Solucionario Larson Cap 13

  • Uploaded by: Lina María Arboleda Flórez
  • 0
  • 0
  • February 2021
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Solucionario Larson Cap 13 as PDF for free.

More details

  • Words: 15,750
  • Pages: 37
Loading documents preview...
C H A P T E R 13 Multiple Integration Section 13.1 Iterated Integrals and Area in the Plane

. . . . . . . . . . . . . 133

Section 13.2 Double Integrals and Volume . . . . . . . . . . . . . . . . . . . 137 Section 13.3 Change of Variables: Polar Coordinates . . . . . . . . . . . . . 143 Section 13.4 Center of Mass and Moments of Inertia . . . . . . . . . . . . . 146 Section 13.5 Surface Area

. . . . . . . . . . . . . . . . . . . . . . . . . . . 153

Section 13.6 Triple Integrals and Applications . . . . . . . . . . . . . . . . . 157 Section 13.7 Triple Integrals in Cylindrical and Spherical Coordinates . . . . 162 Section 13.8 Change of Variables: Jacobians . . . . . . . . . . . . . . . . . . 166 Review Exercises

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

Problem Solving . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

C H A P T E R 13 Multiple Integration Section 13.1

Iterated Integrals and Area in the Plane

Solutions to Odd-Numbered Exercises



x

1.

0





4x 2

5.

x 2y dy 



y y

e



 12 x y 

4x 2

2 2





y

y ln x 1 dx  y ln2 x x 2

x3

9.

0

y x

ye



0

3.





y dx  y ln x x

1

2y

 y ln 2y  0  y ln 2y

1

4x 2  x 4 2



y 1  y ln2y  ln2ey  ln y2  y 2 2 2

ey

dy  xye



2y

3  x2 2

0

0

7.



x

1 2x  y dy  2xy  y 2 2

y x



x3

x3



x

0



2

0

x3



ey x dy  x 4 ex  x 2ey x

 x 21  ex  x 2ex  2

0

2

u  y, du  dy, dv  ey x dy, v  xey x



x  y dy dx 



1  x2 dy dx 



x 2  2y 2  1 dx dy 

1

11.

0

1

13.

0

2

15.

1

2

 1

0

0



x

4

  2

0

1



1y 2

  1

x  y dx dy 

0

0

1



 2

0

4y2

0

   2

21.

0

sin 

2 dx dy  4  y 2

r dr d 

    2

0

0



1 4

 2

0

dx 





1 3

4

dy

0



1y 2

1

2 3 2

0

0



3

0

 21 23 1  x  

1 3 x  2xy 2  x 3

1 2 x  xy 2

1

x1  x2 dx  

64 4  8y 2  4 dy  3 3



2

19  6y 2 dy 

1

 3 19y  2y  4

2

3

 0

r2 2

2x 4  y 2

sin 



0



20 3



2 3

1

dy

0



2





1

x









1 1 1 1 2 1  y 2  y1  y 2 dy  y  y3  1  y 23 2 2 2 6 2 3

0

19.



2x  2 dx  x 2  2x

0

0

0

1

0

0



2

1

dx 

y1  x 2



17.

2

1

0



1



1 2 y 2

xy 

d 



4y2



2

dy 

0

 

2 dy  2y

 2

0

0

4

0

0



2

1

1  sin2  d 2

   cos 2 d 

1 2 1   cos 2  sin 2 4 2 4 2





 2



0



2 1  32 8

133

134

Chapter 13



y dy dx 



1 dx dy  xy

 1 x

23.

0

1

1





 y2 

2 1 x

1

1 2

dx 

0

1

 

25.

Multiple Integration







 y ln x 1





1

dy 

1

1



1 1 dx   x2 2x





1





0

1

1 1  2 2

 y   1y 0 dy 1

Diverges

  8

27. A 

0

8

dy dx 

3

dx dy 

8

x

0

dx 

 

 24

8

0 6

3

dy 

8

3 dx  3x

0

0

0

 

y

8

0

0

8

0

3

y

0

3

A

   

3

 

8 dy  8y

3

 24

4

0

0

2 x 2

 

29. A 



4x2

2

0

2

dy dx 

y

dx

8

y = 4 − x2

4

0

3

2



6

y

4x2

0

0

4

4 

x2

 dx





2

0



x3 3

 4x 

  0

x

4y



4

dy 

    

0

0

dy dx



33.

x 1

2



y2

4y

3



3

0



2 y 1

1 2



9 2

 

4y

3

0

3

y = (2 −

0

4

dy  2

dx dy 

x

x )2

2

4y

dy

1

0

3



x 1

4

4  y dy

3

   3 4  y 

2  2y  4  y3 2 3

4  4x  x dx



4



0

8 3

4

dx dy

y  2  4  y  dy  2

2

2 y 2

y

4y

4

dx

0

Integration steps are similar to those above.

dx dy  2

y2

x

0



0



0



2 x 2

8 x2  4x  xx  3 2 4



  

0

0

1

−1

y

0

2

−2

  4

dy dx 

4

2  x  x 2 dx

3

2

y=x+2

1 1  2x  x 2  x3 2 3 A

2 16  8  3 3



1

2

0

2

4  x  x  2 dx

2

2 x 

4

(1, 3)

3

dx

x2

2

 0

4x 2

y



4

y

y = 4 − x2

1



3

2

2 4  y1 21 dy   4  y3 2 3

2 x2 1





4

4  y dy  

4x2

1



1

dx dy

0

0

31. A 

x

−1

0

4



0

1

16 3

4y

4

A

2

3 0

4

4

3 2

3



9 2

2

3

4

8 3

Section 13.1

         3

2x 3

5

0

0

3

3



3



y

0

0

3

3

5

1

2

2

0

A

dx dy

2

3y dy 2





0

0

 2

cos2  d

0

ab 2



 2

1  cos 2 d 

0

 2

 2   21 sin 2  ab

0

ab 4



a bb2 y2

b

0

dx dy 

0

ab 4

y



5y 5 dy  5y  y 2 2 4

5

2

a2  x 2 dx  ab

dx

0

Therefore, A  ab. Integration steps are similar to those above.



5y

2

a

b a

b aa2 x2

y

0

0

A  4

dy

3y 2

0

0

  a

dy dx 

Therefore, A  ab.

5y

x





3y 2

2



5

5y

0





3

     2

 

b aa2 x2

a

135

x  a sin , dx  a cos  d

5  x dx

3

1

dx

0

 3 x   5x  2 x 





5

2x dx  3

0

5x

dx 

y

dy dx

0

5

2x 3

A 37.  4

5x

dy dx 

35. A 

Iterated Integrals and Area in the Plane

2 0

5

y = ba

b

a2 − x2

y x

a

4 3

y = 23 x

2

y=5−x

1 x 1

2

3

4

5

−1

 4

39.

0

 2

y

f x, y dx dy, 0 ≤ x ≤ y, 0 ≤ y ≤ 4

0

 4



0

41.

4x2

2 0

f x, ydy dx, 0 ≤ y ≤ 4  x2, 2 ≤ x ≤ 2



4y 2

2

4

f x, y dy dx



dx dy

4y 2

0

x

y

y 3

3 1

2 1

−2

 10

43.

1

2

3

 1

f x, ydx dy, 0 ≤ x ≤ ln y, 1 ≤ y ≤ 10

  ln 10



0

2

4

ln y

0

1 −1

x 1

x

−1

45.

1

1 x2

10 x

f x, y dy dx, x 2 ≤ y ≤ 1, 1 ≤ x ≤ 1

 1

f x, ydy dx



e

y

0

y

y

f x, y dx dy

y 4

8 3

6 2

4 2 x 1

2

3

−2

−1

x 1

2

136

Chapter 13

 1

47.

0

2

Multiple Integration

 2

dy dx 

0

1

0

 1

dx dy  2

49.

0

1y2

1y2

0

y

 1

dx dy 

1

1x2

dy dx 

0

 2

y

3

1

2 x

−1

1

1

x

1

 2

51.

0

2

x

3

 4

dy dx 

0

4x

2

 2

dy dx 

0

0

4y

 2

dx dy  4

53.

y

0

1

 1

dy dx 

x 2

0

2y

dx dy  1

0

y

y

3

2 2

1

1 x 1

2

3

4

x

−1

1

 1

55.

0

3 y 



x

1

dx dy 

y2

0

x= 3 y

5 dy dx  12

x3

2

y

x = y2

2

1

(1, 1) x

1

2

57. The first integral arises using vertical representative rectangles. The second two integrals arise using horizontal representative rectangles.

 5

0

50x 2

0

x



 5

0

y

x 2y 2 dx dy 

0

  52

5

50y 2

y

y=

50 − x 2

5

(5, 5) y=x x 5



0





1 2 1 x 50  x 23 2  x5 dx 3 3

15625  24 5

x 2y 2 dx dy 

0

(0, 5 2 )

 5

x 2y 2 dy dx 

1 5 y dy  3

15625  24



52

5



1 15625 15625 15625 50  y23 2 y2 dy    3 18 18 18



Section 13.2

 2

59.

0

2

x

 1

0

1

y

0

 2

0

2

x







y sin x 2

0





1 0

0

dx

0

1 1 1   cos 1  1  1  cos 1 0.2298 2 2 2

 4

65.

0

y

2 dx dy  ln 52 2.590 x  1y  1

0

y

x2 32

4

x = y3

(8, 2)

2

x

 2

1 1 26  27  1  9 9 9

x

1664 15.848 105

x 2y  xy 2 dy dx

x 2 −2

(c) Both integrals equal 67520693 97.43

69.

dy

0

13

x232

0

y

2

1

sinx 2 dy dx 

x  42y ⇔ x2  32y ⇔ y  (b)



3 32

67. (a) x  y3 ⇔ y  x13

8

x2 2

 12  13  23 1  y  

1 x sin x 2 dx   cos x 2 2

x3  3y 2 dy dx 



0

0

0

2x

1  y3

0

x

0

1

0

1  y3 y 2 dy 

 

 2

x1  y3 dx dy 

2

1 2

1

sin x 2 dx dy  

63.

y

0



61.

  2

x1  y3 dy dx 

Double Integrals and Volume

4

6

8

x = 4 2y

 2

4x2

exy dy dx 20.5648

71.

0

1cos 

0

6r 2 cos  dr d 

0

15 2

73. An iterated integral is a double integral of a function of two variables. First integrate with respect to one variable while holding the other variable constant. Then integrate with respect to the second variable. 75. The region is a rectangle.

Section 13.2

77. True

Double Integrals and Volume

For Exercise 1–3,  xi  yi  1 and the midpoints of the squares are

12, 21 , 32, 12 , 52, 12 , 72, 12 , 12, 32 , 32, 32 , 52, 32 , 72, 32 .

y 4 3 2

1 x 1

2

1. f x, y  x  y 8

f x , y   x y  1  2  3  4  2  3  4  5  24 i

i

i

i

i1

 4

0

2

0

 4

x  y dy dx 

0

xy 

y2 2



2 0



4

dx 

0





2x  2 dx  x 2  2x

4 0

 24

3

4

137

138

Chapter 13

Multiple Integration

3. f x, y  x 2  y 2 8

2

f x , y  x y  4  i

i

i

i

i1

 4

0

 4

5.

0

10 26 50 10 18 34 58        52 4 4 4 4 4 4 4

2

 4

x 2  y 2 dy dx 

0

y3 3

x2y 

0



2 0

 4

dx 

2x 2 

0





8 2x3 8x dx   3 3 3



4 0



160 3

4

f x, ydy dx 32  31  28  23  31  30  27  22  28  27  24  19  23  22  19  14

0

 400 Using the corner of the ith square furthest from the origin, you obtain 272.

 2

7.

0

 

1

y

2

1  2x  2y dy dx 

0

y  2xy  y



1

2

dx

0

0

3

2

2

2  2x dx



0

1





 2x  x 2

2 x

1

0

2

3

8

 6

9.

0

 

3

6

x  y dx dy 

y2

0

6



0







1 2 x  xy 2

3

dy

y

y2

(3, 6) 6



9 5  3y  y 2 dy 2 8

5 9 3 y  y 2  y3 2 2 24

4



2

6 0

x 2

 36



a2 x2

a

11.

x  y dy dx 

a a2 x2

 

a

a





1 xy  y 2 2

a2 x2

a2 x2

4

6

y

dx

a

a



a



2xa2  x 2 dx



2   a2  x232 3

 5

13.

0

3

   3

xy dx dy 

0

0

25 2

x y dy dx

y 5



1 2 xy 2

5

dx

0

4 3 2

3

x dx

1

0

x 1



 254 x 

3

2

0



225 4

a

−a

0

0

0



a

5

3



a

−a

2

3

4

5

x

Section 13.2

 2

15.

0



y

4

y 2 2 dx dy  y2 x  y

2

y 2 2 dx dy  y2 x  y

2



    2

0



 3

  

4y

4

17.

0

4y



dx

2

x

1

2

ln

5x 2

1

0

x 1

0

dx

 12 ln 2x

2

5

0

 ln

5 2 y

2y ln x dy dx

4



ln x  y2

(1, 3)

3

4x2

dx

2

4x

1

ln x4  x22  4  x2 dx

x

4

0



3x4

5

x dy dx 

0

4

1

25x 2

   0

0



4

0

2

0

y dy dx  2

  4

0

y2 4





25y2

3

dy

4y3

25 18

x= 4y 3

9y  y   25 18 3 1

3

3

0

x 1

2

 25

y

dx

4

0

3

dx  4

2

0

1 x 1

 2

23.

0

y

  2

4  x  ydx dy 

0

4x 

0

2



4y 

0





2y2



x2  xy 2



y3 y3   6 3



8 8 8  4 6 3

2

2

3

4

y

dy

y

0

y2  y2 dy 2

(4, 3)

1

9  y 2 dy

0

2

25 − y 2

x=

2

3

4



5 4

1 2 x 2

0



x dx dy

4y3

3



4

y

25y 2

3

x dy dx  

21.

3

26 25





3

0

0

19.

2

2

1 5 ln 2 2

1



y=x

 dx

 ln

2x 2

4x



x=2

3

2x

lnx 2  y 2

0

y = 2x

4

4x2

1

2y ln x dx dy 

x

y

y dy dx x2  y 2

2

1 2

1  2 

2x

Double Integrals and Volume

2

1

y=x

0

x 1

2

3

4

5

4

139

140

Chapter 13



23x4

6

25.

0

0

Multiple Integration

  6

12  2x  3y dy dx  4



0

6



0

3 1 12y  2xy  y 2 4 2



dx

5

0

3

y = − 23 x + 4

4



1 2 x  2x  6 dx 6

 181 x



y

23x4

3 2 1



6

 x 2  6x

x

0

1

−1

2

3

4

 12

 1

27.

y

0

  1

1  xy dx dy 

0

0

1



0

y

x 2y x 2



y

dy

0 1



y3 y dy 2

y=x x



y2 y4   2 8 





29.

0

0

1

0

3 8

1 dy dx  x  12 y  12







0



 x  11 y  1 2

0

dx 





0



1 1 dx   x  12 x  1





0

4x2

2

31. 4



1

0

4  x 2  y 2 dy dx  8

0

  1

33. V 

0

1



0



x

  2

35. V 

xy dy dx

0

0



x

1 2 xy 2

 18 x 

1

0

0

1 2



1

x 2 dy dx

0

2



x3 dx

0



dx 



32 3

4 0

 4x3 

3 2 0

y



2



x 2y

0

1 8



4

dx 

4

0

y

4

1

y=x 3 2 1

x 1

x

−1

37. Divide the solid into two equal parts.

   1

0

y=x

1  x 2 dy dx

0

1

2



dx

0

x 1

1

x1  x 2 dx

0



1

x

y1  x 2

0

2

y

x

V2

1



2   1  x 232 3

1 0



2 3

2

3

4x 2 dx

1

5

6

Section 13.2

   0

xy 

0



2



1 2 y 2

4x 2

0

0

0







1 1   4  x 232  2x  x3 3 6

2 0

2

4

1 x4  x 2  2  x 2 dx 2

x 2  y 2 dy dx



1 x 24  x 2  4  x 232 dx, 3

4

dx

16 cos2  

0





x  2 sin 



32 cos4  d 3

32 3

 4   3 16 

 4 16

16 3

 8

y

y 2

x 2 + y2 = 4

4 − x2

y=

1

1 x

−1

1 −1

x 1

2



4x2

2

43. V  4

0



0.5x1

2

4  x 2  y 2 dy dx  8

45. V 

0

0

0

2 dy dx 1.2315 1  x2  y 2

47. f is a continuous function such that 0 ≤ f x, y ≤ 1 over a region R of area 1. Let f m, n  the minimum value of f over R and f M, N  the maximum value of f over R. Then



f m, n

dA ≤

R

Since







f x, y dA ≤ f M, N

R

dA.

R

dA  1 and 0 ≤ f m, n ≤ f M, N ≤ 1, we have 0 ≤ f m, n1 ≤

R

Therefore, 0 ≤



f x, y dA ≤ f M, N1 ≤ 1.

R



f x, y dA ≤ 1.

R

 1

49.

12

0

  12

ex 2 dx dy 

y2

0

2x

 1

ex 2 dy dx

0

51.

arccos y

0

sin x1  sin2 x dx dy

0

12





2xex 2 dx





 ex 2

12



0

2

e14

cos x

sin x1  sin2 x dy dx

0

2

1  sin2 x12 sin x cos x dx

0

 e14  1 1

   0

0



0.221

 12  23 1  sin

2

y

y

y = 2x 1

2

1 2

1

y = cos x

x 1 2

1

141

0

0

0

2

4x 2

2

41. V  4

x  y dy dx

2



  

4x 2

2

39. V 

Double Integrals and Volume

π 2

π

x

2



x32

0



1 22  1 3

142

Chapter 13 1 8

53. Average 

Multiple Integration

 4

0

2

x dy dx 

0

1 8



4

2x dx 

0

8 x2

4 0

1 4

55. Average 

2

 

57. See the definition on page 946.

1 4

  2

0

2

x 2  y 2 dx dy

0

2

0

x3  xy 2 3



2 0

 14 83 y  32 y 

2

3

0



59. The value of

dy  

1 4

 2

0

8 3

f x, y dA would be kB.

R

1 1250

61. Average  

1 1250

   325

300

250

100x 0.6y 0.4 dx dy

200

325

100y 0.4

300

x1.6 1.6

63. f x, y ≥ 0 for all x, y and





 



250 200

  5

f x, y dA 

0

0

2

P0 ≤ x ≤ 2, 1 ≤ y ≤ 2 

2

0

2

1

dy 



325

128,844.1 1250

1 dy dx  10 1 dy dx  10

 

5

0 2

0

y 0.4 dy  103.0753

300

 y1.4 

1.4 325 300

25,645.24

1 dx  1 5 1 1 dx  . 10 5

65. f x, y ≥ 0 for all x, y and





 

    3

f x, y dA 

0

3



0

1

P0 ≤ x ≤ 1, 4 ≤ y ≤ 6 

0

6

3

1 9  x  y dy dx 27

1 y2 9y  xy  27 2 6

4



6 3

  3

dx 

1 9  x  y dy dx  27

0

1

0





1 1 x x2  x dx   2 9 2 18



3 0

1

2 7 4  x dx  . 27 27

67. Divide the base into six squares, and assume the height at the center of each square is the height of the entire square. Thus,

z

V 4  3  6  7  3  2100  2500m3.

7

(15, 15, 7) (5, 5, 3)

(15, 5, 6)

(5, 15, 2)

(25, 5, 4)

20 y

30

(25, 15, 3)

x

 1

69.

0

2

 6

sin x  y dy dx

0

m  4, n  8

71.

4

2

y cos x dx dy

0

(a) 1.78435

(a) 11.0571

(b) 1.7879

(b) 11.0414

m  4, n  8



8  2y 2 dy 3

Section 13.3

73. V  125

75. False

z

(4, 0, 16) 16

Matches d.

Change of Variables: Polar Coordinates

 1

(4, 4, 16)

V8

0

5

(4, 4, 0)

1

0



 1

f x dx 

x

0

 1

0



 1

e t dt dx   2

1

0

t



t

1 2

et dt dx

x 1

1

e t dx dt   2

0

2

te t dt

0



1 2   et 2

Section 13.3

1  x 2  y 2 dx dy

0

y

5

x



1y 2

(0, 4, 0)

(4, 0, 0)

77. Average 

143

1 0

x

1 1   e  1  1  e 2 2

1

Change of Variables: Polar Coordinates

1. Rectangular coordinates

3. Polar coordinates

5. R  r, : 0 ≤ r ≤ 8, 0 ≤  ≤ 

7. R  r, : 0 ≤ r ≤ 3  3 sin , 0 ≤  ≤ 2 Cardioid

 2

9.

0

6

3r 2 sin  dr d 

0

 

2



0



2

r 3 sin 



6 0

π 2

d

216 sin  d

0

0

4



 216 cos 

   2

11.

0

3

9  r 2 r dr d 

2



 2

0

0

 31 9  r  

3

2 3 2

2

0



2



π 2

d

 2

 5 3 5  

0

55  6

0 1

   2

13.

0

1sin 

r dr d 

 

 2



2 1sin  0

0

0

 2r 

 2

0

 8



3 2 9   32 8

2

3

d

π 2

1 1  sin 2 d 2



1

2



1 1  sin    cos     cos  2 2

 2

 sin   2   8 sin2 0 1

1

0 1

2

144

Chapter 13



y dx dy 



x 2  y 23 2 dy dx 

a2 y 2

a

15.

0

0

a

r 2 sin  dr d 

0

0

2xx 2

xy dy dx 

2

0

 2

 2

x 2  y 2 dy dx 

0



 2

r 4 dr d 

243 5



 2

r3 cos  sin  dr d  4

d 

 2

 

8x 2



cos5  sin d  

    4

x 2  y 2 dy dx 

4x 2

0

x  y dy dx 

 2

2

0

0



 

4y 2

1 2

25.

  

1y 2

0

8 3

r cos   r sin r dr d 

0

 2

0

y arctan dx dy  x 

     2

1 2

 4

0



     2

29. V 

1

r3 sin 2 dr d 

0

 2

5

r 2 dr d 

0

0

    2

0



 2

2

cos   sin r2 dr d

0

 2

 83 sin   cos 

0



π 2

y arctan dx dy x

16 3

(

1 , 2

1 2

2

( ( 2, 2)

r dr d

3 3 2  d  2 4

 4

 

0



3 2 64

0 1

2

r cos r sin r dr d

0

31. V  2

 

0

 2

1 2

0 3

1

0



y

2

1

 4

0

27. V 

4y 2

1

2 3

162 d 3

0

cos   sin  d 



0

π 2

r 2 dr d

42 3



 2



0

 4

0

2

a3 3

4 cos6  6

22

0

0



243 10

0

0

2



0

0



23.

3

0

3

 2

 a3 cos 

sin  d 



2 cos 

22

x

a3 3

0

  0

0



  0

 0

21.

 2

9x 2

2

19.

  0

0

3

17.

Multiple Integration

128 3

4 cos 

0

 2

0

1 8



 2



sin 2 d  

0

1 cos 2 16

 2



0



1 8

250 3



16  r2 r dr d  2

 2

0

1  sin 1  cos2  d 

4 cos 

 3  16  r   1

2 3

0

128 cos3    cos   3 3



d  

 2



0



2 3



 2

64 sin3   64 d

0

64 3  4 9

Section 13.3

33. V 

 2

4

16  r 2 r dr d 

a

0



2

 3  16  r   1

2 3

4 a

0

d 

Change of Variables: Polar Coordinates

1  16  a2 32 3

One-half the volume of the hemisphere is 64 3. 2 64 16  a23 2  3 3

16  a23 2  32 16  a2  322 3 3 a2  16  322 3  16  8 2 3 3 2   24  2 2  2.4332 a  4 4  2

35. Total Volume  V 

 2

4



 

50e  r2 4

4 0

0



2

0

0

2

25er 4 r dr d

2

d

50e4  1 d

0

 1  e4 100  308.40524 Let c be the radius of the hole that is removed. 1 V 10 

  2

c

25er

r dr d 

4

2

0

0

2



2

0

c

50e

r 2 4



0

d

50ec 4  1 d ⇒ 30.84052  1001  ec 2

4

2



0

⇒ ec

4

2



 0.90183

c2  0.10333 4

c2  0.41331 c  0.6429 ⇒ diameter  2c  1.2858

37. A 

 

6 cos 

0

0

 2

39.

0

r dr d 

1cos 

r dr d 

0

   3

0

2 sin 3

0



1 2 1 2

r dr d 



18 cos  d  9 2

0



41. 3







1  cos 2 d  9  

0

 

2

1 sin 2 2





0

 9

1  2 cos   cos2  d

0 2

2

2 1  2 cos   1  cos

d  21   2 sin   21   21 sin 2  2

0

0

3 2



 3

0



4 sin2 3 d  3

 3



1  cos 6 d  3  

0

43. Let R be a region bounded by the graphs of r  g1 and r  g2, and the lines   a and   b. When using polar coordinates to evaluate a double integral over R, R can be partitioned into small polar sectors.

1 sin 6 6

 3



0



3 2



45. r-simple regions have fixed bounds for .

-simple regions have fixed bounds for r.

145

146

Chapter 13

Multiple Integration

47. You would need to insert a factor of r because of the r dr d nature of polar coordinate integrals. The plane regions would be sectors of circles.

  2

49.

5

4

r1  r 3 sin dr d 56.051

0

Note: This integral equals 

2



5

sin  d

4

r1  r3 dr

0

51. Volume  base  height

 53. False

z 16

8  12 300

Let f r,   r  1 where R is the circular sector 0 ≤ r ≤ 6 and 0 ≤  ≤ . Then,

Answer (c)



r  1 dA > 0

but

R

6

4

4 6

x



55. (a) I 2 



e x

2 dA

2 y2

 

 



2

4

0

y

er

22



r dr d  4

2

0

0



e  r 22

0



2

d  4

d  2

0

(b) Therefore, I  2.



49x 2

7

57.

4000e0.01 x



2 y2

7 49x 2

 2

dy dx 

7

4000e0.01r r dr d  2

0

0



2

0

200,000e



7

0.01r 2

0

d

 2 200,000 e0.49  1  400,000 1  e0.49 486,788

     4

59. (a)

3x

2

23

4

61. A 

  43

4 csc 

2 csc 

3x

 

x

f dy dx



(2, 2) 2 ,2 3

(

1

1

2

0

0

  2

0

 4

xy dy dx 

0



Center of Mass and Moments of Inertia

3

xy2 2



3 0



4

dx 

0

2

r cos  r sin  r dr d 

0

 

9 9x2 x dx  2 4

   2

0



4

 36

0

2

cos  sin 

0

2

r 3 dr d

4 cos  sin  d

0



 4

sin2  2

2



0

(4, 4) 4 ,4 3

(

3

43 x

f r dr d



y=x

3x

4

4

f dy dx 

y=

r  r2

 r22  r12    1

r2  r1  r r  2 2 2

4

3. m 

f dy dx 

2

Section 13.4 1. m 

5

2

3

(c)

f dx dy

y3

2

(b)

y

y

2

3

(

( x

4

5

r  1  0 for all r.

Section 13.4

   a

5. (a)

m

b

0

ky dy dx 

0

a

My 

k dy dx  kab

m

(b)

0

0

a

b

0

   a

b

0

Mx 

Center of Mass and Moments of Inertia

kx dy dx 

0

Mx 

0

My 

0

b

ky 2 dy dx 

kab3 3

kxy dy dx 

ka2b2 4

b

0

x

My b2 a   m kab 2

My ka2b24 a   x m kab22 2

y

Mx kab22 b   m kab 2

y

ka2

a2, b2

x, y 

   a

(c) m 

x, y 



b

0

a

kx dy dx  k

0

a

0

b

Mx 

0

ka2b2 4

kx 2 dy dx 

ka3b 3

b

My 

0

0

Mx kab33 2   b m kab22 3

a2, 23b

1 xb dx  ka2b 2

kxy dy dx 

0

a

My ka3b3 2  2  a x m ka b2 3 y

Mx ka2b24 b  2  m ka b2 2

x, y 

7. (a)

kab2 2

0

a

ka2b 2

ky dy dx 

0

a

kab2 2

b

23 a, b2

k m  bh 2

y

y=

b x  by symmetry 2

 b2

Mx 

0

2hxb

h

 b

ky dy dx 

0

2hx b y=−

2h xb b

ky dy dx

b2 0

x b

kbh2 kbh2 kbh2    12 12 6 y

x, y 

Mx kbh26 h   m kbh2 3

b2, h3

—CONTINUED—

2 h (x − b ) b

147

148

Chapter 13

Multiple Integration

7. —CONTINUED—

   b2

(b) m 

0

2hxb

0

b2

Mx 

0

0

0 2hxb

0

 0

2hxb



kxy dy dx 

kb2h2 12

2h xb b

b

kx dy dx 

0

kx dy dx

b2 0

1 2 1 1 kb h  kb2h  kb2h 12 6 4

 b2

0

2hxb



2h xb b

b

kxy dy dx 

0

kxy dy dx

b2 0

1 2 2 5 1 kh b  kh2b2  kh2b2 32 96 12

 b2

0



kbh3 12

kb2 2

b2

My 

ky 2 dy dx 

b2 0

Mx kbh312 h   m kbh26 2



2h xb b

b

kxy dy dx 

y

Mx 

2hxb

 b

2

kx dy dx 

0

2h xb b

kx2 dy dx

b2 0

11 7 1 3 kb h  kb3h  kb3h 32 96 48

x

My 7kb3h48 7   b m kb2h4 12

y

Mx kh2b212 h   m kb2h4 3

9. (a) The x-coordinate changes by 5: x, y 

a2  5, 2b 

a 2b (b) The x-coordinate changes by 5: x, y   5, 2 3

      a5

(c) m 

5

a5

Mx 

5

a5

My 

5

x

kbh2 6

b2 0

My h 12 b   m kbh26 2



ky dy dx 

2h xb b

b

ky 2 dy dx 

x

(c) m 

2h xb b

b2 0

2hxb

b2

My 

   b

ky dy dx 

b

0

1 25 2 kx dy dx  k a  5 b  kb 2 2

b

0

1 25 2 2 2 kxy dy dx  k a  5 b  kb 4 4

b

kx 2 dy dx 

0

1 125 3 k a  5 b  kb 3 3

My 2 a  15a  75  m 3 a  10

M b y x m 2

11. (a)



x  0 by symmetry m

a2k 2



yk dy dx 

Mx 2a3k  m 3

a2k  3

a

Mx  y

a 0

   a

(b) m  Mx 

a2 x 2

a 0 a

My 

a2 x 2

a 0 a

2

a2 x 2

a2 x 2

a 0

2

4a

k a  y y dy dx 

a4k

16  3 24

k a  y y 2 dy dx 

a5k

15  32 120

kx a  y y dy dx  0

x

My 0 m

y

Mx a 15  32  m 5 16  3



2a3k 3



Section 13.4

  

x

4

13. m 

0

32k 3

kxy dy dx 

0

Mx 

0

0

1 1x 2

kx

Mx 

dy dx  32k

2y

0

x

My 32k  m 1

y

Mx 256k  m 21

k dy dx 

1 0 1 1x 2

1

x

My 

 

m

256k kxy 2 dy dx  21

0

4

x  0 by symmetry 1

x

4

15.

Center of Mass and Moments of Inertia

1 0

k 2

k ky dy dx  2   8

M 2 k 2 y  x  2    m 8 k 4

3

32k  3

y

3 8  32k 7



2

1 1 + x2

y=

y 3

y=

x

2

x

−1

1

1 x 1

2

3

4

−1

17. y  0 by symmetry

 

16y 2

4

m

4 0

x

kx dx dy 

8192k 15

4 0

L by symmetry 2

 

sin xL

L

m

0

16y 2

4

My 

19. x 

kx 2 dx dy 

My 524,288k  m 105

524,288k 105

15

8192k 

sin xL

L

Mx 

0

64 7

y

y

ky dy dx 

0

ky 2 dy dx 

0

Mx 4kL  m 9

4

16

kL  9

y

x = 16 − y 2

8

2

4 x 4

y = sin π x L

1

8

−4

x

−8

21. m  Mx 

a2k 8

 

ky dA 

π 2

    4

0

R

My 

L

L 2

kx dA 

R

a

kr 2 sin  dr d 

0

4

0

ka3 2  2 6

a

kr 2 cos  dr d 

0

x

My ka32  m 6

y

Mx ka3 2  2  m 6

8

a2k 

ka32 6

4a2 3 8

a2k 

4a 2  2 3

kL 4

y=x r=a

a

0

4kL 9

149

150

Chapter 13

  

ex

2

23. m 

0

0

2

k

1  e4 4

y  0 by symmetry

k ky 2 dy dx  1  e6 9

m

k 1  5e4 8

My 

x

e

0

25.

x

e

0

My 

ky dy dx 

0

2

Mx 

Multiple Integration

kxy dy dx 

0

2 cos 3

6 0

kr dr d 

k 3

kx dA

R

My k e4  5  m 8e4

k e4  1  2 e4  1 0.46

y

Mx k e6  1  m 9e6

k e4  1  9  e6  e2 0.45

e4  5

4 e6  1

4e4

6

k dA 

R

x

4e4

     



6

2 cos 3

6 0

kr 2 cos  dr d 1.17k

 

My 3 1.17k 1.12 m k

x π 2

y

π θ= 6

2

r = 2 cos 3θ y = e −x

1

0 1

π θ =−6

x 1

2

29. m  a2

27. m  bh

  b

Ix 

0

h

0

b

Iy 

0

h

 3 I bh y  m 3 Iy  m

b3h 3

x

Ix 

a2 4

 

y2

dA 

y 2 dA 

R

Iy 

3  1 h bh   3  1

2

3

  2

x 2 dA 

b b  3 3

I0  Ix  Iy 

3 h h  3 3

xy

4

a4 4

r3 cos2  dr d 

a4 4

0

2

a

0

0

a4

r3 sin2  dr d 

a

0

R

b2

bh 

    2

0

x2

dA 

2

0

R

I0  Ix  Iy  xy

 



a 4 a 4  4 2

mI  a4 1a 4

x

2



a 2

33.  ky

R

Iy 

Ix 

b3h 3

x 2dy dx 

0

x

31. m 

bh3 3

y 2 dy dx 

r3

sin2

0

a4  dr d  16

a

r3

cos2

0

a4  dr d  16

mI  16a 4a 4

2

b

mk

0

a

0



a 2

kab2 2

b

kab4 4

y3 dy dx 

0 b

Iy  k

0

y dy dx 

0

Ix  k

a

a4 a4 a4   16 16 8 x

   a

a

x 2y ydy dx 

0

I0  Ix  Iy 

ka3b2 6

3kab4  2kb2a3 12

m  kakabb 26  a3  a3  33 a I b kab 4 b 2 y     b m kab 2  2 2 2 x

Iy

3 2

x

4 2



2

2





2



Section 13.4 35.  kx

37.  kxy

   2

4x

2

mk

0

0

4x 2

Ix  k

0

xy 2 dy dx 

0 4x 2

2

Iy  k

0

x3 dy dx 

0

32k 3

Ix 

0

Iy 

0

2 23  3 3

8   mI  32k3 4k 3

6

Iy

x

kxy3 dy dx  16k

x

kx3 y dy dx 

0

I0  Ix  Iy 

4   m  16k3 4k 3

4

x



26 3

32k 3

kxy dy dx 

0

4

16k 3

x

0

4

I0  Ix  Iy  16k

y

   4

m

x dy dx  4k

0

2

x

Center of Mass and Moments of Inertia

512k 5

592k 5

x

3 48 4 15 32k   5  5 m  512k 5

y

mI  16k1 32k3  32 



Iy

x

39.  kx

  

x

1

m

0

x

0

kxy 2 dy dx 

2

x

x

1

Iy 

3k 20

x

1

Ix 

kx dy dx 

2

0

x

kx3 dy dx  2

I0  Ix  Iy 

3k 56

k 18

55k 504

x

m  18k 203k 

30

y

mI  563k 203k 

70

Iy

x

  b



b

x  a 2 dy dx  2k

0



b

 2k



 2k

b

0

b

x  a 2b2  x2 dx

b

x 2b2  x 2 dx  2a

b



b

xb2  x2 dx  a2

b



b2  x 2 dx

b4 a2b2 kb2 2 0 

b  4a2 8 2 4



 4

43. I 

14

b2 x 2

b

41. I  2k

9

x

0



4

kx x  6 2 dy dx 

0

9 x

kxx x 2  12x  36 dx  k

2

92





24 72 72 52 x  x 7 5

4 0



42,752k 315

6

2

151

152

Chapter 13

   

a 2x 2

a

45. I 

0

 



Multiple Integration

 0

0

a

k 4

a

a

0

3

0

a2 x2



k 4  a  y 4

a2 x 2

dx

0

dx

0

a4  4a3a2  x2  6a2 a2  x2  4a a2  x2 a2  x2  a4  2a2x2  x4  a4 dx

0

k 4

 a

k a  y dy dx 

0



a4  4a3y  6a2 y2  4ay3  y4

0

k 4

a2 x 2

a

k a  y y  a 2 dy dx 

7a4  8a 2x 2  x 4  8a3a2  x 2  4ax 2a 2  x 2 dx











k 8a2 3 x5 x a x x   4a3 xa2  x 2  a2 arcsin 7a4x   x 2x 2  a2 a2  x 2  a4 arcsin 4 3 5 a 2 a



k 8 1 1 7 17  7a5  a5  a5  2a5  a5  a5k 4 3 5 4 16 15









a 0

 49. x, y  kxy.

47. x, y  ky. y will increase

Both x and y will increase 51. Let x, y be a continuous density function on the planar lamina R. The movements of mass with respect to the x- and y-axes are



y x, y dA and My 

Mx 

R



x x, y dA.

R

If m is the mass of the lamina, then the center of mass is

x, y 

 m , m . My Mx

53. See the definition on page 968

L L 55. y  , A  bL, h  2 2

   b

Iy 

0

b



0

ya  y 

L

0

y

L 2



57. y 

2L bL L .A ,h 3 2 3

      b2

2

y  L2 3 3

L

Iy  2

dy dx

0



L 0

dx 

L3b 12

Iy L L3b12 L    hA 2

L2 bL 3

   ya 

2 3

2Lxb

y  2L3 

b2

y

0

b2

2 3

0



2L 3

2



dy dx

3 L

dx

2L xb



L 2Lx 2L   27 b 3



b 2Lx 2L 2 L3x   3 27 8L b 3 L3b36

2L L  2  3 L b6 2

  dx 3



4 b2 0



L3b 36

Section 13.5

Section 13.5

Surface Area

1. f x, y  2x  2y

3. f x, y  8  2x  2y

R  triangle with vertices 0, 0, 2, 0, 0, 2

R  x, y: x 2  y 2 ≤ 4

fx  2, fy  2

fx  2, fy  2

1   fx    fy   3 2

 2

S

0

1   fx 2   fy 2  3

2

2x





2

3 dy dx  3

0



x2 2



2 0

4x 2

2

2  x dx

S

2  4x 2

0

 3 2x 

6

 2

2

3r dr d  12

0

0

y = 4 − x2

R

1

x

−1

y = −x + 2

1 −1

R

1

3 dy dx 

y

y

2

Surface Area

y = − 4 − x2 x 1

2

5. f x, y  9  x 2

y

R  square with vertices, 0, 0, 3, 0, 0, 3, 3, 3

3

fx  2x, fy  0

2

R

1   fx 2   fy 2  1  4x 2

 3

S

0



3



1

3

1  4x 2 dy dx 

0

3 1  4x 2 dx

x

1

 34 2x 1  4x

3

3

y

R  rectangle with vertices 0, 0, 0, 4, 3, 4, 3, 0

4

3 fx  x1 2, fy  0 2

3

3

0



4

4  9x

2

0

4  9x

3

 dx

dy dx 

 27 4  9x 

3

3 2

0



1  94 x 



0

4

R

2

1   fx 2   fy  2 





4



4  9x

2

1

2

x 1

2

3

4

4 31 31  8 27



9. f x, y  ln sec x



R  x, y: 0 ≤ x ≤

y



 , 0 ≤ y ≤ tan x 4

2

y = tan x

fx  tan x, fy  0

1

R

1   fx 2   fy 2  1  tan2 x  sec x

S

   4

0

3

0  4  6 37  ln 6  37 



 ln 2x  1  4x 2 

2

7. f x, y  2  x3 2

S

2

0

tan x

0

sec x dy dx 



 4

0



 4



sec x tan x dx  sec x

0

 2  1

π 4

π 2

x

153

154

Chapter 13

Multiple Integration

11. f x, y  x 2  y 2

y

R  x, y: 0 ≤ f x, y ≤ 1

x 2 + y2 = 1

1

0 ≤ x 2  y 2 ≤ 1, x 2  y 2 ≤ 1 x

1

x y fx  , fy  x 2  y 2 x 2  y 2

1  x

1   fx 2   fy 2 



1x 2

1

S

1  1x 2

2 dy dx 

2

x2 y2  2 2  2 y x  y2

 2

0

1

2 r dr d  2

0

13. f x, y  a2  x 2  y 2

y

R  x, y: x 2  y 2 ≤ b2, b < a

a

x y fx  , fy  a2  x 2  y 2 a2  x 2  y 2





b x

b

S

2

2

2

b  b2 x 2

a2

a dy dx   x2  y 2

 2

0

b

0

a a2  r 2

15. z  24  3x  2y 16

3 2x12

12

 8

0

b

x

a

−b

r dr d  2a a  a2  b2 

y

1   fx 2   fy 2  14

S

−b

x2 y2 a 1 2   a  x 2  y 2 a2  x 2  y 2 a2  x 2  y 2

1   fx    fy   2

x 2 + y 2 ≤ b2

b

14 dy dx  48 14

8

0 4 x 4

8

12

16

17. z  25  x 2  y 2 1   fx 2   fy 2 

 

9x

3

S2

1  25  x

x2 2

 y2



y2 25  x 2  y 2



5

2

2

3

0

0

5 25  r 2

y

R  triangle with vertices 0, 0, 1, 0, 1, 1

 1

S

0

x

0

5  4x 2 dy dx 

1  27  5 5 12

x

−1 −2

19. f x, y  2y  x 2 1   fx 2   fy 2  5  4x 2

1

−2 −1

r dr d  20

y=x

1

R

x 1

x 2 + y2 = 9

2

25  x 2  y 2

5 dy dx 2  y 2 2 25  x  9x

3

2

y

1

2

Section 13.5 21. f x, y  4  x 2  y 2

Surface Area

23. f x, y  4  x 2  y 2

R  x, y: 0 ≤ f x, y

R  x, y: 0 ≤ x ≤ 1, 0 ≤ y ≤ 1

0 ≤ 4  x 2  y 2, x 2  y 2 ≤ 4

fx  2x, fy  2y

fx  2x, fy  2y

1   fx 2   fy 2  1  4x 2  4y 2

1   fx 2   fy 2  1  4x 2  4y 2

 

4x 2

2

S 

2  4x 2 2

1  4x 2  4y 2 dy dx

2

1  4r 2 r dr d 

1

0

1  4x2  4y2 dy dx  1.8616

0

 17 17  1

0

0

 1

S

6

y

x 2 + y2 = 4

1

x

−1

1 −1

25. Surface area > 4  6  24.

27. f x, y  ex R  x, y: 0 ≤ x ≤ 1, 0 ≤ y ≤ 1

Matches (e)

fx  ex, fy  0

z

1   fx 2   fy 2  1  e2x

10

  1

S

1

0

1  e2x dy dx

0

1

5

5



y

1  e2x  2.0035

0

x

29. f x, y  x3  3xy  y3

31. f x, y  ex sin y

R  square with vertices 1, 1, 1, 1, 1, 1, 1, 1

fx  ex sin y, fy  ex cos y

fx  3x 2  3y  3x 2  y, fy  3x  3y 2  3 y 2  x

1  fx2  fy2  1  e2x sin2 y  e2x cos2 y

S

 1

1

1

1

1  9x 2  y2  9 y 2  x2 dy dx

S

33. f x, y  exy R  x, y: 0 ≤ x ≤ 4, 0 ≤ y ≤ 10 fx  yexy, fy  xexy 1   fx 2   fy 2  1  y 2e2xy  x 2e2xy  1  e2xy x 2  y 2

 4

S

0

10

0

1  e2xyx 2  y 2 dy dx



 1  e2x

2

4x2

2

 4x2

1  e2x dy dx

155

156

Chapter 13

Multiple Integration 37. f x, y  1  x 2; fx 

35. See the definition on page 972.

S

  

x 12  x 2

, fy  0

1  fx2  fy2 dA

R

1

x

 16

0

0

1 1  x 2

1

 16

0



502 x 2

50

39. (a) V 

0



20 50

2

0





dx  161  x 21 2

1 0

xy xy  dy dx 20  100 5 

0

50



x

1  x 2

dy dx

 x2 

x x 502  x 2 502  x 2  502  x 2  dy 200 5 10



 

 10 x 50  x 2  502 arcsin



1 x 25 x4 x3  502  x 23 2  250x   x2  50 4 800 15 30



50 0

 30,415.74 ft3 xy 100

(b) z  20 

1   fx 2   fy 2 

S 

41. (a) V 

1 100 1 100

  

502 x 2

50

0

1  100y 2

2



1002  x 2  y 2 x2  2 100 100

1002  x 2  y 2 dy dx

0

 2

0

50

1002  r 2 r dr d  2081.53 ft2

0

     

y

f x, y

24

R

8

20

625 

x2



y2

dA

where R is the region in the first quadrant

R

8

 2

4

625  r 2 r dr d

x

4

 2

0



R 8

25

0

 4

4



25

2 625  r 23 2 3

4

d

8 0  609 609   2 3

 812 609 cm3 (b) A 

16 12

 

  

1   fx 2   fy 2 dA  8

R

8

R

R

25 dA  8 625  x 2  y 2





 lim 200 625  r 2 b→25

1

b 4



 2

0

25

4

x2 y2  dA 625  x 2  y 2 625  x 2  y 2 25

625  r 2

  100 609 cm2 2

r dr d

8

12

16

20

24

 16

Section 13.6

Section 13.6

 3

1.

2

0

Triple Integrals and Applications

   

1

0

3

x  y  z dx dy dx 

0

2

0

2

0

 1

x

0

xy

0

   1

x dz dy dx 

0

 4

1

1

0

0

1

1

2

0

zex





1

2

0

1

   2

4

0

0



2zex y

4

7.

 1

4

0

1x

x cos y dz dy dx 

0

 

 2

4

0



   4x

0

0

4x 2

0

0

4

1

0

13.

  0

0

dz 

2 0

0



  a

a2 x 2

a2 x 2y 2

19. 8

0

0

 

 

4x 2

2

0

0

0

z2 2

dy dx 

 2





 2

4

0

0

4



1



15 1 1 2 e



x1  xcos y dy dx

0

4

dx 



x1  xdx 

 x2  x3 

3 4

2

8

0

0

64 40  3 3

128 15

x sin y ln z

4

2

dy dx

1

0



x 2 ln4cos y

4x2

0



2

dx 

0

x 2 ln 4 1  cos 4  x 2 dx 2.44167

 3

9x2

3

 9x2



2

2

9x y

dz dy dx

0

4y 2

x dx dy

2

2

 18

1 10





x3 dy dx  2

1

z1  e1 dz  1  e1

1x

2 0

1 2

0

0

15.

2

dz dx dy 

0

3

2

1

dz dy dx

x



dz  3z  z2

2zxex dx dz

0

4y 2



2

1

4xy

  2

17.

1



 

x4 x5 dx  2 10

4

0

4x

 4

2

4



0



 4x



0

x cos yz

4x 2

x 2 sin y dz dy dx  z



dx 

dx dz 

x1  xsin y

 2

x dz dy dx 

0

2

  2

11.

x2

4x 2

2

0

1

x

0

0

4

x

x 2y 2 2

0

9.



1 1 y  y 2  yz 2 2

dy dx

  

2

3

0

0

2zex dy dx dz 





x 2y dy dx 

x

dy dx

0

1  y  z dy dz  2

x

0

5.



xz

0

1



0

1

xy

x

0



1 2 x  xy  xz 2

0

3



3.

Triple Integrals and Applications



2

4  y 22 dy 

0

    a

dz dy dx  8

0

a2 x 2





 a y x 

256 15

a2 x2

y a2  x 2  y 2  a2  x 2 arcsin

 2



a2  x 2  y 2 dy dx

2

0

4

0

0

a

4

2

8 1 16  8y 2  y 4 dy  16y  y3  y5 3 5

a

0

 

1 a2  x 2 dx  2 a2x  x3 3



a 0

4  a3 3

2

0

dx

157

158

Chapter 13

  4x 2

2

21.

0

0

Multiple Integration



4x 2



2

dz dy dx 

2

4  x 22 dx 

0

0

0





8 1 16  8x 2  x 4 dx  16x  x3  x5 3 5

23. Plane: 3x  6y  4z  12

2



0

256 15

25. Top cylinder: y 2  z2  1 Side plane: x  y

z 3

z

1 2

y

3

4 x

1

x

 3

0

(124z) 3

0



1

y

(124z3x) 6

dy dx dz

 1

0

0

x

0

1y 2

dz dy dx

0

27. Q  x, y, z: 0 ≤ x ≤ 1, 0 ≤ y ≤ x, 0 ≤ z ≤ 3



 3

xyz dV 

0

Q

1

0

1

     3

xyz dx dy dz 

y

0

0

1



0

1



0

1



0

1



1

0

y

x

xyz dy dx dz

3

0

3

0

1

y

x

0

1

R

xyz dx dz dy

x

y

1

x

xyz dy dz dx

0 3

xyz dz dx dy

0 3

0



xyz dz dy dx 

9 16



29. Q  x, y, z: x2  y2 ≤ 9, 0 ≤ z ≤ 4



            4

xyz dV 

0

Q

4



0

3



3

xyz dy dx dz

9y2

xyz dx dy dz

3  9y2 4

4

9y2

x

xyz dx dz dy

 9y2

9y2

4

3 0 3



5

9x2

4

xyz dz dx dy

3  9y2 0 3



z

3  9x2

3 0 3



3

y=x

1

0

9x2

xyz dy dz dx

 9x2

9x2

4

3  9x2 0

xyz dz dy dx   0

3

3

4

y

Section 13.6



dz dy dx

0







x dz dy dx

6

31.

4(2x 3)

mk

0

4(2x 3)

Myz  k

0

2(y 2)(x 3)

0

 8k

6

Triple Integrals and Applications

0

2(y 2)(x 3)

0

 12k x

Myz 12k 3   m 8k 2

    4

33.

4

0

0

4

 4k

0

4

0

0

 2k

0

b

x4  x dy dx

0

4

xz dz dy dx  k

0

0

0

4  x2 x dy dx 2

128k 16x  8x 2  x3 dx  3

39. y will be greater than 0, whereas x and z will be unchanged. 1 m  kr 2h 3 x  y  0 by symmetry

    r

0

   z

3kh2 r2 4kh2 3r 2

r 2x 2

h

z dz dy dx

h x 2y 2 r

0

r

0

0

b

b

0

b

0

b

0

b

0

x 2y dz dy dx 

kb6 6

xy 2 dz dy dx 

kb6 6

xyz dz dy dx 

kb6 8

0 b

0 b

Mxy  k

0

r 2x 2

r 2  x 2  y 2 dy dx

0

r

r 2  x 23 2 dx

0

kr 2h2 4 Mxy kr 2h2 4 3h   m kr 2h 3 4

kb5 4

b

Mxz  k

0

xy dz dy dx 

0

Myz kb6 6 2b  5  x m kb 4 3

37. x will be greater than 2, whereas y and z will be unchanged.

Mxy  4k

b

Myz  k

Mxy z 1 m

41.

b

mk

b

4

0

35.

0



4x

   

4

128k 4x  x 2 dx  3

Mxy  k

4

4

x dz dy dx  k

0

4

0



4x

mk

y

Mxz kb6 6 2b  5  m kb 4 3

z

Mxy kb6 8 b  5  m kb 4 2

159

160

43.

Chapter 13

m

Multiple Integration

128k 3

x  y  0 by symmetry z  42  x 2  y 2

   

42 x 2

4

Mxy  4k

0

0

 2k

0



 2

1024k 3

4

0



42 x2

0

dx 

4k 3



4

4  x 23 2 dx 2

0

let x  4 sin 

cos4  d

by Wallis’s Formula

5 y 12

3

y

   

mk

0

   

0

Myz  k

0

0

0

0

4 x 4

(5 12)y

8

12

16

20

y dz dy dx  1200k

(5 12)y

z dz dy dx  250k

0

x

Myz 1000k  5 m 200k

y

Mxz 1200k  6 m 200k

z

Mxy 250k 5   m 200k 4

  a

a

0

a

a

0

0



Ix  Iy  Iz 

  a

a

a 0

 a

dz  ka

0

0



2ka5 by symmetry 3

 y 2  z2xyz dx dy dz 

0

0

0

ka2 2

a

y 4z y2z3  4 2

Ix  Iy  Iz 



a 0

dz 

ka4 8

ka8 by symmetry 8

 y 2  z2 dy dz

0

 

1 1 3 1 2 a  az dz  ka a3z  az3 3 3 3

a

(b) Ix  k

0

a

 y 2  z2 dx dy dz  ka

1 3 y  z2y 3

 ka



a

47. (a) Ix  k

0

x dz dy dx  1000k

0

(3 5)x12

20

y = − 35 x + 12

8

0

0

Mxy  k

16 12

(5 12)y

(3 5)x12

Mxz  k

dz dy dx  200k

0

0

20

20

(5 12)y

(3 5)x12

20

3

 128k  2

(3 5)x12

20



1 16y  x 2y  y3 3

0

Mxy 64k  m 1

45. f x, y 



42  x 2  y 2 dy dx  2k

0

 64k z

z dz dy dx

0

42 x 2

4

42 x 2y 2



ka2 2

 a

0





0

2ka 3

a

 y3z  yz3 dy dz

0

a

0

5

a

a2z  2z3 dz 

 ka8 a2z 4

2 2



2z4 4



a 0



ka8 8

Section 13.6

  4

4

0

0

4

4

0



k 

0

0

4

0

4

4

0

4

0

4

0





y3 4  x 3

4 0

4

4

0







     

4

0

4

0

0

4



0

 

 

4x

4

0

0





4 0

a

a2 x 2

2k 3

L 2

k

L 2

L 2

2

L 2



4 0



1024k 3

x 2y  y34  x dx

0

4

8x 2  644  x dx

dx  k

0

 

L 2 a  a2 x 2





4

yx 2  y 2 dz dy dx  k

     

2 3

0

1 x 2y4  x  y4  x3 dy dx 3

4 1 32  8x  4x 2  x3 dx  8k 32x  4x 2  x3  x4 3 4 0

L 2



8 644  x  4  x3 dx 3



4



4

0





2048k 3 4

x 2y 2 y 4  4  x 2 4

0

51. Ixy  k

0

0

4

k

 8k

4

yx 2  z2 dz dy dx  k

Iz  k

0

4



64 4  x dx  256k 3

1 4 1 1 4x 2  x3  4  x3 dx  8k x3  x4  4  x4 3 3 4 12

 8k

4

0

512k 3

1 y34  x  y4  x3 dy dx 3

0

dx  k

4x

Iy  k

0

4

y y 2  z2 dz dy dx  k

2  k 324  x2  4  x4 3 4

4x 2 

0

0



0

0

dx  k

y4 y2 4  x  4  x3 4 6

4

4

x 2  y 24  x dy dx

0

4x

(b) Ix  k

0



4

x 2  y 2 dz dy dx  k

x 2y 

4



1 x 24  x  4  x3 dy dx 3

    

4x

4

k

0



0

k

0

4

0



Iz  k

4

  4

x 2  z2 dz dy dx  k

1 4 1 1 4x2  x3  4  x3 dx  4k x3  x 4  4  x4 3 3 4 12

0

4



64 4 4  x  4  x3 dx 3 3

 256k

0

0

 4k

0

4

4x

Iy  k

0

0



       4

dx  k

0



1 3 y 24  x  4  x dy dx 3

0

4



32 1 4  x2  4  x4 3 3

4

4

 y 2  z2 dz dy dx  k

y3 y 4  x  4  x3 3 3

k

  

4x

49. (a) Ix  k

Triple Integrals and Applications

  L 2

z2 dz dx dy  k

a

L 2 a





4 0



2048k 3

2 2 a  x2 a2  x 2 dx dy 3



x 1 x a2 x a2  x 2  a2 arcsin  x2x 2  a2 x 2  a2  a4 arcsin 2 a 8 a a4 a4 a4Lk  dy  4 16 4



Since m  a2Lk, Ixy  ma2 4. —CONTINUED—



a a

dy

161

162

Chapter 13

Multiple Integration

51. —CONTINUED—

        L2

Ixz  k

a2 x 2

a

L2 a a2 x 2 L2

 2k

L2

a

a2 x 2

L2 a a2 x 2

a

L2 a

y2 x xa2  x 2  a2 arcsin 2 a

L2

L2

Iyz  k

 

y 2 dz dx dy  2k

a a

L2

L2 a

2

Iy  Ixy  Iyz 

ma2 ma2 ma2   4 4 2

Iz  Ixz  Iyz 

mL2 ma2 m   3a2  L2 12 4 12

1

L2





a a

dy 

ka4 4



L2

dy 

L2

ka4L ma2  4 4

2

ma mL m   3a2  L2 4 12 12



2ka2 L3 1  mL2 3 8 12

y 2 dy 

x 2a2  x 2 dx dy

1 x x2x 2  a2a2  x 2  a4 arcsin a L2 8

Ix  Ixy  Ixz 

1

dy  ka2

a

L2

 2k

53.



L2



 

x 2 dz dx dy  2k

y 2a2  x 2 dx dy

1x

x 2  y 2x 2  y 2  z2 dz dy dx

1 1 0

55. See the definition, page 978. See Theorem 13.4, page 979.

57. (a) The annular solid on the right has the greater density. (b) The annular solid on the right has the greater movement of inertia. (c) The solid on the left will reach the bottom first. The solid on the right has a greater resistance to rotational motion.

Section 13.7

  4

1.

0

2

0

Triple Integrals in Cylindrical and Spherical Coordinates

2

  4

r cos  dr d dz 

0

0

4



0

   2

3.

2 cos2 

0

0

2

0

 2 cos  r2

2

d dz

0

2

 4

2 cos  d dz 

0

0

4r2

r sin  dz dr d 

   2

0

0



2 cos2 

2 sin 

2



r4  r 2sin  dr d 

  2

4

0

0

0

z

0

2 sin  d d d 

0

 4

7.

cos 

2

0

rer d dr dz  e4  3

1 3



2

0

0

2



8 cos4   4 cos8  sin  d  

 2

0

4

0

cos3  sin  d d  

2dz  8

0

0

0

5.



4

dz 

1 12

 2r



2 cos2 



r4 sin  4

2

cos4 

4



0

d 

d

0

8 cos5  4 cos9   5 9

 0

2

2



0

 8



52 45

Section 13.7

  2

9.

0

3

2

r

e

0

r dz dr d 

     2

3

0

0



2

  2

11.

2

2

2 sin  d d d 

0

 

    2

2

4 sec 

0

0

2

0

2

0

2

2

6

sin  d d

cos 

0

323 3

2

z 4

2



6

d

d

4

4

x

y

0

643 3

2

a cos 

2



2

cot  csc 

arctan12 0

3 sin2  cos  d d d  0

3 sin2  cos  d d d  0

2

0

0



0



a cos 

ra2  r 2 dr d

0

a2 r2

r dz dr d

2



0

4  2 2a 3  a3   3  4 3 2 3 9



ra2  r 2 dr d





a cos 



0

2a3 3  4  9

2

2

krr dz dr d

0

2

kr 29  r cos   2r sin dr d

0

2

0

9r cos  2r sin 

k 3r 3 

r4 r4 cos   sin  4 2





0



k 24  4 cos   8 sin  d

0

0



 

1  sin3  d

2a3 cos3    cos   3 3

d

2

0

0

1  a2  r 232 3

0

      0

0





2

21. m 

0

a cos 

0

2

4 1 1  sin3  d  a3   cos sin2   2 3 3

a cos 

0

r dz dr d  4

0

     

 

a2 r2

0

4  a3 3

2a3 3



r 2 cos  dz dr d  0

a sec 

0



  

3 sin2  cos  d d d 

   



x

0

2a cos 

0

2

64 3

y

3

a

4

2

64 3

3

1 2

a a2 r2

a

0

19. V  2

1

0

    2

17. V  4

2

r2

arctan12

0

(b)

0

r 2 cos  dz dr d  0

2

15. (a)



d

4

0

0

(b)

3

3

 1  e9 4



13. (a)

z

1 1  e9d 2

4

6

0

2

1 2  er 2

0



rer dr d

0

0



Triple Integrals in Cylindrical and Spherical Coordinates



 k 24  4 sin   8 cos   k 48  8  8  48k

2



0

2 0

d

163

164

Chapter 13

23. z  h 

h h x2  y2  r0  r r0 r0

     2

V4

0

 

Multiple Integration

4h r0

0

2

r0

r0r  r 2 dr d

1    r02h 2 3

2

0

0

r3 dz dr d

r0

0

    

r0r3  r 4 dr d

2

0

 2

b

r3 dz dr d

0

2

b

r3 dr d

0

a

2

 kh

h

a

 4kh

1 k r04h 10

b4  a4 d

0

Since the mass of the core is m  kV  k3  r02h from Exercise 23, we have k  3m r02h. Thus,



kb4  a4h 2

1 Iz  k r04h 10



kb2  a2b2  a2h 2

1







1 3m  r04h 10  r02h



3 mr 2 10 0

31. V 

  2

0



0

r 2 z dz dr d

0

Mxy k r03h230 h   m k r03h6 5

Iz  4k





0

29. m  kb2h  a2h  khb2  a2

0

4kh r05  r0 20

h(r0 r)r0

r0

1 k r03 h2 30



0

2

4kh  r0

h(r0 r)r0

r0

2

0

z

   

r 2 dz dr d

0

 

Mxy  4k



27. Iz  4k

0

1  k r03h 6

r0 d 6

4h r03  r0 6

h(r0 r)r0

r0

0

3

0

2

m  4k

0

2

4h r0

 

r dz dr d

0

 kx 2  y 2  kr x  y  0 by symmetry

hr0 rr0

r0

0

25.

4 sin 

2 sin d d d  16 2

1  ma2  b2 2

     

33. m  8k

0

2

0

 2ka4

2

0

0

2

2

0

 ka4

a

3 sin  d d d sin  d d

0

2

sin  d

0



 ka4

2



 ka4cos 

0

Section 13.7

35.

Triple Integrals in Cylindrical and Spherical Coordinates

     

2 m  kr 3 3

37. Iz  4k

x  y  0 by symmetry

      2

Mxy  4k

2

0

1  kr 4 2 

kr 4 4

0

2

2

0

3 cos  sin  d d d sin 2 d d



1   k r 4 cos 2 8 z

2



cos5  sin3  d d

0

2

4

cos5 1  cos2  sin  d



k 192

2

1

6



1 cos8  8

41.

1

g2

g1

h2r cos , r sin 

h1r cos , r sin 

zz (b)  0: sphere of radius 0

43. (a) r  r0: right circular cylinder about z-axis

  0: plane parallel to z-axis

  0: plane parallel to z-axis

z  z0: plane parallel to xy-plane

  0: cone

  0

4

f r cos , r sin , zr dz dr d

y x

tan  

zz

  2

x2  y 2  r 2

y  r sin 

a

2



Mxy kr 44 3r   m 2kr33 8

39. x  r cos 

45. 16

2

 5 k  6 cos

1  k r 4 4

0

4 sin3  d d d

0

0

4

cos 



sin 2 d

0

2

2

2  k 5

0

2

4

4  k 5

r

0

2

a2 x 2

0



a2 x 2y 2

0

a2 x2 y 2z2

0

dw dz dy dx

            a2 x 2

a

 16

0

0

a

0

0

2

 16

0

2

0

 4

a

0

2

0

 a4

2

0

a2 r 2

a2  r 2  z2 dzr dr d

0

a

0

8

a2  x 2  y 2  z2 dz dy dx

0

2

 16

a2 x 2y 2

1 z za2  r 2  z2  a2  r 2 arcsin 2 a2  r 2

 2 a  r 2r dr d 2 a2r 2 r 4  2 4

d 



a4 2 2

a 0

d



a2 r2

0

r dr d

165

166

Chapter 13

Multiple Integration

Section 13.8

Change of Variables: Jacobians

1 1. x   u  v 2

3. x  u  v 2 yuv

1 y  u  v 2

x y y x   11  12v  1  2v u v u v

y x 1 x y    u v u v 2

 12  1212



1 2

5. x  u cos   v sin  y  u sin   v cos  x y y x   cos2   sin2   1 u v u v 7. x  eu sin v y  eu cos v y x x y   eu sin veu sin v  eu cos veu cos v  e2u u v u v 9. x  3u  2v y  3v v

y 3

u

x  2v x  2 y3  3 3

x, y

u, v

0, 0

0, 0

3, 0

1, 0

2, 3

0, 1

v

(0, 1)

1

(1, 0) u

1

x 2y  3 9



1 11. x  u  v 2 1 y  u  v 2 y x 1 x y   u v u v 2



  21  1212   21

  1

4x 2  y 2 dA 

1

1 1

R

1



12 dv du

 14 u  v

4

1  u  v2 4

2

1

1 1



1

u2  v 2 dv du 

1



2 u2 





u3 u 1  du  2 3 3 3

13. x  u  v

R

1



8 3

4

y x x y   10  11  1 u v u v

 3

yx  y dA 

1

v

yu





0

4

0

3



2

3

uv1 dv du 

0

8u du  36

1 u 1

2

3

4

Section 13.8

15.



xy2

e

Change of Variables: Jacobians

dA

y = x1

y

R

4

1 4 x R: y  , y  2x, y  , y  4 x x

y = 2x 3

y = 4x



x u x, y  y u, v u

1 v12 x  v 2 u32  y 1 v12 v 2 u12



R 1 x

1 1 2 u12v12 1 1 1 1    4 u u 2u 1 u12 2 v12

Transformed Region: y

y = 41 x

2

y x  vu, y  uv ⇒ u  , v  xy x



1

2

3

4

3

4



v

1 ⇒ yx  1 ⇒ v  1 x

3

S 2

4 y  ⇒ yx  4 ⇒ v  4 x y  2x ⇒ y



u

y 2 ⇒ u2 x

1

y 1 1 x ⇒  ⇒ u 4 x 4 4

 2

exy2 dA 

4

14 1

R

2u1  dv du     e u 2

ev2



vxy0

u  x  y  8,

vxy4

1 x  u  v 2

1 y  u  v 2

1 e2  e12 du u 14





17. u  x  y  4,



2

du  

1

14

  e2  e12ln u

2

  e2  e12 ln 2  ln

14



1  e12  e2ln 8 0.9798 4

y

6

x−y=0

x+y=8

4

2

1 x, y  u, v 2



v2 4

x−y=4

x+y=4

x

  8

x  yexy dA 

4

R



1 2

2

4

uev

0

4

6

12 dv du

8

ue4  1 du 

4

19. u  x  4y  0,

vxy0

u  x  4y  5,

vxy5

1 x  u  4v, 5

1 y  u  v 5

 14 u e 2

4



 1

8 4

 12e4  1

y

x−y=0 2

x + 4y = 5

y x 1 x y   u v u v 5



1

  51  1545   15

    5

x  yx  4y dA 

uv

0

R

5



5

0

0

x

−1

3 −1

x + 4y = 0 −2

1 du dv 5



1 2 32 u v 5 3

5 0

dv 

 2 3 5 23v

5

32

0



100 9

4

x−y=5

167

168

Chapter 13

Multiple Integration

1 1 21. u  x  y, v  x  y, x  u  v, y  u  v 2 2 x y y x 1   u v u v 2



 a

x  y dA 

u

u

0

R

12 dv du  

a

u

u u du 

0

y

5 u 2

a

52

0

2  a52 5

y

v=u a a

x+y=a x 2a

a

23.

x −a

v = −u

x2 y 2  2  1, x  au, y  bv a2 b

(a)

x2 y 2  21 a2 b

u2  v 2  1 v

au2 bv2  2 1 a2 b

y

1

u2  v 2  1

b

S R

u x

a

(b)

x, y x y y x   u, v u v u v  ab  00  ab

(c) A 



ab dS

S

 ab12  ab 25. Jacobian 

x y y x x, y   u, v u v u v

27. x  u1  v, y  uv1  w, z  uvw



1v x, y, z  v1  w u, v, w vw

u 0 u1  w uv uw uv



 1  v u2v1  w  u2vw  u uv21  w  uv2w  1  vu2v  uuv 2  u2v

29. x  sin cos , y  sin sin , z  cos



sin cos  x, y, z  sin sin   , ,  cos

 sin sin  sin cos  0

cos cos  cos sin   sin



 cos

 sin cos sin   sin cos cos   sin

sin2 cos2  sin2 sin2  2

2

2

2

 cos

 2 sin cos sin2   cos2   sin

sin2 cos2   sin2    2 sin cos2  2 sin3

  2 sin cos2  sin2    2 sin

1

Related Documents


More Documents from "adrian3baque"

February 2021 2
Mini Projet Pont
January 2021 1