Loading documents preview...
Roof Design
Basis of Design Type of Occupancy: Residential Building Type of Truss: Howe Truss Project Location: Zone 2 Span of truss: ππ1 = 4.887 π ππ2 = 5.23 m
Height of Truss (rise): π»1 = 0.8 π π»2 = 1.3 π
Bay Distance: πΏ1 = 3.35 π πΏ2 = 3.777 π πΏ3 = 5.073 π
The Truss Truss 1
4
@
1.222
Purlin to purlin spacing,
0.8
h y 4.887
Ζ m
by ratio and proportion 0.8 = 4.887 y =
1.222 m
y 1.222 0.2
m
by Pythagorean theorem
c= h= for the angle, Ζ tan Ζ = Ζ=
1.23801 m
0.8 4.887 9.29684 degrees
Tributary Load Area πΏ1 πΏ2 ππΏπ΄ = ( + ) π₯ ππ1 2 2 3.35 π 3.777 π ππΏπ΄ = ( + ) π₯ 4.887 π 2 2 ππΏπ΄ = 18.46 π2 Load Considerations 1. Gravity Load (GL) πΊπΏ = π
πΏπΏ + π
πΆ + ππππ’πππππ 2. Loads ο·
Roof Live Load (RLL) UBC in Pa ππΏπ΄ = 18.46 π2 π = 9.297Β°
Horizontal Projection
RLL = 750 Pa Equivalent RLL = RLL x horizontal spacing Equivalent RLL = 750 Pa x 1.222 m Equivalent RLL = 916.3125
ο·
π π
Roof Cover (RC) From NSCP 2015
deck metal gage 20
Metal gage 20 = 0.12 kPa = 120 kPa RC = 120 Pa x inclined spacing RC = 120 Pa x 1.238 m RC = 148.5614
ο·
π π
Self-Weight of Purlins π = _________
ππ
From ASEP steel manual
π
ππ = π (9.81
π ) π 2
3. Wind Load (WL) ππΏ = π π₯ π Where: c = pressure coefficient q = wind pressure from UBC
values of βqβ
π»πππβπ‘ ππππ = π»1 + π»π π‘ππ‘ππ π»πππβπ‘ ππππ = 0.8 π + 15.5 π π»πππβπ‘ ππππ = 16.3 m π΄πππππ₯ππππ‘πππ¦ = 53.464 ft q = 30 psf q = 30 x 47.88 = 1436.4 Pa ο·
Windward Side:
π = 1.3 π₯ sin π β 0.5
assuming wind load is pressure
ππΏ = [ 1.3 π₯ sin (9.297Β°) β 0.5 ] ( 1436.4 ππ ) [ ππΏ = β515.676
1.222 π ] cos(9.297Β°)
π π
Because of the negative value, there is no need to consider its critical design ο·
Leeward Side: π = 0.5 ( π π’ππ‘πππ ) ππΏ = 0.5 ( 1436.4 ππ ) [ ππΏ = 889.14
Truss 2
π π
1.222 π ] cos(9.297Β°)
5
@
1.046
Purlin to purlin spacing,
1.3
h y 5.23
Ζ m
by ratio and proportion 1.3 = 5.23 y =
1.046 m
y 1.046 0.26
m
by Pythagorean theorem
c= h= for the angle, Ζ tan Ζ = Ζ=
1.07783 m
1.3 5.23 13.9589 degrees
Tributary Load Area ππΏπ΄ = πΏ3 π₯ ππ2 ππΏπ΄ = 5.073 π π₯ 5.23 π ππΏπ΄ = 26.53 π2 Load Considerations 4. Gravity Load (GL) πΊπΏ = π
πΏπΏ + π
πΆ + ππππ’πππππ 5. Loads ο·
Roof Live Load (RLL) UBC in Pa ππΏπ΄ = 26.53 π2 π = 13.9589Β° RLL = 750 Pa
Horizontal Projection
Equivalent RLL = RLL x horizontal spacing Equivalent RLL = 750 Pa x 1.046 m Equivalent RLL = 784.5
ο·
π π
Roof Cover (RC) From NSCP 2015
deck metal gage 20
Metal gage 20 = 0.12 kPa = 120 kPa RC = 120 Pa x inclined spacing RC = 120 Pa x 1.0778 m RC = 129.34
ο·
π π
Self-Weight of Purlins π = _________
ππ
From ASEP steel manual
π
ππ = π (9.81
π ) π 2
6. Wind Load (WL) ππΏ = π π₯ π Where: c = pressure coefficient q = wind pressure from UBC
values of βqβ
π»πππβπ‘ ππππ = π»1 + π»π π‘ππ‘ππ π»πππβπ‘ ππππ = 1.3 π + 15.5 π π»πππβπ‘ ππππ = 16.8 m π΄πππππ₯ππππ‘πππ¦ = 55.104 ft q = 30 psf q = 30 x 47.88 = 1436.4 Pa ο·
Windward Side: π = 1.3 π₯ sin π β 0.5
assuming wind load is pressure
ππΏ = [ 1.3 π₯ sin (13.9589Β°) β 0.5 ] ( 1436.4 ππ ) [ ππΏ = β288.59
1.046 π ] cos(13.9589Β°)
π π
Because of the negative value, there is no need to consider its critical design ο·
Leeward Side: π = 0.5 ( π π’ππ‘πππ ) ππΏ = 0.5 ( 1436.4 ππ ) [ ππΏ = 774.097
1.046 π ] cos(13.9589Β°)
π π
Design of Purlins Trial 2 C Section: C5x9 Properties: π = 13.39
ππ π
ππ₯ = 58.34 π₯ 103 ππ3 ππ¦ = 7.37 π₯ 103 ππ3 ππ₯ = 72.00 π β π ππ¦ = 17.00 π β π Loads: π )] π 2 π π π π = 1.6 (916.31 ) (1.238 π) + 1.2 [148.56 (1.238 π) + 13.39 (9.81 2 )] π π π π π = 1628.258 π π = 1.6 (π
πΏπΏ)(π) + 1.2 [π
πΆ(π) + π (9.81
ππ₯ = ππ sin π ππ₯ = 1628.258
π sin (9.297Β°) π
ππ₯ = 404.7296
π π
ππ¦ = ππ cos π π cos (9.297Β°) π π ππ¦ = 1628.2584 π ππ¦ = 1628.258
Solution: Considering major axis
L πππ₯ =
π€πΏ2 8
πππ₯ =
1628.2584(5.073)2 8
πππ₯ = 5237.97 π β π Considering minor axis
L πππ¦
π€πΏ2 = 32
πππ¦
404.7296(5.073)2 = 32
πππ¦ = 325.495 π β π ππππ₯ = πΉπ¦ ππ₯ ππππ₯ = 12240 π β π πππ₯ = π·ππππ₯ πππ₯ = 0.9 β 12240 π β π πππ₯ = 11016 π β π ππππ¦ = min[(πΉπ¦ ππ¦ ); (1.6 πΉπ¦ ππ¦ )] ππππ¦ = min[(170 β 17); (1.6 β 170 β 7.37)] ππππ¦ = min[(2890 π β π); (2004.64 π β π)] ππππ¦ = 2004.64 π β π πππ¦ = π·ππππ¦ πππ¦ = 0.9 β 2004.64 π β π πππ¦ = 1804.176 π β π
Checking: πππ₯ πππ¦ + β€1 πππ₯ πππ¦ 5237.97 π β π 325.495 π β π + β€1 11016 π β π 1804.176 π β π 0.475 + 0.1804 = 0.6559 *Adequate
Trial 3 C Section: C4x7.25 Properties: π = 10.79
ππ π
ππ₯ = 37.53 π₯ 103 ππ3 ππ¦ = 5.62 π₯ 103 ππ3
ππ₯ = 46.00 π β π ππ¦ = 13.00 π β π Loads: π )] π 2 π π π π = 1.6 (916.31 ) (1.238 π) + 1.2 [148.56 (1.238 π) + 10.79 (9.81 2 )] π π π π π = 1647.198 π π = 1.6 (π
πΏπΏ)(π) + 1.2 [π
πΆ(π) + π (9.81
ππ₯ = ππ sin π π sin (9.297Β°) π π ππ₯ = 397.3464 π ππ₯ = 1647.198
ππ¦ = ππ cos π π cos (9.297Β°) π π ππ¦ = 1589.5550 π ππ¦ = 1647.198
Solution: Considering major axis
L πππ₯ =
π€πΏ2 8
πππ₯ =
1589.5550(5.073)2 8
πππ₯ = 5142.4174 π β π Considering minor axis
L πππ¦ =
π€πΏ2 32
πππ¦ =
397.3464(5.073)2 32
πππ¦ = 319.557 π β π ππππ₯ = πΉπ¦ ππ₯ ππππ₯ = 7820 π β π πππ₯ = π·ππππ₯ πππ₯ = 0.9 β 7820 π β π πππ₯ = 7038 π β π ππππ¦ = min[(πΉπ¦ ππ¦ ); (1.6 πΉπ¦ ππ¦ )] ππππ¦ = min[(170 β 13); (1.6 β 170 β 5.62)] ππππ¦ = min[(2210 π β π); (1528.64 π β π)] ππππ¦ = 1528.64 π β π πππ¦ = π·ππππ¦ πππ¦ = 0.9 β 1528.64 β π πππ¦ = 1375.776 π β π
Checking: πππ₯ πππ¦ + β€1 πππ₯ πππ¦
5142.4174 π β π 319.557 π β π + β€1 7038 π β π 1375.776 π β π 0.7307 + 0.2323 = 0.963 *Adequate and economical
Design of Sagrods 5π€πΏ 8 5 β 397.3464 β 5.073 = 8
ππ ππ = ππ ππ
ππ ππ = 1259.84 π ππ πππππ₯ = πππ’πππππ ππ ππ ππ πππππ₯ = 5 β 1259.84 π ππ πππππ₯ = 6299.18 π ππ πππππ₯ = π·π ππ 1259.84 π = 0.9 β 170 β π = 7.24 ππ Say π = 8 ππ
π 2 π 4
Design of Truss ο·
Loadings and Analysis of Truss
Considering Forces on Truss 1
P = Wtotal (bay distance) P= 6.33707 kN P/2 = 3.16854 kN Ceilings Suspended steel channel system = Gypsum Board, 1.4β thick = Total = CL = y1 = y2 = y3 =
100 50 150 613.929
Pa Pa Pa N
0.2 m 0.4 m 0.6 m
Solve forces using SW Truss R1 = 18.23 kN R2 = 13.91 kN Top Chord: Most Critical Force =
Bottom Chord:
67.677 kN
C
Most Critical Force =
64.426 kN
T
7.903 kN 24.811 kN
T C
Web Members: Most Critical tension = Most Critical compression =
Considering Forces on Truss 2
P = Wtotal (bay distance) P= 6.33707 kN P/2 = 3.16854 kN Ceilings Suspended steel channel system = Gypsum Board, 1.4β thick = Total = CL = y1 = y2 = y3 = y4 = Solve forces using SW Truss R1 = 21.88 kN R2 = 17.55 kN
0.26 0.52 0.78 1.04
100 50 150 613.929
Pa Pa Pa N
m m m m
Top Chord: Most Critical Force =
60.424 kN
C
Bottom Chord: Most Critical Force =
56.278 kN
T
11.599 kN 20.576 kN
T C
Web Members: Most Critical tension = Most Critical compression =
ο·
Design of Bottom Chord ππ’ = π·πΉπ¦ π΄π Pu = 64.426 kN Fy = 248 Mpa 64.426 kN = 0.9 (248 πππ) β π΄π π΄π = 288.647 ππ2
From aisc-shapes-database use: L51x51x3.2 for bottom chord Properties: π΄ = 317 ππ2 ππ¦ = 15.7 ππ ο·
Design of Top Chord
Trial 1 Use: L51x51x3.2
Properties: π΄ = 317 ππ2 ππ¦ = 15.7 ππ
0.1 (1238 ππ) 200 000 πππ β€ 4.71 β 15.7 248 πππ 78.854 < 133.755 πΉπ¦
πΉππ = (0.658 πΉπ ) πΉπ¦ πΉπ =
π2πΈ ππΏ 2 (π)
=
π 2 (200 000 πππ) (
πΉπ = 317.5 πππ
0.1 (1238 ππ) 2 ) 15.7 248 πππ
πΉππ = (0.658 317.5 πππ ) (248 πππ) πΉππ = 178.8 πππ π·π π = 0.9 (178.8 πππ) (317 ππ2 ) π·π π = 51.02 ππ
<
π π’ = 67.677 ππ
inadequate Trial 2 Use: L51x51x4.8 Properties: π΄ = 466 ππ2 ππ¦ = 15.5 ππ
0.1 (1238 ππ) 200 000 πππ β€ 4.71 β 15.5 248 πππ 79,872 < 133.755 πΉπ¦
πΉππ = (0.658 πΉπ ) πΉπ¦ πΉπ =
π2πΈ ππΏ 2 (π)
=
π 2 (200 000 πππ) (
0.1 (1238 ππ) 2 ) 15.5
πΉπ = 308.42 πππ
248 πππ
πΉππ = (0.658 308.42 πππ ) (248 πππ) πΉππ = 177.32 πππ π·π π = 0.9 (177.32 πππ) (466 ππ2 ) π·π π = 74.368 ππ
<
π π’ = 67.677 ππ
adequate
Use: L51x51x4.8
for top chord
ο·
Design of Web Members
Tension: 11.599 kN Ag =
T
51.9668 mm^2
Initial assumption : From aisc-shapes-database L51x51x3.2 Properties: A= ry =
317 mm^2 15.7 mm
Compression : 24.811 kN
78.854251 Fe = Fcr = Pn = Ξ¦ Pn =
use :
C
< 317.453 178.833 56.7 51.0209
133.755 Mpa Mpa kN kN adequate
L51x51x3.2
for web members