Reaktor Fixed Bed X

  • Uploaded by: Retno Elakadesci
  • 0
  • 0
  • January 2021
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Reaktor Fixed Bed X as PDF for free.

More details

  • Words: 10,858
  • Pages: 38
Loading documents preview...
1

REAKTOR

Tugas = Mereaksikan Toluene dengan udara dengan kecepatann umpan masuk sebesar 16749,61871 kg/jam Tipe Alat : Reaktor Fix Bed Multitulbular T = 500 oC

Kondisi operasi :

P = 5 atm

NERACA MASSA 1. Umpan Masuk : C7H8

= 13,238

kmol/ jam = 1217,918 kg/jam

= 0,142

kmol/jam = 11,085

kg/jam

C6H5CHO = 0,0115

kmol/jam = 1,2169

kg/jam

O2

= 113,01

kmol/jam = 3616,171 kg/jam

N2

= 425,12

kmol/jam = 11903,23 kg/jam +

Total

= 551,5125 kmol/jam = 16749,61871 kg/jam

C6H6

2 Reaksi : I. C7H8 + O2 ----------> C6H5CHO + H2O II. C7H8 + 6 O2

S1 = 0,5

---------> C4H2O3 + 3H2O + 3 CO2

S2 = 0,5

III. C6H6 + 7,5 O2 ---------> 6 CO2 + 3 H2O

Katalis : molybdenum oxide dan uranium oxide Konversi : 0,9 (90 %) terhadap C7H8 Reaksi bisa ditulis : I.

A + B

------->

C +D

II. A + 6 B

------->

E +3D +3F

III. A + 7,5 B

------->

6F +3D

Maka pada saat konversi = X A REAKSI 1 : n A ( C7H8 )

= nAo (1 - XA)

nb (O2)

= nBo - nAo X

nC (C6H5CHO) = nCo + nAo X

n D (H2O)

* (S1 + 6 S2) - 7,5 nGo

A

A

= nDo + nAo X

A

S1 ( S1 + 3 S2)

n E (C4H2O3) = nEo + nAo X

A

S2

n F (CO2)

A

3 S2

= nFo + nAo X

REAKSI 3 :

n F (CO2)

= nF + 6 nGo

n D (H2O)

= nD + 3 nGo

Maka pada korversi X A = 0,9 Maka diperoleh hasil reaksi : C7H8

=

1,324

kmol/ jam = 121,792

kg/jam

C6H5CHO

=

5,969

kmol/jam

632,681

kg/jam

O2

=

70,239

kmol/jam =

2247,648

kg/jam

N2

=

425,115

kmol/jam

=

11903,228

kg/jam

H2O

=

24,255

kmol/jam

=

436,593

kg/jam

CO2

=

18,724

kmol/jam

=

823,871

kg/jam

C4H2O3

=

5,957

kmol/jam

=

583,806

kg/jam

Total

=

551,584 kmol/jam

=

16749,619

kg/jam

=

PENENTUAN KONSTANTA KECEPATAN REAKSI Reaksi:

3 I. C7H8 + O2

----------> C6H5CHO + H2O

II. C7H8 + 6 O2

S1 = 0,5

---------> C4H2O3 + 3H2O + 3 CO2

S2 = 0,5

III. C6H6 + 7,5 O2 ---------> 6 CO2 + 3 H2O

Reaksi diatas dapat disederhanakan menjadi: I. A + B

------->

C +D

II. A + 6 B

------->

E +3D +3F

III. G + 7,5 B

------->

F +3D

Persamaan kece patan reaksinya dapat ditulis sebagai berikut:  rA  

1 dN A  k .C AC B V dT

Kinetika Reaksi Reaksi pembentukan Benzene berdasarkan reaksi : C7H8

+

O2

+

H2O

1. Waktu reaksi

=

5 dtk

2. Suhu operasi

=

500oC

3. Perbandingan mol reaktan C7H8 : O2

= 1 : 9.473373

4. Konversi yang dapat dicapai

=



C6H5CHO

Dari Patent diperoleh data sebagai berikut :

0.2

Neraca massa C7H8

+

A

O2



C6H5CHO

+

H2O

B



C

+

D

Mula-mula

:

100

947.3374

Reaksi

:

100 . A

100 . XA

Hasil

: 100 (1-XA) 947.3374 – 100 XA

Komposisi awal : A

=

100

gmol

100 . XA

100 . XA

100 . XA

100 . XA

4 B

=

947.3374

gmol

1047.3374 Tekanan

=

5

atm

Suhu

=

500

o

C

Untuk reactor RAP : xa

V dXa  CAo  Fv  ra 0

k

dXA CA CB

k

dXA CAo(1  XA) CAo ( M  XA)

  CAo 

  CAo 

  CAo  k

k

k

dXA

k

dXA CAo (1  XA) ( M  XA) 2



1 CAo

 (1  XA)



1 CAo

 (1  XA)



1 CAo

 Y dXA

=

dXA ( M  XA)

1 dXA ( M  XA)

1

0.02

XA

1/Y

l

0.000

0.20000

1

0.200

0.020

0.20490

4

0.820

0.040

0.21001

2

0.420

0.060

0.21535

4

0.861

0.080

0.22093

2

0.442

0.100

0.22676

4

0.907

0.120

0.23286

2

0.466

0.140

0.23926

4

0.957

0.160

0.24597

2

0.492

0.180

0.25301

4

1.012

0.200

0.26042

1

0.260 6.837

5 Hasil integrasi

=

0.045580391

Konsentrasi Awal A (S2) Cao

= =

nAo

Pt

nT

RT

100

5

1047.3374 =

(82.06 . 773) gmol/cm3

7.52614E-06

Perbandingan reaktan : M

=

nBo nAo

=

9.473374

Konversi : XA

= k

0.9

=

1 7.52614E-06

k

=

0.045580391 5

1211.255209 cm3/gmol.dt

0

Setiap kenaikan suhu 10oC maka kecepatan reaksi menjadi 2 kali lipatnya : T1

=

773 oK



k1 =

1211.255209 (cm3/gmol)/dt

T2

=

783 oK



k2 =

1514.1 (cm3/gmol)/dt

Persamaan empiris Arhenius : k  Ae (  E .RT )

Atau ln k  ln A 

ln

B T

1211.255209

=

ln A

+

B 773

ln

1211.255209

=

ln A

+

B 783

6 -0.223143551

=

-0.223143551

=

B

=

-13505.96427

=

ln A

B ln

1211.255209

1.65219E-05

+

-13505.96427 773

7.099412463

=

ln A

ln A

=

24.57155253

A

=

46912618686

A

=

46912618686

B

=

-13505.96427

kR1

=

46912618686

+

exp (-13505.96427 /T)

-17.47214007

(cm3/gmol) / dt

PENYUSUNAN MODEL MATEMATIS PADA ELEMEN VOLUME 1. NERACA MASSA PADA ELEMEN VOLUME FA

z

Z

FA

z+∆z

∆Z

∆Z

Masuk – keluar = akumulasi FA Z –[ FA Z +  Z+(-rA) dv ] =Acc dV = A.∆Z dimana A =

 .Di 2 4

Neraca massa elemen volume juga meninjau ruang kosong diantara tumpukan katalis sehingga porositas (ε) berpengaruh. Porositas (ε) didapat dari Brown, fig.219 & 220. Maka : dV =

 .Di 2

FA Z – FA

4 Z+

 .z πDi ε Z=0 4 πDi 2 ε = (-rA) 4

 Z-(-rA)

7

FA Z – FA Z +  Z Z FA  rA πDi 2 ε   Δz 4 dimana FA = F A0(1-XA) FA = -FA0. XA X A (rA ). .Di 2   z 4 ΔX A (r ) . .D i 2  A ε Δz 4FA0

FA0

lim z  0 dX A ( rA ). .Di 2  ε dz 4FA0

(-rA) = kecepatan reaksi = k. CA. CB dX A (kC A C B ). .Di 2  ε dz 4FA0

CA 

=

CB 

=

n A Pt n t RT

n A0 (1  X A )Pt n 1 .RT n B Pt n t RT

n A0 (

n BO  X A )Pt n Ao n1.RT

Maka : 2

 n AO Pt  n   .k(1  X A )( Bo  X A ) .Di 2ε . n Ao dX A  n t RT   dz 4FA0

Dimana : dX A  Perubahan konversi persatuan panjang dz Di = Diameter dalam

...…………(1)

8



= porositas tumpukan katalis

F AO = Kecepatan molar A mula-mula

2. NERACA PANAS PADA ELEMEN VOLUME T z ∆z

z

QR

Qp ∆z T z+∆z Masuk – keluar = akumulasi ∑m.cp (Tz -To ) – (

 m.c (T p

QR

=

 HR.nAO.  XA

QP

=

U.A.  T

Z+

 Z - To) + QR + QP ) = 0

= U.  .DO.  z.(Ts - T)

 m.cp ( T z -T Z+∆Z ) - ∆HR..nAO.  XA - U.  .DO..∆z. (Ts - T) = 0  m.cp ( T Z - TZ+∆Z ) = ∆HR..nAO..  XA + U.  .DO. ∆z. (Ts - T)  HR nAO  XA +U  DO (TS- T ) T Z – T Z+  Z = ∑ m.Cp T

Z T

Z  Z

z

T  z



ΔH R n A0

ΔH R n A0

: z

ΔX A  U.π.π 0 . (Ts  T) Δz  m.Cp

ΔX A  U. .D 0 (TS  T) Δz  m.Cp

Lim  z  0 ……………..….. 2 dimana : dT/dZ

= perubahan suhu persatuan panjang katalis

 HR

= panas reaksi

U

= over all heat transfer coefficient

Do

= diameter luar

9 T

= suhu gas

Ts

= suhu penelitian

m.Cp = kapasitas panas 3. NERACA PANAS UNTUK PENDINGIN PADA ELEMEN VOLUME Tinjauan : elemen panas

Masuk – keluar = akumulasi mp.Cpp. ( Ts

Z+∆Z

- To ) + Qp – mp.Cpp. (( Ts

Z

- To ) = 0

Qp = U.A. ∆T ; dimana : A = π.Do.∆z. dan ∆T = (T – Ts) Sehingga Qp = U.π. Do.∆z. (T – Ts) mp. Cpp. (Ts

Z+∆Z

- Ts Z ) = - U.π. Do.∆z. (T – Ts) : mp. Cpp. ∆z

Ts

Z+∆Z

- Ts

Z

U.π. Do. (T – Ts) = -

∆z

m. Cpp

Ts U. .Do.( T - Ts )  z (m.Cp) p lim z  0 dTs U. .Do. ( T - Ts )  dz ( m.Cp ) p

.……………….(3)

PENURUNAN TEKANAN ( PRESSURE DROP ) Penurunan tekanan dalam pipa yang berisi katalisator (fixed bed) menggunakan rumus 11.6 (Chapter 11, Rase) hal 492, Chemical Reactor Design for Process Plants.

10 gc.dP (1   ) s  1   G  150  1,75 3 2 3  s.dz  Dp    Dp 2

Persamaan di atas dapat ditulis : f k .G 2  1    dP    dz D p . f .gc   3 

……………….(4)

dimana :  1    f k  1,75  150  D .G/  p   dimana : dP  perubahan tekanan per satuan panjang dz

fk = faktor friksi gc = konstanta gravitasi G = kecepatan aliran massa gas dalam pipa, g/cm3 ρf = densitas gas, g/cm3 Dp = diameter partikel katalisator, cm ε

= porositas tumpukan katalisator

μ = viskositas gas, g/cm.jam Sehingga diperoleh 4 persamaan differensial simultan sebagai berikut : 2

1)

2)

dX A  dz

dT  dz

 n AO Pt  n   .k(1  X A )( Bo  X A ) .Di 2ε . n Ao  n t RT 

- ΔH R .n A0

4FA0

ΔX A  U.π.π 0 (TS  T) Δz Σm.Cp

3)

dTs U. .Do. ( T - Ts )  dz ( m.Cp ) p

4)

dP f .G 2  1     k   dz D p . f .gc   3 

Selanjutnya persamaan differensial simultan tersebut diatas diselesaikan dengan program computer dengan Metode Numeris Runge Kutta. OVERALL HEAT TRANSFER 1.

Koefisien transfer panas pipa (hio) Dari pers. 6-2, Kern diperoleh :

11 hio =

 Dp.Gt   μ  

0,8

0,027

 Cp.μ    k  

1/3



k    Di  

…………….(5)

Persamaan diatas berlaku untuk organic liquid, larutan aqueous, dan gas pada Re > 10.000 dimana : Dp

= diameter partikel katalis

Di

= diameter dalam pipa

k

= konduktivitas thermal

μ

= viskositas gas

Cp

= panas jenis gas

Gt

= kecepatan massa per satuan luas

hi

= koefisien transfer panas pipa dalam

hio

= hi.

2.

ID ...................(Kern,1983) OD

Koefisien transfer panas dinding pipa dalam shell ( ho) Dari persamaan

, Kern :

 De.Gp   ho = 0,36 μ p  

0,55

 Cp p . p  kp 

0 , 33

  

 kp    ...........(Kern,1983, p137)  De 

Persamaan diatas berlaku untuk Re antara 2000 – 1.000.000 dimana : ho

= koefisien transfer panas

De

= diameter equivalent

Gp = kecepatan massa pendingin per satuan luas p

= viskositas pendingin

kp

= konduktivitas thermal pendingin

Cpp = panas spesifik pendingin 3. Overall heat transfer coefisient Ud = overall transfer coefisient pada saat kotor Uc = overall transfer coefisient pada saat bersih Rd = faktor tahanan panas pengotor Uc 

hio.ho (hio  ho)

Rd .Uc.Ud  Uc  Ud Rd .Uc.Ud  Ud  Uc ( Rd .Uc  1).Ud  Uc

Rd 

Uc  Ud Uc.Ud

…….(6)

12 Maka : Ud 

Uc ( Rd .Uc  1)

LAY OUT PIPA DALAM REAKTOR ( Kern, 1983, P. 139 ) Pipa dalam reaktor disusun secara square pitch, dimana luas penampang 1 pipa menempati luasan sebesar Pt2. 1 pipa menempati luasan = Pt2 maka luas total penampang reaktor ( over design 10%) As = 1,1. Nt.Pt2 dimana : As = Luas penampang shell Nt = jumlah pipa Pt = pitch Alasan penyusunan pipa secara square pitch : 1. mudah pembersihannya. 2. pressure drop kecil.

FLOW AREA DALAM SHELL B As =

C’

dimana : B

= Jarak buffle, in

C’

= Clearance, in

Pt

= Pitch, in

IDs = Diameter dalam shell, in As

= Flow area shell, in2

DIAMETER EQUIVALEN (De)

IDs .B.C' Pt

………….(7)

13 Diameter equivalen dapat dipahami sebagai diameter dari area dalam shell, bila dipandang sebagai pipa ( Kern, 1983) p.139  μ.OD2 4 Pt 2  4 De =   .OD

De =

 

4 x free area

 = wetted perimeter

4Pt 2  μ.OD 2 4. .OD

………….(8)

DIAMETER SHELL Diameter shell yang dipakai untuk Nt pipa Luas shell = As = 1,1.Nt.Pt2 =

π.(IDs ) 2 4

Diameter shell : IDs =

4. As

…..……..…(9)



KATALISATOR ( Rase, 1977 ) Katalisator yang digunakan berupa molybdenum oxide dan uranium oxide dengan : -

Bentuk = pellet

-

Ukuran D = 0,3175 cm H = 0,3175 cm

-

Bulk density = 1106,13 kg/m3

-

Formula = PbO2 – Mg (SA, Miller Ernest, 1965)

DIAMETER PARTIKEL ( Dp ) Yaitu diameter partikel katalis yang ekuivalen dengan diameter bola dengan volume yang sama dengan volume katalis ( Rase, 1977, p.493 ) V kat = =

 .D 2 4

.H

 .0,31752 .0,3175 4

= 0,025125 cm3 V bola = V kat

14  .Dp

V Bola =

3

4

Maka : Dp

=3 =

3

VB 6



0,025125.6



= 0,36345 cm PEMILIHAN PIPA Dalam pemilihan pipa harus diperhatikan faktor perpindahan panas. Pengaruh bahan isian di dalam pipa terhadap koefisien transfer panas konveksi didelik oleh Colburn ( Smith,JM., p.571) dan diperoleh hubungan pengaruh rasio (Dp/Dt) atau perbandingan diameter katalis dengan diameter pipa dengan koefisien transfer panas pipa berisi katalis disbanding transfer panas konveksi pada pipa kosong. Dp/Dt

0.05

0.01

0.15

0.12

0.25

Hio/h

5.5

7

7

7.5

7.0

Dimana : (Dp/Dt)

= rasio diameter katalis per diameter pipa

(hio/h)

= rasio koefisien transfer panas pipa berisi katalis disbanding koefisien transfer panas pada pipa kosong.

Dari data diatas diperoleh (hio/h)max terjadi pada 7,8 pada (Dp/Dt) = 0,15 Dp  0,15 Dt Dp Dt  0,15 0,36345 Dt  cm 0,15

= 2,42298 cm Dipilih pipa dengan ukuran standar (Kern, table 11) : NPs = 1 in OD

= 1,32 in

ID

= 1,049 in

Sch

= 40

15 JUMLAH PIPA ( Brown, 1950 ) Jumlah pipa ditentukan berdasarkan turbulensi gas dalam pipa berkatalis. Dalam suatu reaksi khusus terjadi tumbukan molekul yang optimum ( well mixed). Keadaan di atas terjadi bila pada keadaan turbulen yaitu bilangan Reynold diatas 3100. Spherecity ( )=

Luas area bola luas area katalis

Luas area bola = . Dp2 = 3,14. 0,36345 = 0,4148 cm2 Luas area katalis

 π.DH 

2. .D 4

= 0,4748 cm2 0,4148

maka  = 0,4748  0,8736 Dari fig. 223 Brown diperoleh  = 0,35

KECEPATAN MASSA MASUK REAKTOR Komponen O2 C7H8 N2

Kgmol/jam 13.1443 124.5205 468.4342

C6H5CHO C6H6 Total

0.0123 0.1399 606.2511

Kg/jam 1209.2717 3984.6553 13116.157 2 1.2990 10.9158 18322.298 8

Kecepatan massa = 18322.2988 Kg/j = 5089.5278 g/dt BM rata-rata = 30.22 Suhu Umpan (T) = 773 oK Tekanan Umpan (P) = 2 atm Densitas gas(rho) = 0.000953 g/cm3 Viskositas gas = 0.000973 g/cm dt Digunakan pipa Standard ID pipa = 1.049 in = 2.664 cm OD pipa = 1.320 in = 3.353 cm BWG = 16 in A. Jumlah pipa maximum :

16 1. Menghitung Gt :

= 18866.13 Gt Gt = 0.217321 g/cm2 dt

2. Menghitung Luas penampang pipa :

= 2.0063 cm2 3. Menghitung Luas penampang total :

= 23419.4434 cm2 Menghitung Jumlah pipa maximum :

= 11673.0938 pipa

B. Jumlah pipa minimum : 1. Menghitung Kecepatan maximum :

17 =

771.5457 cm/dt

2. Menghitung Kecepatan Volume Umpan :

= 5341104.5000 cm3/dt 3. Menghitung Luas penampang total :

= 6922.6025 cm2 Menghitung Jumlah pipa minimum :

= 3450.4744 pipa C. Jumlah pipa : 1. Menghitung Gt : diambil bilangan Reynold (Re) =

7000

= 18866.13 Gt Gt = 7000 / 18866.13 g/cm2 dt = 0.371035 g/cm2 dt 2. Menghitung Luas penampang pipa :

= 2.0063 cm2

18 3. Menghitung Luas penampang total :

= 13717.1025 cm2 Menghitung Jumlah pipa :

= 6837 pipa SIFAT FISIS a) Spesifik Heat Cp = A + BT + CT2 +DT 3 Komponen A 6,713 7,440 4,728 7,701 -3,123 -5,817 -8,107 -2,9

O2 N2 CO2 H2O C4H2O3 C7H8 C6H6 C6H5CHO

Cp ( joule/mol.K ) B C -6 0,879.10 4,170.10-6 -2 0,324.10 6.400.10-6 1,754.10-2 -1,338.10-5 4,595.10-4 2,521.10-6 -2 8,32.10 -5,22.10-5 1,22.10-1 -6,61.10-5 1,13.10-1 -7,21.10-5 1,19.10-1 -6,79.10-5

Cp = Σ Cpi . yi b) Viskositas µ = A + BT + CT2 Komponen

µ ( micropoise.K )

O2

Tc 154,6

Pc 49,8

N2

126,2

33,5

CO2

304,2

72,8

H2O

647,3

217,6

C4H2O3 C7H8 C6H6 C6H5CHO

591,7 562,1 695

406 483 46

D -2,544.10-9 -2,790.10-9 4,097.10-9 -0,859.10-9 1,16.10-8 1,17.10-8 1,70.10-8 1,23.10-8

19 *Sumber: Robert C. Reid Sifat gas dan zat cair Gramedia Pustaka 1991

c) Konduktivitas Thermal

k = ((14,54 . T/Tc ) – 5,14 )2/3 . Cp/τi . 106 Komponen O2

Tc 154,6

Pc 49,8

N2

126,2

33,5

CO2

304,2

72,8

H2O

647,3

217,6

C4H2O3 C7H8 C6H6 C6H5CHO

591,7 562,1 695

406 483 46

d) Sifat Pendingin Cp = 0,509 Btu/lboK µ = 0,40 micropoise.K k = 0,68 Btu/jam.ft.oK PANAS REAKSI T ΔHT

To

ΔH298

ΔHT = ΔH298 + ∫ ΔCp dT Komponen O2 N2 CO2 H2O C4H2O3 C7H8 C6H6 C6H5CHO

 Hf

0 0 -94,05 -68,315 -112,08 11,95 19,82 -8,79

20 *sumber: Dimana : ΔH298 = ΔHfp − ΔHfR = -205,02 − -103,6 = -101,42 kjoule/mol = -24239,38 kkal/kmol ΔCp = α + βT + γT2 α = AP – AR β = B P – BR γ = C P – CR Komponen O2 N2 CO2 H2O C4H2O3 C7H8 C6H6 C6H5CHO

α

A 6,713 7,440 4,728 7,701 -3,123 -5,817 -8,107 -2,9

Cp ( joule/mol.K ) B C 0,879.10-6 4,170.10-6 0,324.10-2 6.400.10-6 -2 1,754.10 -1,338.10-5 4,595.10-4 2,521.10-6 -2 8,32.10 -5,22.10-5 1,22.10-1 -6,61.10-5 1,13.10-1 -7,21.10-5 1,19.10-1 -6,79.10-5

= 64,374 – ( 11,591 + 45,780 ) = 7,003 joule/mol.K

β

= 6,4776.10-2 – ( 3,2301.10-1 + 2,1034.10-2 ) = 2,2286.10-2 joule/mol.K

γ = 3,5143.10-4 – (-1,3067.10-4 + 1,2484.10-4 ) = 3,5726.10-4 joule/mol.K Sehingga :

= =

D -2,544.10-9 -2,790.10-9 4,097.10-9 -0,859.10-9 1,16.10-8 1,17.10-8 1,70.10-8 1,23.10-8

21 = -101,42 kjoule/mol + 7,003 ( 298 - 513 ) +

+

joule/mol

Penyelesaian persamaan defferensial secara numeris dengan metode Runge Kutta : CLS N = 6837 'jml pipa MS = 15 Ptek = 2 'massa pendingin C = 500 'suhu operasi TC1 = C TcC = C D = 490 'suhu keluar td0 = D DOU = 1.32 * 2.54 'diameter luar pipa DI = 1.049 * 2.54 'diameter dalam pipa Pt = 1.25 * DOU 'pitch CL = Pt - DOU 'clearence DE = (4 * (Pt ^ 2 - (3.14 * DOU ^ 2 / 4))) / (3.14 * DOU) 'diameter aquivalen Ass = N * Pt ^ 2 * 1.15 'luas penampang shell ID = (4 * Ass / 3.14) ^ .5 'diameter dalam shell BS = ID / 5 'jarak buffle AT = 3.14 / 4 * DI ^ 2: 'luas penampang pipa ASi = ID * CL * BS / Pt 'flow area dlm shell PRINT PRINT " ┌─────────────────────────────────────────────────────────┐" PRINT " │ R E A K T O R F I X E D B E D M U L T I T U B E │" PRINT " └─────────────────────────────────────────────────────────┘" PRINT PRINT USING " Jumlah pipa = #### pipa"; N PRINT USING " Diameter luar pipa = #.### cm"; DOU PRINT USING " Diameter dalam pipa = #.### cm"; DI PRINT USING " Pitch = #.### cm"; Pt PRINT USING " Diameter Shell = #.### m"; ID / 100 PRINT USING " Jumlah pendingin = ######.### Kg/j"; MS * N * 3.6 PRINT 'MS * N * .373 * (536.6 - 504.8) PRINT : PRINT : PRINT Dp = .5723 BMB = 32 'O2 BMA = 92 'C7H8 BMC = 28 'N2 BMD = 18 'H20 BME = 106 'C6H5CHO BMF = 78 'C6H6 BMG = 98 'C4H2O3 BMH = 44 'CO2

'KECEPATAN MASUK MASING-MASING GAS (KGMOL/JAM) FAIO = 1209.2717# / BMA 'C7H8 FBIO = 3984.6553# / BMB 'O2 FCIO = 13116.1569# / BMC 'N2 FDIO = 0 / BMD 'H2O

22 FEIO FFIO FGIO FHIO FAo FBo FCo FDo FEo FFo FGo FHo

= = = = = = = = = = = =

1.299 / BME 10.9158 / BMF 0 / BMG 0 / BMH FAIO FBIO FCIO FDIO FEIO FFIO FGIO FHIO

/ / / / / / / /

'C6H5CHO 'C6H6 'C4H2O3 'CO2

3.6: 3.6: 3.6: 3.6: 3.6: 3.6: 3.6: 3.6:

FTO = FAo + FBo + FCo + FDo + FEo + FFo + FGo + FHo bmrt = (FAo / FTO) * BMA + (FBo / FTO) * BMB + (FCo / FTO) * BMC + (FDo / FTO) * BMD + (FEo / FTO) * BME + (FFo / FTO) * BMF + (FGo / FTO) * BMG + (FHo / FTO) * BMH GT = FTO * bmrt / AT: GS = MS * N / ASi PRINT " KECEPATAN MASSA MASUK REAKTOR" PRINT PRINT " ┌──────────┬─────────────┬───────────────┐ PRINT " │ Komponen │ Kgmol /jam │ Kg / jam │ PRINT " ├──────────┼─────────────┼───────────────┤ PRINT USING " │ O2 │ #####.#### │ ######.#### │ FBIO * BMB PRINT USING " │ C7H8 │ #####.#### │ ######.#### │ FAIO * BMA PRINT USING " │ N2 │ #####.#### │ ######.#### │ FCIO * BMC PRINT USING " │ H2O │ #####.#### │ ######.#### │ FDIO * BMD PRINT USING " │ C6H5CHO │ #####.#### │ ######.#### │ FEIO * BME PRINT USING " │ C6H6 │ #####.#### │ ######.#### │ FFIO * BMF PRINT USING " │ C4H203 │ #####.#### │ ######.#### │ FGIO * BMG PRINT USING " │ CO2 │ #####.#### │ ######.#### │ FHIO * BMH PRINT " └──────────┴─────────────┴───────────────┘ PRINT USING " Total #####.#### ######.#### 3.6; FTO * bmrt * 3.6 INPUT "", A$ PRINT PRINT " KECEPATAN MASSA GAS KELUAR REAKTOR" PRINT

" " " "; FBIO; "; FAIO; "; FCIO; "; FDIO; "; FEIO; "; FFIO; "; FGIO; "; FHIO; " "; FTO *

XA = .9 XA1 = 1 / .9 * XA S1 = .5 S2 = .5 FA FB FC FD FE FF FG FH

= = = = = = = =

FAo FBo FCo FDo FEo FFo FGo FHo

* (1 - XA) 'C7H8 - FAo * XA * (S1 + 6 * S2) - 7.5 * FFo * XA1 'O2 'N2 + FAo * XA * (S1 + 3 * S2) + 3 * FFo * XA1 'H2O + FAo * XA * S1 'C6H5CHO - FFo * XA1 'C6H6 + FAo * XA * S2 'C4H2O3 + 3 * FAo * XA * S2 + 6 * FFo * XA1 'CO2

FT = FA + FB + FC + FD + FE + FF + FG + FH + FI YA = FA / FT: YB = FB / FT: YC = FC / FT: YD = FD / FT: YE = FE / FT: YF = FF / FT: YG = FG / FT: YH = FH / FT: YI = FI / FT

23 m = BMA * YA + BMB * YB + BMC * YC + BMD * YD + BME * YE + BMF * YF + BMG * YG + BMH * YH + BMI * YI PRINT PRINT PRINT PRINT USING FB * 3.6 * BMB PRINT USING FA * 3.6 * BMA PRINT USING FC * 3.6 * BMC PRINT USING FD * 3.6 * BMD PRINT USING FE * 3.6 * BME PRINT USING FF * 3.6 * BMF PRINT USING FG * 3.6 * BMG PRINT USING FH * 3.6 * BMH PRINT PRINT USING FT * 3.6 * m INPUT "", A$

" " " "

┌──────────┬─────────────┬───────────────┐ │ Komponen │ Kgmol /jam │ Kg / jam │ ├──────────┼─────────────┼───────────────┤ │ O2 │ #####.#### │ ######.#### │

"



C7H8

│ #####.####



######.####

│ "; FA * 3.6;

"



N2

│ #####.####



######.####

│ "; FC * 3.6;

"



H2O

│ #####.####



######.####

│ "; FD * 3.6;

"



C6H5CHO │ #####.####



######.####

│ "; FE * 3.6;

"



C6H6

│ #####.####



######.####

│ "; FF * 3.6;

"



C4H2O3

│ #####.####



######.####

│ "; FG * 3.6;

"



CO2

│ #####.####



######.####

│ "; FH * 3.6;

" "

└──────────┴─────────────┴───────────────┘ " Total #######.#### ######.#### "; FT * 3.6;

PRINT PRINT " m = bmrt FA = FAo FB = FBo FC = FCo FD = FDo FE = FEo FF = FFo FG = FGo FH = FHo

CO2 "

" " " "; FB * 3.6;

Enthalpi Umpan Masuk Reaktor :"

GOSUB 7000 Qo1 = QTOT INPUT "", P$ PRINT " PRINT PRINT " PRINT PRINT "

PRINT PRINT " PRINT INPUT "", A$ PRINT : PRINT A = 0: B = 0: E1 = E PRINT " PRINT USING " PRINT USING " PRINT USING " PRINT USING " PRINT " PRINT : INPUT "",

Reaksi yang terjadi :" C7H8

+ O2

----------->

C6H5CHO

+ H2O"

C7H8

+ 6 O2

----------->

C4H2O3

+ 3 H2O + 3

C6H6

+ 7.5 O2

----------->

6 CO2

+ 3 H2O"

" KONDISI AWAL" E = Ptek: F = 1 ┌──────────────────────────────────────────┐" │ Suhu gas masuk = ###.# °C │"; │ Suhu pendingin keluar = ###.# °C │"; │ Tekanan awal = ##.# atm │"; │ Increment tebal katalis = #.## cm │"; └──────────────────────────────────────────┘" P$

' Perhitungan RUNGA KUTTA PRINT " ┌──────┬────────┬────────┬───────┬────────┐"

C D E F

24 PRINT " PRINT " PRINT USING "

│ L(cm)│ Xa │ T(c) │ Td (c)│ P(atm) │" ├──────┼────────┼────────┼───────┼────────┤" │ #### │ #.#### │ ###.## │ ###.# │ ##.### │"; A; B; C;

D; E NO = 0 620 GA = A: GB = B: GC = C: GD = D: GE = E: GF = F: GG = G: GH = H GOSUB 910

GB GC GD GE

= = = =

B C D E

K1 = DX * F L1 = T * F EM1 = S * F N1 = P * F K1 L1 EM1 N1

+ + + +

GOSUB 910

GB GC GD GE

= = = =

B C D E

K2 = DX * F L2 = T * F EM2 = S * F N2 = P * F (K2 / 2) (L2 / 2) (EM2 / 2) (N2 / 2)

+ + + +

GOSUB 910

GB GC GD GE

= = = =

B C D E

K3 = DX * F L3 = T * F EM3 = S * F N3 = P * F (K3 / 2) (L3 / 2) (EM3 / 2) (N3 / 2)

+ + + +

GOSUB 910

GB2 GC2 GD2 GE2

= = = =

B C D E

+ + + +

K4 = DX * F L4 = T * F EM4 = S * F N4 = P * F 1 1 1 1

/ / / /

6 6 6 6

* * * *

(K1 + 2 * K2 + (L1 + 2 * L2 + (EM1 + 2 * EM2 (N1 + 2 * N2 +

2 2 + 2

* * 2 *

K3 + K4) L3 + L4) * EM3 + EM4) N3 + N4)

710 A = A + F C = GC2 B = GB2 D = GD2 E = GE2 NO = NO + 1 Qre = Q1 * F * N + Qre Ql = Q2 * F * N + Ql 790 IF B >= .9 THEN 870 IF NO = 10 THEN 800 GOTO 620 800 PRINT USING " │ #### │ #.#### │ ###.## │ ###.# │ ##.### │"; A; B; C; D; E: NO = 0 860 GOTO 620 870 PRINT USING " │ #### │ #.#### │ ###.## │ ###.# │ ##.### │"; A; B; C; D; E PRINT " └──────┴────────┴────────┴───────┴────────┘"

25 PRINT PRINT " PRINT

KECEPATAN MASSA GAS KELUAR REAKTOR"

XA = .9 XA1 = 1 / .9 * XA S1 = .5 S2 = .5 FA FB FC FD FE FF FG FH

= = = = = = = =

FAo FBo FCo FDo FEo FFo FGo FHo

* (1 - XA) 'C7H8 - FAo * XA * (S1 + 6 * S2) - 7.5 * FFo * XA1 'O2 'N2 + FAo * XA * (S1 + 3 * S2) + 3 * FFo * XA1 'H2O + FAo * XA * S1 'C6H5CHO - FFo * XA1 'C6H6 + FAo * XA * S2 'C4H2O3 + 3 * FAo * XA * S2 + 6 * FFo * XA1 'CO2

FT = FA + FB + FC + FD + FE + FF + FG + FH YA = FA / FT: YB = FB / FT: YC = FC / FT: YF = FF / FT: YG = FG / FT: YH = FH / FT: m = BMA * YA + BMB * YB + BMC * YC + BMD * * YG + BMH * YH + BMI * YI PRINT PRINT PRINT PRINT USING FB * 3.6 * BMB PRINT USING FA * 3.6 * BMA PRINT USING FC * 3.6 * BMC PRINT USING FD * 3.6 * BMD PRINT USING FE * 3.6 * BME PRINT USING FF * 3.6 * BMF PRINT USING FG * 3.6 * BMG PRINT USING FH * 3.6 * BMH PRINT PRINT USING FT * 3.6 * m INPUT "", A$

+ FI YD = FD / FT: YE = FE / FT: YI = FI / FT YD + BME * YE + BMF * YF + BMG

" " " "

┌──────────┬─────────────┬───────────────┐ │ Komponen │ Kgmol /jam │ Kg / jam │ ├──────────┼─────────────┼───────────────┤ │ O2 │ #####.#### │ ######.#### │

"



C7H8

│ #####.####



######.####

│ "; FA * 3.6;

"



N2

│ #####.####



######.####

│ "; FC * 3.6;

"



H2O

│ #####.####



######.####

│ "; FD * 3.6;

"



C6H5CHO │ #####.####



######.####

│ "; FE * 3.6;

"



C6H6

│ #####.####



######.####

│ "; FF * 3.6;

"



C4H2O3

│ #####.####



######.####

│ "; FG * 3.6;

"



CO2

│ #####.####



######.####

│ "; FH * 3.6;

" "

└──────────┴─────────────┴───────────────┘ " Total #######.#### ######.#### "; FT * 3.6;

PRINT PRINT " Enthalpi Hasil reaksi :" PRINT GOSUB 7000 Qo2 = QTOT INPUT "", A$ PRINT PRINT PRINT " NERACA PANAS :" PRINT PRINT " MASUK : PRINT PRINT " 1. Enthalpi Umpan Masuk Reaktor reaksi:" PRINT USING " Qs1 = #########.#### Kcal/jam #########.#### Kcal/jam"; Qo1; Qo2 Qll = Qo1 + (Qre * 3.6) - Qo2 Qp = MS * N * 3.6 * .373 * (td0 - D) Qloss = Qll - Qp

" " " "; FB * 3.6;

KELUAR : " 1. Enthalpi hasil Qs2

=

26 PRINT "

2. Panas Reaksi

2. Panas dibawa

pendingin" PRINT USING " Qr = #########.#### Kcal/jam Qp = #########.#### Kcal/jam"; Qre * 3.6; Qp PRINT " 3. Panas Hilang" PRINT USING " Qloss = #########.#### Kcal/jam"; Qloss tpIN = td0 - (Ql - Qloss) / (MS * 3.6 * N * .373) PRINT " ---------------------------------------------------------------- " PRINT USING " #########.#### Kcal/jam #########.#### Kcal/jam"; Qo1 + Qre * 3.6; (Qo2 + Qp + Qloss) PRINT PRINT INPUT "", A$ PRINT PRINT PRINT USING PRINT USING PRINT USING PRINT USING PRINT USING HH = 40 PRINT USING PRINT USING PRINT PRINT USING PRINT PRINT USING 3048; ID / 100 / PRINT USING / 2 PRINT

"

Dari hasil perhitungan Reaktor diperoleh :"

" " " " "

Jumlah pipa Diameter Shell Jumlah pendingin Panjang terhitung

= = = = =

" "

Panjang Pipa

= ###.# = ###.#

"

Tinggi Head reaktor = #.###

" 2 "

Tinggi reaktor

#### #.### ###### ###.# ###.#

pipa"; N m"; ID / 100 Kg/j"; MS * N * 3.6 m"; A / 100 ft"; A / 100 / .3048 m"; HH * .3048 ft"; HH m"; ID / 100 / 2

= ##.### + 2 . #.### m"; HH * . = ###.#

m"; HH * .3048 + ID / 100

CLOSE 900 END 910 'KOMPOSISI GAS (GMOL/JAM) XA = GB XA1 = 1 / .2 * XA S1 = .5 S2 = .5 FA FB FC FD FE FF FG FH

= = = = = = = =

FAo FBo FCo FDo FEo FFo FGo FHo

* (1 - XA) 'C7H8 - FAo * XA * (S1 + 6 * S2) - 7.5 * FFo * XA1 'O2 'N2 + FAo * XA * (S1 + 3 * S2) + 3 * FFo * XA1 'H2O + FAo * XA * S1 'C6H5CHO - FFo * XA1 'C6H6 + FAo * XA * S2 'C4H2O3 + 3 * FAo * XA * S2 + 6 * FFo * XA1 'CO2

FT = FA + FB + FC + FD + FE + FF + FG + FH YA = FA / FT: YB = FB / FT: YC = FC / FT: YF = FF / FT: YG = FG / FT: YH = FH / FT: m = BMA * YA + BMB * YB + BMC * YC + BMD * * YG + BMH * YH + BMI * YI

+ FI YD = FD / FT: YE = FE / FT: YI = FI / FT YD + BME * YE + BMF * YF + BMG

'KAPASITAS PANAS GAS (CAL/GMOL.K) (Reid,1979) CPA = 6.713 + -8.79E-07 * (GC + 273) + 4.17E-06 * (GC + 273) ^ 2 + -2.54E-09 * (GC + 273) ^ 3 CPB = -5.817 + .122 * (GC + 273) + -.0000661 * (GC + 273) ^ 2 + 1.17E-08 * (GC + 273) ^ 3

27 CPC = 7.44 + -.00324 * (GC + 273) + .0000064 * (GC + 273) ^ 2 + -2.79E09 * (GC + 273) ^ 3 CPD = 7.701 + .00046 * (GC + 273) + 2.52E-06 * (GC + 273) ^ 2 + -8.59E10 * (GC + 273) ^ 3 CPE = 2.9 + .119 * (GC + 273) + -.0000679 * (GC + 273) ^ 2 + 1.23E-08 * (GC + 273) ^ 3 CPF = 8.107 + .113 * (GC + 273) + -.0000721 * (GC + 273) ^ 2 + 1.7E-08 * (GC + 273) ^ 3 CPG = -3.123 + .0832 * (GC + 273) + -.0000522 * (GC + 273) ^ 2 + 1.16E08 * (GC + 273) ^ 3 CPH = 4.728 + .0175 * (GC + 273) + -.0000134 * (GC + 273) ^ 2 + 4.1E-09 * (GC + 273) ^ 3 CPM = (YA * CPA + YB * CPB + YC * CPC + YD * CPD + YE * CPE + YF * CPF + YG * CPG + YH * CPH + YI * CPI) / m 'KAPASITAS pendingin (CAL/GMOL.K) CPP = .373 'RAPAT MASSA CAMPURAN GAS RM = E * m / (GC + 273) / 82.06 'VISKOSITAS GAS (gr/dt.cm) TcA TcB TcC TcD TcE TcF TcG TcH

= = = = = = = =

154.6: 591.7: 126.2: 647.3: 695: 562.1: 500: 304.2:

PcA PcB PcC PcD PcE PcF PcG PcH

= = = = = = = =

49.8 40.6 33.5 217.6 46 483 20 72.8

VA = (.00036 * (4.61 * ((GC + 273) / TcA) ((GC + 273) / TcA)) + 1.94 * EXP(-4.058 * ((GC (1 / 6) * BMA ^ (-.5) * PcA ^ (-2 / 3))) / 100 VB = (.00036 * (4.61 * ((GC + 273) / TcB) ((GC + 273) / TcB)) + 1.94 * EXP(-4.058 * ((GC (1 / 6) * BMB ^ (-.5) * PcB ^ (-2 / 3))) / 100 VC = (.00036 * (4.61 * ((GC + 273) / TcC) ((GC + 273) / TcC)) + 1.94 * EXP(-4.058 * ((GC (1 / 6) * BMC ^ (-.5) * PcC ^ (-2 / 3))) / 100 VD = (.00036 * (4.61 * ((GC + 273) / TcD) ((GC + 273) / TcD)) + 1.94 * EXP(-4.058 * ((GC (1 / 6) * BMD ^ (-.5) * PcD ^ (-2 / 3))) / 100 VE = (.00036 * (4.61 * ((GC + 273) / TcE) ((GC + 273) / TcE)) + 1.94 * EXP(-4.058 * ((GC (1 / 6) * BME ^ (-.5) * PcE ^ (-2 / 3))) / 100 VF = (.00036 * (4.61 * ((GC + 273) / TcF) ((GC + 273) / TcF)) + 1.94 * EXP(-4.058 * ((GC (1 / 6) * BMF ^ (-.5) * PcF ^ (-2 / 3))) / 100 VG = (.00036 * (4.61 * ((GC + 273) / TcG) ((GC + 273) / TcG)) + 1.94 * EXP(-4.058 * ((GC (1 / 6) * BMG ^ (-.5) * PcG ^ (-2 / 3))) / 100 VH = (.00036 * (4.61 * ((GC + 273) / TcG) ((GC + 273) / TcG)) + 1.94 * EXP(-4.058 * ((GC (1 / 6) * BMG ^ (-.5) * PcG ^ (-2 / 3))) / 100

^ .618 - 2.04 * EXP(-.449 * + 273) / TcA)) + .1) / (TcA ^ ^ .618 - 2.04 * EXP(-.449 * + 273) / TcB)) + .1) / (TcB ^ ^ .618 - 2.04 * EXP(-.449 * + 273) / TcC)) + .1) / (TcC ^ ^ .618 - 2.04 * EXP(-.449 * + 273) / TcD)) + .1) / (TcD ^ ^ .618 - 2.04 * EXP(-.449 * + 273) / TcE)) + .1) / (TcE ^ ^ .618 - 2.04 * EXP(-.449 * + 273) / TcF)) + .1) / (TcF ^ ^ .618 - 2.04 * EXP(-.449 * + 273) / TcG)) + .1) / (TcG ^ ^ .618 - 2.04 * EXP(-.449 * + 273) / TcG)) + .1) / (TcG ^

VM = YA * VA * SQR(BMA) + YB * VB * SQR(BMB) + YC * VC * SQR(BMC) VM = VM + YD * VD * SQR(BMD) + YE * VE * SQR(BME) + YF * VF * SQR(BMF) VM = VM + YG * VG * SQR(BMG) + YH * VH * SQR(BMH) + YI * VI * SQR(BMI) VBAH = YA * SQR(BMA) + YB * SQR(BMB) + YC * SQR(BMC) VBAH = VBAH + YD * SQR(BMD) + YE * SQR(BME) + YF * SQR(BMF) VBAH = VBAH + YG * SQR(BMG) + YH * SQR(BMH) + YI * SQR(BMI)

28 VR = VM / VBAH 'VISKOSITAS pendingin (gr/dt.cm) VP = (35.5898 - .04212 * D) * .01 'THERMAL KONDUKTIVITAS (Cal/dt.cm.K) TIA = TcA ^ (1 / 6) * BMA ^ (1 / 2) / TIB = TcB ^ (1 / 6) * BMB ^ (1 / 2) / TIC = TcC ^ (1 / 6) * BMC ^ (1 / 2) / TID = TcD ^ (1 / 6) * BMD ^ (1 / 2) / TIE = TcE ^ (1 / 6) * BME ^ (1 / 2) / TIF = TcF ^ (1 / 6) * BMF ^ (1 / 2) / TIG = TcG ^ (1 / 6) * BMG ^ (1 / 2) / TIH = TcG ^ (1 / 6) * BMG ^ (1 / 2) / jp KA KB KC KD KE KF KG KH

= = = = = = = = =

.000001 ((14.52 ((14.52 ((14.52 ((14.52 ((14.52 ((14.52 ((14.52 ((14.52

KM = YA ^ .333) KM = KM (BME ^ .333) KM = KM (BMI ^ .333) BAWAH = BAWAH = 333) BAWAH = 333)

* * * * * * * *

(GC (GC (GC (GC (GC (GC (GC (GC

+ + + + + + + +

273) 273) 273) 273) 273) 273) 273) 273)

/ / / / / / / /

TcA) TcB) TcC) TcD) TcE) TcF) TcG) TcG)

-

PcA PcB PcC PcD PcE PcF PcG PcG

5.14) 5.14) 5.14) 5.14) 5.14) 5.14) 5.14) 5.14)

^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^

(2 (2 (2 (2 (2 (2 (2 (2 (2 (2 (2 (2 (2 (2 (2 (2

/ / / / / / / / / / / / / / / /

3) 3) 3) 3) 3) 3) 3) 3) 3) 3) 3) 3) 3) 3) 3) 3)

* * * * * * * *

(jp (jp (jp (jp (jp (jp (jp (jp

/ / / / / / / /

TIA) TIB) TIC) TID) TIE) TIF) TIG) TIG)

+ YF * KF * (BMF ^ .333) + YD * KD * (BMD ^ .333) + YE * KE * + YG * KG * (BMG ^ .333) + YH * KH * (BMH ^ .333) + YI * KI * YA * (BMA ^ .333) + YB * (BMB ^ .333) + YC * (BMC ^ .333) BAWAH + YD * (BMD ^ .333) + YE * (BME ^ .333) + YF * (BMF ^ . BAWAH + YG * (BMG ^ .333) + YH * (BMH ^ .333) + YI * (BMI ^ .

'KONDUKTIVITAS pendingin (CAL/JAM.M.K) KP = (.84333 - .0005807 * (GD + 273)) 'PERHITUNGAN KOEFISIEN TRANSFER PANAS RE = 50 * GT / N * Dp / VR HI = (.27 * KM * (RE) ^ .8 * (CPM * VR / KM) ^ (1 / 3)) / DI HI = 7.8 * HI HIO = HI * DI / DOU Rs = DE * GS / VP PR = CPP * VP / KP HO = .46 * KP / DE * Rs ^ .55 * PR ^ .333 UC = (HIO * HO) / (HIO + HO) UD = UC / (11.06557 * UC + 1) / 100 'KECEPATAN REAKSI DAN PANAS REAKS kx = 4691261868600# * EXP(-13505.96427# / (GC + 273)) 'PANAS REAKSI = = = =

CPA CPB CPC CPD CPE CPF CPG CPG

* KA * (BMA ^ .333) + YB * KB * (BMB ^ .333) + YC * KC * (BMC

KM = KM / BAWAH

HR1 HR1 HR1 HR1

* * * * * * * *

-79310 + HR1 + (1 HR1 + (1 HR1 + (1

3.905 * ((GC + 273) - 298) / 2) * (-.00344) * ((GC + 273) ^ 2 - 298 ^ 2) / 3) * (-3.539E-06) * ((GC + 273) ^ 3 - 298 ^ 3) / 4) * (2.295E-09) * ((GC + 273) ^ 4 - 298 ^ 4)

HR2 = -579550 + -.297 * ((GC + 273) - 298)

29 HR2 = HR2 + (1 / 2) * (.0148) * ((GC + 273) ^ 2 - 298 ^ 2) HR2 = HR2 + (1 / 3) * (-4.372E-05) * ((GC + 273) ^ 3 - 298 ^ 3) HR2 = HR2 + (1 / 4) * (2.481E-08) * ((GC + 273) ^ 4 - 298 ^ 4) HR3 HR3 HR3 HR3

= = = =

-757490 + 9.2305 * ((GC + 273) - 298) HR3 + (1 / 2) * (-.00667) * ((GC + 273) ^ 2 - 298 ^ 2) HR3 + (1 / 3) * (-3.193E-05) * ((GC + 273) ^ 3 - 298 ^ 3) HR3 + (1 / 4) * (2.406E-08) * ((GC + 273) ^ 4 - 298 ^ 4)

HR = .75 * HR1 + .2 * HR2 + .05 * HR3 'PERSAMAAN DIFFERENSIAL ' (dx/dz) RR = 82.06 TT = GC + 273 MM = FBo / FAo CA0 = FAo / FTO * E1 / RR / TT RC = kx * CA0 ^ 2 * (1 - GB) * (MM - GB) DX = (3.14 * DI ^ 2 * RC * .36) / (4 * (FAo / N)) ' (dT/dz) Q1 = (-HR) * DX cal/dt cm Q2 = (UD * 3.14 cal/dt cm MCPR = FA * CPA + FG * CPG + FH * CPH T = (Q1 - Q2) /

* FAo / N * DOU * (GC - GD))

' (cal/gmol) (1/cm) (gmol/dt) = ' (cal/cm2 oC dt) (cm) (oC)

=

FB * CPB + FC * CPC + FD * CPD + FE * CPE + FF * CPF + (MCPR / N)

' (dTs/dz) S = -((UD * 3.14 * DOU * (GC - GD)) / (MS * CPP))

' (dP/dz) fk = (150 * (1 - .36) / RE + 1.75) / 10000 P = (GT / N) ^ 2 * (1 - .36) * fk P = -.00001 '((P / ((Dp) * (RM) * 981 * .36 ^ 3))) RETURN

7000

FT = FA + FB + FC + FD + FE + FF + FG + FH TC = C GOSUB 8000 RETURN 8000

XX YY ZZ WW

CPA 4 * WW CPB WW CPC WW CPD WW CPE CPF CPG WW CPH WW

= = = =

(TC (TC (TC (TC

+ + + +

273) 273) 273) 273)

^ ^ ^

298 2 - 298 ^ 2 3 - 298 ^ 3 4 - 298 ^ 4

= 6.713 * XX + -8.79E-07 / 2 * YY + 4.17E-06 / 3 * ZZ + -2.54E-09 / = -5.817 * XX + .122 / 2 * YY + -.0000661 / 3 * ZZ + 1.17E-08 / 4 * = 7.44 * XX + -.00324 / 2 * YY + .0000064 / 3 * ZZ + -2.79E-09 / 4 * = 7.701 * XX + .00046 / 2 * YY + 2.52E-06 / 3 * ZZ + -8.59E-10 / 4 * = 2.9 * XX + .119 / 2 * YY + -.0000679 / 3 * ZZ + 1.23E-08 / 4 * WW = 8.107 * XX + .113 / 2 * YY + -.0000721 / 3 * ZZ + 1.7E-08 / 4 * WW = -3.123 * XX + .0832 / 2 * YY + -.0000522 / 3 * ZZ + 1.16E-08 / 4 * = 4.728 * XX + .0175 / 2 * YY + -.0000134 / 3 * ZZ + 4.1E-09 / 4 *

30 QS1 QS2 QS3 QS4 QS5 QS6 QS7 QS7

FA FB FC FD FE FF FG FH FT

= = = = = = = =

FA FB FC FD FE FF FG FH

* * * * * * * *

CPA CPB CPC CPD CPE CPF CPG CPG

* * * * * * * *

3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6

QTOT = QS1 + QS2 + QS3 + QS4 + QS5 + QS6 + QS7 + QS8 PRINT PRINT USING " Suhu operasi = ###.## C"; TC PRINT " Suhu refferensi = 25 C " PRINT PRINT " ┌──────────┬────────────┬──────────┬───────────────┐" PRINT " │ Komponen │ Kgmol /jam │ Cp dT │ Qs = m Cp dT │ " PRINT " ├──────────┼────────────┼──────────┼───────────────┤" PRINT USING " │ O2 │ #####.#### │ #####.## │ ########.#### │ "; * 3.6; CPA; QS1 PRINT USING " │ C7H8 │ #####.#### │ #####.## │ ########.#### │ "; * 3.6; CPB; QS2 PRINT USING " │ N2 │ #####.#### │ #####.## │ ########.#### │ "; * 3.6; CPC; QS3 PRINT USING " │ H2O │ #####.#### │ #####.## │ ########.#### │ "; * 3.6; CPD; QS4 PRINT USING " │ C6H5CHO │ #####.#### │ #####.## │ ########.#### │ "; * 3.6; CPE; QS5 PRINT USING " │ C6H6 │ #####.#### │ #####.## │ ########.#### │ "; * 3.6; CPF; QS6 PRINT USING " │ C4H2O3 │ #####.#### │ #####.## │ ########.#### │ "; * 3.6; CPG; QS7 PRINT USING " │ CO2 │ #####.#### │ #####.## │ ########.#### │ "; * 3.6; CPH; QS8 PRINT " └──────────┴────────────┴──────────┴───────────────┘" PRINT USING " Total #######.#### ########.#### "; * 3.6; QTOT RETURN

Hasil Running Program computer ┌─────────────────────────────────────────────────────────┐ │REAKTOR FIXED BED MULTI TUBE│ └─────────────────────────────────────────────────────────┘ Jumlah pipa = 6837 pipa Diameter luar pipa = 3.353 cm Diameter dalam pipa = 2.664 cm Pitch = 4.191 cm Diameter Shell = 4.194 m Jumlah pendingin = 369198.000 Kg/j

KECEPATAN MASSA MASUK REAKTOR ┌──────────┬─────────────┬───────────────┐ │ Komponen │ Kgmol /jam │ Kg / jam │ ├──────────┼─────────────┼───────────────┤ │ O2 │ 124.5205 │ 3984.6553 │ │ C7H8 │ 13.1443 │ 1209.2717 │ │ N2 │ 468.4342 │ 13116.1572 │ │ H2O │ 0.0000 │ 0.0000 │

31 │ C6H5CHO │ 0.0123 │ 1.2990 │ │ C6H6 │ 0.1399 │ 10.9158 │ │ C4H203 │ 0.0000 │ 0.0000 │ │ CO2 │ 0.0000 │ 0.0000 │ └──────────┴─────────────┴───────────────┘ Total 606.2511 18322.2988 KECEPATAN MASSA GAS KELUAR REAKTOR ┌──────────┬─────────────┬───────────────┐ │ Komponen │ Kgmol /jam │ Kg / jam │ ├──────────┼─────────────┼───────────────┤ │ O2 │ 82.0665 │ 2626.1272 │ │ C7H8 │ 1.3144 │ 120.9272 │ │ N2 │ 468.4342 │ 13116.1563 │ │ H2O │ 24.0795 │ 433.4310 │ │ C6H5CHO │ 5.9272 │ 628.2800 │ │ C6H6 │ 0.0000 │ 0.0000 │ │ C4H2O3 │ 5.9149 │ 579.6617 │ │ CO2 │ 18.5844 │ 817.7147 │ └──────────┴─────────────┴───────────────┘ Total 606.3211 18322.2988 Enthalpi Umpan Masuk Reaktor : Suhu operasi = 500.00 C Suhu refferensi = 25 C ┌──────────┬────────────┬──────────┬───────────────┐ │ Komponen │ Kgmol /jam │ Cp dT │ Qs = m Cp dT │ ├──────────┼────────────┼──────────┼───────────────┤ │ O2 │ 13.1443 │ 3571.98 │ 46951.0313 │ │ C7H8 │ 124.5205 │ 19696.54 │ 2452622.0000 │ │ N2 │ 468.4342 │ 3395.24 │ 1590446.2500 │ │ H2O │ 0.0000 │ 4065.76 │ 0.0000 │ │ C6H5CHO │ 0.0123 │ 22865.14 │ 280.2058 │ │ C6H6 │ 0.1399 │ 23612.95 │ 3304.5408 │ │ C4H2O3 │ 0.0000 │ 13115.67 │ 0.0000 │ │ CO2 │ 0.0000 │ 5110.12 │ 0.0000 │ └──────────┴────────────┴──────────┴───────────────┘ Total 606.2511 4093604.0000 Reaksi yang terjadi : C7H8 + O2 C7H8 + 6 O2

-----------> ----------->

C6H6 + 7.5 O2 ----------->

C6H5CHO + H2O C4H2O3 + 3 H2O + 3 CO2 6 CO2

+ 3 H2O

KONDISI AWAL ┌──────────────────────────────────────────┐ │ Suhu gas masuk = 500.0 °C │ │ Suhu pendingin keluar = 490.0 °C │ │ Tekanan awal = 2.0 atm │ │ Increment tebal katalis = 1.00 cm │ └──────────────────────────────────────────┘ ┌──────┬────────┬────────┬───────┬────────┐ │ L(cm)│ Xa │ T(c) │ Td (c)│ P(atm) │ ├──────┼────────┼────────┼───────┼────────┤ │ 0 │ 0.0000 │ 500.00 │ 490.0 │ 2.000 │ │ 10 │ 0.0208 │ 504.25 │ 489.9 │ 2.000 │ │ 20 │ 0.0428 │ 508.35 │ 489.8 │ 2.000 │ │ 30 │ 0.0661 │ 512.33 │ 489.6 │ 2.000 │

32 │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │

40 │ 0.0905 │ 516.15 │ 489.4 │ 50 │ 0.1159 │ 519.82 │ 489.1 │ 60 │ 0.1422 │ 523.32 │ 488.9 │ 70 │ 0.1693 │ 526.63 │ 488.6 │ 80 │ 0.1971 │ 529.73 │ 488.2 │ 90 │ 0.2254 │ 532.60 │ 487.9 │ 100 │ 0.2540 │ 535.20 │ 487.5 │ 110 │ 0.2826 │ 537.52 │ 487.1 │ 120 │ 0.3111 │ 539.52 │ 486.6 │ 130 │ 0.3394 │ 541.18 │ 486.2 │ 140 │ 0.3671 │ 542.49 │ 485.7 │ 150 │ 0.3940 │ 543.41 │ 485.2 │ 160 │ 0.4201 │ 543.95 │ 484.7 │ 170 │ 0.4451 │ 544.11 │ 484.2 │ 180 │ 0.4690 │ 543.89 │ 483.7 │ 190 │ 0.4916 │ 543.31 │ 483.2 │ 200 │ 0.5130 │ 542.39 │ 482.7 │ 210 │ 0.5330 │ 541.16 │ 482.2 │ 220 │ 0.5517 │ 539.65 │ 481.8 │ 230 │ 0.5691 │ 537.91 │ 481.3 │ 240 │ 0.5852 │ 535.97 │ 480.8 │ 250 │ 0.6002 │ 533.87 │ 480.4 │ 260 │ 0.6141 │ 531.65 │ 479.9 │ 270 │ 0.6269 │ 529.34 │ 479.5 │ 280 │ 0.6388 │ 526.98 │ 479.1 │ 290 │ 0.6498 │ 524.59 │ 478.7 │ 300 │ 0.6599 │ 522.21 │ 478.4 │ 310 │ 0.6694 │ 519.85 │ 478.0 │ 320 │ 0.6782 │ 517.53 │ 477.7 │ 330 │ 0.6864 │ 515.27 │ 477.4 │ 340 │ 0.6940 │ 513.07 │ 477.1 │ 350 │ 0.7011 │ 510.95 │ 476.8 │ 360 │ 0.7078 │ 508.92 │ 476.5 │ 370 │ 0.7141 │ 506.97 │ 476.2 │ 380 │ 0.7201 │ 505.12 │ 476.0 │ 390 │ 0.7257 │ 503.35 │ 475.8 │ 400 │ 0.7310 │ 501.68 │ 475.5 │ 410 │ 0.7360 │ 500.10 │ 475.3 │ 420 │ 0.7408 │ 498.60 │ 475.1 │ 430 │ 0.7454 │ 497.19 │ 475.0 │ 440 │ 0.7498 │ 495.87 │ 474.8 │ 450 │ 0.7539 │ 494.62 │ 474.6 │ 460 │ 0.7579 │ 493.45 │ 474.5 │ 470 │ 0.7618 │ 492.36 │ 474.3 │ 480 │ 0.7655 │ 491.33 │ 474.2 │ 490 │ 0.7691 │ 490.36 │ 474.0 │ 500 │ 0.7725 │ 489.46 │ 473.9 │ 510 │ 0.7759 │ 488.61 │ 473.8 │ 520 │ 0.7791 │ 487.82 │ 473.7 │ 530 │ 0.7823 │ 487.08 │ 473.5 │ 540 │ 0.7853 │ 486.39 │ 473.4 │ 550 │ 0.7883 │ 485.74 │ 473.3 │ 560 │ 0.7912 │ 485.13 │ 473.2 │ 570 │ 0.7940 │ 484.56 │ 473.1 │ 580 │ 0.7967 │ 484.02 │ 473.0 │ 590 │ 0.7994 │ 483.52 │ 473.0 │ 600 │ 0.8020 │ 483.04 │ 472.9 │ 610 │ 0.8045 │ 482.60 │ 472.8 │ 620 │ 0.8070 │ 482.18 │ 472.7 │ 630 │ 0.8095 │ 481.79 │ 472.6 │ 640 │ 0.8119 │ 481.42 │ 472.6 │ 650 │ 0.8142 │ 481.07 │ 472.5 │ 660 │ 0.8165 │ 480.74 │ 472.4 │ 670 │ 0.8187 │ 480.42 │ 472.4 │ 680 │ 0.8209 │ 480.13 │ 472.3 │

2.000 │ 1.999 │ 1.999 │ 1.999 │ 1.999 │ 1.999 │ 1.999 │ 1.999 │ 1.999 │ 1.999 │ 1.999 │ 1.998 │ 1.998 │ 1.998 │ 1.998 │ 1.998 │ 1.998 │ 1.998 │ 1.998 │ 1.998 │ 1.998 │ 1.997 │ 1.997 │ 1.997 │ 1.997 │ 1.997 │ 1.997 │ 1.997 │ 1.997 │ 1.997 │ 1.997 │ 1.996 │ 1.996 │ 1.996 │ 1.996 │ 1.996 │ 1.996 │ 1.996 │ 1.996 │ 1.996 │ 1.996 │ 1.995 │ 1.995 │ 1.995 │ 1.995 │ 1.995 │ 1.995 │ 1.995 │ 1.995 │ 1.995 │ 1.995 │ 1.994 │ 1.994 │ 1.994 │ 1.994 │ 1.994 │ 1.994 │ 1.994 │ 1.994 │ 1.994 │ 1.994 │ 1.993 │ 1.993 │ 1.993 │ 1.993 │

33 │ 690 │ 0.8231 │ 479.85 │ 472.2 │ 1.993 │ │ 700 │ 0.8252 │ 479.58 │ 472.2 │ 1.993 │ │ 710 │ 0.8273 │ 479.33 │ 472.1 │ 1.993 │ │ 720 │ 0.8294 │ 479.09 │ 472.1 │ 1.993 │ │ 730 │ 0.8314 │ 478.86 │ 472.0 │ 1.993 │ │ 740 │ 0.8334 │ 478.64 │ 472.0 │ 1.993 │ │ 750 │ 0.8354 │ 478.43 │ 471.9 │ 1.992 │ │ 760 │ 0.8373 │ 478.23 │ 471.9 │ 1.992 │ │ 770 │ 0.8392 │ 478.04 │ 471.8 │ 1.992 │ │ 780 │ 0.8410 │ 477.85 │ 471.8 │ 1.992 │ │ 790 │ 0.8429 │ 477.68 │ 471.7 │ 1.992 │ │ 800 │ 0.8447 │ 477.51 │ 471.7 │ 1.992 │ │ 810 │ 0.8464 │ 477.34 │ 471.6 │ 1.992 │ │ 820 │ 0.8482 │ 477.18 │ 471.6 │ 1.992 │ │ 830 │ 0.8499 │ 477.03 │ 471.5 │ 1.992 │ │ 840 │ 0.8516 │ 476.89 │ 471.5 │ 1.992 │ │ 850 │ 0.8533 │ 476.74 │ 471.4 │ 1.991 │ │ 860 │ 0.8549 │ 476.61 │ 471.4 │ 1.991 │ │ 870 │ 0.8566 │ 476.47 │ 471.3 │ 1.991 │ │ 880 │ 0.8582 │ 476.34 │ 471.3 │ 1.991 │ │ 890 │ 0.8598 │ 476.22 │ 471.3 │ 1.991 │ │ 900 │ 0.8613 │ 476.10 │ 471.2 │ 1.991 │ │ 910 │ 0.8629 │ 475.98 │ 471.2 │ 1.991 │ │ 920 │ 0.8644 │ 475.86 │ 471.2 │ 1.991 │ │ 930 │ 0.8659 │ 475.75 │ 471.1 │ 1.991 │ │ 940 │ 0.8673 │ 475.64 │ 471.1 │ 1.991 │ │ 950 │ 0.8688 │ 475.54 │ 471.0 │ 1.990 │ │ 960 │ 0.8702 │ 475.43 │ 471.0 │ 1.990 │ │ 970 │ 0.8717 │ 475.33 │ 471.0 │ 1.990 │ │ 980 │ 0.8731 │ 475.23 │ 470.9 │ 1.990 │ │ 990 │ 0.8744 │ 475.13 │ 470.9 │ 1.990 │ │ 1000 │ 0.8758 │ 475.04 │ 470.9 │ 1.990 │ │ 1010 │ 0.8771 │ 474.95 │ 470.8 │ 1.990 │ │ 1020 │ 0.8785 │ 474.85 │ 470.8 │ 1.990 │ │ 1030 │ 0.8798 │ 474.76 │ 470.8 │ 1.990 │ │ 1040 │ 0.8811 │ 474.68 │ 470.7 │ 1.990 │ │ 1050 │ 0.8823 │ 474.59 │ 470.7 │ 1.989 │ │ 1060 │ 0.8836 │ 474.51 │ 470.7 │ 1.989 │ │ 1070 │ 0.8849 │ 474.42 │ 470.6 │ 1.989 │ │ 1080 │ 0.8861 │ 474.34 │ 470.6 │ 1.989 │ │ 1090 │ 0.8873 │ 474.26 │ 470.6 │ 1.989 │ │ 1100 │ 0.8885 │ 474.19 │ 470.6 │ 1.989 │ │ 1110 │ 0.8897 │ 474.11 │ 470.5 │ 1.989 │ │ 1120 │ 0.8908 │ 474.03 │ 470.5 │ 1.989 │ │ 1130 │ 0.8920 │ 473.96 │ 470.5 │ 1.989 │ │ 1140 │ 0.8931 │ 473.89 │ 470.4 │ 1.989 │ │ 1150 │ 0.8943 │ 473.81 │ 470.4 │ 1.988 │ │ 1160 │ 0.8954 │ 473.74 │ 470.4 │ 1.988 │ │ 1170 │ 0.8965 │ 473.67 │ 470.4 │ 1.988 │ │ 1180 │ 0.8976 │ 473.61 │ 470.3 │ 1.988 │ │ 1190 │ 0.8986 │ 473.54 │ 470.3 │ 1.988 │ │ 1200 │ 0.8997 │ 473.47 │ 470.3 │ 1.988 │ │ 1203 │ 0.9000 │ 473.45 │ 470.3 │ 1.988 │ └──────┴────────┴────────┴───────┴────────┘ KECEPATAN MASSA GAS KELUAR REAKTOR ┌──────────┬─────────────┬───────────────┐ │ Komponen │ Kgmol /jam │ Kg / jam │ ├──────────┼─────────────┼───────────────┤ │ O2 │ 82.0665 │ 2626.1272 │ │ C7H8 │ 1.3144 │ 120.9272 │ │ N2 │ 468.4342 │ 13116.1563 │ │ H2O │ 24.0795 │ 433.4310 │ │ C6H5CHO │ 5.9272 │ 628.2800 │

34 │ C6H6 │ 0.0000 │ 0.0000 │ │ C4H2O3 │ 5.9149 │ 579.6617 │ │ CO2 │ 18.5844 │ 817.7147 │ └──────────┴─────────────┴───────────────┘ Total 606.3211 18322.2988 Enthalpi Hasil reaksi : Suhu operasi = 473.45 C Suhu refferensi = 25 C ┌──────────┬────────────┬──────────┬───────────────┐ │ Komponen │ Kgmol /jam │ Cp dT │ Qs = m Cp dT │ ├──────────┼────────────┼──────────┼───────────────┤ │ O2 │ 1.3144 │ 3359.46 │ 4415.7666 │ │ C7H8 │ 82.0665 │ 18267.09 │ 1499115.5000 │ │ N2 │ 468.4342 │ 3197.49 │ 1497813.5000 │ │ H2O │ 24.0795 │ 3823.43 │ 92066.2578 │ │ C6H5CHO │ 5.9272 │ 21285.38 │ 126162.1016 │ │ C6H6 │ 0.0000 │ 22025.61 │ 0.0000 │ │ C4H2O3 │ 5.9149 │ 12185.40 │ 226458.5938 │ │ CO2 │ 18.5844 │ 4789.26 │ 0.0000 │ └──────────┴────────────┴──────────┴───────────────┘ Total 606.3211 3446031.7500 NERACA PANAS : MASUK :

KELUAR :

1. Enthalpi Umpan Masuk Reaktor 1. Enthalpi hasil reaksi: Qs1 = 4093604.0000 Kcal/jam Qs2 = 3446031.7500 Kcal/jam 2. Panas Reaksi 2. Panas dibawa pendingin Qr = 2518927.2500 Kcal/jam Qp = 2716473.5000 Kcal/jam 3. Panas Hilang Qloss = 450026.0000 Kcal/jam -------------------------------- --------------------------------6612531.5000 Kcal/jam 6612531.0000 Kcal/jam Dari hasil perhitungan Reaktor diperoleh : Jumlah pipa = 6837 pipa Diameter Shell = 4.194 m Jumlah pendingin = 369198 Kg/j Panjang terhitung = 12.0 m = 39.5 ft Panjang Pipa = 12.2 m = 40.0 ft Tinggi Head reaktor = 2.097 m Tinggi reaktor = 12.192 + 2 . 2.097 m = 14.3 m

1. Menghitung tebal shell ────────────────────── Digunakan bahan Carbon steel SA 178 grade C Tekanan design (p) = 17.64 psi

35 Allowable stress = 18750 psi efisiensi sambungan = 0.85 faktor korosi = 0.125 in Jari-jari tangki = 82.56 in Tebal Shell : p .ri t shell = ─────────────── + c S . e - 0.4 . p 17.64 . 82.56 = ──────────────────────────────── + 0.125 18750.00 . 0.85 - 0.4 . 17.64 = 0.216 in Dipakai tebal shell 1/4 in 2. Menghitung tebal head ────────────────────── Bentuk head : Elliptical Dished Head Digunakan bahan Carbon steel SA 178 grade C Tekanan design (p) = 32.24 psi Allowable stress = 18750 psi efisiensi sambungan = 0.85 faktor korosi = 0.125 in Jari-jari tangki = 82.56 in Tebal Head : 0.885 . p .d t head = ──────────────────── + c 2 . S . e - 0.2 . p 0.885 . 32.24 . 165.12 = ──────────────────────────────────── + 0.125 2 . 18750.00 . 0.85 - 0.2 . 32.24 = 0.273 in Dipilih tebal head 1/4 in 3. Menghitung ukuran pipa ────────────────────── Diameter Optimum pipa berdasarkan Pers. 15 Peters, hal.525 a. Pipa pemasukan Umpan Reaktor : Kecepatan Umpan Densitas Umpan

= 40309.059 lb/j = 0.1684 lb/ft^3

Di = 2.2 . ( G/1000 )^ 0.45 . den ^ (-0.31) = 2.2 . ( 40309.059 / 1000 )^ 0.45 . 0.1684 ^ (-0.31) = 20.171 in Dipakai pipa dengan ukuran : 20.00 in b. Pipa pengeluaran hasil Reaktor :

36 Kecepatan hasil = 40309.059 lb/j Densitas hasil = 0.1673 lb/ft^3 Di = 2.2 . ( G/1000 )^ 0.45 . den ^ (-0.31) = 2.2 . ( 40309.059 / 1000 )^ 0.45 . 0.1673 ^ (-0.31) = 20.212 in Dipakai pipa dengan ukuran : 20.00 in c. Pipa pemasukan dan pengeluaran pemanas: Kecepatan HITEC = 812235.6250 lb/j Densitas HITEC = 54.6624 lb/ft^3 Di = 2.2 . ( L/1000 )^ 0.45 . den ^ (-0.31) = 2.2 . ( 812235.625 / 1000 )^ 0.45 . 54.6624 ^ (-0.31) = 12.975 in Dipakai pipa dengan ukuran : 12.00 in 4. Menghitung tebal Isolasi Diameter shell = 13.76 ft Tinggi shell = 40.00 ft Tebal shell = 0.018 ft Luas permukaan head = 356.70 ft² Luas permukaan shell = 1728.24 ft² Total luas permukaan = 2084.94 ft² Suhu permukaan isolasi = 140.00 °F = 600.00 °R Suhu dalam reaktor = 956.39 °F = 1416.39 °R Suhu udara lingkungan = 86.00 °F = 546.00 °R Konduktifitas thermal diding shell = 28.0000 Btu ft/(j ft² F) Digunakan Isolasi Fine Diatomaceous earth powder Konduktifitas thermal isolasi = 0.1250 Btu ft/(j ft² F) Koeffisien transfer panas konveksi (hc) : ┌ ┐0.25 hc = 0.3 │ Tw - Tu │ └ ┘ ┌ ┐0.25 = 0.3 │ 140.00 - 86.00 │ └ ┘ = 0.8132418 Btu/j ft² F Koeffisien transfer panas Radiasi (hr) : ┌ 4 4┐ k e │ (Tw/100) - (Tu/100) │ └ ┘ hr = --------------------------------[ Tw - Tu ] ┌ 4 4┐ 0.178 . 0.8 │ 6.00 - 5.46 │ └ ┘ = ---------------------------------

37 [ 600.00 - 546.00 ] = 5.8827672 Btu/j ft² F A . (T1 - Tu) Q loss = ----------------------------┌ t1 t2 1 ┐ │ ---- + ---- + --------- │ └ k1 k2 (hr + hc) ┘ 2084.940 . (956.39 - 86.00) = -------------------------------------------┌ 0.018 T is 1 ┐ │ ------- + -------- + ------------------ │ └ 28.00 0.125 0.8132 + 5.8828 ┘ ┌ 0.018 T is 1 ┐ 2084.940 (956.39 - 86.00) │ ------- + -------- + -------- │= --------------------------└ 28.00 0.125 6.6960 ┘ 450026.000 ┌ │ └ ┌ │ └

0.018 T is 1 ┐ ------- + -------- + -------- │= 4.032 28.00 0.125 6.6960 ┘ T is ┐ 0.00064 + -------- + 0.1493 │= 4.032 0.1250 ┘

┌ T is ┐ │ -------- │= └ 0.1250 ┘

3.882

T isolasi =

0.485 ft

=

5.824 in

Kesimpulan : 1. Tugas 2. Type alat = Reaktor Fixed Bed Multitube, karena reaksinya sangat eksotermis 3. Kondisi operasi 4. Katalis 5. Pipa reactor 6. Ukuran reaktor Jumlah pipa Diameter Shell Jumlah pendingin Panjang terhitung Panjang Pipa

= 6837 = 4.194 = 369198 = 12.0 = 39.5 = 12.2 = 40.0

Tinggi Head reaktor = 2.097 Tinggi reaktor

pipa m Kg/j m ft m ft m

= 12.192 + 2 . 2.097 m = 14.3 m

38 7.

Related Documents


More Documents from "kuzary"