweden

00:03-07/2

Suspension

100668

Test connection 1, new version

Connect workshop air supply to the socket on the left side, beneath the step. Older version.

Test connection 1, new version

00:03-07/2

© Scania CV AB 2005, Sweden

59

Suspension

Operation unit, vehicles with A suspension The operation unit for vehicles without front axle air suspension does not have button 2. For these vehicles, the operation unit for vehicles with full air suspension should be used as a spare part.

1 3

Drive level check

2 4 6

WARNING!

Never work underneath a vehicle with air suspension with the bellows pressurised. There is a risk of the bellows bursting and causing injuries by crushing. Use axle stands.

7

5 9

M1

M2

10 8

STOP

104 654

!

Note: Ensure that there is full working pressure in the brake system.

2 Activate buttons 2 and 3 so that both lamps 1 are on. 3 Press the green button 7.

12 0752

1 Lower the tag axle.

Warning lamp for level fault

4 Check that the level warning lamp on the instrument panel has gone out. 5 Measure the height at the rear and at the front. For correct value, refer to the Workshop Manual group 12, booklet Air spring heights, Adjustment of air spring heights.

60

© Scania CV AB 2005, Sweden

00:03-07/2

Suspension

Mechanically-controlled air suspension Drive level check Note: Ensure that there is full working pressure in the system. 1 Switch on the ignition power.

100 990

Check that the switch to the manual level control is not activated.

On some vehicles there is a switch for raised drive level on the instrument panel.

100 996

Check that this switch is not activated.

2 Measure the distance (1) from the rear axle housing to the underside of the frame.

1

113 183

For correct value, refer to the Workshop Manual group 12, booklet Air spring heights, Adjustment of air spring heights.

00:03-07/2

© Scania CV AB 2005, Sweden

61

Suspension

Checking tag axle with air suspension

!

WARNING!

100278

Never work underneath a vehicle with air suspension with the bellows pressurised. There is a risk of the bellows bursting and causing injuries by crushing. Use axle stands.



Lower the tag axle. Switch down.



Never work underneath a truck with air suspension with the bellow pressurised. There is a risk of the bellows bursting and causing injuries by crushing.



Raise the tag axle. Switch in middle position. (Switch in upper position is load transfer).

Note: When the tag axle is raised, the lifting bellows is always fully pressurised.

62

© Scania CV AB 2005, Sweden

101 167

Note: Ensure that there is full working pressure in the system. The vehicle must be unloaded to the extent that it is possible to raise the tag axle.

00:03-07/2

Suspension

The chassis should automatically assume raised drive level at the rear with the tag axle raised.



When the tag axle is lowered, the chassis should automatically return to normal drive position.

100281

100280



00:03-07/2

© Scania CV AB 2005, Sweden

63

Steering system

13 Steering system 13-01 Oil level in power steering Oil grade: Oils, refer to booklet 00:03-09.

Note: Observe the utmost cleanliness. The power steering gear is very sensitive to dirt.

106 515

To prevent dirt from penetrating into the steering system, top up the oil via the dipstick opening.

112 383

The oil level must be between the lines on the dipstick when the dipstick is fully pushed down to the bottom.

Location, T cab

64

© Scania CV AB 2005, Sweden

00:03-07/2

Steering system

13-02 Checking front axle weight, double front axles The distribution of front axle weight on vehicles with double front axles is checked by weighing.

Weighing

All axles must be at the same level when weighing. If one axle pair is on a higher level, the other axles must be raised on blocks so that the vehicle is completely level.

122 278

It is essential the weighing is carried out correctly. Tyre pressure and uneven ground can have a great effect on the results. Therefore, always check tyre pressures thoroughly before weighing and measuring.

The internal friction of the leaf spring suspension will also affect the results. Make sure the suspension is compressed between each weighing. Weighing must be carried out several times, at least three, in order to obtain a reliable result. The average measurement can then be used to select spacers. If the difference between the front axles is greater than 300 kg on a laden truck, the front axle weight distribution must be adjusted. Refer to Workshop Manual group 13.

00:03-07/2

© Scania CV AB 2005, Sweden

65

Electrical system

16 Electrical system



Check that the fluid level is correct, e.g. that it is at the correct level above the plates in all cells, see table.



Top up with distilled water as and when necessary.

Note: Sulphuric acid or "booster electrolyte" must not be used.

66

Battery capacity

Fluid level X

140 Ah

20-25mm

175 Ah

20-25mm

220 Ah

30-35mm

© Scania CV AB 2005, Sweden

X

136 901

16-01 Fluid level in batteries

00:03-07/2

Electrical system

16-02 Charging condition

!

WARNING!

Charging must be carried out only with the battery cable terminal detached or the battery master switch activated or the control units may be destroyed.

Check the specific gravity of the acid using a hydrometer. In a fully-charged battery it should be: At

+ 20 °C

1.280

At

0 °C

1.294

At

- 20 °C

1.308

If the density is below 1.24 the battery must be charged. A discharged battery will freeze at - 5 °C.



Do not rapid-charge the batteries. The battery will be damaged after repeated rapid-charging.

Note: If the charge differs between the batteries, they must be charged separately.

There must be a difference of no more than 0.03 between the battery cells.

00:03-07/2





For instructions, see group 16, " Electrical system components".

© Scania CV AB 2005, Sweden

67

Electrical system

16-03 Headlamp adjustment Vehicles with leaf suspension Headlamp adjustment must be checked at kerb weight.

Vehicles with air suspension



100 868

On vehicles with air suspension, the headlamps must be checked with the tag axle lowered and the regular drive level set. Ensure that there is sufficient pressure in the air tanks. If the vehicle has height control: Check that the height control works. Set it to 0.

Height control

• •

68

Undo the two screws in the direction indicator and open it. Adjust the headlamp vertically and laterally.

© Scania CV AB 2005, Sweden

2

1

100 869

3

1 Height adjustment 2 Lateral adjustment 3 Direction indicator

00:03-07/2

Electrical system

16-04 Check and delete fault codes using a PC Start Scania Diagnostics The power must be turned off using the starter key. 1 Connect the VCI to the vehicle's diagnostic socket and to the PC.

103431

2 Switch on the power using the vehicle starter key.

PC and VCI connected to the socket in the central electric unit.

3 Start the Scania Diagnos program.

5 Select all system groups and click on "Find in vehicle".

113 038

4 Select the vehicle category and click on "OK".

The program will search for and identify all control units in the system groups in the vehicle. The number of fault codes stored is shown for every system group.

113 039

If no fault codes have been stored, the program can be terminated.

00:03-07/2

© Scania CV AB 2005, Sweden

69

Electrical system

113 040

6 Select a system and click on "OK". A system window will be displayed. Click on "Fault codes".

7 Click on the arrow for stored fault codes to display the fault codes. Note the fault codes, then double-click on "Clear fault codes". 8 Return to the system group window and select the next system that has fault codes.

113 041

To return to the previous window click on "Close".

Exit Scania Diagnos Close the program by selecting File and Exit, or by double-clicking on the system menu box. ALT + F4 can also be used if you find this easier.

70

© Scania CV AB 2005, Sweden

00:03-07/2

Electrical system

16-05 EDC, electronically controlled fuel injection Reading flashing codes 1

The fault codes are read using flashing codes from the diagnostics lamp on the instrument panel.

2

The power must be switched on with the starter key.

2 Press the diagnostics switch again and count the number of times the lamp flashes. If the same code is shown, there is only one fault in the control system. Repeat the procedure and note all the error codes until the first one is displayed again.

100275

1 Press the diagnostics switch. Release it and count the number of times the lamp flashes.

1 Diagnostics switch 2 Diagnostics lamp

115 885

The long flashes shown first represent tens. The shorter flashes, (0.3 seconds) that follow represent units. New design of diagnostics panel The example on the right symbolises fault code 25.

112 580

A single, very long flash (4 s) means that there are no fault codes stored in the memory.

00:03-07/2

© Scania CV AB 2005, Sweden

71

Electrical system

Clear fault codes The fault codes must be cleared when trouble shooting and repair are complete. Clearing takes place on two different levels and is described in the following passage.

Final erasure of fault codes using a PC

Erasing fault codes The following procedure will clear the fault codes that are flashed out with the diagnostics lamp. However, the fault codes will remain in another memory which can only be accessed using a PC. 1 Start and switch off the engine once so that a shutdown test is carried out. Wait until the warning lamp goes out.

3 Turn the starter key to the drive position and wait at least 3 seconds. Resetting is then complete. 4 Start the engine and check that the indicator lamp goes out.

00 1561

2 Press the diagnostics switch and keep it depressed.

When trouble shooting and repair are complete, the fault codes must be cleared using Scania Diagnos and a PC. Both the flashing code memory and the PC memory in the control unit are erased simultaneously using the PC.

5 Press the diagnostics switch. The fault code memory should be empty, i.e. a single long flash.

72

© Scania CV AB 2005, Sweden

00:03-07/2

Electrical system

16-06 Opticruise Notification of fault codes When the driver switches off the power, the message "CHK CODE" is displayed in the display window if the control unit has stored any fault codes during driving. The message is repeated when the power is switched back on again.

1 Switch on the power using the starter key. Wait five seconds then press the diagnostics switch for at least half a second. Then release it. The heading "TESTING" is displayed in the text window and the buzzer sounds. Do not touch the diagnostics switch for the moment: The test programme is now running. All the text boxes in the text window light up for a second. At the same time the buzzer sounds.

ECU NO PROG NO CHASSNO F CODES

112 582

Reading fault codes

TESTING

2 The heading "ECU NO" is displayed, directly followed by the part number of the control unit hardware. 3 The heading "PROG NO" is displayed, directly followed by the part number of the control unit software. 4 The heading "CHASSNO" is displayed, directly followed by the vehicle chassis number. 5 The heading "F CODES" is displayed, directly followed by any fault codes stored. More on this below. •

The fault codes are displayed one at a time, at two second intervals.

00:03-07/2

© Scania CV AB 2005, Sweden

73

Electrical system

When all the stored fault codes have been displayed, the buzzer will sound briefly. The stored fault codes are then displayed again. This can be repeated any number of times, so there is no problem if you lose concentration.



The text window may, for example, appear as in the figure on the left. A shows the number of the fault code (10 in this case) and B shows how many times the fault has been recorded (3).

6 Note the fault codes. Go through the test program. Press the diagnostics switch to move between the various test stages.

E010 003 A

112 583



B

It may be necessary to reset the warning system now and then. Someone may have disconnected a cable harness for example, whilst the power was on. This is quite a common occurrence. The control unit will then interpret it as a genuine fault.

115 885

Resetting the warning system

New design of diagnostics panel

Resetting of the warning system is carried out by either using the diagnostic switch concealed behind the cover in the instrument panel or using a PC connected to the vehicle's diagnostic socket in the central electric unit.

05_5378

The symbol for the Opticruise diagnostic switch is a gear with an exclamation mark in the middle.

74

© Scania CV AB 2005, Sweden

00:03-07/2

Electrical system

All fault codes are cleared when the warning system is reset. Proceed as follows.

2 Press and hold the diagnostics switch. Switch on the power supply.

ERASED

112 584

1 Switch off the power using the starter key.

3 The buzzer will sound briefly. When the text "ERASED" is displayed in the text window, clearing is completed. 4 Drive the vehicle and check that the fault codes are not generated again.

Final erasure of fault codes using a PC

00 1561

When trouble shooting and repair are complete, the fault codes must be cleared using Scania Diagnos and a PC. Both the flashing code memory and the PC memory in the control unit are erased simultaneously using the PC.

00:03-07/2

© Scania CV AB 2005, Sweden

75

Electrical system

16-07 Allison automatic gearbox General The control unit can save five fault codes in its memory. The fault codes are stored in order of priority, the most serious fault being stored first.

Reading fault codes (old controls) 1 Press the diagnostics switch twice. Use a blunt pen or similar. The text window is then set to fault code mode.

1 Display 2 MODE switch 3 Diagnostics switch

SELECT

MONITOR

MODE ON

2 The text window will first display a "d" together with the storage and priority number, followed by the first pair of digits in the fault code, and finally the second pair of digits in the fault code. See the example in the following table.

104 840

Note: If the driving mode selector flashes out the code on the right the whole time, the communication between the driving mode selector and the control unit is not working.

Communication faults must be rectified before any fault codes can be displayed

If the fault remains, the message "MODE ON" will be displayed.

76

© Scania CV AB 2005, Sweden

00:03-07/2

Electrical system

Clear fault codes (old controls)

Example of error message This is displayed first....

1 Press the diagnostics switch twice. Use a blunt pen or similar. The text window is then set to fault code mode.

d 2

followed by.....

2 Depress the MODE switch and keep it depressed for at least 10 seconds. You will hear two signals: the first after 3 seconds and the second after 10 seconds. This is a confirmation that the warning system has been reset. Release the switch.

1 3

followed by.....

1 2

The above fault code message is interpreted like this: The fault code is the second in sequence, and the fault code number is 13-12 3 Depress the MODE switch to see the next fault code. Repeat this until all fault codes have been read.

3 Drive the vehicle in such a way that the gearbox is used to change up and down the gears a few times. 4 Stop the vehicle and check that no fault codes have been generated.

4 Press the diagnostics switch once to return to normal mode.

00:03-07/2

© Scania CV AB 2005, Sweden

77

Electrical system

Reading fault codes (new controls)

1 2

1 Press the switch or switches at position 4 twice. The text window is now in fault code mode.

MODE

3

PERF

108 627

4

2 The text window 3 will display the storage number first, followed by four digits for the code. If the fault is active the LED 1 will be on.

1 2

3

3 Press switch 2 to see the next fault code.

PERF

R

4 Press the switch or switches at position 4 once to return to normal mode.

MODE

N

4 108 626

D

Example of error message This is displayed first....

Example of error message d

This is displayed first....

2 followed by.....

1

2 followed by.....

3 followed by.....

1

d

d 32

followed by.....

-

2

This sequence is interpreted as follows: The second fault code in sequence, with code number 13-12.

78

The sequence above mean that no fault codes have been recorded in the second fault code sequence.

© Scania CV AB 2005, Sweden

00:03-07/2

Electrical system

Clear fault codes (new controls) 1 Press the switch or switches at position 4 twice. 2 Press switch 2 and keep it depressed for at least 10 seconds.

MODE

3

PERF

4

108 627

3 You will see that the LED 1 flashes to confirm that the gearbox has been reset. The first flash comes after 3 seconds and the second after 10 seconds. Release the switch.

1 2

1 2

3 PERF

R

MODE

N

4 108 626

D

00:03-07/2

© Scania CV AB 2005, Sweden

79

Electrical system

16-08 Bosch ABS/TC "CP12" A maximum of five fault codes can be stored without switching off the ignition power. If a sixth fault occurs, this replaces the first one stored. The fault stored last is displayed first. A maximum of two faults can be displayed in a flash sequence.

1

2

Reading fault codes 10 2097

Switch on the ignition power. Depress the brake pedal, then release it. If you then press the diagnostics switch for at least 1 second, the flashing code will be displayed. The flashing code consists of four different flashing sequences at intervals of 1.5 seconds, see illustration.

1 Diagnostics switch 2 Diagnostics lamp

1 The first flashing sequence indicates whether the system is an ABS or an ABS/ TC system. The lamp should flash twice or five times this time. 2 The second flashing sequence indicates the type of control on the front axle. For further information, see group 10:04-02. The lamp should flash twice this time.

115 885

3 The third flashing sequence indicates any faults in the first diagonal set of wheels (front left - rear right). 4 The fourth flashing sequence indicates any faults in the second diagonal set of wheels (front right - rear left).

1

2

3

4

112 585

New design of diagnostics panel

The example shows an ABS system with MIR control on the front axle and fault-free diagonal sets of wheels.

80

© Scania CV AB 2005, Sweden

00:03-07/2

Electrical system

Clear fault codes The fault codes must be cleared when trouble shooting and repair are complete. Clearing takes place on two different levels and is described below. 1 Switch off the ignition voltage. 2 Press the diagnostics switch. 3 Switch on the starter voltage and hold the diagnostics switch depressed for at least 1 second. 4 Keep the starter voltage on for at least 5 seconds.

00:03-07/2

© Scania CV AB 2005, Sweden

81

Electrical system

16-09 Bosch EBS

05_5161

A maximum of 15 fault codes can be stored. If a 16th fault occurs, this replaces the first one stored. The fault stored first (the oldest one) is displayed first. During clearing, all fault codes stored are cleared.

1

2

ED C 05_5332

E TC

1 Diagnostics switch 2 Diagnostics lamp

Reading fault codes The EBS flashing code has no configuration code. To view flashing codes, the diagnostics switch must be pressed for at least two seconds. The power must be switched on with the starter key. Every fault code is displayed in two sequences of flashes. There is a pause of 1.5 seconds between the flashing sequences.

Flashing sequences are always concluded with the completion code, 2 plus 1 flashes. This code indicates that there are no more flashing codes. If only the completion code is displayed, the system is fault-free.

82

© Scania CV AB 2005, Sweden

115 885

There is a pause of 4.5 seconds between fault codes.

New design of diagnostics panel

00:03-07/2

Electrical system

Flashing sequence with fault codes 3-2 and 2-2.

Note: The digits above the flashing sequence indicate the time in seconds. The digits below are references to the text in the number list. 1 Introduction. Depress the diagnostic switch for at least two seconds. The lamp will come on continuously. 2 Pause. 3 First fault code, flashing sequence 1 (three flashes) 4 First fault code, flashing sequence 2 (two flashes) 5 Pause between fault codes. 6 2nd fault code, flashing sequence 1 (two flashes) 7 2nd fault code, flashing sequence 2 (two flashes) 8 Completion code, flashing sequence 1 9 Completion code, flashing sequence 2

Clear fault codes 1 Switch off the power. 2 Press the diagnostics switch. 3 Switch on the power and hold the diagnostics switch depressed for at least 1 second.

00:03-07/2

© Scania CV AB 2005, Sweden

83

Electrical system

16-10 Wabco ABS/TC "D" 05_5161

In this version of the Wabco ABS/TC, there is a built-in system for troubleshooting and diagnosis. This system has two modes: diagnosis and system mode. In system mode, stored fault codes are cleared and the ABS/TC system control unit type is displayed.

1

2

ED C 05_5332

E TC

1 Diagnostics switch 2 Diagnostics lamp

Diagnostic mode Two things can be indicated in diagnostic mode:

2 Fault codes for the faults stored in the fault code memory are displayed. Of these faults, the last four to be recorded are displayed in reverse order, i.e. the last fault to occur is displayed first, any other fault codes are flashed in random order. There may be a maximum of 16 fault codes stored. Faults can be present that the control unit detects only when the vehicle is being given.

84

© Scania CV AB 2005, Sweden

115 885

1 The fault code for the current fault is displayed if the fault still exists. The current fault must be repaired so that any other faults can be displayed. The control unit is able to display only one current fault code at a time.

New design of diagnostics panel

00:03-07/2

Electrical system

Reading fault codes

No fault exists/no fault codes stored

NF

The fault code consists of two digits.

102 156

D

For the control unit to display the current or stored fault codes, the diagnostics switch must be kept depressed for 0.5-3.0 seconds (=diagnostic mode). If the switch is kept depressed for more than 3.0 seconds, system mode is selected.

D = Indicates that the diagnostics switch is depressed. NF = No fault/no fault codes stored. If the vehicle is fault-free, this flashing code is displayed once.

Current fault code 2

101 894

1 D

AF

D = Indicates that the diagnostics switch is depressed. 1 = 1st digit in the fault code. 2 = 2nd digit in the fault code. AF = The control unit has sensed that a fault is present. Display of the current fault code is repeated. The control unit is able to display only one current fault code at a time.

Stored fault codes (no current fault code)

F1

2

F2

F3

101 895

1 D

D = Indicates that the diagnostics switch is depressed. 1 = 1st digit in the fault code. 2 = 2nd digit in the fault code. F1 = 1st stored fault code F2; F3 = 2nd, 3rd stored fault code Comment on F1, F2 and F3: stored fault codes are displayed once. There may be a maximum of 16 fault codes stored.

00:03-07/2

© Scania CV AB 2005, Sweden

85

Electrical system

System mode The diagnostics switch must be kept depressed for 3-6 seconds for the control unit to switch to system mode. The following takes place in system mode: 1 Stored fault codes are cleared. The clearing of the stored fault codes is confirmed by the diagnostics lamp, which flashes rapidly eight times. If there is a current fault code, this cannot be cleared: the fault must be repaired first. 2 The ABS/TC control unit type is flashed in a system flashing sequence that is repeated. E.g. one flash = 6x2 vehicles and five flashes = 6x4 vehicles.

System mode display Clear fault codes The diagnostics switch must be kept depressed for 3-6 seconds for the control unit to switch to system mode. The following is then displayed/ happens:

If there is a current fault code: S

101 896

D

D = Indicates that the diagnostics switch is depressed. S = System flashing sequence, flashes as long as the control unit is in system mode. One flash = 6x2 vehicle Five flashes = 6x4 vehicle

86

© Scania CV AB 2005, Sweden

00:03-07/2

Electrical system

Stored fault codes will be cleared if there are no current fault codes. S C

101 897

D

D = Indicates that the diagnostics switch is depressed. S = System flashing sequence, flashes as long as the control unit is in system mode. One flash = 6x2 vehicle. Five flashes = 6x4 vehicle. C = Eight rapid flashes, confirmation that the stored fault codes have been cleared.

00:03-07/2

© Scania CV AB 2005, Sweden

87

Electrical system

16-11 Retarder Reading fault codes Diagnostic lamp flash codes must be read while the vehicle is stationary. It does not matter if the engine is running or not.

1

2

Proceed as follows: Turn the starter key into the drive position and wait for a few seconds. Keep the diagnostics switch (1) depressed for at least 1 second, then release it.

First, the control unit configuration is shown, followed by the fault codes. If no fault codes are stored, only the configuration code will be flashed.

100277

The diagnostics lamp (2) goes off for 2 seconds, then the flashing starts. The series of flashes are separated by clear pauses. 1 Diagnostics switch 2 Diagnostics lamp

First the three digit configuration code is flashed, followed by a 4.5-second pause. The fault codes, each one consisting of 2 digits will then follow. The ten digit is flashed first, followed by the unit digit.

Diagnostic lamp flashes may be repeated any number of times. Just press the diagnostic switch again. The fault codes remain in the control unit until deliberately erased.

New design of diagnostics panel

3

2

......

88

© Scania CV AB 2005, Sweden

00:03-07/2

112 581

The fault codes are flashed out as follows: 1st digit — 1.5 s pause — 2nd digit — 4.5 s pause — next fault code — next fault code and so on. The fault codes are flashed out in the order the faults occurred.

115 885

The example on the right shows fault code 32

Electrical system

Erasing fault codes The fault codes must be cleared when trouble shooting and repair are complete. Clearing takes place on two different levels and is described below. Note: The vehicle may have to be driven for up to half an hour for certain fault codes to be generated. 1 Switch off the power using the starter key. Press in the diagnostic switch 1 and keep it depressed.

ABS

RET 10 1845

3 Drive the vehicle and check that the ABS warning lamp and the RET lamp go out. If neither the ABS warning lamp nor the RET lamp go out, or if the RET lamp comes on again despite repeated resetting, then there is still fault present. The fault code indicates where to search for the fault.

10 2571

2 Turn the starter key to the drive position and wait for at least three seconds. The fault codes have now been erased.

Final erasure of fault codes using a PC

00 1561

When trouble shooting and repair are complete, the fault codes must be cleared using Scania Diagnos and a PC. Both the flashing code memory and the PC memory in the control unit are erased simultaneously using the PC.

00:03-07/2

© Scania CV AB 2005, Sweden

89

Electrical system

16-12 ELC, electrically-controlled air suspension

1

2

100276

The ELC constantly checks its own function. If there is a fault, this is indicated by means of the system fault lamp. The detected fault is allocated a fault code which is stored in the control unit. The fault code can then be read as a flashing code. The fault code is saved even if the fault is temporary and the system returns to normal function and the system fault lamp goes out.

Reading flashing codes

1 Diagnostics switch 2 Diagnostics lamp

The fault codes are read using flashing codes from the diagnostics lamp on the instrument panel. The power should be switched on using the starter key

2 Release the diagnostics switch; the first fault code will be flashed out. Note: If all three ELC warning lamps light up when the diagnostics switch is pressed, this means that the button has been kept depressed for too long and the readout is stopped.

90

© Scania CV AB 2005, Sweden

115 885

1 Depress the diagnostic switch next to the diagnostic lamp for at least 2 seconds and no longer than 7 seconds.

New design of diagnostics panel

00:03-07/2

Electrical system

3 The flashing code is made up of tens and units. When the diagnostics switch is released, the first ten is flashed out. The flashing signals for tens are slow, 10, 20, 30, etc.

4 The flashing signals are added together to give the fault code, which can be read from the fault code list. 5 When the diagnostics switch is depressed again, the next fault code is flashed. 6 To read the first flashing code again, the starter voltage must be switched off and then back on.

00:03-07/2

1 2

12 0763

The units are flashed out after the tens. The flashing signals for units are rapid, 1, 2, 3, 4, etc.

0

2

4

6

[s]

Flashing code for fault code 33 1 Flashing code, tens 2 Flashing code, ones

© Scania CV AB 2005, Sweden

91

Electrical system

Erasing fault codes The fault codes are stored in the control unit until they are cleared. It is important that the fault codes are cleared when the faults have been rectified so that there is no confusion the next time trouble shooting is carried out. 1 Switch off the power using the starter key. Depress the diagnostics switch and keep it depressed. 2 Turn the starter key to the drive position and wait at least three seconds before releasing the diagnostics switch. The fault codes have now been erased. 3 Drive the vehicle, raise and lower the chassis, raise the tag axle where applicable and check that the fault codes are not generated again.

Final erasure of fault codes using a PC

00 1561

When trouble shooting and repair are complete, the fault codes must be cleared using Scania Diagnos and a PC. Both the flashing code memory and the PC memory in the control unit are erased simultaneously using the PC.

92

© Scania CV AB 2005, Sweden

00:03-07/2

Cab

18 Cab 18-01 Cab tilt mechanism

!

WARNING!

Do not work under a cab tilted to the intermediate position. Always tilt the cab fully. Do not stand in front of or behind the cab during tilting. When working under the cab, the cab should be secured using a strut or similar.



99 295

18 2321

When tilting the cab, the engine must be turned off, the parking brake applied and the gear box in neutral. There is a risk that a gear could be engaged, when tilting the cab.

Cab strut for shackle lock 99 295

Tilt the cab. Use cab strut 99 295 (for shackle lock) or 99 431 (for shackle and wedge lock) to secure the cab.

Cab strut for shackle and wedge lock 99 431

00:03-07/2

© Scania CV AB 2005, Sweden

93

Cab



Check-tighten the mounting bolts for the cab stops and the tilt cylinder to the specified torques.

Tightening torques Tilt cylinder and cab stop to cab

270 Nm

Tilt cylinder and cab stop to frame 39 Nm

18_2303

For work other than check-tightening, see group 18 in Workshop Manual.

18 2339

Tipper cylinder

Cab stop CR

94

© Scania CV AB 2005, Sweden

00:03-07/2

Cab

18-02 Cab tilt pump Checking oil level Note: Never fill the cab tilt pump with oil when the cab is in the tilted position. Oil grade: Oils, refer to booklet 00:03-09.

18 2358

Check that the oil reaches the edge of the filler hole when the cab is in the drive position.

Checking oil level, Topline A

!

WARNING!

The hydraulic cab tilt system is continuously under a certain level of internal pressure. Before you remove the oil filler plug the pressure must be neutralised.

132 692

Do not remove the oil filler plug from the hand pump before you have read the instructions below.

1 Set the pump valve in the tilt position. Pump around 20 strokes. After this, the cab should have moved slightly upwards. 2 Set the pump valve back to the lowering position. The cab returns to its original position. 3 Check that the oil level is around 30 mm down the oil filler hole. The level should be above the pump plunger when it is at its lowest position.

00:03-07/2

© Scania CV AB 2005, Sweden

95

Cab

18-03 Checking and adjusting the drive level

!

WARNING!

Danger of crushing when adjusting drive level.

A Front cab suspension Older R cab 1 Undo the levelling valve.

18_2309

2 Turn the levelling valve forward or backward, depending on whether an increase or decrease in suspension height is required. 3 Adjust the distance A between the lower edge of the bracket and the cap. Front cab suspension, old R cab Check A = 267-277 mm Adjustment A = 269-275 mm

4 Tighten the levelling valve.

Newer R cab 1 Loosen the frontmost of the two bolts in the bracket on the front cab suspension. 2 Turn the bracket until the distance A is obtained between the anti-roll bar cap and the cab suspension bracket. 3 Tighten the front bolt. 4 After road test, check and (if required) adjust the levelling valves. Front cab suspension, new R cab Check A = 267-277 mm Adjustment A = 269-275 mm

96

© Scania CV AB 2005, Sweden

00:03-07/2

Cab

P and T cab 1 Loosen the stop nut on the link. 2 Detach the link from the joint ball. 3 Adjust by turning the link until distance A is obtained between the top of the bracket and the cap. 4 Tighten the stop nut and attach the link. 5 After road testing, check the levelling valves and adjust if required.

Front cab suspension, P-cab Check A = 267-277 mm Adjustment A = 269-275 mm T cab Check A = 285-295 mm Adjustment A = 287-293 mm

Rear cab suspension P and R cabs with wedge lock 1 Loosen the stop nut on the link. 2 Detach the link from the joint ball.

A

3 Adjust by turning the link until distance A is obtained between the bracket and the washer. 4 Tighten the stop nut and attach the link. 132 030

5 After road testing, recheck the levelling valves and adjust if required. Check dimension A = 59-69 mm Adjustment A = 61-67 mm

00:03-07/2

© Scania CV AB 2005, Sweden

97

Cab T cab as well as P and R cab with shackle lock 1 Loosen the stop nut on the link. 2 Detach the link from the joint ball.

A

3 Adjust by turning the link until distance A is obtained between the bracket and the washer. 4 Tighten the stop nut and attach the link. 18_2336

5 After road testing, recheck the levelling valves and adjust if required.

Rear cab suspension, T cab as well as P and R cab with shackle lock Check, P and R cab: A = 90-100 mm Check, T cab: A = 86-96 mm Adjusting P and R cabs: A = 92-98 mm Adjusting, T cab: A = 88-94 mm

98

© Scania CV AB 2005, Sweden

00:03-07/2

Cab

18-04 Renewing the filter in the heater There are two filters, the coarse air filter and the cab air filter.

1

2

To renew the cab air filter, lift off the cover on the filter. Remove the cab air filter as well as the coarse air filter and ventilation grille respectively. Clean the inside of the frame and renew the cab air filter. Make sure the cab air filter is facing the right way. Follow the fitting instructions provided with the new filter.

18 2362

From October 1997, the coarse air filter has been replaced with a ventilation grille which is secured with 2 bolts from the outside of the outer air duct.

1 Cab air filter 2 Coarse air filter

105 793

Clean the coarse air filter and ventilation grille respectively by shaking it or rinsing it in water.

Ventilation grille

Air conditioning Work on the air conditioning system should only be carried out by staff especially qualified for this purpose. Work on the air conditioning system must be carried out in compliance with the legislation of the country in question. Follow the instructions of the importer.

00:03-07/2

© Scania CV AB 2005, Sweden

99

Cab

18-05 Scania Interactor 500 Dust filter The filter protects the computer from dust and dirt particles. The dust filter must be renewed every other year. It is important that the filter is correctly positioned. Renewing the dust filter: 1 Detach the black front.

3 Fit the new filter. Take care to position it correctly.

127 620

2 Remove the old filter.

Note: Open the cover for the SIM card before refittingthe front to avoid damaging the SIM card cover. 4 Refit the front.

100

© Scania CV AB 2005, Sweden

00:03-07/2

Accessories

19 Accessories 19-01 Bodywork, general •

Select chassis type and equipment, e.g. spring equipment and power take-off, with regard to the driving conditions and bodywork.



Select the axle distance and locate the bodywork so that the correct axle load distribution is attained. Observe both the specification of the vehicle and authority regulations. Comply with authority regulations. This may relate, for example, to the material strength of the bodywork and its attachment, requirements relating to load anchorage, crossmembers and under-run protection, vehicle length and height, turning radius and health and safety regulations.

Trucks with bodywork should comply with national and international standards, e.g. for the location of the fifth wheel.



When designing bodywork, take into account accessibility for maintenance and repair of the chassis and the bodywork.



For detailed information, see Bodywork Manual, or contact the Scania service organization.



Brake adaptation between tractor unit and trailer is implemented according to Workshop Manual 10:03-06 if required.

19 1556





00:03-07/2

© Scania CV AB 2005, Sweden

101

Accessories

19-02 Fifth wheel For further information, refer to the supplier's manual provided. Wear gauges can be ordered from the supplier of the fifth wheel.

The fifth wheel must be renewed when it has worn down to the bottom of the oil groove.

105 084

Checking the mechanism

Renew worn teflon plates on fifth wheels equipped with such.

102

© Scania CV AB 2005, Sweden

00:03-07/2

Accessories

Pivot pin/king pin

Use a gauge to check wear (applies to George Fischer fifth wheel).

min.71

1

105 086

min.49 2

105 087

Locking mechanism

Lower diameter, min. 49 mm. Upper diameter, min. 71 mm.

1 Correct 2 Fault On Jost fifth wheel: When the locking mechanism is worn to dimension a 55.1 mm, it must be renewed. Wear ring dimension b, min. 56 mm.

b

105 085

a

a Locking mechanism b Wear ring

00:03-07/2

© Scania CV AB 2005, Sweden

103

Accessories

19-03 Tow hook For further information, refer to the supplier's manual provided. Wear gauges can be ordered from the supplier of the tow hook.

Checking the mechanism

!

WARNING!

Never put your fingers in the catch orifice as there is a risk of them being crushed o

2 If there is no clearance or if the mechanism is otherwise inoperable, it should be renewed.

104

© Scania CV AB 2005, Sweden

105 088

1 When the mechanism is locked, there should be clearance of 15°-20° in the handle before the bolt moves upwards.

o

15 − 20

00:03-07/2

Accessories



Max. permitted play between pin and eye, 5 mm.



Max. permitted vertical play in the towing pin, 3 mm.



Wear limit for bushing, upper hole: Max. 54.0 mm.



Wear limit for bushing, lower hole: Max. 39.5 mm.

Max

54.0

Max

39.5

105 089

3 When the towing pin is worn down to 47.0 mm, the mechanism must be renewed or overhauled. For a simple check, use the VBG wear gauge (VBG part no. 40-000200).

1

2

105 090

4 If the mechanism is fitted with a signal and locking pin, check its function in both locked position and unsecured/open position.

1 Unsecured, open position 2 Locked position

00:03-07/2

© Scania CV AB 2005, Sweden

105

00:03-14 Issue 15

Scania LDF oil

116 152

LDF

1 712 056

© Scania CV AB 2005, Sweden

en

Scania LDF oil

Scania LDF oil The designation Scania LDF means Scania Long Drain Field test and refers to an oil tested to meet requirements for extended oil change intervals. The purpose of the LDF oil is to adapt the oil change intervals so as to coincide with the service intervals applicable to the rest of the vehicle. The table below shows the oils that are approved according to Scania LDF. Note: This booklet is constantly updated and is often available on our web site (http://prodsupport.scania.com). In other words, oils may be added to and oils may be deleted from the list. Only the latest issue of the booklet is valid. Always check that an oil is approved by Scania and is included on the list below before using it.

Approved oils Brand ADDINOL AGIP Beijing Tongyi BP BP BP Caltex Castrol Castrol Castrol Castrol Cepsa Esso

2

Type Super Truck MD1048 SIGMA ULTRA TFE Ke Nai BP Diesel SLD Vanellus E6 Plus Vanellus E8 Ultra Delo XLD Multigrade Elixion Enduron Plus SLD SLD Plus Eurotrans SHPD Essolube TDX

© Scania CV AB 2005, Sweden

Viscosity 10W-40 10W-40 15W-40 15W-40 10W-40 5W-30 10W-40 0W-30 5W-30 15W-40 10W-40 5W-30 10W-40

00:03-14

Scania LDF oil

Brand EVVA FINKE Fuchs Fuchs G.B. Lubricants G.B. Lubricants Gulf IGOL Lubrifiants IGOL Liqui Moly Mapetrol Meguin Midland Millers Minerva Oil Mobil Mobil Modrica Morris MOTUL Neste New Process OMV OMV Pakelo Pakelo Panolin Q8 Qingdao Ravenol Repsol YPF Rock Oil Selenia Shell Shell Shell

00:03-14

Type Truck Extra Aviaticon Finkotruck LD Titan Cargo LDF Titan Cargo SL UNIMOT 5 UNIMOT SYNTH 5 Gulf Superfleet ELD Trans Turbo 6X Trans Turbo 9VS LKW Langzeit Mortoröl Motorol SHPD Ultra Megol Motorenoel Super Leichtlauf DIMO Synqron Diesel Truckmaster SC Synthotruck Delvac 1 Delvac XHP Maxima XHPD Ring Free Ultra Plus FE Tekma Ultima Turbo Super Dallas Plus 3 OMV truck Fe plus OMV super truck Golden LDF Kentron Over MB 5 Diesel HTE Q8 T 850 S Copton NanoPEO Super Engine Oil Performance Truck Repsol Diesel Turbo VHPD Synthesis Commercial Urania FE Rimula LD Rimula Ultra Shell HD 0918

© Scania CV AB 2005, Sweden

Viscosity 10W-40 10W-40 10W-40 5W-30 10W-40 5W-30 10W-40 10W-40 15W-40 10W-40 10W-40 10W-40 5W-30 15W-40 10W-40 5W-40 10W-40 10W-40 5W-30 10W-40 10W-40 10W-40 10W-40 5W-30 15W-40 10W-40 10W-40 10W-40 10W-40 10W-40 5W-30 5W-30 5W-30 15W-40 10W-40 5W-30

3

Brand Slovnaft Slovnaft SRS Startol Statoil Statoil SVG Swd Syneco Tamoil Teboil Texaco Texaco TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL UNIL OPAL Valvoline Wolf

00:03-14

Type Madit Mistral Madit Tornado Wintershall TFG OTP Plus Super-Leichtlauf Motorenöl MaxWay SC TruckWay Esvaugol SHPD-0 Expert XH Multipower 120SC Tamoil Diesel Top Performance FE Super XLD Ursa LDF Ursa Super TDX Antar Maxolia FE Elf Performance Experty FE Elf Performance Victory SC Fina Kappa First Gulf Gulfleet Supreme Rubia Tir 7400 SC Rubia Tir 9200 FE RTO Extensia RXD ECO LCM800 ProFleet Masterlube Ecomils S

© Scania CV AB 2005, Sweden

Viscosity 10W-40 5W-30 10W-40 10W-40 15W-40 5W-30 10W-40 10W-40 15W-40 5W-30 10W-40 15W-40 10W-40 5W-30 5W-30 15W-40 5W-30 5W-30 15W-40 5W-30 5W-30 10W-40 10W-40 15W-40

4

**SELAMAT BELAJAR**

Related Documents


More Documents from "Divino Lima"