Sample-problem

  • Uploaded by: Joshua Oliver
  • 0
  • 0
  • March 2021
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Sample-problem as PDF for free.

More details

  • Words: 1,878
  • Pages: 19
Loading documents preview...
Sample Problem: 1. A fan draws 1.42 m3 per second of air at a static pressure of 2.54 cm of water through a duct 300 mm diameter and discharges it through a duct of 275 mm diameter. Determine the static fan efficiency if total fan mechanical is 70% and air is measured at 25 0C and 760 mmHg. Given: Q = 1.42

π‘š3 𝑠

hw = 2.54 cm d = 300 mm d = 275 mm Ξ·m = 70% T = 25 0C P = 760 mmHg Required: Ξ·s = ? Solution: πœŒπ‘Ž = πœŒπ‘Ž =

𝑃 𝑅𝑇

101.325 π‘˜π‘ƒπ‘Ž π‘˜π½

(0.287 π‘˜π‘” 𝐾)(25 + 273)𝐾 π‘š3 π‘˜π‘”

πœŒπ‘Ž = 1.184727451 ο‚·

Solving for Static Head: β„Žπ‘  =

β„Žπ‘  =

ο‚·

(2.54 π‘π‘š π‘₯

β„Žπ‘€ πœŒπ‘“ πœŒπ‘Ž 1π‘š

π‘˜π‘”

)(1000 π‘š3 ) 100π‘π‘š π‘˜π‘”

1.184727451 π‘š3

β„Žπ‘  = 21.43953022 π‘š Solving for Vs and Vd: 𝑄 𝑉𝑠 = = 𝐴𝑠

1.42 πœ‹ 4

(300π‘šπ‘š π‘₯

π‘š3 𝑠 1π‘š 1000π‘šπ‘š

𝑉𝑠 = 20.08889059

π‘š 𝑠

)2

𝑄 𝑉𝑑 = = 𝐴𝑑

1.42

π‘š3 𝑠

πœ‹

(275π‘šπ‘š π‘₯ 4

1π‘š 1000π‘šπ‘š

𝑉𝑑 = 23.90744005 ο‚·

)2

π‘š 𝑠

Solving for h: β„Žπ‘£ =

𝑉𝑑 2 βˆ’ 𝑉𝑠 2 2(𝑔) π‘š 2

β„Žπ‘£ =

π‘š 2

(23.90744005 𝑠 ) βˆ’ (20.08889059 𝑠 ) π‘š

2 (9.81 𝑠2 ) β„Žπ‘£ = 8.56280144 π‘š β„Ž = β„Žπ‘  + β„Žπ‘£ β„Ž = 21.43953022 + 8.56280144π‘š β„Ž = 30.00233166π‘š

ο‚·

Solving for Ξ·T :

π‘˜π‘”

0.70 =

πœ‚π‘‡ =

Ζ”π‘Ž π‘„β„Ž 𝐡𝑃

π‘š

1π‘˜π‘

((1.184727451 π‘š3 )(9.81 𝑠2 )(1000𝑁)(1.42

𝑠

)(30.00233166π‘š)

𝐡𝑃 𝐡𝑃 = 0.7073474155 π‘˜π‘Š πœ‚π‘  = π‘˜π‘”

πœ‚π‘  =

π‘š3

π‘š

Ζ”π‘Ž π‘„β„Žπ‘  𝐡𝑃 1π‘˜π‘

((1.184727451 π‘š3 )(9.81 𝑠2 )(1000𝑁)(1.42

π‘š3 𝑠

)(21.43953027π‘š)

0.7073474155 π‘˜π‘Š πœ‚π‘  = 0.5002168273 π‘₯ 100 πœ‚π‘  = 50.0217%

Sample problem: A fan delivers 4.7 m3/s at a static pressure of 5.08 cm of water when operating at a speed of 400 rpm. The power input required is 2.963 kW. If 7.05 m3/s are desired in the same fan and installation, find the pressure in cm of water. Given:

Q1 = 4.7 m3/s h1 = 5.08 cm of water N1 = 400 rpm Pi = 2.963 kW Q2 = 7.05 m3/s

Required: h2= ?

Solution: ο‚·

Solving for N2: 𝑄1 𝑁1 = 𝑄2 𝑁2

4.7

π‘š3

7.05

𝑠 π‘š3 𝑠

=

400 π‘Ÿπ‘π‘š 𝑁2

𝑁2 = 600 π‘Ÿπ‘π‘š ο‚·

Solving for h2: β„Ž1 𝑁1 = ( )2 β„Ž2 𝑁2 5.08 π‘π‘š 400π‘Ÿπ‘π‘š 2 =( ) β„Ž2 600π‘Ÿπ‘π‘š β„Ž2 = 11.43 π‘π‘š of water

PROBLEM: A blower operating at 1500 rpm compresses air from 68Β°F and 14.7 psia to 10 psig. The desired flow is 1350 cfm and at this point, brake horsepower is 80 hp. Determine the over-all blower efficiency at design point if k=1.3395. GIVEN: N= 1500 rpm T1= 68Β°F P1= 14.7 psia P2= 10 psig v= 1350cfm BP= 80 hp k= 1.3395 REQUIRED: Overall blower efficiency, Ε‹π‘œ SOLUTION: Solving for work using isentropic compression

π‘Š=

π‘˜ 𝑃2 π‘˜βˆ’1 (𝑃1 𝑉1 ) [( ) π‘˜ βˆ’ 1] π‘˜βˆ’1 𝑃1

1.3395 𝑙𝑏 12𝑖𝑛 2 𝑓𝑑 3 1π‘šπ‘–π‘› π‘Š= π‘₯ [(14.7 2 π‘₯ ( ) ] (1350 )π‘₯ 1.3395 βˆ’ 1 𝑖𝑛 1𝑓𝑑 π‘šπ‘–π‘› 60𝑠 1.3395βˆ’1 1.3395

10 𝑝𝑠𝑖𝑔 + 14.7 𝑝𝑠𝑖 [( ) 14.7 π‘π‘ π‘–π‘Ž π‘Š = 26416.01081

βˆ’ 1]

𝑙𝑏 βˆ’ 𝑓𝑑 1β„Žπ‘ π‘₯ π‘™π‘βˆ’π‘“π‘‘ 𝑠 550 𝑠

π‘Š = 48.0291057 β„Žπ‘

Solving for overall blower efficiency

𝐡𝐻𝑃 = Ε‹π‘œ = Ε‹π‘œ =

π‘Š Ε‹π‘œ

π‘Š π‘₯100% 𝐡𝐻𝑃

48.0291057β„Žπ‘ Γ— 100% 80β„Žπ‘

Ε‹π‘œ = 60.03638821%

PROBLEM: A 50 kW motor is used to drive a fan that has a total head of 110 m. If fan efficiency is 70%, what is the maximum capacity of the fan?

GIVEN: BP= 50 kW HT= 110m Ŋf= 70% REQUIRED: Maximum capacity of the fan, Q SOLUTION: For the total air power, TAP

ŋ𝑓 =

𝑇𝐴𝑃 𝐡𝑃

𝑇𝐴𝑃 = (ŋ𝑓 )(𝐡𝑃) 𝑇𝐴𝑃 = (0.70)(50π‘˜π‘Š) 𝑇𝐴𝑃 = 35π‘˜π‘Š

Using the density of air at 21.2Β°C, πœŒπ‘Ž = 1.20029845 kg/m3

𝑇𝐴𝑃 = 𝛾𝑄𝐻𝑇 ; 𝛾 = πœŒπ‘” 𝑄= 𝑄=

𝑇𝐴𝑃 πœŒπ‘”π»π‘‡

35000π‘Š π‘˜π‘”

π‘š

1.200029845 π‘š3 (9.81 𝑠2) (110π‘š) π‘š3 𝑄 = 27.02802454 𝑠

A fan described in a manufacturer’s table is rated to deliver 500 m 3/min at a static pressure (gage) of 254 cm when running at 250 rpm and requiring 3.6 kW. If the fan speed is changed to 305 rpm and air handled were at 65℃ instead of standard 21℃, find the power in kW. Given: N1 = 250 rpm N2 = 305 rpm T1 = 21℃ T2 = 65℃ Required: P2 Solution : At 305 rpm and 21℃; P1 N1 = ( )3 P2 N2 3.6kW 250 rpm 3 =( ) P2 305 rpm P2 = 6.5370528kW At 305 rpm and 65℃; ρ=

P RT

ρ1 𝑃⁄𝑅𝑇1 = ρ2 𝑃⁄𝑅𝑇2 BP1 ρ1 𝑇2 = = BP2 ρ2 𝑇1

6.5370528kW 65 + 273𝐾 = P2 21 + 273 𝐾 P2 = 5.686075512kW

The volume of flow of air delivered by fan is 20 m3/sec and 180 mm water gage. The density of air is 1.185 kg/m3 and the motor power needed to drive the fan is 44 kW. What is the efficiency?

Given: h = 180 mm 𝑄 = 20 m3/sec ρ = 1.185 kg/m3 MP = 44 kW Required: Fan efficiency (πœ‚) Solution: 1000 kg⁄m3

β„Žπ‘  = 0.18m(1.185 kg⁄m3) β„Žπ‘  = 151.8987342m

Solving for Air Power; Air Power = Ξ³Qh Air Power = (1.185 kg⁄m3 Γ— 0.00981 Γ— 200 m3 ⁄s Γ— 151.8987342m) Air Power = 35.316kW

πœ‚=

Air Power Motor Power

πœ‚=

35.316kW 44kW

πœ‚ = 0.8026363636 Γ— 100% πœ‚ = 80.26363636%

A fan whose static efficiency is 40% has a capacity of 60,000 ft 3/hr at 60Β°F and barometer of 30 in Hg and gives a static pressure of 2 in of water column on full delivery. What size of electric motor should be used to drive the fan?

Given: 𝑒𝑠 = 40% 𝑄 = 60,000

𝑓𝑑 3 β„Žπ‘Ÿ

𝑇 = 60°𝐹 π‘ƒπ‘Žπ‘‘π‘š = 30 𝑖𝑛 𝐻𝑔 β„Žπ‘€ = 2 𝑖𝑛 Required: 𝐻𝑝 Solution: β„Žπ‘  =

β„Žπ‘€ Ɣ𝑀 Ζ”π‘Ž (2 𝑖𝑛 π‘₯

β„Žπ‘  =

1 𝑓𝑑 12 𝑖𝑛

) (62.4

Ζ”π‘Ž

𝑙𝑏 𝑓𝑑 3

)

10.4 β„Žπ‘  =

𝑙𝑏 𝑓𝑑 2

Ζ”π‘Ž

π΄π‘–π‘Ÿ π‘ƒπ‘œπ‘€π‘’π‘Ÿ = Ζ”π‘Ž π‘„β„Ž Ζ”π‘Ž (60,000 π΄π‘–π‘Ÿ π‘ƒπ‘œπ‘€π‘’π‘Ÿ =

𝑓𝑑 3 β„Žπ‘Ÿ

1 β„Žπ‘Ÿ

10.4

) (60 π‘šπ‘–π‘›) (

𝑙𝑏 𝑓𝑑2

Ζ”π‘Ž

)

π‘“π‘‘βˆ’π‘™π‘ π‘šπ‘–π‘›

33,000

1 β„Žπ‘

π΄π‘–π‘Ÿ π‘ƒπ‘œπ‘€π‘’π‘Ÿ = 0.3151515152 β„Žπ‘ π‘‡β„Žπ‘’π‘Ÿπ‘’π‘“π‘œπ‘Ÿπ‘’, 𝑒𝑠𝑒 1 β„Žπ‘ π‘šπ‘œπ‘‘π‘œπ‘Ÿ (π‘ π‘‘π‘Žπ‘›π‘‘π‘Žπ‘Ÿπ‘‘)

Air is flowing in a duct with velocity of 7.62 m/s and static pressure of 2.16 cm of water gauge. The duct diameter is 1.22 m, the barometric pressure 99.4 kPa and the gage fluid temperature and air temperature are 30Β°C. What is the total pressure against which the fan will operate in cm of water? Given: 𝑣 = 7.62

π‘š 𝑠

β„Žπ‘€ = 2.16 π‘π‘š 𝑑 = 1.22 π‘š π‘ƒπ‘Žπ‘‘π‘š = 99.4 π‘˜π‘ƒπ‘Ž 𝑇 = 30°𝐢 Required: β„Ž Solution: β„Žπ‘£ =

β„Žπ‘£ =

𝑣2 2𝑔 (7.62

π‘š 2 𝑠

2 (9.81

)

π‘š 𝑠2

)

β„Žπ‘£ = 2.959449541 π‘š

Ζ”= Ζ”=

𝑃 𝑅𝑇 99.4 π‘˜π‘ƒπ‘Ž (0.287

π‘˜π½ π‘˜π‘”πΎ

) (30 + 273𝐾)

Ζ” = 1.143041133

π‘˜π‘” π‘š3

π‘†π‘œπ‘™π‘£π‘–π‘›π‘” π‘“π‘œπ‘Ÿ π‘‘β„Žπ‘’ π‘£π‘’π‘™π‘œπ‘π‘–π‘‘π‘¦ β„Žπ‘’π‘Žπ‘‘ 𝑖𝑛 π‘‘π‘’π‘Ÿπ‘šπ‘  π‘œπ‘“ π‘π‘š π‘œπ‘“ π‘€π‘Žπ‘‘π‘’π‘Ÿ 1.143041133 β„Žπ‘£ = 2.959449541 π‘š ( π‘˜π‘” 1000 π‘š3 β„Žπ‘£ = 3.382772558π‘₯10βˆ’3 π‘š π‘œπ‘“ π‘€π‘Žπ‘‘π‘’π‘Ÿ β„Žπ‘£ = 0.3382772558 π‘π‘š π‘œπ‘“ π‘€π‘Žπ‘‘π‘’π‘Ÿ β„Ž = β„Žπ‘  + β„Žπ‘£ β„Ž = 2.16 π‘π‘š + 0.3382772558 π‘π‘š β„Ž = 2.498277256 π‘π‘š π‘œπ‘“ π‘€π‘Žπ‘‘π‘’π‘Ÿ

π‘˜π‘” π‘š3

)

1. Air enters a fan through a duct at a velocity of 6.3 m/s and an inlet static pressure of 2.5 cm of water less than atmospheric pressure. The air leaves the fan through duct at a velocity of 11.25 m/s and a discharge static pressure of 7.62 cm of water above the atmospheric pressure. If the specific weight of the air is 1.20 kg/m 3 and the fan delivers 9.45 m3/sec, what is the fan efficiency when the power input to the fan is 13.75 kW at the coupling? GIVEN: 𝑣𝑠 = 6.3

π‘š 𝑠

𝑣𝑑 = 11.25

π‘š 𝑠

β„Žπ‘  = 2.5 π‘π‘š β„Žπ‘‘ = 11.25 π‘π‘š

𝑀 = 1.20

π‘˜π‘” π‘š3

π‘š3 𝑄 = 9.45 𝑠

REQUIRED: Fan Efficiency SOLUTION: β„Ž = β„Žπ‘  + β„Žπ‘£

β„Ž=(

β„Ž=[

𝑃𝑑 βˆ’π‘ƒπ‘  𝑣𝑑 2 βˆ’π‘£π‘  2 )+( ) 𝑀 2𝑔

0.0762 π‘š βˆ’ (βˆ’0.025 π‘š) 1.20

π‘˜π‘”

] (1000) + [

(11.25

π‘š3

π‘š 2

) βˆ’ (6.3 𝑠

2 (9.81

π‘š

) 𝑠2

π‘š 2 𝑠

)

]

β„Ž = 88.76108563 π‘š π΄π‘–π‘Ÿ π‘π‘œπ‘€π‘’π‘Ÿ = π‘€π‘„β„Ž π‘˜π‘” π‘š3 π΄π‘–π‘Ÿ π‘π‘œπ‘€π‘’π‘Ÿ = (1.20 3 π‘₯ 0.00981) (9.45 ) (88.76108563 π‘š) π‘š 𝑠 π΄π‘–π‘Ÿ π‘π‘œπ‘€π‘’π‘Ÿ = 9.874262475 π‘˜π‘Š

πΉπ‘Žπ‘› 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =

πΉπ‘Žπ‘› 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =

π΄π‘–π‘Ÿ π‘π‘œπ‘€π‘’π‘Ÿ 𝑃𝐼𝑁

9.874262475 π‘˜π‘Š 13.75 π‘˜π‘Š

πΉπ‘Žπ‘› 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 = 71.812818%

2. A fan is listed as having the following performance with standard air: Volume Discharge - 120 m3/s Speed – 7 rps Static Pressure – 310 mm water gage Brake Power Required – 620 kW The system duct will remain the same and the fan will discharge the same volume of 120 m3/s of air at 93oC and a barometric pressure of 735 mm Hg when its speed is 7 rps. Find the brake power input and the static pressure required. REQUIRED: Brake power input Static pressure SOLUTION: For standard air, 𝑀 = 1.2

π‘˜π‘” π‘š3

Solving for the density at 93oC and 735 mm Hg

𝑀=

𝑃 𝑅𝑇 101.325 π‘˜π‘ƒπ‘Ž

𝑀=

735 π‘šπ‘š 𝐻𝑔 ( 760 π‘šπ‘š 𝐻𝑔 ) 0.287

π‘˜π½ π‘˜π‘”βˆ’πΎ

(93 + 273)

𝑀 = 0.9328834256

π‘˜π‘” π‘š3

Using Fan Laws: 𝑀 π΅π‘Ÿπ‘Žπ‘˜π‘’ π‘π‘œπ‘€π‘’π‘Ÿ 𝑖𝑛𝑝𝑒𝑑 = ( ) (π΅π‘Ÿπ‘Žπ‘˜π‘’ π‘π‘œπ‘€π‘’π‘Ÿ π‘Ÿπ‘’π‘žπ‘’π‘–π‘Ÿπ‘’π‘‘) π‘€π‘Žπ‘–π‘Ÿ 0.9328834256 π΅π‘Ÿπ‘Žπ‘˜π‘’ π‘π‘œπ‘€π‘’π‘Ÿ 𝑖𝑛𝑝𝑒𝑑 = ( π‘˜π‘” 1.20 π‘š3

π‘˜π‘” π‘š3

) (620 π‘˜π‘Š)

π΅π‘Ÿπ‘Žπ‘˜π‘’ π‘π‘œπ‘€π‘’π‘Ÿ 𝑖𝑛𝑝𝑒𝑑 = 481.9897699 π‘˜π‘Š π‘†π‘‘π‘Žπ‘‘π‘–π‘ π‘π‘Ÿπ‘’π‘ π‘ π‘’π‘Ÿπ‘’ = (

𝑀 ) (π‘†π‘‘π‘Žπ‘‘π‘–π‘ π‘π‘Ÿπ‘’π‘ π‘ π‘’π‘Ÿπ‘’) π‘€π‘Žπ‘–π‘Ÿ

0.9328834256 π‘†π‘‘π‘Žπ‘‘π‘–π‘ π‘π‘Ÿπ‘’π‘ π‘ π‘’π‘Ÿπ‘’ = ( π‘˜π‘” 1.20 π‘š3

π‘˜π‘” π‘š3

) (310 π‘šπ‘š)

π‘†π‘‘π‘Žπ‘‘π‘–π‘ π‘π‘Ÿπ‘’π‘ π‘ π‘’π‘Ÿπ‘’ = 240.9948849 π‘šπ‘š

At 1.2 kg/m3 air density, a fan develops a brake power of 100kW. If it operates at 98Kpa and 32oC with the same speed, what is the new brake power of the fan? Given:

w1=1.2 kg/m3 BP1=100kW P=98Kpa T=32oC

Required: BP2 Solution:

Solving for the new air density,

w2 ο€½

P 98Kpa ο€½ RT (0.287 kJ / kg - K) (32 + 273)K

w2 ο€½ 1.1195kg / m 3 Solving for the new brake power of the fan,

BP2 w2 ο€½ BP1 w1 BP2 1.1195kg / m 3 ο€½ 100kW 1.2kg / m 3 BP2 ο€½ 93.29kW

A fan has a suction pressure of 30mm water vacuum with air velocity of 3m/sec. The discharge has 150mm of water gage and discharge velocity of 7m/sec. Determine the total head of fan if air density is 1.2 kg/m3. Given: hw1= 30mm = .03m vs= 3m/sec hw2= 150mm = .15m vd= 7m/sec da= 1.2 kg/m3 Required: Total head of fan Solution:

Solving for static head,

hs ο€½

(hw2 ο€­ hw1 )d w da

(0.15m ο€­ (ο€­0.03m))1000kg / m 3 hs ο€½ 1.2kg / m 3 hs ο€½ 150m

Solving for velocity head,

v ο€­ vs hv ο€½ d 2g 2

2

(7 m / sec) 2 ο€­ (3m / sec) 2 2(9.81m / sec 2 ) hv ο€½ 2.038m

hv ο€½

Solving for the total head of fan,

h ο€½ hs  hv h ο€½ 150m  2.038m h ο€½ 152.038m

More Documents from "Joshua Oliver"