Solutions Manual For: Mechanical Design Of Machine Components

  • Uploaded by: Ali R.M
  • 0
  • 0
  • January 2021
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Solutions Manual For: Mechanical Design Of Machine Components as PDF for free.

More details

  • Words: 138,239
  • Pages: 322
Loading documents preview...
SOLUTIONS MANUAL FOR MECHANICAL DESIGN OF MACHINE COMPONENTS

SECOND EDITION: SI VERSION by

ANSEL C. UGURAL

SOLUTIONS MANUAL FOR MECHANICAL DESIGN OF MACHINE COMPONENTS SECOND EDITION: SI VERSION

by

ANSEL C. UGURAL

Boca Raton London New York

CRC Press is an imprint of the Taylor & Francis Group, an informa business

MATLAB® is a trademark of The MathWorks, Inc. and is used with permission. The MathWorks does not warrant the accuracy of the text or exercises in this book. This book’s use or discussion of MATLAB® software or related products does not constitute endorsement or sponsorship by The MathWorks of a particular pedagogical approach or particular use of the MATLAB® software.

Taylor & Francis Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742 © 2016 by Taylor & Francis Group, LLC Taylor & Francis is an Informa business No claim to original U.S. Government works Printed on acid-free paper Version Date: 20160303 International Standard Book Number-13: 978-1-4987-3541-4 (Ancillary) This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint. Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers. For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged. Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe. Visit the Taylor & Francis Web site at http://www.taylorandfrancis.com and the CRC Press Web site at http://www.crcpress.com

CONTENTS

Part I

BASICS

Chapter 1

INTRODUCTION

1

Chapter 2

MATERIALS

16

Chapter 3

STRESS AND STRAIN

24

Chapter 4

DEFLECTION AND IMPACT

48

Chapter 5

ENERGY METHODS AND STABILITY

68

Part II

FAILURE PREVENTION

Chapter 6

STATIC FAILURE CRITERIA AND RELIABILITY

100

Chapter 7

FATIGUE FAILURE CRITERIA

117

Chapter 8

SURFACE FAILURE

135

Part III

APPLICATIONS

Chapter 9

SHAFTS AND ASSOCIATED PARTS

145

Chapter 10

BEARINGS AND LUBRICATION

164

Chapter 11

SPUR GEARS

176

Chapter 12

HELICAL, BEVEL, AND WORM GEARS

194

Chapter 13

BELTS, CHAINS, CLUTCHES, AND BRAKES

208

Chapter 14

MECHANICAL SPRINGS

225

Chapter 15

POWER SCREWS, FASTENERS, AND CONNECTIONS

240

Chapter 16

MISCELLANEOUS MACHINE COMPONENTS

261

Chapter 17

FINITE ELEMENT ANALYSIS IN DESIGN

278

Chapter 18

CASE STUDIES IN MACHINE DESIGN

308

vi

NOTES TO THE INSTRUCTOR

The Solutions Manual to accompany the text MECHANICAL DESIGN of Machine Components supplements the study of machine design developed in the book. The main objective of the manual is to provide efficient solutions for problems in design and analysis of variously loaded mechanical components. In addition, this manual can serve to guide the instructor in the assignment of problems, in grading these problems, and in preparing lecture materials as well as examination questions. Every effort has been made to have a solutions manual that cuts through the clutter and is self –explanatory as possible thus reducing the work on the instructor. It is written and class tested by the author. As indicated in its preface, the text is designed for the junior-senior courses in machine or mechanical design. However, because of the number of optional sections which have been included, MECHANICAL DESIGN of Machine Components may also be used to teach an upper level course. In order to accommodate courses of varying emphases, considerably more material has been presented in the book than can be covered effectively in a single three-credit-hour course. Machine/mechanical design is one of the student’s first courses in professional engineering, as distinct from basic science and mathematics. There is never enough time to discuss all of the required material in details. To assist the instructor in making up a schedule that will best fit his classes, major topics that will probably be covered in every machine design course and secondary topics which may be selected to complement this core to form courses of various emphases are indicated in the following Sample Assignment Schedule. The major topics should be covered in some depth. The secondary topics, because of time limitations and/or treatment on other courses, are suggested for brief coverage. We note that the topics which may be used with more advanced students are marked with asterisks in the textbook. The problems in the sample schedule have been listed according to the portions of material they illustrate. Instructor will easily find additional problems in the text to amplify a particular subject in discussing a problem assigned for homework. Answers to selected problems are given at the end of the text. Space limitations preclude our including solutions to open-ended web problems. Since the integrated approach used in this text differs from that used in other texts, the instructor is advised to read its preface, where the author has outlined his general philosophy. A brief description of the topics covered in each chapter throughout the text is given in the following. It is hoped that this material will help the instructor in organizing his course to best fit the needs of, his students. Ansel C. Ugural Holmdel, N.J.

vii

DESCRIPTION OF THE MATERIAL CONTAINED IN “MECHANICAL DESIGN of Machine Components”

Chapter 1 attempts to present the basic concepts and an overview of the subject. Sections 1.1 through 1.8 discuss the scope of treatment, machine and mechanical design, problem formulation, factor of safety, and units. The load analysis is normally the critical step in designing any machine or structural member (Secs. 1.8 through 1.9). The determination of loads is encountered repeatedly in subsequent chapters. Case studies provide a number of machine or component projects throughout the book. These show that the members must function in combination to produce a useful device. Section 1.10 review the work, energy, and power. The foregoing basic considerations need to be understood in order to appreciate the loading applied to a member. The last two sections emphasize the fact that stress and strain are concepts of great importance to a comprehension of design analysis. Chapter 2 reviews the general properties of materials and some processes to improve the strength of metals. Sections 2.3 through 2.14 introduce stress-strain relationships, material behavior under various loads, modulus of resilience and toughness, and hardness, selecting materials. Since students have previously taken materials courses, little time can be justified in covering this chapter. Much of the material included in Chapters 3 through 5 is also a review for students. Of particular significance are the Mohr’s circle representation of state of stress, a clear understanding of the three-dimensional aspects of stress, influence of impact force on stress and deformation within a component, applications of Castigliano’s theorem, energy of distortion, and Euler’s formula. Stress concentration is introduced in here, but little applications made of it until studying fatigue (Chap.7). The first section of Chapter 6 attempts to provide an overview of the broad subject of “failure”, against which all machine/mechanical elements must be designed. The discipline of fracture mechanics is introduced in Secs. 6.2 through 6.4. Yield and fracture criteria for static failure are discussed in Secs. 6.4 through 6.12. The last 3 sections deal with the method of reliability prediction in design. Chapter 7 is devoted to the fatigue and behavior of materials under repeated loadings. The emphasis is on the Goodman failure criterion. Surface failure is discussed in Chapter 8. Sections 8.1 through 8.3 briefly review the corrosion and friction. Following these the surface wear is discussed. Sections 8.6 through 8.10 deal with the surfaces contact stresses and the surface fatigue failure and its prevention. The background provided here is directly applied to representative common machine elements in later chapters. Sections 9.1 through 9.4 of Chapter 9 treat the stresses and design of shafts under static loads. Emphasis is on design of shafts for fluctuating loading (Secs. 9.6 and 9.7). The last 5 sections introduce common parts associated with shafting. Chapter 10 introduces the lubrication as well as both journal and roller bearings. As pointed out in Sec. 8.9, rolling element bearings provide interesting applications of contact stress and fatigue. Much of the material covered in Secs. 11.1 through 11.7 of Chapter 11 introduce nomenclature, tooth systems, and fundamentals of general gearing. Gear trains and spur gear force analysis are taken up in Secs. 11.6 and 11.7. The remaining sections concern with gear design, material, and manufacture. Non-spur gearing is considered in Chapter 12. Spur gears are merely a special case of helical gears (Secs. 12.2 through 12.5) having zero helix angle. Sections 12.6 through 12.8 deal with bevel gears. Worm gears are fundamentally different from other gears, but have much in common with power screws to be taken up in Chap. 15.

viii

Chapter 13 is devoted to the design of belts, chains, clutches, and brakes. Only a few different analyses are needed, with surface forms effecting the equations more than the functions of these devices. Belts, clutches, and brakes are machine elements depending upon friction for their function. Design of various springs is considered in Chapter 14. The emphasis is on helical coil springs (Secs. 14.3 through 14.9) that provide good illustrations of the static load analysis and torsional fatigue loading. Leaf springs (Sec. 14.11) illustrate primarily bending fatigue loading. Chapter 15 attempts to present screws and connections. Of particular importance is the load analysis of power screws and a clear understanding of the fatigue stresses in threaded fasteners. There are alternatives to threaded fasteners and riveted or welded joints. Modern adhesives (Secs. 15.17 and 15.18) can change traditional preferred choices. It is important to assign at least portions of the analysis and design of miscellaneous mechanical members treated in Chapter 16. Sections 16.3 through 16.7 concern with thick-walled cylinders, press or shrink fits, and disk flywheels. The remaining sections concerns with the bending of curved frames, plate and shells-like machine and structural components, and pressure vessels. Buckling of thin-walled cylinders and spheres is also briefly discussed. Chapter 17 represents an addition to the material traditionally covered in “Machine/Mechanical Design” textbooks. It attempts to provide an introduction to the finite element analysis in design. Some practical case studies illustrate solutions of problems involving structural assemblies, deflection of beams, and stress concentration factors in plates. Finally, case studies in preliminary design of the entire crane with winch and a high-speed cutting machine are introduced in Chapter 18.

ix

SAMPLE ASSIGNMENT SCHEDULE

MACHINE/MECHANICAL DESIGN (3 credits.)

Prerequisites:

A. C. Ugural, MECHANICAL DESIGN of Machine Components, 2nd SI Version, CRC Press (T & F Group). Courses on Mechanics of Materials and Engineering Materials.

WEEK

TOPICS

TEXT:

SECTIONS

PROBLEMS

1

Introduction Materials*

1.1 to 1.12 2.1 to 2.5,2.8 to 2.11

1.6,1.17,1.26,1.34 2.7,2.11,2.15,2.20

2

A Review of Stress Analysis*

3.1 to 3.14, 4.1 to 4.9 5.1 to 5.12

3.12,3.34,3.45,4.24,4.37 5.20,5.26,5.30,5.54, 5.73

3

Static Failure Criteria & Reliability

6.1 to 6.15

6.7,6.14,6.25,6.29,6.40

4

Fatigue Criteria and Surface Failure

7.1 to 7.15, 8.1 to 8.10

7.6,7.17,7.28,7.32,7.34 8.3,8.8, 8.14, 8.21

5

EXAM # 1 Shafts and Associated Parts

- - - - 9.1 to 9.12

- - - - 9.7,9.14,9.19,9.24,9.28

6

Lubrication and Bearings

10.1 to 10.16

10.4,10.10,10.16,10.31,10.36

7

Spur Gears

11.1 to 11.12

11.15,11.18,11.22,11.33,11.38

8

Helical, Bevel, and Worm Gears*

12.1 to 12.10

12.10,12.12,12.18,12.21,12.32

9

EXAM # 2 Belt and Chain Drives

- - - - 13.1 to 13.6

- - - - 13.1,13.8,13.9, 13.10,13.13

10

Clutches and Brakes

13.8 to 13.15

13.21,13.27,13.34,13.39,13.46

11

Mechanical Springs

14.1 to 14.11

14.8,14.12,14.22,14.25,14.35

12

EXAM # 3 Power Screws and Fasteners

- - - - 15.1 to 15.12

- - - - 15.2,15.6,15.14,15.19,15.30

13

Connections*

15.13 to 15.16

15.34,15.40,15.48,15.54

14

Miscellaneous Machine Components*

16.1 to 16.5, 16.8 to 16.11

16.6,16.17,16.25,16.38

15

FEA in Design and Case Studies in Machine Design* FINAL EXAM

17.1 to 17.3,17.5,17.7 18.1 and 18.2 - - - - -

17.2,17.4,17.8,17.12 18.2,18.4,18.6,18.10 - - - - -

* Secondary topics. The remaining, major topics constitute the “main stream” of the machine design course.

x

Section I

BASICS

CHAPTER 1

INTRODUCTION

SOLUTION (1.1) Free Body: Angle Bracket (Fig. S1.1) (a)



(b)

 

M

B

 0;

F ( 0 .5 )  6 8 ( 0 .2 5 )  2 8 .8 ( 0 .5 )  0 ,

Fx  0 :

R B x  2 8 .8  F  0 ,

Fy  0 :

R B y  6 8  2 1 .6  0 ,

F  6 2 .8 k N 

R Bx  3 4 k N  R B y  8 9 .6 k N 

Thus RB 

(3 4 )  (8 9 .6 ) 2

2

 9 5 .8 k N

and   ta n

1

34 8 9 .6

 2 0 .8

o

F

A 0.5

34

21.6 kN

68 kN

B 89.6

R Bx

Figure S1.1

28,8 kN

B R By

C

 RB

0.25

0.25

SOLUTION (1.2) Free Body: Beam ADE (Fig. S1.2)



M

A

 0:

 W (3 .7 5 a )  F B D ( 2 a )  0 ,

E D

W

FBD

A 2a

1.75a

R Ay

a

Fx  0 :

R Ax  0

Fy  0 :

 R Ay  FBD  W  0 ,

Free-Body: Entire structure (Fig. S1.2)



V

M

A

 0:

R C (3 a )  W (3 .7 5 a )  0 , R C  1 .2 5 W 

F O

0.875 kN

 

R A y  0 .8 7 5W 

R Ax

A

F B D  1 .8 7 5 W 

M”

Free Body: Part AO (Fig. S1.2)

Figure S1.2

V  0 .8 7 5W  F  0

M  0 .8 7 5 a W

1

SOLUTION (1.3) 29 kN/m

C

D

32 kN  m A

0.6 m

B

E

RA

1,2 m

 

M

A

 0:

Fy  0 :

R B  1 1 .0 2 k N  R A  4 5 .8 2 k N 

RB

2.4 m

2.4 m

Segment CD 29 kN/m

M

C

M

0.6 m D V D



D

( 2 9 )( 0 .6 )  5 .2 2 k N  m 2

1 2

V D  1 7 .4 k N

D

Segment CE 3 4 .8 k N

C

VE

M

0.6 m

M

1.2 m A

E

1.2 m E

 3 4 .8 (1 .8 )  4 5 .8 2 (1 .2 )  7 .6 5 6 k N  m

E

V E  1 1 .0 2 k N

45 . 82

SOLUTION (1.4)



(a) 8 kN

1m

m

M

B

 0:

2m

0 .8 R C ( 6 )  0 .6 R C ( 2 )  2 4 ( 4 )  0

 R C  26 . 667

10 kN

kN

R Cx  16 kN , R Cy  21 . 334 kN

C 3m D

RC

B 2m R Bx

4 3

R By

Then

 

2m

A

F x  0 : R Bx  16 kN F y  0 : R By  12 . 66 kN

( b ) Segment CD 8

M

4 M

16 C

3m D V D 21.334

D

 21 . 334 ( 3 )  12 (1 . 5 )  6 ( 2 )  34 kN  m

F D  16 kN

D

FD

V D  21 . 334  18  3 . 334

2

kN

SOLUTION (1.5) 3m

(a) A 2



M

A

 0:

RCx 

3 2

RCy

C RCy

RCx

4 3

R Cy

R By RCx

FD

40 kN

C

 0:

4 0 (5 )  4 R C y  0

M

RCy  5 0 k N 

R Cx  75 kN 

Then

R By  1 0 k N  ,

R Bx  7 5 k N 

D

0.75

VD

B

1 m

4m

(b)

M

2m

3

R Bx B



D

F D  75 ( 53 )  50 ( 54 )  85 kN

1.0

V D  75 ( 54 )  50 ( 53 )  30 kN

75

C 5 50 4 3

M

D

 7 5 (1)  5 0 ( 0 .7 5 )  3 7 .5 k N  m

SOLUTION (1.6) (a)

Free body entire connection

B

P A

T



M

C

0 :

0,5 m

T  0 .7 R A

0.2 m

Segment AB A

AB 

F AB

B



0.15 m

M

( 0 .5 )  ( 0 .1 5 ) 2

B

0 :



18 

 0 .5 2 2 m

18 ( 0 . 15 )  R A ( 0 . 5 )  0 T  3 .7 8 k N  m

and Fx  0 :

2

R A  5 .4 k N

0.5 m RA

(b)

R A ( 0 .7 )  T  0

C

RA

18 kN

0.15 m

0 .5 0 .5 2 2

FAB  0,

F A B  1 8 .7 2 9 k N

SOLUTION (1.7) 120 mm

120 mm

y

A R A  2 kN

B

RB  2 kN

50 mm

4 kN

 

70 mm

D z

Free Body: Entire Crankshaft (Fig. S1.7a) ( a ) From symmetry: R A  R B

T

Fz  0 : R A  R B  2 k N M

x

 0 :  4 ( 0 .0 5 )  T  0 ,

T  0 .2 k N  m  2 0 0 N  m

x

C (a)

(CONT.)

3

1.7 (CONT.) M

y

( b ) Cross Section at D (Fig. S1.7b)

D

T

Vz

Vz  2 kN

(b)

T  200 N  m

M

Figure S 1.7

y

 2 ( 0 .0 7 )  0 .1 4 k N  m  140 N  m

SOLUTION (1.8) 30 kN Free-Body Diagram, Beam AB

B 1.8 m

4 7

C

FC D

1.2 m



Fx  0 :



Fy  0 : R A 



M

A



 0:

7 65

FC D  6 0  0 , 4 65

FC D  3 0  0 ,

 6 0 (1 .8 ) 

M

60 kN

A

F C D  6 9 .1 1 k N

7 65

R A  6 4 .3 k N 

FC D ( 3 )  M

A

 0,

 72 kN  m

1.8 m A M

A

RA

SOLUTION (1.9) B 1.2 m C 129.6 kN 0.9 m 0.9 m 1.2 m 2

A

Free body entire frame

2.4 m

1 1 2

D



M

A

0 :

 129 . 6 ( 0 . 9 ) 

R D y  4 8 .6 k N ,

1 2

R Dy (1 . 2 )  R Dy ( 3 )  0

R D x  2 4 .3 k N

R Dy

R Dy R D

B

R By

R B x 1.2 m

D

C

Free body BCD

2.4 m

 

24.3

Fx  0 :

R B x  2 4 .3 k N

Fy 0 :

R B y  4 8 .6 k N

RB 

2 4 .3  4 6 .6 2

48.6

4

2

 5 2 .6 k N

SOLUTION (1.10)

y 4 kN 3 kN

R Ay A

0.3 m

R Az

T

R Ey

5 kN

z C E

1m

D

R Ez

1m

2 kN x

B

0.5 m 0.5 m 0.3 m

(a)



M

x

   

3 ( 0 .1 5 )  4 ( 0 .1 5 )  T  5 ( 0 .1 5 )  2 ( 0 .1 5 )  0

T  0 . 6 kN  m

or (b)

 0:

M

z

 0 : ( 4  3 )( 1 )  R Ey ( 2 . 5 )  0 , R Ey   2 . 8 kN

M

y

 0 :  R Ez ( 2 . 5 )  ( 5  2 )( 3 )  0 , R Ez  8 . 4 kN

F y  0 : R Ay  4  3  R Ey  0 , R Ay   4 . 2 kN

F z  0 : R Az  R Ez  5  2  0 , R Az   1 . 4 kN

Thus

RA 

4 .2

RE 

2 .8

2

 1 .4

2

 4 . 427

2

 8 .4

2

 8 . 854 kN

kN

SOLUTION (1.11) (a) Free-body Diagrams, Arm BC and shaft AB V

z

T

C

y B

x

M T

V

A T

Figure S1.11

M

V

M

V B

T

(b) At C: V  2 kN

T  50 N  m

At end B of arm BC: V  2 kN

T  50 N  m

M  200 N  m

At end B of shaft AB: V  2 kN

At A:

V  2 kN

T  200 N  m T  200 N  m

M  50 N  m M  300 N  m

5

SOLUTION (1.12) Free Body: Entire Pipe 200 N

0.15 m

D

y

36 N  m

C Ry

T Rx

A

0.2 m

Rz Mz

My

z

0.3 m

B

x

Reactional forces at point A:

  

Fx  0 :

Rx  0

Fy  0 :

R y  200  0,

Fz  0 :

Rz  0

R y  200 N

Moments about point A:

  

M

x

 0:

T  2 0 0 ( 0 .1 5 )  0 ,

M

y

 0:

M

y

M

z

 0:

M

z

T  30 N  m

 0  2 0 0 ( 0 .3 )  3 6  0 ,

M

z

 96 N  m

The reactions act in the directions shown on the free-body diagram.

SOLUTION (1.13) Free Body : Entire Pipe 0.15 m

y Rx

Mz z

36 N  m

C WCD

T Rz

D

0.075 m

Ry

200 N

WAB

0.2 m

WBC

A

My 0.15 m

0.3 m

B

x

(CONT.)

6

1.13 (CONT.) We have 1 lb/ft=14.5939 N/m (Table A.2). Thus, for 3 in. or 75-mm pipe (Table A.4): 14.5939(7.58)=110.62 N/m Total weights of each part acting at midlength are: W A B  1 1 0 .6 2 ( 0 .3)  3 3 .2 N W B C  1 1 0 .6 2 ( 0 .2 )  2 2 .1 N W C D  1 1 0 .6 2 ( 0 .1 5 )  1 6 .6 N

Reactional forces at point A:

  

Fx  0 : Fy  0 :

Rx  0 R y  W AB  W BC  W CD  2 0 0  0,

Fz  0 :

R y  2 7 1 .9 N

Rz  0

Moments about point A:

  

M

x

 0:

M

y

 0:

M

z

 0:

T  W C D ( 0 .0 7 5 )  1 0 ( 0 .1 5 )  0 ,

T  2 .7 4 5 N  m M

M

z

y

 0

 ( 2 0 0  W C D  W B C )( 0 .3 )  W A B ( 0 .1 5 )  3 6  0

M

z

 1 1 2 .6 N  m .

SOLUTION (1.14) 1.6 kN

RCy

(a) R Ay

D

R Ax A

C

Dy

0.5 m

RCx

1m

Dx

Bx

E

By

D

1.6 kN 0.15 m

Dx

1.6 kN By

Dy

Free body pulley B

 

B

Bx

0.25 m B

150 mm

F x  0 : B x  1 . 6 kN  F y  0 : B y  1 . 6 kN 

Free body CED

  

M

D

 0 : R Cx ( 0 . 4 )  1 . 6 ( 0 . 15 )  0 ,

F x  0 :  D x  0 .6  1 .6  0 , F y  0:

R Cy  D

R Cx  0 . 6 kN 

D x  1 kN 

y

Free body ADB

 

M

A

 0 : D y ( 0 . 5 )  B y (1 . 5 )  0 , D y  4 . 8 kN , R Cy  4 . 8 kN 

F x  0 :  R Ay  D y  B y  0 ,

R Ay  3 . 2 kN 

(CONT.)

7

1.14 (CONT.)

 (b)

M

F x  0 : R Ax  D x  B x  0 ,

V G 0.6 m B

G

FG

G

M

1.6

G

R Ax  0 . 6 kN 

 1 . 6 ( 0 . 6 )  960

N  m , V G  1 . 6 kN

F G  1 . 6 kN

1.6

SOLUTION (1.15) Free body entire rod



M



 0 : R Dy ( 0 . 25 )  300 ( 0 . 1 ),

x

M

z



 0:

R Dy  120

N 

 2 0 0 ( 0 .3 5 )  R B y ( 0 .2 5 )  ( 3 0 0  1 2 0 ) ( 0 .2 )  0

C

R By  136

N 

Free body ABE y B

A 200 N

Vy

100

175



M

z



E

 0:  M

z

x

E

136 N



M

z  200 ( 0 . 275 )  136 ( 0 . 175 )  0 , M

z

z

 31 . 2 N  m

F y  0 : V y  200  136  64 N

SOLUTION (1.16) Free body entire rod:

 M  0:  M  

R D y ( 0 .2 5 )  4 0 0 ( 0 .1)  0 ,

x

z

R B y ( 0 .2 5 )  ( 4 0 0  1 6 0 ) ( 0 .2 )  0 ,

0:

C

Segment ABE A

y

B

Vy

0.175 m

192 N

z

x

E M

z

At point E: M

z

  192 ( 0 . 175 )   33 . 6 N  m

V y  192

RDy  160 N 

N

8

R By  1 9 2 N 

SOLUTION (1.17) Side view

Top view

F2 50 mm

F2 B C

D

Td

50 mm

100 mm

Figure (c)

Figure (a)

F1

150 N  m A 50 mm

  

Fig. (b): Fig. (a): Fig. (c):

F1

Figure (b)

M

A

 0 : F 1 ( 0 . 05 )  150  0 , F 1  3 kN

M

B

 0 : F 1 ( 0 . 1 )  F 2 ( 0 . 05 )  0 , F 2  6 kN

M

D

 0:

F 2 ( 0 .0 5 )  T d  0 ,

T d  0 .3

kN  m

SOLUTION (1.18) 18 kN

13.5 kN

1m

C

3m B A

Ry

6m

Rx 3 4

4m

R

Free body-entire frame



M

A

 0:

R y (1 0 )  1 3 .5 ( 6 )  1 8 ( 4 )  0 ,

Free body-member BC



M

C

 0:

R x (3)  R y ( 4 )  0

and Rx 

4 3

(1 5 .3)  2 0 .4 k N

Thus FBC  R 

( 2 0 .4 )  (1 5 .3 ) 2

2

 2 5 .5 k N

9

R y  1 5 .3 k N

SOLUTION (1.19) P

Free body-member AB B

R Ax

A

E 40

o



a

 

 0: o

o

 R E  1.1 5 6 P

RE

R Ay

A

R E ( 4 a )  P c o s 4 0 ( a )  P s in 4 0 ( 6 a )  0

2a

4a

M

F x  0:

R Ax  P co s 4 0

 0 .7 6 6 P 

F y  0:

R A y  1.1 5 6 P  P s in 4 0

o

o

 0,

R A y  0 .5 1 3 P 

Free body-member CD RE

RCx

C 2a E

RD

RCy

 

M

C



D

4a

 0:

30

M

D

 0:

 R C y  0 .7 7 1 P 

o

R D s in 3 0 ( 6 a )  R E ( 2 a )  0 , o

F x  0:

RCx  R D co s 3 0

R E ( 4 a )  RCy ( 6 a )  0

o

R D  0 .7 7 1 P

 0 .6 6 8 P 

SOLUTION(1.20) ( a ) Power= P = ( p A ) ( L ) ( n /6 0 )  (1 .2 )( 2 1 0 0 )( 0 .0 6 )( 1 56 00 0 )  3 .7 8 k W

Power required 

P e



3 .7 8 0 .9

 4 .2 k W

( b ) Use Eq.(1.15), T 

9549 kW n



9 5 4 9 ( 4 .2 ) 1500

 2 6 .7 4 N  m

SOLUTION (1.21) a=1.5 m, b=0.55 m, c=0.625 m, L=2.7 m, V=29 m/s, W=14.4 kN, kW=14 ( a ) From Eq. (1.15), the drag force equals, Fd 

1000 kW V



1 0 0 0 (1 4 ) 29

 4 8 2 .8 N

See: Fig. P1.21:



Fx  0 :

F d  4 8 2 .8 N

It follows that



M

A

 0:

 W a  Fd c  R f L  0

or  1 4 4 0 0 (1 .5 )  ( 4 8 2 .8 )( 0 .6 2 5 )  R f ( 2 .7 )  0

(CONT.)

10

1.21 (CONT.) Solving, R f  7 .8 8 8 k N

and



Fy  0 :

R r  1 4 .4  7 .8 8 8  0

or R r  6 .5 1 2 k N

(b) We have V  0 ,

Fd  0 ,

F  0.

See Fig. P1.21:



M

A

Rf 

a L

 0:

Wa  Rf L  0

Thus

So,



W 

1 .5 2 .7

(1 4 .4 )  8 k N

F y  0 gives

R r  W  R f  1 4 .4  8  6 .4 k N

SOLUTION (1.22) Refer to Solution of Prob. 1.21. a=1.5 m, b=0.55 m, c=0.625 m, L=2.7 m, V=29 m/s, W=14.4 kN, kW=14 Now we have W t  1 4 .4  5 .4  1 9 .8 k N

( a ) From Eq. (1.15), the drag force equals, Fd 

1000 kW



V

1 0 0 0 (1 4 ) 29

 4 8 2 .8 N

See: Fig. 1.21 (with W  W t ):



M

A

 0:

 W t a  Fd c  R f L  0

  1 9 8 0 0 (1 .5 )  ( 4 8 2 .8 )( 0 .6 2 5 )  R f ( 2 .7 )  0

from which R f  1 0 .8 8 8 k N

and



Fy  0 :

R r  1 9 .8  1 0 .8 8 8  0

R r  8 .9 1 2 k N

( b ) V  0,

Fd  0 ,



M

A

Then

Rf 

a L

So,



F  0 , as before,

 0: W 

 Wta  R f L  0 1 .5 2 .7

(1 9 .8 )  1 1 k N

F y  0 gives

R r  W t  R f  1 9 .8  1 1  8 .8 k N

11

SOLUTION (1.23) ( a ) Free-Body Diagram: Gears (Fig. S1.23). Applying Eq. (1.15): T AC 

9550 P n

9550 (35 )



 6 6 8 .5 N  m

500

Therefore, TA

F 

rA



 5 .3 4 8 k N

6 6 8 .5 0 .1 2 5

( b ) T D E  F rD  5, 3 4 8 ( 0 .0 7 5 )  4 0 1 .1 N  m TDE

D rD

T AC

A

F rA

F

Figure S1.23 SOLUTION (1.24) n1  1 8 0 0 rp m ,

n 2  4 2 5 rp m ,

kW  20

From Eq. (1.15), we obtain T = 9549 kW/n. Thus For input shaft T 

9549 ( 23) 1800

 122 N  m

For output shaft T 

9549 ( 20 ) 425

 4 4 9 .4 N  m

Equation (1.14) gives e 

20 23

 100  87 %

SOLUTION (1.25) N=150, F=2.25 kN, s=62.5 mm, e=88% ( a ) Referring to Eq. (1.12): power output  F s ( 6N0 )  2 2 5 0  0 .0 6 2 5 ( 16500 )  3 5 1 .6 W

( b ) Using Eq. (1.14), power transmitted by the shaft: power input  3 5 1 .6 ( 0 .8 8 )  3 9 9 .5 W SOLUTION (1.26) Equation (1.10) becomes Ek 

1 2

I (



2 max

2 min

(1)

)

Here, mass moment inertia with 5 percent added: I  ( 1 . 05 )

 32

( d o  d i )  l 4

4

(Table A.5) (CONT.)

12

1.26 (CONT.) 

 1 . 05

( 0 .4

32

4

 1 . 299 kg  m

 0 . 3 )( 0 . 1 )( 7 , 200 ) 4

2

 m a x  1 2 0 0 ( 610 )  2 0 r p s  1 2 5 .7 ra d s

 m in  1 1 0 0 ( 610 )  1 8 .3 r p s  1 1 5 ra d s

Equation (1) is therefore Ek 

1 2

( 1 . 299 )( 125 . 7

 115

2

2

)

 1, 6 7 3 J

SOLUTION (1.27) Final length of the wire: L AC ' 

( 2 )  (1 .2 6 ) 2

2

 2 .3 6 3 8 m

Initial length of the wire is L AC 

( 2 )  (1 2 .5 ) 2

2

 2 .3 5 8 5 m

Hence, Eq. (1.20):  AC 

L AC '  L AC L AC



2 .3 6 3 8  2 .3 5 8 5 2 .3 5 8 5

 0 .0 0 2 2 5  2 2 5 0 μ

SOLUTION (1.28) (a) c 

2 ( r  r ) 2 r 2 r

( c ) i 

0 .3 150

( c ) o 

(b) r 

r r



 2000

μ

 800

0 .2 250

 r o   ri



r o  ri

μ

0 .3  0 .2 250  150

 1000

μ

SOLUTION (1.29) LO B  d ,

( a )  OB 

L AB  L BC  d

0 .0 0 1 2 d d

 1200 μ

( b ) L AB '  L CB '  d  AB   BC 

( c ) C A B  ta n

1

2  1 .4 1 4 2 1 d

2

 (1 . 0012 d )

1 .4 1 5 0 6  1 .4 1 4 2 1 1 .4 1 4 2 1

 1 .0 0d1 2 d  

2



1 2

 1 . 41506 d

 601 μ 4 5 .0 3 4 4

o

Increase in angle C A B is 4 5 .0 3 4 4  4 5  0 .0 3 4 4 . Thus o

  0 .0 3 4 4  18 0   6 0 0 μ

13

SOLUTION (1.30) (a) x 

0 .8  0 .5 250

 1200



μ

y

 0 .4  0 200



 2000 μ

( b ) L ' AD  L AD   x L AD  L AD (1   x )  250 (1 . 0012 )  250 . 3 mm

SOLUTION (1.31)  L AB  800 (10

6

)150  120 (10

6

 L AD  1000 (10

3

) 200  200 (10

) mm 3

) mm

We have L BD  L AB  L AD 2

2

2

2 L BD  L BD  2 L AB  L AB  2 L AD  L AD

or L AB

 L BD 



LBD

 150 250

 L AB 

L AD LBD

 L AD

(120 ) 

200 250

( 200 ) 10

(1) 3

 0 . 232

mm

SOLUTION (1.32) AC  BD 

300

2

 300

2

 424 . 26 mm

B ' D '  4 2 4 .2 6  0 .5  4 2 3 .7 6 m m ,

A ' C '  4 2 4 .2 6  0 .2  4 2 4 .4 6 m m

Geometry: A ' B '  A ' D ' x  

C'

B' 

D'



A'

xy



y



A ' D '  AD AD

  4 2 3 .7 6  2  4 2 4 .4 6  2       2 2      

1 2

 300

 363 μ

300

 2

  

 2

 2 tan

 1 423 . 76 2 424 . 46 2

 1651

μ

SOLUTION (1.33) 0.5 m A' 0.00064 m A

F

1m B

C

B

 800  10

6

( 0 .8 )

 0 .0 0 0 6 4 m

B'

x

We have  AD   AD L AD

0.005 m

0.33 m C' (CONT.)

14

1.33 (CONT.)

From triangles A ' A F and C ' C F : 0 .0 0 0 6 4 x



0 .0 0 5 1 .5  x

,

x  0 .1 7 m

From triangles B ' B F and C ' C F : 0 .3 3  01.0.3035 ,  B  0 .0 0 1 2 4 m    B E (contraction)  B

Therefore  BE 

  BE LBE



0 .0 0 1 2 4 1

  1 2 4 0 (1 0

6

)

  1, 2 4 0 

SOLUTION (1.34) (a) x  

xy

0 . 006 50

 120

μ



y

  1000  200   800



 0 . 004 25

  160

μ

μ

( b ) L ' A B  L A B (1   y )  2 5 (1  0 .0 0 0 1 6 )  2 4 .9 9 6 m m L ' A D  L A D (1   x )  5 0 (1  0 .0 0 0 1 2 )  5 0 .0 0 6 m m

End of Chapter 1

15

CHAPTER 2

MATERIALS

SOLUTION (2.1) A0 

 4

(1 2 .5 )  1 2 2 .7 m m , 2

We have  a 

2

 1500 μ ,

0 .3 200

Af 

t 



0 .0 0 6 1 2 .5

(1 2 .5  0 .0 0 6 )  1 2 2 .6 m m 2

4

 480 μ

Thus S

p



E 

S

p

a

3

1 8 (1 0 )



P A0



 1 4 6 .8 M P a

1 2 2 .7 6

1 4 6 .7 (1 0 ) 1 5 0 0 (1 0

6

 

 9 7 .8 G P a ,

)

t a

 0 .3 2

Also % e lo n g a tio n 

0 .3 200

(1 0 0 )  0 .1 5

in area 

% reduction

122 . 7  122 . 6 122 . 7

(100 )  0 . 082

SOLUTION (2.2) Normal stress is  



P A

 2 8 6 .8 M P a

2200



( 3 .1 2 5 )

2

4

This is below the yield strength of 350 MPa (Table B.1). We have   L  576.50 0  0 .0 0 1 3 3 9  1 3 3 9 μ Hence E 

 



6

2 8 6 .8 (1 0 ) 1 3 3 9 (1 0

6

 2 1 4 .2 G P a

)

SOLUTION (2.3) The cross-sectional area: A  w o t o  1 2 .7 ( 6 .1)  7 7 .4 7 m m ( a ) Axial strain and axial stress are  a  0 6.038.54 1  0 .0 0 1 3 2 4  1 3 2 4 μ 

a



Because 

a

 S y (See Table B.1), Hooke's Law is valid.

P A



2 1 ,5 0 0 7 7 .4 7 (1 0

6

)

 2 7 7 .5 M P a

( b ) Modulus of elasticity, E 



a

a



6

2 7 7 .5 (1 0 ) 1 3 2 4 (1 0

6

)

 2 0 9 .6 G P a

( c ) Decrease in the width and thickness  w   w o  0 .3(1 2 .7 )  3 .8 1 m m  t   t o  0 .3( 6 .1)  1 .8 3 m m

16

2

2

SOLUTION (2.4) Assume Hooke's Law applies. We have  t   15.5   3 0 0 μ a  

t

 



300 0 .3 4

 822 μ

Thus,   E  a  (1 0 5  1 0 )(8 2 2  1 0 9

9

)  9 2 .6 1 M P a

  S y , our assumption is valid.

Since So

P   A  (9 2 .6 1)(  4 )(5 )  1 .8 1 8 k N 2

SOLUTION (2.5) We obtain L AC  L BD 





 L AC

x





 L BD

y

(a) E 

L AC

L BD



x



x

y

(b)  

x

(c) G 





15

 15

2



21 . 17  21 . 21 21 . 21

  1886



21 . 22  21 . 21 21 . 21

 471 μ

100 ( 10

6

 1886 ( 10

471 1886

53 2 ( 1  0 . 25 )

) 6

2

 21 . 21 mm

μ

 53 GPa

)

 0 .2 5

 21 . 2 GPa

SOLUTION (2.6) Use generalized Hooke’s law: x   y  z 

1 2  E

( x  

y

For a constant triaxial state of stress: x   y  z  ,  x  

y

Then, Eq. (1) becomes   1  2  0

or

1 2  E

 

z)

(1)

 z  

 . Since  and 

must have identical signs:

1 2

SOLUTION (2.7) We have 

x



3

4 5 0 (1 0 ) 50 (75 )

 120

M Pa

(CONT.)

17

2.7 (CONT.) (a) x   

(b) E 

x

x

(c) z  

6

1 2 0 (1 0 )

 

2 0 0 0 (1 0

6

 500 μ

0 .0 2 5 50

 60 G Pa

)

6

1 2 0 (1 0 )

  0 .2 5

x

E

6

 a   5 0 0 (1 0

(d) G 

 

y

 0 .2 5

500 2000





 2000 μ,

0 .5 250

9

6 0 (1 0 )

 500 μ

9

6 0 (1 0 )

) 7 5   3 7 .5 (1 0

3

a '  7 5  0 .0 3 7 5  7 4 .9 6 2 5 m m

) mm;

 24 G Pa

2 (1  0 .2 5 )

SOLUTION (2.8) We have  y  z  0



x



3

25 ( 10 ) 20  10 ( 10

6

)

 125

MPa

Thus y  0 

1 E

[

  (  x   z )]

(1)

z  0 

1 E

[ z   (  x   y )]

(2)

x 

y

[ x   ( 

1 E

  z )]

y

(3)

Equations (1) and (2) become  y   z   x  z  

Adding :  ( 

(1’)

  x

y

(2’)

  z )  2   x (1   ) . Then, Eq. (3): 2

y

x 



2

1   2  1 

x

E

Substituting the data: 

x



6

1  0 . 3  0 . 18 125 ( 10 ) 9 0 .7 70 ( 10 )

 1327

μ

SOLUTION (2.9) Hooke's Law. We have  x  



10







9

x

E

10

6

7 2 1 0

z  

E

6

7 2 1 0

y  





x

E



9

x

E

10

6

7 2 1 0

9

y

 0 and

y





z

E

[(8 0 )  0  0 .3 (1 4 0 )]  0 .0 0 0 5 2 8  5 2 8 μ 





y

E



z

E

[  0 .3 (8 0 )  0  0 .3 (1 4 0 )]   9 1 7 μ 

 E

y





z

E

[  0 .3 (8 0 )  0  1 4 0 ]  1 6 1 1 μ

(CONT.)

18

2.9 (CONT.) (a)

 L AB   x a ,

Change in length

6

 L A B  (5 2 8  1 0

(b)

)(3 2 0 )  0 .1 6 9 m m

Change in thickness  t   yt  (917  10

(c)

6

)(1 5 )   0 .0 1 4 m m

Change in volume, e  x 

  z  5 2 8  9 1 7  1 6 1 1  1 .2 2 2

y

 V  e V o  1 .2 2 2 (3 2 0  3 2 0  1 5 )  1 .8 7 7 m m

3

SOLUTION (2.10) By assumptions, rubber in triaxial stress: 

x



z



  p,

y

 

 

F

d

2

4

4F

d

2



Stains are  x   z  0 . Hooke's law gives x  0 

1 E

[

  (

x

y

y

  z )]

or 0  p 



4F



Solving, p 

x

2

 d (1   )

4 F

z

Q.E.D.

2

 d (1   )

Substitute the data: p 

3

4 ( 0 .5 )(1 0  1 0 ) 2

 ( 6 2 .5 ) (1  0 .5 )

 3 .2 6 M P a (C)

SOLUTION (2.11) Hooke’s law gives 90 MPa y 10 mm

150 MPa



x



1 E

(

x



y



1 E

(

y



z

 

x 100 mm

 E

(

 

y

) 

 x )  x



y

10

6

100 ( 10 10

9

6 9

1 0 0 (1 0 )

)  

)

(150 

(90 

( 1 3 ) 10 100 ( 10

6

9

)

 L  1800  (100 )  180 μm  a   1400  ( 50 )   70 μm  b   200  (10 )   2 μm

and mm ,

a '  49 . 993

19

mm ,

b '  9 . 9998

150 3

)  1800

μ

)  1400 μ

(150  90 )   200 μ

Thus

L '  100 . 018

90 3

mm

SOLUTION (2.12) We have x  

y

 z  p

Gen. Hooke’s law: 

x

 

y

 

z

 

(1  2 )  

p E

120 ( 10 100 ( 10

6 9

) 1 ) 3

  400 μ

Thus  L   400  (100 )   40 μm  a   400  ( 50 )   20 μm  b   400  (10 )   4 μm

and L '  99 . 96 mm ,

a '  49 . 98 mm ,

b '  9 . 996

SOLUTION (2.13) We have 

x



Vo 

(a) x  



r  3

  p . The volume is

z

4 3

(1 2 5 )  8 .1 8 1(1 0 ) m m 3

[   (   )]  

1 E

6

1 6 8 (1 0 )



4 3

y

9

7 0 (1 0 )

 E

6

3

(1  2 )

(1  0 .5 )   1 2 0 0 μ

Change in diameter,  d   x d   1 2 0 0 (1 0

6

) 2 5 0   0 .3 m m

Decrease in circumference:  (  d )   0 .3    0 .9 4 2 5 m m

( b )  V  e V o  (1  2 )  xV o  ( 0 .5 )(  1 2 0 0  1 0

6

)(8 .1 8 1  1 0 )   4 9 0 9 m m 6

SOLUTION (2.14) From Fig.2.3b and Eq.2.20: U

t



S y  Su 2



f



250  440 2

( 0 . 27 )  93 MPa

We have L f  50  50 ( 0 . 27 )  63 . 5 mm Using Eq.(2.1): % e lo n g a tio n 

6 3 .5  5 0 50

(1 0 0 )  2 7 %

20

3

mm

SOLUTION (2.15) Table B.1:

S

 260

y

MPa , E  70 GPa

We have V  AL 

For U



U

r

U

app

S

2 y

2E



( 0 . 005 ) ( 3 )  58 . 9  10 2

4

( 260  10



6

2

) 9

2 ( 70  10

)

 482 . 9 kJ

m

6

m

3

3

 U r V  482 . 9  10 ( 58 . 9  10 3

6

)  28 . 44 J

 9 J :

app

n 

2 8 .4 4 9

 3.1 6

SOLUTION (2.16) ( a ) ASTM-A242. E  2 0 0 G P a and  U

o



Sy

2

2E

6

( 3 4 5 1 0 )



2

9

2 ( 2 0 0 1 0 )

y

 298

 345 M Pa kJ m

3

( b ) Stainless (302). E  1 9 0 G P a and S y  5 2 0 M P a U

o



Sy

2

2E

6

( 5 2 0 1 0 )



2

9

2 ( 2 0 0 1 0 )

 712

kJ m

3

SOLUTION (2.17) ( a ) Aluminum 2014-T6. E  7 2 G P a and  Uo 

Sy

2

2E



6

( 4 1 0 1 0 )

y

 410 M Pa

2

9

2 ( 7 2 1 0 )

 1167

kJ m

3

( b ) Annealed yellow brass. E  1 0 5 G P a and S y  1 0 5 M P a Uo 

Sy

2

2E

6

(1 0 5  1 0 )



9

2

2 (1 0 5  1 0 )

 5 2 .5

kJ m

3

SOLUTION (2.18) Referring to Fig. P2.18: E  (a) Uo 

Sy

2

2E



6

(1 9 2 .5  1 0 ) 9

2 ( 4 2 1 0 )

2

6

1 0 5 (1 0 ) 0 .0 0 2 5

 42 G Pa,

 4 4 1 .5 k J m

S y  1 9 2 .5 M P a

3

( b ) Total area under    diagram: U

 2 6 2 .5 (1 0 )( 0 .1 7 6 )  4 6 .2 M J m 6

t

21

3

SOLUTION (2.19) ( a ) V  50  50  1, 500  3 . 75 (10 ) mm 6

Thus

nU 

or

S

S

V

2E

 [

y

2 y

1

2 EnU V

]2 9

 [ 2  200 10

r



S

2 y

6

( 253  10



2E

)

2

9

2 ( 200  10

)

1

 1 . 5  400

3 . 75 ( 10

(b) U

3

3

] 2  253

)

 160

MPa

kPa

SOLUTION (2.20) S y  250

Table B.1:

E  200

M Pa,

GPa

We have U  nU

U

r

S



app

2 y

6

( 2 5 0 1 0 )



2E

 5 (1 7 )  8 5 N  m 2

 1 5 6 .2 5

9

2 ( 2 0 0 1 0 )

kN  m m

3

Therefore V 

U Ur



85 3

1 5 6 .2 5 (1 0 )

V  AL :

Also

3

 0 .5 4 4 (1 0

0 . 544 (10

3

) 



) m

3

2

d ( 2 .4 )

4

or d  0 .0 1 7 m = 1 7 m m

SOLUTION (2.21) Refer to Fig. P2.21. We have E 

(a) Uo 

Sy

2



2E

6

1 9 0 (1 0 ) 0 .0 0 1 3

( 2 4 5 1 0 )

2

9

2 (1 9 0  1 0 )

 190 G Pa,

 158

S y  245 M Pa

kJ m

3

( b ) Total area under    diagram:  3 5 0  1 0 ( 0 .2 8 )  9 8 3

U

t

MJ m

3

SOLUTION (2.22) V  ( 0 .0 5 )( 0 .0 5 )(1 .2 )  0 .0 0 3 m

( a ) n U 

S

3

and S y  S p

2 p

2E

V,

S

2 p



nU ( 2 E ) V

Substituting the data given, (CONT.)

22

2.22 (CONT.) Sp  2

9

1 .8 (1 5 0 )( 2  2 1 0  1 0 ) 0 .0 0 3

 3 7 .8  1 0

15

or S p  1 9 4 .4 M P a

(b) Uo 

Sp

2



2E

3 7 .8  1 0

15 9

2 ( 2 1 0 1 0 )

 90

kJ m

3

SOLUTION (2.23) Applying Eq. (2.22), we find S u  3 .4 5 H

B

M P a  3 .4 5 (1 4 9 )  5 1 4 M P a

Equation (2.24): S y  3 .6 2 (1 4 9 )  2 0 7  3 3 2 .4 M P a

SOLUTION (2.24) Using Eq. (2.22), S u  3 .4 5 H

B

M P a  3 .4 5 (1 7 9 )  6 1 8 M P a

Formula (2.24): S y  3 .6 2 (1 7 9 )  2 0 7  4 4 1 M P a

SOLUTION (2.25) Formula (2.22), S u  3 .4 5 H

B

M P a  3 .4 5 (1 5 6 )  5 3 8 M P a

Equation (2.24): S y  3 .6 2 (1 5 6 )  2 0 7  3 7 8 M P a

SOLUTION (2.26) Equation (2.22) gives S u  3 .4 5 H

B

M P a  3 .4 5 ( 2 9 3)  1 0 1 0 .9 M P a

Formula (2.24): S y  3 .6 2 ( 2 9 3 )  2 0 7  8 5 3 .7 M P a

End of Chapter 2

23

CHAPTER 3

STRESS AND STRAIN

SOLUTION (3.1) (a) 

s

3

4 5 (1 0 )



 ( 2 5 1 0

3

)

 9 1 .6 7

4

3

(b) h 

 ( 2 5 .7 8  1 0

(c) t 

 ( 2 1 .1 2  1 0

(d) b 

2

4 5 (1 0 ) 3

3

)(1 0 .9 4  1 0

3

3

)(1 2 .5  1 0

3

 5 0 .7 9 M P a

)

4 5 (1 0 )

M Pa

 5 4 .2 6

)

3

4 5 (1 0 )



[( 5 0  1 0

3

2

)  ( 2 5 .7 8  1 0

M Pa

 3 1 .2 2 M P a

3

2

) ]

4

SOLUTION (3.2) A   [( a 

a

9 16

Thus

a 4

)  a ] 2

2



2

Pn Sy

a

9 16

,

a

2



2



16 Pn 9 S y

all



a 

,

S

y

n

A 

,



P



all

Pn Sy

Pn

4 3

 Sy

Substituting the data given: a 

1 . 2 ( 10

4 3

6

)( 2 . 2 ) 6

 ( 280  10 )

 73 mm  a min

SOLUTION (3.3) Free body-Member ACD

R Ay

A



R Ax

 0 :  45 sin 15 ( 0 . 8 )  o

A



FBC

0.4 m 3



0.1 m 0.4 m

Fx  0 :

3 5

F BC  45 sin 15

 R A x  5 .8 2 5



D o

RA 

Resultant is

F y  0 : 45 cos 15

(5 .8 2 5 )  ( 6 6 .7 6 3 ) 2



We therefore have



n

RA 2

 d

2

4

,

2

d  (

o

 6 6 .9 9 2 R An



1

)2

Hence 3

dA  [

2 ( 6 6 .7 6 3  1 0 )( 2 )

dB  [

2 ( 2 9 .1 2  1 0 )( 2 )

6

 (1 9 6  1 0 ) 3

6

 (1 9 6  1 0 )

1

] 2  0 .0 2 0 8 m = 2 0 .8 m m 1

] 2  0 .0 1 3 7 5 m = 1 3 .7 5 m m

24

F BC ( 0 . 3 )

kN o

 R Ax  0

kN   R Ay 

 R A y  6 6 .7 6 3

45 kN

3 5

F BC ( 0 . 1)  0

4 5

 F B C  R B  2 9 .1 2

4

C

15

M

kN 

kN

4 5

F BC  0

SOLUTION (3.4) R Ay

5 kN B 1m 1m

C 0.75 m

R Ax A 1 m

1.5 m

  

E 3

A

 0:

5( 3 ) 

RE

RA 

3 5

R E ( 0 .7 5 ) 

F x  0 : R Ax  7 . 82 kN 

F y  0 : R Ay  5 . 43

7 .8 2  5 .4 3 2

2

kN 

 9 .5 2 k N

Free body-beam ABC 7.82 A 1m

(b) 

A



  1 . 018

8 ,145 3

8 ( 10

)

3

9 .5 2 (1 0 ) 2

 ( 0 .0 2 5 )

2

M

C

 0 : F BD  8 . 145

RCy

FBD

 

BD



2m

5.43

(a) 

RCx

C

B

MPa

 9 .6 9 7 M P a

4

SOLUTION (3.5) RA

A

 

L cos 

L ta n 

 RB

B

 0:

A

F y  0:

R B  FBC  R A  F AC 

P s in 

A AC 

 sin 

L AC 

L cos 

A BC 

P

P

 tan 

L BC  L

Total weight, W   ( A A C L A C  A B C L B C ) : W 

 PL 

( sin  1cos  

cos  sin 

) 

 PL 

2

1  cos  sin  cos 

Therefore dW d

P L





2

[

(s in  c o s  )

2

The foregoing reduces to 2

or

  5 4 .7

2

2

s in  c o s  ( 2 c o s  )(  s in  )  (1  c o s  )(  s in   c o s  )

3 cos   1

P ta n 

We have

C P

L

M

or

cos  

1 3

o

25

4 5

R E  13 . 04 kN

or

4 D

M

] 0

kN ( C )

RE (2)  0

SOLUTION (3.6) Refer to Table 3.1 (Case C) a  b  0 .0 9  0 .0 4 5  4 .0 5  1 0

t

3

m

2

45 mm t

 

T

;

30  10  6

2abt

90 mm

1 .2  1 0

2 ( 4 .0 5  1 0

Solving, t  4 .9 4 m m

We have   1 .5  0 .0 2 6 ra d and  a ll   L  0 .0 2 6 0 .8  0 .0 3 3 ra d m . o

Hence  

( a  b ) tT 2

2



2

2t a b G

( a  b )T 2

2

2 ta b G

0 .1 3 5 (1 .2  1 0 ) 3

0 .0 3 

2 ( 0 .0 4 5 ) ( 0 .0 9 ) ( 2 8  1 0 ) t 2

2

9

Solving: t  5 .3 4 m m Use t a ll  5 .5 m m

SOLUTION (3.7) Refer to Solution of Prob. 3.6. We now have a=b.

 

T 2

;

30  10  6

2a t 70 mm

t

Solving:

70 mm

Similarly,  

T 3

;

0 .0 3 3 

a Gt

Solving: Use

1 .2  1 0

3

( 0 .0 7 ) ( 2 8  1 0 ) t 3

9

t  3 .8 m m

t a ll  4 .1 m m

26

1 .2  1 0

3 2

2 ( 0 .0 7 ) t t  4 .1 m m

3 3

)t

SOLUTION (3.8) Refer to Case C, Table 3.1. We now have a=b=31.25 mm,  a ll  1 2 2 .4 5  4 .9  0 .0 8 6 ra d m . o

T

 a ll 

2

105 10

;



6

2a t

T 2 ( 3 1 .2 5  1 0

3

) ( 4 .7  1 0 2

3

,

T  9 6 3 .8 7 N  m

,

T  3 5 4 .0 2 N  m

)

Likewise,  a ll 

T 3

0 .0 8 6 

;

a tG

T ( 3 1 .2 5  1 0

3

) ( 4 .7  1 0 3

3

) ( 2 8 .7  1 0 ) 9

T a ll  3 5 4 .0 2 N  m

Thus, SOLUTION (3.9)

We have a  b  ( ro  ri ) 2  1 1 .7 m m Case E, Table 3.1). From Eq. (3.11),  m ax 

Tr J



T (1 2 .4 )(1 0 4

3

4

)

(  2 )(1 2 .4  1 1 )(1 0

 8 7 7 (1 0 ) T 3

12

)

From Table 3.1:  m ax 

T 2 abt



 8 3 0 .5 (1 0 ) T 3

T 2

2  (1 1 .7 ) (1 .4 )(1 0

9

)

Therefore, error in the thin-wall estimate: 8 7 7  8 3 0 .5 877

 0 .0 5 3  5 .3 %

SOLUTION (3.10) ( a ) Maximum moment occurs at midlenth B. Thus

60 kN



a ll

d 

V(,kN) A

3

30 kN 30 mm

14 mm

B



14 mm

30 E

D



32 M

m ax

d

3

3

32 M



m ax a ll

32 ( 435 )

 2 6 .1 m m

6

 ( 2 5 0 1 0 )

( b ) Maximum shear is at D and E. Hence, from Table 3.2: x

-30

M, (N  m) 435 210

Mc I

or

d 30 kN



 a ll 

4 V m ax 3 A

d 

1 6 V m ax

4 V m ax 3 d2 4





1 6 V m ax 3 d

2

or 2

x 

Use d a ll  2 6 .1 m m

27

3   a ll 3

2

1 6 ( 3 0 1 0 ) 6

3  (1 5 0  1 0 )

 1 8 .4 3 m m

SOLUTION (3.11) 12 kN

24 kN

21 kN 2m

2m

B 3m 4m

RB

D

2m

4m

A

C

RD

RA

RC

Reactions

 

M

D

M F

 0 : R B  21 kN

F y  0 : R D  15 kN

 0 : R A  14 kN

C

 0 : R C  7 kN

y

21 kN A

C 2m

14 V (kN)

4m

7

14

+

x

_ 7

M ( kN  m )

28 +

x

SOLUTION (3.12) 4 2.7 1m 1m 1m

A

 

B

3.13

V (kN)

x 3.57

_

 0:

A

Fy  0 :

a ll



M

( kN  m )

R B  3 .5 7 k N  m R A  3 .1 3 k N  m

m ax c

:

I

1 2 .5 (1 0 )  6

3

3 .5 6 (1 0 )( h 2 ) ( 0 .0 5 )( h

3

12 )



3

3 .5 6  1 0  6 2

0 .0 5 ( h )



+

max



3 V 2 A



3 3 . 57 2 0 . 05 ( 0 . 185 )

 578 . 9  700 OK

x SOLUTION (3.13) b  h 2

2

 d , 2

h

2

 d

2

 b

S 

2

We obtain dS db

Thus



b 

2

2

d 6



d

and h  d

3

b 2

 0:

,

h  0 .1 8 5 m

3.56

3.13

M



0.43

+

M

b

2



2

d 3

2 3

28

bh 6

2



b 6

(d

2

 b )  2

bd 6

2



3

b 6

SOLUTION (3.14) c  I 

200 ( 25 )( 162 . 5 )  150 ( 15 )( 75 )

 135 . 35 mm

200 ( 25 )  150 ( 15 ) 1 12

 200  25 ( 27 . 15 )

3

( 200 )( 25 )

 135 . 35  15 ( 1352. 35 )

2

 13 . 24  10

2

We have at N.A.: Q m a x  1 3 5 .3 5 (1 5 )( 1 3 52.3 5 )  1 3 7 .4  1 0



VQ



max

6

3

22 ( 10 )( 137 . 4  10



Ib

13 . 24 ( 10

6

)

3

3

mm

 15 . 22 MPa

)( 0 . 015 )

SOLUTION (3.15) I 

1 12

[ 200 ( 300 )

 100 ( 200 ) ]  383 . 3 (10

3

3

3

Q  A y  200  50 (100  25 )  1 . 25 (10 *

q 

VQ I

F (2)  q  s,

,



2F s

6

) m

) m

4

3

VQ I

Thus V a ll 

3

2 (1 5  1 0 )( 3 8 3 .3  1 0



2 FI sQ

0 .1 (1 .2 5  1 0

3

6

)

)

 92 kN

SOLUTION (3.16) V max  2 . 4 kN

M

max

Design is based on 

all

 12 MPa :



all



M

max

c



1 2

) 

6

: 12 (10

I

wL

2

 1 . 44 kN  m

3

1 . 44 ( 10 ) b 2b

4

3



2 ,160 b

3

, b  56 . 5 mm

Check  all  0 . 18 MPa : 

max



3

3 V max 2 A

:

2 . 4 ( 10 ) 3 2 2 ( 0 . 0565 ) 2

 564 kPa  810

kPa

OK .

SOLUTION (3.17) V max 

1 2

( 50  6 )  150

Design based on  S min 

M



all max

kN ,

 170 

all

max



1 8

( 50 )( 6 )

2

 225

kN  m

MPa : 3

225 ( 10 ) 170 ( 10

M

6

Table A.7: S 4 6 0  8 1 .

)

 1 . 324 (10

6

) mm

3

(smallest possible, others will work)

Shear stress S 460  81 : A web  d ( t w )  457 (11 . 7 )  5 . 347 (10 ) mm 3



max



V max A web



3

150 ( 10 ) 5 . 347 ( 10

3

)

 28 . 1 MPa

29

 100

MPa

OK .

2

6

mm

4

SOLUTION (3.18) M

 (w0 x

x

M

S 



x

bh 6

;

all

2 L )( x 3 )  w 0 x

2

2

w0x





6L

6L

(1)

all

bh 1

h  h1

At x=L:

3

3

w0x



6



3

6L

(2)

all

Divide Eq.(1) by (2): 2

h



2

h1

3

x L

h  h 1 ( Lx )

or

3

3 2

SOLUTION (3.19) RA  RB 

1 2

wL,

M

x



wLx 

1 2

bh 6

Equation (3.27), at a distance x : At x 

L 2

2 bh 1

:



6

w 2

2

(

h

Divide Eq.(1) by Eq.(2): or h  2 h 1

x L

 ( Lx )

SOLUTION (3.20)

4



L 2

L 4

)

2



2

h1

2

1 2



w 2

( Lx  x ) 2

Lx  x L

2

2

1



(1)

all

2

4

y Es

n 

(20)200=40(103)

3

( 4  1 0 )( 3 2 5 )

 2 .8 9  1 0



126  10  6

20 M

s

( 0 .1 6 2 5 )

2 .8 9  1 0

3

3



12

9

3

( 3 .8  1 0 )( 3 0 0 )

mm 6

;

 1 4 1 .6

w

M

3

12

 7 .3 5  1 0 

w

 M ;

 20

Ew

It 

12.5 mm

I

bh 6

(2)

300 mm

nM y



2

z



x

a ll

all

12.5 mm

s



1



200 mm



M

S 

2

wx ,

4

My I

 2 .8 9  1 0 

M

w

( 0 .1 5 )

2 .8 9  1 0

3

kN  m

 112 kN  m

s

Stress in steel governs: M  112 kN  m

SOLUTION (3.21) Es

n 

I 

Ew

1 12

M 

 20

[( 7 5  4 0 t )( 2 2 5 )]  3

1 8

wL  2

[ 7 5 (1 0 0 )]  ( 6 4 .9 4 1  3 7 .9 6 9 t )  1 0 3

1 12

[3 5  1 0 ( 2 .5 )(1 2 )]  2 7 .3 4 3

1 8

kN  m

2

Therefore, we write 

s



w



nM y I

;

135  10

6



3

2 0 ( 2 7 .3 4  1 0 )( 0 .1 1 2 5 ) ( 6 4 .9 4 1  3 7 .9 6 9 t )  1 0

6

,

t  1 0 .2 9 m m

Similarly 

My I

;

8  10

6



3

( 2 7 .3 4  1 0 )( 0 .1 1 2 5 ) ( 6 4 .9 4 1  3 7 .9 6 9 t )  1 0

Stress in steel governs: t  1 0 .2 9 m m

30

6

,

t  8 .4 1 5 m m

6

m

4

3

m

4

SOLUTION (3.22) Transformed Section of Brass y Es

n 

It  [

89.1 mm C1

z

3

 A d ]1  [ 2

bh 36

3

bh 12

 [ 3 6 ( 2 0 0 )(1 2 0 )  3

1

9.1 mm 43.4 mm

y  55.9 mm

 2

Eb

 A d ]2 2

200 2

 1 2 0 ( 9 .1 ) ]1 2

 [ 1 2 (1 0 0 )( 2 5 )  1 0 0 ( 2 5 )( 4 3.4 ) ] 2 3

1

C2

 15 . 43  10

1100mm

6

mm

2

4

200 mm Thus 120 (10

6

3

) 

M ( 55 . 9  10

) 

2 M ( 89 . 1  10

)

6

15 . 43  10

M  33 . 12 kN  m

,

Similarly, 140 (10

6

15 . 43  10

3

)

6

M  12 . 12 kN  m

,

(governs)

SOLUTION (3.23) n 

Es Eb

 2

I t  I b  nI

s

 [

30 ( 50 )

3

12

 ( 7 .5 )



4

4

 ( 7 .5 )

]  2[

4

4

]  314 , 985

mm

4

Thus, we write (  b ) max 

M ( 25  10



Mc It

314 , 985 ( 10

3

)

 12

 120 (10

)

6

M  1 . 512

),

kN  m

Similarly, (  s ) max 

3

2 M ( 7 . 5  10



nMc It

314 , 985 ( 10

 12

)

 140 (10

)

6

M  2 . 94 kN  m

),

SOLUTION (3.24) n 

Eb Ea

 1.5 Ib 

Transform to brass:

 64

[d

2

 ( d2 ) ]  4

15  d

4

1024

Aluminum core: Each element of area of area has its width reduced in ratio n . Ia 

1  n 64

( d2 )



4

 d

4

1024 n

and It  Ib  Ia 

 d

4

1024

( 15 

1 n

)

We have 

b



Mc It

M 

,

 bIt d 2



 d 512

3

 b ( 15 

1 n

)

Substituting numerical values: M 

 ( 0 .0 5 ) 512

3

(3 5 0  1 0 )(1 5  6

1 1 .5

)  4 2 0 5 .7

31

N  m = 4 .2 1 k N  m

(governs)

SOLUTION (3.25)   1 0 5 . Apply Eq.(3.31): o

( a )  x' 

1 2

(25  15) 

1 2

(  2 5  1 5 ) c o s 2 1 0  1 0 sin 2 1 0 o



o

x’

  5  17 . 32  5  17 . 32 MPa

 x'y'  

1 2

(  2 5  1 5 ) s in 2 1 0

 10 cos 210

o

(20)  (10) 2

 x'y' 15

o

o

x

y’

  10  8 . 66   1 . 34 MPa

( b )  1, 2   5 

x'

  5  2 2 .3 6

2

or  1  17 . 36 MPa

 p ' '  13 . 28



  27 . 36 MPa

2

o

1



2

 p''

SOLUTION (3.26) 70 (a)

y’  m ax

x 

30 o

x’ ( b )  max 

1 2



30 70 2

cos 2(  55 ) o

  20  17 . 1   37 . 1 kPa

x 55

30 70 2



y



xy

  20  17 . 1   2 . 9 kPa

 

30  70 2

sin 2 (  55 )  47 kPa o

[ 30  (  70 )]  50 kPa

SOLUTION (3.27) y 50(0.866) (0.866) 

  35  90  125

50(1)

x’ x



 60



x

,



y

 0,



xy

 50 MPa

0 .8 6 6  x  0 .5 ( 5 0 )  0 .5 ( 5 0 )

F x  0:

o

o

x

 57 . 74 MPa

(C )

50(0.5) ( a ) Equations (3.31) with   1 2 5 : o



x'



x'y'

  2 8 .8 7  2 8 .8 7 c o s 2 5 0  5 0 s in 2 5 0 o

 28 . 87 sin 250

o

 50 cos 250

o

o

  6 5 .9 8

M Pa

  44 . 23 MPa

(CONT.)

32

3.27 (CONT.) 1 2

( b )  1 , 2   2 8 .8 7  [(  2 8 .8 7 )  5 0 ]   2 8 .8 7  5 7 .7 4 2

 1  2 8 .8 7 M P a ,



2

2

 p '' 

  8 6 .6 1 M P a ,

1 2

ta n

1

x’

50 2 8 .8 7

 30

o

x

44.23

 p''

35

x’

o



x y’

1

2

65.99

SOLUTION (3.28) From Solution of Prob. 3.27:  

x

 



xy



6

57 . 74 ( 10 200 ( 10 2 (1  0 .3 )

200 ( 10

9

)

9

)

)



  289 μ ,

( 50  10

6



  5 7 .7 4 M P a ,

x

 

y

x

y

 0 , and 

 50 M P a.

xy

 87 μ

)  650 μ

(  x ) AC 

C

B



40

34.6

L A C  52.915

60

A

40 4 0 .8 6

289 87 2 650 2



28987 2

o

c o s 2 ( 4 0 .8 6 ) o

s in 2 ( 4 0 .8 6 )

  1 0 1  2 7 .0 7  3 2 1.6 1  194 μ

o

D

20 o

( a ) (  x ' ) A B   1 0 1  1 8 8 c o s 2 (1 2 0 )  3 2 5 s in 2 (1 2 0 )   2 8 8 μ o

o

 L A B  4 0 (  2 8 8  )   0 .0 1 1 5 m m

( b )  L A C  5 2 .9 1 5 (1 9 4  1 0

6

)  0 .0 1 0 3 m m

SOLUTION (3.29)



y (a) 

y

y

  7 0 ( 0 .5 )   3 5 M P a

60.6(0.866)=52.5

 x y   7 0 ( 0 .8 6 6 )   6 0 .6 M P a

( 0 .5 ) 

30

o

140(1)

x

x



0 . 5

Fx  0 :

(b) 1 

175  35 2

x

 [( 175 2 35 )

 140  52 . 5  0  

x

 175

M Pa

 p'

1

2

 (  60 . 6 ) ] 2  70  121 . 23  191 . 23 MPa 2

 2   5 1 .2 3 M P a p'

1 2

ta n

1



2 ( 6 0 .6 ) 175 35

  15

x x’

o

1 

33

2

SOLUTION (3.30) From Solution of Prob. 3.29: 

9

2 0 0 1 0 2 (1  0 .2 5 )

G 

x  

y



x'

 175 M Pa, 

x



(

1 E

10

 80  10  y ) 

x

6 9

2 0 0 (1 0 )

  3 5 M P a , and 



Pa, 10

6 9

2 0 0 (1 0 )

xy





xy

G



xy

 6 0 .6  1 0 8 0 1 0

6

9

  6 0 .6 M P a .

 758 

(1 7 5  3 .7 5 )  9 1 9  ,

(  3 5  4 3 .7 5 )   3 9 4 

919  394 2



9

y



919  394 2

cos 2 (141 . 5 )  o

o

758 2

sin 2 (141 . 5 )  2 6 2 .5  1 4 7 .6 8  3 6 9 .2 9  7 7 9 .4 7 

x’

L B D  0.0416 m

B

C

0.05 m A

=141.5o x

0.075 m D

Thus  L B D  0 .0 4 1 6 ( 7 7 9 .4 7  1 0

6

)  0 .0 3 1 3 m m

SOLUTION (3.31)   40



x



xy

 

o

y

 100 cos 45

 100 sin 45

o

o

 70 . 71 MPa

 70 . 71 MPa

Equations (3.31): 

x'





y'

 70 . 71  0  69 . 64  1 . 07 MPa



x'y '

70 . 71  70 . 71 2

 0  70 . 71 sin 80

  0  70 . 71 cos 80

y’

o



x'

40



 140 . 3 MPa

 12 . 28 MPa

x’

 x'y'

o

o

x y'

34

SOLUTION (3.32)   40  90  130



y

o



  40 MPa ,



 50 MPa ,

x

 25 MPa

xy

( a ) Equations (3.31): 50 40 2

 x' 



50 40 2

c o s 2 (1 3 0 )  2 5 sin 2 (1 3 0 ) o

o

 5  7 . 814  24 . 62   27 . 43 MPa

(b) 



x'y'



y'

 [(

max

 p'

1 2

  45 sin 260

o

 5  7 . 814  24 . 62  37 . 434

50  40 2

 44 . 316  4 . 341  39 . 975

MPa

MPa

1

)

 25 ] 2  51 . 48 MPa

2

2

 1 25 45

tan

 25 cos 260

o

 14 . 53

o

x’ 



x'

y'

x’



 x'y'

 m ax

x

 p'

x x

y’ SOLUTION (3.33) x”

B

AC  BD  90 . 139

x’

C

75 mm

G  E 2 .6

x 

50 mm 3 3 .6 9

1 4 6 .3

o



xy



1 E

(  xy G



o

1 E

( x    y )

10 E

6

[ 5 0  0 .3 (  4 0 ) ] 

6 2 1 0 E

6

x

A y 

mm

D y

  x )  6



2 5 1 0 E 2 .6

x'





10 E

6

6 5 1 0 E

[  4 0  ( 0 .3 ) ( 5 0 ) ]  

5 5 1 0 E

6

6

We have 

6

10 2E

[( 62  55 )  ( 62  55 ) cos 2 ( 33 . 69

 ( 65 ) sin 2 ( 33 . 69



x"



6

10 2E

o

)] 

89 . 85 E

(10

6

o

)

)

[117  ( 7 ) cos 2 (146 . 3 )  ( 65 ) sin 2 (146 . 3 )]  o

o

Thus  L A C   x ' (9 0 .1 3 9 )   L B D   x " (9 0 .1 3 9 ) 

8 9 .8 5  1 0 2 1 0 1 0

6

9

2 9 .8 4  1 0 2 1 0 1 0

9

6

(9 0 .1 3 9 )  0 .0 3 8 6

mm

(9 0 .1 3 9 )  0 .0 1 2 8

mm

35

29 . 84 E

6

(10 )

SOLUTION (3.34)

Vessel is thin walled.

1.2 kN/m B

0.9 m

M

V 1.5 m

VQ

 xy 

A

 0 at A and C

Ib

V  2 .7  1 .2 (1 .5 )  0 .9 k N

M  2 .7 (1 .5 ) 

C

2.7 kN

 2 .7

1 2

(1 .2 )(1 .5 )

2

kN  m

Point A 

x'



Mc I

(a)

  

y

(b)

 m ax 

1 2



2 .7 ( 0 .4 5 ) 3

 ( 0 .4 5 ) ( 3  1 0

 2

a

3

)

 6 .3 M P a   1 ,

( 1   2 ) 

1 2



  1 .4 1 5 M P a ,



2

a



pr 2t



4 2 ( 0 .4 5 ) 2 ( 3 1 0

3

)

 3 .1 5 M P a

 3 .1 5  1 .4 1 5  1 .7 3 5

( 6 .3  1 .7 3 5 )  2 .2 8 2 5

M Pa

M Pa

Point C (a)



(b)

 m ax 

x'

 2  1 .4 1 5  3 .1 5  4 .5 6 5 M P a ,

 1 .4 1 5 M P a , 1 2

( 1   2 ) 

1 2

( 6 .3  4 .5 6 5 )  0 .8 6 8

 1  6 .3 M P a

M Pa

SOLUTION (3.35) Refer to Solution of Prob. 3.34. 

(a)



x

xy



 

 1, 2 

Thus

x'

VQ Ib 0 .9

 rt



 

a

 0  3 .1 5  3 .1 5 M P a ,

0 .9 (  r t )(

2r



0 .9

 ( 0 .4 5 ) ( 3  1 0

3

)

 0 .2 1 2 2 M P a

1

 [( 6 .3 23 .1 5 )  ( 2 .1 2 2 ) ] 2  4 .7 2 5  1 .5 8 9 2

 1  6 .3 1 4 M P a 1 2

    6 .3 M P a

(see Table A-3)

2

or

( b )  m ax 

y

)

3

 r t(2t)

6 .3  3 .1 5 2



 2  3 .1 3 6 M P a

( 1   2 )  1 .5 8 9 M P a

36

SOLUTION (3.36)  

x’

P A



Tr J



3

1 1 0 (1 0 ) 2

2

 ( 0 .0 2 5  0 .0 1 2 5 )

 7 4 .7 M P a

74.7



 

x

3

2 .3 (1 0 )( 0 .0 2 5 )



4

 9 9 .9 6 M P a 4

( 0 .0 2 5  0 .0 1 2 5 )

2

99.96

  50  90  140

o

x’ 

Equations (3.31): x'

140



o

 x'y'

x'





7 4 .7 2

7 4 .7 2

c o s 2 8 0  9 9 .9 6 s in 2 8 0 o

o

 1 4 2 .3 M P a

x

 x'y'  

7 4 .7 2

s in 2 8 0  9 9 .9 6 c o s 2 8 0 o

o

 1 9 .4 2 M P a

y’ SOLUTION (3.37) 410 mm

y A

120 18

z

24 kN

M

40

50

120

24

3 4

18 kN

y 

A  40 (120 )  4 . 8  10

x

A

I 

x

 xy

1 12

( 40 )( 120 )

3

3

mm

 5 . 76  10

2 6

mm

4

M  18 ( 0 . 12 )  24 ( 0 . 41 )  12 kN  m

We have at A: x  

P A



Mc I

3

1 8 (1 0 )

 

4 . 8 (1 0

3

)

 (  3 . 75  104 . 17 )  10

 xy  

VQ Ib

 

3

2 4 1 0 ( 2 2 1 0 5 .7 6  1 0

6

100 . 4 2

2

6

)

( 0 .0 4 )

3

1 2 (1 0 )( 0 . 0 5 )



5 . 7 6 (1 0

6

6

)

Q  4 0 (1 0 )(5 5 )  2 2 (1 0 ) m m

 100 . 4 MPa

  2 .2 9 M P a

Thus 

or

1,2



100 . 4 2

 [(

)

 1  1 0 0 .5 M P a

2

 2   0 .0 5 M P a

 m a x  5 0 .2 8 M P a

and tan 2  p ' 

or

 p '   1 . 31

2

xy



x

o



1

 (  2 . 29 ) ] 2  50 . 2  50 . 25

2 (  2 . 29 ) 100 . 4

 1 . 31

37

3

3

SOLUTION (3.38)

y y

B

B

16

M P

yo P=40 kN

C

62 z

A Z

10 mm

y

A

8

45

From Z axis: 6 2  1 6 (3 9 )  4 5  8 ( 4 )

y 

 2 9 .7 m m

62  16  45  8

y 0  1 0  y  3 9 .7 m m A  1 6  6 2  4 5  8  1 .3 5 (1 0 ) m m 3

2

About the z axis: I 

1 6 (6 2 )

3

 1 6  6 2 ( 9 .3 )  2

4 5 (8 )

12

3

 4 5  8 ( 2 5 .7 )

2

12

 1 0 ( 0 .3 1 8  0 .0 8 6  0 .0 0 2  0 .2 3 8 )  0 .6 4 4  1 0 6

6

mm

4

M  4 0  0 .0 3 9 7  1 .5 8 8 k N  m

Thus, 

a



P



A

40  10

Mc

( b ) B 

3

1 .3 5  1 0 

I

(  b ) A  9 9 .4

3

 2 9 .6 M P a

 1 5 8 8 ( 0 .0 4 0 3 ) 0 .6 4 4  1 0

2 9 .7

6

  9 9 .4 M P a

 7 3 .3 M P a

4 0 .3



A

 2 6 .3  7 3 .3  9 9 .6 M P a



B

 2 6 .3  9 9 .4   7 3 .1 M P a

SOLUTION (3.39) A  b h  2 5 (1 0 0 )  2 .5 (1 0 ) m m 3

I 

2

2 5 (1 0 0 ) 12

P  50 kN

M  5 0  1 0 ( 0 .0 5 )  2 .5 k N  m 3

( a ) At the top fibers: t 

P A



Mc I



5  10 2 .5 (1 0

3

3

2 .5  1 0 ( 0 .0 5 ) 3

 )

2 .0 8 (1 0

6

 20  60  40 M Pa

At the bottom fibers:  b  20  60  80 M Pa

38

)

40.3

3

 2 .0 8 (1 0 ) m m 6

4

SOLUTION (3.40) A  b h  2 5 (1 5 0 )  3 .7 5 (1 0 ) m m 3

I  bh

1 2  2 5 (1 5 0 )

3

2

1 2  7 .0 3(1 0 ) m m

3

6

4

At the bottom fibers: 

P



b

Mc



A

P



I

3 .7 5 (1 0

3



0 .0 7 5 P ( 0 .0 7 5 )

)

7 .0 3 (1 0

6

)

Solving, 120  10

 2 6 6 .7 P  8 0 0 .1 4 P

6

Pa ll  1 1 2 .5 k N

SOLUTION (3.41) J 



[( 0 .0 6 )  ( 0 .0 5 0 ) ]  1 0 .5 4 (1 0 4

2

c  0 .0 6

4



m,

45

6

) m

 8 0 M P a   m ax 

o

4

Tc J

Thus T ( 0 .0 6 )

8 0 (1 0 )  6

1 0 .5 4 (1 0

6

)

T  1 4 .0 5 k N  m

,

SOLUTION (3.42) ( a )  1, 2 

500  800 2

1

   [( 5 0 0 2 8 0 0 )  ( 3 52 0 ) ] 2  6 5 0   2 3 0 μ 2

2

or  1  880 μ ,

( b )  max  G 

max

 2  420 μ , 3

70 ( 10 )



2 (1  0 .3 )



max

 460 μ

( 460 )  12 . 38 MPa

SOLUTION (3.43) (a) 

max

 2 [(

200  600 2

A

1

)

2

 ( 400 ) ] 2  566 μ 2 2

  149

( b ) x' 

200  600 2



200 600 2



400 2

o

c o s 2 (1 4 9 )

x

C

s in 2 (1 4 9 )  1 3 0 μ o

o

L A . C  2 7 .3 3 3 m m

Thus  L A C   x ' L A C  1 3 0 (1 0

6

)( 2 7 .3 3 3 )  3 .5 5  1 0

3

mm

SOLUTION (3.44)  1, 2 

50  250 2

 [( 5 0 22 5 0 )  (  2

150 2

1

) ]2  150 μ  125 μ 2

or 1  275   2  25 

(CONT.)

39

3.44 (CONT.) Apply Hooke’s Law (with  z  0 ): 6

2 7 5 (1 0

and

2 5 (1 0

6

) 

) 

( 1    2 )

1 9

2 1 0 (1 0 )

(1)

( 2    1 )

1 9

2 1 0 (1 0 )

(2)

Solving  1  65 . 2 MPa ,



 24 . 8 MPa

2

SOLUTION (3.45) 

a



 

pr 2t pr t



p (500 )



P A

2 (1 0 )

0 .0 2  2  ( 0 .5 )( 0 .0 1 )

 25 p  2 M Pa

x





 50 p

y

50 20

s in 4 0

A=1

40

o

cos 40

5 0  ( 2 5 p  2 ) s in

2

40

o

 50 p cos 40 2

p all  1 . 281 MPa

or

25p-2

o

F y  0:



F x  0:

2 0   ( 2 5 p  2 ) s in 4 0 c o s 4 0 o

 5 0 p c o s 4 0 s in 4 0

o

o

50 p

p all  1 . 546

or

o

MPa

SOLUTION (3.46) ( a )  x y   (  x '   y ' ) s in (  2  )   x ' y ' c o s (  2  ) o

o

0   ( 2 4 0  4 1 0 ) s in (  6 8 )   o

Then

1

x 

2 1



( x '  

y'

)

1 2

( x '   1

(240  410) 

2



cos(68 ) , o

x'y'

1

) c o s (  2 )  o

y'

x'y'



2

( 2 4 0  4 1 0 ) co s( 6 8 )  o

2

 421 μ

s in (  2  ) o

x'y'

1

( 4 2 1) s in (  6 8 ) o

2

 9 8 .2 μ



y

1



( x '  

2 1



y'

)

1 2

(240  410) 

2

( x '   1

1

) c o s (  2 )  o

y'

2

( 2 4 0  4 1 0 ) co s( 6 8 )  o

2

( b ) Hooke’s Law, with  t   y ,  a   x , and  t  2  a



So

y

x





x

(1  2 )

E

552 9 8 .2

 5 .6 2 



y



2  1  2



x

(2   )

E

  0 .3 5

,

40

s in (  2  ) o

x'y'

1 2

 552 μ

x 



o

( 4 2 1) s in ( 6 8 )

o

o

SOLUTION (3.47)  a  880 

( a  0 ),

 b  320 

o

( b   6 0 ),

 a   x c o s  a   y s in  a   2

Thus

8 8 0 (1 0

6

xy

)   x c o s 0   y s in 0   o

( c   1 2 0 ) o

s in  a c o s  a

2

2

 c  60 

o

2

o

o

 x  880 μ

o

s in 0 c o s 0 ,

xy

Likewise,  b   x c o s  b   y s in  b   x y s in  b c o s  b 2

3 2 0 (1 0 3 2 0 (1 0

6

6

2

)   x c o s (  6 0 )   y s in (  6 0 )   2

o

2

)  0 .2 5  x  0 .7 5 

y

 0 .4 4 3 

 c   x c o s  c   y s in  c   2

and,

 6 0 (1 0

6

 6 0 (1 0

6

o

2

xy

s in (  6 0 ) c o s (  6 0 ) o

xy

(1)

xy

s in  c c o s  c

)   x c o s (  1 2 0 )   y s in (  1 2 0 )   2

o

2

)  0 .2 5  x  0 .7 5 

y

o

 0 .4 4 3 

o

s in (  1 2 0 ) c o s (  1 2 0 ) o

xy

o

(2)

xy

Subtract Eq. (2) from Eq. (1): So

3 8 0 μ   0 .8 8 6 

xy



and then from Eq. (1):

xy

  4 2 8 .9 μ







y

  1 0 2 .1 μ



2

880 A

388

2

O

 avg 

x p

288.1

'

 ()

C R

y



1

1 2

( x   y )

(8 8 0  1 0 2 .1)  3 8 9 μ

2 R  [ (8 8 0  3 8 9 )  (  2

4 2 8 .9 2

 5 3 5 .8 μ

 1,2   a vg  R

 1  3 8 9  5 3 5 .8  9 2 4 .8 μ  2   1 4 6 .8 μ ta n 2 

p

'

2 8 8 .1 880  389

 p '  1 6 .8

,

x’

o

x 16.8o

924.8  y

A

y’ 146.8 

41

2

1

) ]2

SOLUTION (3.48) y  xy 



A

x

Tc J



y

2

( x   y )  0

    a v g  R s in 2    xy



c



3

2

 0



xy

 xy G

x  y  0



Mohr’s circle for strain:  avg 



    25

o

x

 1

J 

Tc

s i n 2 

2G

R 

1



2

1



2

xy

 2



x 2

xy

A’ x’ R

s in 2 

  

O

s i n 2

y

2G J

This gives 2G J  

T 

c s in 2  Substitute the given data:

 (8 0 .5  1 0 )( 0 .0 4 4 ) ( 6 0 0  1 0 9

T 

3

( 0 .0 4 4 ) s in 5 0

6

o

)

 2 2 5 .0 3 8 k N  m

SOLUTION (3.49) Using Eqs. (3.39), we have  x  300 μ,



y



 150 μ,

xy

 2(375)  (300  150)  600 μ

Equations (3.38) are thus, 300  150

 1, 2 

p



(

450

2

1  300 μ , 



1 2

ta n

1

)  ( 2

2

600

)

2

 175  375

2

 2  450 μ [

600 300  150

]  2 6 .6

o

 x '   1 7 5  2 2 5 c o s 5 3 .1  3 0 0 s in 5 3 .1   4 5 0    2 o

o

Thus,  p "  2 6 .6

y’ 300 

o

450  x’ 26.6o x 42

SOLUTION (3.50) Given: D  5 0 m m , t  1 5 m m , P  2 5 k N . Refer to Figs. P3.50 and C.1: d

r

r d

D d

K

32 33 34 35

9 8.5 8 7.5

0.28 0.26 0.24 0.21

1.56 1.52 1.47 1.43

1.64 1.66 1.62 1.7

t

We have 6

 a ll  K t

P A

;

150 (10 ) 1.9

 Kt

3

25 (10 ) 0 .0 1 5 h

In this equation, minimum h is reached when K t is minimum. Thus, use h  34 mm

SOLUTION (3.51) D d



45 30

 1.5 ,



r d

6 30

 0 .2

Figure C.1, K t  1.7 2 . 

Hence



and

Pall  A 

nom



max

1 . 72



nom

210 1 . 5

 81 . 4 MPa

1 . 72

 ( 30  12 )( 81 . 4 )  29 . 3 kN

SOLUTION (3.52) At the notch and hole: 

nom



P ( D  d h  2 r )t



12  10

3

( 0 .0 9  0 .0 1 5  2  0 .0 0 7 5 ) ( 0 .0 1)

 20 M Pa

For the notch : (see Fig. C.1): D



d

90

 1 .2

75

r

7 .5



d

 0 .1,

75

K t  1 .7 8

 m a x  K t  n o m  1 .7 8 ( 2 0 )  3 5 .6 M P a

For the hole (see Fig. C.5): dh



D

15

 0 .1 6 7 ,

90

K t  2 .5

 m a x  K t  n o m  2 .5 ( 2 0 )  5 0 M P a

Hence

SOLUTION (3.53) Kt 



m ax



nom



180

 1 .6 3 6 and D d  1 .5

110

From Fig. C.1: r d  0 .2 4 . Then D  2r  d

(CONT.)

43

3.53 (CONT.) 4 0 .6 2 5  2 ( 0 .2 4 d )  d  1 .4 8 d

gives or

d  2 7 .4 5 m m r  6 .5 9 m m

SOLUTION (3.54) For

r

 0 .2 0 :

d D  2r  d ;

4 0 .6 2 5  2 ( 0 .2 d )  d  1 .4 d

or d  2 9 .0 2 m m We thus have D

 1 .4

d

Figure C.1 gives K t  1 .7 . Hence, 

 3 5 0 (1 0 )  1 .7

Pa ll

6

m ax

(1 2 .5  1 0

3

) ( 4 0 .6 2 5  1 0

3

)

Pa ll  1 0 4 .5 k N

or

SOLUTION (3.55) (ksi)



avg

1



(

2 

1

x

 y)

(1 6 8  8 4 )  1 2 6 M P a

2

3

O 

R 

C

 (

x



y

1 (MPa) 

(

168  84 2

 5 9 .4 M P a

avg =59.4 ( a )  1,2  

 R

avg

 1  1 2 6  5 9 .4  1 8 5 .4 M P a  2  6 6 .6 M P a

 3  21 M Pa

( b ) ( m a x ) a  

1 2

1

( 1   3 )

[1 8 5 .4  (  2 1) ]  1 0 3 .2 M P a

2

44

)  2

2

2 xy

)  (42) 2

2

SOLUTION (3.56) (MPa)



avg

avg

1



(

2 

1

x

 y)

(5 0  0 )  2 5 M P a

2

R 3

O

1

C



R 

(

x



y

)  2

2

(MPa) 



50  0

(

2 xy

)  (25) 2

2

2  3 5 .3 6 P a

( a )  1,2  

 R

avg

 1  2 5  3 5 .3 6  6 0 .3 6 M P a

 2   1 0 .3 6 M P a  3  60 M Pa

( b ) ( m a x ) a 

1

( 1   3 )

2



1

[ 6 0 .3 6  (  6 0 ) ]  6 0 .1 8 M P a

2

SOLUTION (3.57) (ksi) avg =42 

avg

1



(

2

35 

1

x

 y)

(7 0  1 4 )  4 2 M P a

2



3

C

1

(MPa)

R 

 (

x



y

)  2

2



(

70  14

2 xy

)  (56) 2

2

2  6 2 .6 M P a

( a )  1,3  

avg

 R

 1  4 2  6 2 .6  1 0 4 .6 M P a

 3  4 2  6 2 .6   2 0 .6 M P a  2  35 M Pa

(CONT.)

45

3.57 (CONT.) ( b ) ( m a x ) a  

1 2 1

( 1   3 ) [1 0 4 .6  (  2 0 .6 ) ]  6 2 .6 M P a

2

SOLUTION (3.58) ( a ) In the yz plane:  ' =35

70 MPa

(MPa)

y

21 MPa

z

21

C

3

R

 (MPa)

O 1

70 We have R 

35  21 2

2

 4 0 .8 2 M P a

Thus  1  R   '  4 0 .8 2  3 5  5 .8 2 M P a

 3   R   '   4 0 .8 2  3 5   7 5 .8 2 M P a  2  28 M Pa

( b ) Using Eqs. (3.58) :  oct 

1 3

1

[ ( 5 .8 2  2 8 )  (  2 8  7 5 .8 2 )  (  7 5 .8 2  5 .8 2 ) ] 2 2

2

2

 3 3 .4 9 M P a

 oct 

1 3

(5 .8 2  2 8  7 5 .8 2 )   3 2 .6 7 M P a

From Eq. (3.50),  m a x  12 (5 .8 2  7 5 .8 2 )  4 0 .8 2 M P a SOLUTION (3.59) ( a ) Using Eq. (3.47): (70   i )

0

56

0

(1 4   i )

0

56

0

(1 4   i )

 0

(CONT.)

46

3.59 (CONT.) Expanding, (1 4   i )[( i  7 0 )(  i  1 4 )  3 1 3 6 ]  0

or

 1  42 M Pa,

 2  14 M Pa,

 3  98 M Pa

( b ) From Eq. (3.50),  m a x  12 ( 4 2  9 8 )  7 0 M P a acts on planes shown in Fig. 3.41. ( c ) Using Eqs. (3.52), we have  o c t  13 ( 4 2  1 4  9 8 )   1 4 M P a  oct 

1 3

1

[( 4 2  1 4 )  (1 4  9 8 )  (  9 8  4 2 ) ] 2 2

2

2

 6 0 .4 9 M P a

They act on planes depicted in Fig. 3.43. SOLUTION (3.60) The principal stresses are  1  8 4 M P a ,  2  6 3 M P a , and  3   1 2 6 M P a . ( a ) By Eq. (3.50),  m ax 

1 2

(8 4  1 2 6 )  1 0 5 M P a

acts on planes shown in Fig. 3.41. ( b ) Applying Eqs. (3.52):  o c t  13 (8 4  6 3  1 2 6 )  7 M P a  oct 

1 3

1

[ (8 4  6 3 )  ( 6 3  1 2 6 )  (  1 2 6  8 4 ) ] 2  9 4 .4 4 M P a 2

2

2

They act on planes shown in Fig. 3.43. SOLUTION (3.61) The principal stresses are  1  2 9 7 .5 M P a ,  2  3 6 .8 2 M P a , and  3   5 4 .7 4 M P a . The direction cosines: l  cos 40

o

m  cos 60

n  cos 66 . 2

o

o

Thus, by Eqs. (3.51), we obtain   2 9 7 .5 (c o s 4 0 )  3 6 .8 2 (c o s 6 0 )  5 4 .7 4 (c o s 6 6 .2 ) o

2

o

2

o

2

= 174.9 MPA   [( 2 9 7 .5  3 6 .8 2 ) (c o s 4 0 ) (c o s 6 0 ) 2

o

2

o

2

 (3 6 .8 2  5 4 .7 4 ) (c o s 6 0 ) (c o s 6 6 .2 ) 2

o

2

o

2 1

 (  5 4 .7 4  2 9 7 .5 ) (c o s 6 6 .2 ) (c o s 4 0 ) ] 2 2

o

2

o

2

 1 4 8 .9 M P a

End of Chapter 3

47

CHAPTER 4

DEFLECTION AND IMPACT

SOLUTION (4.1) ( a ) We have A req .  A req . 

and

 48 mm

3

3

10 ( 10 )( 6  10 )



PL

)

250 1 . 2

all

E

3

10 ( 10



P



5 ( 200  10

3

2

 60 mm

)

2

Since 60  48 mm , d 

(b) k 

AE L





( 6 0 1 0

6

4 ( 60 )



4A

 8 . 74 mm .



9

)( 2 0 0  1 0 )

 2 (1 0 ) k N m 3

6

SOLUTION (4.2) Refer to Example 4.4. Use numerical values for bar AB. Cross-sectional area: A A B  1 2  8  9 6 m m . 2

Stress: 



AB



F A

4 0 1 0 9 6 (1 0

3

6

 4 1 6 .7 M P a  4 3 5 M P a

)

OK.

Deflection:  AB 

FL AE

k AB 





 2 .3 8 m m

3

3

4 0 (1 0 )



F

3

4 0 (1 0 )( 0 .6 ) ( 9 6 )(1 0 5 )(1 0 )

2 .3 8 (1 0

3

 1 6 .8 1(1 0 ) k N m 3

)

SOLUTION (4.3) The cross-sectional area: 

A 

4

(D

2

d ) 2

D 4

2

[1  ( Dd ) ]  0 .5 0 2 7 D 2

2

Also A 

7 5 1 0



P



3

1 4 0 1 0

6

 0 .5 3 6  1 0

3

m

2

Equating these, D

2

 1 .0 6 6 2  1 0

3

D  0 .0 3 2 7 m

2

m ,

It follows that   k 



PL AE P





3

7 5  1 0 ( 0 .3 7 5 ) ( 0 .5 3 6  1 0 7 5 1 0

3

0 .7 2 9  1 0

3

3

9

)( 7 2  1 0 )

 0 .7 2 9  1 0

3

m

 1 0 2 .8 8 M N m

SOLUTION (4.4) Statics: RA

36 kN

R A  RB  36

RB

kN

(1)

Deformations and Compatibility: Assume gap closes. (CONT.)

48

4.4 (CONT.) 0 .3 5  1 0

3



1



(1 2 .5  1 0

3

2

9

) (1 2 0  1 0 )

( 0 .2 R A  0 .2 5 R B )

4

R A  1 .2 5 R B  2 5, 7 7 0 .8 7 7

or

(2)

Solving Eqs.(1) and (2): R B  4 .5 4 6

kN

R A  3 1 .4 5 4

kN

Since the answer for R B is positive, the gap closes, as assumed. SOLUTION (4.5) Increase in length due to  T (unrestrained): t 

  (T )L

 (12  10

6

)( 120

o

)( 250 )  ( 23  10

6

)( 120

o

)( 300 )  1 . 188 mm

( a ) Compressive axial force P  P   t  1  1 . 188  1  0 . 188 mm

(1)

But



P 

PL AE

P ( 0 .2 5 )



5 0 0 (1 0

6

9

)( 2 1 0  1 0 )

P ( 0 .3 )



1 0 0 0 (1 0

6

(2)

9

)( 7 0  1 0 )

Equating Eqs.(1) and (2): 0 .1 8 8 (1 0

3

)  2 .3 8 1(1 0

9

) P  4 .2 8 6 ( 1 0

9

)P

P  28 . 2 kN

or

( b ) Change in length of aluminum bar  a  (  t ) a  (  P ) a   a (  T ) L a  4 .2 8 6 ( 1 0  ( 23  10

6

)( 120

o

)( 0 . 3 )  4 . 28 (10

9

9

)P

)( 28 . 2  10 )  0 . 707 3

mm

SOLUTION (4.6) Refer to Solution of Prob.4.5: ( a )  P   t  1 . 188 mm and

1 . 188 (10

( b )  a  0 .8 2 8 (1 0

3

3

)  ( 2 . 381  4 . 286 )10

)  4 .2 8 (1 0

9

9

P , P  178 . 2 kN

)(1 7 8 .2  1 0 )  0 .0 6 5 3 m m 3

SOLUTION (4.7) Let the compressive axial force in the pipe be R. Moment equilibrium about point A: R 

Pa b



1 2 (1 .3 )

 4 4 .5 7 k N

0 .3 5

a P

b

C

A R

C



B

B

(CONT.)

49

4.7 (CONT.) The beam can rotate only about A and the deflections  B and  C can be described by the rotational angle  as  B  a  and  C  b a

B 

Hence,

b

C

(1)

The contraction of pipe  C is as follows: C 

RL

RL



(  4 )( D

AE

2

(2)

 d )E 2

Inserting Eq.(2) into Eq.(1) gives B 

 b(D  d )E 2

2

 0 .3 2 9  1 0

4 ( 4 4 .5 7  1 0 )( 0 .6 2 5 )(1 .3 ) 3

4RLa 3



 ( 0 .3 5 )( 0 .1 0 5  0 .0 9 5 )( 2 0 0  1 0 ) 2

2

9

m = 0 .3 2 9 m m

SOLUTION (4.8) (a) b  

P Lb

P La

a  

Eb A La

a  b;



Ea

Ea A

Lb

(1)

Eb

La  Lb  L

(2)

Solving,   Eb 1 Lb  L ( )  L E Ea  Eb  1 a  Eb 

  ,   

La  L  Lb

Introducing the given data:     1 L b  0 .6    0 .3 6 7 m , 70 1  110  

(b)  



PL

P

 A



AE 3



1 0 0 (1 0 ) (  4 ) ( 0 .0 4 )

2

(

Li Ei

L a  0 .2 3 3 m

 a   b

0 .3 6 7 110



0 .2 3 3 70

)

1 10

9

 0 .2 6 5  0 .2 6 5  0 .5 3 m m

50

SOLUTION (4.9)

C FD

Q=12 kN A



2b

 A  2 D

b

PCD = -20 kN D

FD =24 kN

D

B

D 0.15 m

PDE =4 kN



M

B

 0 : 2b Q  b FD

E P=4 kN

FD  2 Q  2 4 k N

(a) D  

A

0.3 m

 2 0 (1 0 )(3 0 0 ) 3

PL



AE

130  10

6

(7 0  1 0 ) 9

 0 .6 6 m m 

 2  D  1 .2 2 m m 

(b) E  

PL





AE 1

130  70

10 130  10

6

3

(7 0  1 0 ) 9

( 0 .6  6 )   0 .5 9  1 0

[ 4  0 .1 5  2 0  0 .3 ] 3

m  0 .5 9 m m 

SOLUTION (4.10) PD E   4 k N

(a) D  

A

PD C   2 8 k N  2 8 (1 0 )(3 0 0 ) 3

PL



AE

130  10

6

(7 0  1 0 ) 9

 0 .9 2 m m 

 2  D  1 .8 4 m m 

(b) E  

PL



AE 1

130  70



10 130  10

6

3

(7 0  1 0 ) 9

[  4  0 .1 5  2 8  0 .3 ]

(  0 .6  8 .4 )   9 8 9  1 0

3

m  0 .9 9 m m 

SOLUTION (4.11) F C

F B

120 mm

180 mm (CONT.)

51

4.11 (CONT.) T CD  F ( 0 . 12 )  500

N m

or F  4 . 167

( a )  AB 

7 5 0 (1 .2 )



TL GJ

T AB  4 . 167 ( 0 . 18 )  750

kN

9

7 9 (1 0 )



N m

 0 .0 2 8 ra d

( 0 .0 2 2 5 )

4

2

CD 

5 0 0 (1 .8 ) 9

( 7 9 1 0 )



 0 .0 7 7 ra d

( 0 .0 1 7 5 )

4

2

 D   CD  1 . 5  AB  0 . 119

Thus (b) 

AB



2TAB

 c

2 (750 )



3

 ( 0 .0 2 2 5 )

rad  6 . 82

o

 4 1 .9 2 M P a

3

SOLUTION (4.12)  all  TC D  FC 

 125

150 1 .2

3 2

 a ll (  d )

T CD

6



3

1 2 5  1 0 (  0 .0 6 5 )



16

( r gear ) C

MPa  6 .7 4 k N  m

16

 56 . 167

6 . 74 0 . 24 2

kN  m

Hence, we have T AB  56 . 167 ( 0 .236 )  10 . 11 kN  m

 all 

Thus

16 T AB



3 d1

d1  3

,

3

16 ( 10 . 11  10 ) 6

 ( 125  10 )

or d 1  74 . 4 mm

SOLUTION (4.13) ( a ) Polar moment of inertia for a hollow cylinder is J 



(c  b )  4

2

4

c

4

2

[1  ( bc ) ] 4

(1)

From Eq. (4.10), we have 

J c

T

 m ax



4 .5  1 0

3

1 4 0 1 0

6

 3 2 .1 4 3  1 0

6

m

2

 3 2 .1 4 3 m m

Note that, b  0 .5 c . Using Eqs. (1) and (2) then c 2

3

[1  ( 0 .5 ) ]  3 2 .1 4 3,

c  2 .7 9 5 m m

4

So, D  2 c  5 .5 9 m m ,

(b)  

TL GJ

(c) k 

T







d  0 .5 D  2 .7 9 5 m m

3

( 4 .5  1 0 )( 0 .2 5 ) 9

( 7 9  1 0 )( 3 2 .1 4 3  1 0 3

4 .5 (1 0 ) 0 .1 5 8 5

6

)( 2 .7 9 5  1 0

3

)

 0 .1 5 8 5 ra d  9 .0 8 1

 2 8 .3 9 k N  m ra d

52

o

2

(2)

SOLUTION (4.14) TBC  5 6 0 N  m

TC D   8 4 0 N  m

( a ) Shaft BC J BC 



d





4

32

(3 4 )  1 3 1, 1 9 4 m m 4

LBC  6 2 5 m m

4

32

TBC  5 6 0 N  m

So

 BC 

TBC L BC



G J BC

5 6 0 (6 2 5  1 0

3

)

( 7 9  1 0 ) (1 3 1, 1 9 4  1 0 9

 0 .0 3 4 r a d  1 .9 5

12

o

)

( b ) Shaft CD J CD 





d2  4

32

(2 5)  3 8, 3 5 0 m m 4

4

32

LCD  7 5 0 m m

TC D   8 4 0 N  m

CD 

TC D LC D



G J CD

 8 4 0 (7 5 0  1 0

3

)

(7 9  1 0 )(3 8, 3 5 0  1 0 9

12

  0 .2 0 8 r a d   1 1 .9 2

o

)

Hence  B D   B C   C D  0 .0 3 4  0 .2 0 8   0 .1 7 4 ra d   9 .9 7

o

SOLUTION (4.15) The polar moment of inertia for the shaft is J 

 32

 d ) 

4

(D

4



(5 0  3 5 )  4 6 6 , 2 6 9 m m 4

32

4

4

Equilibrium Condition. From the free-body diagram of appropriate portions of the shaft: T A C   1 .1 k N  m

T C D  1 .9 k N  m

T D E  2 .6 k N  m

The results are shown on the torque diagram in Fig. S4.15 ( a ) Angle of twist. The shear modulus of elasticity G is a constant for the entire shaft. Through the use of Eq. (4.9), we obtain A  





TL GJ

1 GJ

10

( T A C L1  T C D L 2  T D E L 3 )

3

9

( 7 9 1 0 ) ( 4 6 6 , 2 6 9 1 0

12

)

[ (  1 .1) ( 0 .4 5 )  (1 .9 ) ( 0 .3 7 5 )  ( 2 .6 ) ( 0 .6 2 5 ) ]

 0 .0 5 0 0 ra d = 2 .8 6

o

Comments: A positive result means that the gear will rotate in the direction of the applied torque at free end. ( b ) Maximum shear stress. The largest stress takes place in region DE, where magnitude of the highest torque occurs (Fig. S4.15) and J is a constant for the shaft. Applying the torsion formula:  m ax 

TD E ( J

D 2

)



3

( 2 .6  1 0 )( 2 5  1 0 4 6 6 , 2 6 9 1 0

3

12

)

 1 3 9 .4 M P a

(CONT.)

53

4.15 (CONT.) 

Hence, n 

y

 m ax



210 1 3 9 .4

 1 .5

Comments: For the situation under consideration, a safety factor of 1.5 to 2 is to be selected (see Sec. 1.6) 2.6

T (kN  m)

1.9

A

C

D

-1.1

x

E

Figure S4.15

SOLUTION (4.16)  



or

TL GJ

1.5 180 

;

0 . 02618





T ( 0 .5  h ) GJs

1000 79 ( 10

9

)

[





Th GJh

0 .5  h ( 0 . 02 )

4



h 4

( 0 . 02 )  ( 0 . 011 )

4

]

2

Solving h  1 9 7 m m SOLUTION (4.17) T Assume T A as redundant.

TA

x

 TB

Tx  TA 

x

T 0

1

d x  T A  T1 x

Deformation:



A 

Tx dx GJ



TA GJ

 A  0;

Geometry:

T A  T B  T1 L ,

Statics:

L

 dx

T1



GJ

0

TA 

1 2



L

xdx 

0

TAL GJ



T1 L

2

2GJ

T1 L

TB 

1 2

T1 L

SOLUTION (4.18) Conditions of equilibrium gives: R A  P and M For portion AC E Iv1 ''  P x E I v1 '  E I v1 

1 2 1 6

B

 P L 2 as shown in Fig. S4.18.

P A

Px

RA=P

x

P x  C1

B

C Px

PL/2

x

2

L/2

P x  C1x  C 2 3

L/2 Figure S4.18 (CONT.)

54

4.18 (CONT.) For portion CB 1

E I v 2 ''  E I v1 ' 

1

PLx  C3

2 1

E Iv 2 

PL

2

PLx  C3x  C4 2

4

Boundary conditions lead to v1 ( 0 )  0 :

C2  0

v2 (0 )  0 :

C3  0

Then v1 (

L

)  v2 (

2

v 1 '(

L

L 2

)  v 2 '(

2

P

):

(

6 L

2 P

):

2

Solving C 1  

L

(

2 3

PL

)  C1( 3

L 2

L 2

2

11

C4  

8

L

PL(

4

)  C1  

2

P

) 

4

P

L(

2

L

)  C4 2

)

2

PL

3

48

At B(x=0): vB  v2 (0 )  

11

11

PL  3

48

PL  3

48

SOLUTION (4.19) 4

EI

d v dx

4

 EIv ' ' ' '   w 0

x L

w0 x

EIv ' ' '  

,

2L

2

 c1 ,

EIv ' '  

Boundary Conditions: v ' ' (0)  0 : c2  0,

v ' ' ( L )  0 : c1 

w0L 6

Then EIv '   E Iv  

w0 x

4

24 L w0x

5

120 L

 

w 0 Lx

2

12 w0Lx

3

36

 c3  c3 x  c4

Boundary Conditions: v ( 0 )  0:

c4  0,

v ( L )  0:

c3  

Thus, we obtain

and Solving,

w0x

v  

3 6 0 E IL

v'  

360 EIL

w0

(7 L  10 L x 4

2

2

 3x ) 4

( 7 L  30 L x 1  15 x 1 )  0

x1  L 1 

4

8 15

2

2

4

 0 .5 1 9 3 L

Hence v m a x  v ( x 1 )  0 .0 0 6 5 2 2

w0L EI

4



55

7 w0L 360

3

w0 x 6L

3

 c1 x  c 2

SOLUTION (4.20) M

Segment AC: EIv 1 ' ' 

0

2

EIv 1 ' 

,

M

Segment CB: EIv 2 ' '   EIv

x

L

0

L

M

' 

0

x

2

 c1

2L

y

(L  x)

A

2

Mo/L

( Lx 

0

L

M

x 2

)  c2

a

Mo C

B

x

Mo/L

L

Boundary Conditions: v1 ' ( a )  v 2 ' ( a ) : M 0x

E Iv1  Then Also, we have EIv

2

3

c 2  c1  M 0 a

 c1 x  c 3 ,

6L

M

' M 0x 

0

2

x

2L

v 1 ( 0 )  0:

c3  0

 c1  M 0 a ,

EIv

 

2

M

0

x

2

2



M

0

x

6L

3

 c 1 x  M 0 ax  c 4

Boundary Conditions: v 2 ( L )  0;

c4   M 0 L(a 

v 1 ( a )  v 2 ( a ); M ox

v1 

Thus

M

c1 

0

6L

2

(3a

L 3

)  c1 L

 6 aL  2 L ) 2

(6 aL  3a  2 L  x ) 2

6 E IL

2

2

SOLUTION (4.21) We have  m a x  1 6 I

w 

or

(wL



Mc I

2

8 )( h 2 ) I

m ax

2

L h

Therefore 4

v m ax 

5

5L 384 EI

(

1 6 I

5

) 

m ax

2

L h

m ax

L

2

24 hE

1

2 4 h E v m ax

Solving, L  (

4



5wL 384 EI

)2

m ax

Introducing the given data: L [

9

2 4 ( 0 .3 1 5 )( 2 0 0  1 0 )( 3 .1  1 0

3

)

6

5 ( 7 0 1 0 )

1

] 2  3 .6 6 m

SOLUTION (4.22)

x

A

x1

E

P

C B R B  P (1 

( a ) EIv ' '  P

a L

x,

EIv ' 

1 2

a L

RC  P )

P

a L

a L

y x

2

 c1 ,

EIv 

1 6

P

a L

x

3

 c1 x  c 2

1 6

PaL

Boundary Conditions: v (0)  0 :

Thus

v 

PaLx 6 EI

[(

c 2  0, x L

)

v(L)  0 :

c1  

 1]

2

( b ) The v m a x occurs at E where v '  0 . Hence 0 

PaL 6 EI

[3(

x1 L

)

2

 1 ],

x1 

1 3

L  0 . 577 L

(CONT.)

56

4.22 (CONT.) v m ax 

and

( c ) v m a x  0 .0 6 4 1

2

PaL 6 EI

[( 0 .5 7 7 )  0 .5 7 7 ]  0 .0 6 4 1 3

3

2 5 (1 0 )( 0 .5 )( 2 ) 9

2 0 0 (1 0 )( 5 .1 2  1 0

2 6

)

PaL EI

2



 3 .1 3 m m 

SOLUTION (4.23) F

y

B

A

L

x

C

L/2 3F/2

F/2 Figure S4.23

Free-body diagram of shaft is in Fig. S4.23. Since reactions at supports A and B, two differential equations must be written for portion AB and BC. ( a ) We have M1   M

(0  x  L )

P 2

 Px 

2

(L  x 

3 PL 2

3 PL 2

)

Integrating twice, the preceding leads to the following expression: For segment AB E Iv1 ''   E Iv 1 '   E Iv 1  

For segment AB E Iv 2 ''  P x 

Px 2 Px 4

2

3

Px 12

 C1

E Iv 2 ' 

 C1 x  C 2

E Iv 2 

Px 2 Px 6

2

3

 

3 PL 2 3 PLx 2

3 PLx 4

2

 C3  C3x  C4

Using the boundary and the continuity conditions, we find v1 ( 0 )  0 :

C2  0

v1 '( L )  v 2 '( L ) :

C3 

5 PL 6

2

2

v1 ( L )  0 :

C1 

v2 ( L )  0 :

C4  

PL 12

PL 4

3

The result elastic curves of the beam are v1 

Px 12 EI

(L  x )

v2 

P 12 EI

(3L  10 L x  9 L x  2 x )

2

(0  x  L )

2

3

2

2

3

(L  x 

(P4.23a) 3L 2

)

( b ) The deflection at the free end of the beam is readily found by introducing x=3L/2 into the second of Eqs. (P4.23a): vc  

3

PL 8 EI



3

PL 8 EI



(P4.23b)

Comment: Observe that the deflection of the shaft is downward between B and C and upward between A and B.

57

SOLUTION (4.24)

Refer to Table A.8:

P

B

E 1 I1

A

Beam AB: L/2

L/2

R

c'

D

3

5 PL 48 E 1 I 1

Beam CD: 

3

RL 24 E 1 I 1

 c''



3

RL 24 E 2 I 2



C E 2 I2

Condition of compatibility,  c '   c ' ' : 3

5 PL 48 E 1 I 1



3

RL 24 E 1 I 1

3



RL 24 E 2 I 2

; R 

5P (E2I2 ) 2 ( E1 I1  E 2 I 2 )

SOLUTION (4.25) From a free body diagram of beam BC, we observe that it has vertical reactions 2P/3 and P/3 at ends B and C, respectively. Thus, beam AB is in the condition of a cantilever beam under a uniform load of intensity w and a concentrated load B equal to 2P/3. The deflection of the hinge: vB 

4

wa 8 EI



2 Pa 9 EI

3

as obtained by Cases 3 and 1 of Table A.8, respectively.

SOLUTION (4.26)

W

A M

C C

A

RA

F

A C

v 'C

B

(a)

W

(b)

B

C

A (c)

F

B v ''C

Figure S4.26: (a) Free-body diagram of beam; (b) deflection due to P; (c) deflection due to reactive force F.

Consider F as redundant and to release the rod from the beam at C (Fig. S4.26a) and then reapplied (Figs. S4.26 b and c). (CONT.)

58

4.26 (CONT.) Refer to Table A.8: 2

vc ' 

(2 L  3a ) 

WL 6 EI

3

v c '' 



FL 3 EI

Equation of compatibility at point C:  c  v c '  v c '' 

F k

or

2

(2 L  3a ) 

WL 6 EI

3

FL 3 EI

Solving, 2

WL k (2 L3a )

F 

Q.E.D.

3

2 ( kL  3 E I )

SOLUTION (4.27) y

w x

M A

B

F y  0:



M

A

RA  RB  wL

 0:

M

A

 RB L 

(1) 1 2

wL

2

RB

RA

E Iv "  R A x 

1 2



E Iv ' 

RAx

E Iv 

1 6

RAx 

2

2

wx

1 2

3

v ' ( 0 )  0:



1 6

 M

A

w x  M A x  c1

1 24

3

wx



4

c1  0 ,

1 2

 c1 x  c 2

2

M Ax

v ( 0 )  0:

c2  0

and E Iv 

1 6

RAx  3

1 24

The condition that v ( L )  0



4

wx

1 2

M Ax

2

(2)

RAL 

gives

1 4

wL

2

 3M

A

 0

(3)

Solving Eqs.(1) and (3): RA 

5 8

wL 

M



A

1 8

wL

RB 

2

3 8

wL 

SOLUTION (4.28) w0L

Due to symmetry: R A  R B 

,

4

M

A

 M

B

We have, for 0  x  L 2 : M  RAx  M

A



w0x

3

w0Lx



3L

4

 M

A



w0x

3

3L

Therefore E Iv "   M E Iv '   M

A



x  A

w0Lx 4 w0Lx

 2

8

Boundary conditions:   v ' (0)  0 : v ' ( L2 )  0 :

w0x

3

3L



w0x

4

 c1

12 L

c1  0 M

A



5 w0L

2

96

(CONT.)

59

4.28 (CONT.) Hence 2

5 w0L x

EIv  

2

3

w 0 Lx



192

w0 x



24

5

60 L

 c2

Boundary condition: v ( 0 )  0:

c2  0

Thus, we obtain v 

w0 x

2

(  25 L  40 L x  16 x ) 3

960 LEI

2

( for 0  x  L 2 )

3

and v max  v ( L2 ) 

7 w0L

4



3840 EI

SOLUTION (4.29) y M

P

A

By virtue of symmetry:

B

M

A

C

L/2

x

B

M

A

  M

RA  RB 

L/2

B

P 2

RB

RA

Segment AC EIv ' ' ' '  0 ,

E Iv ' 

1 2

c1 x

EIv ' ' '  c 1 , 2

 c2 x  c3 ,

EIv ' '  c 1 x  c 2

E Iv 

1 6

c1 x  3

1 2

c2 x

2

 c3 x  c4

Boundary Conditions: EIv ' ' ' ( 0 )  c 1  V   v ' (0)  0 :

P 2

c3  0,

v ( 0 )  0:

EIv ' ' ( 0 )  M

,

v' (L 2)  0 :

A

c2  M

,

M

A

 M

B

A



PL 8

c 4  0.

Equation (1) is thus v  

2

(3L  4 x )

Px 48 EI

SOLUTION (4.30) Let the reaction R B is selected as redundant and the corresponding constraint is removed. Then v ' B   w L 8 E I , from Case 3 of Table A.8. 4

The deflection caused by the redundant is v"B  R B L

3

3EI

The total deflection must be zero; vB  

4

wL 8 EI



RB L

3

3EI

 0

or RB 

3wL 8

Now, applying equations of statics, we obtain RA 

5wL 8

M

A



wL 8

2

60

(1)

SOLUTION (4.31) w A

a

C

a

D

M EI

 wa

2

 3w a

2

a

B

x2 x1

2EI

A2

2EI

A3

x

Spandrel parabola

A1 x3

Tangent at A A

vB

D

B

B A1 

 

bh 3EI

A2  

3

3a 4

2

a



3

 

wa 2 EI

A3  

wa 2 EI

x1  a 

1 3

wa 6 EI

a(wa )  

1 2

x2 

7a 4

(App. A.3) 2

1 wa 2 EI

5a 2

x3 

3

8a 3

( a )  B A   B   A  A1  A 2  A 3 B  

3

wa 12 EI

(2  6  6) 

7 wa 6 EI

3

( b ) t B A  v B  A1 x 1  A 2 x 2  A 3 x 3 vB  

4

wa 24 EI

(7  30  32)  

69 w a 24 EI

4



23 w a 8 EI

4



SOLUTION (4.32) P

4EI (a)

EI

A L/2

B

L/2

C

P 2

P 2

M/EI PL/4EI

Px/2E I

PL/16EI A

A2

A1

C

x B

D x B

A v m ax

B t BD

Tangent at B

1 PL 2 16 EI

(2) 

A2 

1 PL 2 4 EI

(2) 

L

L

2

1 PL 64 EI 2

1 PL 16 EI

t A B  A1 ( 3 )  A 2 ( L

D

t AB

A1 

Tangent at D

61

B 

1 L

t AB 

2L 3

) 

3

3 PL 64 EI

2

3 PL 64 EI

(CONT.)

4.32 (CONT.)

( b )  BD   B   D   B  0 .

B 

Also

1 Px 2 2 EI

2

(x) 

Px 4 EI

Hence 2

3 PL 64 EI

2



Px 4 EI

x 

,

3 4

L

2x 3

) 

Thus, v m ax  t B D 



2

1 Px 2 2 EI

3 3L P 6 EI 64

3

(

3

Px 6 EI

3 P L3 128 EI





SOLUTION (4.33)

M

Tangent at A

A

2a

A

P Let R B be redundant.

a

B

RA

A  0

C

RB

A1 

M M

1 2

M A (2a )  M Aa

A2  

1 2

Pa(2a )   Pa

A3  

1 2

Pa

2

2

4a/3 v B  t BA  0 

A

B

A1

A

A2

or

C x

A3

Pa

M

A



Statics: R B 

2a/3

1 EI 1 2

7 4

4a 3

[ A1 (

)  A2 (

2a 3

)]

Pa

P 

RA 

3 4

P 

SOLUTION (4.34) Assume R c as redundant. w A

tCB

Tangent at B

RA

M wL

2

B L/2

L

t AB

C RC

RB

L/2 L/3

8

A1 

A1 A2

2L/3

x

A3

R C L/2

2 wL 3 8

2

(L) 

A2  

1 2

Rc L

A3  

1 2

Rc L

2

2

wL 12

3

(App. A.3)

(L)  

Rc L

(2)  

Rc L

L

2

4 2

8

(CONT.)

62

4.34 (CONT.) E I t A B  A1 ( 2 )  A 2 ( L

2L 3

Rc L

E It CB  A3 ( 3 )   L

4

) 

Rc L



wL 24

3

6

3

24

Since

2 t CB   t AB :

or

Rc 

1 6

wL 

Statics: R B 

3 4

wL 

RcL

3



12

wL 24

RA 

4

RcL



3

6

wL 

5 12

SOLUTION (4.35) S

 m ax 



y

n

2

2

W g

v E AL

gS y AL

W a ll 

,

2

2

n v E

Substitute given data: 6

2

9 .8 1 ( 2 5 0  1 0 ) [

W a ll 



2

( 0 .0 2 ) ( 2 )]

 1 6 .6 N

4 2

2

9

( 3 ) ( 3 .5 ) ( 2 1 0  1 0 )

SOLUTION (4.36) P=mg 1.25=a

0 .7 5 2

x

B

P

 st 

Table A.8 ( Case 6 ).

b=0.75

A

1. 2 5 2

L=2 (L  b 2

Pbx 6 LEI

20 ( 9 . 81 )( 0 . 75 )( 1 . 25 )

 x ) 

2

P

2

6 ( 2 )( 210  10

9

)( 0 . 06  0 . 08

3

12 )

(2

2

 0 . 75

2

 1 . 25 )  0 . 0535 2

mm

Max. moment is under load. Thus 

M



st

m ax

c

We have K  1 

( 0 .6 2 5  0 .7 5  2 0  9 .8 1 ) ( 0 .0 4 )



I

0 .0 6  0 .0 8

1

3

12

 1  [1 

2h

 st

 1 .4 3 7 M P a 1

2 ( 0 .5 ) 0 . 0535  10

3

] 2  137 . 7

( a )  m a x   s t K  7 .3 7 m m ( b )  m ax   st K  1 9 8 M P a SOLUTION (4.37) 

A 



4

max

( 2 5 )  1 5 6 .2 5  m m 2



W A

[1 

1 

from which

2h





W



Solving W  2(

hE L

[



st

2 2 m ax A 2

2 m ax

]; 2

Since  s t  W L A E , thus:

2

m ax A

W

m ax

W

A

 1]

2

1 1

 1 2 hAE WL

A



6

)

2

( 2 5 0  1 0 ) (1 5 6 .2 5   1 0

6

)

9

2[

st

(1) (P4.37)

m ax

Substituting given data: W 

2h



(1 .1 )( 2 0 0  1 0 )

 3 1 9 .0 7 N

6

 2 5 0 1 0 ]

4 .6

63

SOLUTION (4.38) Refer to Solution of Prob. 4.37. From Eq.(1), we obtain A 

2W



[

2 m ax

hE L

6

(P4.38)

]

m ax

9

2 (90 )



 

(1 2 5  1 0 )

2

[

1 .2 ( 2 0 0  1 0 )

 1 2 5  1 0 ]  1 .8 4 5  1 0 6

1 .5

3

m

2

Thus d

2

 1 .8 4 5  1 0

4

3

d  0 .0 4 8 5 m = 4 8 .5 m m

,

SOLUTION (4.39) A   (10 )

 314 . 2 mm

2

From Eq. (P4.37): L

Solving, h 

2W (

  m ax )   m ax A 2

hE L

( A  m ax  2W )

m ax

2W E

3 ( 350  10



2

6

)

2 ( 500 )( 170  10

9

)

(P4.39)

[ 314 . 2  350  2  500 ]  673

mm

SOLUTION (4.40) We have W  2 4  9 .8 1  2 3 5 .4 N and M I 

1 12

6

( 0 .0 4 )( 0 .0 6 )  0 .7 2  1 0 3

m

m ax



1 4

WL

4

W h

C

A L/2

B

k

L/2

W=196.2 N

R  st 

R

R k

Using Table A.9:  st 

or

(W  R ) L

3

3

R



48EI

650  10

6

 R(

1

L



R



k

)  10

6

R[

48EI

7 8 .2 180  10

k

3

6 5 0  R ( 5  3 .3 0 7 ) ,

 st 

RL



48EI

k

or Hence

3

 0 .6 5  1 0

3

1 0 .2

R  7 8 .2 N

(2)



3

]

4 8 ( 0 .0 7 )( 0 .7 2 )

and

W  R  1 5 7 .2 N

 0 .4 3 4 m m

Maximum stress occurs at midspan: 

st



Mc I



1 5 7 .2 ( 2 ) ( 0 .0 3 ) 4 ( 0 .7 2  1 0

6

 3 .2 8 M P a

)

(CONT.)

64

4.40 (CONT.)

K 1

2 ( 0 .0 5 )

1

0 .4 3 4  1 0

 1 6 .2

3

( a ) v m a x  1 6 .2 ( 0 .4 3 4 )  7 .0 m m ( b )  m a x  1 6 .2 (3 .2 8 )  5 3 .1 M P a SOLUTION (4.41) Refer to Example 4.14. EkG

 m ax  2

or

AL

4 1 6 .6  7 9  1 0

2 1 0  1 0  2[ 6

;

44100  10

12

4 .4 1 8  1 0

3

9

L m in

]

12

 4 ( 7 4 4 9L.3 9 1 0 ) m im

or L m in  0 .6 7 6 m

Thus, we obtain 2 Ek L

 m ax 

2 ( 4 1 6 .6 )( 0 .6 7 6 )



GJ

 0 .0 4 8 ra d = 2 .7 5

3

7 9  1 0 ( 3 .1 1 )

o

SOLUTION (4.42) The E k in wheel B must be absorbed by the shaft. We have J 

 32

(1 2 5 )  2 .4 (1 0 4

5

) m

4

Substitute Eqs.(4.42a) and (4.42b) into (4.41): Ek 

1 4

 b t  4

2 Ek L

(a)

 m ax 

(b)

 m ax  2

GJ

EkG AL

2

[





( 0 . 075 ) ( 0 . 025 )( 1800 )( 150060 2  ) 4

4

1

2 ( 2 7 .5 9 )( 0 .3 ) 9

(1 9  1 0 )( 2 .4  1 0

 2[

5

)

9

( 2 7 .5 9 )(1 9  1 0 )



] 2  0 .0 0 6 0 2 5

 27 . 59 N  m

2

ra d  0 .3 5

o

1

] 2  1 1 9 .3 3 M P a

2

( 0 .0 2 5 ) ( 0 .3 )

4

SOLUTION (4.43) The E k in wheel A must be absorbed by the shaft. Refer to Solution of Prob.4.42. We have Ek 

1 4

 b t 

(a)

 m ax 

(b)

 m ax  2

4

2 Ek L GJ

EkG AL

2

[





( 0 . 0625 ) ( 0 . 025 )( 1800 )( 120060 2  ) 4

4

1

2 ( 8 .5 2 )( 0 .3 ) 9

(1 9  1 0 )( 2 .4  1 0

5

)

9

( 8 .5 2 )(1 9  1 0 )

 2[ 

] 2  0 .0 0 3 3 5 ra d  0 .1 9

1

] 2  6 6 .3 1 M P a

2

( 0 .0 2 5 ) ( 0 .3 )

4

65

o

2

 8 . 52 N  m

SOLUTION (4.44) Let r  r y , then r x  r xy   , Hence, Eq. (4.46) for z  



max

Et 2 ( 1 

2

t 2

1 ) r

M  M

,

y

M

 M

x

xy

 0.

:

;

126 (10

6

200  10

) 

9

( 3 . 2  10

3

) 1 r

2

2 (1  0 .3 )

or r  2 .7 9 1 m and D  5 .5 8 2 m

Equations (4.50) lead to 

6M



max

t

m ax

;

2

6

126 (10

6M

) 

m ax

( 3 . 2  10

3

)

2

or M

 2 1 5 .0 4

m ax

N m m

SOLUTION (4.45) (a) y

Dw ' ' ' '  p 0 sin

Dw ' ' '   ( b ) p 0 cos

b y

Dw ' '   (  ) p 0 sin 2

b

 c1 y  c 2

b

y b

 c1

Dw '  ( b ) p 0 cos 3

y



b

1 2

c1 y

2

 c2 y  c3

and y

D w  (  ) p 0 s in 4

b



b

1 6



3

c1 y

1 2

c2 y

2

 c3 y  c4

(1)

Boundary conditions: w ' ( 0 )  0:

c 3   (  ) P0 ,

w ( b )  0:

c2  

1 3

w ( 0 )  0:

3

b

c1 b 

2



p0b ,

3

c4  0

w ' ( b )  0:

2

c1  0 ,

c2 

2



3

p0b

2

Equation (1) becomes p0b

w 

D

4 4

( s in

y





b

b

2

y



2

 b

(2)

y)

( b ) At y=0:  m ax 

(c) D 

Et

3

1 2 (1  

2

)



6M t

m ax 2



9

7 0  1 0 (1 0  1 0

2

6 t

3

)

d w

[D

2

3

dy

2

]y0 

6 t

2

[0  0 

2 p0b



3

2

]

12 p0



3

b

(t)

2

 6 .4 1 k N  m

2

1 2 (1  0 .3 )

Thus w m a x  w ( b2 ) 

p0b 4

4

 D

(1 



)  4

3

3 5  1 0  ( 0 .5 )



4

3

( 6 .4 1  1 0 )

and 

m ax



3

1 2 ( 3 5 1 0 )



3

( 00.0.51 )  3 3 .8 6 2

4

M Pa

66

(1 

 4

)  0 .7 5 2  1 0

3

m = 0 .7 5 2 m m

SOLUTION (4.46) ( a ) Dw ' ' ' '  p 0 , Dw' 

Dw ' ' '  p 0 y  c 1 ,

p0 y  3

1 6

1 2

2

 c2 y  c3

4



c1 y

Dw ' ' 

1 2

p0 y

2

 c1 y  c 2

and Dw 

1 24

p0 y

c1 y  3

1 6

1 2

c2 y

2

 c3 y  c4

(1)

Boundary Conditions: w (0)  0 : c4  0,

w ' ' (0)  0 : c2  0

w ( b )  0 a n d w ' ( b )  0:

c1  

3 8

p0 b,

c3 

1 48

p0b

3

Equation (1) is therefore p0b

w  2

(b)

d w dy

2



p0 2D

(y

4

48 D

2



y

y

y

[ ( b )  3( b )  2 ( b ) ]

3 yb 4

3

4

(2)

)

At y=b: M

m ax

2

 D

 p0

d w dy

2

2

b 8

 m ax 

,

6M t

m ax 2

 0 .7 5 p 0 ( t ) b

2

( c ) From Solution of Prob. 4.45, D  6 4 .1 k N  m Thus w m ax  w ( 2 )  b



p0b

4

192 D



p0b

4

[ ( 2 )  3( 2 )  2 ( 2 ) ] 1

48 D

1

3

( 3 5  1 0 )( 0 .5 ) 3

4

1 9 2 ( 6 .4 1  1 0 )

3

1

4

 0 .0 0 1 8 m = 1 .8 m m

and 

 0 .7 5 p 0 ( bt )  0 .7 5 (3 5  1 0 )( 51000 ) 2

m ax

3

2

 6 5 .6 3 M P a

End of Chapter 4

67

CHAPTER 5

ENERGY METHODS AND STABILITY

SOLUTION (5.1) Axial strain energy

Use Eq. (5.11), circular Part:

2

U

P L



C

2

2

P L



2 AE

d

2(

2P L



2

d E 2

)E

4

Square Part: 2

U

P L



S

2

2

P (L 2)



2

2 AE

P L



2a E

2

4a E

Requirement:: 2

U

 US;

C

d

2

2P L

P L



d E 2

2

4a E

8





a

SOLUTION (5.2) Refer to solution 5.1: U 

2



P L 2

4a E

2

2P L 2

d E



2

P L E

(

1 4a

2



2

d

(1)

)

2

Using Eq. (5.27), U 

1 2

P

(2)

Equating Eqs. (1) and (2), we obtain   PEL ( 2  4 ) a

2

d

2

SOLUTION (5.3) T A B  2 .5 k N  m

T B C  1 .5 k N  m

Segment AB J AB 



( 4 5 )  4 0 2 .5 8  1 0 4

AB



m

4

( 2 .5  1 0 ) ( 0 .5 4 )

2

U

9

32

T L

3



2G J

2

2 ( 4 0  1 0 )( 4 0 2 .5 8  1 0 9

9

 1 0 4 .8 J

)

Segment BC J BC 



(3 0 )  7 9 .5 2  1 0 4

BC



m

4

32 2

U

9

T L 2G J

(1 .5  1 0 ) ( 0 .3 6 ) 3



2

2 ( 4 0  1 0 )( 7 9 .5 2  1 0 9

9

 7 5 .8 3 J

)

(CONT.)

68

5.3 (CONT.) Total strain energy U  1 0 4 .8  1 2 7 .3  2 3 2 .1 J

SOLUTION (5.4) T AB  3 k N  m

TBC  5 k N  m

30 mm

20 mm

A

B TB=2 kN  m

45 mm

C

TC=5 kN  m

0.36 m

0.54 m

Segment AB J AB 



( 4 5  2 0 )  3 8 6 .9  1 0 4

4

AB

m

4

(3  1 0 ) ( 0 .5 4 )

2

U

9

32 3

T L





2

2 ( 4 0  1 0 )(3 8 6 .9  1 0 9

2G J

9

 1 5 7 .0 2 J )

Segment BC J BC 



(3 0 )  7 9 .5 2  1 0 4

BC

m

4

32

(5  1 0 ) ( 0 .3 6 ) 3

U

9



2

2 ( 4 0  1 0 )( 7 9 .5 2  1 0 9

9

 1, 4 1 5 J )

Total strain energy U  1 5 7 .0 2  1 4 1 5  1 5 7 2 J

SOLUTION (5.5) See solution of Prob. 5.3: J A B  4 0 2 .5 8  1 0

J B C  7 9 .5 2  1 0

9

9

m

m

4

4

Therefore 2

2

U 

C 

 

T L



2G J TL

TC

[

0 .5 4



2 ( 2 8 ) 4 0 2 .5 8 

GJ

TC

0 .5 4

[



2 8 4 0 2 .5 8

0 .3 6

]  1 0 4 .8  1 0

6

7 9 .5 2

0 .3 6

]  2 0 9 .6  1 0

7 9 .5 2

6

2

TC

TC

or  C (1 0 ) 6

TC 

2 0 9 .6

Then U 

1 0 4 .8  1 0

6

( C  1 0

( 2 0 9 .6 )

2

2

12

)

 2 3 8 5  C  2 3 8 5 ( 0 .0 6 ) 2

69

2

 8 .5 8 6 J

SOLUTION (5.6) See solution of Prob. 5.3: J A B  4 0 2 .5 8  1 0 TC

U 

Thus,

2

2G

L AB

(

J

3

(1 .4  1 0 )



LBC

 2

2 (80 )

m

J B C  7 9 .5 2  1 0

4

9

m

4

)

J BC

AB

9

( 4 00 .52 .54 8 

0 .3 6 7 9 .5 2

)

 7 1 .8 9 J

Equation (5.29): U 

1 2

TC  C ;

1 4 0 0 C

7 1 .8 9 

2

from which  C  0 .1 0 2 7 r a d  5 .8 8

o

SOLUTION (5.7) P

B

A

 

C

a

V AB  P ,

6 5

V BC 

Pa L

L Pa/L

V

x P

U

s





L

2

Vx

dx 

2 AG

0

3 5 AG

[





P dx  2

0

L

2

P a L

0

2

2

dx ] 

2

3P a 5 AGL

(L  a)

SOLUTION (5.8) Vx  U

s







 

 wx

wL 2 L 0

2

Vx

2 AG 2

2

3w 5 AG

L 4

2

dx 

x 

3w 5 AG 2

x L 2





6 5

L

( 0

L

3

x 3

 x ) dx 2

L 2

2



3

3w L 5 AG 12

0

2



1 w L 20 AG

3

SOLUTION (5.9) I  bh

P A

B

C

P

U

a

L

(a) U U

b



t



1 2 EI

1 2E

[

a

M 0

2 AB

 dx  

2

dx 

dA 



L

M 0

1 2E

2 CB

(

P A

M 2

dx' ] 



My I

12

2

P (La ) 2 AE



2

P (La ) 2 Ebh

We have

Pa/L

x’

x



a

3

2

P a 6 EI

2

) dA

AB

(a  L ) 

 Px 2

2P a Ebh

2

3

M

CB



Pa L

x'

(a  L )

(1) (CONT.)

70

5.9 (CONT.) But



Thus

U

2

P (La )



t

bh

U

3

12

 

0 ,m ax



 U b.

a

2

a

6 Pa bh

 U

t

[1  4 ( h ) ]

2 Ebh

Pa ( h 2 )

( b )  b ,m ax  Hence

y d A  0 , and Eq. (1) becomes U

2

 a ,m ax 

,

2 m ax



2E

2

P

2

2 Eb h

2

(1 

P bh

6a h

)

 m ax 

,

P bh

(1 

6a h

)

2

SOLUTION (5.10) M 

( Lx  x ) 2

w 2

A x

wL 2

U

0 ,m ax

U 

b

w B





1 2 EI

2 m ax

2E

2



9w L

2

m ax



I  bh

1 8

3

 m ax 

wL

2

c  h 2

12 , M

m ax c

I



3wL 4 bh

2 2

4

2

32 Eb h

M dx 

h

wL 2

L 

M

(1)

4



1 2 EI

L w 2

( 0

) ( Lx  x ) dx  2

2

2

2

w L

5

20 Ebh

(2)

3

It is required to obtain C : U 0 , m a x  C U V , or C  U

V 0 ,m ax U

(3)

Substituting Eqs.(1) and (2) into (3): C  4 5 8 . Thus

U



0 ,m ax

45 U 8 V

SOLUTION (5.11) From Solutions of Probs. 5.9 and 5.7: U

b



2

2

(a  L )

P a 6 EI

U 

Thus or

2

p a

2

6 EI

U

2



s

(a  L ) 

3P a 5 AGL 2

(a  L )

(a  L ) 

3P a 5 AGL

v A  2 P a ( a  L )[ 6 E I  a

3 5 AGL

1 2

Pv A

]

SOLUTION (5.12) x

w

x A 2

U 



M dx 2EI



1 2EI

L



L 0

(

1 2

B 2

w x ) dx  2

2

1 w L 40

71

EI

5

M

x

 

1 2

wx

2

SOLUTION (5.13) P

P A

a

2a

C

B

D a

MAC=Px MCD=Pa

P

P Pa

M

x Segment AC U

AB



a



2

M dx

0

P



2EI

2



2EI

2

a

x dx  2

P a

0

3

6EI

Segment CD U

CD





2

P a

3a 0

2

2

dx 

2EI

By symmetry: U

3

P a EI

U

AC

BD

.

Total strain energy : Pa

U  2

3

2



P a

6EI

3

2

4 P a



EI

3

3

EI

SOLUTION (5.14) x

w

b h

A

L

6

We have  

Vx  wx

5 U

s







L 0

V

2

6

dx 

2 AG

3 w

2

x

5 AG

B

1

5 2 AG 3

L

2



3

1 w L



L

( w x) dx 2

0

3

5 AG

0

SOLUTION (5.15) We have V AC  V BD  P

  6 5

VCD  0

Thus U

s





 V

2

2 AG

a

dx  2  0

2

P dx

 2(

2 AG

2



6 P a 5 AG

72

6 5

2

)

P a 2 AG

SOLUTION (5.16) See solution of Probs. 5.13 and 5.15: 2

U

b



3

3

4 P a 3

s



5 AG

2

6 P a



EI

vC  2 P a (

or

U

6 P a

(due to symmetry) 2

U 

2

EI

vC  v D

Thus

3

4 P a

1



5 AG 2a

2

3



3EI

1

P (vCb  vCs ) 

2

P vC

)

5G A

SOLUTION (5.17) ( a ) Axial strain energy in bolt. 2

U

b

2

P L



T L



2 AE

2 AE 2

T ( 0 .0 3 )





2[

 2 .6 5 2 6 (1 0

9

)T

2

(6 ) ( 2 0 0  1 0 )] 2

3

4

 2 .6 5 2 6 (1 0 Ub 

Thus

1 2

T ;

9

)( 6 3 0 )  1 .0 5 2 8 J 2

1 .0 5 2 8 N  m 

1 2

( 6 3 0 )

  3 .3 4 2 m m

( b ) Bending strain energy in link. I  bh U

b





L

3

12  216 m m

2

0

2EI

2EI

{[

0 .0 2 5

(420 x) dx  2

0



0 .0 5

2

( 2 1 0 x ') d x '} 0

A

EI

B

Substituting the data, U

b



50 mm

25 mm

1 .3 8



4

M dx

1



1 2  (1 2 )( 6 )

3

3

6

630

420

( 2 0 0  1 0 )( 2 1 6 )

 3 1 9 (1 0

x’

x

1 .3 8

210

) J

SOLUTION (5.18) a x Q

P B

A

C

M

AC

 Qx

M

CB

 Qx  P(x  a )

L (CONT.)

73

5.18 (CONT.) Thus

M

vA 

1 EI





1 EI

[ ( Q x )( x )d x 

M

i

dx

Q

i

a

L

 [Q x

0

 P ( x  a ) ]( x ) d x

a

Set Q  0 , and integrate: vA 



1 EI

L

P ( x  a )xdx 

( 2 L  3a L  a )  3

P 6 EI

a

2

3

SOLUTION (5.19) M

BC

 Px

M

B 

Thus



1 EI

[

 P L  P R s in 

CA

L

M 0

M

 BC

P

BC



dx 

2

M

M

Rd ]

CA

P

CA

0

( 4 L  6  R L  2 4 R L  3 R ) 3

P 12 EI

2

2

3

SOLUTION (5.20)

A a

P a

a

Pa/2

C

P/2

M

B

D P/2

Pa/2

M

+



AD

P 2



vD 

1 EI

vD 

P 2 EI

( x  a ), M

[

M i

2a

i

P (xa ) 2

0

M

BD



P 2

dx 2

dx 



a 0

2

x 2

dx

x

Pa/2 Integrating, 3

vD 



Pa 4 EI

SOLUTION (5.21) B

C

M

A RA

L/2

AB

Consider R A as redundant.

L RB

x

M

0

 RAx

M

CB

RC 

x’  (

M

0

L

RA



2

M

0

L



RA 2

) x ' M 0 ,

vA  0 

1 2

Thus L

vA 



2

0

( R A x )xdx 



L

( 0

M

0

L



RA 2

) x ' M 0 ]

x' 2

After integrating RA 

Then

RC 

2 3

M

4 3

M

0



0



L

L

For the entire beam,



F y  0:

RB  2

74

M L

0



dx  0



M

M

i

i R A

dx

x

SOLUTION (5.22) U

a



D 

2

P (2L) 2 AE

U P

U

a



2 PL AEa





PL 3EsI

2 PL AEa

or

Solving P 

3



3

wL 8



1 EsI

2

M 2Es

0

L

(Px 

0 4

 0

a

)

wL 8 EsI

3 AE

(

Ls





s

2

AE a L  6 E s I

M  Px 

dx wx 2

2

wx 2

2

U  U

a

U

s

)xdx  0

SOLUTION (5.23) w

M

AB



1 2

M

BC



3x 5

1 EI

M

Q x

x A

B



A

4



3

C



1 EI

L AB  2 a

2

wx

( 2 wa )  2 wa

{

M Q

i

i



4x 5

Q

2



L BC  5 a

dx

2a

2

1

( 2 w x )( 0 )d x

0



2



5a

0

( 65x wa  2 wa

4x 5

Q )(

4x 5

) dx }

Set Q  0 and integrate: 

A

 60

wa EI

4



SOLUTION (5.24)

C

M

P

x

A

AB

 Px

M

BC

 Pa

a

B

x L

A 

1 EI



M

M i

dx 

i

P

a

1 EI

{ ( P x ) xd x  0

L

 ( P a )( a )d x} 0

Integrating, A 

2

(a  3L )

Pa 3EI

SOLUTION (5.25) Introduce a fictitious horizontal force Q at end B. Vertical reactions at supports are P/2. We have M Thus

BC

 R (1  c o s  )  2

B 

2 EI





2 EI



M 0

 2

M BC

BC

Q

P 2

 ( R sin  ) Q

P 2

 M

BC

 ( R s in  ) Q ] [ R s in  ] R d 

Setting Q=0 and integrating: B 

CA

Rd

[ R (1  c o s  )

0

M

3

PR 2 EI

75

SOLUTION (5.26) (a)

Let fictitious couple C=0:

x C

B a

2a

a

x

A

P

M

AB

 Px

M

BC

 Pa

M

DC

 Px  Pa

C x

D

P Pa+C A 

Thus



M

M

i

dx

P

i

a

 P  x dx  Pa 2

2

0

 

4 3

2 Pa EI

3

 P

0

2a

(x

 2ax  a )dx

2

2

0

 Pa ( 3  4  2)

3

Pa

a

 dx

3

8



( b ) We now have M

AB

A 

 Px  C

[ M

1 EI

M

M

i

M

DC

 Px  Pa  C

dx ]

C

i

 Pa  C

BC

Hence, after setting C=0: A 

a

P EI

a

[ xdx  a  dx  0

0

2a

 (x

 a )dx ] 

0

3 Pa 2 EI

2

SOLUTION (5.27) M

(a) 

A

AB

 

  Pz,

M

a

1 EI

[ M

P EI

(

0

3

a 3



M

P

AB 3

L 3

AB

)

  Px,

BC



dz 

L

0

1 GJ

(

T0 L 2

T B C  T 0 (1 

M

M

BC

P

BC

dx ] 



1 GJ

x L

L

0

)  Pa

[ T 0 (1 

x L

)  Pa ]( a ) dx

 Pa L) 2

( b ) Introduce a fictitious couple C about x axis at point B. T B C  C  T 0 (1 

x L

)  Pa

Hence B 

1 EI

[

a

M 0

 0  0 

M

1 GJ



AB

C

AB L 0

dz 



L

M 0

[ C  T 0 (1 

x L

M BC

1 GJ

(

T0 L 2

dx ] 

)  P a ] (1 ) d x

Setting C=0 and integrating: B 

BC

C

 PaL )

76

1 GJ



L 0

TBC

TBC C

dx

SOLUTION (5.28) Due to Symmetry: F A B  F C D , Statics: R A x  6 0 k N

F AC  FBD

,

R A y  1 2 .5

Method of joints: Joint A

kN

,

R D y  1 2 .5

Joint B

F AC  30 kN ( T )

F BC   12 . 5 kN ( C )

F AB  32 . 5 kN ( T )

Total strain energy: U 



2

Fi L i

6



2 AE

[ 3 2 .5 (1.3 ) 2  3 0 (1.2 ) 2  1 2 .5 ( 0 .5 ) ] 2

10 2 AE

2

2

This gives, substituting the given data, U  4 7 .4 7 N  m

Hence U  W;

4 7 .4 7 



mm

1 2

( 6 0  1 0 ) D 3

or D

 1 . 582



SOLUTION (5.29)

2P

B

Introduce a fictitious force Q at C.

P

Statics:

0.9 m A

R Ax  P  Q 

C

R Ax

R A y  0 .2 4 P 

Q R Ay

1.2 m

0.675 m

R C  1.7 6 P 

RC

Apply method of joints at C and B: F B C  2 .2 P

(C )

F A B  0 .4 P

(C )

F A C  1.3 2 P  Q

Thus C 

1 AE



Fi

 Fi Q

Li

Differentiating and setting Q=0: C 

1 . 32 P ( 1 ) AE

(1 . 875 ) 

2 . 475 P AE



77

(T )

kN



SOLUTION (5.30) A

P

B

Introduce Q  at C. By method of joints:

L

F AB  0,

L

F AC  ( P  Q )

P

C

D

FBC   P

FC D   Q

2,

Q

We write ( C ) v 



1 AE



Fi

 Fi Q

Li

[ 0  (  P )( 0 )  ( P  Q )

1 AE

2(

2)

2  (  Q )( 1 )] L

This yields, for Q  0: ( C ) v 

2

( C ) h 

1 AE



( C ) h 

1 AE

[0  (  P ) (  1 )  ( P )

2PL AE

 2 .8 2 8

PL AE



Similarly

or



1 2 2 AE

Fi

 Fi P

Li

P L  3.8 2 8

PL AE

2(

2)

2 ]L



SOLUTION (5.31) Introduce Q  at point C. F.b.d. - Entire truss ( from



M  0,



F  0 ):

R A y  1.2 5 P  0 .9 3 7 5 Q 

R Ax  Q 

R B y  2 .2 5 P  0 .9 3 7 5 Q 

Joint A:

F AC

13 Q

12

F A C  3 .2 5 P  2 .4 3 7 5 Q

5

F A B  3 P  1. 2 5 Q

F AB

A

(T )

(C )

R Ay F B C  3 .7 5 P  1.5 6 2 5 Q

Joint B:

(C )

Thus, we have ( C ) h 

1 AE



Fi L i

( C ) v 

1 AE



Fi Li

 Fi Q



P AE

[1 2  6 1.7 9 1  2 9 .2 9 6 9 ]  1 0 3.0 8 8



P AE

[ 3 ( 3 . 2 )( 3 )  3 . 25 ( 7 . 8 )( 3 . 25 )

P AE

and  Fi P

 ( 3 . 75 )( 3 . 75 )( 5 )]  181 . 5

78

P AE





SOLUTION (5.32) F BD  0 .

C

32

Q D

B 32

Introduce Q at point D. Reactions, as found by statics, are shown in the figure. We shall apply the method of joints, as needed. 32 kN C Joint C

15

FBC

42-Q/2

Joint E

17

E

A

8

42+Q/2

E

4

FDE   7 0 

5 6

F AE  5 6 

Q



Thus

D

(C )

F AD

Q

A

3

56+2Q/3

42-Q/2

(C ) F AD   3 0 

(T )





1 AE



10 AE



2 8 6 .1 3 3  1 0 AE

3

5 4

32

42+Q/2

2 3

(32 )  68 kN

F BC  60 kN ( T )

60

5 3

17 8

Joint A

FDE

F AE

FC D  

FC D

F jL j

Q

(C )

F j Q

[0  0  0  0  2 (  7 0 ) (  3

5 6

)  3 .2 ( 5 6 ) ( 3 )  2 (  3 0 ) ( 

5 6

2

5 6

)]



SOLUTION (5.33) Joint B FBD

FBC 3

FBA

4

FBD  

5 4

FBA

(1)

B

FBC  P 

3 4

FBA

P A  0 

1 AE





1 AE

[( P 

FjL j 3 4

F j  FBA

F B A )(

3L 4

)( 4 )  (  3

 0 .5 6 2 5 P L  3 .3 7 5 F B A L  0 ,

5 4

F B A )(

5 24

P

FBC 

7 8

)( 

5 4

)  F B A ( L )(1 )]

F B A   0 .1 6 6 P   P 6

Then Eqs.(1) give FBD 

5L 4

P

79

SOLUTION (5.34) M  F R s in   P R (1  c o s  ) ,

v  0 

1 EI



M

M F

dx

Therefore v 



1 EI

[ FR sin   PR ( 1  cos  )]( R sin  ) Rd 

0

3

FR







2 EI

2 PR EI

3

 0,

F  

4P







4P



SOLUTION (5.35)

P

C

M 

Px 2

c o s   Q x s in 

L x 

A

Q B

P/2

P/2 Line of symmetry

( a ) With Q  0: B 



2 EI 3



L

c o s  ) ( x s in  ) d x

Px 2

( 0

s in  c o s  

PL 3EI

3

PL 6 EI

s in 2 

( b ) With Q   R B h : B  0 

2 EI



L

c o s   R B h x s in  ) (  x s in  ) d x

Px 2

( 0

or R Bh 

P cot  

1 2

SOLUTION (5.36) Statics: F B C 

2P

FC D 

,

3

P

F AB 

,

3

P 3

,

M

AB

 Px

Thus U 





B A

2

FAB 2 AE

1 2 AE



dx 

2L 0

 ( 6 AE  11L

2

P 3



M

)P

2 AB

2 EI

A

dx 

3

4L 3EI

B

1 2 RI

dx 



2L



C D

2

FBC 2 AE

P x dx  2

2

0

2

We have C 

U P



PL 3E

( 11A 

8L I

2

dx 

)

80



1 2 AE

D

2

FC D

dx

2 AE

C



2L 0

4 3

P dx  2

1 2 AE



L 0

2

P 3

dx

SOLUTION (5.37) Let the load at B be designated by Q. Locate origin of coordinates at A: V AB  P

M

 Px

AB



V AB

 1,

P

M

AB

P

 x

Locate origin of coordinates at B: V BC  P  Q

M

 P(x 

BC

L 2

)  Qx



V BC

 1,

P

M

BC

P

 x 

L 2

( a ) Equation(5.38), with Q=P, gives vA 

M

1 EI

M

i

P

i

dx 

L

 



L 2

0 3

7 PL 16 EI



( x )dx 

Px EI



 V

1 AG

P(2xL 2)

2

EI

0

Vi

dx

P

L

(x 

L 2

)dx 



L 2

0

1.2 P AG

(1 ) d x 



2

0

1.2 ( 2 P ) AG

1 .8 P L AG

(1 ) d x

(P5.37)

( b ) From Table B.1: E=200 GPa and G=79 GPa. Given L/h=5. We have A=bh and I  b h 1 2 . Eq.(P5.25) is rewritten as 3

Ebv A P

3



7 (1 2 ) L



7 (1 2 )( 5 )

16 h

3



3

1 .8 E L Gh



16

1.8 ( 2 0 0 ) ( 5 ) 79

 656 . 25  22 . 78  679 . 03

Error:

22 . 78 679 . 03

(100 )  3 . 35 %

SOLUTION (5.38) Inasmuch as horizontal displacement at C,  h is zero, Eq.(5.41) gives h 

U H

 0 

1 EI





[ HR sin   FR ( 1  cos  )] R (sin  ) Rd 

0 2R



1 EI

 [( H

 P ) x  2 F R ]x d x

0

 H ( 2 

8 3

)  2F 

8P 3

or 4 . 2375 H  2 F  2 . 6667 P  0

(1)

Similarly, vertical displacement at C is zero: v 

U F

 0 

1 EI







[ HR sin   FR ( 1  cos  )][  R ( 1  cos  ) Rd 

0 2R

1 EI

 [( H

 P ) x  2 F R ]2 R d x

0

 2H  F(

3 2

 8)  4P

or 2 H  1 2 .7 1 2 4 F  4 P  0

(2)

Solving Eqs.(1) and (2): H  0 . 5193 P

F  0 . 2329 P

81

SOLUTION (5.39) The structure is statically indeterminate to the first degree. Select R, the reaction at B, as redundant. From the equilibrium of forces at joint D, R with F A D  F D C  F : F F 4 3

F 

D

5 8

(W  R )

(1)

W Substituting Eq.(1), into Eq.(5.45), together with Eq. (5.38) we have B  0  

L

F R

[2  F

1 AE

0

1 AE

 

h

(W  R ) L 

25 32 AE

R R

R 0

dx ]

(W  R )(  85 ) L  0 . 8 RL ]

5 8

[( 2 )



dx 

0 .8 R L AE

Solving, R  0 .4 9 4 W  Thus F A D  F C D  0 .3 1 6 W

F B D  0 .4 9 4 W

and

SOLUTION (5.40) We write M   M Thus

U R A

vA  

U M A

A  

6.

M R A

M

dx 



1 EI

L

( M

0

 RAx 

A

1 6

kx )xdx  0

(1)

k x )(  1) d x  0

(2)

3

 0



1 EI

3

 0



1 EI

 R A x  kx

A

M M A

M

dx 



1 EI

L

( M

0

A

 RAx 

1 6

3

Integrating and simplifying Eqs.(1) and (2) we obtain, respectively: 

1 2

M

A



1 3

RAL 

M

A



1 2

RAL  

1 30

kL 1 24

3

kL

3

Solving RA 

3 20

kL

2

M

A



1 30

kL

3

SOLUTION (5.41) U  W 

Thus



EI 2



L

(d

2

dx

0

v 2

) dx  2

L 0

EI 2



L

0

L

w v d x  w 0  a s in 0

U  W :

E I 2L

3

4

a 

( L ) a sin 4

2 x L

w0L 2

dx 

w0 EI

L

4

(  ) s in

w0L 2

a 

,

We have v 

2 x L

2

x L

82

dx 

a

w0 EI

L

( )

4

4

EI  4L

3

a

2

SOLUTION (5.42) L A D  L C D  3 .4 6 m U 

AL i E 

1 2



2

1 2

AL i E (  v cos  / L i )

2

Vertical load of the joint, by Eq.(5.46): 3

U  v

W 





E jAj Lj

 v cos  2

1

or

W  E A v [

2

cos 30 L AD

o

2



o

 E A  v [ c o3s .4360 

2

cos 30 LC D 2

o

cos 30 3 .4 6



o

1 LBD

]

 13 ]  0 .7 6 6 9 E A  v

Substitute the given data W  0 .7 6 6 9 ( 0 .0 0 6 )( 2 0 0  1 0 )( 6 2 5  1 0 9

6

)  5 7 5 .2 k N  m

SOLUTION (5.43) v 

(a)

2

ax

2L

U 

3

EI 2

(3L  x )



L

v"  3

(v" ) dx  2

0

9 EI 2L

6

a

2

a L



3

(L  x)

L

( L  x ) dx  2

0

3EI 2L

3

a

2

(1)

We have W  P  v A

(2)

Virtual work principle,  U   W , is thus P  a 

and

3EI 2L

3

(2a  a )

a  PL 3EI 3

v 

2

Px 6 EI

(3L  x )

(3)

( b ) At x=L, Eq.(3) gives v m ax 

3

PL 3EI

Using Eq.(3):   and at x=L:  m ax 

(4) dv dx



Px 2 EI

(2 L  x )

2

PL 2 EI

(5)

SOLUTION (5.44) We have v  ax ( L  x )  axL  ax ,

v'  aL  2ax,

2

So, Also

U 

EI 2



L

( v " ) d x  2 a E IL 2

2

0

W  P  v A  P  (acL  ac ) 2

From  u   W , it follows that E IL ( 4 a   a )  ( P c L  P c )  a , 2

a 

Pc ( L c ) 4 E IL

Hence, at x=c: vA 

2

Pc ( Lc )

2

4 E IL

83

v"  2a

SOLUTION (5.45) I 

 d

4

64

2

 d

A 

,

r 

,

4

I A  d 4 , Le  L

We have 



cr

2

 E



P A

4P

;

2

( Le r )

 d

2

2

2

 Ed



16 L

2

d 

,

4

64 PL

2

3

 E

Substituting given data: d  [

Check:



L r

3

64 ( 50  10 )( 1 . 2 ) 3

( 210  10



4 ( 1. 2 )



4L d

9

0 .0 2 9

1

2

] 4  29 mm

)

 1 6 5 .5 . Also  

P A

3

4 ( 50  10 )



 ( 0 . 029 )

2

 75 . 7 MPa

 600

MPa.

OK.

SOLUTION (5.46) Substituting the given data: ( L e r ) c  

E S y  45 . 7

Try Johnson’s formula Pc r

 S

A

S



y

2 y 2

4 E

(

Le r

)

2

or 3

2 2 0 (1 0 )

 d

Check

Le

2



d 4

 5 2 0 (1 0 ) 

6

( 5 2 0 1 0 )

6

4

4

2

2

2

( 0 .2 5 ) 1 6

9

(1 1 0  1 0 )

d  2 5 .7 m m

;

2

d

 38 . 9 OK.

250 ( 4 ) 25 . 7

Try Euler formula: d [

and

4 Le



d

2

6 4 P Le 3

 E

1

]4  [

3

6 4 ( 2 2 0  1 0 )( 0 .2 5 ) 3

2

1

] 4  2 2 .5

9

 (1 1 0  1 0 )

 44 . 4  45 . 7

4 ( 250 ) 22 . 5

mm

 does not apply.

SOLUTION (5.47) ( a ) By Eq.(5.61) with A   d d  [

64

2 Pc r L e 2

 E

]

4 and r  d 4 :

2

1 4

( b ) Equation (5.61) with A  b h , b 

I  bh

3

12 ,

r

2

 h

2

1 2:

2

1 2 Pc r L e 2

 Eh

3

SOLUTION (5.48) ( a ) Same area: 

(D

4

2

 d )  ao  ai 2

ai  ao  2

2

 4

2

(D

2

2

 d )  50  2

2



(5 0  3 5 ) 2

2

4

(CONT.)

84

5.48 (CONT.) a i  3 8 .7 m m ,

or

1

t 

2

( a o  a i )  1 1 .3 m m

( b ) Circular bar I 



4

(D

 d )  4

64



( 5 0  3 5 )  2 3 3 .1  1 0 4

4

9

m

4

64

 EI

 ( 7 2 ) ( 2 3 3 .1)

2

Pc r 

2



2

Le

 3 4 .2 k N

2

( 2 .2 )

Square bar I 

1

4

12

1

(ao  ai )  4

( 5 0  3 8 .7 )  3 3 3 .9  1 0 4

9

m

4

12

 EI

 ( 7 2 ) ( 3 3 3 .9 )

2

Pc r 

4

2



2

Le

2

( 2 .2 )

 49 kN

SOLUTION (5.49) I 

d

 (8 )

4



64 A 

d

4

 2 0 1 .0 6 m m

4

64 2



 (8 )

4

2

 5 0 .2 7 m m

2

4

 EI 2

P A  Pc r 

L

2

 ( 2 0 0  1 0 )( 2 0 1 .0 6  1 0 2



9

( 0 .4 )

2

12

)

 2 .4 8 k N

The corresponding stress is 

cr

Pc r





A

2480 5 0 .2 7  1 0

6

 4 9 .3 M P a  2 5 0 M P a OK .

We have



M

 0:

C

( a  b ) Q  b Pc r

1 8 0 Q  3 0 ( 2 4 8 0 ), or Therefore

Q a ll 

Q



n

4 1 3 .3

Q  413 N

 295 N

1 .4

SOLUTION (5.50) Pc r  n P  2 .6 ( 2 2 )  5 7 .2 k N , I 



d

A 

4

d

64

2

r 

4

L e  0 .7 L  0 .7 (1)  0 .7 m d 4

Equation (5.61) gives 2

d

4



6 4 Pc r L e

 E 3

6 4 (5 7 .2  1 0 )( 0 .7 ) 3



 (200  10 ) 3

9

2

,

d  0 .0 2 3 m = 2 3 m m

(CONT.)

85

5.50 (CONT.) Hence Le

0 .7



r

 1 2 1 .7

0 .0 2 3 4

Equation (5.62): Le

(

r

E

)c  

 

Sy

200  10

9

250  10

6

 8 8 .8 6  1 2 1 .7

Euler formula is valid, Therefore d  23 m m

SOLUTION (5.51) Refer to Solution of Prob. 5.50. Now we have L e  0 .7 ( 6 2 5 )  4 3 7 .5 m m and Pc r  2 .6 (1 2 5 )  3 2 5 k N . Equation (5.61): 6 4 (3 2 5  1 0 )( 0 .4 3 7 5 )

2

d

4



6 4 Pc r L e

 E 3

3



2

3

d  0 .0 2 8 m

,

 (200  10 ) 9

and Le



r

4 3 7 .5

 6 2 .5  1 2 1 .7

28 4

Euler formula does not apply. Apply Johnson formula, Eq. (5.66): d  2(

or

2

Pc

 Sy



S y Le

 E 2

1 2

)

325  10

 2[

3

  250  10

2 5 0  1 0 ( 0 .4 3 7 5 ) 6

6



 (200  10 ) 2

9

2

1

]

2

d  0 .0 4 1 9 m = 4 1 .9 m m

SOLUTION (5.52)

L B C  0 .6 5 m

F AB 

5 12

FBC 

P,

13 12

P

P B

F AB

12 13 5 FBC

Bar AB ( F A B ) cr 

2

 EI 2

Le



2



9

( 2 1 0  1 0 )[



( 5 1 0

3

( 0 .4 )

4

) ]

4 2

 6 .3 5 9 k N 

5 12

Pc r ,

Pc r  1 5 .2 6 k N

Bar BC ( F B C ) cr 



2

9

( 2 1 0  1 0 )[



( 7 .5  1 0

4 ( 0 .6 5 )

2

3

4

) ]

 1 2 .1 9 k N 

Choose the small value, Pc r  1 1.2 5 with n  2 .5 . Thus Pall 

Pcr n



11 . 25 2 .5

 4 . 5 kN

86

13 12

Pc r ,

Pc r  1 1 .2 5 k N

SOLUTION (5.53) ( a ) Applying the method of joints at A: F AB  40 kN ( C ) and F B C  2 2 0 k N ( C ) L A B  2 .5 m .



cr

FAB



We have r  

cr

3

4 0 (1 0 )

2 5 0 (1 0 )  6

;

A

 d

2

d  1 4 .3 m m

,

4

I A  d 4 and Euler’s formula: 2

 E



(L r)

2

; 250 (10



) 

6

2

( 210  10

9

( 2 . 5 0 . 25 d )

)

, d  109 . 8 mm

2

Use, a commercial size of : d  110 mm diameter ( b ) L B C  1 .8 7 5 m 

FBC

 cr

3

2 2 0 (1 0 )

2 5 0 (1 0 )  6

;

A

 d

2

d  3 3 .5 m m

,

4

Euler formula: 

cr

2

 E



(L r)

2

6

; 250 (10



) 

2

( 210  10

9

)

( 1 . 875 0 . 25 d )

2

, d  82 . 4 mm

Use 8 3  m m diameter

SOLUTION (5.54) I  r 

 64

( 0 . 04 ) I A



d 4

9

 125 . 66  10

4

 10 mm

L r



m 1600 10

4

 160

Euler’s formula: 2

P cr 

 EI

F a ll 

1 .0 0 .5

nL

2





2

( 200  125 . 66 ) 1 .5 (1 .6 )

2

 64 . 6 kN

Thus Pc r  2 ( 6 4 .6 )  1 2 9 .2 k N

SOLUTION (5.55) Two angles: I x  2 I x  2 ( 4 2 6  1 0 )  8 5 2 (1 0 ) m m 3

3

4

I y  2 ( I y  A x )  2[1 5 3 (1 0 )  7 4 4 (1 0 .5 ) ]  4 7 0 , 0 5 2 m m 2

I m in  4 7 0 , 0 5 2

Use smaller I : 2

Pc r 

Pa ll 

3

 EI y 2

Le

Pc r n







2

1 2 2 .7 2 .5

mm

9

4

( 2 0 0  1 0 )( 4 7 0 , 0 5 2  1 0 ( 2 .7 5 )

2

We have L e  2 .7 5 m Thus

12

)

2

 4 9 .1 k N

87

 1 2 2 .7 k N

4

SOLUTION (5.56) A  d I 

2

4   ( 60 )



 (60 )

4

 d 64

P cr 



2

L

4

64





EI 2

2

2

4  2 ,827

 6 3 6 ,1 7 3 m m ( 210  10

9

1

)( 636  10

 12

)

mm

4

r 

 1319

2

2



I A

d 4



60 4

 15 mm

kN

Using Eq.(5.72): Py

350 ( 10 )  6

3

2 . 827  10

0 . 002 ( 2 . 827  10

[1 

636 ,173 ( 10

 12

3

)

1

) 0 . 03 1 

]

Py 3

1319 ( 10 )

or P y  2 6 6 0 1 0 4 .4 P y  1.3 0 5  1 0 2

Solving, this quadratic gives: P y  649

12

 0

kN . Thus, Pa ll  6 4 9 3  2 1 6 .3 k N

SOLUTION (5.57) I m in 

1

(1 6 0  8 0  1 3 0  5 0 )  5 .4 7 2 5  1 0 3

3

A  1 6 0  8 0  1 3 0  5 0  6 .3  1 0 rm in 

6

mm

4

12

A  2 9 .5 m m

I m in

3

mm

3

L e  0 .5 L  2 .7 5 m

L e r  2 7 5 0 2 9 .5  9 3 .2

Hence,  E

 (7 2  1 0 )

2



cr



( Le r )

2



2

9

( 9 3 .2 )

2

 8 1 .8 M P a

SOLUTION (5.58) L e  0 .7 L  3 .8 5 m . From solution of Prob.5.57: rm in  2 9 .5 m m .

We now have L e r  3 8 5 0 2 9 .5  1 3 0 .5

Hence,  E 2



cr



 (7 2  1 0 ) 2



( Le r )

9

(1 3 0 .5 )

2

 4 1 .7 M P a

SOLUTION (5.59) A   (5 0  4 4 )  1, 7 7 2 2

2

mm

2

Equation (5.68): r 

1 4

D

2

 d

2



1 4

100

2

 88

2

 33 . 3 mm ,

L r



2000 33 . 3

 60 . 1

(CONT.)

88

5.59 (CONT.)

r

12(50 )



ec

(a)

2

( 3 3 .3 )

Py

Refer to Fig.5.23b:

r

2

( 3 3 .3 )

Refer to Fig.5.23b:

 160 M Pa,

A

9( 50 )



ec

(b)

 0 .5 4 1

2

P y  1 6 0 (1, 7 7 2 )  2 8 3 .5

kN

 0 .4 0 6

2

Py

 175 M Pa,

A

P y  1 7 5 (1, 7 7 2 )  3 1 0 .1 k N

SOLUTION (5.60) We have 

I 

(D

 d ) and A 

4

4

64



(D

2

 d ); 2

r 

1

I A 

4

D

2

 d

2

4



A 

P  n ( 4 4 0 )  1 .5 ( 4 4 0 )  6 6 0 k N ,

(200  175 )  7363 m m 2

2

2

4 I 



( 2 0 0  1 7 5 )  3 2 .5 (1 0 ) m m 4

4

6

4

64 r 

1

200  175 2

2

 6 6 .4 4 m m

4

Hence,

P



A ec r

2



660  10 7363  10

3 6



r

0 .1 e ( 6 6 .4 4  1 0

L

 8 9 .6 M P a

3

)

2

3 .6 6 6 6 .4 4  1 0

 5 5 .1

3

 2 2 .6 5 e

Substitute these into Eq. (5.74a):   2 1 0  8 9 .6 1  2 2 .6 5 e s e c  2 7 .5 5   

8 9 .6  1 0 190  10

6

9

   

from which e  0 .0 4 9 0 2 m = 4 9 .0 2 m m

SOLUTION (5.61) From solution of Prob. 5.60:

P

A  7363 m m

2

I  3 2 .5 (1 0 ) m m 6

4

Hence  EI 2

Pc r 

v m ax

L

2

 ( 2 0 0  1 0 )(3 2 .5  1 0 2



9

( 4 .6 )

e

6

)

2

 3 .0 2 3 M N

Figure S5.61

(CONT.)

P

89

5.61 (CONT.) ( a ) Using Eq. (5.73):   1 .2 5  e  s e c   2  

45  10

3

3 .0 3 2  1 0

6

  o   1   e  s e c (1 0 .9 6 )  1  ,   

e  6 7 .2 8 m m

( b ) Referring to Fig S5.61: M  P ( v m a x  e )  4 5 (1 .2 5  6 7 .2 8 )  3 0 8 0 N  m

Hence, 

P



m ax



Mc

A



I

45  10

3

7363  10



6

3 0 8 0 ( 0 .1) 3 2 .5  1 0

6

 1 5 .5 9 M P a

SOLUTION (5.62) L e  2 ( 4 .6 )  9 .2 m . Refer to solution of Prob. 5.61

 EI 2

Pc r 

 ( 2 0 0  1 0 )(3 2 .5  1 0 2



2

9

Le

(9 .2 )

2

6

)

 7 5 7 .9 k N

( a ) Equation (5.73):   1 .2 5  e  s e c   2  

  o   1   e [s e c ( 2 1 .9 3 )  1] , 7 5 7 .9   45

e  1 6 .0 2 m m

( b ) M  P ( v m a x  e )  4 5 (1 .2 5  1 6 .0 2 )  7 7 7 .2 N  m Therefore, 

m ax



P A





Mc I

45  10

3

7363  10

6



7 7 7 .2 ( 0 .1) 3 2 .5  1 0

6

 6 .1 1 2  2 .3 9 1  8 .5 M P a

SOLUTION (5.63) A

L e  2 L  3 .6 m

75 mm C 15 mm

A  150  75  120  45

 5 .8 5  1 0

P

150 mm D

B

1

I 

3

mm

2

(1 5 0  7 5  1 2 0  4 5 ) 3

3

12

P

 4 .3 6 2  1 0 r 

L

6

mm

4

I A  2 7 .3 m m

e  c  3 7 .5 m m

Thus, ec r

2



3 7 .5  3 7 .5 ( 2 7 .3 )

2

 1 .8 8 7

Le

 6 5 .9 3

2r

(CONT.)

90

5.63 (CONT.) Use Eq.(5.74b) with L  L e : 

m ax



160  10 5 .8 5  1 0

   1  1 .8 8 7 s e c  6 5 .9 3   

3 3

    9 9 .3 M P a 9 3 2 0 0  1 0 (5 .8 5  1 0 )    160  10

3

SOLUTION (5.64) 150 mm

C

L e  2 L  3 .6 m

D

P

A  150  75  120  45

75 mm B

A P

 5 .8 5  1 0

3

mm

2

15 mm 1

I 

(7 5  1 5 0  4 5  1 2 0 ) 3

3

12

 1 4 .6 1  1 0

6

mm

4

e  c  75 m m

r 

I A  4 9 .9 7 m m

Therefore, ec r

2

75  75



( 4 9 .9 7 )

 2 .2 5

2

Le

 3 6 .0 2

2r

Apply Eq.(5.74b) with L  L e : 

m ax



160  10 5 .8 5  1 0

3 3

   1  2 .2 5 s e c  3 6 .0 2   

    9 4 .8 M P a 9 3 2 0 0  1 0 (5 .8 5  1 0 )    160 10

3

SOLUTION (5.65) We have A  ao  ai  120  100 2

1

I 

2

(ao  ai )  4

12

ao

3

2

(1 2 0  1 0 0 )  8 .9 5 (1 0 ) m m 4

4

6

4

12

8 .9 5 (1 0 )



A c 

1

4

 4 .4 (1 0 ) m m

2

3

I

r 

2

 4 5 .1 m m

4 .4

 60 m m

2

Le  2 L  2 (2 )  4 m

Hence ec r

2



(5 5 )(6 0 ) ( 4 5 .1)

 EI

2

2

Pc r 

2

Le

3



A

 ( 7 0  1 0 )8 .9 5 (1 0 2



P

 1 .6 2 2 , 9

(4)

2

2 0 0 (1 0 ) 4 .4 (1 0 6

)

6

 4 5 .5 M P a

)

 3 8 6 .5 k N

(CONT.)

91

5.65 (CONT.) P

200



Pc r

 0 .5 1 7

3 8 6 .5

( a) Apply Eq. (5.73): v m ax  e[ s e c (



P

2

Pc r

)  1]



 (5 5 )[se c (

0 .5 1 7 )  1]  7 3 .7 6 m m

2

( b ) Use Eq.(5.74a) 



m ax

P

[1 

A

ec r

sec(

2



P

2

Pc r

)]

 ( 4 5 .5 ) [1  (1 .6 2 2 ) s e c (



0 .5 1 7 ) ]  2 1 8 .3 M P a

2

SOLUTION (5.66) From solution of Prob. 5.65: A  a o  b i  4 .4 (1 0 ) m m 2

1

I 

2

3

( a o  a i )  8 .9 5 (1 0 ) m m 4

12

2

4

6

L e  2 ( L )  2 (1 .9 )  3 .8 m

 EI 2

Pc r 

P

2

Pc r

9

Le

( 3 .8 )

300



c  60 m m

 ( 2 0 0  1 0 ) (8 .9 5  1 0 2



4

6

)

2

 1, 2 2 3 k N

 0 .2 4 5

1223

( a ) Equation (5.73): v m ax  e[ s e c (



P

2

Pc r

)  1]

or 1 5  e[ s e c (



0 .2 4 5 )  1] ,

e  3 7 .2 m m

2

(b) M 

m ax

m ax

 P ( e  v m a x )  3 0 0 (3 7 .2  1 5 )  1 5 .6 6 k N  m 

P A



M

m ax

I

c



300  10 4 .4 (1 0

3

3

)

1 5 .6 6  1 0 ( 0 .0 6 ) 3



4 .9 5 (1 0

 1 7 3 .2 M P a

92

6

)

SOLUTION (5.67) Figure 5.17a: L e  2 L  2 ( 2 )  4 m . ( a ) Cylindrical tube: A  500 m m



2

 4

2

(D

 d ) 2

or d 

D

2





4A



40  2

4 (500 )



 31 m m

Thus I 

 64

(D



d ) 

4

4

[ 4 0  3 1 ]  8 .0 3 3 (1 0 ) m m 4

64

4

4

4

and r 

4

( 8 .0 3 3 )(1 0 )



I A

 1 2 .6 8 m m

500

It follows that L e r  4 0 0 0 1 2 .6 8  3 1 5 .5

Since L e r  2 0 0 , the Euler formula applies. Hence Pc r 

2

 EI 2

Le





2

9

(1 0 5  1 0 )( 8 .0 3 3  1 0 (4)

8

)

 5 .2 0 3 k N

2

( b ) Square tube. The cross-sectional area: A  a o  a i . Inner diameter is 2

ai 

ao  A  2

2

4 0  5 0 0  3 3 .1 7 m m 2

Then I 

1 12

( a o  bi )  4

1 12

r 

I A

 10

1 1 .2 5 500

 15 m m ,

4

( 4 0  3 3 .1 7 )  1 1 .2 5  1 0 4

4

4

mm

4

and 2

Le r  4 0 0 1 5  2 6 7

Since L e r  2 0 0 , the Euler formula is valid. Therefore Pc r 

2

 EI 2

Le





2

9

(1 0 5  1 0 )( 0 .1 1 2 5  1 0 (4)

2

6

)

 7287 N

Comment: Hollow square has a critical load that is 1.4 times more than for a hollow circular section.

SOLUTION (5.68) From Table B.1: E  2 0 0 G P a

S y  250 M Pa

The properties of area are A  b h  (3 5 )(1 0 )  3 5 0 m m , 2

I 

1 12

bh  3

1

(3 5 )(1 0 )  2 9 1 7 m m 3

4

12

(CONT.)

93

5.68 (CONT.) I

r 

2917



A

 2 .8 8 7 m m ,

(

Le r

350

E

)c  

200  10

 

Sy

3

 8 8 .9

250

( a ) From Fig. 5.17c, L e  0 .7 L  0 .7 (1 8 0 )  1 2 6 m m . Hence Le

126



r

 4 3 .6

2 .8 8 7

Since 4 3 .6  8 8 .9 , Johnson Formula should be used. Thus: S y ( Le r )

Pc r  A S y [1 

2

]

4 E 2

2

2 5 0 ( 4 3 .6 )

 ( 3 5 0 ) ( 2 5 0 ) [1 

4

 200  10

2

3

]  8 2 .2 3 k N

( b ) Now we have Le

0 .7 ( 5 0 0 )



r

 1 2 1 .2  8 8 .9

2 .8 8 7

Euler formula applies. So  EI

 ( 2 0 0  1 0 )( 2 9 1 7  1 0

2

Pc r 

2



2

9

Le

( 0 .3 5 )

12

2

)

 47 kN

SOLUTION (5.69) ( a ) Cross-sectional area: A 

 4

2

(D



 d )  2

( 6 2 .5  6 0 )  2 4 0 .5 m m 2

4

2

2

Moment of inertia: 

I 

64

4

(D



 d )  4

64

( 6 2 .5  6 0 )  1 1 2 , 8 4 1 .5 m m 4

4

4

and r  Le

I A



r

750 2 1 .7



 2 1 .7 m m

1 1 2 ,8 4 1 .5 2 4 0 .5

 3 4 .5 6

Also (

Le r

2

 E

)c 

Sy





2

9

( 7 0 1 0 )

2 7 0 1 0

6

 5 0 .5 8

Since L e r  5 0 .9 6 , the Johnson formula applies. Thus Pc r  A S y [1 

Sy 2

4 E

(

Le r

) ]  2 4 0 .5  1 0 2

6

( 2 7 0  1 0 )[1  6

6

2 7 0  1 0 ( 3 4 .5 6 ) 4

2

9

( 7 0 1 0 )

2

]

 5 7 .3 6 k N

( b ) We have C  D 2 and: ce r

2



3125 (3) ( 2 1 .7 )

2

 0 .2

A  2 4 0 .5 m m

2

P  16 kN

(CONT.)

94

5.69 (CONT.)

Equation (5.74a) gives then 



m ax

[1 

P A

2

3

2 4 0 .5  1 0

P Pc r

)]

[1  0 .2 s e c ( 2

1 6 (1 0 )



s e c ( 2

ec r

6

16 5 7 .3 6

)]

 7 9 .8 M P a

SOLUTION (5.70) From Prob.5.55 for both angles: I m in  4 7 0 , 0 5 2 m m r 

1,4 8 8 2

2 E Sy

Cc 

Le

 1 7 .7 7 m m ,

4 7 0 ,0 5 2

2

2



( 200  10

240  10

9

)

6

r



4

and A  7 4 4  2  1 4 8 8 m m

2 .7 5  1 0 1 7 .7 7

3

 1 5 4 .8

 128

Since C c  1 5 4 .8, use Eqs. (5.77b): 





a ll

2

9

( 2 0 0 1 0 )

1 .9 2 (1 5 4 .8 )

 4 2 .9 M P a

2

Hence Pa ll  

a ll

A  4 2 .9 (1 4 8 8 )  6 3 .8 4 k N

SOLUTION (5.71) Cc 

2

2 E Sy

 [

2

2

1

3

( 200  10 )

Le

] 2  106 ,

350



r

0 . 65 ( 3 ) d 4



7 .8 d

(Eq.c of Sec. 6.2)

Equation (5.77b): 

Le

Check:

3

5 0 (1 0 )



a ll

 d



r

2

4

6 0 . 0441

2





9

( 2 0 0 1 0 )

1 .9 2 ( 7 .8 d )

2

d  4 4 .1 m m

,

 136  C c

OK.

SOLUTION (5.72) L e  0 . 5 L  2 m . Assume 1 1  L e d  2 6 and use Eq.(5.80b). Thus



a ll



P A



3

1 0 0 (1 0 ) d

2

 8 .2 7 [1 

1 3

(

Le d 26

2

) ]1 0

6

This gives 1 0 0 (1 0 )  8 .2 7 d 3

2

 0 .0 2 4 5,

d  109 m m

Then  

P A



3

1 0 0 (1 0 ) ( 0 .1 0 9 )

Check: 8 .4 2  1 0

2

 8 .4 2 M P a

O K .,

L e d  2 0 .1 0 9  1 8 .3

95

OK.

2

Thus

SOLUTION (5.73) A 



(3 5 0  3 0 0 )  2 5 , 5 2 5 m m , 2

4

2

L e  0 .7 L  0 .7 ( 6 .1)  4 .2 7 m .

2

Equation (5.68): r 

1 4

 d

2

D



2

350  300 2

1 4

Le

 1 1 5 .2 4 m m ,

2

r



4 .2 7  1 0 1 1 5 .2 4

3

 3 7 .0 5

Using Eq.(5.79b):  a ll  [1 4 0  0 .8 7 (3 7 .0 5 )]  1 0 7 .7 7 M P a Hence Pa ll  1 0 7 .7 7  1 0 ( 2 5 , 5 2 5  1 0 6

6

)  2751 kPa

SOLUTION (5.74) 0 .1 2  0 .0 8 12

I m in 

3

6

 5 .1 2 (1 0

A  0 .0 0 9 6 m ,

rm in 

2

Cc 

4

) m , I m in

2

2 E Sy

A  2 3 .0 9 m m ,

 1 2 1 .7 Le r 

3,5 0 0 2 3.0 9

 1 5 1.6

By Eq.(5.77b): 

a ll

2

 E



1 .9 2 ( L e r )

2

2





9

( 2 1 0 1 0 )

1 .9 2 (1 5 1 .6 )

2

 4 6 .9 7 M P a

We have 600 9 .6

 62 . 5 MPa

 280

MPa

SOLUTION (5.75) Table A.6: A  27 . 5  10

3

mm

r z  101 . 1 mm

2

Buckling in xy plane: C c  [ 2

2

( 200  10

1

3)

280 ] 2  119 , L e  0 . 7 L  4 . 2 m

and L e r z  4 .2 0 .1 0 1 1  4 1.5  C c . Apply Eq.(5.77a):

n 

5 3





all



3 8

( 119 ) 

1 8

( 1 1 9 )  1.7 9

1 2

.5 ( 41 ) ]  146 . 9 MPa 119

4 1.5

280  10 1 . 79

6

[1 

3

4 1 .5

2

and Pall  146 . 9 ( 27 . 5 )  4 , 040

kN

Buckling in xz plane: L e  0 . 5 (12 )  6 m n 

5 3





a ll



3 8

( 3171.59 ) 

2 8 0 1 0 1 .7 7

6

[1 

r y  161

mm ;

1 8

( 31 71 .39 )  1 .7 7

1 2

( 31 71 .39 ) ]  1 5 0 .4 M P a ,

L r y  37 . 3  C c

2

2

96

Pa ll  1 5 0 .4 ( 2 7 .5 )  4 ,1 3 6 k N

SOLUTION (5.76) A  a

r 

2

a

I A  2

a

I  a L

a

4

r

12 0 .5



3

a (2



1 .7 3 2 a

3)

Assume: 9 .5  L e r  6 6 . Using Eq. (5.79b): 

a ll

250  10



a

3

 [1 4 0  0 .8 7 (

2

1 .7 3 2

) ]1 0

6

a

or 3

a  1 0 .7 6  1 0 2

a  1 .7 8 6  1 0

3

 0,

a  48 m m .

So, r  a 2

3  48 2

3  1 3 .9 m m

L r  5 0 0 1 3 .9  3 6  6 6

Our assumption was correct. Use a  4 8 m m

SOLUTION (5.77) A  200  100  160  60  10, 400 m m I m in  rm in 

1

2

( 2 0 0  1 0 0  1 6 0  6 0 )  1 3, 7 8 6 , 6 6 6 .6 7 m m 3

3

4

12 A  3 6 .4 1 m m ,

I m in

L e rm in  4 .3  1 0

3

3 6 .4 1  1 1 8 .1

Use Eq. (5.79c): 

a ll



350  10 (1 1 8 .1)

3

 2 5 .0 9 M P a

2

Pa ll  2 5 .0 9  (1 0 , 4 0 0 )  2 6 0 .9 4 k N

SOLUTION (5.78) For the situation described L e  2 L (see Fig. 5.17a) and d=62 mm So, Le

2 (1 .2 2  1 0 ) 3



d

 3 9 .4

62

Since 39.4 > 26, use Eq. (5.80c). 0 .3 (1 2  1 0 ) 9



a ll



(3 9 .4 )

2

 2 .3 2 M P a

and Pa ll  

a ll

A  ( 2 .3 2 ) (8 8  6 2 )  1 2 .6 6 k N

97

SOLUTION (5.79) We now have L e  2 L  2 ( 7 5 0 )  1 5 0 0 m m and d=62 mm Le

1500



d

 2 4 .2

62

Since 24 .2< 26, apply Eq. (5.80b). 

1 2 4 .2 2 ( ) ]  5 .8 8 M P a 3 26

 8 .2 7[1 

a ll

Thus Pa ll  

a ll

A  ( 5 .8 8 ) (8 8  6 2 )  3 2 .0 8 k N

SOLUTION (5.80) Boundary conditions: v ( 0 )  0 , v ( L )  0 , With w=0, the solution of Eq.(5.82b):

M (0)   M 0 ,

M (L)   M

0

v  A sin k x  B c o s k x  C x  D

(1)

v "   A k s in k x  B k

(2)

2

2

cos kx

Substituting boundary conditions into these equations, we have v (0 )  B  D  0,

v ( L )  A s in k L  B c o s k L  C L  D  0

and since E Iv "  M , M ( 0 )   B E Ik

Solving, and setting k M

A 

  M 0,

M ( L )   A E Ik sin k L  B E Ik c o s k L   M 2

2

 P E I as needed,

2

1 c o s k L s in k L

0

P

2

B  D 

,

M

0

P

C  0

,

Equation (1) is thus M

v 

0

1 c o s k L s in k L

(

P

s in k x  c o s k x  1 )

SOLUTION (5.81) Apply Eq.(4.14) 2

EI

dx

M   Pv 

 M

d v 2

2

dx

2

(x

2

 Lx )

P

or d v

w 2

 k x  2

w 2

(x

2

wL 2

 Lx )

A

B

x

wL 2

Figure S5.81 We have, the deflection: v  vh  vP

(1)

v h  A s in k x  B c o s k x

(2)

Here It can be shown that, for the case of uniform loading w (Fig. S5.81): vP 

w 2 E Ik

2

(x

2

 Lx 

2 k

2

(3)

)

Boundary conditions v h ( 0 )  0 and v h ( L )  0 give A and B. In doing so, Eq.(1) results in: v 

w E Ik

4

[(1  c o s k L )

s in k x s in k L

 cos kx 

98

2

k 2

(x

2

 L x )  1]

0

SOLUTION (5.82) Refer to Example 5.23. 

v 



m x L

a m sin

(1)

m 1

Hence U  W 



EI 2

1 2

L

(d

0



2

dx

v 2

L

4

 EI

) dx  2

P ( v ') d x  2

0

4L



L

3



4

w vdx 

0

2

m am



2

 P 4L

m am  2

2

2wL





am

1 m

Applying  U   W , we obtain am 

4 wL 5

4

 EI

1 3

2

m (m b)

where b 

PL

2

2

 EI

Substitution of this into Eq.(1) gives the solution.

End of Chapter 5

99

Section II FAILURE PREVENTATION CHAPTER 6

STATIC FAILURE CRITERIA AND RELIBILITY

SOLUTION (6.1) Table 6.2: K c  5 9 1 0 0 0 M P a

mm

S y  1503 M Pa

and

  1 . 01

Case A of Table 6.1: with a w  0 . 1 , From Eq.(6.3), with n  1 :  

Kc



 a



59

 2 0 8 .4

1000

(1 .0 1 )

 ( 25 )

M Pa

Thus, we have P   ( 2 w t )  2 0 8 .4 ( 0 .5  0 .0 2 5 )1 0  2 , 6 0 5 6

kN

The nominal stress at fracture  

6

2 .6 0 5 (1 0 )

 2 3 1 .6

0 .0 2 5 ( 0 .5  0 .0 5 )

M Pa

This is well below the yield strength of 1503 MPa.

SOLUTION (6.2) Py  

all

A net 

( 350  15 )  2 . 844

650 1 .2

Case B of Table 6.1: with a w  0 .0 7 ,  

By Eq.(6.3),

Kc n

 a



MN

  1.1 2

100 1000 1 .2 (1 .1 2 )

 ( 25 )

 2 6 5 .5 M P a

Since 265.5 < 650, fracture controls. Thus P f  265 . 5 ( 350  15 )  1 , 394

kN

SOLUTION (6.3) From Table 6.2: K c  23 1000

MPa

Case B of Table 6.1: a w  0 .1 6 ,

mm

and S

  1.1 2

By Eq.(6.3), with n  1 :  

Kc



 a



 8 1 .9 3 M P a

23 1000 1 .1 2

 ( 20 )

It follows that P   ( wt )  81 . 93 (125  25 )  256

Then  

P ( w  a )t



3

256 ( 10 ) ( 0 . 125  0 . 02 ) 0 . 025

 97 . 5 MPa

 S

 97 . 5 MPa

y

100

kN

y

 444

MPa

SOLUTION (6.4) Table 6.1, Case A:   1 .0 3 . Table 6.2, K c  5 9 M P a

S y  1503 M Pa .

m,

We have  

Sy n



 6 0 1 .2 M P a

1503 2 .5

Equation (6.1) gives K  

 a  (1 .0 3 )( 6 0 1 .2 )  ( 2  1 0

3

)  4 9 .0 8 M P a

Using Eq. (6.2), we find n 

Kc



K

59 4 9 .0 8

 1 .2

SOLUTION (6.5) Table 6.1, Case B:   1 .3 7 . Table 6.2, K c  3 1 M P a

m,

S y  392 M Pa .

We have  

Sy n



 140 M Pa

392 2 .8

Equation (6.1): K  

 a  1 .3 7 (1 4 0 )  ( 0 .0 0 5 )  2 4 .0 4 M P a

Applying Eq. (6.2), n 

Kc



K

31 2 4 .0 5

 1 .2 9

SOLUTION (6.6) Table 6.1: a w  5 0 5 0 0  0 .1, Table 6.2: K c  1 1 1 M P a

m,

  1 .0 1 . S y  798 M Pa .

( a ) Equation (6.1), K  

 a  1 .0 1(1 5 0 )  ( 0 .0 5 )  6 0 M P a

Equation (6.2) gives the safety factor for fracture as, n 

Kc



K

111 60

 1 .8 5

Safety factor for yielding is n 

Sy





798 150

 5 .3 2

( b ) Using Eq. (6.3) with n=1, fracture stress is 

f



Kc



a



111 (1 .0 1 )

 ( 0 .0 5 )

 2 7 7 .3 M P a

101

m

m

m

SOLUTION (6.7) Case A of Table 6.1 and Table 6.2: K

c

 59

1000

  1 . 01

MPa

S y  1503 M Pa

mm

(assumed)

By Eq.(6.3):  

Kc n

(a)

 

pfr

(b)

 

pfr

2t

t



 a

59

 3 1 0 .7

1000

 (5)

(1 .5 )(1 .0 1 )

M Pa  S y

,

p f  2 ( 4 9 .7 1)  9 9 .4 2 M P a

,

pf 

t r

3 1 0 .7 ( 4 )



25

 4 9 .7 1 M P a

SOLUTION (6.8) Table 6.2: K c  31 MPa Case D of Table 6.1:

m

y

 392

MPa

   1.3 2

 0 .4

a w

S

Using Eq.(6.3) with n  1 and   6 M tw : 2

Kc  

a ;

6M tw

2

3 1(1 0 )  1.3 2 6

6M 0 . 0 2 5 ( 0 .1 )

2

 ( 0 .0 4 )

Solving M  2 . 76 kN  m

SOLUTION (6.9) ( a ) K c  59 M Pa

m

S y  1 5 0 3 M P a (Table 6.2).

and

Case B of Table 6.1: with a=12.5 mm and w=125 mm:

a w

 0 . 1    1 . 12

Eq.(6.3) with n  1 : 5 9  (1 .1 2 ) 

 (1 2 .5  1 0

3

),

  2 6 5 .8 M P a

Therefore Pa ll  ( w t )  (1 2 5  2 5 )( 2 6 5 .8 )  8 3 0 .6 k N

Note that the nominal stress at fracture  

8 3 0 .6 2 5 (1 2 5  1 2 .5 )

 2 9 5 .3 M P a  S y

( b ) Table 6.2: K c  6 6 M P a

m

and S y  1149 M P a

Thus 66  10

6

 (1 . 12 ) 

 a  (1 . 12 )(

Solving a  0 .0 1 5 m = 1 5 .6 m m

Comment: This value of a satisfies Table 6.2

102

830 . 6  10 125  25  10

3 6

) a

SOLUTION (6.10) a w

Refer to Example 6.3. We now have  a  2 .1 1



 0 .4 :

15 37 . 5

 b  1.3 2

and

Equation (6.5) is therefore   ( 2 . 11 )

Table 6.2: K c  7 7 M P a

m

6 ( 0 . 175 P )

 (1 . 32 )

P 0 . 0375 ( 0 . 0125 )

0 . 0125 ( 0 . 0375 )

2

 83 , 349 P

and S y  690 M P a

Note that both a and t satisfy Table 6.2. Using Eq.(6.3),  

Kc

 a

n

7 7 1 0

8 3, 3 4 9 P 

:

2

3

 ( 0 .0 1 5 )

Solving P  2 .1 2 8 k N

The nominal stress at fracture, ( 2 .1 2 8  1 0 ) [ 0 .0 1 2 5 ( 0 .0 3 7 5  0 .0 1 5 )]  7 .5 7 M P a  S y . 3

SOLUTION (6.11) By Table 6.2, K c  5 9 M P a

m and S y  1503

M P a . Note that values of a and t satisfy

Table 6.2. a w

From Table 6.1: 

a ll

Kc



n

 a

   1.1 2 . Therefore,

 0 .1

5 9 1 0



(1 .4 )(1 .1 2 )

6

 ( 0 .0 0 5 )

 3 0 0 .2 2 M P a

and Pa ll  

a ll

( w t )  3 0 0 .2 2 ( 0 .0 5  0 .0 2 5 )  0 .3 7 5 M N = 3 7 5 k N

Comment: The nominal stress at the fracture 375 kN t(2w2a)



3

3 7 5 1 0 ( 0 .0 2 5 )( 0 .1  0 .0 1 )

 1 6 6 .7 M P a  S y

SOLUTION (6.12)

(a) (b)



x





xy



S

y

n

S

y

n

32 M 3

D

16 T

D

3

 (

x

 (

x

2

2

 

4P

D

2

3

32 ( 5  10 )



 ( 0 .1 ) 3

16 ( 8  10 )

 ( 0 .1 )

3

2

3

4 ( 50  10 )

 ( 0 .1 )

2

 57 . 3 MPa

1

260 n

 [ 5 7 .3  3 ( 4 0 .7 4 ) ] 2 ,

260 n

 [ 5 7 .3  4 ( 4 0 .7 4 ) ] 2 ,

1

 4 xy ) 2 ;



 40 . 74 MPa

1

 3 x y ) 2 ; 2

3

2

2

103

2

2

1

n  2 .8 6

n  2 .6 1

SOLUTION (6.13) Table B.1: S u  2 4 0 M P a and S u '  6 5 0 M P a From the solution of Prob. 6.12, we have 

 5 7 .3 M P a and 

x

xy

 4 0 .7 5 M P a .

Thus 







x

2

1 ,2

(



x

2

)  2

2 xy

 2 8 .6 5 

( 2 8 .6 5 )  ( 4 0 .7 5 ) 2

2

or  1  7 8 .4 6 M P a

 2   2 1 .1 6 M P a

Thus 1





u n

 1;

2

u n

7 8 .4 6 240



 2 1 .1 6 650



1 n

or n  2 .7 8

SOLUTION (6.14) y A

F

B

0.8 m



A

P T

We have

T

D

M

P=20F,

T=0.4F,

P

x



M=0.8F

Stresses at fixed end: 

b





32 M

a 

 D

3

32 ( 0 . 8 F )

 ( 0 . 04 )

20 F

 ( 0 .0 4 )

2

4

3

 

 127 , 324 F



 1 5 , 9 1 5 .5 F

x

16 T

 D

3



16 ( 0 . 4 F )

 ( 0 . 04 )

3

 31 , 831 F

  a   b  1 4 3 , 2 3 9 .5 F

Apply Eq.(6.16): S

y

n

1

 [ x  3 ] 2 ; 2

2

6

2 5 0 (1 0 ) 1.4

2

or F  1 . 163

kN

SOLUTION (6.15) Refer to solution of Prob. 6.14. We have  m ax 

(

 [(



x

2

)  2

1 4 3 , 2 3 9 .5 F 2

2

)  (3 1, 8 3 1 F ) ] 2

2

Hence,  m ax 

Sy 2n

;

7 8 , 3 7 4 .7 F 

1

 F [(1 4 3 , 2 3 9 .5 )  3 ( 3 1, 8 3 1 ) ] 2

6

2 5 0 (1 0 ) 2 (1 .4 )

or F  1 .1 3 9 k N

104

1 2

 7 8 , 3 7 4 .7 F

2

x

SOLUTION (6.16) T  0 .4 F

At the fixed end A:

M

 0 .8 F

z

Vy  F

Thus, 



x

32M

D

A 1 6T

  

D

 ( 0 .0 6 )

 ( 0 .0 6 )

 3 7 .7 2 6 F

3

1 6 ( 0 .4 F )

 

3

3 2 ( 0 .8 F )



3

  9 .4 3 1 F

3

Then  1, 2 

3 7 .7 2 6 F

3 7 .7 2 6 F

)  (  9 .4 3 1 F ) 2

2

2

 1  3 9 .9 5  1 0 F 140  10

(

2



3

(a)



 m a x  2 1 .0 9  1 0 F

  2 .2 3  1 0 F 3

2

3

6

 2 1 .0 9  1 0 F ,

F  4 .1 5 k N

3

1 .6

( b )  1   1 2   2  ( S y n ) 2

2

2

[3 9 .9 5  3 9 .9 5 (  2 .2 3 )  (  2 .2 3 ) ] 2

2

1 2

(1 0 ) F  ( 2 6 0 1 .6 )1 0 3

6

or F  3 .9 5 k N

SOLUTION (6.17) Q B  102 (10 . 3 )( 74 . 85 )  78 . 6  10

3

3

mm

Q C  Q B  6 . 6 ( 69 . 7 )( 34 . 85 )  94 . 6  10

3

mm

3

We have 

A



Mc I



VQB



3

24 ( 10 )( 0 . 08 ) 13 . 4 ( 10

6

)

 143 . 3 MPa ,



B



(143 . 3 )  124 . 9 MPa

69 . 7 80

and B 

Ib

3

6 0 (1 0 )( 7 8 .6  1 0 1 3 .4 (1 0

6

6

)

)( 0 .0 0 6 6 )

 5 3 .3 M P a ,

c 

VQc Ib

 6 4 .2 M P a

Thus (  1, 2 ) B 

1 2 4 .9 2

 [(

1 2 4 .9 2

 1 B  1 4 4 .6 M P a

or

(

max

1

)  5 3.3 ] 2  6 2 .5  8 2 .1 2

2

 2 B   1 9 .6 M P a

) B  82 . 1 MPa

Hence ( m ax ) B 

S

y

2(2 )



320 4

8 2 .1  8 0

;

 F a ils

Alternatively, using Eq.(6.11), we have [1 2 4 .9

2

1

 4 ( 5 3.3 ) ] 2  2

320 2

;

1 6 4 .2  1 6 0

105

 F a ils

SOLUTION (6.18) From Solution of Prob.6.17, at point B:  1  1 4 4 .6 M P a  2   1 9 .6 M P a Thus 1

S

[ 1   1 2   2 ] 2  2

2



y

n

320 2

 160 1

or

2

[( 144 . 6 )

 (144 . 6 )(  19 . 6 )  (19 . 6 ) ] 2  155 . 3  160 2

 No failure

Alternatively, by Eq.(6.16): 1

 3 ( 53 . 3 ) ] 2 

2

[124 . 9

2

; 155 . 3  160

320 2

 No failure

SOLUTION (6.19) 1   

(a)

1 

(b)

 1   1



3

pr



t

Sy n

2

2

3 .5 ( 0 .2 5 )

0 .8 7 5 t

;





t



250 1 .5

S

 (

2 2

0 .8 7 5 t



,

2



0 .4 3 7 5 t

t  5 .2 5  1 0

,

3  0

, 3

m = 5 .2 5 m m 1

2

y

) ; [(

n

0 . 875 t

)

2

 ( 0 . 875  20 . 4375 )  ( 0 . 4375 ) ]2  t 2

t

or 1

1 t

[ 0 .7 5 8 ] 2 

250 1 .5

t  4 .5 4 8  1 0

,

3

m = 4 .5 4 8 m m

SOLUTION (6.20) From Solution of Prob.6.19:  1  0 . 875 , 2  t 1 

(a)

Su

;

n

0 .8 7 5 t

0 . 4375 t



350 1 .5



,

3

 0

t  3 .7 5  1 0

,

3

 3 .7 5 m m

( b ) Using Eq.(6.26): 1 

Su



Su

0 .8 7 5 t

;

n



350 1 .5

t  3 .7 5  1 0

,

3

m = 3 .7 5 m m

and 2



n

0 .4 7 5 t

;



350 1 .5

,

t  1 .8 7 5  1 0

3

SOLUTION (6.21) From Solution of Prob.6.17, at point B:  1  1 4 4 .6 M P a  2   1 9 .6 5 M P a (a)



1

( b ) By Eq.(6.25),



Su n

,

n 

n 

Su

1



280 144 . 6

280 144 . 6  19 . 65 ( 280 620 )

 1 . 94

 1 . 82

106

m = 1 .8 7 5 m m

250 1 .5

SOLUTION (6.22)

 

M

A

 0:

Fy  0 :

1 7 5 ( 2 .4 6 )( 2 .4 6 2 )  R B (1 .7 )  0 ,

R B  3 1 1 .5 k N

R A  119 kN

y

175 kN/m z

A 1.7 m

119 kN

b

311.5 kN 133

V, kN

2b

0.76 m C

B

3 ft

119

x -178.5

M, kN  m x -50.54 At B at the upper outermost fiber: 

m ax



M

m ax

c

5 0 .5 4  1 0 b 3



1

I

b (2b )



7 5 .8 1  1 0 b

3

3

3

12

Thus, 

m ax



7 5 .8 1  1 0

; a ll

b

3

 140  10 , 6

3

b  0 .0 8 2 m = 8 2 m m

At B at the neutral axis axis:  m ax 

3V



2A

3 1 7 8 .5  1 0 2

2b

3



2

1 3 3 .8 7 5  1 0 b

3

2

And  m ax   1    2

Thus,  m ax  

; a ll

1 3 3 .8 7 5  1 0 b

2

3

 140  10 , 6

Use a 8 2 m m by 1 6 4 m m rectangular beam.

107

b  0 .0 3 1 m = 3 1 m m

SOLUTION (6.23) We now have

N.A.

A  0 .3  0 .1 2  0 .0 3 6 m

B

120 mm

A

I 

1 12

( 0 .1 2 )( 0 .3 )  0 .2 7  1 0 3

M  0 .4  0 .1 5  0 .5 5 P

300 mm

c A  c B  0 .1 5 m

3 ft Referring to Example 6.9: 



P A



McA

A





P A



M cB

B

 2 7 .7 7 8 P  3 0 5 .5 5 6 P

I

 2 7 .7 7 8 P  3 0 5 .5 5 6 P

I

Thus  1  3 3 3 .3 3 4 P

2  0

 2   2 7 7 .7 7 8 P

1  0

It follows that 3 3 3 .3 3 4 P 

6

1 7 0 (1 0 ) 2 .5

P  204 kN

, 6

6 5 0 (1 0 )

 2 7 7 .7 7 8 P 

P  936 kN

,

2 .5

SOLUTION (6.24) S u  170

S uc  650

MPa

(Table B.1).

MPa

Thus  1, 2 

and (a)

100 50 2

 [(

 1  127 . 6 MPa  127 . 6 , n  1 . 33

170 n

  7 7 .6 ,

1

)  (70 ) ]2 2

2



170 n

n 

(b)

100 50 2

2

  77 . 6 MPa

n  2 .1 9

170 1 2 7 .6  7 7 .6 (1 7 0 6 5 0 )

 1.1 5

SOLUTION (6.25) Table B.1: S u  170  1, 2 

or (a)

(b)

120 60 2

 1  140

S uc  650

MPa  [(

MPa ,

120 60 2



)  40 ] 2

2

 140 ,

n  1 . 21

170 n

  80 ,

n  2 . 13

170 1 4 0  8 0 (1 7 0 6 5 0 )

MPa 1 2

 40 MPa ,

170 n

n 

2

 1.0 6

108

2



3

  80 MPa

3

m

3

SOLUTION (6.26) The circumferential, axial, and radial stresses are given by 1 

pr



 24 p

t

2

pr



2t

3  0

 12 p

Insertion of these expression into Eqs. (6.6) and (6.14) provide the critical pressures. ( a ) For the maximum shearing stress theory: 24 p  0 

(250  10 ) 6

1 1 .4

p  7 .4 4 M P a

( b ) For the maximum energy of distortion theory: p (24  24  12  12 ) 2

2

1 2



1 1 .2

(250  10 ) 6

p  1 0 .0 2 M P a

Comment: The permissible value of the internal pressure is conservatively limited to 7.44 MPa.

SOLUTION (6.27) Maximum shear stress criterion, substituting the given expressions for  n 

Sy

 1 

 2

S yt ( 3 . 56  1 . 70 )  a

 0 . 19

2

1

and 

2

into Eq.(6.6):

S yt

 a

2

Maximum distortion energy criterion, using Eq.(6.14) together with the given expressions for  1 and  2 : Sy

n  2

[  1   1

2



2 2

S yt



1

 0 . 215

1 2

2

[ 3 . 56  ( 3 . 56 )(  1 . 70 )  (  1 . 70 ) ] 2  a

]2

2

S yt

 a

2

The factor of safety based on energy of distortion theory is therefore 11.6 % larger than that based on the maximum shear stress theory. This indicates that the maximum energy of distortion criterion is less conservative, as expected.

SOLUTION (6.28) Principle stress criterion, carrying the given expressions for  n 

Su

1

Su



3 . 56  a

2

t

 0 . 281

1

and 

2

into Eq.(6.22):

Sut

 a

2

Coulomb-Mohr criterion, applying Eq.(6.25) together with the given expressions for 

1

and  2 : n 

Su

 1 

2

S u S uc



Sut [ 3 . 56  (  1 . 7 )( 1 5 )]  a

2

 0 . 256

Sut

 a

2

The n according to the principle stress criterion is thus 8.9 % larger than that on the basis of The Coulomb-Mohr criterion. This indicates that the Coulomb-Mohr theory is more conservative, particularly when S u c   S u .

109

SOLUTION (6.29) Table B.1; S y  2 5 0 M P a 



x

4P



,

2

 D



xy

16T 3

 D

Equation (6.11) results in  xy 

1 2

Sy

[(

1

)   x ]2  2

n

2

6

{ ( 2 5 01 .51 0 )  [

1 2

2

3

4 ( 4 5 1 0 )

 ( 0 .0 5 )

2

1

] } 2  8 2 .5 M P a 2

Thus T 

D

3

 ( 0 .0 5 )

 xy 

16

3

16

(8 2 .5  1 0 )  2 .0 2 5 k N  m 6

SOLUTION (6.30) Refer to solution of Prob.6.29, Equation (6.16) gives  xy 

1

[(

3

Sy n

) x] 2

2

1 3

6

{ ( 2 5 01 .51 0 )  [ 2

3

4 ( 4 5 1 0 )

 ( 0 .0 5 )

2

1

] } 2  9 5 .3 1 M P a 2

and T 

D

3

 xy 

16

 (2)

3

16

(9 5 .3 1  1 0 )  2 .3 3 9 k N  m 6

SOLUTION (6.31) We have  1   ,

 2   .

Table B.2: S u  1 5 0 M P a ,

S uc  5 7 5 M P a

( a ) Equation (6.22):  

Su



n

 107 . 1 MPa

150 1 .4

( b ) Equation (6.24) is thus  150



 575



1 1 .4

or   84 . 98 MPa

SOLUTION (6.32) We have n=2, Table B.1: S u  340 MPa , 

1, 2



1 2

(  102  0 )

(  10  0 ) 

2

S uc  620 

Equation (6.24): 1 Su







2

S uc

1 n

Thus 5

25   340

2



5

25   620

2



1 2

Solving   111 . 1 MPa

110

2

 5 

MPa 25  

2

SOLUTION (6.33) We have n=2. Table B.1: S y  3 4 5 M P a ( a ) Equation (6.11): S

 (

y

n 345 2

or

1

 4 xy ) 2

2

2

x

1

  8 6 .1 M P a

1

  9 9 .4 3 M P a

 [(  1 0 )  4  ] 2 , 2

2

( b ) Equation (6.16): S

 (

y

n 345 2

or

1

 3 x y ) 2

2

2

x

 [ (  1 0 )  3 ] 2 , 2

2

SOLUTION (6.34)

We have 

y

 xy  4 5 M P a

 30 M Pa



x

 0.

Thus 

 1, 2  

y





y

(

2

)  2

2

 1  3 2 .4 M P a

2 xy

 

30



2

(

30

)  (45) 2

2

2

 2   6 2 .4 M P a

( a ) Maximum principal stress theory: 1  1;

3 2 .4  5 5

 1;

6 2 .4  5 5

Su

But 

2

(failure occurs)

Su

( b ) Coulomb-Mohr Theory: 1  2 

Su

32

 1;

S uc



55

 6 2 .4

1

160

gives 0 .5 8  0 .3 9  0 .9 7  1

(no fracture)

SOLUTION (6.35) 

x



32M

D

3

 xy 

1 6T

D

3

M  7 5 0 ( 0 .3 )  2 2 5 N  m

(CONT.)

111

6.35 (CONT.) 350

( S u ) a ll  ( S u c ) a ll 

Also

 140 M Pa

2 .5 630

 252 M Pa

2 .5



 1, 2 



x

(



2

x

)  2

2



2 xy

16

D

3

(M 

M

T

2

2

)

Substituting the given data 16

 1,2 

or

D

(225 

3

2



3

D

2

D

4 7 9 3 .7 9

1 

1

225  680 )   

2

3

(1 1 4 5 .9 2  3 6 4 7 .8 7 )

2 5 0 1 .9 5 D

3

( a ) Maximum Principal Stress Theory 4 7 9 3 .7 9

 1 4 0 (1 0 ) 6

3

D

( b ) Coulomb-Mohr Theory: 1 2 

( S u ) a ll

or

or

D  0 .0 3 2 5 m = 3 2 .5 m m

4 7 9 3 .7 9

 1;

( S u c ) a ll

140 D

3



 2 5 0 1 .9 5 252 D

3

 10

6

D  0 .0 3 5 3 m = 3 4 .3 m m

SOLUTION (6.36) M  (W  F ) L  ( 9  2 )  0 .2 5  2 .7 5 k N  m

T  W a  9  0 .3  2 .7 k N  m

An element at point A: 

x

32M



t 

D 1 6T

D



3

 ( 0 .0 5 ) 1 6 ( 2 .7 )



3

3 2 ( 2 .7 5 )

 ( 0 .0 5 )

3

 224 M Pa

3

y A T

 110 M Pa

z

So  m ax  

(



x

2 (

224

) t  2

2

Sy

)  (1 1 0 ) 2

C

B

W+F

n 2

 157 M Pa

y

2 

210

x

n

A

Solving, n  1 .3 4



B x

t

t

An element at point B:

z

x

Figure (a) (CONT.)

112

6.36 (CONT.) 4 (W  F )

 m ax   d   t 

1 6T



D

3A

4 (1 1  1 0 )

3

3



3  ( 0 .0 2 5 )

2

 1 1 0 (1 0 )  1 1 7 .4 7 M P a  6

210 n

or n  1 .7 9

SOLUTION (6.37) Table B.1: S y  250

and   7 . 86 Mg

MPa

m , n  2 .1 3

State of stress, at a point C at bottom surface on midspan:

x 

C  

32 M

D

3

16T

D

3

We have w  7 . 86 ( 9 . 81 )(  D M

Thus



 wL

m ax

2

32( w L



x

D

2

D

8)

2 .7 8 1 0 D

6

7 .7 2 8 1 0

6

2

8D

2

3

3



6

2 .7 8 (1 0 ) D

3

D

3

2

)  3( 

2

) ( 6 )1 0

2 .0 4 1 0 D

2

3

3

 (S )  ( 2

2

y

n) :

2 5 0 1 0 2 .1

6

or D

2



 1 4 1.7  1 0

1 2 .4 8 4 8 D

6

8

Solving, by trial and error: D  34 . 34 mm

Use a 35-mm diameter shaft.

SOLUTION (6.38) Applying Eq.(6.34), we have z 

From Fig.6.15:

s l 

2 s



2 l



kN

2 . 0 4 (1 0 )

 x  3

Equation (6.16), (

3 2 ( 6 0 .6 D



 

3

2

8

3

16( 400 )

  

4 )  60 . 6 D

2

400  250 2

30  35

2

 3 . 25

R  9 9 .9 4 % .

113

)

2

m

SOLUTION (6.39) The state of stress is    

 d

 

 d

4P

. Thus

2

 d

l 

4 ( 200 )

2

l 

4 (30 )

2

4

4

 d

 d



2



2

2 5 4 .6 d 3 8 .2 d

kPa

2

2

kPa

Figure 6.16, for R=99.7 %: z  2 . 75 Equation (6.34), in rearranged form: z (

2 s



2



1

)2   s   1

2 .7 5[ ( 3 5  1 0 )  ( 3 8 2.2 ) ] 2  3 5 0  1 0  3

2

2

3

2 5 4 .6

d

d

2

from which (3 5  1 0 )  ( 3 8 2.2 ) 3

2

2

d

3

 (1 2 7 .2 7 3  1 0  3

9 2 .5 8 2 d

2

)

2

6

or d  1 .5 7 4 (1 0 ) d  0 .4 7 5 (1 0 )  0 Solving, d  0 .0 3 4 2 m and d  3 4 .2 m m 4

2

SOLUTION (6.40) Apply Eqs.(6.30a) and (6.30b): 12

x 



1 12

12

xi 

912 12

y 

 76,

i 1

1 12



yi 

936 12

 78

i 1

12

x  [

1 11



1

1

( x i   x ) ] 2  [ 111 ( 2 2 0 4 )] 2  1 4 .1 5 5 2

i 1

12



 [ 11 1

y



1

1

( y i   y ) ] 2  [ 1 1 (1, 3 5 1.3 4 )] 2  1 1.0 8 4 2

1

i 1

SOLUTION (6.41) (a) x

n( xi   )

2

n

nx

520

7

3640

7( -44.78 )

2

460

2

920

2(-104.78 )

2

430

5

2150

5(-134.78 )

2

545

5

2725

5( -19.78 )

2

570

10

5700

10(

5.22 )

2

575

18

10350

18( 10.22 )

2

595

8

4760

8( 30.22 )

2

600

3

1800

3( 35.22 )

2

620

6

3720

6( 55.22 )

2

660 -----

4 ----68

2640 4( 95.22 ) ------------ ---------------38405 196521.69

2

(CONT.)

114

6.41 (CONT.) Thus, Eq.(6.30a):  

 5 6 4 .7 8 M P a

38 ,405 68

Eq.(6.30b): n



  [ 617

1

( x i  5 6 4 .7 8 ) ] 2          5 4 .1 5 9 M P a 2

i 1

( b ) Eq.(6.34), z 

Figure 6.16:

s  l 

5 2 5  5 6 4 .7 8 5 4 .1 5 9



m

 0 .7 3 5

R  76 %

SOLUTION (6.42) Maximum load:  l  2 5 k N ,

 l  3 kN

Strength of part:  s  3 0 k N ,

 s  2 kN

Equation (6.33a):  m   s   l  3 0  2 5  5 k N Equation (6.33b): 





m

2 s



2 l



2 3 2

2

 3 .6 k N

Thus, failure impends at m

z 

Figure 6.16:



m



5 3 .6

 1 .3 8 9

R  92 %

SOLUTION (6.43) ( a ) We have 

nom

Pn o m



A



4 (35 )

 ( 0 .0 1 2 5 )

2



35 1 .2 2 7 2  1 0

4

 2 8 5 .2 M P a

So n 

350 2 8 5 .2

 1 .2 3

( b ) Mean stress value equals  l   n o m  2 8 5 .2 M P a . Estimated standard deviation equals 2 .5 l   2 0 .3 7 2 M P a 1 .2 2 7 2  1 0

4

The margin of safety, Eq. (6.34), is thus z 

s  l 

2 s

2

 l



3 5 0  2 8 5 .2 2

2 8  2 0 .3 7 2

2

 1 .8 7

(CONT.)

115

6.43 (CONT.) From Fig. 6.16, reliability corresponding to z=1.87 is R  97 %

Hence, failure percentage equals 100-97=3%. Comment: In foregoing calculations, statistical variability of dimensions is omitted.

SOLUTION (6.44) Equation (6.34): Figure 6.16:

z 

25  20 2

2 .5  3

2

 1 . 28

R  90 %

Thus failure percentage is 10 %. End of Chapter 6

116

CHAPTER 7

FATIGUE FAILURE CRITERIA

SOLUTION (7.1) Use Figure 7.5 for steel (1020). (a)

At infinite life, S e '  2 3 0 M P a The maximum stress in the beam is 

m ax



M

m ax c

I

32 M



D

m ax 3

from which D 

3

32 M



(1)

m ax

m ax

Letting  m a x  S e ' , D 

(b)

3

3

3 2 ( 4 1 0 ) 6

 ( 2 3 0 1 0 )

 5 6 .2 m m

5

At 1 0 cycles, S  3 1 0 M P a . Equation (1) gives Then D 

3

3

3 2 ( 4 1 0 ) 6

 ( 3 1 0 1 0 )

 5 0 .8 m m

SOLUTION (7.2) Use Figure 7.5 for aluminum alloy (2024). (a)

Endurance strength, S n '  1 3 5 M P a The maximum stress in the beam: 

m ax



32 M

D

or D 

m ax 3

3

32 M



(1)

m ax

m ax

With  m a x  S n '  1 3 5 M P a , D 

(b)

3

3

3 2 (1 .5  1 0 ) 6

 (1 3 5  1 0 )

 4 8 .4 m m

7

At 1 0 cycles, S  1 6 5 M P a . Equation (1) results in D 

3

3

3 2 (1 .5  1 0 ) 6

 (1 6 5  1 0 )

 4 5 .2 m m

SOLUTION (7.3) To determine the K t , we use Fig.C.1. Structural steel: S u  400

MPa

(Table B.1).

At section C: D d



38 30

 1.2 6 7

(a) 

r d



4 30

 0 .1 3 3

( b ) Figure 7.9a:

max

 1 .7

3

15 ( 10 ) 0 . 03 ( 0 . 01 )

 85 MPa

(CONT.)

117

7.3 (CONT.)  K

t

 1. 7

r  4 mm : q  0 . 78

K

 1  0 .7 8 (1.7  1 )  1.5 5

f

(Eq.7.13b)

Similarly, at D: D d



r d



38 34 2 34

 K

t

 1.1 1 8

(a) 

 0 .0 5 9

( b ) Figure 7.9a:

 1.8

3

15 ( 10 )

 1 .8

max

 79 . 41 MPa

0 . 034 ( 0 . 01 )

r  2 mm : q  0 . 72

K

 1  0 .7 2 (1.8  1 )  1.5 8

f

SOLUTION (7.4) S u  400

Table B.1:

MPa ,

S e  C f C rC sC t

where

K

f

S Se

 1.5 8 at D (from Solution of Prob.7.3)

S e  0 .4 5 S u  1 8 0

M Pa

 A S u  272( 400 ) b

f

MPa

'

1 K f

'

C

 250

y

 0 .9 9 5

 0 .7

C r  0 .8 7 (Table 7.3) C s  1 (axial loading)

C t  1  0 .0 0 5 8 ( 4 7 5  4 5 0 )  0 .8 5 5

Thus S e  ( 0 .7 )( 0 .8 7 )(1)( 0 .8 5 5 )

1 1 .5 8

(1 8 0 )  5 9 .3 M P a

SOLUTION (7.5) S e  C f C r C s C t (1 K f ) S e '

We have

r d



t

 2 .5 (Fig.C.3)

K

2 26

(1)

 0 .0 7 7 ,

 1.1 5 4

D d

Table B.4: S u  655 MPa , S e  0 .4 5 S u  2 9 4 .8 '

H

B

 197

M Pa

Table 7.3: C r  0 .8 9 Fig.7.9a: q  0 . 8 ,

K

f

 1  0 .8 ( 2 .5  1)  2 .2

Table 7.2: C f  A S u  4 .5 1( 6 5 5 ) b

Use C s  1 (axial loading)

 0 .2 6 5

 0 .8 0 9

Ct  1

Equation (1) is therefore S e  ( 0 .8 0 9 )( 0 .8 9 )(1)(1)( 21.2 )( 2 9 4 .8 )  9 6 .4 8

118

M Pa

SOLUTION (7.6) S u  626

Table B.4:

MPa

H

B

 179

From Eq.(7.1): S e  0 . 5 S u  313 '

MPa

(Note: by Eq.(2.22): S u  3500 (179 )  626 . 5 MPa. ) C s  0 .8 5

From Eq.(7.9): By Eq.(7.7):

Ct  1

C r  0 .8 9

Using Table 7.3:

C

 A S u  4 .5 1( 6 2 6 b

f

 0 .2 6 5

)  0 .8 1 9

For Fillet: r d



4 25

 0 .1 6



D d

35 25

 1.4

K t  1.4 5 Hence, from Fig.C.9: From Fig.7.9a, q=0.82 Equation (7.13b): K f  1  0 .8 2 (1.4 5  1 )  1.3 7

Thus S e  C f C r C s C t ( K1 ) S e  ( 0 . 819 )( 0 . 89 )( 0 . 85 )( 1 )( 1 .137 ) 313  141 . 6 MPa '

f

SOLUTION (7.7) Table B.3: S u  4 7 0 M P a . We apply S e  C f C r C sC t (

1 K f

'

)Se

where K

f

 2 .5 ,

S e  0 .5 S u  2 3 5 '

C s  0 .7 ,

C r  0 .8 4 (Table 7.3),

C

f

 AS

b u

M Pa

 57 . 7 ( 470 )

 0 . 718

Ct  1

 0 . 696

Thus S e  ( 0 .6 9 6 )( 0 .8 4 )( 0 .7 )(1)( 21.5 )( 2 3 5 )  3 8 .5 M P a

SOLUTION (7.8) S e  C f C r C s C t (1 K f ) S e '

(1)

We have D d



30 25

 1 .2

1 d



2 25

 0 .0 8

Hence, from Fig. C.12, K t  1 .9 5 Table B.4: S u  6 5 8 M P a ,

H

B

 192

Equation (7.1): S e '  0 .5 S u  3 2 9 M P a Figure 7.9a: r  2 m m ; Therefore, C

 A S u  4 .5 1( 6 5 8 b

f

q  0 .8 2  0 .2 6 5

)  0 .8 0 8

(CONT.)

119

7.8 (CONT.) Table 7.3: C r  0 .8 7 K

 1  q ( K t  1)  1  0 .8 2 (1 .9 5  1)  1 .7 8

f

Equation (7.9): C s  0 .8 5 Ct  1

(T  4 5 0 C ) o

Equation (1) results in then S e  ( 0 .8 0 8 )( 0 .8 7 )( 0 .8 5 )(1)( 1 .71 8 )(3 2 9 )  1 1 0 .4 M P a

SOLUTION (7.9) Refer to solution of Prob. 7.8, Now, Fig. C.11 give  1 .2 ,

D d

 0 .0 8,

r d

Table B.3: S u  7 7 0 M P a ; r  2 mm;

Figure 7.9b:

K t  1 .5 H

B

 229

q  0 .9 8

K

f

 1  q ( K t  1)  1  0 .9 8 (1 .5  1)  1 .4 9

C

f

 A S u  5 7 .7 ( 7 7 0

Also b

C r  0 .8 7 ,

 0 .7 1 8

C t  0 .5 6 5,

)  0 .4 8 8

C s  0 .8 5

S e '  0 .5 S u  3 8 5 M P a

Thus S e  C f C r C s C t (1 K f ) S e '

 ( 0 .4 8 8 )( 0 .8 7 )( 0 .8 5 )( 0 .5 6 5 )( 1 .41 9 )(3 8 5 )  5 2 .7 M P a

SOLUTION (7.10) Refer to definitions given by Eqs. (7.14). ( a )  m  12 ( m a x   m in )  12 (8 4  8 4 )  0 a 

1 2

(

R 

Thus,



m ax



m in



m ax

m in



)

84 84

1 2

(8 4  8 4 )  8 4 M P a

 1

and 

A 



a m



12 0

 

(b) m 

1 2

(8 4  1 4 )  3 5 M P a

a 

1 2

(8 4  1 4 )  4 9 M P a

R 

14 84

 

(c) m a  R 

0 84

 0

A 

42 42

1

1 6

1 2

,

A 

7 5

(8 4  0 )  4 2 M P a

120

SOLUTION (7.11) M

max

 M

 M , 

min

m

 0, 

a



 651 , 898 M

32 M

 ( 0 . 025 )

3

Equation (7.7): C

f

 AS

b u

 4 . 51 ( 700 )

 0 . 265

 0 . 794

Also Ct  1

C r  0 .8 7

Table 7.3:

Equation (7.9):

C s  0 .8 5

Equation (7.1):

S e  0 .5 ( 7 0 0 )  3 5 0 '

M Pa

From Fig. C.9, with D d  1 . 5 , r d  0 . 05 : K t  2 .1 q  0 .7 7

By Fig.7.9a: and K Hence

 1  0 . 77 ( 2 . 1  1 )  1 . 85

f

S e  C f C r C sC t (

1 K f

'

)Se

 ( 0 .7 9 4 )( 0 .8 7 )( 0 .8 5 )(1)( 1 .81 5 )(3 5 0 )  1 1 1 .1 M P a

Thus, Eq.(7.24): n 

Se



6

1 1 1 .1  1 0 6 5 1 ,8 9 8 .6 M

1 .5 

;

a

or M  1 1 3 .6 N  m

SOLUTION (7.12) Table B.3: S u  4 7 0 M P a

H

B

 131

 S e  0 .4 5 S u  2 1 1 .5 '

M Pa

Tensile area through the hole: 2 ( R  r ) t  2 (10  4 )( 2 . 5 )  30 mm

m  a 

and

F 2A



F 2( 30 )



2

F 60

(1)

We have C r  0 .7 0 (Table 7.3)

C

 A S u  4 .5 1( 4 7 0 ) b

f

Ct  1  0 .2 6 5

 0 .8 8

C s  1 (axial loading)

From Fig.C.5: d D

 0 .4 , q  0 .8

By Fig.7.9a: Hence

K

f

K t  2 .8

 1  0 . 8 ( 2 . 8  1 )  2 . 44

Therefore, S e  C f C r C s C t (1 K f ) S e '

 ( 0 .8 8 )( 0 .7 )(1)(1)(1 2 .4 4 )( 2 1 1 .5 )  5 3 .4

M Pa

(CONT.)

121

7.12 (CONT.) By Eq.(7.20): 

m

4 7 0 1 .4



470

(1 )(

 3 4 .2 5

(2)

M Pa

) 1

5 3 .4

From Eqs.(1) & (2): 34 . 25 

F 60

or F  2 .0 6

kN

SOLUTION (7.13) Refer to solution of Prob. 7.12. We have,  m   a  F 6 0 and C r  0 .8 7

(Table 7.3)

C t  1  0 .0 0 5 8 ( T  4 5 0 )

(Eq. 7.11)

 1  0 .0 0 5 8 ( 5 4 5  4 5 0 )  0 .4 5

Endurance limit becomes S e  5 3 .4 ( 00.8.77 )( 0 .4 5 )  2 9 .8 7 M P a

The SAE criterion from Eq. (7.20) with S u  S 

m



S  

a m

n

f S

f

Se

1



4 1 5 1 .2 (1)

415 2 9 .8 7

1

f

is

 2 3 .2 2 M P a

Thus F 6 0  2 3 .2 2 ,

F  1 .3 9 k N

SOLUTION (7.14) Table B.3: S y  3 9 0 M P a

Refer to solution of Prob. 7.12. We have,  m   a  F 6 0 and C r  0 .8 9

(Table 7.3)

C t  1  0 .0 0 5 8 ( T  4 5 0 )

(Eq. 7.11)

 1  0 .0 0 5 8 ( 5 4 0  4 5 0 )  0 .4 8

Endurance limit is then S e  5 3 .4 ( 00.8.79 )( 0 .4 8 )  3 2 .5 9 M P a

The Soderberg criterion from Eq. (7.20) with S u  S f : 

m



Sy n  

a

Sy

m

Se

1



3 9 0 2 .2 (1)

390 3 2 .5 9

1

 1 3 .6 7 M P a

Thus F 60

 1 3 .6 7 ,

F  8 2 0 .2 N

122

SOLUTION (7.15) A  10 ( 25  5 )  200

Pm 

1 2

mm

( 5  25 )  15 kN ,

Pa  10 kN

( a ) Stress concentration factor is neglected for ductile materials under static loading. Thus 



max

Pmax

3

25 ( 10 )



A

S

n 



6

200 ( 10



y

m ax

)

580 125

 125

MPa

 4 .6 4

( b ) We now have  0 .2 ,

d D

S u  690

K t  2 .4 5 (Fig.C.5)

MPa ,

S

y

 580

MPa ,

H

 197

B

(Table B.3)

q  0 .8 3 (Fig 7.9a)

K

 1  0 .8 3 ( 2 .4 5  1 )  2 .2

f

Ct  1

C r  0 .8 4 (Table 7.3)

C s  1 (axial loading)

 A S u  4 .5 1( 6 9 0 ) b

C

f

 0 .2 6 5

 0 .7 9 8

S e  0 .4 5 S u  3 1 0 .5 M P a '

Hence S e  ( 0 .7 9 8 )( 0 .8 4 )(1)(1)( 21.2 )(3 1 0 .5 )  9 4 .6 1 M P a

We have 



m

Pm A

3

15 ( 10 )



200 ( 10

6

)



 75 MPa ,

a

 50 MPa

Equation (7.22) gives n  75 

 1 . 57

690 690

( 50 )

94 . 61

SOLUTION (7.16) Refer to Solution of Prob.7.15 (a)

n 

S





y

m ax

580 125

 4 .6 4

( b ) We now have Pm 

1 2

[ 25  (  5 )]  10 kN ,

Pa  15 kN

Hence 

a

 75 MPa ,



m

 50 MPa

Thus n  50 

690 690

 1 . 16 ( 75 )

94 . 61

123

SOLUTION (7.17) D

A 

4

2

 ( 0 .0 5 3 1 2 5 )



2

2 .2 1 7  1 0

4

( a ) Su  670 M Pa

H

3

m

 1 9 7 (Table B.4)

B

P  S u A  6 7 0 ( 2 .2 1 7  1 0

and

2

3

)  1 .4 8 5 M N

( b ) S e  C f C r C s C t (1 K f ) S e '

where K

f

1

C r  0 .8 7 (Table 7.3)

C s  1 (axial load)

C

f

 AS

 4 . 51 ( 670 )

b u

 0 . 265

 0 . 804

C t  1  0 . 0058 ( 480  450 )  0 . 826 S e '  0 .4 5 S u  0 .4 5 ( 6 7 0 )  3 0 1 .5

M Pa

S e  ( 0 .8 0 4 )( 0 .8 7 )(1)( 0 .8 2 6 )(1 / 1)(3 0 1 .5 )  1 7 4 .2

and

M Pa

Thus P  A S e  ( 2 .2 1 7  1 0

3

)(1 7 4 .2 )  3 8 6 .2 k N

SOLUTION (7.18) Refer to Solution of Prob.7.17. We now have A   d

2

4   ( 0 .0 5 )

2

4  1 .9 6 3  1 0

3

m

2

( a ) For a static fracture of a ductile material, the groove has little effect. Hence, P  S u A  ( 6 7 0  1 0 )  (1 .9 6 3  1 0 6

(b)

r d

 0 .0 2 5,

D d

 1 .0 6 2 5

3

)  1 .3 1 5 M N

 K t  2 .6 (Fig.C.10)

From Fig.7.9a, with S u  6 7 0 M P a and r  1 .2 5 m m and

K

f

 q  0 .7 5

 1  q ( K t  1 )  1  0 . 75 ( 2 . 6  1 )  2 . 2

We now have S e  1 7 4 .2 2 .2  7 9 .1 8

M Pa

Thus P  A S e  (1 .9 6 3  1 0

3

)( 7 9 .1 8  1 0 )  1 5 5 .4 3 k N 6

SOLUTION (7.19) From Table B.4: S u  519

MPa ,

S

y

 353

MPa ,

H

B

 149

By Eq.(6.20), S ys  0 . 577 S y  203 . 7 MPa ( a ) Thus, S y s  1 6 T  d : 3

T 

3

 ( 0 . 025 ) ( 203 . 7  10 16

6

)

 624 . 9 N  m

(CONT.)

124

7.19 (CONT.) ( b ) S es  C f C r C s C t (1 K f ) S es '

where Ct  1

C r  0 .8 4 (Table 7.3)

C s  0 .8 5 (Eq.7.9)

C

f

 AS

 1 . 58 ( 519 )

b u

S e  0 .2 9 S u  1 5 0 .5 '

From Fig.C.8, with

From Fig.7.9b: q  0 .9 ,

K

f

 0 . 929

D d

(Eq.7.7)

(Eq.7.4)

M Pa

 0 . 05 and

r d

 0 . 085

 2

 K t  1 . 72

 1  q ( K t  1 )  1.6 5

Hence S e s  ( 0 .9 2 9 )( 0 .8 4 )( 0 .8 5 )(1)( 1 .61 5 )(1 5 0 .5 )  6 0 .5

M Pa

Refer to Eq.(7.24): S es  16 T  d . 3

Thus T 

3

6

 ( 0 .0 2 5 ) ( 6 0 .5  1 0 ) 16

 1 8 5 .6

N m

SOLUTION (7.20) Refer to Solution of Prob.7.19. ( a ) A  d

2

4   ( 25 )

4  490 . 874

2

mm

2

, and S

y

 353

MPa . Thus

P  S y A  490 . 874 ( 353 )  173 . 3 kN

( b ) We now have with r d

 0 .0 5 ,

D d

 2

From Fig. C.7: K t  2 .5 2 Figure 7.9a: q  0 .7 and K

f

 1  q ( K t  1 )  1  0 .7 ( 2 .5 2  1 )  2 .0 6

By Eq.(7.3): S e  0 .4 5 S u  2 3 3 .6 M P a Hence S e  ( 0 .9 2 9 )( 0 .8 4 )( 0 .8 5 )(1)( 2 .01 6 )( 2 3 3 .6 )  7 5 .2 2

M Pa

Thus P  S e A  ( 7 5 .2 2 )( 4 9 0 .8 7 4 )  3 6 .9 2

kN

SOLUTION (7.21) From Table B.3: S u  830

MPa ,

S

y

 460

MPa ,

H

B

 248

By Eq.(6.20), S

ys

 0 . 577 S

y

 265 . 4 MPa

Refer to Solution of Prob.7.19. (CONT.)

125

7.21 (CONT.) 3

 d S ys

(a) T 

3

6

 ( 0 .0 2 5 ) ( 2 6 5 .4  1 0 )



16

16

( b ) C f  A S u  4 .5 1( 8 3 0 ) b

 8 1 4 .2 N  m

 0 .2 6 5

 0 .7 6

S e s  0 .2 9 S u  2 4 0 .7 M P a '

S es  C f C r C s C t (1 K

and

'

f

) S es

 ( 0 .7 6 )( 0 .8 4 )( 0 .8 5 )(1)( 1 .61 5 )( 2 4 0 .7 )  7 9 .1 6 M P a

Therefore T 

3

 d S es

3

6

 ( 0 .0 2 5 ) ( 7 9 .1 6  1 0 )



16

16

 2 4 2 .9 k N  m

SOLUTION (7.22) Su  658 M Pa

H

 1 9 2 (Table B.4)

B

S e  C f C r C s C t (1 K f ) S e '

where C r  0 .8 1 (Table 7.3)

C

 AS

f

b u

C s  0 .8 5 (Eq.7.9)

 1 . 58 ( 658 )

 0 . 085

 0 . 91

(Table 7.2)

S e  0 .5 S u  3 2 9 M P a '

 0 . 125 ,

d D

and

K t  2 . 18

From Fig.7.9a: q  0 . 79 ,

K

f

Fig.C.13)  1  0 . 79 ( 2 . 18  1 )  1 . 93

Thus S e  ( 0 .9 1)( 0 .8 1)( 0 .8 5 )(1)( 1 .91 3 )(3 2 9 )  1 0 6 .8 M P a

We have M



m

m

 

1 2

(1 5 8 .2  5 6 .5 )  1 0 7 .3 5 N  m , M

( D

3

m

32 ) ( dD

2

6)



M

1 0 7 .3 5

 ( 0 .0 2 5 )

3

3 2  [ ( 0 .0 0 3 1 2 5 ) ( 0 .0 2 5 )

2

6]

a

 5 0 .8 5 N  m

 8 8 .8 3 M P a

(Fig.C.13)

 a  8 8 .8 3( 15007.8.355 )  4 2 .0 8 M P a

Equation (7.22): n  8 8 .8 3 

658 658

 1 .8 9 ( 4 2 .0 8 )

1 0 6 .8

SOLUTION (7.23) Refer to Solution of Prob.7.22. We now have Su  680 M Pa,

H

B

 2 0 1 (Table B.3)

q  0 . 8 (Fig.7.9a)

Also

d D

 0 .1 2 5

K

f

K t  2 .6 5 (Fig.C.13)

 1  0 . 8 ( 2 . 65  1 )  2 . 32

S e  0 .4 5 S u  0 .4 5 ( 6 8 0 )  3 0 6 M P a '

(CONT.)

126

7.23 (CONT.) S e  ( 0 .9 1)( 0 .8 1)( 0 .8 5 )(1)( 2 .31 2 )(3 0 6 )  8 2 .6 4 M P a

and

We write Pm 

1 2

(60  20)  40 kN ,

Pa  2 0 k N

A  D

2

4  Dd

(Fig.C.13)

and 



m

 9 6 .9 1 M P a ,

40

 ( 0 .0 2 5 )

2

4  [( 0 .0 2 5 )( 0 .0 0 3 1 2 5 )]

Equation (7.22) is therefore n 

 1 .3 7

680 680

9 6 .9 1 

( 4 8 .4 6 )

8 2 .6 4

SOLUTION (7.24) From Table B.2: S u  5 2 0 M P a ,

H

B

 149

C r  0 .7

Table 7.3:

Equation (7.7) and Table 7.2: C

f

 4 .5 1(5 2 0

 0 .2 6 5

)  0 .8 6

S e '  0 .5 S u  2 6 0 M P a

Thus

S e  C f C r C s C t (1 K f ) S e '

 ( 0 .8 6 )( 0 .7 )(1)(1)(1 1)( 2 6 0 )  1 5 6 .5 M P a

We have 



32 M

a





Pm

m

d

 ( 0 .0 2 5 ) 3

4 (1 5  1 0 )



A

3 2 (1 5 0 )



3

 ( 0 .0 2 5 )

2

3

 9 7 .7 8 M P a  3 0 .5 6 M P a

Goodman criterion 

a

Se





m

Su



1 n

9 7 .7 8 1 5 6 .5

;



3 0 .5 6 520



1 n

Solving, n  1 .4 6

SOLUTION (7.25) Refer to solution of Prob. 7.22. We have S y  380 M Pa (Table B.4) C r  0 .8 9

(Table 7.3)

C t  1  0 .0 0 5 8 ( T  4 5 0 )

(Eq. 7.11)

 1  0 .0 0 5 8 ( 4 5 5  4 5 0 )  0 .9 7

Endurance limit is therefore S e  1 0 6 .8 ( 00 .8.8 91 )( 0 .9 7 )  1 1 3 .8 3 M P a

The Soderberg criterion (by Table 7.4) 

a

Se





m

Sy



1 n

Inserting the data, we have 4 2 .0 8 1 1 3 .8 3



8 8 .8 3 380



1 n

,

n  1 .6 6

127



a

 9 6 .9 1

20 40

 4 8 .4 6 M P a

SOLUTION (7.26)

1 

pr t



, a

pa



m

pr



2



pm

2 3



,

2t

 0.

3

pm  1260 kPa,

pa  840 kPa

.

Replace S u with S y in Eq.(7.30): S

 [1 

y

n

 1e 

or

1



1 2

] 2  1 e  0 .8 6 6  1 e

1 4

Sy

(1)

0 .8 6 6 n

Similarly, Eq.(7.25): 

 

1e



S



1m

y

Se



(1260 

1 t



1a

280 210

r t

S

( pm 

 840 ) 

y

pa )

Se

2380 t

(2)

By Eq.(1) and (2): 280 ( 0 .8 6 6 ) 2 .5



2380 t

t  0 .0 1 8 4 m = 1 8 .4 m m

,

SOLUTION (7.27) 1 

pr t



,



2

pr 2t



,

3

 0.

p m  1 . 7 MPa ,

p a  1 . 1 MPa

Refer to Solution of Prob.7.26:  1e 

Su

(1)

0 .8 6 6 n

Use Eq.(7.25): Su

 1e   1m 

Se

 1a 

r t

( pm 

Su Se

p a )  3 0[1 .7 

From Eqs.(1) and (2):  128,

350 0 .8 6 6 n

n  3.1 6

SOLUTION (7.28) b  0 .0 1 m ,

M

max

M

a



1 4

 M

M  PL 4.

( 20 )( 0 . 1)  0 . 5 N  m ,



 0 . 25 N  m ,

m

6M

m 

We have,

L  0 .1 m ,

m 2

bh



6 ( 0 .2 5 ) 0 .0 1 h

2



m



150 h

2

Equation (7.20) gives 

m



980 4 (1 )

98

 7 1 .0 1 M P a

1

40

Thus h 

150 71 . 01  10

6

 1 . 45 mm

128

M a

min

 0

35 15

(1 .1)]  1 2 8 M P a

(2)

SOLUTION (7.29) From Solution of Prob.7.28, we have a  m 

150 n

.

2

(1)

Equation (7.20) by replacing S u with S y : 

m



S



a



m

n

y

S

y

1

Se

Substituting the given data gives 

m

620 4



62

(1 )(

 6 0 .7 8 M P a

(2)

) 1

40

By Eqs.(1) and (2), 6 0 .7 8 ( 1 0 )  6

150 h

2

or h  1 . 57 mm

SOLUTION (7.30) At fixed end M

M  M



m

 P L  2 .2 5 ( 0 .0 3 7 5 )  0 .0 8 4 4 N  m Hence

m ax



 M

m



a

bh

2



Equation (7.20):

m ax

M

m in

2 6 ( 0 .0 4 2 2 )



6M

M



a

( 0 .0 0 3 1 2 5 ) h



m

2

1 0 5 0 1 .2 (1 )

1050

 0 .0 4 2 2 N  m 

81 h

2

 2 8 3 .7 8 M P a

1

504

Thus  2 8 3 .7 8  1 0

81 h

2

6

Pa,

h  0 .5 3 4  1 0

3

m = 0 .5 3 4 m m

SOLUTION (7.31) Refer to solution of Prob. 7.30. Equation (7.11): C t  1  0 .0 0 5 8 ( T  4 5 0 )  1  0 .0 0 5 8 ( 4 7 0  4 5 0 )  0 .8 8

and S e  5 0 4 ( 0 .8 8 )  4 4 3 .5 2 M P a

Equation (7.20), replacing S u by S f , becomes 

m



S 

a



m

n

f S

f

Se

1

Inserting numerical values: 

m



6 9 0 1 .5 (1)( 4 4639.50 2 )  1

 1 7 9 .9 9 M P a

Therefore, 81 h

2

 1 7 9 .9 9  1 0 , 6

h  0 .6 7 1  1 0

129

3

m = 0 .6 7 1 m m

SOLUTION (7.32) P0

Pm  Pa 



Eq.(7.20):

,

2

m

M 850 4



85

(1 )

 0 . 2 Pm  0 . 1 P0 ,

m

Pa Pm  1



a

 3 6 .2 8 M P a

1

1 7 .5 6M

m 

Also

bh

6 ( 0 .1 ) P0



m 2

0 . 0 0 5  1 0 0 (1 0

 1.2 (1 0 ) P0 6

6

)

Thus 1 . 2 P0  36 . 28 ,

P0  30 . 23 N

SOLUTION (7.33) M

M

 0 .2 P0 ,

m ax

m

P0



M

m in

 0 .2 (  0 .5 P0 )   0 .1 P0

( 0 .2  0 .1 )  0 .0 5 P0 ,

2

Equation (7.20):  m 

850 2 1 .5 ( 3 )

85

M

 3 5 .6 2 9

a



P0 2

( 0 .2  0 .1 )  0 .1 5 P0

M Pa

1

35 6M

m 

Also

bh

m 2

6 ( 0 . 0 5 P0 )



0 . 0 0 5  1 0 0 (1 0

 0 .6 (1 0 ) P0 6

6

)

Thus 0 . 6 P0  35 . 629 ,

P0  59 . 38 N

SOLUTION (7.34) I 

bh 12

3

24 ( 4 )



3

 128

12

mm

4

. Table B.3: S u  690

MPa

For a wide cantilever beam (see Secs 4.4 and 4.10, and Case 1 of Table A.8): 3

  (1   ) 2

This gives Pmin 

3 EI 0 . 91 L

 0 .9 1

PL 3EI

3





min

3

PL 3EI

9

3 ( 200  10 )( 128  10 0 . 91 ( 0 . 3 )

3

 12

)

( 0 . 01 )

and hence Pmax  62 . 52 N

 31 . 26 N

Thus Pm  46 . 89 N ,

Pa  15 . 63 N and

46 . 89 ( 0 . 3 )( 2  10

3



m





a

. 63  219 . 8 ( 15 )  73 . 27 MPa 46 . 89

0 . 128 ( 10

9

)

)

 219 . 8 MPa

Eq. (7.22): Su

n  

m



Su Se

 

a

219 . 8 

690 690

 1 . 63 ( 73 . 27 )

250

130



m

1

SOLUTION (7.35) Table B.4: S

 500

y

MPa

Refer to Solution of Prob.7.34. Replacing S u by S y in Eq.(7.22): S

n  



m



y

S

y



Se

219 . 8 

a

500 500

 1 . 36 ( 73 . 27 )

250

SOLUTION (7.36) Refer to solution of Prob. 7.34. We now have (Table 7.3) C r  0 .7 5 C t  1  0 .0 0 5 8 ( T  4 5 0 )

(Eq. 7.11)

 1  0 .0 0 5 8 ( 4 9 0  4 5 0 )  0 .7 7

Endurance limit becomes S e  2 5 0 ( 0 .7 5 )( 0 .7 7 )  1 4 4 .4 M P a

The Gerber criterion (Table 7.4): 

 (

a

Se



) 1 2

m

Su

Substitution of the numerical values gives  ( 2 1699.80 n )  1 2

7 3 .2 7 n 1 4 4 .4

or 0 .5 0 7 4 n  0 .3 1 8 6 n  1  0 2

Solving this quadratic equation:  0 .5 0 7 4 

n 

2

( 0 .5 0 7 4 )  4 ( 0 .3 1 8 6 )(  1 ) 2 ( 0 .3 1 8 6 )

or n  1 .1 5

SOLUTION (7.37) I 

 4

( 0 . 03 )

4

 0 . 636  10



m





a

 23 . 6 MPa

M

m

c

I

6

m

2000 ( 0 . 5 )( 0 . 03 )



0 . 636  10

6

4

Pm  4 kN ,

,

Pa  2 kN

 47 . 2 MPa

Eq. (7.16), with replacing S u by S y : S

y

n

 

m



S

y

Se

a;

280 2 .5

 4 7 .2 

280 150 K

f

( 2 3 .6 )

(CONT.)

131

7.37 (CONT.) Solving K

f

 1.4 7 .

From Fig.7.9a: q=0.8 and

K

f

 1  q ( K t  1 );

1.4 7  1  0 .8 ( K t  1 ),

K t  1.5 9

Then from Fig. C.9: K

t

r d



 1.5 9 9 60

   0 .1 5 

D

 3

d

and D  3 d  3 ( 60 )  180

mm

SOLUTION (7.38) Table B.4: S u  634 I 

bh 12

3

MPa ,

0 . 02 ( 0 . 06 )



3

 1 . 8 kN  m

D d



120 60

r d



4 60

 192

B

 0 . 36  10

12

m

M

H

M

6

m

4

 1 . 2 kN  m

a

Figure C.2:  2

   0 .0 6 7 

K t  2 .1

Figure 7.9a: q  0 . 82 and K

f

 1  0 .8 2 ( 2 .1  1)  1 .9 0 2 .

Se 

400 1 .9 0 2

 2 1 0 .3 M P a

We have 

m





a

 150 ( 11 .. 28 )  100

M

m

c

I



1800 ( 0 . 03 ) 0 . 36  10

6

 150

MPa

MPa

Equation (7.22): Su

n  

m



Su Se

 

a

150 

634 634

 1 .4 ( 100 )

210 . 3

SOLUTION (7.39) Refer to solution of Prob. 7.38. We now have M

m



1 2

(2200  200)  1200 N  m

M

a



1 2

(2200  200)  1000 N  m

Thus,  m  1 5 0 ( 11 28 00 00 )  1 0 0 M P a ,

 a  1 0 0 ( 11 02 00 00 )  8 3 .3 M P a

(CONT.)

132

7.39 (CONT.) The Gerber criterion (by Table 7.4). 

(

a

Se



m

Su

)  2

1 n

Inserting the numerical values, results in 8 3 .3 n 2 1 0 .3

 ( 160304n )  1,

0 .3 9 6 1 n  0 .0 2 4 9 n  1  0

2

2

Solving this quadratic equation:  0 .0 2 4 9 

n 

2

( 0 .0 2 4 9 )  4 ( 0 .3 9 6 1 )(  1 ) 2 ( 0 .3 9 6 1 )

or n  1 .5 6

SOLUTION (7.40) Refer to solution of Prob. 7.38. We now have S

 434 M Pa

f

(from Table B.4)

C t  1  0 .0 0 5 8 ( 4 7 5  4 5 0 )  0 .8 6

(by Eq. 7.11))

 1  0 .0 0 5 8 ( 4 9 0  4 5 0 )  0 .7 7

C r  0 .8 7

(Table 7.3)

and S e  2 1 0 .3( 0 .8 7 )( 0 .8 6 )  1 5 7 .3 M P a

Also M

m

 1 .5 k N  m

M

a

 0 .5 k N  m

and  m  1 5 0 ( 11 58 00 00 )  1 2 5 M P a ,

 a  1 0 0 ( 1520000 )  4 1 .6 7 M P a

The SAE criterion from Table 7.4: 

a

Se





m

S

f



1 n

Introducing the data, we obtain 4 1 .6 7 1 5 7 .3



125 434



1 n

Solving, n  1 .8 1

SOLUTION (7.41) See Tables 7.5, 6.2, and 6.1. We have A  5 .6  1 0

12

n  3 .2 5

K c  77 M Pa

m

S y  690 M Pa

  1 .1 4 for a w  0 .4 (Case B, Table 6.1)

(CONT.)

133

7.41 (CONT.) Note that values of a and t satisfy Table 6.2. The stresses are: 

m ax



Pm a x



2wt

3

9 5 0 (1 0 ) 2 ( 0 .0 8 )( 0 .0 3 4 )



 1 7 4 .6

m in

 7 9 .4 M P a

The range stress is then    1 7 4 .6  7 9 .4  9 5 .2 M P a The final crack length at fracture, by Eq. (7.39): af 

1



Kc

( 

)  2

m ax

( 1 .1 4 7 17 7 4 .6 )  0 .0 4 7 6 m  4 7 .6 m m 2

1



Equation (7.41) results in then N 

0 .0 4 7 6 5 .6 (1 0

12

 0 .6 2 5

 0 .0 3 2

 0 .6 2 5

) (  0 .6 2 5 ) [ (1 .7 7 ) (1 .1 4 ) ( 9 5 .2 ) ]

3 .2 5

 2 0 , 4 5 4 cycles

For a period of 20 second, approximate fatigue life L is L 

20 ,454 ( 20 ) 60 (60 )

 1 1 3 .6 h

End of Chapter 7

134

CHAPTER 8

SURFACE FAILURE

SOLUTION (8.1) From Table 8.2, we have K  10

2

(steel on steel) 5

K  2  10 K  10

(lead on steel)

3

(brass on steel)

7

K  10 (polyurethylene on steel) The Brinell hardness numbers are in MPa: Steel

Su  58  10 H

s

3

 58  10

(Table B.1)

psi 3

500  116 Bhn

(Eq. 2.22)

 1 1 6 ( 9 .8 1)  1 1 3 8 M P a

Lead H l  3(9 .8 1)  2 9 .4 M P a

Brass H b  8 (9 .8 1)  7 8 .5 M P a

Polyurethylene H

p

 7 (9 .8 1)  6 8 .7 M P a

Thus referring to Eq. (a) of Sec. 8.5: Lead

H K  2 9 .4 (1 0 ) 2 (1 0

Brass

H K  7 8 .5 (1 0 ) 1 0

6

6

3

5

)  1470 G Pa

 7 8 .5 G P a

Polyurenthylene H K  6 8 .7 (1 0 ) 1 0 6

7

 687, 000 G Pa

2

Steel H K  1 1 3 8 (1 0 ) 1 0  1 1 3 .8 G P a Comment: Polyurethylene gives much longer life than any other material. 6

SOLUTION (8.2) Through the use of Eq. (8.2), wear volume is V  K

WL H

K  10

4

where W  40 N

(by Table 8.3),

H b  9 .8 1( 6 0 )  5 8 9 M P a , L  80  (2

mm c y c le

) (1 5 0 0

c y c le s s ix m o n th s

H

s

)  240, 000 m m

Therefore Vb 

(1 1 0

Vs 

(1 1 0

4

)( 4 0 )( 2 4 0 ) 6

5 8 9 (1 0 ) 4

)( 4 0 )( 2 4 0 ) 6

1 0 3 0 (1 0 )

 9 .8 1(1 0 5 )  1 0 3 0 M P a

 1 .6 3 m m

3

 0 .9 3 m m

3

135

SOLUTION (8.3) From Eq. (8.2), we have V  K

WL H

Here K  3  10

H

s

H

f

5

W  45 N

(by Table 8.3),

 9 .8 1(1 6 0 )  1 5 6 9 .6 M P a  9 .8 1( 4 5 0 )  4 4 1 4 .5 M P a

L  (3 7 .5  2

mm c yc le

)( 6 0 0 0

c yc le s m o n th

)(1 2 m o n th s )  5 , 4 0 0 , 0 0 0 m m

Hence, V s  (3  1 0

V f  ( 4 .6 )

5

)

( 4 5 )( 5 , 4 0 0 ) 6

1 5 6 9 .6 (1 0 )

1 5 6 9 .6 4 4 1 4 .5

 4 .6 m m

 1 .6 4 m m

3

3

SOLUTION (8.4) Follow procedure of Example 8.1. We have Copper disk: 110 Vickers hardness, V c  0 .9 8 m m Aluminum pin: 95 Brinell hardness, V a  4 .1 m m

3

3

Contact force: W  2 5 N at a radius R  2 4 m m Test duration: t  1 8 0 m in at a speed n  1 2 0 r p m Total length of sliding is then L  2 R n t

 2  ( 2 4 )(1 2 0 )(1 8 0 )  3 .2 6  1 0

6

mm

The hardness of pin and disk are H a  9 .8 1(9 5 )  9 3 2 M P a H c  9 .8 1(1 1 0 )  1 0 7 9 M P a

From Eq. (8.2); K  V H W L . Thus 4 .1 ( 9 3 2 )

Ka 

2 5 ( 3 .2 6  1 0 )

Kc 

2 5 ( 3 .2 6  1 0 )

6

0 .9 8 (1 0 7 9 ) 6

 4 .9 6  1 0  1 .3  1 0

5

5

SOLUTION (8.5) Follow procedure of Example 8.1. Given data: Steel disk: 248 Brinell hardness, V s  0 .9 8 m m Copper pin: 85 Vickers hardness, V c  4 .1 m m

3

3

Contact force: P  3 5 N at a radius R  2 4 m m Test duration: t  1 8 0 m in at a speed n  1 2 0 r p m Total length of sliding equals L  2 R n t

 2  ( 2 4 )(1 2 0 )(1 8 0 )  3 .2 6  1 0

6

mm

(CONT.)

136

8.5 (CONT.) Hardness of pin and disks are H c  9 .8 1(8 5 )  8 3 4 M P a ,

H s  9 .8 1( 2 4 8 )  2 4 3 3 M P a

Using Eq. (8.2); K  V H W L . Therefore 4 .1 ( 8 3 4 )

Kc 

3 5 ( 3 .2 6  1 0 )

Ks 

3 5 ( 3 .2 6  1 0 )

 3  10

6

0 .9 8 ( 2 4 3 3 )

5

 2 .1  1 0

6

5

SOLUTION (8.6) Case B ( 1st column ), Table 8.4 with r1  r2 , (a)  

1 E





1 E

a  0 . 88

3

( b ) p 0  1 .5

 0 . 88

r E

F

 1 .5

P

a

m 

2 E

2



1 r

210 ( 10

500 2

 ( 0 . 624 ) ( 10



2 r

 0 . 624

0 . 15

500

3

1 r

6

)

E1  E 2 .

9

)

mm

 613 . 1 MPa

( c ) Equations (8.4) at z=0: 

x

 



z

  p 0   613 . 1 MPa



yz



  p 0 [( 1   ) 

y



xz

1 2

(

1 2

] 

 z)  

x

p0 2

1  2 2

p 0   0 . 8 ( 613 . 1 )   490 . 5 MPa

( 0 . 8  1 )  61 . 31 MPa

SOLUTION (8.7) Refer to Table 8.4 (Case C, Column 2).  n

( a ) a  0 .8 8 3 F where

  2 E  1(1 0 n 

1 r1



1 r2



11

1 0 .0 0 6

F  2 .2 k N

)



1 0 .0 0 6 0 5

)

1

 1 .3 7 7 4

Thus

and

a  0 .8 8[

2 2 0 0 (1 0

p o  1 .5

F

11

1 .3 7 7 4

a

2

 1 .5

]

3

 2 .2 1 6 2 m m 3

2 .2 (1 0 ) 2

 ( 2 .2 1 6 2 ) (1 0

Since 2 1 4 M P a  4 3 6 M P a

6

 214 M Pa

)

OK

( b )   0 .7 7 5 F  n 3

2

2

 0 .7 7 5[( 2 2 0 0 ) (1 0 2

11

2

1

) (1 .3 7 7 4 )]

3

 0 .0 0 6 7 7 m m

( c ) From Fig. 8.9a,  m a x is at about z  0 .4 a and  m a x p o  0 .3 2 . Therefore z  0 .4 ( 2 .2 1 6 2 )  0 .8 8 6 m m

 m a x  0 .3 2 ( 2 1 4 )  6 8 .4 8 M P a

137

SOLUTION (8.8) See Table 8.4 (Case B, Column 3). We have 11

  2 E  1(1 0

( a ) a  1 .0 7 6

m 

),

1 0 .0 2 5



1 0 .0 7 5

 5 3 .3 3 3 3

 Lm

F

2 2 0 (1 0

11

)

 1 .0 7 6[ ( 0 .0 2 5 )( 5 3 .3 3 3 3 ) ]

1

 4 .3 7 0 7 (1 0

2

5

) m  0 .0 4 3 7 m m

Then po 

2



F aL



220

2



5

( 4 .3 7 0 7  1 0

)( 0 .0 2 5 )

 1 2 8 .2 M P a  3 2 0 M P a

( b ) From Fig. 8.9b, 

OK

is at z  0 .7 5 a and 

yz ,m ax

p o  0 .3 .

yz ,m ax

Hence, z  0 .7 5 ( 0 .0 4 3 7 )  0 .0 3 2 8 m m



yz ,m ax

 0 .3 (1 2 8 .2 )  3 8 .4 6 M P a

SOLUTION (8.9) Refer 2nd column of C, Table 8.4. E 1  E 2  E  210

GPa

 

1

r1  7 mm

r 2  45 mm

F 1  200

kN

m

Hence

( a ) a  1 . 076 [ ( b ) p0 

2



F aL



2 E

2 9

2 1 0 (1 0 )

105 ( 10



)( 120 . 635 )

3

0 . 135 ( 10

n 

,

] 2  0 . 135

200 ( 10 )

2



9

1 0 5 (1 0 )

1 0 .0 0 7



1 0 .0 4 5

 1 2 0 .6 3 5

1

3

200 ( 10 ) 9



3

mm

 943 . 1 MPa

)

SOLUTION (8.10) We have r1 '   . Substitution of the numerical values into Eqs.(8.6) through (8.10)gives m  A 

4 2 0 .2 5



2 0 .0 3 4 9

n 

 0 .0 3 4 9

1 0 .0 0 9 3 7 5

 5 7 .3 0 6 6 ,

B 

1 2

9

4 ( 2 0 0 1 0 ) 3 ( 0 .9 1 )

 2 9 3 .0 4 (1 0 ) 9

1

[( 0 .0 019 3 7 5  0 )  ( 0 )  ( 0 ) ] 2  5 3 .3 3 3 3 2

2

2

From Eq.(8.9) cos   

5 3 .3 3 3 3 5 7 .3 0 6 6

  2 1 .4 6

 0 .9 3 0 7 ,

o

Then, interpolating in Table 8.5, we have c a  3 .6 2 5 1 and c b  0 .4 2 0 4 . Through the use of Eq.(8.7): 3

a  3 .6 2 5 1[

2 .2 5  1 0  ( 0 .0 3 4 9 )

b  0 .4 2 0 4[

2 .2 5  1 0 ( 0 .0 3 4 9 )

9

2 9 3 .0 4 (1 0 ) 3

9

2 9 3 .0 4 (1 0 )

1

] 3  2 .3 3 7 1 m m 1

] 3  0 .2 7 1 0 m m

(CONT.)

138

8.10 (CONT.) The maximum contact pressure, by Eq.(8.6), is thus 2 .2 5  1 0

p 0  1 .5

3

 1 6 9 6 .2 M P a

 ( 2 .3 3 7 1 )( 0 .2 7 1 0 )

Thus stress may be satisfactory for the steel used. SOLUTION (8.11) In this case: r2  r2 '   as well as r1 '   . Substituting w=L=6.25 mm. and given data into the equations on the second column of Case A of Table 8.4: a  1 .0 7 6 p0 

Thus

2



F aw



3

2 .2 5  1 0 0 .0 0 6 2 5

r1   1 .0 7 6

F w

3

2 ( 2 .2 5  1 0 )

 (1 .9 7 6 7  1 0

4

)( 0 .0 0 6 2 5 )

( 0 .0 0 9 3 7 5 )(

2 2 0 0 1 0

9

)  1 .9 7 6 7  1 0

4

m

 1 1 5 9 .4 2 3 M P a

Comments: With the flat-faced follower inaccuracies in machining, misalignment, and shaft deflection may cause edge contact and hence higher actual stress than 1159.423. This cannot occur with a spherical face follower, however.

SOLUTION (8.12) Refer to Table 8.4 (Case A, Column 2). r2   and   2 E a  0 .8 8 3 F r1 

Thus

 0 .8 8[3 6 0 ( 0 .0 5 6 2 5 )(

(a)

p o  1 .5  1 .5

1

2 2 0 0 1 0

)]

9

3

 5 .1 6 7 6  1 0

4

m = 0 .5 1 6 7 6 m m

F

a

2

360

 ( 5 .1 6 7 6  1 0

4

)

2

 6 4 3 .7 M P a

2 2 r1

( b )   0 .7 7 5 3 F

 0 .7 7 5[(3 6 0 ) ( 2

 4 .7 5 1 1  1 0

6

1

2

2 2 0 0 1 0

9

) ( 0 .0 516 2 5 )]

m = 4 .7 5 1  1 0

3

3

mm

SOLUTION (8.13) See Table 8.4 (Case C, Column 3).   2 E and n  1 r1  1 r2  1 0 .0 1 5  1 0 .0 1 6 2 5  5 .1 2 8 2 ( a ) a  1 .0 7 6

F Ln

 9 .0 1 5  1 0 po 

2F  aL



 1 .0 7 6[ 4

3

1 3 .5  1 0 ( 2 )

1

9

( 2 0 0  1 0 )( 0 .0 3 7 5 )( 5 .1 2 8 2 )

]

2

m = 0 .9 0 1 5 m m 3

2 (1 3 .5  1 0 )

 ( 0 .9 0 1 5 )( 0 .0 3 7 5 )

 2 5 4 .2 M P a

 2 5 4 .2 M P a  3 1 7 M P a

OK. (CONT.)

139

8.13 (CONT.) ( b ) Equations (8.5) at z=0:  x   2 p o   2 ( 0 .3)( 2 5 4 .2 )   1 5 2 .5 M P a 

y

  p o   2 5 4 .2 M P a



z

  p o   2 5 4 .2 M P a

 xy 

1 2

(  1 5 2 .5  2 5 4 .2 )  5 0 .9 M P a

 xz 

1 2

(

x

  z )  5 0 .9 M P a



1 2

(

y

 z)  0

yz



( c ) From Fig. 8.9b, 

yz ,m ax

is at z  0 .7 5 a and 

p o  0 .3 .

yz ,m ax

So, z  0 .7 5 (9 .0 1 5 5  1 0



4

)  6 .7 6 2  1 0

4

m = 0 .6 7 2 m m

 0 .3 ( 2 5 4 .2 ) M P a  7 6 .2 6 M P a

yz ,m ax

SOLUTION (8.14) Refer to Table 8.4 (Case C, Column 2).   2 E  2 (200  10 )  1 10 9

n 

( a ) a  0 .8 8 3 F



1 r1  n

F

a

2

1 0 .0 5



1 0 .0 5 5

 0 .8 8[5 6 0

 1 .2 8 0 3 6  1 0

( b ) p o  1 .5



1 r2

3

 1 .5

11

 1 .8 1 8 2 11

1 1 0 1 .8 1 8 2

1

]

3

m = 1 .2 8 0 3 6 m m 560

 (1 .2 8 0 3 6  1 0

3

)

2

 1 6 3 .1 M P a

( c )   0 .7 7 5 F  n  0 .7 7 5[(5 6 0 ) (1  1 0 3

 2 .9 8 3  1 0

2

2

2

6

m = 2 .9 8 3  1 0

3

11

1

2

mm 3

( d ) At z  0 .3 7 5 a  0 .3 7 5 (1 .2 8 0 3 6  1 0 )  0 .4 8 0 1  1 0 

yz ,m ax

3

) (1 .8 1 8 2 )]

3

m = 0 .4 8 0 1 m m (Fig. 8.9a):

 0 .3 2 p o  0 .3 2 (1 6 3 .1)  5 2 .1 9 2 M P a

SOLUTION (8.15) See Table 8.4 (Column 2). We have   2 E  2 ( 2 0 0  1 0 )  1  1 0 9

11

( a ) Case A: r2   . Thus a  0 .8 8 3 F r1   0 .8 8[(5 6 0 )( 0 .0 5 )(1  1 0

 5 .7 5 7 1  1 0 p o  1 .5

F

a

2

4

 1 .5

11

1

)]

3

m 560

 ( 5 .7 5 7 1  1 0

4

)

2

 8 0 6 .7 1 8 M P a

(CONT.)

140

8.15 (CONT.) ( b ) Case B: r1  r2  1 0 0 m m ,  m

a  0 .8 8 3 F p o  1 .5

 0 .8 8[(5 6 0 )

 1 .5

F

a

2

m  2 r  2 0 .1  2 0

560

 ( 5 .7 5 7  1 0

4

)

11

1 1 0 20

2

1

]

3

 5 .7 5 7  1 0

4

m = 0 .5 7 5 7 m m

 8 0 6 .7 M P a

SOLUTION (8.16) Use Table 8.4 (Case A, Column 3).   2 E  2 (200 10 )  1  10 9

a  1 .0 7 6

11

3

r   1 .0 7 6[ 1 .80.11 0 ( 0 .0 1 2 5 )(1  1 0

F L

 5 .1 0 3 9  1 0

5

11

1

)]

2

m = 0 .0 5 1 0 4 m m 4

2 a  1 .0 2 0 7 8  1 0

m = 0 .1 0 2 1 m m

Therefore   

2 r1

( 13  ln

0 .5 7 9 F EL

3

0 .5 7 9 (1 .8  1 0 ) 9

( 2 0 0  1 0 )( 0 .1 )

a

) 2 ( 0 .0 1 2 5 )

[ 13  ln

 3 .4 0 1 4  1 0

7

5

( 5 .1 0 3 9 1 0

)

]

m = 3 .4 0 1 4  1 0

-4

mm

SOLUTION (8.17) We have r1  r2  r . Thus, Eqs. (8.8) and (8.9) become m 

 2 r  2 ( 0 .2 2 )  0 .4 4

4 (1 r )  (1 r )

(1 r )  (1 r )

cos  

(1 r )  (1 r )

  90

 0,

o

From Table 8.5 it can be concluded that surface of contact has a circular boundary: c a  c b  1 . Then n 

9

4 ( 2 0 6 1 0 ) 2

3 (1  0 .2 5 )

 2 .9 2 9 7 8 (1 0 ) 11

Eqs. (8.7) gives, a  b  1[

3

2 (1 0 ) ( 0 .4 4 ) 2 .9 2 9 7 8  1 0

11

1 3

]

 1 .4 4 3 m m

Hence, Eq. (8.6): p o  1 .5

6

2 (1 0 )

 (1 .4 4 3 )(1 0

3

)

 6 6 1 .8 M P a

SOLUTION (8.18) We have r1  0 .5 m , r2  0 .3 5 m , r1 '   , r2 '   , and   90 . Thus, using Eqs.(8.6) through (8.10): o

m  A 

4 1 0 .5 2 m

,



1 0 . 35

n 

 0 . 824

B  

1 2

( r1  1

1 r2

9

4 ( 206  10 ) 3 ( 1  0 . 09 )

 3 . 0183 (10

11

)

)

(CONT.)

141

8.18 (CONT.) cos  

 

B A

1 0 .5  1 0 .3 5 1 0 .5  1 0 .3 5

  7 9 .8 6

 0 .1 7 6 ,

Interpolating from Table 8.5: c a  1.1 2 8 , 3

5 ( 10 )( 0 . 824 )

a  1 . 128 [

3 . 0183 ( 10

p 0  1 .5

)

3

5 ( 10 )( 0 . 824 )

b  0 . 893 [

Thus

11

3 . 0183 ( 10

11

c b  0 .8 9 3 . Hence

1

] 3  2 . 6958

mm

1

] 3  2 . 1342

mm

3

5 ( 10 )

 1 .5

F

 ab

)

o

 ( 2 . 6958  2 . 1342  10

6

 414 . 9 MPa

)

SOLUTION (8.19) We now have F 

 300

600 2

S

r2   5 .2 m m ,

and r2 '   3 0 m m .

r1  r1 '  5 m m ,

and

 1500

N for each row,

y

MPa

We proceed as in Example 8.3. (a) m 

4 

2 0 . 005



1 0 . 0052

1 0 . 030

 0 . 0229 ,

n  293 . 0403  10

9

and A 

 87 . 3362

2 0 . 0229

B 

1 2

[( 0 )

 (

2

1 0 . 0052



1

1 0 . 03

)

2

 2 ( 0 ) ] 2  79 . 4872 2

Using Eq.(8.9), cos   

Table 8.5: c a  3.3 3 3 0 Hence

b  0 . 4441 [

o

c b  0 .4 4 4 1 1

300  0 . 0229

a  3 . 3330 [

  24 . 48

 0 . 9101

79 . 4872 87 . 3362

293 . 0403  10

9

mm

1

300  0 . 0229 293 . 0403  10

] 3  0 . 9539

9

] 3  0 . 1271

mm

 1 ,181

MPa

Then p 0  1 .5

(b) n 

300

 ( 0 . 9539  0 . 1271  10

6

)

Fy

(1)

F

It is required that S y  1.5 F y  a b S

y

1 .5



or

Fy

3

cacb (m n ) Substituting the data given

2 3

1 .5

1500 ( 10 )  6

3

 ( 3 . 3330  0 . 4441 )(

Fy

Solving F y  614

N

Equation (1): n 

614 300

2

0 . 0229 293 . 0403  10

 2 .0 5

142

9

)

3

SOLUTION (8.20) Refer to Table 8.4 (Case A, Column 3). a  1 .0 7 6

r1 

F L

where F  5 kN ,  



2 E

L  25 m m ,

2 0 6 1 0

r1  5 0 0 m m

 0 .9 7 1(1 0

2 9

11

)

Therefore 3

( 5 1 0 )

a  1 .0 7 6[

( 0 .5 ) ( 0 .9 7 1  1 0

0 .0 2 5

11

1

]

 1 .0 6 0 3 m m

2

Hence, po 

2

3

2 ( 5 1 0 )



F aL



 (1 .0 6 0 3  1 0

3

 120 M Pa

)( 0 .0 2 5 )

SOLUTION (8.21) See Table 8.4 (Case C, Column 3).  

2



F aL



F Ln

( a ) a  1 .0 7 6 ( b ) po 

2 E



1

 1 .0 7 6[

1 0 .0 1

3 0 0 1 0

3

9

1 0 0 (1 0 )( 8 4 )



1 0 .0 6 2 5

1

 0 .2 0 3 3 m m

]

2

 84,

 0 .2 0 3 3

( c ) From Fig. 8.9b, z  0 .7 5 a  0 .1 5 2 5 m m 

F L  300 kN

 9 3 9 .4 M P a

300

2

n 

,

9

1 0 0 (1 0 )

yz ,m ax

and

 0 .3 p o  0 .3 (9 3 9 .4 )  2 8 2 M P a

SOLUTION (8.22) Given: r1  r1 '  0 .0 2 m , Equation (8.8), m 

4 1 0 .0 2



1 0 .0 2



1 0 .0 2 5



1 0 .1

r2   0 .0 2 5 m ,  0 .0 8 ,

n 

  0 .3,

r2 '   0 .1 m , 9

4 ( 2 0 0 1 0 ) 2

3 (1  0 .3 )

E  200 G Pa

 2 .9 3 (1 0 ) 11

Also A 



2 0 .0 8

  cos

1 15 25

2 m

 2 5,

B  

 5 3 .1 3 0 1

1 2

[( 0 )  (  2

1 0 .0 2 5



1 0 .1

2

o

From Table 8.5, we find c a  1 .6 6 4 5

c b  0 .6 6 4 2

The semiaxes are then a  1 .6 6 4 5[

(1 2 0 0 ) ( 0 .0 8 )

b  0 .6 6 4 2[

(1 2 0 0 ) ( 0 .0 8 )

2 .9 3 (1 0

11

2 .9 3 (1 0

11

)

)

1

]

3

 0 .0 0 1 1 4 7 m  1 .1 5 m m

3

 0 .0 0 0 4 6 m  0 .4 6 m m

1

]

Thus p o  1 .5

F

 ab

 1 .5

1200

 (1 .1 5  0 .4 6 )(1 0

6

)

 1083 M Pa

143

1

)  2 ( 0 )] 2   1 5

SOLUTION (8.23) We have r1  r1 '  0 .0 1 8 m ,

r2   0 .0 2 m ,

r2 '   0 .1 m ,

  0 .3,

E  200 G Pa

Equations (8.8), m 

4 1 0 .0 1 8



1 0 .0 1 8



1 0 .0 2



1 0 .1

 0 .0 7 8 3,

n 

9

4 ( 2 0 0 1 0 ) 2

3 (1  0 .3 )

 2 .9 3 (1 0 ) 11

Equations(8.10) A 

2 m

B  

 2 5 .5 4 2 8 1 2

  cos

[(  1

1 0 .0 2



20 2 5 .5 4 2 8

1 0 .1

2

 3 8 .4 6

From Table 8.5, c a  2 .2 1 6 4 Equations (8.7): a  2 .2 1 6 4[

b  0 .5 5 5 6[

1

) ]2  20

c b  0 .5 5 5 6

( 9 0 0 ) ( 0 .0 7 8 4 ) 2 .9 3 (1 0

11

)

( 9 0 0 ) ( 0 .0 7 8 3 ) 2 .9 3 (1 0

11

o

)

1

]

3

 0 .0 0 1 3 7 9 m  1 .3 8 m m

3

 0 .0 0 0 3 5 m  0 .3 5 m m

1

]

It follows that p o  1 .5

F

 ab

 1 .5

900

 (1 .3 8  0 .3 5 )(1 0

6

)

 890 M Pa

End of Chapter 8

144

Section III

APPLICATIONS

CHAPTER 9

SHAFTS AND ASSOCIATED PARTS

SOLUTION (9.1) T 

9549 kW n

9 5 4 9 (1 0 )



 3 8 .1 9 6 N  m

2500

and 

Also

c  3

2

 a ll L



T

 a ll

T GJ



3 8 .1 9 6 6

1 5 0 1 0

3

c  7 .8 6 4

,

2 ( 1 8 0 ) 

;

3 8 .1 9 6 ( 2 ) 9

8 0 (1 0 )  c

4

mm c  9 .6 6 m m

,

A 20-mm dia. shaft would probably be selected.

SOLUTION (9.2) Refer to Example 9.1. We now have S u  3 6 5 M P a (T a b le B .2 ), n  2 .5 , and S y is replaced by S u . Equation (9.9) gives D  [ 1 6Sn ( M u

c



M

2 c

 Tc ] 2

1 3

Substituting the given data, D [

1 6 ( 2 .5 ) 6

 ( 3 6 5 1 0 )

( 2 0 2 .5 

( 2 0 2 .5 )  (1 6 2 ) ] 2

2

1 3

 0 .0 2 5 2 5 6 m = 2 5 .2 6 m m

SOLUTION (9.3) T AC 

(a)

9 5 4 9 ( 7 .5 )



9549 kW n

1200

 5 9 .6 8 N  m

and  2

c  3

T

 a ll



5 9 .6 8 6

2 1 0 (1 0 ) 2

c  7 .1 2 6

,

 D A C  1 4 .2 5

mm

Similarly TC B   2

c 

9 5 4 9 ( 2 2 .5 ) 1200

3

 179

179

c  1 0 .2 8

,

6

2 1 0 (1 0 ) 2

N m

( b ) We have   T L G J , with J   c Thus  AC 

5 9 .6 8 ( 2 )



4

mm

 D C B  2 0 .5 6

2.

 0 .3 5 9 6 ra d  2 0 .6

4

9

( 0 .0 0 7 1 2 5 ) ( 8 2  1 0 )

2

 BC 

179 ( 4 )



4

 0 .4 9 8 ra d  2 8 .5 3 9

( 0 .0 1 0 2 8 ) ( 8 2  1 0 )

2

Hence  A B   B C   A C  7 .9 3

o

145

o

o

mm

mm

SOLUTION (9.4) G a  28 GPa ,

Table B.1:

S u  520

Table B.3:

MPa ,

We have  a   s but L a  L s , Js Ja

Ga



 0 . 354

Gs

G s  79 GPa S

y

 440

MPa

Ta  Ts

where J 



D

32

4

Hence Ds Da

Wa

Also

Ws

 0 .7 7 1

or

Va a

(  D a 4 ) a



V s

s



D a  1. 2 9 6 D s

4

2

(Ds

4 )



s

2

Da a 2

Ds 

s

 a  2 .8 M g m , 3

Table B.1:

 s  7 .8 6 M g m

3

Thus Wa Ws

2

(1. 2 9 6 D s ) ( 2 . 8 )



2 Ds

 0 .5 9 8

( 7 .8 6 )

SOLUTION (9.5) ( a ) Use Eq.(9.5): 6

2 6 0 (1 0 ) n



3

4 (1 0 )

 ( 0 .1 )

3

1

[( 8  5  5 0  0 .1 )  ( 8  8 ) ] 2 2

2

n  2 .6 1

or

( b ) Apply Eq.(9.6): 6

2 6 0 (1 0 ) n



3

4 (1 0 )

 ( 0 .1 )

3

1

[ ( 8  5  5 0  0 .1 )  4 8 ( 8 ) ] 2 2

2

or n  2 .8 6

SOLUTION (9.6)



F y  0 : 0 and



M

A

 0 yield

960

Mz (N  m)

480 x A

My (N  m) A

R By  8 0 0 N

R Az  5 0 0 N

R Bz  1 0 0 0 N

M



960  300

2

C

 1006 N  m

M



600  480

2

D

 7 6 8 .4 k N  m

B

C 300

R Ay  1 6 0 0 N

600

2

T  1 .2 5 k N  m

x D

2

B

Critical section is at C.

(CONT.)

146

9.6 (CONT.) We have 1 6T

 

(a) 

n 

32M



m ax



D

m ax

Sy

( b )  m ax  n 

D



(

1 6 (1, 2 5 0 )

 ( 0 .0 4 5 )

 ( 0 .0 4 5 )

3

3

 6 9 .9 M P a

 1 1 2 .5 M P a

 3 .0 7

345 1 1 2 .5





3 2 (1, 0 0 6 )



3

3

)  2

2



(5 6 .2 5 )  ( 6 9 .9 ) 2

 8 9 .7 M P a

2

2

 m ax



S ys

 2 .3 4

210 8 9 .7

SOLUTION (9.7) y

0 . 6 kN  m

0 . 6 kN  m

x

A

B

C z

6 kN

3.75 kN

Critical point is just to the right of C.

2.25 kN

1 . 125

kN  m

M x 0 . 6 kN  m

T

x S

(a)

y

n



32

D

3

2

M

 T

2

6

2 5 0 (1 0 )

;

1 .5



3

3 2 (1 0 )

D

3

[1.1 2 5

2

1

 0 .6 ] 2 2

or D  42 . 71 mm 250 ( 10

(b)

1 .5

6

)



3

32 ( 10 )

D

3

[1 . 125

2



3 4

2

1

( 0 .6 ) ] 2

Solving D  4 2 .3 m m SOLUTION (9.8) We have S y  3 4 0 M P a and n  1 .5 . The reactions and the torques, as found by the equations of statics, are marked in Fig. S9.8a. Moment and torque diagrams are shown in Fig. S9.89b. Critical sections is at C. (CONT.)

147

9.8 (CONT.) y A

2m

90 N

C

7.86N  m

2m z

360 N

D

7.86N  m.

450 N

360 N

1m

720 N

B

x

360 N

(a)

720

Mz (N  m) A

C

My (N  m)

x

D

Figure S9.8

360

180

B

x

T (N  m) -7.86

C

x

B

(b) Eq. (9.7) is thus D 

32n 3

 Sy

M

 M

2 z

2 y

T

2

Inserting the numerical values: [

or

3 2 (1 .5 )

 (3 4 0  1 0 ) 6

(

7 2 0  1 8 0  (  7 .8 6 ) ) ] 2

2

2

1 3

D  0 .0 3 2 2 m = 3 2 .2 m m

SOLUTION (9.9) Refer to solution of Prob. 9.8. Now apply Eq. (9.8): D 

[

32n 3

 Sy

M

3 2 (1 .2 )

 (3 4 0  1 0 ) 6

 M

2 z

(

2 y



3

T

2

4

720  180  2

2

3 4

or D  0 .0 2 9 9 m = 2 9 .9 m m

148

(  7 .8 6 ) ) ] 2

1 3

SOLUTION (9.10) Table B.1: S

 520

y

 xy 

We have M  0 ,

MPa

16T

D

3

By Eq.(1.15), T 



9549 kW n

9549 (70 ) 110

 6 .0 7 7 k N  m

( a ) Equation (6.11) Sy n

 2

xy

,

D



3

32Tn  Sy

32 (6077 ) 4



6

 ( 5 2 0 1 0 )

D  7 8 .1 m m

,

( b ) Equation (6.16): Sy n

3



xy

,

D

3



16



3T n

 Sy

16

3 (6077 ) 4 6

 ( 5 2 0 1 0 )

D  7 4 .4 m m

or

SOLUTION (9.11) We have S u  5 9 0 M P a and n  1 .4 Ay  B y  8 kN

From statics:

8 kN

y

8 kN

0.5 m

A z

1m

0.5 m

C 0.48 kN  m

Ay

D 0.48 kN  m

B

x

(a)

By

8  0.5=4 kN  m

Mz

x T

0.48 kN  m

x

(b)

(c)

Figure S9.11 The critical section is between C and D. Thus M

2 z

T

2



4  0 .4 8 2

2

 4 .0 2 9 k N  m

Apply Eq. (9.9): 1 6  1 0 (1 .4 ) 3

D 

3

 (5 9 0  1 0 ) 6

( 4  4 .0 2 9 )  0 .0 4 6 m

Use a 4 6 m m diameter shaft. SOLUTION (9.12) Now Fig. S9.11a (see: Solution of Prob. 9.11) becomes as shown below. From statics: (CONT.)

149

9.12 (CONT.) Ay  2 kN

B y  6 kN

Az  6 k N

Bz  2 kN

y A

1m

0.5 m

D 0.48 kN  m

C 0.48 kN  m

Az Ay

z

8 kN

8 kN 0.5 m

B

x

(a)

x

(b)

x

(c)

x

(d)

By

Bz

Mz 2  0.5=1 kN  m

2  1.5=3 kN  in.

3 kN  m My

1 kN  m

T

0.48 kN  m

The critical section is just to the right of C (or just to the left of D). Thus M

2 z

 M

2 y

T

2



3  1  0 .4 8 2

2

2

 3 .1 9 9 k N  m

Applying Eq. (9.9): 1 6  1 0 (1 .5 ) 3

D 

3

 (5 9 0  1 0 ) 6

( 3  3 .1 9 9 )  0 .0 4 3 1 m

Use a 4 4 m m diameter shaft. SOLUTION (9.13) y A Az

0 . 6 kN  m

0.3 m

C 5.2 kN

3 kN

Ay

z

x

0 . 6 kN  m

0.5 m

Bz

30o

975

M

B y  1 . 95 kN ,

B

B z  1 . 125

A y  3 . 25 kN

kN , A z  1 . 875

kN

By

N m

z

x M

563

Critical point is just to the right of C.

N m

M

y

x T

600

1

 [ 9 7 5  5 6 3 ] 2  1 .1 2 6 k N  m 2

C

2

N m

x

150

(CONT.)

9.13 (CONT.) Thus

M

 0

m

M

 1 . 126

a

kN  m

T m  600

N m

From Sec. 8.6: C t  1  0 .0 0 5 8 ( 5 0 0  4 5 0 )  0 .7 1 S e  0 . 5 S u  260 '

MPa

C

f

 AS

b u

 4 . 51 ( 520

 0 . 265

)  0 . 86

C r  0 .8 9

Assume D  51 mm and C s  0 .7 0 . Thus

S e  C f C r C s C t ( K1 ) S e  ( 0 . 86 )( 0 . 89 )( 0 . 70 )( 0 . 71 )( 11. 2 )( 260 )  82 . 42 MPa '

f

Substitute the data and K s b  K s t  1.5 (Table 9.1) into Eq.(9.13): 6

520 (10 ) 1 .5



[ 1.5 ( 8 2 . 4 2  1 ,1 2 6 )

32

D

520

3

2

1

 1.5 ( 6 0 0 ) ] 2 2

Solving, D  63 . 5 mm SOLUTION (9.14) Statics: R A  9 .4 5 k N ,

R B  6 .7 5

kN ,

M

D

 2 .5 3 k N  m  M

m ax

Refer to Secs. 7.6 and 7.7: C s  0 .7 K

C r  0 .8 1 (Table 7.3)

C

 AS

f

b u

 0 . 085

 1 . 58 (1260

 1, S e  0 . 5 S u  630 '

f

)  0 . 861

S e  ( 0 .8 6 1)( 0 .8 1)( 0 .7 )(1)( 6 3 0 )  3 0 7 .5 6 M P a

and

We have M

m

 0

M

a

 2 .5 3 k N  m

T m  2 .2 6 k N  m

T a  0 .2 2 6 k N  m

Using Eq.(9.12): 6

1 2 6 0 (1 0 ) n



3

3 2 (1 0 )

 ( 6 2 .5  1 0

3

[( 310276.506  2 .5 3 )  2

)

3

3 4

( 2 .2 6 

1260 3 0 7 .5 6

1

 0 .2 2 6 ) ] 2 2

n  2 .8 2

or

SOLUTION (9.15) Statics: R A  5 .2 2 k N , M

m

 0,

R B  8 .2 8 k N ,

T m  3 .4

kN  m ,

From Secs. 7.6 and 7.7: C r  0 .8 9

M

 2 .6 1 k N  m  M

C

a

. We have

T a  0 .6 8 k N  m

C s  0 .7

K

f

1

C t  1  0 . 0058 ( 510  450 )  0 . 652 S e  0 .5 S u  7 0 0 '

M Pa

C

 A S u  5 7 .7 (1 4 0 0 b

f

 0 .7 1 8

S e  ( 0 .3 1 8 )( 0 .8 9 )( 0 .7 )( 0 .6 5 2 )(1)( 7 0 0 )  9 0 .4 M P a

and

Apply Eq.(9.13), with replacing S u by S y and K s t  2 (Table 9.1): 910 ( 10 n

Solving,

6

)



3

32 ( 10 )

 ( 87 . 5  10

3

)

3

[(

910 90 . 4

 2 . 61 )

2

n  1 .9 9

151

 2 (3 .4 

1

910 90 . 4

 0 . 68 ) ] 2 2

)  0 .3 1 8

SOLUTION (9.16) From Fig. C.13, for d D  0 .2 : K t  1 .5 (torsion)

K t  2 .2 (bending)

Figures (7.9) : q  0 .9 5 (torsion) q  0 .8 (bending) The endurance limit is From Eq. 7.13b we have K

fb

 1  q ( K t  1)  1  0 .8 ( 2 .2  1)  1 .9 6

K

ft

 1  0 .9 5 (1 .5  1)  1 .4 8

Endurance limit: S e  C f C r C s C t (1 K t ) S e '

where C

 4 .5 1(5 2 0

f

 0 .2 6 5

)  0 .8 6

C r  0 .8 1

(Table 7.3)

C s  0 .8 5

(Eq. 7.9)

C t  1  0 .0 0 5 8 ( 4 9 0  4 5 0 )  0 .7 7 S e '  0 .5 S u  2 6 0 M P a

(Eq. 7.11)

(Eq. 7.1)

Thus, S e  ( 0 .8 6 )( 0 .8 1)( 0 .8 5 )( 0 .7 7 )(1 1 .9 6 )( 2 6 0 )  6 0 .5 M P a

Also

M

a

 120 N  m ,

M

 0,

m

Tm  6 0 0 N  m ,

Ta  0

Equation (9.16a): D

3



32 n

 Su

S

[( S u M a )  2

3 4

e

2

1 2

Tm ]

Substituting the given data, we have 3

( 4 0 ) (1 0

9

) 

[ ( 6502.50  1 2 0 )  2

32 n 6

 ( 5 2 0 1 0 )

2

1

2

1

3 4

(6 0 0 ) ]

3 4

(6 0 0 ) ]

2

Solving, n  2 .8 3

SOLUTION (9.17) Refer to solution of Prob.9.16. Apply Eq. (9.16b): D

3



32 n

 Sy

[(

Sy Se

M a)  2

3 4

2

Tm ]

1 2

Inserting the given numerical values, 3

( 4 0 ) (1 0

9

) 

[ ( 6404.50  1 2 0 )  2

32 n 6

 ( 4 4 0 1 0 )

From which n  2 .7 2

152

2

SOLUTION (9.18) M S

 200

a

N m,

 290

y

T m  500

N  m,

S u  455

MPa ,

M

 0,

m

Ta  0,

K

st

 2

MPa

Refer to Secs. 7.6 and 7.7: C

 4 . 51 ( 455

f

 0 . 265

Assume C s  0 . 7 ,

)  0 . 89 ,

C r  0 . 87 ,

S e  ( 0 . 89 )( 0 . 87 )( 0 . 7 )( 1)(

S e  0 . 5 S u  227 . 5 MPa '

1 2 .2

)( 227 . 5 )  56 . 05 MPa

Through the use of Eq.(9.14), we have 6

4 5 5 (1 0 ) 1 .5



32

D

[1( 5 6 . 0 5  2 0 0 )  2

455

3

D  38 . 8 mm  51 mm

or

3 4

1

2

( 2 )(5 0 0 ) ] 2

 Assumption is incorrect.

Assume C s  0 .8 5 : Se 

0 . 85 0 .7

( 56 . 05 )  68 . 06 MPa

Equation (9.14): 6

4 5 5 (1 0 ) 1.5



32

D

[1( 6 8 . 0 6  2 0 0 )  2

455

3

D  36 . 7 mm

or

3 4

1

2

( 2 )(5 0 0 ) ] 2

 Assumption is correct.

SOLUTION (9.19) Refer to Secs. 7.6 and 7.7: q  0 .9 2 K

 1  q ( K t  1 )  1  0 .9 2 (1.8  1 )  1.7 4

f

S e  0 . 5 S u  500 '

C

Thus

 AS

f

b u

MPa ,

 57 . 7 (1000

 0 . 718

C s  0 . 85 ,

C r  0 . 84

)  0 . 405

S e  ( 0 .4 0 5 )( 0 .8 4 )( 0 .8 5 )(1)( 1 .71 4 )(5 0 0 )  8 3 .0 9 M P a

We have: M

 0,

m

M

a

 500

N  m,

T m  600

N  m,

T a  90 N  m

Apply Eq.(9.11), with replacing S u by S y : 6

600 ( 10 ) n



32

 ( 0 . 05 )

3

[(

600 83 . 09

 500 )  ( 600  2

600 83 . 09

1

 90 ) ] 2 2

or n  1 . 93

SOLUTION (9.20) The endurance limit is expressed as S e  C f C r C s C t (1 K f ) S e '

Here C

f

 4 .5 1( 6 9 0

 0 .2 6 5

)  0 .7 9 8

(Eq. 7.7 and Table 7.2)

C r  0 .8 7

(Table 7.3),

C t  1 (Eq. 7.11)

C s  0 .7 0

(Assuming D > 51 mm, Eq. 7.9) (CONT.)

153

9.20 (CONT.) S e '  0 .5 S u  0 .5 ( 6 9 0 )  3 4 5 M P a

(Eq. 7.1)

Therefore S e  ( 0 .7 9 8 )( 0 .8 7 )( 0 .7 )(1)(1 1 .2 )(3 4 5 )  1 3 9 .7 M P a

Equation (9.13) with T a  0 becomes 

3

D

32 n

 Sy

[K s (M

m



Su Se

M a )  K sT m ] 2

2

1 2

Introducing the given numerical values, we have 3 2 ( 3 .5 )



3

D

6

 ( 6 9 0 1 0 )

6

( 6 9 0 1 0 )

{1 .5[ 2 0 0 

6

(1 3 9 .7  1 0 )

( 6 0 0 )]  1 .5 (3 6 0 ) } 2

2

1 2

Solving, D  0 .0 5 8 6 m  5 8 .6 m m

Since D  5 1 m m , our assumption is correct. SOLUTION (9.21) We now have K s  2 (from Table 9.1) and S u replaced by S y . See solution of Prob. 9.20. Equation (9.14) becomes 

3

D

32 n

 Sy

[K s (M

m



Sy Se

M a )  K s ( 34 T m )] 2

2

1 2

or 3 2 ( 3 .5 )



3

D

6

 ( 5 8 0 1 0 )

{ 2[ 2 0 0 

580 1 3 9 .7

(6 0 0 )]  2

3 2

1

2

(3 6 0 ) }

2

Solution is D  0 .0 6 1 7 4 m  6 1 .7 m m

Since D  5 1 m m , our assumption is correct. SOLUTION (9.22) 2 kN  m

M

0 . 8 kN  m

y

Critical section is just to the left of point D

x C

A M

D

B

z

600

T

2 .5 7 k N  m

M

D

 [ 2 . 57

x

M

a

 2 . 692

T m  600

N m

1

2

 0 . 8 ] 2  2 . 692 2

kN  m ,

N m,

M

 0

m

T a  30 N  m

x Refer to Secs. 7.6 and 7.7: S e  0 . 5 S u  330 '

S e  C f C rC sC t (

MPa , 1 K f

C

f

 AS

b u

 4 . 51 ( 660

 0 . 265

)  0 . 807

) S e  ( 0 . 807 )( 1 )( 0 . 7 )( 1 )( 1 )( 330 )  186 . 4 MPa '

Equation (9.14): 6

6 6 0 (1 0 ) n



32

 ( 0 .0 7 5 )

[1.5 ( 1 8 6 . 4  2 , 6 9 2 )  2

660

3

Solving n  2 .3 4

154

3 4

(1.5 ) ( 6 0 0 

660 1 8 6 .4

kN  m

1

 30 ) ]2 2

SOLUTION (9.23) From Solution of Prob. 9.22 M

 0,

m

M

 2 . 692

a

kN  m ,

T a  30 N  m ,

T m  600

N m

S e  1 8 6 .4 M P a

Now we have C r  0 .8 9 . Thus, S e  1 8 6 .4 ( 0 .8 9 )  1 6 5 .9 M P a Through the use of Eq.(9.13), with replacing S u by S y : 6

550 ( 10 ) n



550 [1 . 5 ( 165  2 , 692 )  1 . 5 ( 600  .9 2

32

 ( 0 . 075 )

3

550 165 . 9

1

 30 ) ] 2 2

n  2 . 08

or

SOLUTION (9.24) R B y  1 .0 3 8 k N ,

0.45 kN

y

R A y  6 .1 6 2 k N R B z  3 .7 3 8 k N ,

1.35 kN

z x

A C

R Ay M

D

R A z  0 .1 3 8 k N

B

M

( kN  m)

B 6.3 kN R B z

2.7 kN

9 kN x

D

C

R Az

R By

z

x

A

y

(kN  m)

0.208

x 0.021

0.748

0.924

We have T  0 .9 k N  m and 1

M

D

 [ 0 .2 0 8  0 .7 4 8 ] 2  0 .7 7 6 k N  m

M

C

 [ 0 .9 2 4  0 .0 2 1 ] 2  0 .9 2 4 k N  m

M

m

 0,

2

2

2

2

1

Hence M

a

 0 .9 2 4 k N  m ,

Ta  0 ,

T m  0 .9 k N  m

From Table B.3: S u  5 9 0 M P a . Refer to Secs. 7.6 and 7.7: C r  0 .8 7 ,

C

and

f

 AS

C s  0 .7 (assumed D>50 mm)

 4 . 51 ( 590 )

b u

 0 . 265

 0 . 83

S e  ( 0 .8 3)( 0 .8 7 )( 0 .7 )(1)( 11.8 )( 0 .5  5 9 0 )  8 2 .8 4 M P a

Applying Eq.(9.12): 5 9 0 1 0 1 .6

6



[ ( 8529.804  9 2 4 )  2

32

D

3

3 4

2

1

(9 0 0 ) ] 2

D  0 .0 5 6 8 m = 5 6 .8 m m

155

SOLUTION (9.25) R B y  2 .0 8 k N ,

R A y  6 .9 2 k N

9 kN

y

x C

6.92 kN

M

x

( kN  m )

We have T  0 .9 k N  m and M

C

 M

x 0.021

D

1 2

 [ (1 .0 3 8 )  ( 0 .0 2 1) ]  1 .0 3 8 k N  m  M 2

3.74 kN

y

(kN  m )

0.416

B

D 0.748

2.08 kN

1.038

C

C

0.14 kN

z

M

x

A

B

D

R A z  0 .1 4 k N

6.3 kN

2.7 kN

z

A

M

R B z  3 .7 4 k N ,

2

Refer to Solution of Prob. 9.24: C f  0 .8 3 ,

C s  0 .7

a

From Table B-3: S y  4 9 0 M P a

From Sec. 7.6: S e  C f C r C s C t ( K1 ) S e  ( 0 .8 3 )( 0 .7 5 )( 0 .7 )(1)( 11.2 )( 0 .5  5 9 0 )  1 0 7 .1 2 M P a '

f

Using Eq.(9.11), with S u replaced by S y : D

or

3



32 n

 Sy

[(

Sy Se

1

32 ( 2 )

M a )  Tm ] 2  2

2

D  0 .0 5 8 6 m = 5 8 .5 m m

SOLUTION (9.26) Refer to Case 6 of Table A.8:  

We have I 

Pbx 6 LEI

 4

(L  b  x ) 2

(12 . 5 )

2

4

2

 19 . 175  10

3

mm

4

W D  W E  15  9 . 81  147 . 2 N

Deflection at D: D '

 D '' 

2

2

2

1 4 7 .2 (1 )( 0 .4 )(1 .4  1  0 .4 ) 6 (1 4 0 0 )( 2 1 0  1 9 .1 7 5 ) 2

 1 .3 9 3 m m

2

2

1 4 7 .2 ( 0 .4 )( 0 .4 )(1 .4  0 .4  0 .4 ) 6 (1 4 0 0 )( 2 1 0  1 9 .1 7 5 )

 1 .1 4 2 m m

and  D   E  1 .3 9 3  1 .1 4 2  2 .5 3 5 m m

Equation (9.18) results in n cr 

1 2

 594

2 gW  2W 

2



1 2

g





1 2

9 . 81 2 . 535  10

rpm

156

1

[( 1 0479.10 2  1, 0 3 8 )  9 0 0 ] 2 2

6

 ( 4 9 0 1 0 )

3

 9 . 901 cps

2

SOLUTION (9.27) Refer to Case 6 of Table A.8:  

Pbx 6 LEI

(L  b  x ) 2

2

2

We have W D  W E  15  9 . 81  147 . 2 N At midspan C: C 

0 . 5 ( 10

3

)

2



147 . 2 ( 0 . 4 )( 0 . 7 )

(1 . 4

6 ( 1 . 4 ) EI

2

 0 .4

2

 0 .7 )  2

or EI  25 . 711 (10 ) N  m 3

2

Deflection at D: D '  D '' 

2

2

2

1 4 7 .2 (1 )( 0 .4 )(1 .4  1  0 .4 )

 0 .2 1 8

3

6 (1 .4 )( 2 5 .7 1 1  1 0 ) 2

2

2

1 4 7 .2 ( 0 .4 )( 0 .4 )(1 .4  0 .4  0 .4 ) 3

6 (1 .4 )( 2 5 .7 1 1  1 0 )

mm

 0 .1 7 9

mm

and 

D

 

E

 0 . 218  0 . 179  0 . 397

mm

Equation (9.18) gives n cr 

g

1 2





9 .8 1

1 2

0 .3 9 7  1 0

3

 2 5 .0 2

cps

SOLUTION (9.28) We have I 

 4

(15 )

 39 . 76  10

4

3

mm

4

Refer to Case10 of Table A.8: a

P C

b

A B L 2

C 

Pb L 3 EI

C 

150 ( 0 . 4 )( 1000 )

Thus 2

3 ( 210  39 . 76 )

 0 . 958

mm

Equation (9.18) results in n cr 

1 2





1 2

0 .9 5 8  1 0

g

9 .8 1 3

 1 6 .1 1 c p s  9 6 7

157

rp m

6 . 428 EI

SOLUTION (9.29) See Table A.8 (Case 6) and Example 9.5. We have I 

4

d

 ( 0 .0 5 6 2 5 )



64

4

 0 .4 9 1 4 (1 0

64

6

) m

4

( a ) Deflection at C owing to 450 N: C ' 

4 5 0 ( 2 .2 5 )( 0 .6 2 5 )

( 2 .8 7 5  0 .6 2 5  2 .2 5 )  1 .0 5 m m 2

9

6 ( 2 .8 7 5 )( 2 0 0  1 0 )( 0 .4 9 1 4  1 0

6

)

2

2

Deflection at C due to 270 N: C " 

2 7 0 (1 )( 0 .6 2 5 )

( 2 .8 7 5  0 .6 2 5  1 )  0 .6 8 4 m m 2

9

6 ( 2 .8 7 5 )( 2 0 0  1 0 )( 0 .4 9 1 4 1 0

6

)

2

2

Total deflection at C:  C  1 .0 5  0 .6 8 4  1 .7 3 4 m m Deflection at D owing to 450 N: 4 5 0 ( 0 .6 2 5 )( 2 .8 7 5  1 .8 7 5 )

D '

9

6 ( 2 .8 7 5 )( 2 0 0  1 0 )( 0 .4 9 1 4  1 0

[ 2 ( 2 .8 7 5 )(1 .8 7 5 )  0 .6 2 5  1 .8 7 5 ]  1 .1 4 1 m m 2

6

)

2

Deflection at D due to 270 N: D " 

2 7 0 (1 )(1 .8 7 5 )

( 2 .8 7 5  1 .8 7 5  1 )  1 .1 2 m m 2

9

6 ( 2 .8 7 5 )( 2 0 0  1 0 )( 0 .4 9 1 4 1 0

6

)

2

2

Total deflection at D:  D  1 .1 4 1  1 .1 2  2 .2 6 1 m m Applying Eq. (9.18), we obtain n cr 

1 2

[

9 .8 1[( 4 5 0 )(1 .7 3 4  1 0 4 5 0 (1 .7 3 4  1 0

3

3

)  ( 2 7 0 )( 2 .2 6 1  1 0

2

)  2 7 0 ( 2 .2 6 1  1 0

3

)

3

)]

2

1

]

2

 1 1 .2 4 c p s  6 7 4 .4 r p m

( b ) Apply Eq. (9.21): n c r ,C n c r , D

n cr 

where

Hence

2

2

n c r ,C  n c r , D

g

n cr ,C 

1 2

C '

n cr , D 

1 2

D "

n cr 



g



( 9 2 3 )( 8 9 4 ) 2

1 2

(923)  (894 )

2

1 2

9 .8 1 1 .0 5  1 0

3

9 .8 1 1 .1 2  1 0

3

 1 5 .3 8 c p s  9 2 3 rp m  1 4 .9 c p s  8 9 4 rp m

 6 4 2 rp m

SOLUTION (9.30) Refer to Table A.8 (Case 6) and Solution of Prob. 9.29. We now have I   D

4

6 4   ( 0 .0 8 7 5 )

4

6 4  2 .8 7 7 4  1 0

6

m

4

( a ) Deflection at C owing to 450 N: C ' 

4 5 0 ( 2 .2 5 )( 0 .6 2 5 ) 9

( 2 .8 7 5  0 .6 2 5  2 .2 5 ) = 0 .1 7 9 3 m m 2

6 ( 2 .8 7 5 )( 2 0 0  1 0 )( 2 .8 7 7 4 4  1 0

6

)

2

2

Deflection at C due to 270 N: C " 

2 7 0 (1 )( 0 .6 2 5 ) 9

6 ( 2 .8 7 5 )( 2 0 0  1 0 )( 2 .8 7 7 4  1 0

( 2 .8 7 5  0 .6 2 5  1 )  0 .1 1 6 9 m m 2

6

)

2

2

Total deflection at C:  C  0 .1 7 9 3  0 .1 1 6 9  0 .2 9 6 2 m m (CONT.)

158

9.30 (CONT.) Deflection at D owing to 450 N: D '

4 5 0 ( 0 .6 2 5 )( 2 .8 7 5  1 .8 7 5 )

[ 2 ( 2 .8 7 5 )(1 .8 7 5 )  0 .6 2 5  1 .8 7 5 ]  0 .1 9 4 8 m m 2

9

6 ( 2 .8 7 5 )( 2 0 0  1 0 )( 2 .8 7 7 4 4  1 0

6

)

2

Deflection at D due to 270 N: D " 

2 7 0 (1 )(1 .8 7 5 )

( 2 .8 7 5  1 .8 7 5  1 )  0 .1 9 1 2 m m 2

9

6 ( 2 .8 7 5 )( 2 0 0  1 0 )( 2 .8 7 7 4 4 1 0

6

)

2

2

Total deflection at D:  D  0 .1 9 4 8  0 .1 9 1 2  0 .3 8 6 m m Applying Eq. (9.18), we find n cr 

1 2

9 .8 1[( 4 5 0 )( 0 .2 9 6 2  1 0

[

4 5 0 ( 0 .2 9 6 2  1 0

3

3

)  ( 2 7 0 )( 0 .3 8 6 1 0 3

2

)  2 7 0 ( 0 .3 8 6  1 0

)

3

)]

2

1

]

2

 2 7 .2 1 c p s  1 6 3 3 r p m

( b ) Apply Eq. (9.21): n c r ,C n c r , D

n cr 

where

Hence

2

2

n c r ,C  n c r , D

g

n c r ,C 

1 2

C '

n cr , D 

1 2

D "

g

 

2

( 2234 )  ( 2163)

0 .1 7 9 3  1 0

2

3

9 .8 1

1 2

( 2 2 3 4 )( 2 1 6 3 )

n cr 

 3 7 .2 3 c p s  2 2 3 4 rp m

9 .8 1

1 2

0 .1 9 1 2  1 0

3

 3 6 .0 5 c p s  2 1 6 3 rp m

 1 5 5 4 rp m

SOLUTION (9.31) Refer to Table A.8 (Case 6) and Example 9.5. We have I 

4

d



64

 ( 0 .0 4 6 9 )

4

64

 0 .2 3 7 5  1 0

6

m

4

( a ) Deflection at C owing to 340 N: C ' 

3 4 0 (1 .1 2 5 )( 2 5 0 .6 2 5 )

(1 .7 5  1 .1 2 5  0 .6 2 5 )  1 .2 8 3 9 m m 2

9

6 (1 .7 5 )(1 0 5  1 0 )( 0 .2 3 7 5  1 0

6

)

2

2

Deflection at C due to 500 N: C " 

5 0 0 ( 0 .3 7 5 )( 0 .6 2 5 )

(1 .7 5  0 .3 7 5  0 .6 2 5 )  1 .1 3 2 9 m m 2

9

6 (1 .7 5 )(1 0 5  1 0 )( 0 .2 3 7 5  1 0

6

)

2

2

Total deflection at C:  C  1 .2 8 3 9  1 .1 3 2 9  2 .4 1 6 8 m m Deflection at D owing to 340 N: D '

3 4 0 ( 0 .6 2 5 )(1 .7 5  1 .3 7 5 ) 9

6 (1 .7 5 )(1 0 5  1 0 )( 0 .2 3 7 5 1 0

[ 2 (1 .7 5 )(1 .3 7 5 )  0 .6 2 5  1 .3 7 5 ]  0 .7 7 0 3 m m 2

6

)

2

Deflection at D due to 500 N: D " 

5 0 0 ( 0 .3 7 5 )(1 .3 7 5 ) 9

(1 .7 5  1 .3 7 5  0 .3 7 5 )  1 .0 1 5 4 m m 2

6 (1 .7 5 )(1 0 5  1 0 )( 0 .2 3 7 5  1 0

6

)

2

2

Total deflection at D:  D  0 .7 7 0 3  1 .0 1 5 4  1 .7 8 5 7 m m Applying Eq. (9.18), we obtain n cr 

1 2

[

9 .8 1 ( 3 4 0  2 .4 1 6 8  1 0 3 4 0  ( 2 .4 1 6 8  1 0

3

3

 5 0 0  1 .0 1 5 4 1 0

2

)  1 1 0  (1 .0 1 5 4 1 0

3

3

)

) 2

1

]

2

 1 1 .4 9 c p s  6 9 0 r p m

(CONT.)

159

9.31 (CONT.) ( b ) From Eq. (9.21), we have n c r ,C n c r , D

n cr 

where

2

2

n c r ,C  n c r , D

g

n c r ,C 

1 2

C '



n cr , D 

1 2

D "

g

9 .8 1

1 2



1 .2 8 3 9  1 0

3

9 .8 1

1 2

1 .0 1 5 4  1 0

3

 1 5 .9 1 c p s  8 3 5 rp m  1 5 .6 5 c p s  9 3 9 rp m

It follows that ( 8 3 5 )( 9 3 9 )

n cr 

2

 6 2 4 rp m

2

(835 ) (939 )

SOLUTION (9.32) Shaft





Sy

a ll

Key





Sy

a ll

 a ll 

n

n S ys n



580 2 .3

 2 5 2 .2 M P a



3 0 .8 2 .3



154 2 .3

 1 3 3 .9 1 M P a  6 6 .9 5 M P a

Torque: 9549 kW

T 

9549 (90 )



n

 9 5 4 .9 N  m

900

Force at the shaft surface is then F 

(a) L  (b) L  (c) L 



F (w 2)



a ll



F (w 2)



a ll

F

 a ll ( w )





T r

9 5 4 .9 1 8 .7 5

 5 0 .9 3 k N

5 0 .9 3  1 0

3

2 5 2 .2 ( 9 .3 5  1 0

3

5 0 .9 3  1 0

2) 3

6

1 3 3 .9 1  1 0 ( 9 .3 5  1 0 5 0 .9 3  1 0

3

6

6 6 .9 5  1 0 ( 9 .3 5  1 0

 0 .0 4 3 2 m = 4 3 .2 m m

3

)

3

2)

 0 .0 8 1 4 m = 8 1 .4 m m

 0 .0 8 1 4 m = 8 1 .4 m m

SOLUTION (9.33) From Table B.3: For shaft: S y  S y c  4 4 0 M P a For key: S y  S y c  3 9 0 M P a n  2 . Shaft:

 a ll  T 

and

F 

0 .5 8 S y n

 a ll J r



1 0 .5 7 0 .0 7 5 2



0 .5 8 ( 4 4 0 ) 2

 a ll (  D

4

D 2

32 )

 1 2 7 .6 M P a 

 (1 2 7 .6 ) ( 0 .0 7 5 )

3

16

 1 0 .5 7

kN  m

 2 8 1 .9 k N

Key length: Based on bearing on shaft: L 

2 8 1 .9  1 0



F ( S y n )( h 2 )

(

4 4 0 1 0

6

)(

3

9 .3 7 5  1 0

2

Based on bearing on key: L 

F ( S y n )( h 2 )

2 8 1 .9  1 0

 (

3 9 0 1 0

6

Based on shear in key: L 

)(

(

)w

n

(

0 .5 8  3 9 0  1 0 2

160

 0 .3 0 8 4 m = 3 0 8 .4 m m

3

)

2 2 8 1 .9  1 0



)

3

9 .3 7 5  1 0

2 F 0 .5 8 S y

 0 .2 7 3 4 m = 2 7 3 .4 m m

3

2

3

6

)(1 8 .7 5  1 0

 0 .1 3 3 m = 1 3 3 m m 3

)

SOLUTION (9.34) We have F 



T r

0 .4  1 0 3 7 .5  1 0

 a ll w L

By Eq.(9.23): n 

3

3

6

( 7 0  1 0 ) ( 9 .3 7 5  1 0



2F

 2 1 .3 3 k N

2

3

) ( 7 5 1 0

3

)

3

2 ( 2 1 .3 3  1 0 )

 1 .1 5

SOLUTION (9.35) 

Shaft

Sy



a ll



460 4



460 2



340 4

n S ys

 a ll 

n

 115 M Pa  5 7 .5 M P a

4

Key 

Sy



a ll

n Sy 2

 a ll 

 85 M Pa

 4 2 .5 M P a

n

Torque in shaft. We have J   D

3 2   (6 0 )

4

4

3 2  1 .2 7 2  1 0

6

mm

4

Hence,  a ll J

T 

r

5 7 .5 (1 .2 7 2 )



 2 .4 4 k N  m

0 .0 3

Force at the shaft surface: F 

(a) L  (b) L  (c) L 



F (w 2)



a ll



F (w 2)



a ll

F



 a ll ( w 2 )



T r

2 .4 4 0 .0 3

 2 .4 4 k N  m  7 0 .7 m m

81300 6

1 1 5 (1 0 )( 0 .0 1 )

 9 5 .6 m m

81300 6

8 5 (1 0 )( 0 .0 1 ) 81300 6

4 2 .5 (1 0 )( 0 .0 2 )

 9 5 .6 m m

SOLUTION (9.36) Shear force in each bolt: F 

T RN

Average shear stress in each bolt,  a ll 

Sy n



F A



T RN

 db 4



4T 2

 db RN

Solving db 

4Tn

(P9.36)

 RNS y

Introducing the given data: db  [

3

4 ( 5  1 0 )(1 .2 )

1 6

 ( 0 .0 8 )( 6 )( 2 6 0 )(1 0 )

]

2

 7 .8 2 m m

161

SOLUTION (9.37) From Eq. (1.15), 9549 kW

T 



n

9549 (30 )

 2 .3 8 7 k N  m

120

Force at shaft surface F 

T r



 

F L(w 2)

 7 9 .6 k N

2 .3 8 7 0 .0 3

( a ) Key

 

7 5 ( 5 )(1 0

6

3

7 9 .6 (1 0 )



F L(w)

3

7 9 .6 (1 0 )



7 5 (1 0 )(1 0

6

)

 212 M Pa;

)

n 

 106 M Pa;

n 

S ys



Sy





 1 .9 8

420 212



210 106

 1 .9 8



210 3 1 .3

 6 .7 1



420 2 4 .6

 1 7 .1

( b ) Bolts Force at bolt circle F 

T Db 2



2 .3 8 7 0 .0 7 2

 3 3 .1 5 k N

Sear Stress in bolts  

F 2

6 ( d b

4)



 3 1 .3 M P a ;

n 

S ys

 2 4 .6 M P a ;

n 

Sy

3 3 .1 5 ( 4 ) 6  ( 0 .0 1 5 )

2



( c ) Bearing on bolts in flange  

F 6 d b Ft



3 3 .1 5 6 (1 5 )(1 5 )1 0

6



SOLUTION (9.38)

(a)

T 

9549 kW n

F 

T r



9549 ( 45 )



200

2148 0 .0 2 5

 2 .1 4 8 k N  m

 8 5 .9 2 k N 3

3

Area in shear in key  (1 4 .0 6 2 5  1 0 )(8 7 .5  1 0 )  1 .2 3  1 0 3

3

3

m

2

Area in bearing for key  [(1 4 .0 6 2 5 2 )  1 0 ](8 7 .5  1 0 )  6 .1 5  1 0

4

m

2

Shear stress in key:  

8 5 .9 2  1 0 1 .2 3  1 0

3

3

 6 9 .8 5 M P a

Bearing stress in key:   (b)

8 5 .9 2  1 0 6 .1 5  1 0

3

4

 1 3 9 .7 M P a

Area in shear for bolts  6 ( 4 )(9 .3 7 5 )  4 1 4 .1 7 m m 2

2

Force at bolt circle: F 

2 .1 4 8 0 .0 7 5

 2 8 .6 k N

Shear stress in bolts:  

28600 4 1 4 .1 7

 6 9 .0 5 M P a

(CONT.)

162

9.38 (CONT.) ( c ) Area in bearing for bolts  6 (9 .3 7 5 )( 2 1 .8 7 5 )  1 2 3 0 .5 m m

2

Bearing stress in bolts:  

28600 1 2 3 0 .5 (1 0

6

)

 2 3 .2 M P a

( d ) Area in shear at edge of hub   D h t f   (1 0 0 )( 2 1 .8 7 5 )  6 8 7 2 .2 m m Force at edge of hub: F  Shear stress in web:  

T Dh 2



4 2 .9 6 0  1 0 6 8 7 2 .2 (1 0

2148 0 .0 5

3

6

)

2

 4 2 .9 6 k N

 6 .2 5 M P a

End of Chapter 9

163

CHAPTER 10

BEARINGS AND LUBRICATION

SOLUTION (10.1) We have H  9 .8 1( 6 5 )  6 3 8 M P a

Equation (8.3') will be used.  

KWl HAp

(1)

where A p  D L  2 4 (1 2 )  2 8 8 m m

2

l  n  D t  1 8  ( 2 4 )( 6 0  1 2 0 0 )  9 7 .7  1 0

( a ) Good Lub: K  2  1 0  

( 2 1 0

6

6

6

mm

(Table 8.3), Equation (1) gives: 6

)(1 5 0 )( 9 7 .7  1 0 ) 6

6

( 6 3 8  1 0 )( 2 8 8  1 0

)

 0 .1 6 m m

( b ) Excellent Lub: K  1  1 0  

(1  1 0

7

7

(Table 8.3), Equation (1) is then 6

)(1 5 0 )( 9 7 .7  1 0 ) 6

( 6 3 8  1 0 )( 2 8 8  1 0

6

)

 0 .0 0 8 m m

SOLUTION (10.2) Refer to solution of Prob. 10.1. H  9 .8 1(1 0 5 )  1 0 3 0 M P a

(Table B.6 and Sec. 8.5)

Use Eq. (8.3'),  

KWl HAp

(1)

Here A p  D L  ( 2 5 )( 2 5 )  6 2 5 m m

2

l  n  D t  1 8  ( 2 5 )( 6 0  1 5 0 0 )  1 2 7 .2  1 0

( a ) Good Lub: K  2  1 0  

( 2 1 0

6

6

6

(Table 8.3), Then, Eq. (1) result in 6

)(1 1 5 )(1 2 7 .2  1 0 ) 6

(1 0 3 0  1 0 )( 6 2 5  1 0

6

)

 0 .0 4 5 m m

( b ) Excellent Lub: K  1  1 0  

(1  1 0

7

7

(Table 8.3), Equation (1) gives 6

)(1 1 5 )(1 2 7 .2  1 0 ) 6

(1 0 3 0  1 0 )( 6 2 5  1 0

6

)

 0 .0 0 2 m m

164

mm

SOLUTION (10.3) We have H  9 .8 1( 6 0 )  5 8 8 .6 M P a

Equation (8.3) will be used,   KH WA l

(1)

a

where   0 .1 5 m m , 7

K  1 10

W  450 N

(Table 8.3)

l  n  D t  n  ( 2 5 )( 6 0  2 4  3 6 5  1 .2 )  4 9 .5 4  1 0 n m m 6

A p  ( 2 5 )( 2 5 )  6 2 5 m m

2

Equation (1) is thus (1  1 0

0 .1 5 

7

6

)( 4 5 0 )( 4 9 .5 4  1 0 n ) 6

( 5 8 8 .6  1 0 )( 6 2 5  1 0

6

)

Solving, n  2 4 .8 r p m

SOLUTION (10.4) Equation (10.10): Tf 



159 kW n

1 5 9 (1 .5 ) 1200 60

 1 1 .9 N  m

Equation (10.7): Tfc

 

4

2

3

Lr n



11 . 9 ( 0 . 09 ) 10 4

t  80

From Fig.10.8:

o

2

3 3

( 0 . 22 )( 0 . 08 ) ( 20 )

 12 . 04 mPa  s

C

SOLUTION (10.5) (a) Tf 

2

f 



c

Tf n

( b ) kW  (c)

3

4  Lr n

159

Tf



Wr



4

2

( 4 .1 4  1 0

3

3

)( 0 .1 )( 0 .0 3 7 5 ) ( 2 4 0 0 0 6 0 ) 0 .0 7 5 (1 0

4 .6 ( 4 0 0 ) 159

4 .6 2 2 5 0 ( 0 .0 3 7 5 )

3

)

 4 .6 4 N  m

 1 1 .6

 0 .0 5 5

SOLUTION (10.6) T

f

(a)  

 fWr  0 . 01 ( 8000 )( 0 . 06 )  4 . 8 N  m Tfc 4

2

3

Lr n



4 . 8 ( 0 . 05 ) 10 4

2

3 3

( 0 . 12 )( 0 . 06 ) ( 10 )

 23 . 45 mPa  s

( b ) Figure 10.8: SAE 40 oil

165

SOLUTION (10.7) P 

W DL



12 ( 10

3

)

 0 . 768

( 0 . 125 )( 0 . 125 )

f 

MPa,

F W



80 12  10

3

 0 . 667 (10

2

)

Equation (10.9):  

fP 2

2

0 . 667 ( 10

( cr ) 

n

2

)( 0 . 768 )( 10 2

2

(4)

6

)

( 0 . 0004 )  25 . 95 mPa  s

SOLUTION (10.8) From Fig. 10.8:   1 1 m P a  s (a) P 

W DL



 400

2250 ( 0 .1 5 )( 0 .0 3 7 5 )

n 

kPa

1500 60

 25

rp s

Equation (10.9): 2 n r P c

f  2

 2

2 11 ( 10

3

)( 25 )

400  10

3

1 0 . 001

 0 . 014

( b ) T f  fW D 2  ( 0 .0 1 4 )( 2 .2 5 )( 7 5 )  2 .3 6 Tf n

kW 

2 .3 6 ( 2 5 )



159

159

N m

 0 .3 7

SOLUTION (10.9) ( a ) From Eq. (10.10): Tf 



159 kW n

1 5 9 (1 .4 ) 2100 60

 6 .3 6 N  m

Equation (10.7) gives then  

Tfc 2



3

4 Lr n

( 6 .3 6 )( 0 .1 7 5 ) 4

2

3

( 0 .2 )( 0 .0 7 5 ) ( 3 5 )

 9 .5 5 m P a  s

Using Fig. 10.8: t  90 C o

( b ) Equation (10.8) results in f 

Tf



Wr

6 .3 6 2 (75 )

 0 .0 4 2

SOLUTION (10.10) Figure 10.8:   8 .4 m P a  s , Figure 10.14:

h0 c



0 . 025 0 . 05

 0 .5

 10

6 8 .4 (1 0

c  0 .0 0 1 r  0 .0 0 1(5 0 )  0 .0 0 5 m m ,

 S  0 . 52

Equation (10.17): S  ( cr )

2 n P

3

P

)( 3 0 )

 0 .5 2 ,

and W  P D L  4 8 4 .6 ( 0 .1) ( 0 .0 5 )  2 .4 2 k N

166

P  4 8 4 .6 k P a

L D 1 2

SOLUTION (10.11) P 

W DL

3

1 2 (1 0 )



 0 .7 6 8

( 0 .1 2 5 )( 0 .1 2 5 )

f 

M Pa,

F W



80 3

1 2 (1 0 )

 0 .6 6 7 (1 0

Thus f 

r c

( 0 .6 6 7  1 0

1 0 .0 0 0 4

2

)  1 6 .7

From Fig. 10.15: S  0 .8 . The viscosity is therefore  



S P n ( r c )2

0 .8 ( 0 .7 6 8 )1 0 4 (1 0 .0 0 0 4 )

6

2

 0 .0 2 4 5 8

P a  s  2 4 .5

mPa s

SOLUTION (10.12) ( a ) From Solution of Prob.10.8:   1 1 m P a  s , P  4 0 0 k P a , n  2 5 rp s , L D  1 4 We thus have S  ( cr )

2 n P

1  ( 0 . 001 )

2 11 ( 10

3

)( 25 )

 0 . 69

3

400 ( 10 )

From Fig. 10.15: f  20,

r c

( b ) Thus

fW D

Tf 

2 Tfn

kW 

159

f  2 0 ( r )  2 0 ( 0 .0 0 1 )  0 .0 2 c

 0 .0 2 ( 2 .2 5 )( 0 .0 7 5 )  3 .3 7 5 N  m 

3 . 375 ( 25 ) 159

 0 . 531

SOLUTION (10.13) ( a ) We have P 

W DL



1 .4 5 ( 0 .0 3 )( 0 .0 3 )

 1 .6 1 M P a

L D  30 30  1

Somerfield number: S  ( cr ) ( 2

n P

)  ( 01.05 3 ) [ 2

2 0 .7 (1 0

3

)( 4 0 ) 6

1 .6 1 (1 0 )

]  0 .1 2 9

Then, Fig. 10.14 gives, h o c  0 .4 2 and   1  h o c  0 .5 8 . It follows that e   c  0 .5 8 ( 0 .0 3 )  0 .0 1 7 4 m m

( b ) Figure 10.15. With S  0 .1 2 9 , L D  1;

( r c ) f  3 .5 .

So, f  3 .5 ( c r )  3 .5 ( 0 .0 3 ) (1 5 )  0 .0 0 7 N  m Friction torque, T  fW ( D 2 )  0 .0 0 7 (1 .4 5 )(1 5 )  0 .1 5 2 N  m

Thus,

kW 

Tn 159



0 .1 5 2 ( 4 0 ) 159

 0 .0 3 8 2

( c ) Figure 10.16 ( S  0 .1 2 9 with L D  1 ) gives P P

 0 .4 2

m ax

or Pm a x  P 0 .4 2  1 .6 1(1 0 ) 0 .4 2  3 .8 3 M P a 6

167

2

),

L D 1

SOLUTION (10.14) P 



W DL

3

1 5 (1 0 )

 2 .0 8 3 M P a

6

(1 2 0 )( 6 0 )1 0

Figure 10.8:   1 6 m P a  s Apply Eq. (10.17): n

S  ( cr ) ( 2

P

o

(for SAE 40 oil at 8 0 C )

)

or 0 .1 5  (

120 2 c

)

2 (1 6  1 0

3

)(1 5 0 0 6 0 ) 6

2 .0 8 3 (1 0 )

Solving, c  0 .0 6 7 9 m m

It follows that c r  0 .0 6 7 9 6 0  0 .0 0 1 1

OK (See Sec. 10.8)

Figure 10.14: (for S  0 .1 5 and L D  1 2 )

h o c  0 .2 8

from which h o  0 .2 8 ( 0 .0 6 7 9 )  0 .0 1 9 m m

SOLUTION (10.15) h0 c



S  ( cr )

Figure 10.14: S  0 . 13 ,

 0 .4 ,

0 . 0025 0 . 00625 2 n P

 ( 0 .05006 2 5 )

( a ) Fig.10.8:

t  80 C

( b ) Fig.10.15:

r c

2  (900 60 ) 3

7 0 0 (1 0 )

,

L D 1

  9 .4 5 m P a  s

o

f  3 , f  3 ( 0 . 00625 )  0 . 00375 50

( c ) T f  fW r  0 .0 0 3 7 5 ( 7 0 0  0 .1  0 .1)( 0 .5 )  1 3 .1 N  m kW 

Tfn 1050



13 . 1 ( 15 ) 159

 1 . 24

SOLUTION (10.16) P 

W DL

S  ( cr )

( a ) Figure 10.14: ( b ) Figure 10.15: T

f



1500 0 .0 2 5  0 .0 2 5

2 n P

h0 c

r c

 2 .4 M P a ,

 ( 0 .010 0 8 )

2 5 0 (1 0

3

6

Tf n 159



f  1 1,

0 .1 6 5 (1 6 . 6 7 ) 159

 0 .5 4 3,

 0 . 75 ; h 0  0 . 75 ( 0 . 01 )  0 . 008

2 )  0 . 165

 0 .0 1 7

168

L D 1

c  0 .0 1 m m

mm

f  1 1( 0 .0 0 0 8 )  0 .0 0 8 8

 fWr  ( 0 . 0088 )( 1500 )( 0 . 025

kW 

)(1 6 .6 7 )

2 .4 (1 0 )

n  1 6 .6 7 rp s ,

N m

SOLUTION (10.17) P 

W DL



 1 .2 5 M P a ,

4000 0 .0 8  0 .0 4

S  (c) r

( a ) Figure 10.14: ( b ) Figure 10.16:

h0 c

c  0 .0 8

rp s ,

mm,

L D 1 2

  30 mPa  s

Fig.10.8: Thus

n  10

2 n P

 ( 0 .0 0 2 ) 1

 0 .1 6 ,

3

)(1 0 ) 6

1 . 2 5 (1 0 )

 0 .0 6

h 0  0 .1 6 ( 0 .0 8 )  0 .0 1 3 m m

 0 .2 6 ,

P p m ax

2 3 0 (1 0

p m ax 

1 .2 5 0 .2 6

 4 .8 0 8 M P a

SOLUTION (10.18)   8 mPa s

Figure 10.8: T 

119 hp



n

Try S=0.03: Fig.10.15:

1 1 9 ( 0 .1 6 ) 2 7 .2

 0 .7 N  m ,

f  1 . 45 ,

r c

n  1 6 3 0 6 0  2 7 .2 F 

T r



0 .7 0 .0 2 5

rp s ,

L D 1

 28 N

f  1 . 45 ( 0 . 001 )  0 . 00145

From Eq.(10.17): P  ( cr )

Thus

2 n S

2 8 1 0

 ( 0 .01 0 1 )

3

( 2 7 .2 )

0 .0 3

 7 .2 5 M P a

W  P D L  7 .2 5 (1 0 )( 0 .0 5 )( 0 .0 5 )  1 8 .1 3 k N 6

F  fW  0 .0 0 1 4 5 (1 8 .1 3  1 0 )  2 6 .3 N 3

Since

28 > 26.3, assumption S=0.03 is incorrect.

Try S=0.025: Fig.10.15: P  ( 0 .01 0 1 )

r c

f  1.3 ,

2 ( 8 1 0

3

)( 2 7 .2 )

0 .0 2 5

f  1.3 ( 0 .0 0 1 )  0 .0 0 1 3  8 .7 M P a

W  P D L  8 .7 (1 0 )( 0 .0 5 )( 0 .0 5 )  2 1 .8 6

kN

F  fW  0 .0 0 1 3( 2 1 .8  1 0 )  2 8 .3 N , 3

Assumption is correct.

( a ) W  2 1 .8 k N ( b ) Fig.10.14:

h0 c

 0 . 13 , h 0  0 . 13 ( 0 . 001  25 )  0 . 0033

( c ) Equation (10.20):  1 

h0 c

mm

 1  0 . 13  0 . 87

SOLUTION (10.19) h0

c  0 .0 0 1 5 (5 0 )  0 .0 7 5 m m ,

Figure 10.14: P 

c



0 .0 2 5 0 .0 7 5



1 3

,

L D 1 2

S=0.022 W DL



8000 ( 0 . 1 )( 0 . 05 )

 1 . 6 MPa

n  900

60  15 rps

(CONT.)

169

10.19 (CONT.) ( a ) Equation (10.17):  

SP n

0 . 22 ( 1 . 6  10

6

)

15

f  6 .5 ,

r c

( b ) Figure 10.15:



2

( cr )

( 0 . 0015 )

kW 

( 80  0 . 050 ) 15



159

 52 . 8 mPa  s

f  6 .5 ( 0 .0 0 1 5 )  0 .0 1

F  fW  0 . 01 ( 8000 )  80 Tfn

2

N

 0 . 377

159

SOLUTION (10.20) P 

W DL



 1 .2 M P a ,

6000 0 .1 0 .0 5

r  50 m m ,

From Sec. 10.10: A  1 2 .5 D L  1 2 .5 (1 0 0  5 0 )  1 0 Table 10.3: C  7 . 4 watts Equation (10.17): S  ( cr )

2 n P

1 0 .0 0 1

)

L D 1 2

 0 .0 6 2 5

2

m ,

 C o

2 ( 2 0 1 0

3

)( 5 )

6

1.2 (1 0 )

f  3.2 ,

r c

Figure 10.15:

 (

m

2

6

 0 .0 8 3

f  3 .2 ( 0 .0 0 1 )  0 . 0 0 3 2

Through the use of Eq.(10.24), we have H  fW ( 2  r n )  0 .0 0 3 2 ( 6 , 0 0 0 ) ( 2   0 .0 5  5 )  3 0 .1 6 w a tts

Thus, by Eq.(10.23): t0  ta 

 20 

H CA

30 . 16 7 . 4 ( 0 . 0625 )

 20  65 . 2  85 . 2

o

C

SOLUTION (10.21) Refer to Solution of Prob.10.20. We have C  8 . 5 watts

m

Using Eq.(10.23): t 0  t a 

2

 C (Table 10.3) o

 30 

H CA

30 . 16 8 . 5 ( 0 . 0625 )

 30  56 . 8  86 . 8

o

SOLUTION (10.22) C  14 kN

Table 10.5:

Fa

Table 10.7:

V Fr



3 1.2 ( 2 )

C s  6 . 95 kN Fa

 1.2 5  e

X  0 .5 6

Cs



n  1500 3 6 .9 5

 0 .4 3 2

Y  1.0 3 7 (by interpolation)

Thus, we obtain P  XVF

r

 YF a  0 . 56 (1 . 2 )( 2 )  1 . 037 ( 3 )  4 . 455

P  VF

 1 . 2 ( 2 )  2 . 4 kN

or r

Hence L1 0 

6

10 60 n

( CP )

a



6

10 6 0 (1 5 0 0 )

( 4 .41 45 5 )  3 4 4 .8 h 3

170

kN

C

n  5 rp s

SOLUTION (10.23) Table 10.5:

C  1 4 .8 k N

Table 10.8:

V Fr

Fa

C s  7 .6 5

 1.2 5  e  0 .9 5 ;

X  0 .3 7 ,

Y  0 .6 6

We have then P  XVF

r

 YF a  0 . 37 (1 . 2 )( 2 )  0 . 66 ( 3 )  2 . 868

P  VF

 1 . 2 ( 2 )  2 . 4 kN

kN

or r

Thus L1 0 

6

10 60 n

( CP )

a



6

10 6 0 (1 5 0 0 )

( 21.84 .86 8 )  1 5 2 6 .9 3

h

SOLUTION (10.24) Refer to Solution of Prob. 10.22: C  14 kN ,

C s  6 .9 5

Fa

kN ,

Cs

 0 .4 3 2

Table 10.7: Fa VF

 r

3 1( 2 )

 1 .5  e ;

X  0 . 56

Y  1 . 037

(by interpolation)

It follows that P  K s [ X V F r  Y F a ]  1 .5[( 0 .5 6 )1( 2 )  1 .0 3 7 (3)]  6 .3 4 7 k N

or P  K s VF r  (1 . 5 )1 ( 2 )  3 kN

Thus L1 0 

6

10 60 n

( CP )

a



6

10 6 0 (1 5 0 0 )

( 6 .31 44 7 )  1 1 9 .2 3

h

SOLUTION (10.25) Table 10.5: C  5 5 .9 k N

C s  3 5 .5 k N

Table 10.8: Fa V Fr



6 .7 5 (1 )( 2 2 .5 )

iF a

 0 .3  e ,

Cs



1 ( 6 .7 5 ) 3 5 .5

 0 .1 9

and X  1,

Y  0 .9 2

Thus P  X V F r  Y F a  1(1)( 2 2 .5 )  ( 0 .9 2 )( 6 .7 5 )  2 9 k N

or P  V F r  (1)( 2 2 .5 )  2 2 .5 k N

Hence L1 0 

6

10 60 n

( CP )  3

6

10 60 (700 )

( 5259.9 )  1 7 0 .5 h 3

171

SOLUTION (10.26) Table 10.5: C  1 4 k N

C s  6 .9 5 k N

Table 10.7: Fa Cs



Fa

 0 .2 9  e ,

2 6 .9 5

V Fr



2 (1 )( 4 )

 0 .5  e

and X  0 .5 6 ,

Y  1 .1 4 2

(by interpolation)

Hence P  X V F r  Y F a  0 .5 6 (1)( 4 )  (1 .1 4 2 )( 2 )  4 .5 2 k N

or P  V F r  (1)( 4 )  4 k N

Thus L1 0 

6

10 60 n

( CP )

a



6

10 60 (3500 )

( 41.542 )  1 4 1 .5 h 3

From Fig. 10.26: K r  0 .6 2 . So L 5  K r L1 0  0 .6 2 (1 4 1 .5 )  8 7 .7 h

SOLUTION (10.27) Variation factor: V  1 (Eq. 10.25) C  1 9 .5 k N

Table 10.5:

C s  10 kN

Table 10.7: Fa Cs



1 .7 10

 0 .1 7 ,

Fa

e  0 .3 4 ;

V Fr



1 .7 (1 )( 4 .5 )

 0 .3 8  e

and X  0 .5 6 ,

Y  1 .3 1

Thus P  X V F r  Y F a  0 .5 6 (1)( 4 .5 )  (1 .3 1)(1 .7 )  4 .7 4 7 k N

P  V F r  (1)( 4 .5 )  4 .5 k N

or

It follows that L1 0 

6

10 60 n

( CP )

a



6

10 60 (600 )

( 41.79 .54 7 )  1 9 2 6 h 3

SOLUTION (10.28) K s  2 .5

Table 10.9:

V  1 .2

and Fa V Fr



1 .7 (1 .2 )( 4 .5 )

 0 .3 1 5  e ;

X  0 .5 6 ,

Y  1 .3 1

Therefore, Eq. (10.27): P  K s ( X V F r  Y F a )  2 .5[( 0 .5 6 )(1 .2 )( 4 .5 )  (1 .3 1)(1 .7 )]  1 3 .1 3 k N

(CONT.)

172

10.28 (CONT.) or P  K sV F r  2 .5 (1 .2 )( 4 .5 )  1 3 .5 k N

Hence L1 0 

6

10 60 n



a

( CP )

6

10 60 (600 )

( 11 39 .5.5 )  8 3 .7 h 3

From Fig. 10.26: K r  0 .6 2 . So, L 5  K r L1 0  0 .7 (8 3 .7 )  5 8 .6 h

SOLUTION (10.29) P2  3

3

L '10 P1 2 L " 10

 0 . 5 P1 ,

P 2  0 . 794 P1

3

 20 . 6 %

SOLUTION (10.30) 10

10 3

P2



L '10 P1 3 2 L " 10

10

 0 . 5 P1 3 ,

P 2  0 . 812 P1

18 . 8 %

SOLUTION (10.31) Table 10.5:

C  5 5 .9 k N ,

Table 10.8:

VF

Fa



1 .5 1 .2 ( 5 )

r

C s  3 5 .5 k N iF a

 0 . 25  e ,

Cs



2 ( 1 .5 ) 35 . 5

 0 . 085

and X  1,

Y  1.3 8 6 (by interpolation)

Then we obtain P  XVF

r

 YF a  1(1 . 2 )( 5 )  1 . 386 (1 . 5 )  8 . 079

or P  V F r  1 .2 (5 )  6 k N

Thus L1 0 

6

10 60 n

( CP )

a



6

10 6 0 (1 0 0 0 )

( 85.05 7.99 )  5 5 2 1 h 3

and 5 L1 0  5 (5 5 2 1)  2 7 , 6 0 5 h

SOLUTION (10.32) P  K s [V X F r  0 ]  1 .7[1 .2 (1)5 ]  1 0 .2

35 mm-02-series (Table 10.6): L1 0 

6

10 60 n

( CP )  a

6

10 60 ( 2400 )

10

[ 13 01 .2.9 ] 3  3 1 0 .6 5 h

35 mm-03-series (Table 10.6): L1 0 

6

10 60 ( 2400 )

10

[ 14 04 .2.6 ] 3  9 4 9 .3 h

173

kN

kN

SOLUTION (10.33) P  K sV F r  1(1)( 2 5 )  2 5

(Eq.10.26)

kN

75 mm-02-series (Table 10.6): L1 0 

6

10 60 n

( CP )

a

6



10

10 60 ( 2000 )

[ 9215.3 ] 3  6 2 5 .1 h

and 5 L1 0  3,1 2 5 h r 75 mm-03-series (Table 10.6): L1 0 

10

6

10 60 ( 2000 )

[ 12853 ] 3  6 3 4 6 h

and 5 L1 0  3 1, 7 3 0 h

SOLUTION (10.34) P  K sV F r  2 (1  1  1 2 .5 )  2 5

(Eq.10.26)

kN

We have L1 0 

6

10 60 n

6

24 

a

( CP ) :

02-series (Table 10.6): 03-series (Table 10.6):

10 60 ( 2400 )

3

[ 2C4 ] ,

C  3 6 .2 8 6 k N

40-mm-bore bearing 30-mm-bore bearing

SOLUTION (10.35) Fa

Table 10.7:

Cs

 0 , use 0.014: X  1 ,

Y  0

We have, by Eq.(10.27), P  K s XVF

r

 2 . 5 (1)( 1 . 2 ) 8  24 kN

Thus L 10 

6

10 60 n

( CP )

From Table 10.5:

a

40 5

:



6

10 60 ( 900 )

C [ 24 ] , C  18 . 1 kN 3

30-mm-bore bearing

SOLUTION (10.36) Refer to Solution of Prob.10.22: C  14 kN , Figure 10.26: K r  0 .6 2 .

P  4 . 455

We now have n  1200

rpm .

Hence L5  K r

6

10 60 n

( CP )  0 .6 2 3

6

10 6 0 (1 2 0 0 )

( 4 .41 45 5 )  2 6 7 h 3

174

kN

SOLUTION (10.37) Figure 10.26:

K

r

 0 .3 2 ,

Refer to Solution of Prob.10.32:

35 mm-02-series: L 5  K r L1 0  0 .3 2 (3 1 0 .6 5 )  9 9 .4 1 h

35 mm-03-series: L 5  K r L1 0  0 .3 2 (9 4 9 .3)  3 0 3 .8 h

End of Chapter 10

175

CHAPTER 11

SPUR GEARS

SOLUTION (11.1) Equation (11.4): m 

d N

d  6 (3 2 )  1 9 2 m m ,

,

r 

d 2

 96 m m

Table 11.1: a  m  6 mm ,

h  2 .2 5 ( 6 )  1 3 .5 m m ,

hk  2 ( 6 )  1 2 m m

Equation (11.9) of Sec.11.4: rb  r c o s   9 6 c o s 2 0

 9 0 .2 1 1 m m ,

o

r0  r  a  9 6 .2 1 m m

SOLUTION (11.2) N1

Equation (11.8): r s 

N

2



or N 1 

1 3

N

2

3

Equations (11.6) and (11.5b): N1 N 2

c  r1  r2 



2P

m 2

(N1  N 2) 

3 2

(

N

2

3

 N2) 

3 2

(

4 3

N 2 )  360

or N

 1 8 0 teeth.

2

Thus N 1 

180 3

 6 0 teeth

SOLUTION (11.3) ( a ) Pitch circle is P   m  1 0   3 1 .4 2 m m

Pitch diameters are d

 N

p

p

 1 8 (1 0 )  1 8 0 m m ,

d g  4 2 (1 0 )  4 2 0 m m

The center distance: d

c 

p

dg 2



1 2

(1 8 0  4 2 0 )  3 0 0 m m

Base circle are Pb p  r p c o s   9 0 c o s 2 0 Pb g  2 1 0 c o s 2 0

(b) c 

d

p

dg

o

o

 8 4 .5 7 m m

 1 9 7 .3 4 m m

 300  8  308 m m

2

(1)

The velocity ratio does not change. Hence d

p

dg



18 42

(2)

Solving Eqs. (1) and (2), d

p

 1 8 4 .8 2 m m

d g  4 3 1 .1 9 m m

Since rb  r c o s  , the new pressure angle is  new  c o s

1

rb p d

p

2

 cos

1

8 4 .5 7 1 8 4 .8 2 2

 2 3 .7 7

176

o

SOLUTION (11.4) Addendum and circular pitch: a  1 m  1 (4)  4 m m

(Table 11.1)

p   m   ( 4 )  1 2 .5 5 6 m m ; (Eq. 11.5a)

Tooth thickness, t  1 .1 5 7 1 m  1 .5 7 1( 4 )  6 .2 8 4 m m

(Table 11.1)

SOLUTION (11.5) Refer to Table 11.1;

m 1 P :

with

Dedendum,

b d  1 .2 5 m  1 .2 5 (1 2 )  1 5 m m

Clearance,

f  0 .2 5 m  0 .2 5 (1 2 )  3 m m

h k  2 m  2 (1 2 )  2 4 m m

Working depth,

t  1 .5 7 1 m  1 .5 7 1(1 2 )  1 8 .8 5 2 0 m m

Thickness,

Circular pitch, by Eq. (11.3): p   m   (1 2 )  3 7 .6 9 9 1 m m

SOLUTION (11.6) d g  4d

p

c 

p

(Eq. 11.8)

We have 1 2

(d

 d g )  2 0 0;

5d

p

 400

or

and m  d

p

N

 4N

p

p

,

N

p

 d

p

m  80 5  16

Thus, N

g

 64

SOLUTION (11.7) Equation (11.8), rs 

N

p

N

g



1200 2400



1 2

,

N

g

 2N

p

 2 (1 8 )  3 6

Equation (11.4), d

p

 N p m  1 8 (3 )  5 4 m m

and c 

1 2

(d

p

 dg) 

1 2

(5 4  3 6 )  4 5 m m

Equation (11.5a) gives p   m   ( 3 )  9 .4 2 4 8 m m

177

d

p

 80 m m

SOLUTION (11.8) rs 

Equation (11.8): m  d

p

 

p





0 . 5234

 mN

p

N

p

N

g



1 4

N



p

84

,

N

p

 2 1 teeth

 4

13 . 1942



 4 ( 2 1)  8 4 m m ,

dg  mN

p

 4 (8 4 )  3 3 6 m m

Therefore c 

1 2

(d g  d p ) 

1 2

(3 3 6  8 4 )  2 1 0 m m

SOLUTION (11.9) ( a ) From Eq. (11.4), pitch diameters are d g  N g m  6 0 (8 )  4 8 0 m m d

p

 2 4 (8 )  1 9 2 m m

The center distance c 

1 2

(d

p

 dg) 

1 2

(1 9 2  4 8 0 )  3 3 6 m m

The base circles are rb p 

rb g 

d

p

2

480 2

cos  

cos 20

192 2

o

cos 20

o

 9 0 .2 1 m m

 2 2 5 .5 2 m m

( b ) When center distance is increased by 6 mm, we have c=342. This corresponds to a 1.79% increased in center distance. However, d

p

 d g  2 (3 4 2 )  6 8 4 m m

(1)

and N

p

d

p



N

g

dg

;



24 dp

60 dg

(2)

Solving Eqs. (1) and (2): d g  4 8 8 .6 m m

d

p

 1 9 5 .4 m m

We have m 

d

p

N

p



1 9 5 .4 24

 8 .1 4 2 m m

Circular pithch p   m  8 .1 4 2   2 5 .5 8 m m

Changing center distance does not affect the base circle. Thus,  new  c o s

1

(

rb p rp

)  cos

1

( 1 99 50 .4.2 12 )  2 2 .6

178

o

SOLUTION (11.10) Equation (11.8): rs 

N

p

N

g



1 4

N

 4N

g

p

 4 ( 22 )  88 teeth

Equation (11.4): d g  N g m  88(4)  352

d

p

mm

 N p m  22 ( 4 )  88 mm

Hence, c 

(3 5 2  8 8 )  2 2 0

1 2

mm

SOLUTION (11.11)

From Eq. (11.5b), the modulus is 1 m



N

p

d

p

or d p  N p m  2 5 (3 )  7 5 m m

The speed at the contact point, V p  V g  V : V  w p rb p  w p

d

p

2

cos 20

o

 ( 3 46 00 0 ) 2  ( 725 ) c o s 2 0

o

 1 2 , 5 4 7 m m s  1 2 .5 5 m s

SOLUTION (11.12)

From Eq. (11.5a), the circular pitch, p   m   ( 2 )  6 .2 8 m m

By Eqs. (11.5b) and (11.6), the center distance: c 

1 2

(N

p

 N g )m 

1 2

(3 0  1 0 0 )( 2 )  1 3 0 m m

The pitch circular radii are rp 

1 2

N pm 

1 2

(3 0 )( 2 )  3 0 m m

rg 

1 2

N gm 

1 2

(1 0 0 )( 2 )  1 0 0 m m

Using Eq. (11.9), The base radii: rb p  r p c o s   3 0 c o s 2 0

o

 2 8 .1 9 m m

rb g  rg c o s   1 0 0 c o s 2 0  9 3 .9 7 m m o

The addendum is equal to a p 

1 p

 m  2 mm

(CONT.)

179

11.12 (CONT.) The order radii are therefore ro p  r p  a  3 0  2  3 2 m m

ro g  1 0 0  2  1 0 2 m m

and

ro p  ro g  1 3 4

SOLUTION (11.13)

Refer to Solution of Prob. 11.9. We have p   m   (8 )  2 5 .1 3 3 m m , rg  4 8 0 2  2 4 0 m m , rb p  9 0 .2 1 m m ,

  20

o

rp  1 9 2 2  9 6 m m

rb g  2 2 5 , 5 2 m m ,

c  336 m m

From Table 11.1, the addendum for gears are a  1 p  8 mm

The outside radii are then ro p  r p  a  9 6  8  1 0 4 m m ro g  2 4 0  8  2 4 8 m m

Substituting the data into Eq. (11.14), the contact ratio: Cr 

[ 1 0 4  9 0 .2 1  2

1 2 5 .1 3 3 c o s 2 0

o

2

 1 .6 9 4

SOLUTION (11.14)

We have e  (

N1 N3

N

)( N 3 )   4

24 96

  0 .2 5

Substituting into Eq. (11.18)  0 .2 5 

0  n2 120  n2

,

n 2  2 4 rp m

Direction is the same as that of the sun gear.

180

2 4 8  2 2 5 .5 2 ]  2

2

3 3 6 ta n 2 0 2 5 .1 3 3

o

SOLUTION (11.15) kW 

Tn 9549

T1 

,

22 (9549 )

d 1  2 7 (8 )  2 1 6 m m ,

( a ) Ft1 

T1 r1



5 2 .5 2 0 .1 0 8

d 2  4 8 (8 )  3 8 4 m m ,

d 3  3 6 (8 )  2 8 8 m m

(Eq.11.2)

 486 N

Equation (11.19): F r  F t ta n  ( b ) RC 

 5 2 .5 2 N  m

4000

486  227 2

2

o

 4 8 6 ta n 2 5

o

 2 2 7 lb

T C  4 8 6 ( 0 .1 4 4 )  7 0 N  m

 536 N ,

486 227

A

486

B

486

2 2 .9

o

C RC

486 TC

SOLUTION (11.16) T1 



9549 kW n

22 (9549 ) 4000

 5 2 .5 2 N  m

d 1  2 7 (5 )  1 3 5 m m ,

( a ) Ft 1 

T1 r1



5 2 .5 2 0 .0 6 7 5

d 2  4 8 (5 )  2 4 0 m m ,

d 3  3 6 (5 )  1 8 0 m m

 778 N

Equation (11.19): F r 1  F t 1 ta n 2 0  2 8 3 N o

( b ) RC 

778  283 2

2

T C  7 7 8 ( 0 .0 9 )  7 0 N  m

 828 N ,

778 B

A

45

283

o

778

778

20

778

o

C RC TC

181

(Eq.11.4)

SOLUTION (11.17) Equation (11.4): d 1  2 0 ( 6 )  1 2 0 m m ,

d 2  40(6)  240 m m ,

d 3  20(6)  120 m m ,

( a ) T1 

9549 kW n

Ft 1 



9549 (37 )

 2 9 4 .4 N  m

1200

F r 1  4 .9 1 ta n 2 0

 4 .9 1 k N ,

2 9 4 .4 0 .0 6

d 4  60(6)  360 m m

We have 4 .9 1( 0 .1 2 )  0 .0 6 F t 3 ,

o

 1 .7 9 k N

F t 3  9 .8 2 k N ,

(Eq.11.19)

F r 3  9 .8 2 ta n 2 0  3 .5 7 k N o

2 ( b )  F x  0 : F x  4 .9 1  3 .5 7  1 .3 4 k N

B

3

3.57



9.82 o

9 .5

RB 

4.91 RB

F y  0 : F y  9 .8 2  1 .7 9  8 .0 3 k N 8 .0 3  1 .3 4 2

 8 .1 4 k N

2

TB  0

1.79

SOLUTION (11.18) ( a ) T1 

9549 kW n T1

F t1 



r1

9549 ( 80 )



1600

477 . 5 0 . 054

 8 . 843

T1

2

1



F r 1  8 . 843 tan 20

kN ,

3

B

A

mN

r1 

2

8843

1

 477 . 5 N  m ,

TC

8843

20

2 o

 54 mm

 3 . 219

( b ) r3 

C

3219

6 ( 18 )

(Eq.11.4) (Eq.11.19)

kN

mN 2

3



6 ( 50 )

 150

2

mm

T C  8 . 843 ( 0 . 15 )

o

 1 .3 2 6 k N  m

RC 

RC

8 . 843

 9 . 411

2

 3 . 219

2

kN

SOLUTION (11.19) 9549 kW

( a ) T1 

n

9549 ( 80 )



1600

Equation (11.4): r1  F r 1  6632 tan 25

( b ) r3 

mN3

RC 

2



8 (50 ) 2

o

 477 . 5 N  m mN

1

2

8 ( 18 ) 2

 3 . 093

 200

6632  3093 2



 72 mm .

F t1 

r1



477 . 5 0 . 072

 6 . 632

kN

kN

mm 2

 7 .3 1 8

T C  6 6 3 2 ( 0 .2 0 0 )  1 .3 2 6 k N  m

kN ,

6632 B

A

T1

C

T1

TC

3093

25

o

6632 RC

182

SOLUTION (11.20) Equation (11.4): d 1  N 1 m  1 5 (5 .2 )  7 8 m m , d 3  2 0 (5 .2 )  1 0 4 m m ,

( a ) T1 



9549 kW n

Ft 1 

9 5 4 9 ( 7 .5 ) 1500

d 4  4 0 (5 .2 )  2 0 8 m m

 4 7 .5 7 N  m F r 1  1 .2 2 ta n 2 5

 1 .2 2 k N  F t 2 ,

4 7 .5 7 0 .0 3 9

d 2  3 5 (5 .2 )  1 8 2 m m ,

o

 0 .5 6 k N  F r 2

T 2  1 .2 2 ( 0 .0 9 1)  1 1 1 N  m Ft 3 

 2 .1 3 k N ,

111 0 .0 5 2

F r 3  2 .1 3 ta n 2 5

o

 0 .9 9 k N

(b) 4

2 3

2.13

RC TC

B

65

0.99

0.56

C

0.99

1.22

o

T C  2 .1 3( 0 .1 0 4 )  2 2 1 .5 N  m

RC 

SOLUTION (11.21)

d 3  18(4)  72 m m ,

( a ) T1 



9549 kW n

Ft 1  Ft 2 

9 5 4 9 (1 5 ) 1800

7 9 .5 8 0 .0 4 8

 7 9 .5 8

d 2  36(4)  144 m m , d 4  42(4)  168 m m

N m

 1 .6 6 k N

F r 1  1 .6 6 ta n 2 5

o

 0 .7 7

kN

T 2  T 3  1 .6 6 ( 0 .0 7 2 )  1 1 9 .5 N  m Ft 3 

 3 .3 2

1 1 9 .5 0 .0 3 6

kN ,

F r 3  3 .3 2 ta n 2 5

( b ) R x  1 . 66  1 . 55  0 . 11 kN  RB 

R x  R y  2 .5 5 2

2

0.77

RB

1.66

2 2 .5

o

B

o

 1 .5 5 k N

R y  3 . 32  0 . 77  2 . 55 kN 

kN

1.55

3 3.32

183

2

 2 .3 5 k N

2.13

Equation (11.4): d 1  2 4 ( 4 )  9 6 m m ,

0 .9 9  2 .1 3

2

SOLUTION (11.22) Equations (11.2) and (11.8): d 1  1 5 (5 .2 )  7 8 m m , n 2  n1

N1

 1 5 0 0 ( 13 55 )  6 4 2 .9

N2

 0b Ym K

1

f



rp m

Table 11.4:  0  1 7 2 M P a and 2 5 0 B h n

( a ) Table 11.3: Y=0.443, Fb 

d 2  3 5 (5 .2 )  1 8 2 m m ,

6

1 7 2  1 0 ( 0 .0 1 2 ) 0 .4 4 3 ( 0 .0 0 5 2 ) 1 .6

1

( b ) Table 11.10: K  1 . 117 ,

Q 

 2 .9 7 2

2 ( 35 )

 1 .4

15  35

(Eq.11.33)

kN

(Eq.11.40)

F w  d p b Q K  7 8 (1 2 )(1 .4 )(1 .1 1 7 )  1 .4 6 4 k N

( c ) V2 

 dn



12

 ( 0 .1 8 2 )( 6 4 2 .9 ) 60

 6 .1 2 m s ,

Fd 

Thus

2 .9 7 2  3 .0 0 7 F t ,

Ft  9 8 8

and

1 .4 6 4  3 .0 0 7 F t ,

Ft  4 8 7 N

(Eq.11.38) 3 .0 5  6 .1 2 3 .0 5

F t  3 .0 0 7 F t

(Eq.11.24a)

N

SOLUTION (11.23) Equations (11.4) and (11.8): d 3  mN

V3 

3

 dn

 5 ( 20 )  100

  ( 0 .1)( 1 16 20 5 )  5 .8 9

60

( a ) Table 11.3: Y  0 .3 2 0 , Fb 

mm ,

 0 bYm K



f

1 1 .5

( c ) Fd 

3 . 0 5  5 .8 9 3.0 5

 1500 ( 34 )  1125

N3

rpm

m s

Table 11.4: 

0

 172

and 250 Bhn

MPa

(172 )( 15 )( 0 . 320 )( 5 )  2 . 75 kN

( b ) Table 11.10: K  0 .9 0 3 M P a , F w  d 3 bQK

N1

n 3  n1

Q 

2N4 N3 N4

(Eq.11.33) 

 100 (15 )( 43 )( 0 . 903 )  1 . 81 kN

2 ( 40 ) 20  40



4 3

(Eq.11.40)

(Eq.11.38)

F t  2 .9 3 1 F t

Thus

2 . 75  10

and

1 . 81  10

3

3

 2 . 931 F t ,

F t  938

 2 . 931 F t ,

F t  617 . 5 N

N

SOLUTION (11.24) Refer to Solution of Prob. 11.23. Equation (11.4) and (11.8): d 1  m N 1  5 (1 5 )  7 5 m m ,

V1 

 dn 60

n 2  n1

N1 N2

 1 5 0 0 ( 13 55 )  6 4 2 .9 rp m

  ( 0 .0 7 5 )( 1 56 00 0 )  5 .8 9 m s

(CONT.)

184

11.24 (CONT.) ( a ) Table 11.3: Y  0 .2 8 9 , Fb 

 obYm K



1 1 .5

f

Table 11.4: 1 7 2 M P a at 2 5 0 B h n (1 7 2 ) (1 5 ) ( 0 .2 8 9 ) ( 5 )  2 .4 9 k N

( b ) Table 11.10: K  0 .9 0 3 M P a ,

2N2

(Eq. 11.40)

F w  d 1 b Q K  7 5 (1 5 )(1 .4 )( 0 .9 0 3)  1 .4 2 k N

(Eq. 11.38)

N1  N 2



2 (35 )

 1 .4

3 .0 5  5 .8 9 3 .0 5

( c ) Fd 

Q 

(Eq. 11.33)

15 35

F t  2 .9 3 1 F t

Thus 2 .4 9  1 0  2 .9 3 1 F t ,

F t  8 4 9 .5 N

1 .4 2  1 0  2 .9 3 1 F t ,

F t  4 8 4 .5 N

3

and 3

SOLUTION (11.25)

We have d  N m  2 2 ( 2 .5 )  5 5 m m ( a )  o  2 2 1 M P a (Table 11.4), Y  0 .3 3 (Table 11.3) Equation (11.33): Fb 

(b) V 

 dn 60



 obYm K

2 2 1 ( 3 0 ) ( 0 .3 3 ) ( 2 .5 )



1 .5

f

 ( 0 .0 5 5 )(1 5 0 0 )

 4 .3 2 m p s

60

Fd 

Equation (11.24a):

 3 .6 5 k N

3 .0 5  4 .3 2 3 .0 5

F t  2 .4 2 F t

Hence 3 .6 5  2 .4 2 F t ,

F t  1 .5 0 8 k N

Equation (11.22) is then kW 

Ft V 1000



1 5 0 8 ( 4 .3 2 ) 1000

 6 .5 1

SOLUTION (11.26) Equations (11.4), (11.8), and (11.20'): d 2  36(4)  144 m m , n 2  1 8 0 0 ( 23 )  1 2 0 0

rpm ,

d 3  18(4)  72 V 

 dn2 60



mm

 ( 0 .1 4 4 )(1 2 0 0 ) 60

 9 .0 5

m ps

(CONT.)

185

11.26 (CONT.) ( a ) Table 11.3: Y  0 .4 4 6 (by interpolation), Table 11.4:  0  1 7 2 M P a (for steel of 200 Bhn)  0b Ym

Fb 

K



1

f

1 7 2 (1 0 ) ( 0 .4 4 6 ) ( 4 ) 1 .4

 2 .1 9 2 k N (Eq.11.33)

( b ) Table 11.10: K  0 .6 7 6 M P a ,

2 ( 42 )

Q 

18 42



F w  d 3 b Q K  7 2 (1 0 )( 2 1 1 5 )( 0 .6 7 6 )  6 8 1 .4

( c ) Fd 

3 . 05  9 . 05 3 . 05

F t  3 . 97 F t

(Eq.11.40) (Eq.11.38)

N

( Eq.11.24a)

2 .1 9 2  3 .9 7 F t ,

Thus

21 15

Ft  5 5 2

N

SOLUTION (11.27) Equation (11.4): d 1  24 (10 )  240 ( a ) Table 11.3: Y  0 .3 9 3 (interpolated).  0 bYm

Fb 

K



f

( b ) Table 11.10: F w  d 1 bQK

1 1 .5

mm

Table 11.4: 

0

 172

[172 (15 )( 0 . 393 )( 10 )]  6 . 76 kN

K  0 . 545

Q 

MPa,

2 ( 36 ) 24  36



(for steel of 200 Bhn)

MPa

(Eq.11.33)

6 5

(Eq.11.40)

 240 (15 )( 65 )( 0 . 545 )  2 . 35 kN

(Eq.11.38)

SOLUTION (11.28)

Refer to Solution of Prob. 11.27. Equation (11.4): d 1  2 4 (1 0 )  2 4 0 m m , ( a ) Table 11.3: Y  0 .3 3 7 , Table 11.4: Fb 

 obYm K



f

1 1 .5

d 3  1 8 (1 0 )  1 8 0 m m

 o  1 7 2 M P a (for steel of 200 Bhn)

[1 7 2 (1 5 ) ( 0 .3 3 7 ) (1 0 ) ]  5 .8 k N (Eq. 11.33)

( b ) Table 11.10: K  0 .5 4 5 M P a ,

Q 

2 N3 N3 N4



2 (1 8 ) 18 42

 0 .6

(Eq. 11.40)

F w  d 3 b Q K  1 8 0 (1 5 )( 0 .5 4 5 )  8 8 3 N

(Eq. 11.38)

SOLUTION (11.29) d

p

 N p m  24(2)  48

V 

 d pnp

Kv 

60



6 . 1  4 . 02 6 .1

 ( 0 .0 4 8 )(1 6 0 0 ) 60

 1 . 659

mm,

d g  60(2)  120

 4 .0 2 m p s

mm

(Eq.11.4)

(Eq.11.20')

(Fig.11.15) (CONT.)

186

11.29 (CONT.) Ft 

1000 kW V



1 0 0 0 ( 0 .9 )

 2 2 3 .9

4 .0 2

N

J  0 .2 6

Pinion: (Fig.11.16):

Table 11.7: S t  1 9 7 .5 M P a

(mid-point).

Equation (11.35'):   Ft K 0 K v

KsKm

1 bm

 2 2 3 .9 (1) (1 .6 5 9 )

J

1 (1 .6 ) 1 0 .0 1 5 ( 0 .0 0 2 ) 0 .2 6

 7 6 .2 M P a

Equation (11.36): 

a ll

St K L



KT K R

1 9 7 .5 (1 )



1 (1 .2 5 )

 158

J  0 .3 0 ,

Gear: (Fig.11.16):

  2 2 3 .9 (1)(1 .6 5 9 )





M Pa

1 0 .0 1 5 ( 0 .0 0 2 )

0 .3

 ,

Yes.

S t  58 . 6 ksi

Table 11.7: 1 (1 .6 )

a ll

 66 M Pa

and 

a ll



5 8 .6 (1 ) 1 (1 .2 5 )

 4 6 .9



M Pa



a ll

 ,

No.

SOLUTION (11.30) From Solution of Prob.11.29: d p  4 8 m m , F t  2 2 3 .9 N ,

C H  1 . 001

mG  d g d

p

d g  120 m m ,

 2 .5 ,

ng  np

N

p

N

g

V  4 .0 2 m p s , 24  1600 ( 60 )  640

(from Eq.11.46)

Pinion:  c  C p ( Ft K 0 K v

where

C

p

I 

 166

Ks

KmC

bd

I

f

1

)

(Eq.11.42)

2

M P a (Table 11.11)

sin  cos 

mG

2

m G 1

 0 . 161

60 84

 0 . 115

Thus  c  1 6 6  1 0 [ 2 2 3 .9 (1)(1 .6 5 9 ) 3

S c  620 . 5 MPa

 c , a ll 

ScC LC H



KT K R

1 .6 (1 ) 1 ( 0 .0 1 5 )( 0 .0 4 8 ) 0 .1 1 5

(Table 11.12)

6 2 0 .5 (1 )(1 .0 0 1 ) 1 (1 .2 5 )

1

] 2  4 4 4 .7 M P a

(mid-point)

 4 9 6 .9 M P a

(Eq.11.44)

Hence  c , a ll   c

Gear: Table 11.12:

Yes.

S c  4 8 5 .5

(mid-point)

M Pa

 c  1 6 6  1 0 [ 2 2 3 .9 (1)(1 .6 5 9 ) 3

 c , a ll 

4 8 2 .5 (1 )(1 ) 1 (1 .2 5 )

1 .6 (1 ) 1 ( 0 .0 1 5 )( 0 .1 2 ) 0 .1 1 5

 386 M Pa

Hence  c , a ll   c

Yes.

187

1

] 2  2 8 1 .3 M P a

rpm

SOLUTION (11.31) d

p

 N p m  2 0 (3 )  6 0 m m ,

V 

 d pnp

 ( 0 .0 6 )(1 2 0 0 )



60

Ft 

1000 kW V

(Eq. 11.4)

 3 .7 7 m p s

60

K   1 .6 1 8

d g  5 0 (3 )  1 5 0 m m

(Fig. 11.15) 

1 0 0 0 (1 .0 )

 2 6 5 .3 N

3 .7 7

J  0 .2 4 5 (mid-point)

Pinion, (Fig. 11.16):

Table 11.7: S t  2 8 6 M P a

Equation (11.35'):   Ft K o K v

KsKm

1 bm

 2 6 5 .3 (1)(1 .6 1 8 )

J

1 (1 .7 ) 1 ( 0 .0 1 5 )( 0 .0 0 3 ) 0 .2 4 5

 6 6 .2 M P a

Equation (11.36): 



a ll

St K L



KT K R

2 8 6 (1 ) 1 (1 .3 )

Table 11.7: S t  8 9 .6 M P a

  2 6 5 .3 (1)(1 .6 1 8 ) 

8 9 .6 (1 )



a ll

1 (1 .3 )

  , Yes. a ll

Gear, (Fig. 11.16): J  0 .3 ,

and

 

 220 M Pa

1 (1 .7 ) 1 ( 0 .0 1 5 )( 0 .0 0 3 ) 0 .3

 

 6 8 .9 M P a

a ll

 5 4 .1 M P a

  , Yes.

SOLUTION (11.32) Refer to Solution of Prob. 11.31 d

p

 60 m m ,

ng  n p

N

p

N

g

d g  150 m m ,

V  3 .7 7 m p s ,

 1 2 0 0 ( 52 00 )  4 8 0 rp m ,

C H  1 .0 0 8

F t  2 9 6 .7 N ,

mG  d g d

p

 2 .5

K   4 .2

(from Eq. 11.46).

Pinion: 

where

C

p

I 

Then



c

Ks

 C p [ Ft K o K v

 166  10

3

s in  c o s 

mG

2

m G 1

 1 .6 1

50 70

KT K R



7 8 9 (1 )(1 .0 0 8 ) 1 (1 .3 )

1

]

2

(Eq. 11.42)

 1 .1 5

S c  8 7 9 M P a (Table 11.12) ScC LC H

f

(Table 11.11)

 1 6 6  1 0 [ 2 9 6 .7 (1) ( 4 .2 )

 c , a ll 

I

M Pa

3

c

K mC

bd

1 .7 (1 ) 1 ( 0 .0 1 5 )( 0 .0 6 ) 1 .1 5

1

]

2

 2 3 7 .5 M P a

(mid-point)

 6 8 1 .6 M P a

(Eq.11.44) (CONT.)

188

11.32 (CONT.) Hence,  c , a ll   c

Yes.

Gear: Table 11.12: S c  5 5 1 .5 M P a 

 1 6 6  1 0 [ 2 9 6 .7 (1) ( 4 .2 ) 3

c

 c , a ll  

So

(mid-point)

5 5 1 .5 (1 )(1 )

1

]

2

 1 5 0 .2 M P a

 4 2 4 .2 M P a

1 (1 .3 )



c , a ll

1 .7 (1 ) 1 ( 0 .0 1 5 )( 0 .1 5 ) 1 .1 5

Yes.

c

SOLUTION (11.33) N

p

 20, 2( 40 )

Q 

20 40

Thus

N 

4 3

 40,

g

d

 2 0 (5 )  1 0 0

p

Table 11.10: S e  6 2 1 k s i,

,

b  50 m m

mm,

K  1 .8 2 1 M P a

F w  d p b Q K  1 0 0 (5 0 )( 43 )(1 .8 2 1)  1 2 .1 4

(Eq.11.38)

kN

Equations (11.20') and (11.24a):  dn

V 

60

 ( 0 .1 )( 9 0 )



60

 0 .4 7 m p s ,

Then, we obtain 1 2 .1 4  1 .1 5 4 F t ,

Fd 

3 .0 5  0 .4 7 3 .0 5

F t  1 .1 5 4 F t

F t  1 0 .5 2 k N

Hence kW 

Ft V 1000

1 0 ,5 2 0 ( 0 .4 7 )



1000

 4 .9 5

SOLUTION (11.34) From Solution of Prob.11.33: N

p

 20, N

g

 40, d ScCLC H

 c , a ll 

KT K

 1 0 0 m m , b  5 0 m m , V  0 .4 7 m p s , m G  N

p

where S c  5 5 1 .5 M P a (Table 11.12)

,

R

C

L

Then

5 5 1 .5 (1 .1 )(1 )

6

F t  ( 6 0 6 C.7  1 0 )

2

1 K0Kv

p

where

C

p

 149

Kv 

M Pa

5 . 56  0 . 47 5 . 56

K 0  1,

I 

 6 0 6 .7

(1 )1

K

 1,

sin  cos 

mG

2

m G 1

I K mC

p

 2

(mid-point)

K T  1,

K

R

 1

M Pa

(Eq.11.42) f

(Table 11.11)

 1 . 08 s

bd Ks

N

 1.1 (Fig.11.19)

C H  1,

 c , a ll 

g

(Curve B, Fig.11.15) K m  1 .3,

C

f

 1

 0 . 107

(CONT.)

189

11.34 (CONT.) 6

F t  ( 6 0 6 .7 1 03 )

Thus

0 .0 5 ( 0 .1 ) 0 .1 0 7 1 1 (1 .0 8 ) 1 1 .3 (1 )

2

1 4 9 1 0

 6 .3 1 8 k N

and Ft V

kW 

1000



6 3 1 8 ( 0 .4 7 )

 2 .9 7

1000

SOLUTION (11.35)

N

 2 5,

p

2 (50 )

Q 

25 50

 50,

g

4 3

, Table 11.10: S e  6 2 1 M P a ,



d

 N m  2 5 (5 )  1 2 5 m m ,

N

p

b  40 m m

K  1 .8 2 1 M P a

Thus, F w  d p b Q K  0 .1 2 5 ( 0 .0 4 )( 43 )(1 .8 2 1  1 0 )  1 2 .1 4 k N 6

(Eq. 11.38)

Equations (11.20') and (11.24a) with 6 0 0 fp m  6 0 0 1 9 6 .8  3 .0 5 m s :  dn

V 



60

 ( 0 .1 2 5 )(1 2 0 )

 0 .7 8 5 m s ,

60

Fd 

3 .0 5  0 .7 8 5 3 .0 5

F t  1 .2 5 7 F t

Then, we have 1 2 .1 4  1 .2 5 7 F t ,

F t  9 .6 6 k N

Hence, kW 

Ft V 1000



9 6 6 0 ( 0 .7 8 5 ) 1000

 7 .5 8

SOLUTION (11.36) N

 N

p

ng g

 60

np

Table 11.4:



240 600

 24,

 8 7 .2

0g

Y p  0 .3 3 7 ,

M Pa,



0 p

Y g  0 .4 2 1

 172

M Pa

Hence Y p

0 p

 0 .3 3 7 (1 7 2 )  5 8

Yg

0g

 0 .4 2 1(8 2 .7 )  3 4 .8 2

 Gear is weaker

Thus Fb 

 0bYm K



8 2 .7 ( 9 0 ) ( 0 .4 2 1 ) ( 4 ) 1 .4

f

 8 .9 5 3

kN

We have d g  60(4)  240 m m ,

V 

 dn 60



 ( 0 .2 4 )( 2 4 0 ) 60

 3 .0 2 m p s

Hence Fd 

3 .0 5  3 .0 2 3 .0 5

F t  1 .9 9 F t

 8 .9 5 3  1 .9 9 F t ,

and kW 

Ft V 1000



4 5 0 0 ( 3 .0 2 ) 1000

 1 3 .5 9

190

F t  4 .5 k N

SOLUTION (11.37) N

 N

p

ng

 60

np

g

Table 11.4: 

 24,

240 600

Y p  0 .3 3 7 ,

 82 . 7 MPa ,

0g

Y p 0 p  Yg 0 g



Y g  0 .4 2 1

 172

0 p

MPa

 the gear is weaker

Thus  0 bYm

Fb 

K



82 . 7 ( 80 )( 0 . 421 )( 4 )

 7 . 958

1 .4

f

kN

We have the quantities: d

g

 N g m  60 ( 4 )  240

mm

V   d n 6 0   ( 0 .2 4 )( 2 4 0 6 0 )  3 .0 2 m p s 3 .0 5  3 .0 2 3 .0 5

Fd 

F t  1 .9 9 F t

(from Eq.11.24a)

and 7 , 9 5 8  1 .9 9 F t ,

Ft  4 k N

Equation (1.15) results in Ft V

kW 

1000



4 0 0 0 ( 3 .0 2 ) 1000

 1 2 .1

SOLUTION (11.38) Gear is weaker and can transmit lower hp. d g  60(4)  240 m m , K

 KT  K

L

s

 1,

Table 11.7: S t  3 9 .3 M P a , V 

 d g ng 60



 ( 0 .2 4 ) 2 4 0 60

 3 .0 2 m p s

We have 

St K L



a ll



KtKR

3 9 .3 (1 ) 0 .8 5 (1 )

 4 6 .2

M Pa

Also K

v

3 . 56 



3 . 02

3 . 56

 1 . 49 (Curve C, Fig.11.15)

m  4 m m , b  9 0 m m . (given)

J  0 .3 0 (from Fig.11.16, N K

0

 1.2 5 (Table 11.5)

K

s

 1 (standard gear),

K

m

g

 60 )  1.7 (Table 11.6)

Thus, Eq.(11.35'): Ft 

4 6 .2 ( 9 0 )( 4 )( 0 .3 0 ) 1 .2 5 (1 .0 )(1 .7 )(1 .4 9 )

 1 .5 7 6 k N

Hence, kW 

Ft V 1000



1 5 7 6 ( 3 .0 2 ) 1000

 4 .7 6

191

Table 11.9: K

R

 0 .8 5

SOLUTION (11.39) N

N



g

Q 

V 



p

rs

2N N

p

 dn 60



g

N

 3 5,

28 4 5

70 28 35

g

d



70 63

 ( 0 .1 6 8 )( 6 0 0 )



 N p m  2 8(6 )  1 6 8 m m ,

p

K  1 .8 6 2

,

b  50 m m

M P a (Table 11.10)

 5 .2 8 m p s

60

We calculate that F w  d p b Q K  1 6 8 (5 0 )( 76 03 )(1 .8 6 2 )  1 7 .3 8

kN

and 3 .0 5  5 .2 8 3 .0 5

Fd 

F t  2 .7 3 1 F t ,

1 7 .3 8  2 .7 3 1 F t

 F t  6 .3 6 4 k N

Hence Ft V

kW 

1000

6 3 6 4 ( 5 .2 8 )



1000

 3 3 .6

SOLUTION (11.40) N

g

 35 , 2 ( 35 )

Q 

63

N 

70 63

 28 ,

p

p

K  1 . 862

,

F w  d p bQK

d

 28 ( 6 )  168

 168 ( 60 )( 1 . 862 )(

b  60 mm

(Table 11.10)

MPa 70 63

mm ,

)  20 . 85 kN

We obtain V   d n 6 0   ( 0 .1 6 8 )( 6 0 0 6 0 )  5 .2 8 m p s Using Eq.(11.24a), 3 .0 5  5 .2 8 3 .0 5

Fd 

F t  2 .7 3 F t

2 0 .8 5  1 0  2 .7 3 F t

 F t  7 .6 3 7 k N

3

Equation (1.15) is thus Ft V

kW 

1000

7 6 3 7 ( 5 .2 8 )



1000

 4 0 .3

SOLUTION (11.41) From Solution of Prob. 11.39: N

g

 3 5,

V  5 .2 8

N

p

 2 8,

d

p

 168 m m ,

b  50 m m ,

mG  N

g

N

p

 1 .2 5

m ps

Apply Eq. (11.44):  c , a ll 

ScCLC H KT K

R

Here S c  1 0 2 0 M P a (mid-point, Table 11.12)

K

v



5 . 56 

5 . 28

5 . 56

 1 . 19

K 0  K s  K T  1,

CL  C

f

 1,

C H  1 (Eq.11.46)

(Curve A, Fig.11.15) K

R

 1. 2 5

(Table 11.9) (CONT.)

192

11.41 (CONT.) Thus  c , a ll 

1 0 2 0 (1 )(1 )

 816 M Pa

(1 )(1 .2 5 )

(Eq.11.44)

We find that C

p

 191 M Pa

C

f

 1, K m  1 . 3

I 

sin  cos 

mG

2

m G 1

(from Table 11.11) (from Table 11.6)

 0 . 161

35 28  35

 0 . 089

Hence, from Eq.(11.45): Ft  (



c , a ll

C

p

)

2

6

 ( 8 1 6 1 03 ) 1 9 1 1 0

1 KsKv

2

bd Ks

I KmC

f

( 0 .0 5 )( 0 .1 6 8 ) 0 .0 8 9 1 1 (1 .1 9 ) 1 1 .3 (1 )

 8 .8 2 k N

and kW 

Ft V 1000



8 8 2 0 ( 5 .2 8 ) 1000

 4 6 .6

End of Chapter 11

193

CHAPTER 12

HELICAL, BEVEL, AND WORM GEARS

SOLUTION (12.1) mn

( a ) Use Eqs.(12.1) and (12.2'). m 

c o s



p   m   ( 4 .6 1 9 )  1 4 .5 1 1 m m ,

4 cos 30

o

p a  p c o t   1 4 .5 1 1 c o t 3 0

  ta n

( b ) P  1 m  1 4 .6 1 9  0 .2 1 6 m m  5 .4 8 6 in , -1

(c) dp 

Nmn



c o s

20 ( 4 ) cos 30

 9 2 .4 m m ,

o

p n   m n  1 2 .5 6 6 m m

 4 .6 1 9 m m ,

40 ( 4 )

dg 

cos 30

o

 1 ta n  n c o s

o

 ta n

 2 5 .1 3 4 m m  1 ta n 2 5 o cos 30

o

 2 8 .3

o

 1 8 4 .7 5 m m

Gear (d) 30

Thrust

o

Pinion, R.H. SOLUTION (12.2) ( a ) Apply Eqs.(12.1) through (12.2'). m 

mn c o s



3 .1 7 5 cos 30

o

 3 .6 6 6 m m , p n   m n  9 .9 7 5 m m ,

p   m   (3 .6 6 6 )  1 1 .5 1 7 m m , p a  p c o t   1 1 .5 1 7 c o t 2 0

( b ) P  1 m  1 3 .6 6 6  0 .2 7 3 m m  6 .9 3 4 in . ,   ta n -1

(c) dp 

Nmn c o s



1 8 ( 3 .1 7 5 ) cos 20

o

 6 0 .8 1 8 m m ,

dg 

5 5 ( 3 .1 7 5 ) cos 20

o

 1 ta n  n c o s

o

 ta n

 3 1 .6 4 m m  1 ta n 1 4 .5 o cos 20

o

 1 5 .3 9

o

 1 8 5 .8 3 2 m m

Gear (d)

Pinion, L.H. SOLUTION (12.3) ( a ) d  N m  3 0 (3 .1 7 5 )  9 5 .2 5 m m , m n  m c o s 3 0  2 .7 5 m m , o

p   m  9 .9 7 5 m m

p n  p c o s   9 .9 7 5 c o s 4 0

o

 7 .6 4 m m

p a  p c o t   9 .9 7 5 c o t 4 0

o

 1 1 .8 9 m m

(CONT.)

194

12.3 (CONT.) ( b ) Pn  1 m n  1 2 .7 5  0 .3 6 4 m m  9 .2 5 in .   ta n

1

ta n  n

(

)  ta n

c o s

1

o

( ta n 1 4 .5o )  1 8 .6 5

-1

o

cos 40

SOLUTION (12.4) rs 

c 

1 4



Pn

N

2n

N

p

N

g

N

p

 g

c o s

18 Ng

;

N

g

1 5 .6 2 5 1 8  7 2 2 c o s

250 

;

 72

Solving, c o s   0 .8 9 5,

  2 6 .5

Comment: The helix angle of 2 6 .5

o

o o

o

and

P  N d . Thus

is in usual range of 1 5 to 3 0 .

SOLUTION (12.5) cos   P Pn where m n  1 Pn

Equation (12.2): Nmn

cos  



d

32( 6 ) 260

  4 2 .4

 0 .7 3 8 5 ,

o

F t  F n c o s  n c o s   1 0 (c o s 2 0 )(c o s 4 2 .4 )  6 .9 4 N o

kW 

Thus

(  dn ) F t 60



o

 ( 0 . 26 )( 800 )( 6 . 94 ) 60

(Eq.12.10)

 75 . 58

SOLUTION (12.6) 1

( a )  n  ta n

(ta n  c o s  )  ta n

1

o

o

(ta n 2 0 c o s 3 0 );

 n  1 7 .5

o

N '  N c o s   3 5 c o s 3 0  5 3 .8 9 3

3

o

( b ) A super gear of equal strength would have 53.89 teeth and   1 7 .5

o

SOLUTION (12.7) 1 3



N

p

N

g



40 Ng

,

N

Equation (12.5) c 

Pn 2

g

 3(4 0 )  1 2 0

P  Pn c o s  :

with 

N

p

N

c o s

g



14 2

40 120 cos15

o

 3 6 9 .1 m m

SOLUTION (12.8) ( a )  n  ta n

1

(ta n  c o s  )  ta n

1

o

o

(ta n 2 0 c o s 2 2 );

 n  1 8 .6

N '  N c o s   3 5 c o s 2 2  4 3 .9 1 teeth 3

3

o

( b ) A super gear of equal strength would have 43.91 teeth and   1 8 .6

195

o

o

SOLUTION (12.9) a p  a g  a  1 P  m  1 .5 m m

( a ) Addendum:

p   m  1 .5   4 .7 1 2 m m

Circular Pitch: c 

1 2

rp 

(d 1 2

 dg) 

p

N Pm 

1 2

N

1 2

p

N



g

P

1 2

(N

p

 N g )m 

( 2 0 )(1 .5 )  1 5 m m ,

rg 

1 2

1 2

( 2 0  1 2 0 )(1 .5 )  1 0 5 m m

(1 2 0 )(1 .5 )  9 0 m m

The radii of base circles: rb p  r p c o s   1 5 c o s 2 0

 1 4 .0 9 5 m m

o

rb g  rg c o s   9 0 c o s 2 0  8 4 .5 7 2 m m o

Outside radii: ro p  r p  a  r p  m  1 5  1 .5  1 6 .5 m m ro g  r g  a  9 0  1 .5  9 1 .5 m m

From Eq. (11.14) the contact ratio is therefore Cr 



1 p cos 

[

( rp  a )  ( rp c o s  ) 2

1 ( 4 .7 1 2 ) c o s 2 0

[

o

2



(1 6 .5 )  (1 4 .0 9 5 )  2

2

( rg  a )  ( rg c o s  ) ]  2

2

(9 1 .5 )  (8 4 .5 7 2 ) ]  2

2

c ta n  p

1 0 5 ta n 2 0 4 .7 1 2

o

 1 .7 1 5

The total contact ratio is C r t  C r  rr a  1 .7 1 5 

4 0 ta n 3 0 4 .7 1 2

o

 6 .6 1 6

( b ) To obtain a total contact ratio of 4.0, the helix angle has to be C ra 

b ta n  p

ta n  

 4 .0  1 .7 1 5  2 .2 8 5

2 .2 8 5 ( 4 .7 1 2 ) 40

  1 5 .0 7

;

o

SOLUTION (12.10) 299

(a)

153.9

  tan

299

 1 tan  n cos 

 tan

 1 tan 20 o cos 45

 27 . 24

o

o

(Eq. 12.3)

Ft  F n c o s  n c o s   4 5 0 c o s 2 0 c o s 4 5 o

F a  F t ta n   2 9 9 ta n 4 5

o

o

 299 N

F r  F t ta n   2 9 9 ta n 2 7 .2 4

o

(Eqs.12.10)

 1 5 3 .9 N

( b ) m  m n c o s   2 .5 c o s 4 5  3 .5 3 6 m m o

d g  N g m  6 0 (3 .5 3 6 )  2 1 2 .1 6 m m , d

Thus

 299 N

T p  2 9 9 ( 0 .1 123 1 5 )  1 6 .9 2 N  m

T g  2 9 9 ( 0 .2 122 1 6 )  3 1 .7 2 N  m

196

p

(Eq.12.2')  3 2 (3 .5 3 6 )  1 1 3 .1 5 m m

(Eq.12.3)

SOLUTION (12.11) T2

2

(a)

1178 T3 B

549

C 1

549

1178

429 3

2

T1

429 T1 

9549 kW n1

9 5 4 9 (1 5 )



 9 5 .4 9 N  m

1500

m  m n c o s   6 .3 5 c o s 2 0

o

 6 .7 5 8 m m ,

d 1  N 1 m  2 4 ( 6 .7 5 8 )  1 6 2 .1 9 m m

(Eq.12.2)

We have ( rs ) 1  2 



24 36

d1

( rs ) 1  3  0 .5  Ft1 

T1



d1 2

d1



2 3

d3

d2

d2 

,

d3 

,

1 6 2 .1 9 2 3

1 6 2 .1 9 0 .5

 2 4 3 .3 m m

 3 2 4 .4 m m

 1 .1 7 8 k N  F t 2  F t 3

9 5 .4 9 0 .1 6 2 .1 9 2

F r 1  F t 1 ta n   1 .1 7 8 ta n 2 5

F a 1  F t 1 ta n   1 .1 7 8 ta n 2 0

( b ) T1  9 5 .4 9 N  m ,

 5 4 9 N  Fr 2  Fr 3

o

o

 429 N

T2  0 ,

(Eqs.12.10)

T 3  9 5 .4 9 ( 12 )  1 9 1 N  m

SOLUTION (12.12) Equations (12.7b) and (12.2'): N ' d

p

N

p 3

cos 



 2 9 .6 , m  m n c o s   3 .1 2 c o s 2 5

22 3

cos 25

o

2 2 ( 3 .4 4 )

 N pm 

3

cos 25

o

o

 3 .4 4 m m

 1 0 1 .6 6 m m

Table 11.4:  o  1 7 2 M P a

Table 11.3: Y  0 .3 5 7 , We have  0b Ym n

Fb 

K

1

f

 d pnp

V 

60





1 7 2 ( 5 0 ) 0 .3 5 7 ( 3 .1 2 ) 1 .5

1

 ( 0 .1 0 1 6 6 )(1 8 0 0 ) 60

 6 .3 8 6

kN

(Eq.11.33, modified)

 9 .5 8 m p s

Also Fd 

or and

5 .5 6 

9 .5 8

5 .5 6

Fb  F d : Ft 

1000 kW V

F t  1 .5 5 7 F t

(1)

6 .3 8 6  1 .5 5 7 F t , 

1000 ( 22 ) 9 .5 8

 2 .2 9 6 k N

Hence, by Eqs.(2) and (3): n 

4 .1 0 1 2 .2 9 6

 1 .7 9

197

F t  4 .1 0 1 k N

(2) (3)

SOLUTION (12.13) ( a ) Speed ratio: 37 05 

 5

50 25

Center distance is c  m(N

p

mn

 Ng) 

c o s

(N

p

 Ng)

(1)

Thus, for equal center distance: (3 0  7 5 ) 

4 c o s 2 9 .8

(b)

4 c o s 2 9 .8

o

(3 0  7 5 ) 

5 .5 c o s

  3 1 .5

( 2 5  5 0 );

5 .5 c o s

  5 3 .8

( 2 0  3 2 );

o

o

SOLUTION (12.14) ( a )   ta n

 1 ta n  n

 ta n

c o s

 1 ta n 2 5 o cos 30

m  m n co s  4 co s 3 0 d

p

 2 8 .3

o

o

o

 4 .6 2 m m

 N p m  2 2 ( 4 .6 2 )  1 0 1 .6 m m

( b ) V   d n   ( 0 .1 0 1 6 )( 2 4 0 0 6 0 )  1 2 .8 m p s Ft 

1000 kW V



1 0 0 0 (1 .5 )

 117 N

1 2 .8

( c ) F r  F t ta n   1 1 7 ta n 2 8 .3  6 3 N o

F a  F t ta n   1 1 7 ta n 3 0

Fn 

Ft c o s  n c o s



117 o

cos 25 cos 30

o

o

 6 7 .5 N

 1 4 9 .1 N

SOLUTION (12.15) Refer to Solution of Prob.12.12. We now have Equation (11.40): Q  and Fw 

d pbQ K 2

cos 

2( 40 ) 22 40



40 31

, Table 11.10: K  0 .9 0 3 M P a

 (1 0 1 .6 6 )(5 0 )( 43 01 )( 0 .9 0 3 )(

Equation (1) for F w  F d :

)  7 .2 1 k N

1 2

cos 25

o

7 .2 1  1 .5 5 7 F t ;

(Eq.11.38, modified)

F t  4 .6 3 1 k N

(4)

Thus, by Eqs.(3) and (4): n 

4 .6 3 1 2 .2 9 6

 2 .0 2

SOLUTION (12.16) Equation (12.2'), (12.4) and (12.7b): m  m n c o s   4 .2 c o s 3 5

o

 5 .1 2 7 m m ,

d 2  6 5 ( 5 .1 2 7 )  3 3 3 .3 m m ,

N1 

N1

'

3

cos 

d 1  N 1 m  3 0 (5 .1 2 7 )  1 5 3 .8 m m 

30 3

cos 35

o

 5 4 .5 8

(CONT.)

198

12.16 (CONT.) and Table 11.4:  0  1 2 4 M P a

Table 11.3: Y  0 .4 8 3 , Thus Ym n

Fb   0 b

0 .4 8 3 ( 4 .2 )

 1 2 4 (3 8 )

1

 9 .5 6 k N

1

(Eq.11.33, modified)

From Table 11.10: K  0 . 3 5 2 M P a We have the quantities: 2N

Q 

N

5 . 56 

Fd 

2

cos 35

5 . 56

 4 .1 9 k N

o

(Eq.11.38, modified)

 1 9 .3 3 m p s

60 19 . 33

F t  1 . 791 F t

4 .1 9  1 .7 9 1 F t ,

Hence

(Eq.11.40)

1 5 3 .8 ( 3 8 ) (1 .3 6 8 ) ( 0 .3 5 2 )

 ( 0 .1 5 3 8 )( 2 4 0 0 )



60

 1.3 6 8

30 65



2

cos 

 d 1 n1

V 

g

d 1b Q K

Fw 

and

2( 65 )



g

N

p

(Eq.11.24c, modified)

F t  2 .3 4 k N

Therefore Ft V

kW 

2 ,3 4 0 (1 9 .3 3 )



1000

1000

 4 5 .2

SOLUTION (12.17) ( a ) Equations (12.2'), (12.5), and (12.7b): rs 

1 3

N1



N

d1



c 

,

d2

2

(N1  N 2 )

m 2

or

N 1  44

and

d 1  4 4 (1 .7 )  7 4 .8 m m ,

N1  '

N1 cos

3





and N

3

30

1 .7 2

(N1  3N1)

 132

2

d 2  2 2 4 .4 m m

 74 . 8 mm , m n  m cos   (1 . 7 ) cos 30

44 cos

150 

o

Using 69.28 teeth, Y  0 .4 2 8 (interpolated, Table 11.3). Fb 

 0b Ym n K



1

f

1 7 2 ( 6 4 ) 0 .4 2 8 (1 .4 7 ) 1 .4

1

 4 .9 5 k N

o

 1 . 47 mm

By Table 11.4:  0  1 7 2 M P a (Eq.11.33, modified)

Similarly, Table 11.10: K  0 .5 4 5 M P a and Q 

2N N



g

N

g

d 1b Q K

Fw 

V 

p



2

cos 

 d 1 n1 60



5 .5 6 

2 ( 132 ) 44  132

 1 .5

( 7 4 .8 ) ( 6 4 ) (1 .5 ) ( 0 .5 4 5 ) 2

cos 30

 ( 0 .0 7 4 8 )( 9 0 0 ) 60

Also

Fd 

and

4 .9 5  1 .3 3 7 F t ,

3 .5 2

5 .5 6

o

(Eq.11.40)  5 .2 2 k N

(Eq.11.38, modified)

 3 .5 2 m p s

F t  1 .3 3 7 F t

(Eq.11.24c, modified)

F t  3 .7 k N

Thus kW 

Ft V 1000



3 7 0 0 ( 3 .5 2 ) 1000

 1 3 .0 2

(CONT.)

199

12.17 (CONT.) ( b ) Equation (11.36): St K

 a ll 

L

KT KR

We have S t  2 1 0 M P a (by interpolation of mid-point values, Table 11.7) K

L

 1

K

R

 0 . 85

KT  1

(indefinite life) (Table 11.9)

and 

a ll

2 1 0 (1 )



 247 M Pa

(1 )( 0 .8 5 )

Equation (11.35):  bJm K0K sK mKv

Ft 

(where    a ll )

where K 0  1.2 5

Ks  1

3 .5 6 

Kv 

3 .5 2

3 .5 6

K m  1.4

 1 .2 4 (Fig.11.15)

(Table 11.6)

J  0 .4 8 (Fig.12.6a) J  multiplier  1 . 01

(Fig.12.6b)

and J  0 .4 8 ( 1.0 1 )  0 .4 8 5

Hence

Ft 

2 4 7 ( 6 4 )( 0 .4 8 5 )(1 .7 ) (1 .2 5 )(1 )(1 .4 )(1 .2 4 )

 6 kN

Then kW 

Ft V 1000



6 0 0 0 ( 3 .5 2 ) 1000

 2 1 .1

SOLUTION (12.18) ( a ) d p  N p m  2 0 (3 )  6 0 m m , ( b )  p  ta n

1 20 42

 2 5 .4 6 , o

 g  ta n

d g  4 2 (3 )  1 2 6 m m 1 42 20

 6 4 .5 4

o

(Eq.12.12a)

(Eq.12.12b)

(c) 2



60

1

L  [ 6 0  1 2 6 ] 2 2  1 3 9 .6 m m

L

2

Equation ( a ) of Sec.12.6:

p

g

L 3

 46 . 5 mm ;

Thus

b  30 m m

126 ( d ) Equation ( b ) of Sec.12.6: c  0 .1 8 8 m  0 .0 0 5  0 .1 8 8 ( 3 )  0 .0 0 5  0 .5 6 9 m m

200

10 m  30

SOLUTION (12.19) Equation (12.13): d p  2 0 0 m m , ta n 

g



N

g

N

p



 2;

1 rs

d

dg 

 g  6 3 .4 3 ,



o

p

rs

p



200 0 .5

 400 m m

 9 0  6 3 .4 3  2 6 .5 7

o

Therefore rp ,avg  rp 

b 2

s in 

r g , a v g  rg 

b 2

s in  g  2 0 0  3 2 .5 s in 6 3 .4 3  1 7 0 .9 m m

Vp 

d

p ,a v g

np

o

 8 5 .4 6 m m

o



60

 1 0 0  3 2 .5 s in 2 6 .5 7

p

 ( 0 .1 7 0 9 )( 5 0 0 ) 60

 4 .4 7 m p s

Hence Ft 

1 0 0 0 (1 1 )



1000 kW Vp

4 .4 7

 2 .4 6 k N

Equations (12.17): F a p  F t ta n  s in 

p

 2 .4 6 (ta n 2 0 )(s in 2 6 .5 7 )  4 0 0 N  F r g

F r p  F t ta n  c o s 

p

 2 .4 6 (ta n 2 0 )(c o s 2 6 .5 7 )  8 0 0 .8 N  F a g

o

o

2460

800.8

o

o

Gear

400 800.8

Pinion SOLUTION (12.20)

From Solution of Prob.12.19: V p  2 .4 7 m p s ,

F t  2 .4 6 k N ,

b  65 m m

Thus Fd  N

p

3 .0 5  4 .4 7 3 .0 5

 d

( 2 .4 6 )  6 .0 7 k N

m  2 0 0 3 .5  5 7 ,

p

Hence, from Table 11.3:

(Eq.11.24a) N

p

'

N



p

cos 

p

57 c o s 2 6 .5 7

(using N p '  6 3 .7 , interpolated)

Y  0 .4 2 4

 0  124 M Pa

Also, from Table 11.4: Hence, Fb 

Since

 0b Ym K

f

Fb  Fd ,

1



1 2 4 ( 6 5 ) 0 .4 2 4 ( 3 .5 ) 1 .4

1

o

 8 .5 4 k N

the gears are safe.

201

(Eq.11.33)

 6 3 .7

SOLUTION (12.21) From Solution 12.20:

F d  6 .0 7

kN ,

 114,

N

N

p

 57,

N

p

'  6 3 .7

Hence N

g

N





p

rs 2N

Q '

N

p

g

57 0 .5

'

' N

2 ( 2 5 4 .9 )



'

g

 1 .6

6 3 .7  2 5 4 .9

g

'

N



g

cos 

114 c o s 6 3 .4 3

g

o

 2 5 4 .9

(Eq.11.40, modified)

From Table 11.10: K  0 .6 9 M P a Thus 0 .7 5 d p b K Q '

Fw 

Since

cos 



0 .7 5 ( 2 0 0 )( 6 5 )( 0 .6 9 )(1 .6 ) c o s 2 6 .5 7

p

Fw  Fd ,

o

 1 2 .0 4 k N

(Eq.11.38, modified)

gears are safe.

SOLUTION (12.22) Table 11.10: K  0 .5 4 5 M P a , Table 11.4:  0  1 7 2 M P a ,

N

p

' N

c o s  1  3 0 c o s 2 0  3 1 .9 3 o

p

Table 11.3: Y  0 . 364 (using N p '  31 . 93 , interpolated)

We have r1 

N 1m



2

 1  tan

30 (8 )

 1 120 240

r1 , a v g  1 2 0  V1 

 d 1 , a v g n1

N2

 26 . 6 , 

2

60 (8 ) 2

60

60 cos 63 . 4

o

 240 m m

 90  26 . 6  63 . 4

s in  1  1 0 4 .3 m m ,

 ( 0 .2 0 8 7 )( 7 2 0 )



cos  2

r2 

o

70 2



60

N2'

 120 m m ,

2

o

(Eq.12.12b)

r2 , a v g  2 4 0 

70 2

s in  2  2 0 8 .7 m m

 7 .8 7 m p s

 134 ,

N 1' 

30 cos 26 . 6

o

 33 . 6

(Eq.12.15)

Hence Fb 

Q'

 0b Ym K

1 7 2 ( 7 0 ) 0 .3 6 4 ( 8 )



1

f

2N2' N 1 ' N 2 '

1 .5

 1 .6

1

 2 3 .4 k N

(Eq.11.33)

(Eq.11.40, modified)

It follows that Fw 

0 .7 5 d 1 b K Q ' cos  1



0 .7 5 ( 2 4 0 )( 7 0 )( 0 .5 4 5 )(1 .6 ) c o s 2 6 .6

o

 1 2 .2 9 k N

Since F w  F b , power capacity depends on F w . We find that Fd 

and

3 . 05  7 . 87 3 . 05

F t  3 . 58 F t

1 2 .2 9  3 .5 8 F t ,

(Eq.11.24a)

F t  3 .4 3 k N

Therefore kW 

Ft V 1000



3 4 3 0 ( 7 .8 7 ) 1000

 27

202

(Eq.11.38, modified)

SOLUTION (12.23) ( a ) d p  N p m  30(4)  120 m m ,  d

g

 ta n

1

1

dg

( d )  ta n p

p ,a v

 d

p

V av   d

Ft 

 b s in 

o

 1 2 0  4 5 s in 1 8 .4

p

7 4 5 .7 ( 4 0 )



Vav



( 13 26 00 )  7 1 .6 ,

1500 500

 360 m m

 9 0  7 1 .6 o

p

o

o

 1 8 .4

o

 1 0 5 .8 m m

n   ( 0 .1 0 5 8 )(1 5 0 0 6 0 )  8 .3 1 m p s

p ,av

7 4 5 .7 h p

d g  (1 2 0 )

 3 .5 9 k N

8 .3 1

( b ) F a  F t ta n  s in 

p

 3 .5 9 ta n 2 0 s in 1 8 .4

F r  F t ta n  c o s 

p

 3 .5 9 ta n 2 0 c o s 1 8 .4

o

o

 0 .4 1 2 k N

o

o

 1 .2 4 k N

Equation (1.16): Tp 

9549 kW

Tg 

9549 kW ng

np



9549 (30 )



9549 (30 )

1500

500

 191 N  m

 573 N  m

SOLUTION (12.24) r1 

1 2

r2 

1 2

mN mN

 1  ta n

1



2

( 8 . 5 )( 30 )  127 . 5 mm

1 2



 1 1 2 7 .5 255

o

Table 11.4: 

70 2

70 2

sin 26 . 6

sin 63 . 4

 172

0

o

(Eq.11.4)

mm

 2  6 3.4

 2 6 .6 ,

r1 , av  127 . 5 

r 2 , av  255 

( 8 . 5 )( 60 )  255

1 2

o

(Eq.12.12b)

 111 . 8 mm

o

 223 . 7 mm

Table 11.10: K  0 . 545

MPa ,

MPa

Note that number of teeth is as same as in Prob.12.14. Hence, from Solution of Prob.12.22: Q '  1.6 , Y  0 . 364 Therefore, we have: Fb 

 0b K

Ym 

0 . 75 d 1 bKQ '

Fw 

6

1 7 2 (1 0 )( 0 .0 7 ) 1 .5

f

cos  1



( 0 .3 6 4 )( 0 .0 0 8 5 )  2 4 .8 3 k N

0 . 75 ( 0 . 255 )( 0 . 07 )( 0 . 545  10 cos 26 . 6

o

6

)( 1 . 6 )

 13 . 06 kN

(Eq.11.33) (Eq.11.38, modified)

Also V 1   d 1 n1 6 0   ( 0 .2 2 3 6 )( 7 2 0 6 0 )  8 .4 3 m s Ft 

3 .0 5  8 .4 3 3 .0 5

F t  3 .7 6 4 F t ;

1 3 .0 6  3 .7 6 4 F t ,

Hence kW 

F V1 1000



3 , 4 7 0 ( 8 .4 3 ) 1000

 2 9 .2 5

203

F t  3 .4 7

kN

(Eq.11.24a)

SOLUTION (12.25) Worm: Vg

ta n  

d

 tan  w

g

c 

1 2

( d g 2 )wg



Vw

(d

2 )w

p

dw

 tan 35

rs

dg dw

o

(Eq.12.21)

rs dw

 28 d w

0 . 025

( d w  d g )  150 ,

29 d w  300,

and



p

dw  d

 300

g

d w  1 0 .3 4 5 m m

d g  2 8 (1 0 .3 4 5 )  2 8 9 .7 m m

Then L   d w ta n  w   (1 0 .3 4 5 )(ta n 3 5 )  2 2 .7 6 m m o

Gear: pg 

p ng



c o s

 1 1 .4 8 m m (Eq.12.1)

9 .4 cos 35

o

But p g  p w . Hence

Nw 



L pw

2 2 .7 6 1 1 .4 8

 1 .9 8 or 2 teeth

(Eq.12.20)

SOLUTION (12.26) (T w ) i 

9549 kW n

9549 (30 )



1800

 1 5 9 .2 N  m

( T w ) o  1 5 9 .2  0 .9 0  1 4 3 .3 N  m ng  nw

N

w

N

g

 1800 ( 802 )  45 rpm

(T g ) o  (T w ) o

nw

(Eq.12.18)

 1 4 3 .3 ( 1 84 05 0 )  5 .7 3 2

ng

kN  m

Thus (Tg )0

Ft 

d 2



5 .7 3 2 0 .2 5 2

 4 5 .8 6 k N

SOLUTION (12.27) n 3   ( 22 00 )( 550 )( 2 5 0 )   2 5 rp m

Gear 3 rotates

counterclockwise (negative) at 25 rpm.

SOLUTION (12.28) ( a ) N g N w  40 2  20,

d g  4 0 (3 .2 )  1 2 8 m m ,

L  2 (1 0 .0 5 )  2 0 .1 m m ,

(b)

ta n  

c 

1 2

L

 dw



d w  3 .5 (1 0 .0 5 )  3 5 .1 8 m m

2 0 .1

 ( 3 5 .1 8 )

(d w  d g ) 

1 2

p   (3 .2 )  1 0 .0 5 m m

,

  1 0 .3

o

(3 5 .1 8  1 2 8 )  8 1 .5 9 m m

204

SOLUTION (12.29) ( a ) dw  c

2  210

0 .8 7 5

ta n  



L

 dw

0 .8 7 5

m  ( 5 3 .8 )



2  5 3 .8 m m ,

6 5 3 .8

  6 .3 6

;

d g  2 c  d w  4 2 0  5 3 .8  3 6 6 .2 m m

o

( b ) V w   d w n w   ( 0 .0 5 3 8 )(1 2 0 0 6 0 )  3 .3 8 m s where d g  3 6 6 .2 m m ,

b  25 m m

K w  1 5 0 p s i  1 5 0 ( 6 8 9 5 )  1 .0 3 4 M P a

(Table 12.2)

Thus, F w  (3 6 6 .2 )( 2 5 )(1 .0 3 4 )  9 .4 7 k N

SOLUTION (12.30) p g   m   ( 4 )  1 2 .5 7 m m  p w

( a ) L  N w p w  4 (1 2 .5 7 )  5 0 .2 8 m m ( b )   ta n

1

L

 dw

 ta n

 1 5 0 .2 8  (60 )

 1 4 .9 4

(Eq.12.20)

o

(Eq.12.21)

( c ) d g  N g m  90(4)  360 m m c 

(d w  d g ) 

1 2

1 2

(6 0  3 6 0 )  2 1 0 m m

SOLUTION (12.31) (a) rs  c 



1 20 1 2

pg 

N

w

N

g

,

N

g

 3( 2 0 )  6 0

(d g  d w )  175  d g N

 ( 275 )



(d g  75)

 d g  275 m m

 14 . 4 mm  p w

60

g

1 2

Then, Eqs.(12.20) and (12.21): L  p w N w  1 4 .4 (3)  4 3 .2 m m

  tan

1

L

d w

 tan

1

43 . 2

 ( 75 )

 10 . 39

o

(b) Vw 

 d w nw 60



Fw t  F ga 

 ( 0 .0 7 5 )(1 0 0 0 ) 60 1000 kW Vw



 3 .9 3 m p s

1 0 0 0 ( 7 .5 ) 3 .9 3

 1 .9 1 k N

(CONT.)

205

12.31 (CONT.) (c) Vs 

Vw



cos 

 4 m ps

3 .9 3 c o s 1 0 .3 9

o

f  0 . 024

Hence

(Eq.12.28)

(from Table 12.3)

Thus, Eq.(12.27): c o s  n  f ta n 

e 

o

o

o

o

c o s 2 0  0 . 0 2 4 ( ta n 1 0 . 3 9 )



cos  n  f cot 

c o s 2 0  0 . 0 2 4 ( c o t 1 0 .3 9 )

 0 .8 7 4

or

8 7 .4 %

Power delivered to machine ( k W ) m  0 .8 7 4 ( 7 .5 )  6 .5 6 k W

SOLUTION (12.32) p w  1 4 .4 m m ,

From Solution of Prob.12.31: 

pn 

We have Table 11.4:

Fb 

p w c o s





1 4 .4 c o s 1 0 .3 9

 0  172 M Pa  0b Ym n K



1

f

o

 0 .2 2 2

o

mn 

d g  275 m m

 4 .5 1 m m

1 pn

Table 12.1: Y  0 .3 9 2

1 7 2 ( 3 8 ) 0 .3 9 2 ( 4 .5 1 ) 1 .4

  1 0 .3 9 ,

1

 8 .2 5 k N

(Eq.11.33, modified)

Also Vg 

T  Ft 

Hence

Fd 

 d g ng 60

9540 kW ng



T dg 2

6 .1  V g 6 .1



 ( 0 .2 7 5 )( 5 0 )



9 5 4 0 ( 7 .5 )

60

50

1 .4 3 0 .2 7 5 2



 0 .7 2 m p s

 1 .4 3 k N  m

 1 0 .4 k N

6 .1  0 .7 2 6 .1

F t  1 .1 2 (1 0 .4 )  1 1 .6 5 k N

(Eq.11.24b)

Since Fb  Fd

gears are not safe.

SOLUTION (12.33) From Solution of Prob.12.32: Table 12.2:

K

w

F d  1 1 .6 5 k N

 1 . 295 MPa

Therefore F w  d g b K w  2 7 5 (3 8 )(1 .2 9 5 )  1 3 .5 3 k N

Since

Fw  Fd

gears are safe.

206

(Eq.12.22)

SOLUTION (12.34) We have c  1 7 5 m m  7 in . and p o w e r  7 .5 k W  1 0 h p Equation (12.24): A  0 .3( 7 )

1 .7

 8 .2 ft

2

e  8 7 .4 % , (from Solution of Prob.12.31)

By Fig.12.17:

o C  5 6 ft  lb m in  ft  F 2

Hence, Eqs. (12.25) and (12.26):

Since

(hp )d 

C At 3 3 ,0 0 0

( hp ) i 

( hp ) d 1 e





5 6 ( 8 .2 )(1 0 0 ) 3 3 ,0 0 0

1 . 392 1  0 . 874

 1 .3 9 2 h p = 1 .0 4 4 k W

 11 . 05  8 . 288 kW

( hp ) i  10 hp or ( k W ) i  7 .5 k W , overheating will not be a problem.

End of Chapter 12

207

CHAPTER 13

BELTS, CHAINS, CLUTCHES, AND BRAKES

SOLUTION (13.1) ( a ) w  (5 )(1 0 0 )(1 0 , 8 0 0 )  5 .4 N m V 

 dn

 ( 0 .1 2 5 )(1 5 0 0 )



60

60

F1  F 2 

Fc 

w g



2

V

5 .4 9 .8 1

[

 7 6 3 .7 N

9 .8 2

 ( 0 .1 2 5 )(1 5 0 0 ) 60

    2   1 8 0  2 s in o

  e Thus

f

 e

0 .3 ( 2 .9 7 8 )

1500

 4 7 .7 5 N  m

 9 .8 2 m p s

1 0 0 0 ( 7 .5 )



1000 kW V

9 5 4 9 ( 7 .5 )

T1 

]  5 3 .0 5 N

1

2



T1 r1

(Eq.13.13)

( 1 8 71.55 2 56 2 .5 )  1 7 0 .6

 2 .4 4 3

F1  F c  (   1 )

(Eq.13.3)

o

 2 .9 7 8 ra d

(Eq.13.21)

 5 3 .0 5  ( 12 .4.4 44 33 )

4 7 .7 5 0 .0 6 2 5

 1 .3 4 7 k N

(Eq.13.20)

F 2  1, 3 4 7  7 6 3 .7  5 8 3 .3 N

( b ) L  2 c   ( r1  r2 ) 

( r2  r1 )

2

(Eq.13.9)

c

 2 (1, 5 2 4 )   ( 6 2 .5  1 8 7 .5 ) 

(1 2 5 )

2

1525

 3 8 4 5 .6 m m .

SOLUTION (13.2) ( a ) T1 

9549 kW

9549 ( 10 )



n1

2800

( b ) T1  ( F1  F 2 ) r1 , r1 r2



n1 n2

 34 . 1 N  m

F1  F 2 

T1 r1



 F 2  2 2 7 .3  F 2

3 4 .1 0 .1 5

n

r2  r1 ( n 1 )  0 .1 5 ( 12 68 00 00 )  0 .2 6 2 5

,

(Eq.13.19)

m

2

r2  r1

s in  



c

0 . 2 6 2 5  0 .1 5 0 .7

    2   2 . 819

  9 .2 5

 0 .1 6 1 ,

o

(Eq.13.6)

rad

( c ) V   d n 6 0   ( 0 .3)( 2 68 00 0 )  4 3 .9 8 m p s w  25 , 000 ( 0 . 06  0 . 0005 )  0 . 75 N m

Fc 

w g

V

2



0 . 75 9 . 81



T1

F1  F c  (   1 )

r1

( 43 . 98 )

2

 147 . 9 N ,

 1 4 7 .9  ( 10 .7.7 55 77 )

3 4 .1 0 .1 5

  e

0 . 2 ( 2 . 819 )

 6 7 5 .5 N

 1 . 757

(Eq.13.20)

F 2  6 7 5 .5  2 2 7 .3  4 4 8 .2 N

We have K s  1.5 (Table 13.5). Therefore F max  1 . 5 ( 675 . 5 )  1 . 013



max



1 , 013 60  0 . 5

kN

 33 . 77 MPa

208

(Eq.13.22)

SOLUTION (13.3) We have r2  2 0 0 m m and f  0 .2 5 . The remaining data are the same. Equation (13.6) gives 1

  s in [

r2  r1 c

]  s in

1

[ 2 01 09 506 2 ]  4 .0 5 8

o

Then     2   1 8 0  2 ( 4 .0 5 8 )  1 7 1 .9 o

e

f

 e

o

( 0 .2 5 ) (1 7 1 .9 ) (  1 8 0 )

o

 2 .1 1 7

and F1  2 1 4 F2  2 1 4

 2 .1 1 7

or F1  2 .1 1 7 F 2  2 3 9

(1)

Also F1  F 2  6 2 5 N

Solving, F1  1, 3 9 8 .5 N ,

F 2  7 7 3 .5 N

Length of the belt, by Eq. (13.9): L  2 c   ( r2  r1 ) 

1 C

( r2  r1 )

2

 2 (1 .9 5 )   ( 0 .2 0 0  0 .0 6 2 ) 

1 1 .9 5

( 0 .2 0 0  0 .0 6 2 )

2

 4 .7 3 3 m

SOLUTION (13.4) Pulley A Using Eq. (13.16), with F1  2 .5 k N , F1 F2

 e

f

,

2 .5 F2

 e

0 .1 5 (1 2 0 )(  1 8 0 )

f  0 .1 5 ,

 1 .3 6 9 ;

Fc  0 ,

  120 :

F 2  1 .8 2 6 k N

Pulley B Then, equilibrium condition

T

 0 applied to free-body diagram of

pulley B gives

T

B

 0;

T B  2 .5 ( 0 .1 5 )  1 .8 2 6 ( 0 .1 5 )  0

or TB  1 0 1 N  m

B TB

F1  2 .5 k N

0.15 m F 2  1 .8 2 6 k N

Similarly, we have

T

A

 0; T A  2 .5 ( 0 .0 2 )  1 .8 2 6 ( 0 .0 2 )  0 ,

209

TA  13 N  m

o

SOLUTION (13.5) ( a ) V1 

2  r1 n1



60

2  ( 0 .0 3 7 5 )( 2 5 0 0 )

 9 .8 2 m p s

60

From Eq. (1.15); with F  F1  F 2 : kW 

FV 1000

1 .5 

;

( F1  F 2 ) 9 .8 2 1000

F1  F 2  1 5 2 .7 5 N

(1)

( b ) Evaluate V 2 as, V1 

or

2  r2 n 2 60

9 .8 2 

;

r2  9 3 .8 in .,

2  r2 (1 0 0 0 ) 60

d 2  1 8 7 .6 m m

and 1

    2     2 s in [    2 s in

1

r2  r1 c

]

[ 9 3 .86 2 53 7 .5 ]  2 .9 6 ra d

( c ) Centrifugal force, using Eq. (13.13), Fc 

w g

V



2

1 .7 5 9 .8 1

(9 .8 2 )  1 7 .2 N 2

Then, Eq. (13.16): F1  1 7 .2

 e

F 2  1 7 .2

0 .3 5 ( 2 .9 6 )

 2 .8 1 8

(2)

Solving Eqs. (1) and (2), we have F1  2 5 4 N

F 2  1 0 1 .2 N

SOLUTION (13.6) We have w g  8 .8 9 .8 1  0 .8 9 7

and P  V ( F1 

w g

V )  V ( 2 5 0 0  0 .8 9 7 V ) 2

2

Thus P V

 0  5 0 0  0 .8 9 7 (3 )V ; 2

So V  2 r n ; Solving

V  3 0 .4 8 m p s

3 0 .4 8  2  ( r )( 4 2 0 0 6 0 )

r  6 9 .3 m m

SOLUTION (13.7) By Eq. (13.13): Fc 

w g

V

2



1 .4 9 .8 1

[ 2  ( 0 .0 8 )(3 0 0 0 6 0 )]  9 0 .1 N 2

From Eq. (13.16), 1 1 0 0  9 0 .1 F 2  9 0 .1

 e

o

( 0 .2 5 ) ( s in 1 8 ) (1 6 0  1 8 0 )

 1 .2 4 1

Solving F 2  9 0 3 .9 N

(CONT.)

210

13.7 (CONT.) Then T A  ( F1  F 2 ) r1  (1 1 0 0  9 0 3 .9 )( 0 .0 8 )  1 5 .7 N  m

and P 

3 0 0 0 (1 5 .7 )



VT 9549

9549

 4 .9 3 k W

SOLUTION (13.8) Fc 

w g



2

V

F1  F c F2  Fc

8 9 .8 1

[  ( 0 .2 )( 1 66 00 0 )]  2 2 8 .9 N 2

f  s in 

 e

3 , 0 0 0  2 2 8 .9

;

F2  2 2 8 .9

 e

  1 7 0  2 .9 6 7 ra d o

0 .1 5 ( 2 . 9 6 7 ) s in 1 9

o

 3.9 2 4

Solving F 2  935 . 1 N Thus T  ( F1  F 2 ) r  (3  0 .9 3 1)  1 0 ( 0 .1)  2 0 6 .9

N m

3

kW 



Tn 9549

2 0 6 .9 (1 6 0 0 )

 3 4 .7

9549

SOLUTION (13.9) ( a ) Fc 

w g

F1  F c

2

V

3 9 . 81

f  s in 

 e

8 0 0  Fc



[  ( 0 . 3 )(

 e

3000 60

)]

2

0 . 2 5 ( 2 . 7 9 3 ) s in 1 9

o

 679 . 1 N ,

  160

o

 2 . 793

rad

 8 .5 4

or F1  679 . 1

 8 . 54 , F 1  1, 711 . 6 N

800  679 . 1

Also T  ( F 1  F 2 ) r1  (1711 . 6  800 )( 0 . 15 )  136 . 7 N  m kW 



Tn 9549

136 . 7 ( 3000 ) 9549

 42 . 95

(b) 

F1



max



A

1 , 711 . 6 6

145 ( 10

)

 11 . 8 MPa

SOLUTION (13.10) r2 r1



n1 n2

2700 , r 2  0 . 1 ( 1800 )  0 . 15 m

sin  

T1 

9549 kW

  e Fc 

0 . 15  0 . 1 0 .5

2700



w g

V



o

9 5 4 9 (1 5 ) 2700

0 . 2 ( 2 . 9 4 1 ) s in 1 7

2

  5 . 74 ;

,

2 .5 9 . 81

o

  180

 5 3 .0 5 N  m

o

 2 ( 5 . 74 )  2 . 941

rad

V   d n   ( 0 .2 )( 2 67 00 0 )  2 8 .2 7 m p s

 7 .4 7 7

( 28 . 27 )

2

 203 . 7 N

(CONT.)

211

13.10 (CONT.) 

Thus F 1  F c  (   1 )

T1 r1

 203 . 7  ( 76 .. 477 ) 477

53 . 05 0 .1

 816 . 1 N

Table 13.5: K s  1.4 and F max  K s F 1  1 . 4 ( 816 . 1)  1 . 143

kN

SOLUTION (13.11) N 1 n1

(a) N2 

2 2 (1 4 0 0 )



n2

 4 4 teeth

700

( b ) H d  H r K 1K 2 where H r  2 6 .6 h p = 1 9 .8 k N K 1  1 .5

N 1 P n1

1000 H

60 1 0 0 0 ( 5 0 .6 )



d

V1

So,

2 2 ( 0 .0 1 9 0 5 )(1 4 0 0 )



60

F1 

K 2  1 .7 by Table 13.10)

(from Table 13.9,

H d  2 6 .6 (1 .5 )(1 .7 )  6 7 .8 h p = 5 0 .6 k W

Hence ( c ) V1 

(by Table 13.8)

9 .7 8

n 

F a ll

n 

6 2 .6 5 .1 7

 9 .7 8 m p s

 5 .1 7 k N

F a ll  3 1 .3 ( 2 )  6 2 .6 k N

F1

(by Table 13.7)

and  1 2 .1

SOLUTION (13.12) N 1 n1

(a) N2 

n2



1 8 (1 6 0 0 ) 640

 4 5 teeth

( b ) H d  H r K 1K 2 where H r  1 6 .1 h p = 1 2 k W K 1  1 .2

(from Table 13.8)

(by Table 13.9),

K 2  3 .3 (from Table 13.10)

and H d  1 6 .1(1 .2 )(3 .3)  6 3 .8 h p = 4 7 .6 k W

( c ) V1  N 1 P n1  1 8 ( 0 .0 1 9 0 5 )(1 6 0 0 6 0 )  9 .1 4 m p s 7 4 5 .7 H

F1 

(d) n 

d

V1

F a ll F1

,



7 4 5 .7 ( 6 3 .8 ) 9 .1 4

 5 .2 1 k N

where F a ll  2 (3 1 .3)  6 2 .6 k N

Thus, r2 

6 2 .6 5 .2 1

 12

212

(by Table 13.7)

SOLUTION (13.13) n1 n2



4 1

 3

 Use c  2 ( r2  r1 )

(Sec.13.6)

We have r1 

N1P



2

2 2 (1 6 ) 2

 5 6 .0 2 m m ,

r2 

n1 n2

r1 

4 1

(5 6 .0 2 )  2 2 4 .0 8 m m

Thus c  2 ( 2 2 4 .0 8  5 6 .0 2 )  3 3 6 .1 2 m m

r1  r2  2 8 0 .1 m m

Since

sprocket will clear.

SOLUTION (13.14) n1 n2



r1 

 2 . 19  3  Use c  2 ( r1  r2 )

4600 2100 N1P



2

1 4 (1 4 ) 2

 3 1 .1 9 m m ,

n1

r2 

n2

(Sec. 13.6)

r1  2 .1 9 (3 1 .1 9 )  6 3 .3 1 m m

c  ( r1  r2 )  3 1 .1 9  6 3 .3 1  9 4 .5 m m c  2 ( 9 4 .5 )  1 8 9 m m

Use c  1 9 0 m m

SOLUTION (13.15) ( a ) Speed ratio is ; 3:1. Thus N 2  3( 2 3)  6 9 teeth

( b ) H d  H r K 1K 2 where H r  1 9 .5 h p

(from Table 13.8)

K 1  1 .3

(from Table 13.9),

K 2  1 .7 (by Table 13.10)

H d  1 9 .5 (1 .3)(1 .7 )  4 3 .1 h p

and

( c ) V 1  N 1 P n1  2 3( 0 .0 1 9 )(1 8 0 0 6 0 )  1 .3 1 m p s 7 4 5 .7 H

F1 

(d) n 

d

V1

F a ll F1



7 4 5 .7 ( 4 3 .1 ) 1 3 .1

 2 .4 5 k N

where F a ll  4 (3 1 .3)  1 2 5 .2 k N

,

(Table 13.7)

So, n 

1 2 5 .2 2 .4 5

 5 1 .1

SOLUTION (13.16) ( a ) N 2  3(3 5 )  1 0 5 teeth ( b ) H d  H r K 1K 2 where

H r  3 6 .6 h p = 2 7 .1 k W

(by Table 13.8) (CONT.)

213

13.16 (CONT.) K 1  1 .3 ,

K 2  1 .7

(by Table 13.9 & 13.10)

and H d  3 5 (1 .3)(1 .7 )  7 7 .3 5 h p = 5 7 .6 8 k W

( c ) V 1  N 1 P n1  3 0 ( 0 .0 1 9 0 5 )(9 0 0 6 0 )  8 .5 7 m p s F1 

(d) n 

7 4 5 .7 H

F a ll F1

7 4 5 .7 ( 7 7 .3 )



d

V1

 6 .7 3 k N

8 .5 2

where F a ll  2 (3 1 .3)  6 2 .6 k N

,

Hence n 

 9 .3

6 2 .6 6 .7 3

SOLUTION (13.17) (a)

p m ax 

T 

2 Fa

2(6)



 d (D d )

 ( 0 .1 5 )( 0 .2 5  0 .1 5 )

Fa f ( D  d ) 

1 4

1 4

 2 5 4 .6 k P a

(Eq.13.28)

( 6 , 000 )( 0 . 3 )( 0 . 25  0 . 15 )  180

N m

(Eq.13.30)

(b) p max 

T 

1 3

4 Fa

 (D

2

d

2

3

Fa f

D d D

2



)

d

3

4(6) 2

 ( 0 . 25  0 . 15



2

2

)

 191

3

1 3

( 6 , 000 )( 0 . 3 )

(Eq.13.32)

kPa

0 . 25  0 . 15 0 . 25

2

 0 . 15

3 2

 183 . 8 N  m

SOLUTION (13.18) (a) T 

9549 kW n

9549 (30 )



500

 5 7 2 .9 N  m

N  2

and T 

1 12

 fp

max

3

(D

 577 , 267 . 7 d

 d )  3



3



( 0 . 25 )( 140  10 )[ 64 d 3

12

3

 d ] 3

(Eq.13.33)

572 . 9 2

Solving d  7 9 .2 m m and D  4 d  3 1 6 .8 m m ( b ) Fa 

1 4

 p m ax ( D  d )  2

2

 4

(1 4 0  1 0 )[1 6 d 3

2

 d ]  1 .6 4 9 (1 0 ) d 2

6

2

 1 0 .3 4

kN

SOLUTION (13.19) ( a ) T  5 7 2 .9 N  m We now have T 

1 8

N  2 (from solution of Prob. 13.18)

 fp m a x d ( D  d ) 

 206 ,167 d

2

3



2

 8

( 0 .2 5 )(1 4 0  1 0 ) d (1 6 d 3

2

d ) 2

(Eq.13.29)

572 . 9 2

Solving, d  1 1 1 .6 m m and D  4 d  4 4 6 .4 m m (CONT.)

214

13.19 (CONT.) ( b ) Fa 

1 2

 p max d ( D  d )





( 0 .1 4 )(1 1 1 .6 )[ 4 4 6 .4  1 1 1 .6 ]  8 .2 2 k N

2

(Eq.13.28)

SOLUTION (13.20) ( a ) From Eq. (13.29), with a factor of safety n : d (D

d ) 

2

2

8 nT

;

 fPm a x

2

0 .0 5 ( D

 0 .0 0 2 5 ) 

8 (1 .6 )(1 3 5 .6 ) 6

 ( 0 .3 )(1 .6  1 0 )

Solving D  1 5 9 .8 m m ( b ) From Eq. (13.30), we have Fa 

4 nT f (Dd )

4 (1 .6 )(1 3 5 .6 )



( 0 .3 )(1 5 9 .8  5 0 )

 1 3 .8 k N

SOLUTION (13.21) (a) T 

9549 kW n

9 5 4 9 ( 3 7 .5 )



 8 9 5 .2 N  m

400

and T 

 fp

1 8

 0 .8 (1 0

Fa 

 2

( b ) p avg 

d (D

max 3

Fa 2



(D d

2

)

 d )  2

) p m ax  

p m ax d ( D  d ) 



2

2

8

( 0 . 2 ) p max 0 . 15 [ 0 . 3

2

 0 . 15

2

2

 ( 0 .3  0 .1 5 )

 1 8 6 .6 k P a

4

SOLUTION (13.22) ( a ) Use Eq. (13.29) by multiplying  3 6 0 : T 

 360

[ 81  fPm a x d ( D

2

 d )] 2

from which p m ax 

8 (360  )T 2

 fd ( D  d

2

)

8 ( 3 6 0 8 0 ) (1 8 0 0 )



2

2

 ( 0 .3 ) ( 0 .2 ) ( 0 .2 8  0 .2 )

 8 9 5 2 .5 k P a

( b ) From Eq. (13.28) by multiplying  3 6 0 : Fa 

 360

[ 12  p m a x d ( D  d )] 

80 360

[ 2 (8 9 5 2 .5 )( 0 .2 )( 0 .4 8 )]

 300 kN

( c ) Each cylinder supplies a force F a 2 . Thus p hyd 

Fa 2

d

2

4



3 0 0 ,0 0 0 2

 ( 0 .2 )

2

4

]

(Eq.13.29)

p m a x  2 7 9 .8 k P a

,

( 0 .2 7 9 8 )(1 5 0 )(1 5 0 )  9 .8 9 k N

9890 ( 4 ) 2

8 9 5 .2 4



 4 .7 7 M P a

215

(Eq.13.28)

SOLUTION (13.23) ( a ) Use Eq. (13.33) by multiplying  3 6 0 : 

T 

[ 12 fPm a x ( D  d )] 3

360

3

from which 12 (360  )T

p m ax 

3

3

 f (D d )



1 2 ( 3 6 0 8 0 ) (1 8 0 0 ) 3

3

 ( 0 .3 ) ( 0 .2 ) ( 0 .2 8  0 .2 )

 7 .3 9 M P a

( b ) From Eq. (13.32), by multiplying by  3 6 0 : 

Fa 

(c)

p hyd 

Fa 2

d

2

360



4

[ 4 p m a x ( D

2 ( 49500 )

 ( 0 .0 4 )

 d )] 

2

2

80 360

[ 4 ( 7 , 3 9 0 )( 0 .2 8  0 .2 )]  4 9 .5 k N 2

2

 1 9 .7 M P a

2

SOLUTION (13.24) T 

9549 (35 ) 800

and T 

 4 1 7 .8 N  m

 fp m a x 1 2 s in 

 d ) 

3

(D

3

R is e  3

 ( 0 .3 ) 4 2 0 (1 0 ) 1 2 s in 8

o

1 2

( D  d )  w s in 

[ 0 .2 5  d ]  4 1 7 .8 3

3

(Eq.13.41)

Solving d  2 4 0 .2 m m Therefore w 

1 D d 2 s in 



2 5 0  2 4 0 .2 2 s in 8

 3 5 .2 1 m m

o

SOLUTION (13.25) T  4 1 7 .8 N  m (from Solution of Prob. 13.24)

Now we have T 

 fp m a x d 8 s in 

(D

Solving 0 .0 6 2 5 d  d

2

 d )  2

 0 .0 0 1 2

3

3

 ( 0 .3 ) 4 2 0 (1 0 ) 8 s in 8

o

[ 0 .0 6 2 5 d  d ]  4 1 7 .8 3

or d  2 4 0 m m (by trial and error)

Thus, we have w 

1 D d 2 s in 



250  240 2 s in 8

o

 3 5 .9 m m

SOLUTION (13.26) ( a ) Rise  w sin   80 sin 10

o

 13 . 89 mm

D  5 0 0  1 3 .8 9  5 1 3 .8 9 m m d  5 0 0  1 3 .8 9  4 8 6 .1 1 m m

Equation (13.38): T 

 ( 0 . 2 )( 500 )( 0 . 48611 ) 8 sin 10

o

[ 0 . 51389

2

 0 . 48611

2

]  3 . 05 kN  m

Equation (13.37): F a  12  (5 0 0 )( 0 .4 8 6 1 1)[ 0 .5 1 3 8 9  0 .4 8 6 1 1]  1 0 .6 1 k N ( b ) kW 

Tn 9549



3 ,0 5 0 ( 5 0 0 ) 9549

 1 5 9 .7

216

(Eq.13.38)

SOLUTION (13.27) Fa 

 4

2

p max ( D

 d ), 2

D

2

 d

4 Fa



2

 p max



 0 . 016

4(5)

 ( 400 )

We have 1 2

( D  d )  0 .2 5

D  d  0 .5

or

(1)

Thus  d

2

D

2

 ( D  d )( D  d )  0 .5 ( D  d )  0 .0 1 6

or D  d  0 .0 3 2

(2) D  266

From Equation (1) & (2):

d  234

mm ,

mm

Equation (13.41): T 

5000 ( 0 . 2 ) 0 . 266

3

 0 . 234

3

o

2

 0 . 234

2

3 sin 12

0 . 266

 602

N m

SOLUTION (13.28) d Fn

Fn 



d/2



D/2

r



D 2

d 2

p max

F h  0:

2  rdr sin 

F a  F n s in  



D 2

d 2

p max (

2  rdr sin 

) sin 

Fa

This, after integration, yields Eq.(13.40).

T  fF n r 

Similarly,



D 2

d 2

fp

max

(

2  rdr sin 

)r

Integrating gives Eq.(13.41).

SOLUTION (13.29) F 1  wrp

max

 ( 0 . 1)( 0 . 2 )( 700 )  14 kN

f   0 .3 ( 2 4 0 

2 360

(Eq.13.45)

)  1.2 5 7

We have F2 

F1 e

f



14 e

1 .2 5 7

 3 .9 8 3 k N

Thus T  ( F 1  F 2 ) r  (14  3 . 983 )( 0 . 2 )  2 . 003

and

kW 

Tn 9549



2 , 0 0 3(1 5 0 ) 9549

 3 1.4 6

217

kN  m

SOLUTION (13.30)   2 1 0  3 .6 6 5 ra d

T  I   2 .3( 2 0 0 )  4 6 0 N  m

o

We have F1  F 2  F1 F2

 e

f



T r

 e

460 0 .1 2 5

 3 .6 8 k N

0 .3 ( 3 . 6 6 5 )

(Eq.13.42)

 3 .0 0 3

Solving F 1  3 . 003 F 2  3 . 003 ( F 1  3 . 68 )

or F1  5 .5 2 k N

F 2  1 .8 4 k N

Thus Fa  F2

 1, 8 4 0 ( 13 20 50 )  7 6 7 N

r a

(Eq.13.43)

SOLUTION (13.31) T 

9549 kW n



9549 ( 40 )

 636 . 6 N  m

600

(1)

Also F1  F 2 e

f

 F2 e

 5 .7 2 7 F 2

0 . 4 ( 4 .3 6 3 )

and T  r ( F1  F 2 )  0 .2 5 ( 5 .7 2 7 F 2  F 2 )  1.1 8 2 F 2

Equation (1) and (2) give F 2  538 . 6 N

F 1  3 , 085

N

SOLUTION (13.32)   240

o

 4 . 189

rad

(a) F 1  p max wr  600 ( 0 . 075 )( 0 . 15 )  6 . 75 kN

Also F1 F2

 e

f

 e

0 . 4 ( 4 .1 8 9 )

 5 .3 4 2

Thus F1  5 .3 4 2 F 2

Fa  F2

r a

and

F 2  1 . 264

 (1 . 264  10 ) 3

150 400

 474

( b ) T  r ( F 1  F 2 )  0 . 15 ( 6 . 75  1 . 264 )  10 kW 

Tn 9549



823( 200 ) 9549

kN

 1 7 .2 4

218

3

N

 823

N m

(2)

SOLUTION (13.33) (a) F 1  p max wr  800 ( 0 . 06 )( 0 . 15 )  7 . 2 kN T 

9549 ( 10 )



9549 kW n

 434

220

T  ( F1  F 2 ) r ,

N m

F 2  F1 

 7 .2 

T r

0 . 434 0 . 15

 4 . 307

kN

We have e

f



F1 F2



f   ln 1.6 7 2  0 .5 1 4

 1.6 7 2 ,

7 .2 4 .3 0 7

Thus  

0 .5 1 4 0 .1 4

(b)

 3 .6 7 1 ra d  2 1 0 .3

o

129.4 From triangle ABC: 3 0 .4

s  2 0 6 .6 c o s 3 0 .4  178 . 2 mm

o

o

O 150

75.9

200 124.1 3 0 .4

o

C

A s B 206.6

72.8

SOLUTION (13.34) e

f

 e

F1  e

0 . 12 ( 3 . 665 )

f

 1 . 552

  210

o

 3 . 665

rad

F 2  1.5 5 2 F 2

F2

A



M

A

 0:

F1 s  F 2 c  F a a

F1

or 1 . 552 F 2 ( 80 )  50 F 2  1 . 5 ( 300 )

from which F 2  6 .0 7 k N , and F1  9 .4 2 k N

Thus kW 

( F1  F 2 ) r n 9549



( 9 .4 2  6 .0 7 )( 4 )(1 0 0 ) 9549

 1 0 .5 2

219

S

Fa

c a

SOLUTION (13.35) T 

F1  F 2 

F2

900



T r

F1

Also

9 5 4 9 (1 5 )



9549 kW n

f

o

ra d

 7 9 5 .7 5 N

1 5 9 .1 5 0 .2

 e

  2 1 0  3 .6 6 5

 1 5 9 .1 5 N  m

 e

0 .4 ( 3.6 6 5 )

(1)

 4 .3 3 2

or F1  4 .3 3 2 F 2

(2)

From Eqs.(1) and (2): F 2  2 3 8 .8 N

F1  1 0 3 4 .6

N

We therefore obtain Fa 

( cF 2  sF 1 ) 

1 a

1 250

  111 . 4 N

[100 ( 238 . 8 )  50 (1034 . 6 )]

Yes. Self-locking

SOLUTION (13.36) From Solution of Prob.13.35: T  159 . 15 ,

F 2  238 . 8 N ,

F 1  1034 . 5 N

Now we have

A F2

F1

c



Fa

M

A

 0:

a

( a ) From Eq. (13.45): F1  p m a x w r  5 0 0 (1 0 )( 0 .0 2 )( 0 .1)  1 k N 3

Equation (13.44),  1(1 0 ) e 3

 0 .2 5 ( 2 6 5  1 8 0 )

 315 N

Equation (13.42): T  r ( F1  F 2 )  ( 0 .1)(1 0 0 0  3 1 5 )  6 8 .5 N  m

( b ) Fa 

c F 2  s F1 a



4 0 ( 3 1 5 )  1 0 (1 0 0 0 ) 200

 13 N

If F a  0 , the brake will self-lock: s 

c F2 F1



[ c F1  s F 2 ]

No. Not self-locking

SOLUTION (13.37)

 f

1 a

 366 . 04

S

F 2  F1 e

Fa 

40 (315 ) 1000

 1 2 .6 m m

220

N

SOLUTION (13.38) ( a ) From Eq. (13.45): F1  w r p m a x  7 5 ( 2 5 0 )( 0 .4 9 )  9 .1 9 k N

Equation (13.44), F 2  F1 e

 0 .2 5 ( 4 .5 3 8 )

 9 .1 9 ( 0 .3 2 2 )  2 .9 6 k N

Using Eq. (13.42): T  ( 9 .1 9  2 .9 6 ) ( 2 5 0 )  1 .5 5 8 N  m

( b ) Using Eq. (13.46): 2 .9 6 (1 5 0 )  9 .1 9 ( 3 5 )

Fa 

 1 9 5 .8 N

0 .6 2 5

From Eq.(13.46): F a  0 for s  2 .9 6 (1 5 0 ) 9 .1 9  4 8 .3 m m The brake is self-locking (for f  0 .2 5 ), if: s  4 8 .3 m m

SOLUTION (13.39) (a) T 

9549 kN n

Fn 

T fr



9549 ( 25 )



800

298 . 4 0 . 25 ( 0 . 3 )

Hence F a 

Fn

 298 . 4 N  m

 3979

N

( b  fc ) 

a

3979 1

( 0 . 4  0 . 25  0 . 05 )  1 . 542

kN

No. Not self-locking ( b ) R Ax  fF n  0 . 25 ( 3979 )  994 . 8 N  R Ay  F n  F a  3979  1542 R A  [ 994 . 8

 2437

2

 2437

N 

1

2

] 2  2 . 632

kN

SOLUTION (13.40) ( a ) From Solution of Prob.13.39: F n  3979

N

We now have Fa 

Fn a

( b  fc ) 

3979 1

( 0 . 4  0 . 25  0 . 05 )  1, 641

N

No. Not self-locking ( b ) From Solution of Prob.13.39: R A  2 . 632

kN

SOLUTION (13.41)



M

A

 0:

Fn 

4 ( 0 .4 5 ) 0 .2

 9 kN

We now use p avg 

Fn 2 ( r s in



 )w

9 ,0 0 0 o

2 ( 0 .1 5 )(s in 4 5 )( 0 .0 7 5 )

 0 .5 6 6 M P a

2

(CONT.)

221

13.41 (CONT.) T  fF n r  ( 0 .3 5 )(9  1 0 )( 0 .1 5 )  4 7 2 .5 N  m 3

Thus and

kW 

Tn 9549



 12 . 37

472 . 5 ( 250 ) 9549

Comment: Short-Shoe analysis overestimates pressure, torque, and power capacity of the brake.

SOLUTION (13.42) ( a ) From Eq.(13.47): F n  Pm a x [ 2 ( r s in

 2

)] w  (8 0 0 )(1 0 )[ 2 ( 0 .1 5 s in 3

and

fF n  0 .2 5 ( 4 4 9 5 )  1 1 2 4 N

So



M

 0:

A

44 2

o

)]( 0 .0 5 )  4 4 9 5 N

0 .5 F a  0 .0 2 5 (1 1 2 4 )  4 4 9 5 ( 0 .2 )  0 ,

F a  1 .7 4 2 k N

and T  fF n r  1 1 2 4 ( 0 .1 5 )  1 6 8 .6 N

(b) R A  [( 4 4 9 5  1 7 4 2 )  1 1 2 4 ] 2

2

1

 2 .9 7 4 k N

2

Fa

300

200 A

25

fF n

Fn

SOLUTION (13.43) ( a ) From Eq. (13.48): T  fF n r ,

(b)

 or

M

Fn 

T fr



250 ( 0 .4 )( 0 .3 5 )

 1 .7 9 k N

 ( 0 .3 5 )[ 0 .4  1 .7 9 (1 0 )]  ( 0 .9 F a )  0 .3 2[1 .7 9 (1 0 )]  0 3

o

3

Fa  9 1 5 N

SOLUTION (13.44) Equation (13.47): F n  p m a x [ 2 ( r s in

 2

)] w  7 0 0[ 2 ( 0 .1  s in

30 2

o

 1 .4 5 k N

Then, Eg.(13.49): Fa 

Fn a

( b  fc ) 

3

1 .4 5 (1 0 ) 0 .2

[ 0 .1 2  0 .2 ( 0 .0 3 ) ]

 827 N

222

)]( 0 .0 4 )

SOLUTION (13.45) ( a ) From Eq. (13.57), T ( s in  ) m

p m ax 

(1)

2

fw r ( c o s  1  c o s  2 )

Substituting Eq. (13.52) and the data: p m ax 

1 3 6 s in 9 0

o

2

o

 2 .7 6 M P a

o

( 0 .3 5 ) ( 0 .0 2 5 ) ( 0 .0 7 5 ) ( c o s 0  c o s 9 0 )

( b ) Introducing Eq. (13.52) and the data into Eq. (1); we have p m ax 

1 3 6 s in 6 5

o

2

o

o

( 0 .3 5 ) ( 0 .0 2 5 ) ( 0 .0 7 5 ) ( c o s 2 0  c o s 6 5 )

 4 .8 4 M P a

SOLUTION (13.46) c (cos 2  2  cos 2  1 )  4 r (cos  2  cos  1 )

Equation (13.54): (1)

where 1  0 ,  2  9 0 Equation (1) thus o

AO  c

o

c (  1  1)  4 r (  1)

c  2r

or

and b  c cos 45

o

 2 r cos 45

o

 1 . 414 r

SOLUTION (13.47) Refer to Figs. P13.47, 13.22, and 13.23. 1

c  [ 2 5 0  1 7 5 ] 2  3 0 5 .2 m m 2

  tan

2

 1 250 175

 1  10 . 01 ,  2  100 . 01

 55 . 01 ; o

We have  2  9 0

o

o

o

hence ( s in  ) m  1.

( a ) Equation (13.53): M

n



6

( 0 .0 5 )( 0 .2 )( 0 .3 0 5 2 )( 0 .9 1 0 )

[ 2 ( 2 )  s in 2 0 0 .0 2  s in 2 0 .0 2 ]  2 6 2 7 .5 N  m o

4 (1 )

o

Equation (13.54): M

f



6

( 0 . 3 )( 0 . 05 )( 0 . 2 )( 0 . 9  10 ) 4 (1 )

[ 0 . 3052 (cos 200 . 02

o

 cos 20 . 02 ) o

 4 ( 0 .2 )(c o s 1 0 0 .0 1  c o s 1 0 .0 1 )]  2 3 8 .5 N  m o

o

Equation (13.55): Fa 

1 a

(M

n

 M

f

) 

1 0 .5 5

[ 2 3 8 9 ]  4 .3 4 4 k N

( b ) Equation (13.57): T 

2

6

( 0 .3 )( 0 .0 5 )( 0 .2 )( 0 .9  1 0 ) 1

[ c o s 1 0 .0 1  c o s 1 0 0 .0 1 ]  6 2 5 .6 N  m o

Thus kW 

Tn 9549



625 . 6 ( 600 ) 9549

 39 . 31

223

o

SOLUTION (13.48) Refer to Figs.P13.48 and 13.22. 1  1 5 ,

2  120  90

o

c 

150 s in 3 0

o

o

 300

o

and (s in  ) m  1,

  105

a  300 cos 30  250  510 o

m,

o

mm

( a ) Equations (13.53), (13.54), and (13.55): 6

M



( 0 .0 6 )( 0 .2 )( 0 .3 )( 0 .8  1 0 )

n

M



( 0 .3 )( 0 .0 6 )( 0 .2 )( 0 .8  1 0 )

f

4 (1 ) 6

4 (1 )

[ 2 (1 .8 3 3 )  s in 2 4 0  s in 3 0 ]  3, 6 2 3 N  m o

o

[ 0 .3 (  0 .5  0 .8 6 6 )  4  0 .2 (  0 .5  0 .9 6 6 )]  5 4 9 N  m

Thus Fa 

(b) T 

1 a

(M

n

 M

2

6

( 0 .3 )( 0 .0 6 )( 0 .2 )( 0 .8  1 0 ) 1

f

) 

1 0 .5 1

[3, 6 2 3  5 4 9 ]  6 .0 2 7 k N

[ 0 .9 6 6  0 .5 ]  8 4 4 N  m

(Eq.13.57)

Hence kW 



Tn 9549

( 844 )( 500 ) 9549

 44 . 19

SOLUTION (13.49) ( a ) We have  2  4 5 , Apply Eq. (13.58) to obtain o

a 

4 r s in 

2

2  2  s in  2



4 (1 2 5 ) s in 4 5

o

2 ( 4 5 )(  1 8 0 )  s in 4 5

o

 1 5 5 .2 m m

( b ) Applying Eqs. (13.59) and (13.60): R Ax 

2wr a

2

Pm a x s in  2 

2 ( 0 .0 5 )( 0 .1 2 5 ) 0 .1 5 5 2

2

(1 .5 5  1 0 ) s in 4 5 6

o

 1 1 .0 3 k N

R A y  fR A x  0 .3 (1 1 .0 3 )  3 .3 1 k N

( c ) From Eq. (13.61b): T  R A y a  (3 .3 1)( 0 .1 5 5 2 )  0 .5 1 4 k N  m

End of Chapter 13

224

CHAPTER 14

MECHANICAL SPRINGS

SOLUTION (14.1) 

(a) J 

32

 

TL GJ

(8 )

4

; 80

 402 . 124

mm

 1 . 396

rad 

o

2

T ( 1 . 25 ) 79 ( 10

9

)( 402 . 124  10

 12

)

or T  35 . 48 N  m

(b)  

16T

 d

3

1 6 ( 3 5 .4 8 )



 ( 8 1 0

3

)

 353 M Pa

3

SOLUTION (14.2) (a) d

3



3

1 6 ( 2  1 0 )( 0 .1 5 )



16 PR

  a ll

 ( 3 5 0 1 0

6

d  1 8 .7 1 m m

,

1 .5 )

( b ) Equation (14.2): L 

4

 d G

4

 (1 8 .7 1 ) ( 7 9 )( 4 0 )



2

32 PR

3

3 2 ( 2  1 0 )(1 5 0 )

 0 .8 4 5 m  8 4 5 m m

2

SOLUTION (14.3) Angle of twist,   T L J G ;

T   J G L , where

  2 0 (  1 8 0 )  0 .3 4 9 ra d o

J d

3 2   (1 2 )

4

3 2  2 .0 3 6 (1 0 ) m m

4

3

4

 2 .0 3 6 (1 0

Thus, 0 .3 4 9 ( 2 .0 3 6  1 0

T 

9

9

)( 7 9  1 0 )

 4 6 .8 N  m

1 .2

From Eq.(14.1):   1 6T  d

3

1 6 ( 4 6 .8 )



 ( 0 .0 1 2 )

3

 1 3 7 .9 M P a

SOLUTION (14.4) D  Cd  5 ( 7 )  35 mm

 a ll  K s

8 PC

 d

2

450 

;

8 P2 ( 5 )

 (7 )

2

(1 

0 .6 1 5 5

),

Thus k 

P2  P1



 2 1

1 5 4 2 1 0 0 0 20

 2 7 .1 N m m

and N

a



dG 3

8C k



3

7 ( 29  10 ) 3

8 ( 5 ) ( 27 . 1 )

 7 . 49 coils

225

P2  1 .5 4 2 k N

9

) m

4

SOLUTION (14.5) Apply Eq. (14.10): P 

4

d G 3

8D Na

where  N a  p  d  1 2 .5  9 .5  3 m m

So,

P 

4

9

( 0 .0 0 9 5 ) ( 7 9  1 0 )( 0 .1 2 5 ) 8 ( 0 .0 5 )

 1 .9 3 k N

3

By Eq. (14.6),   8 PD K s d

For

3

C  D d  5 0 9 .5  5 .2 6 3

Ks 1

 1 .1 1 7

0 .6 1 5 5 .2 6 3

(Eq. 14.7)

It follows that  

8 (1 .9 3 )( 0 .0 5 )

 ( 0 .0 0 9 5 )

(1 .1 1 7 )  3 2 0 .1 M P a

3

From Table (14.3), S y s  0 .4 S u By Eq. (14.12), Su  Ad

 1 6 1 0 (9 .5 )

b

 0 .1 9 3

 1 0 4 2 .6 M P a

Hence S y s  0 .4 5 (1 0 4 2 .6 )  4 6 9 .2 M P a

Since 3 2 0 .1  4 6 9 .2

 Yes.

SOLUTION (14.6) From Eq. (14.11), k 

4



P



d G 3

8D Na

As d =constant and k proportional to d

4

3

D , The largest active coil will have the smallest

value of k . That is, the bottom coil will deflect to zero pitch first. Using Eq. (14.10), with  N a  p  6 m m : P 

4

d G



3

8D Na

4

9

( 0 .0 4 ) ( 7 9  1 0 )( 0 .0 0 6 ) 3

8 ( 0 .0 6 ) (1 )

 7 0 .2 N

The total deflection is   P N a  6 (5 )  3 0 m m SOLUTION (14.7) ( a ) From Eq. (14.11), k 

4

d G 3

8D Na

Outer spring: ko 

4

(7 ) (79000 ) 3

8 ( 40 ) ( 4 )

 9 2 .6 2 N m m

Inner spring: ki 

4

( 4 .5 ) ( 7 9 0 0 0 ) 3

8 ( 22 ) (8 )

 4 7 .5 4 N m m

(CONT.)

226

14.7 (CONT.) By Eq. (14.11), k  W  or   W k . Hence  

 1 4 .2 7 m m

2000 ( 4 7 .5 4  9 2 .6 2 )

( b ) Force on each spring: W o  k o   (9 2 .6 2 )(1 4 .2 7 )  1 3 2 2 N W i  k i   ( 4 7 .5 4 )(1 4 .2 7 )  6 7 8 N

For outer spring: C  4 0 7  5 .7 1, K s  1 

0 .6 1 5 5 .7 1

For inner spring: C  2 2 4 .5  4 .8 9 , K s  1 

 1 .1 1

0 .6 1 5 4 .8 9

 1 .1 3

  (8 w D  d ) K s 3

Apply Eq. (14.6): i 

8 (1 3 2 2 )( 4 0 )

i 

8 ( 6 7 8 )( 2 2 )

 (7 )

3

 ( 4 .5 )

(1 .1 1)  4 3 5 M P a (1 .1 3 )  4 7 1 M P a

3

SOLUTION (14.8) C  15 3  5

S u  Ad

b

 1510 ( 3

Table 14.3: ( a)

k 

3

Nt  N

S

 0 . 42 S u  509

MPa

3

A  1510

 23 . 7 N mm

3

 2  12 , h s  ( N t  1) d  13 ( 3 )  39 mm 8 Pmax C

( b ) S ys  K s

 d

2

Pm a x 

Thus

MPa

8 ( 5 ) ( 10 )

a

a

ys

 0 . 201

)  1 , 211

3 ( 79  10 )



dG 8C N

b   0 .2 0 1 ,

Table 14.2:

Pmax 

,

 ( 5 0 9 )( 3 ) 8 ( 5 )(1 

2

0 .6 1 5

2

S ys  d 8 CK

s

 3 2 0 .4 N )

5

SOLUTION (14.9) (a) d

2



(1 

8 PCn  S ys

0 . 615 C

3

8 ( 2  10 )( 5 )( 1 . 3 )

) 

6

 ( 500  10 )

(1 

0 . 615 5

)

or d  8 . 62 mm

( b ) D  8 .6 2 ( 5 )  4 3 .1 m m , N



a

dG

hs  (N

(c)

c hf



3

8C K

a

2 4 .4 4 106



3

( 8 .6 2 )( 7 9 1 0 ) 3

8(5 ) (90 )

 c  1 .1 0

hf D

90

 2 4 .4 4 m m

 7 .5 7

 2 ) d  82 . 49 mm,

 0 .2 3

3

2 (1 0 )



1 0 6 .9 4 3 .1

h f  24 . 44  82 . 49  106 . 9 mm

 2 .4 8

 Spring is safe (Curve A, Fig.14.10)

227

SOLUTION (14.10) (a) Nt 

hs



d

 12

2 1.6 1.8

C 

N a  12  2  10 ( S ys n )  d

P  k 

2



8 K sC

3

 ( 9 0 0 2 )(1 .8 )

( 1 . 8 )( 79  10 )

 1 .1 5

P k

 1.0 7 4

0 .6 1 5 8 .3 3

 64 N

 3 . 075

3

8 ( 8 . 33 ) ( 10 )

a

2

8 (1 .0 7 4 )( 8 .3 3 )

 s  1 .1 5

Thus

Ks  1

3



dG 8C N

 8 .3 3

15 1 .8

N mm

64 3 .0 7 5

 2 3 .9 3 m m

h f  h s   s  2 1 .6  2 3 .9 3  4 5 .5 3

(b)

s h

h

 0 . 53

 3 . 04

f

D

f

mm

 Spring is safe (Curve B, Fig.14.10)

SOLUTION (14.11) d



2

8CP

 S ys n

(1 

0 .6 1 5 C

) 

8 ( 8 )( 2 0 0 ) 6

 ( 4 2 0  1 0 ) 2 .5

(1 

0 .6 1 5 8

),

d  5 .1 1 m m

D  5 .1 1(8 )  4 0 .8 8 m m

N

a



5 . 11 ( 79  10



dG 3

8C k

3

8 ( 8 ) ( 9  10

6 3

) )

 10 . 95

N t  1 0 .9 5  2  1 2 .9 5,

 s  1 .2 0

h s  (1 2 .9 5 )(5 .1 1)  6 6 .2 m m

 2 6 .7 m m

200 9000

h f  6 6 .2  2 6 .7  9 2 .9 m m

Therefore s h

h

 0 . 287 ,

f

D

f

 2 . 23  Spring is safe (Curve A, Fig.14.10)

SOLUTION (14.12) ( a )  a ll 

8 PD

 d

3

,

d

3



8 PD

  a ll



8 ( 2 )75 6

 ( 5 2 5 1 0 )

,

d  8 .9 9 m m

( b ) C  D d  7 5 8 .9 9  8 .3 4 Na 

dG 3

8C k

 s  1 .1 0

(c)

s hf

 0 .5 3,

 P k

3

8 .9 9 ( 7 9  1 0 )

 7 .2 9 ,

3

8 ( 8 .3 4 ) ( 2 1 )

 1 .1 0 hf D

2 21

h s  ( N a  2  1)8 .9 9  9 2 .5 1 m m

 1 0 4 .8 m m ,

 2 .6 3

h f  h s   s  1 9 7 .3 m m

 Spring is safe (Curve B, Fig.14.10)

228

SOLUTION (14.13) We have C  D d  2 0 2 .5  8 .0 ( a ) From Table 14.3: S y s  0 .4 0 S u where Su  Ad

b

 2 0 6 0 ( 2 .5 )

 0 .1 6 3

 1774 M Pa

and  m a x  0 .4 0 (1 7 7 4 )  7 0 9 .6 M P a

By Eq. (14.8): 2

 d  m ax

Pm a x 

8CK

where K w  1 

w

2

 ( 2 .5 ) ( 7 0 9 .6 )



0 .6 1 5 8

 1 .0 7 7

(Eq. 14.7)

 2 0 2 .1

8 ( 8 )(1 .0 7 7 )

Use Eq. (14.11), k 

4



d G 3

8D Na

4

( 2 .5 ) ( 7 9 0 0 0 ) 3

8 ( 2 0 ) (1 1 )

 4 .3 8 N m

( b )   Pm a x k  2 0 2 .1 4 .3 8  4 6 .1 4 m m By Fig. 14.8c: h s  N t d h s  ( N a  2 ) d  (1 1  2 )  3 2 .5 m m

Thus, h f  3 2 .5  4 6 .1 4  7 8 .6 4 m m

( c ) h f D  7 8 .6 4 2 0  3 .9 3 2  h f  4 6 .1 4 7 8 .6 4  0 .5 8 7

From Fig. 14.10, for Case B:

Yes, Buckling occurs.

SOLUTION (14.14) ( a ) Use Eq. (14.12) and Table 14.2. Su  Ad

b

 1 6 1 0 ( 0 .9 )

 0 .1 9 3

 1643 M Pa

Table (14.3): S y s  0 .4 5 S u  0 .4 5 (1 6 4 3 )  7 3 9 .4 M P a

( b ) Spring index, with C  D d  1 0 0 .9  1 1 .1 : Ks 1

0 .6 1 5 C

 1

0 .6 1 5 1 1 .1

 1 .0 5 5

(Eq. 14.7)

Rearrange Eq. (14.6), let   S y s , and solve for P . 3

P 

 d S ys 8KsD



3

 ( 0 .9 ) ( 7 3 9 .9 ) 8 (1 .0 5 5 )(1 0 )

 2 0 .1 N

From Fig. 14.7, N a  1 4 .5  2  1 2 .5 . Equation (14.11) is then k 

Gd 3

4

8D Na



( 7 9 , 0 0 0 )( 0 .9 ) 3

8 (1 0 ) (1 2 .5 )

4

 0 .5 1 8 N m m

(CONT.)

229

14.14 (CONT.) (c) s 

P k



 3 8 .8 m m

2 0 .1 0 .5 1 8

From Fig. 14.7c: h s  ( N a  3) d  (1 2 .5  3)( 0 .9 )  1 3 .9 5 m m h f   s  h s  3 8 .8  1 3 .9 5  5 2 .7 5 m m

Figure 14.7: p 

(d)

s hf



3 8 .8 1 3 .9 5

hf 2d

5 2 .7 5  2 ( 0 .9 )



Na

1 2 .5

hf

 2 .7 8 ,



D

5 2 .7 5 10

 4 .0 7 6 m m

 5 .2 7 5

Figure 14.10, Curve A: No buckling failure.

SOLUTION (14.15) ( a ) Equation (14.4), C  D d  1 4 1 .5  9 .3 3 3 Equation (14.7): Ks 1

0 .6 1 5 9 .3 3 3

 1 .0 6 6

From Fig. 14.7: N t  N a  2  1 6  2  1 8,

h s  d N t  1 .5 (1 8 )  2 7 m m

The pitch equals P  ( h f  2 d ) N a  [3 5  2 (1 .5 )] 1 6  2 m m

Solid deflection  s  h f  hs  3 5  2 7  8 m m

( b ) Equation (14.12) and Table 14.2: S u  1 6 1 0 (1 .5 )

 0 .1 9 3

 1498 M Pa

From Table (14.3): S y s  0 .4 5 S u  0 .4 5 (1 4 8 9 )  6 7 0 M P a

From Eq. (14.11): P 

Gds 3

8C N a

( 2 9 , 0 0 0 ) (1 .5 ) ( 8 )



 3 .3 4 4 N

3

8 ( 9 .3 3 3 ) (1 6 )

and  m ax 

8DKsP

8 (1 4 ) (1 .0 6 6 ) ( 3 .3 4 4 )



d

3



670 3 7 .6 5

 (1 .5 )

3

 3 7 .6 5 M P a

Then n 

(c)

s hf



8 3 .5

 a ll  m ax

 0 .2 2 9 ,

hf D

 1 7 .8



35 14

 2 .5

From Fig. 14.10  No buckling.

230

SOLUTION (14.16) ( a ) Pm 

42 2

4 C 1 4C4

Kw  a



m

 3 kN

Kw

Pa

Ks

Pm

42 2

Pa 



0 .6 1 5 C

 1.3 1 1



1 . 311 1 . 123

1 3

 1 kN

C 

Ks  1

15 3

 5

 1.1 2 3

0 .6 1 5 C

 0 . 389

Equation (14.24), with replacing S u s by S y s : m 

5 0 0 1 .3 ( 0 .3 8 9 )( 2  5 0 0  2 8 0 )

 1 9 2 .3 M P a 1

280

and d

2

8 Pm C

 Ks

3

8 ( 3  1 0 )( 5 )

 1 .1 2 3

 m

6

 (1 9 2 .3  1 0 )

 s  1 . 10

( b ) D  14 . 94 ( 5 )  74 . 7 mm N



a

dG

hs  (N

(c)

s h

f

3

8C k

a



3

1 4 .9 4 ( 7 9  1 0 )

h

f

D

mm

 48 . 89 mm

4000 90

 1 3.1 1

3

8( 5 ) ( 90 )

 2 ) d  225 . 7 mm

 0 .1 8 ,

d  1 4 .9 4

,

 3 .6 8

h f  274 . 6 mm

 Spring is safe (Curve A, Fig.14.10)

Also fn 

356000 d 2

D N

356 , 620 ( 14 . 94 )



2

( 74 . 7 ) ( 13 . 11 )

a

 72 . 8 cps  4 , 370

cpm

SOLUTION (14.17) From Eq. (14.20): S e s '  4 6 5 M P a ,

 P  (400  0) 2  200 N

k  P   200 10  20 N m m

By Eq. (14.8),  m a x 

8 Pm a x D

d

Kw;

3

465 

8 ( 4 0 0 )( 4 0 )

d

3

(1 .3 ) .

Solving d  4 .8 5 m m

Equation (14.11): k  d G 8 D N a or 4

Na 

4

d G 3

8D k



3

4

( 4 .8 5 ) ( 7 9 , 0 0 0 ) 3

8 ( 40 ) ( 20 )

 4 .2 7

Crash allowance =15 %  s  1 .1 5 42000  2 3 m m h s  ( N a  3) d  ( 4 .2 7  3)( 4 .8 5 )  3 5 .2 6 m m h f  3 5 .2 6  2 3  5 8 .2 6 m m

231

SOLUTION (14.18) From Eq. (14.20): S e s '  3 1 0 M P a k  P   200 10  20 N m m

From Eq. (14.8): 8 Pm a x D

 m ax 

310 

Kw;

3

d

8 ( 4 0 0 )( 4 0 )

d

3

(1 .3 )

Solving d  5 .5 5 m m

Equation (14.11): k  d G 8 D N a or 4

4

Na 

4

( 5 .5 5 ) ( 7 9 , 0 0 0 )



d G 3

8D k

3

3

8 ( 40 ) ( 20 )

 7 .3 2

Crash allowance =8 %  s  1 .0 8 42000  2 1 .6 m m h s  ( N a  3) d  ( 7 .3 2  3)(5 .5 5 )  5 7 .2 8 m m h f  5 7 .2 8  2 1 .6  7 8 .8 8 m m

SOLUTION (14.19) Refer to Solution of Prob. 14.15. ( a ) We now have 4 C 1 4C 4

Kw 



0 .6 1 5 C

Pm a x  Pm in

Pa 

14  4 2



2

4 ( 9 .3 3 3 )  1



4 ( 9 .3 3 3 )  4



 5 N,

0 .6 1 5 9 .3 3 3

Pm 

 1 .1 5 6 14  4 2

 9 N

From Eq. (14.8): 8CK

a  Pm

m a(

(b) n 

Pa

S ys

Pa

2



8 ( 9 .3 3 3 ) (1 .1 5 6 ) ( 5 )

 (1 .5 )

2

 6 1 .0 5 M P a

)  6 1 .0 5 ( 95 )  1 0 9 .9 M P a



 a  m

w

d

 3 .9 2

670 6 1 .0 5  1 0 9 .9

( c ) From Table 14.3 the modified endurance limit is S e s '  0 .2 2 S u  0 .2 2 (1 4 8 9 )  3 2 7 .6 M P a

Thus S es '

n 

a



3 2 7 .6 6 1 .0 5

 5 .3 7

Pm 

180  30 2

SOLUTION (14.20) ( a ) C  15 3  5 Kw  a m



4 C 1 4C 4

Kw

Pa

Ks

Pm

 

0 . 615 C

 1 . 311

 105

Pa 

N

Ks  1

0 . 615 C

180  30 2

 75 N

 1 . 123

 0 . 834

1 . 311 75 1 . 123 105

Thus 

m

 K

8 Pm C s

d

2

 1 . 123

8 ( 105 )( 5 )

 ( 3  10

3

)

2

 166 . 8 MPa

 a  0 . 834 (166 . 8 )  139 . 1 MPa

(CONT.)

232

14.20 (CONT.) Table 14.2 and Eq.(14.12): S u  Ad

b

 2060 ( 3

 0 . 163

Table 14.3: S es  0 . 23 S u  396 '

)  1 , 722

MPa

Equation (7.5a): S us  0 . 67 S u  1,154

MPa

Equation (14.25) results in 1 ,1 5 4 ( 3 9 6 )

n 

( b ) hs  ( N a  2 ) d  7 2 m m ,  s  1 .1 0

(c)

fn 

(d)

h

s

 1.3 8

1 3 9 .1 ( 2  1 ,1 5 4  3 9 6 )  1 6 6 . 8  3 9 6

k 

 1 8 .3 8 m m ,

180 1 0 .7 7

1 356 , 620 d 2 2 D Na

 0 .2 ,



356 , 620 ( 3 )

h

 6 . 03

f

D

f

 108

2

2 ( 15 ) ( 22 )

dG 3

8C N a



3

3 ( 7 9 1 0 ) 3

8 (5 ) ( 22 )

 1 0 .7 7 N m m

h f  7 2  1 8 .3 8  9 0 .4

mm

cps  6 , 480

(for fixed-free ends)

cpm

 Buckling will occur (Curve B, Fig.14.10)

SOLUTION (14.21) D  C d  8 (5 )  4 0 m m Kw 

4 C 1 4C4

m  Ks



0 .6 1 5 C

8 Pm C

 d

0 .6 1 5 8

 1 .0 7 7

 1.1 8 4 8 ( 5 0 0 )( 8 )

 1 .0 7 7

2

Ks 1

 (5)

2

 4 3 8 .8 M P a

Table 14.3 and Eq.(14.12): Su  Ad

b

 2 0 6 0 (5

 0 .1 6 3

)  1585 M Pa

Equation (7.5a): S u s  0 .6 7 (1 5 8 5 )  1 0 6 2 M P a Table 14.3: S e s  0 .2 3 (1 5 8 5 )  3 6 4 .6 M P a '

Equation (14.23) gives a 

1 2

( 3 6 4 .6 )(1 0 6 2 1 .2  4 3 8 .8 ) 1062  (

1 2

)( 3 6 4 .6 )

 9 2 .4 7 M P a

Thus Pa 

Ks

a

Kw m

Pm 

1 .0 7 7 9 2 .4 7 1 .1 8 4 4 3 8 .8

(5 0 0 )  9 5 .8 N

and Pm in  5 0 0  9 5 .8  4 0 4 .2 N Pm a x  5 0 0  9 5 .8  5 9 5 .8 N

233

MPa

SOLUTION (14.22) ( a ) C  24 5  4 . 8 4 C 1 4C4

Kw 



Pm 

 320

640 2

 1.3 2 5

0 .6 1 5 C

Pa 

N

Ks  1

0 .6 1 5 C

160 2

 80 N

 1.1 2 8

Table 14.2 and Eq.(14.12): S u  Ad

 0 . 163

 2060 ( 5

b

S es  0 . 23 S u  365 '

Table 14.3:

)  1 , 585

MPa

MPa

Equation (7.5a): S us  0 . 67 S u  1, 062

MPa

Therefore we obtain 

m

 K



a



8 Pm C s

K

w

Pa

K

s

Pm



8 ( 320 )( 4 . 8 )

 1 . 128

2

d



m

1 . 325 1 . 128

 ( 0 . 005 ) 80 320

 176 . 5 MPa

2

(176 . 5 )  51 . 83 MPa

Equation (14.25): n 

1 , 062 ( 365 ) 51 . 83 ( 2  1 , 062  365 )  176 . 5 ( 365 )

 2 . 49

( b ) Load of 160 N causes deflection of 72-65=7 mm. N

G d



a

8 PC



3

7 ( 7 9 , 0 0 0 )( 5 ) 8 (1 6 0 )( 5 )

 1 7 .3

3

SOLUTION (14.23) 90  20 2

( a ) Pa 

4 C 1 4C4

Kw  a m



 35 N

K

w

Pa

K

s

Pm



0 .6 1 5 C



1 . 253 1 . 103

90  20 2

Pm   1.2 5 3

 55 N

Ks  1

0 .6 1 5 C

 1.1 0 3

 0 . 723

35 55

Use Eq.(14.24) with replacing S u s by S y s . m 

Thus

5 6 0 1 .6 0 .7 2 3 ( 2  5 6 0  3 1 5 )

 1 2 2 .9 M P a 1

315

d

2

 K

8 Pm C

 m

s

 1 .1 0 3

8 ( 5 5 )( 6 ) 6

 (1 2 2 .9  1 0 )

,

d  2 .7 5 m m

( b ) D  d C  2 .7 5 ( 6 )  1 6 .5 m m k 

P 

Na 



90  20 0 .0 7 5  0 .0 6 5

dG 3

8C k



 7 kN m 3

2 .7 5 ( 2 9  1 0 ) 3

8(6) (7 )

 6 .6 ,

h s  8 .6 ( 2 .7 5 )  2 3 .7 m m ,

N t  6 .6  2  8 .6 h f  0 .0 7 5  1 .1 0 ( 7 02 00 0 )  7 8 .1 4 m m

 s  h f  h s  7 8 .1 4  2 3 .7  5 4 .4 m m

(c)

(d)

fn  s hf

3 5 6 ,6 2 0 d 2

D Na

 0 .7 ,



3 5 6 , 6 2 0 ( 2 .7 5 ) 2

(1 6 .5 ) ( 6 .6 )

hf D

 4 .7

 5 4 5 .8

cps  32, 748

cpm

 Spring is safe (Curve A, Fig.14.10)

234

SOLUTION (14.24) 4 C 1 4C4

(a) Kw 



 1.2 5 3

0 .6 1 5 C

Pa 

5 0 1 0 2

 20 N

a

K





m

w Pa

K s Pm

1 . 253 1 . 103

m 

Thus

Ks  1 5 0 1 0 2

Pm 

0 .6 1 5 C

 1.1 0 3

 30 N

 0 . 757

20 30

5 6 0 1 .6

 1 1 9 .3 M P a

0 .7 5 7 ( 2  5 6 0  3 1 5 )

1

315

Hence 2

d

8 Pm C

 K

 1 .1 0 3

 m

s

8 ( 3 0 )( 6 ) 6

 (1 1 9 .3  1 0 )

d  2 .0 6 m m

or

( b ) D  2 .0 6 ( 6 )  1 2 .3 6 m m 5 0 1 0 0 .1 2 5  0 .1 0 5

k 

P 



N



dG

a

3

2 . 06 ( 29  10 )



3

8C k

 2 kN m  17 . 29

3

8(6) (2)

N t  17 . 29  2  19 . 29 h s  1 9 .2 9 ( 2 .0 6 )  3 9 .7 4 m m h f  1 2 5  1 .1 0 ( 2 10 00 0 )  1 2 5 .0 0 6 m m

 s  h f  h s  1 2 5 .0 0 6  3 9 .7 4  8 5 .2 7 m m

(c)

(d)

fn  s

3 5 6 , 6 2 0 ( 2 .0 6 )

hf

 0 .6 8 ,

hf

 2 7 8 .1 c p s  1 6 , 6 8 6 c p m

2

(1 2 .3 6 ) (1 7 .2 9 )

 1 0 .1

D

 Spring will buckle (Curve A, Fig.14.10)

SOLUTION (14.25) ( a ) Pm  400 Kw 

Pa  100

N

4 C 1 4C4



a 

K

1

s

0 . 615 C

 1.2 5 3

0 .6 1 5 C

m  K s

N

8 Pm C

d

K

w

Pa

K

s

Pm

2

 1.1 0 3

m 

1.2 5 3 1 .1 0 3

8 ( 4 0 0 )( 6 )

1

( 4 )(

6,741 d

2

6,741



2

 (d )

d

) 

2

1,9 1 4 d

2

Equation (14.23) leads 1,9 1 4 d

2

(720 

330 2

) 

330 2

720 1. 6

(



6,741 d

2

)

or 6 , 438 d

2

 450 

6 , 741 d

2

,

d  5 . 41 mm

( b ) D  5 . 41 ( 6 )  32 . 46 mm N

a



dG  8 PC

3



5 .4 1( 7 9 , 0 0 0 )( 8 ) 8 ( 5 0 0  3 0 0 )( 6 )

3

 9 .8 9

235

 1 . 103

SOLUTION (14.26) ( a ) Pm  470

Pa  130

N,

C  30 6  5

N,

Table 14.2 and Eq.(14.12): S u  Ad

b

 0 . 201

 1510 ( 6

)  1053

MPa

Table 14.3: S

 0 . 42 (1053 )  442

ys

Ks  1 P2  P1

We have k  N





a

 1G d 8 P1 C

 K

m

a 

3

 2 1

d

Kw

Pa

Ks

Pm



600  340 13

1 7 ( 2 9 0 0 0 )( 6 )



8 ( 3 4 0 )( 5 )

8 Pm C s

 1.1 2 3 ,

0 .6 1 5 C

3

m 

1 .3 1 1 1 .1 2 3

'

Kw 

4 C 1 4C4



0 .6 1 5 C

1 

 20 N mm ,

340 20

MPa

 1.3 1 1  17 mm

 8 .7 8 ( 470 )( 5 )

 1 . 123

2

S es  0 . 21 (1053 )  221

MPa ,

 (6)

2

 186 . 7 MPa

( 14 37 )(1 8 6 .7 )  6 0 .2 9

M Pa

It follows that n 

(b)

hs  ( N k 



s

3

a

 1 . 20

fn 

(d)

hf

6 ( 79000 )

(Eq.14.25)

 54 . 48 N mm

3

8 ( 5 ) ( 8 .7 )

 13 . 22 mm ,

600 54 . 48

h

356 , 620 ( 6 )



1 356 , 620 d 2 2 D Na

 0 .1 7 ,

 1.2

 2 ) d  (10 . 7 ) 6  64 . 2 mm 

dG 8C N

(c)

s

a

442( 221) 6 0 .2 9 ( 2  4 4 2  2 2 1 ) 1 8 6 .7 ( 2 2 1 )

2

2 ( 30 ) ( 8 . 7 )

 2 .6

f

D

h f  64 . 2  13 . 22  77 . 42 mm

 136 . 6 cps  8 ,196

cpm

(fixed-free ends)

 Spring is safe (Curve B, Fig.14.10)

SOLUTION (14.27) Refer to Example 14.6. The critical torsional shear stress in the hook is from Eq. (14.34b): B  (

rm ri

)

8 PD

d

3

 S ys

where S y s  0 .4 0 S u  0 .4 0 (1 2 5 6 )  5 0 2 .4 M P a

rm  3 .7 5 m m D  7 .5 m m

ri  3 .7 5  ( 2 .5 2 )  2 .5 m m d  2 .5 m m

Thus, 5 0 2 .4  ( 32.7.55 )

8 P (1 2 .5 )

 ( 2 .5 )

3

,

P  1 6 4 .4 N

The larger load is PA  2 3 2 .1 N , as found in Part (b) of Example 14.6. This shows that failure will occur first by shear stress in the hook.

236

SOLUTION (14.28) k  4 d1 3 D1

Gd

4

Since k 1  k 2 :

3

8D Na

d



4 2

3

D2

d 2  d1 4

,

3 D2

4

3

D1

 3 ( 81 ) , 4

d 2  14 . 27 mm

3

SOLUTION (14.29) C 

4 C 1 4C 4

Kw  a m



 10

5 0 .5

K

w

Pa

K

s

Pm



K

1

s

0 .6 1 5 C

 1 . 0615

0 . 615 C

 1 .1 4 5,

Pm  3 N ,

m  Ks

 0 .7 1 9

8 Pm C

d

2

Pa  2 N

 1 .0 6 1 5

8 ( 3 ) (1 0 )

 ( 0 .5 )

2

 3 0 5 .6 M P a

 a  0 .7 1 9 (3 0 5 .6 )  2 1 9 .7 M P a

Table 14.2 and Eq.(14.12): Su  Ad

 2 0 6 0 ( 0 .5

b

 0 .1 6 3

)  2306

M Pa

Table 14.3: S e s  0 .2 3 S u  5 3 0 .4 M P a

Equation (7.5a): S u s  0 .6 7 S u  1 5 4 5 M P a

'

Equation (14.25) is therefore n 

1545 ( 530 . 4 )

 1 . 13

219 . 7 ( 2  1545  530 . 4 )  305 . 6 ( 530 . 4 )

SOLUTION (14.30) ( a ) We have C  D d  2 .4 0 .6  4 . So, 4 C 1 4C 4

Kw 



0 .6 1 5 C



4 ( 4 ) 1



4(4)4

0 .6 1 5 4

 1 .2 5  0 .1 5 3 7 5  1 .4 0 3 7 5

From Eq. (14.8):  m ax  K w

8 PD

d

3

8 ( 6 )( 2 .4 )(1 0

 1 .4 0 3 7 5

 ( 0 .6 )(1 0

3

9

)

)

 2 3 8 .3 M P a

( b ) Use Eq.(14.34). Here ( ri ) A  ( rm ) A  d 2  1 .2  0 .3  0 .9 m m . Hence (

A

)c 

3

1 .2 1 6 ( 6 )( 2 .4  1 0 ) 9 0 .9  ( 0 .6 )(1 0 )



4 (5) 2

 ( 0 .6 ) (1 0

6

)

 4 5 2 .7  1 7 .6 8  4 7 0 .3 8 M P a

From Eq. (14.12) and Table 14.2 for music wire: Su  Ad

 2 0 6 0 ( 0 .6 )

b

 0 .1 6 3

 2239 M Pa

We also have S y  S y s 0 .5 7 7  ( 0 .4 0 S u 0 .5 7 7  0 .6 9 3 S u  0 .6 9 3 ( 2 2 3 9 )  1, 5 5 2 M P a

Thus n 

Sy (

A

)c



1552 4 7 0 .3 8

 3 .3

SOLUTION (14.31) ( a ) I  bh  

ML EI

Hence

3

12  (1 . 2 ) L 

,

N

a



L

D

 EI M



4



12  0 . 1728 ( 16  2  )( 207  10

14 ,983

 (1 8 )

240

mm 3

)( 0 . 1728 )

4

,

C  D d  18 1 . 2  15

 14 , 983

mm

 265

(CONT.)

237

14.31 (CONT.) ( b ) P a  1 5 (1 6 )  2 4 0 N  m m Ki 

2

3 C  C  0 .8 3 C ( C 1)

i  Ki

 1 .0 4 6 ,

6 Pa bh

2

 1 .0 4 6

6 ( 240 ) (1 .2 )

3

 8 7 1 .7 M P a

SOLUTION (14.32) The spring index is C  D d  1 5 1 .5  1 0 . From Eq. (14.36): 2

4 C  C 1 4 C ( C 1 )

Ki 



2

4 (1 0 )  1 0  1

 1 .0 8 1

4 (1 0 )(1 0  1 )

Equation (14.12) and Table 14.2 for hard-drawn wire: Su  Ad

 1 5 1 0 (1 .5 )

b

 0 .2 0 1

 1392 M Pa

S y  S y  S y s 0 .5 7 7  ( 0 .4 2 0 .5 7 7 ) S u  1 0 1 3 M P a  1 0 1 3 N m m

From Eq. (14.39): 3

M 

 d Sy

3

 (1 .5 ) (1 0 1 3 )



32 K i

3 2 (1 .0 8 1 )

 3 1 0 .5 N  m m

We have I d

6 4   (1 .5 )

4

4

6 4  0 .2 4 9 m m

4

Equation (14.41), with  r a d  1 .2 , is thus M lw

1 .2 



EI

3 1 0 .5 [  (1 5 ) N a ] 3

( 2 1 0  1 0 ) ( 0 .2 4 9 )

N a  4 .2 8 8

,

SOLUTION (14.33) From Eq.(14.12) and Table 14.2 for oil-tempered wire: Su  Ad

b

 1610(2)

 0 .1 9 3

 1 4 0 8 .4 M P a

( a ) Equation (7.5b) and Table 14.3: S y  S y s 0 .5 7 7  0 .4 5 S u 0 .5 7 7  0 .7 8 S u  0 .7 8 (1 4 0 8 .4 )  1 0 9 8 .6 M P a

Spring index: C  D d  1 2 .5 2  6 .2 5 . Equation (14.36) : 4 ( 6 .2 5 )  6 .2 5  1

Ki 

4 ( 6 .2 5 )( 6 .2 6  1 )

Equation (14.39) with  i 

32 Pa

d

3

a ll

 0 .1 3 5  S y n  1 0 9 8 .6 1 .8  6 1 0 .3 M P a :

6 1 0 .3 (1 0 )  6

K i;

3 2 P ( 0 .0 2 8 )

 ( 0 .0 0 2 )

3

( 0 .1 3 5 )

Solving, P  1 2 6 .8 N ( b ) L w   D N a   (1 2 .5 )(3 .5 )  1 3 7 .4 m m I d

4

64   (2)

4

6 4  0 .7 8 5 4 m m

4

Equation (14.41), with M  P a  1 2 6 .8 ( 0 .0 2 8 )  3 .5 5 N  m Hence  rad 

M lw EI



( 3 .5 5 ) ( 0 .1 3 7 4 ) 9

2 0 0  1 0 ( 0 .7 8 5 4  1 0

12

)

 3 .1 1 r a d

238

2

SOLUTION (14.34) ( a ) We have  a ll   m a x n  8 0 0 2 .5  3 2 0 M P a From Eq. (14.42): 

a ll



6 PL nbh

3 2 0 (1 0 )  6

;

2

3

6 ( 4 0  1 0 )( 0 .7 ) 8 ( 6 )( 0 .0 2 2 )

b  136 m m

,

2

( b ) Eq. (14.43):   (1   ) 2

( hl )  (1  0 .3 ) 3

6P Enb

3

6 ( 4 0 1 0 )

2

9

2 0 0 (1 0 )( 8 )( 0 .1 3 6 )

( 0 0.0.72 2 )

3

 0 .0 3 2 3 m  3 2 .3 m m

SOLUTION (14.35) ( a ) C  0 .6 0 .0 8  7 .5 Table 14.2 and Eq.(14.12): Su  Ad

S ys

Table 14.3: S y 

 0 .1 9 3

 1610(2

b

0 .4 5 S u



0 .5 7 7

 1 0 9 8 .4 M P a

0 .5 7 7 2

4 C  C 1 4 C ( C 1 )

Equation (14.36): K i 

)  1 4 0 8 .4 M P a

 1 . 11

Equation (14.39) is therefore 3

 ( 2 ) (1 .0 9 8 4 ) 1 .4

M  Pa 

3 2 (1 .1 1 )

( b ) L   (1 5 ) 6  2 8 2 .7 m m ,  

ML EI

0 .5 5 5 ( 0 .2 8 2 7 )



9

( 2 0 0  1 0 )( 0 .7 8 5 4  1 0

12

)

 0 .5 5 5 N  m

I 

4

d 64

 0 .7 8 5 4 m m

 0 .9 9 9 ra d  5 7 .3

4

o

SOLUTION (14.36) ( a ) P m  700 m 

6 Pm L bh

6 ( 7 0 0 )( 0 . 4 )



2



Also

P a  400

N



m



2

40 h ( h )

h



1

'

m

( Se K

f

a m



Pa Pm



4 7

3

1 4 0 0 1 .2



Su

a

 

42

Su n



N

(

4 7

)

1400

)(

 3 6 0 .1 M P a ) 1

5 0 0 1 .4

Thus we obtain 360 . 1 (10

) 

42 h

3

,

h  4 . 89 mm

b  195 . 6 mm

Hence (b) k 

6

Ebh 3

3

3 L ( 1 

2

)



3

( 207  10 )( 195 . 6 )( 4 . 89 ) 3

3 ( 400 ) ( 0 . 91 )

3

 27 . 1 N mm

End of Chapter 14

239

CHAPTER 15

POWER SCREWS, FASTENERS, AND CONNECTIONS

SOLUTION (15.1) ( a ) By Fig.15.4b: Thus

thread depth=7.5 mm,

thread width=7.5 mm

d m  75  7 . 5  67 . 5 mm ,

( b ) By Fig.15.4a: Hence

d r  75  15  60 mm ,

thread depth=7.5 mm,

d m  67 . 5 mm ,

L  p  15 mm

thread width at pitch line=7.5 mm

d r  60 mm ,

L  p  15 mm

SOLUTION (15.2)  4 , p  6 . 35

25 . 4 p

Table 15.3:

( a ) L  n p  2 ( 6 .3 5 )  1 2 .7 m m p

dm  d  ta n  

2

Fig.15.4a:   1 4 .5

 3 8 .1  3 .1 7 5  3 4 .9 2 5 m m

L

 dm



1 2 .7

 ( 3 4 .9 2 5 )

  6 .6

;

o

ta n  n  c o s  ta n   c o s 6 .6 (ta n 1 4 .5 );

 n  1 4 .4 1

o

( b ) For starting, we have f  Tu   Td 

(c) e  (d) F 

Wd

f  cos  n tan 

m

cos  n  f tan 

2



Wf

4 3

( 0 .1 )  0 .1 3 ,

o

o

o

(c o s 1 4 .4 1 )  ( 0 .1 3 ) ta n 6 .6

7 .5 ( 3 4 .9 2 5 )

0 .1 3  (c o s 1 4 .4 1 ) ta n 6 .6

a



5 4 .2 0 .1 9



7 .5 ( 0 .1 1 )( 5 0 .8 )



7 .5 ( 0 .1 1 ) ( 5 0 .8 )

o

o

(c o s 1 4 .4 1 )  ( 0 .1 3 ) ta n 6 .6

cos  n  f cot 

Tu

o

o

c o s  n  f ta n 

o

o

o

o

o

c o s 1 4 .4 1  ( 0 .1 3 ) ta n 6 .6



4 3

( 0 .0 8 )  0 .1 1

2

2

2

fc 

o

cd c

0 .1 3  (c o s 1 4 .4 1 ) ta n 6 .6

7 .5 ( 3 4 .9 2 5 )

o

c o s 1 4 .4 1  ( 0 .1 3 ) c o t 6 .6

2

2

 5 4 .2 N  m  2 3 .3 N  m

 0 .4 6  4 6 %

 2 8 5 .3 N

SOLUTION (15.3) f  cos  n tan 

T o  0  d m [ cos 

Solving, ta n     1 2 .5 or Then, Eq.(15.12):

n

 f tan 

]  d c fc

f  fc cos  n ( d c d m ) cos  n  f fc ( d c d m )

dm [

o

0 .1  0 .0 8 (c o s 1 4 .4 1 )(1 .4 5 4 5 ) o

c o s 1 4 .4 1  ( 0 .1 )( 0 .0 8 )(1 .4 5 4 5 )

o

d m ta n 

e 



(Eq.15.11)

f  c o s  n ta n  c o s  n  f ta n 

o

3 4 .9 2 5 (ta n 1 2 .5 )

 ] d c fc

o

3 4 .9 2 5 [

o

o

c o s 1 4 .4 1  0 .1 (ta n 1 2 .5 )

240

 0 .4 9 4  4 9 .4 %

o

0 .1  (c o s 1 4 .4 1 )(ta n 1 2 .5 )

]  5 0 .8 ( 0 .0 8 )

SOLUTION (15.4) d m  32  2  30 mm ,

  ta n

1

1

 ta n

L

d m

Wd

Tu 

 4 .8 5

8

 ( 30 )

f  tan 

m

1  f tan 

2

 n  0

L  2 ( 4 )  8 mm ,

Wf



cdc

2

o

6 ( 30 )



2

[

0 . 1  tan 4 . 85 1  0 . 1 tan 4 . 85

o o

]

6 ( 0 . 15 ) 50 2

 39 . 28 N  m

We have n 



V L

40 8

 5 rps  300

rpm

Thus kW 



Tn 9549

 1 . 23

39 . 28 ( 300 ) 9549

SOLUTION (15.5)    n  0,

c o s  n  1,

L  25 m m ,

V  0 .1 5  6 0  9 m m in T 

9549 kW n



9549 ( 4 ) 360

n 



V L

9 0 .0 2 5

ta n  

 360

L

 dm



25

 ( 45 )

rp m

 1 0 6 .1 N  m

Hence, by Eq.(15.9): Tu 

Wd

f  tan 

m

1  f tan 

2

; 106 . 1 

10 ( 45 )

f  0 . 1768

2

1  f ( 0 . 1768 )

Solving f  0 . 272

SOLUTION (15.6) N  2,

( a ) Table 15.3:

p 

2 5 .4 2

 1 2 .7

m m th re a d ,

V  0 .0 1 m p s  0 .6 m m in ,

( b ) We have

fc  0,

  ta n

dm  d 

1

p

 ta n

 dm

1

p 2

n 

 70 

1 2 .7 2

[  1( 623.7.6 ) ]  3 .6 4

0 .6 0 .0 1 2 7

n  0

 4 7 .2 rp m

 6 3 .6 m m o

Then, we obtain Tu 

d mW

kW 

2

f  c o s  n ta n 

[ cos 

Tu n 9549



n

 f ta n 

]

1 7 1 5 ( 4 7 .2 ) 9549

6 3 .6 ( 2 5 0 ) 2

[

0 .1 5  (1 ) ta n 3 .6 4

o

1  ( 0 .1 5 ) ta n 3 .6 4

o

 8 .4 8

Hence ( k W ) req 

8 .4 8 0 .8 5

 9 .9 8

241

]  1 .7 1 5 k N  m

 0 .1 7 6 8

SOLUTION (15.7) ( a ) From Fig. 15.4b, d  dm 

P 4

 24 

 2 5 .5 m m

6 4

Equation (15.6), with    n  0 , Wdm

T 

f  dm  L

(

2

 d m  fL

100 ( 24 )



2

)

c o s  n  1, ta n   L  d m ,

l  p , becomes:

W fc d c 2

( 0 .0 1 )  ( 2 4 )  6

[  ( 2 4 )  ( 0 .1 1 )( 6 ) ] 

1 0 0 ( 0 .1 1 )( 3 6 ) 2

 2 2 9 .5  1 9 8  4 2 7 .5 N  m

( b ) The screw is self locking, if: f 



L

 dm

6

 ( 24 )

 0 .0 8

SOLUTION (15.8) ( a ) Because of the triple-threaded screw, L  3 p  3 (8 )  2 4 m m

From Fig. 15.4a: thread depth  0 .5 p  0 .5 (8 )  4 m m d m  d  0 .5 p  5 0  4  4 6 m m

From Eq. (15.2),   ta n

1

L

 dm

 ta n

1

( 4264 )  9 .4 3

o

( b ) For starting, we have fc 

( 0 .1 2 )  0 .1 6

4 3

f 

4 3

( 0 .1 3)  0 .1 7

From Eq. (15.8):  n  ta n

1

(ta n  c o s  )  ta n

1

(ta n 1 4 .5 c o s 9 .4 3 )  1 4 .3 1 o

o

o

By Eq. (15.7): Td  

Wdm

f  c o s  n ta n 

2

c o s  n  f ta n 

15 ( 46 ) 2

W fc d c



2

o

0 .1 7  c o s 1 4 .3 1 t a n 9 .4 3

o

o

o

c o s 1 4 .3 1  ( 0 .1 7 ) ta n 9 .4 3



1 5 ( 0 .1 6 ) ( 6 8 ) 2

 3 4 5 ( 0 .0 0 9 1)  8 1 .6  8 4 .7 N  m

SOLUTION (15.9) ( a ) We have n 

0 .0 2 ( 6 0 )( m m in )

 5 0 rp m

0 .0 2 4 ( m r e v )

From Eq. (15.6), with f c  0 .1 2 and f  0 .1 3 : Tu  

Wdm

f  c o s  n ta n 

2

c o s  n  f ta n 

W fc d c



2 o

o

1 5 ( 4 6 ) ( 0 .1 2 )  c o s 1 4 .3 1 ta n 9 .4 3 2

o

c o s 1 4 .3 1  ( 0 .1 3 ) ta n 9 .4 3

o



1 5 ( 0 .1 2 )( 6 8 ) 2

 3 4 5 ( 0 .2 9 6 5 )  6 1 .2

 1 6 3 .5 N  m

(CONT.)

242

15.9 (CONT.) Power: ( h p ) out  ( h p ) in 

FV 7 4 5 .7 Tn 7121



1 5 0 0 0 ( 0 .0 2 )



 0 .4 0 2 h p

7 4 5 .7

1 6 9 .4 ( 5 0 ) 7121

 1 .1 8 9 h p

Efficiency is thus e 

 0 .3 4  3 4 %

0 .4 0 2 1 .1 8 9

( b ) From Eq. (15.10): f  c o s  n ta n   c o s 1 4 .3 1 ta n 9 .4 3 o

o

 0 .1 6 1

Since f  0 .1 3  0 .1 6 1  the screw is not self-locking and overhauling

SOLUTION (15.10)    n  0, e 

or

ta n

c o s  n  1.

1  f ta n 

1  0 .1 2 ta n  1  0 .1 2 c o t 

0 .7 0 

;

1 f c o t 

 [

1  0 .1 2 ta n  ta n   0 .1 2

] ta n 

  2 .5 ta n   0 .7 0  0

2

Solving tan   0 . 3213 or 2 . 1783 ;   17 . 81

o

or 65 . 34

o

Thus Wd

T0 

m

2

 f  tan 

[ 1 f

tan 

]

50 ( 30 )

o

[  0 . 12  tan 17 . 81o ]  145 . 3 N  m 1  0 . 12 tan 17 . 8

2

SOLUTION (15.11)    n  0, ta n  

p

 dm

cos  n  1

p   d m ta n    ( 4 6 .8 ) ta n 

,

V  0 .2 ( 6 0 )  1 2 m m in  n p

(n in rp m )

(1) (2)

From Eqs.(1) and (2): n 

V p



12

 ( 0 . 0468 ) tan 

We have the torque expressed as

and

Tu 

9549 kW n

Tu 

Wd 2

m



9549 ( 3 . 75 )  ( 0 . 0468 ) tan 

f  tan  1  f tan 

12

 438 . 7 tan 

 438 . 7 tan 

Thus  438 . 7 tan   12 ( 23 . 4 )[ 10. 015. 15 tan ] tan 

or

438 . 7 tan   65 . 8 tan

2

  42 . 12  280 . 8 tan 

or

157 . 9 tan   65 . 8 tan

2

  42 . 12

or

tan

2

  2 . 4 tan   0 . 64  0

(CONT.)

243

15.11 (CONT.) Solving ta n  1 , 2 

2

b

b  4 ac



2a

2 .4  1 .7 9 2

Use ta n   0 .3 0 5 . Then, Eq.(1) gives p  4 6 .8  ( 0 .3 0 5 )  4 4 .8 4 m m

SOLUTION (15.12) Table 15.1 and Fig.15.3: A t  3 5 3 m m , 2

h  d  d r  3 .6 8 m m , b 

(a)   (b) b 

P A

 2 h ta n 3 0

3 8

3

6 0 (1 0 )



3 5 3 (1 0

P

 d m hne

6

 170

)

ne 

;

p  3 mm,

dm 

d dr 2



2 4  2 0 .3 2 2

 0 .3 7 5  2 (3 .6 8 ) ta n 3 0

o

d r  d - 1 .2 2 7 p = 2 0 .3 2 m m

o

 2 2 .1 6 m m

 4 .6 2 m m

M Pa



P

 d m h

b

3

6 0 (1 0 )

 ( 2 2 .1 6 ) ( 3 .6 8 ) 7 0

 3 .3 4 6

th r e a d engaged

Minimum nut length is thus L n  p n e  (3 )(3 .3 4 6 )  1 0 .0 4 m m e

 

( c ) Screw:

 

Nut:

3P 2  d r neb

3P 2  d neb



p

8 2

3

3 ( 6 0 1 0 )



2  ( 2 2 .1 6 )( 4 .6 2 )(1 0

6

)( 3 .3 4 6 )

3

3 ( 6 0 1 0 ) 2  ( 2 4 )( 4 .6 2 )(1 0

6

 8 3 .6 M P a

 7 7 .2 M P a

)( 3 .3 4 6 )

SOLUTION (15.13) d m  46 m m ,

(a)   (b) b 

W A

h 



2

W 2

 dr

W

 d m h ne

;

4





 4 mm, 3

4 (1 5  1 0 )

 ( 0 .0 4 2 )

ne 

2

d r  d  p  50  8  42 m m ,

 1 0 .8 M P a

W

 b d m h



3

1 5 (1 0 ) 6

1 0 (1 0 )  ( 0 .0 4 6 )( 0 .0 0 4 )

 2 .6 th re a d engaged

L n  p n e  8 ( 2 .6 )  2 0 .8

Thus, minimum length of nut:

e

( c ) Screw: Nut:

   

3W 2  d r neb

3W 2  d neb





b 

3

3 (1 5  1 0 ) 2  ( 0 .0 4 2 ) ( 2 .6 ) ( 0 .0 0 4 ) 3

3 (1 5  1 0 ) 2  ( 0 .0 5 ) ( 2 .6 ) ( 0 .0 0 4 )

 1 6 .4 M P a

 1 3 .8 M P a

244

mm

p 2



8 2

 4 mm

SOLUTION (15.14) kb 

kp 

2

d E s

0 . 58  50  0 . 5  15 0 . 58  50  2 . 5  15

kb



kb  k

 3.5 3 4 (1 0

4 ( 0 .0 5 )

0 . 58  ( E s 3 )( 0 . 015 ) 2 ln[ 5

C 

2

 ( 0 .0 1 5 ) E s



4L

 4 . 512 (10

3

)E s

(Eq.15.31a)

)E s

(Eq.15.34)

]

 0 . 439

3 . 534 3 . 534  4 . 512

p

3

We have the preload: Fi 

T 0 .2 d



72 0 . 2 ( 0 . 015 )

 24 kN

Thus F b  C P  F i  0;

0 .4 3 9 P  2 4 ,

P  5 4 .6 7

kN

SOLUTION (15.15) At  3 5 3 m m , 2

Table 15.1:

Table 15.4: S u  5 2 0 M P a We have Pm  6 0 k N ,

C r  0 .8 7

Table 7.3: Table 15.6: K

f

Pa  2 0 k N ,

 3 n  1 .4

Equation (15.39) gives S e  ( 0 .8 7 )( 13 )( 0 .4 5  5 2 0 )  6 7 .8 6

( a ) kb 

2

 d Es

2

 ( 0 .0 2 4 ) E s

 0 .0 0 9 E s

4 ( 0 .0 5 )

0 .5 8  ( E s 3 )( 0 .0 2 4 )

kp 

2 ln [ 5

C 



4L

0 .5 8 ( 0 .0 5 )  0 .5 ( 0 .0 2 4 ) 0 .5 8 ( 0 .0 5 )  2 .5 ( 0 .0 2 4 )

kb



kb  k p

0 .0 0 9 0 .0 0 9  0 .0 0 8 7

M Pa

 0 .0 0 8 7 E s ]

 0 .5 0 8

F b a  C Pa  0 .5 0 8 ( 2 0 )  1 0 .1 6

 ba 

kN ,

1 0 ,1 7 0 353

Therefore we obtain Su n

or

520 1 .4

 



bm

bm





Su Se



520 67 . 86

ba

( 28 . 8 ), 

bm

 150 . 74 MPa

F b m   b m A t  1 5 0 .7 4 (3 5 3)  5 3 .2 1 k N

Also

F bm  CP m  F i ;

53 . 21  0 . 509 ( 60 )  F i

or F i  2 2 .7 k N

( b ) T  K d F i  0 .2 ( 2 0 )( 2 2 .7 )  9 0 .8 N  m

245

 2 8 .8 M P a

SOLUTION (15.16) Table 15.1: A t  245 mm

2

,

K

 3 . 8 (Table 15.6),

f

C r  0 .8 9 (Table 7.3),

Ct  1

Using Eq.(15.39): S e  ( 0 . 89 )( 1)(

1 3 .8

)( 0 . 45  750 )  79 . 05 MPa

( a ) F bm  160 ( 245 )  39 . 2 kN kb  k

p

2

 d Es 4L

2

 ( 0 . 02 ) E s

0 . 58 ( 50 )  0 . 5 ( 20 )

2 ln[ 5

0 . 58 ( 50 )  2 . 5 ( 20 )

kb



kb  k p

6 .2 8 3 6 .2 8 3 6 .7 2 2

3

 6 . 283 (10

4 ( 0 . 05 )

0 . 58  ( E s 3 )( 0 . 02 )



C 



 6 . 722 ( 10

)E s

3

)E s

]

 0 .4 8 3

Hence, we obtain F b m  C Pm  F i  0 . 4 8 3 P m  2 5

or

39 . 2  0 . 483 Pm  25 , Pm  29 . 4 kN

and S

y

n

  bm 

or



Also

F ba  CP a ;

ba

S

y

Se

 ba ;

620 2 .2

 15 . 53 MPa

and

 160 

620 7 9 .0 5

 ba

F ba  15 . 53 ( 245 )  3 . 8 kN

3 . 8  0 . 483 Pa ,

Pa  7 . 867

kN

Then Pmax  Pm  Pa  29 . 4  7 . 867  37 . 27 kN Pmin  Pm  Pa  29 . 4  7 . 867  21 . 53 kN

( b ) T  0 . 15 ( 20 )( 25 )  75 N  m SOLUTION (15.17) ( a ) From Eq. (15.23): Fb  C P  Fi  ( k

kb b

 4 kb

)5  4 .2  5 .2 k N

By Eq. (15.24): 4k

F P  (1  C ) P  F i  ( 5 k b )5  4 .2   0 .2 k N b

( b ) There is a compression (of- 0 .2 k N ) in parts. Thus they do not separate under 5 k N load. SOLUTION (15.18) ( a ) Each bolt supports P  1 1 .6 2  5 .8 k N . From Eqs. (15.23) and (15.24) Fb  C P  Fi  ( 3 k

kb b

kp

) ( 5 .8 )  F i  1 4 .5  F i 2 kb

F p  (1  C ) P  F i  ( 3 k

b

kp

) ( 5 .8 )  F i  2 .9  F i

(1) (2) (CONT.)

246

15.18 (CONT.) Joint separates when F p  0 . Equation (2) is then F p  2 .9  F i  0 ,

F i  2 .9 k N

( b ) Using Eq. (1): F b  1 .4 5  2 .9  4 .3 5 k N Fb

From Table 15.4: S p 

3 1 0 (1 0 )  6

;

At

4 ,3 5 0 At

,

A t  1 4 .0 3 m m

2

So, by Table 15.1, select: I S O 5  0 .8 steel bolt (with tensile stress area closest to A t  1 4 .0 3 m m .) 2

SOLUTION (15.19) ( a ) kb 

2

 d Es 4L

3

4 ( 0 .0 3 2 )

0 .5 8  E c d

kp 

2 ln [ 5

C 

2

 (1 8 ) ( 2 0 0  1 0 )



0 .5 8 L  0 .5 d 0 .5 8 L  2 .5 d

kb kb  k

 p

N m

0 .5 8  (1 6 5  1 0 )(1 8 ) 2 ln [ 5

1 . 59 1 . 59  3 . 49

9

6

 ]

 1 .5 9  1 0

0 .5 8 ( 0 .0 3 2 )  0 .5 ( 0 .0 1 8 ) 0 .5 8 ( 0 .0 3 2 )  2 .5 ( 0 .0 1 8 )

 3 .4 9  1 0

9

N m

]

 0 . 313

At  2 1 6 m m , 2

Tables 15.1 and 15.4:

S p  600 M Pa

F i  0 .9 S p A t  0 .9 ( 6 0 0 )( 2 1 6 )  1 1 6 .6 4 k N

Equation (15.20): Then

F b  C P  F i  0 .3 1 3( 860 )  1 1 6 .6 4  1 2 0 .8 k N

b 

(b)

Fb At



120800 216

 5 5 9 .3 M P a

T  0 .2 F i d  0 .2 (1 1 6 .6 4 )(1 8 )  4 1 9 .9 N  m

SOLUTION (15.20) Pm  Pa  1 0 k N ,

Su  830 M Pa ,

Table 15.6: K

f

 3,

Equation (7.11): C t  1  0 .0 0 3 2 ( 9 0 0  8 4 0 )  0 .8 1 Refer to Solution of Prob.15.19:

C  0 .3 1 3

At  2 1 6 m m

2

Equation (15.39): S e  ( 0 .8 4 )( 0 .8 1)( 13 )( 0 .4 5  8 3 0 )  8 4 .7 M P a Thus, Eq.(15.40) results in n 

( 8 3 0 )( 2 1 6 )  1 1 6 , 6 4 0 ( 0 .3 1 3 )(1 0 , 0 0 0 )[(

830

 1 .8 5

) 1]

8 4 .7

247

C r  0 .8 4 (Table 7.3)

SOLUTION (15.21) ( a ) Compression of the parts is lost when F p  0 . Thus, from Eq. (15.24): F i  (1  C ) P  F P  ( k

 (k

4 kb b

kp kp

b

) P  FP

)(3 5 )  0  2 8 k N

 4 kb

( b ) Minimum force in parts occurs when fluctuating load is maximum. Using Eq. (15.24): Fp  ( k

kp b

) P  Fi 

kp

4 5

(3 5 )  3 8   1 0 k N

SOLUTION (15.22) ( a ) Compression of the parts is lost when F p  0 . Therefore, by Eq. (15.24): Fi  ( k

 (k

kp b

)P  Fp

kp

2 kb b

)(3 5 )  0  1 7 .5 k N

 3 kb

( b ) Minimum force in parts takes place when fluctuating load is maximum. From Eq. (15.24): Fp  ( k

kp b

kp

)P  Fp 

1 2

(3 5 )  3 8   2 0 .5 k N

SOLUTION (15.23) ( a ) From Eq. (15.24): F p  (1  C ) P  F i  ( k

2 .5  ( 3 3 1 ) P  1 3,

kp kp

b

) P  Fi

P  2 0 .6 7 k N

Fb  Fi  1 3 k N

( b ) Load off: Load on: F b 

1 4

( 2 0 .6 7 )  1 3  1 8 .1 7 k N

Hence, Pm 

1 3  1 8 .1 7 2

 1 5 .5 9 k N

Pa 

1 8 .1 7  1 3 2

 2 .5 8 5 k N

SOLUTION (15.24) ( a ) From Eq. (15.24): F p  (1  C ) P  F i  ( k 600  ( 2k

kp p

kp

kp p

) P  8000,

 kb

) P  Fi P  2 5, 8 0 0 N

(CONT.)

248

15.24 (CONT.) Fb  Fi  8 0 0 0 N

( b ) Load off: Load on: F b 

1 3

( 2 5, 8 0 0 )  8 0 0 0  1 6 , 6 0 0 N

So, 8 0 0 0 1 6 ,6 0 0

Pm 

 1 2 .3 k N

2 1 6 ,6 0 0  8 0 0 0

Pa 

 4 .3 k N

2

SOLUTION (15.25) ( a ) By Eq. (15.24): F p  (1  C ) P  F i  ( k

1800 

4 5

P  6000,

kp p

 kb

) P  Fi

P  9700 N

Fb  Fi  6 0 0 0 N

( b ) Load off:

Load on: F b  6 0 0 0 

(9 7 5 0 )  7 9 5 0 N

1 5

Thus Fm 

6000  7950 2

Fa 

7950  6000 2

 6975 N  975 N

SOLUTION (15.26) Table 15.4:

d  20 mm ,

A t  245

2

mm

( a ) We have F b  0 . 9 S y A t  0 . 9 ( 630 )( 245 )  138 . 915 and

kb 

kp 

AE

s

L

2

 d Es



4L



2

 ( 20 ) E s 4 ( 60 )

0 . 58  ( E s 2 )( 20 ) 2 ln[ 5

0 . 58 ( 60 )  0 . 5 ( 20 ) 0 . 58 ( 60 )  2 . 5 ( 20 )

]

F i  0 . 75 F b  104 . 2 kN

kN

 5 . 236 E s

 9 . 379 E s

C 

5 . 236 5 . 236  9 . 379

 0 . 358

Thus Pb  C P  F i  0 .3 5 8 ( 4 0 )  1 0 4 .2  1 1 8 .5

(b)

T  KdF

i

kN

 0 . 15 ( 20 )( 104 . 2 )  312 . 6 N  m

SOLUTION (15.27) Tables 15.1, 15.4, and 15.6:

A t  8 4 .3 m m ,

K

S p  380 M Pa,

S y  420

2

f

 2 .2 M Pa ,

Su  520 M Pa

Table 7.3: C r  0 .8 9 Equation (15.39): S e  ( 0 .8 9 )(1)( 21.2 )( 0 .4 5  5 2 0 )  9 4 .7 M P a (CONT.)

249

15.27 (CONT.) 20  4 2

( a ) We have Pa 

 8 kN ,

Pm 

20 4 2

 12 kN

Thus a  ( MPa )

m 

 9 4 .9 M P a ,

8 8 4 .3

12 8 4 .3

 1 4 2 .3 M P a

 Not safe. (Fig. S15.27)

a

(a) No preload



140

Soderberg Line

a

Se

105

Modified Goodman Line

70

 ba

Figure S15.27

35

 0

(b) With preload m

210 280

140

70

45o



0

S



420 490 520

350 bm

Su

m

( MPa )

y

( b ) F i  0 .7 5 (3 8 0  8 4 .3)  2 4 k N kb 

2

 d Es

2

 ( 0 .0 1 2 ) E s



4L

 0 .0 0 2 3 E s

4 ( 0 .0 5 )

0 .5 8  ( E s 2 )( 0 .0 1 2 )

kp 

2 ln [ 5

0 .5 8 ( 0 .0 5 )  0 .5 ( 0 .0 1 2 ) 0 .5 8 ( 0 .0 5 )  2 .5 ( 0 .0 1 2 )

 0 .0 0 5 E s ,

C 

]

0 .0 0 2 3 0 .0 0 2 3  0 .0 0 5

We have F b m  C Pm  F i  0 .3 1 5 (1 2 )  2 4  2 7 .8 k N ,  ba 

F b a  0 .3 1 5 (8 )  2 .5 2 k N ,

2520 8 4 .3

 0 .3 1 5

 bm 

2 7 ,8 0 0 8 4 .3

 3 2 9 .8 M P a

 2 9 .9 M P a

It is seen from Fig. S15.27 that the joint fails according to the Soderberg theory, while it is safe on the basis of Goodman criteria. ( c ) Use Eq.(15.37): 5 2 0 ( 8 4 .3 )  2 4 , 0 0 0

n 

520

( 0 .3 1 5 )[ 8 0 0 0 (

 1 .1 3

) 1 2 ,0 0 0 ]

9 4 .7

( d ) Applying Eq.(15.28), we have ns 

 1 . 75

24 20 ( 1  0 . 315 )

SOLUTION (15.28) We have S

p

 600

A t  115



i

mm

 0 . 75 S

Pa  Pm 



a

 

m

(Table 15.5)

MPa

(Table 15.2)

 0 . 75 ( 600 )  450

p

MPa

 5 kN

10 2



2

3

5 ( 10 ) 115 ( 10

6

)

 43 . 48 MPa

Equation (15.39): Se  CrCt (

1 K f

) ( 0 .4 5 S u )

(CONT.)

250

15.28 (CONT.) where

C r  0 .8 7

(Table 7.3)

C t  1  0 .0 0 5 8 ( 4 9 0  4 5 0 )  0 .7 7

K

 3 .8

f

(Table 15.6)

S u  830

Hence

(Table 15.5)

MPa

S e  ( 0 . 87 )( 0 . 77 )(

We have 



a

S u 

n  C

a

[(

(Eq.7.11)

1 3 .8

)( 0 . 45  830 )  65 . 84 MPa

. With preload, Eq.(15.38) gives

m

i

Su

) 1]

Sy 830  450



( 43 . 48 )( 0 . 31 )(

 2 . 07

830

1)

65 . 84

Without preload, C=1 and  i  0 : n 

 1 . 40

830 830

1)

( 43 . 48 )(

65 . 84

Comment: The presence of preload is beneficial.

SOLUTION (15.29) Refer to Solution of Prob.15.28. We have A t  1 1 5 m m , 2

Hence,

C  0 .3 1,

S p  600 M Pa.

F i  0 . 75 ( A t S p )  0 . 75 (115  600 )  51 . 75 kN

Apply Eq.(15.27), S p At  Fi

P 

Cn



600 ( 115 )  51 . 75  10 ( 0 . 31 )( 2 )

3

 27 . 82 kN

Using Eq.(15.28b): P 



Fi n s (1 C )

 37 . 5 kN

51 . 75 2 ( 1  0 . 31 )

Comment: Failure owing to separation will not take place before bolt failure. SOLUTION (15.30) ( a ) We have  380

MPa

At  1 5 7

mm

Pa  Pm 

12 2

S

p

S u  520 2

MPa

Se  100 M Pa

(Table 15.1),

 6

(Table 15.4)

k N b o lt

F i  0 .9 S p A t  0 .9 (3 8 0 )(1 5 7 )  5 3 .6 9 k N



a





i

 0 .9 S

m

6 1 0



1 5 7 (1 0

p

3 6

)

 3 8 .2 2

M Pa

 0 . 9 ( 380 )  342

MPa

(CONT.)

251

15.30 (CONT.) kb

C 

We have 

S u  C

a

m

. Eq.(15.38), with preload:

i

Su

[(

 0 . 167

kb 5kb



a

n 

kb



kb  kb

) 1]

Sy 520  342



( 0 . 167 )( 38 . 22 )(

520

 4 .5 1)

100

Without preload, C=1 and  i  0 : n 

 2 . 19

520 520

1)

( 38 . 22 )(

100

( b ) Equation (15.28b): Fi

ns 

P (1 C )



 5 . 37

53 . 69 12 ( 1  0 . 167 )

Comments: The presence of preload is very beneficial. Joint will separate before bolts fail.

SOLUTION (15.31) Repeating section L P

P

We have L=w=50 mm and total number of rivets in the joint n=2. Therefore  

P n (d

2

4)



b



P ndt



t



P ( w  d e )t



3

4 ( 32  10 )



2 (  )( 0 . 019 ) 3

32 ( 10 ) 2 ( 0 . 019 )( 0 . 01 )

 56 . 43 MPa

2

 84 . 21 MPa 3

32 ( 10 )



[ 50  ( 19  3 )] 10 ( 10

6

)

 114 . 3 MPa

SOLUTION (15.32) Sketch is the same as that given in Solution of Prob.15.31 and n=2. The allowable loads are: F s   a ll n  d Fb  

b , a ll

Ft  

t , a ll

2

4  1 0 5 ( 2 )(  )(1 8 )

4  5 3 .4 4 k N

n d t  3 3 0 ( 2 )(1 8 )(1 0 )  1 1 8 .8

kN

( w  d e ) t  1 5 0[ 6 0  (1 8  1 .5 )]1 0  6 0 .7 5

Thus e 

2

6 0 .7 5 (1 5 0 )( 6 0 )(1 0 )

 6 7 .5 %

252

kN

SOLUTION (15.33) For members, by Table B.3: S y  4 6 0 M P a ,

S y s  0 .5 7 7 ( 4 6 0 )  2 6 5 .4

M Pa

For bolts, from Table 15.4: S y  9 4 0 M P a ,

S y s  0 .5 7 7 (9 4 0 )  5 4 2 .4

M Pa

from Table 15.1: d r  1 8  1 .2 2 7 ( 2 .5 )  1 4 .9 3 m m  (1 4 .9 3 )

As  2

Shear on bolts:

As S ys

Fs 

3 5 0 .1 4 ( 5 4 2 .4 )



n

2

Ab S y

360 (940 )



n

 3 5 0 .1 4 m m

2

 95 kN

A b  2 (1 8 )(1 0 )  3 6 0 m m

Bearing on bolts: Fb 

2

4

2

 1 1 2 .8 k N

3

Bearing on members: 360 ( 460 )

Fb 

 6 6 .2

2 .5

A t  ( 6 0  1 8 )1 0  4 2 0 m m

Tension in members: 420 ( 460 )

Ft 

kN 2

 5 5 .2 k N  Pa ll

3 .5

SOLUTION (15.34) For members, using Table B.3:

S

 210

y

MPa

For bolts, from Table 15.1: d r  1 4  1 .2 2 7 ( 2 )  1 1 .5 5 m m

 

2  (1 1 .5 5 )

As 

Shear of bolt:



P As

2 0 ,0 0 0 2 0 9 .5

 2 0 9 .5 m m

 119 M Pa,

2 0 ,0 0 0 168

2

 9 5 .4 7 M P a ,

n 

A b  2 ( 6 )( 14 )  168

Bearing on bolt: b 

2

4

mm

n 

640 119

 3 .8 8

370 9 5 .4 7

2

 5 .3 8

Bearing on members: n 

 1 . 76

210 119

A t  ( 60  2  14 ) 6  192

Tension on members: 

t



20 , 000 192

 104 . 2 MPa ,

n 

210 104 . 2

mm

2

 2 . 02

SOLUTION (15.35) Table 15.1: A t  8 4 .3 m m ,

d r  1 2  1 .2 2 7 (1 .7 5 )  9 .8 5 3 m m

2

Hence, A s 

 4

(9 .8 5 3 )  7 6 .2 5 m m 2

 

2

P 4 As



P 4 ( 7 6 .2 5 )

 P 305

Pivots about point A. Row 1 is the highest loaded. Apply Eq.(15.43) with j=2 and e=250 mm: F1 

Thus



t ,m ax

M r1 2



2

r1  r2



 2

t



250 P ( 225 ) 2

2

2 ( 225 ) 2 (75 )

(

 2

t

)  2

t 

 0 .5 P , 2



P 3 3 7 .2



0 .5 P 8 4 .3

( 3 3P7 .2 )  ( 3 P0 5 ) 2

 ( 0 .0 0 3  0 .0 0 4 4 ) P  0 .0 0 7 4 P

Hence, 0 .0 0 7 4 P  1 4 0; or

 m a x  0 .0 0 4 4 P  8 4 :

Pa ll  1 8 .9 2 k N P  1 9 .0 9

253

 P 1 6 8 .6

kN

2

SOLUTION (15.36) The maximum design load is Pm a x  n P  ( 2 .3)( 2 5 )  5 7 .5 k N . From geometry: F 2  ( 4 1 5 ) F1 . Here F1 and F 2 are tensile forces in bolts 1 and 2, respectively. We have



M

 0:

A

1 0 0 0 (5 7 .5 )  1 0 0 ( 145 F1 )  3 7 5 F1 ;

F1  1 4 3 .2 k N

The required tensile stress area is then At 

143,200 600

 239 m m

2

From Table 15.1: The required thread size is about M 2 0  2 .5  C . SOLUTION (15.37) ( a ) Using Table 15.4, S p  3 1 0 M P a ,

S y  340 M Pa

S y s  0 .5 7 7 S y  1 9 6 .2 M P a

The tensile stress area: ( F o r c e )( n )

At 

S



2 ,5 0 0 ( 3 ) 310

p

 2 4 .2 m m

2

From Table 15.1, select M 7  1  C thread with A t  2 8 .9 m m

2

( b ) Table 15.1 and Fig. 15.3: p  1 mm, h 

1 2

d  7 mm,

d r  d  1 .2 2 7 p  5 .7 7 m m ,

( d  d r )  0 .6 1 5 m m

d m  d  0 .6 5 p  6 .3 5 m m ,

b 

p 8

 2 h ta n 3 0

o

 0 .8 3 5 m m

Apply Eq. (15.19a): 3K tPp 2  dbLn



S ys

3 ( 4 )( 2 5 0 0 )(1 )

n

2  ( 7 )( 0 .8 3 5 ) L n



1 9 6 .2 3

Solving, L n  1 2 .5 m m

SOLUTION (15.38)

(a)

Refer to Solution of Prob. 15.37. Using Table 15.4: S p  310 M Pa,

S y  340 M Pa ,

F o rce ( n )

 6 4 .5 2 m m

At 

Sp



4000 (5 ) 310

S y s  0 .5 7 7 S y  1 9 6 .2 M P a

2

From Table 15.1: Select M 1 2  1 .7 5  C thread with A t  8 4 .3 m m (b)

2

Table 15.1 and Fig. 15.3: d  12 m m ,

p  1 .7 5 m m

d m  d  0 .6 5 p  1 0 .8 6 m m d r  d  1 .2 2 7 p  9 .8 5 m m h 

1 2

( d  d r )  1 .0 7 5 m m ,

b  1 .7 5 8  2 h ta n 3 0

o

 1 .4 6 m m

(CONT.)

254

15.38 (CONT.) Using Eq. (15.19a): 3 ( 4 ) ( 4 0 0 0 ) (1 .7 5 )



2  (1 2 ) (1 .4 6 ) L n

1 9 6 .2 5

from which L n  1 9 .4 m m

SOLUTION (15.39) Table 15.1:

At  2 4 5 m m ,

Shear area:

As 

d r  2 0  1 .2 2 7 ( 2 .5 )  1 6 .9 3 m m

2

 

P 3





As

(1 6 .9 3 )  2 2 5 2

4

2

 1 , 481 P

P 3 ( 225 )  10

mm

6

Pivots about point A. Bolt 1 is the highest loaded. M r1

F1 

r1  r2  r3

t 

2 4 5 (1 0

2

2

)

From Mohr’s circle: 

2

2

140  90  40

2

 0 .5 9 7 P

 2 ,4 3 7 P

0 .5 9 7 P 6

1 2 5 P (1 4 0 )



2





t , max

t

2



(



t

2

)  2

2



2 , 437 P 2



(

2 , 437 P 2

)  ( 1 , 481 P ) 2

2

 ( 1 , 219  1 , 918 ) P  3 ,137 P

Hence 3,1 3 7 P  1 4 5  1 0 ,

P  4 6 .2 2

6

or

1, 9 1 8 P  8 0  1 0 ,

kN

Pa ll  4 1 .7 1 k N

6

SOLUTION (15.40) Vertical and horizontal components of the force P=10 kN are 8 kN and 6 kN at B, respectively. Rivet B is most heavily loaded. The centroid of the group of rivets is at C. We have FB 

M rB



8  3 0 (1 5 0 )



2

rj

2

2

2

2[ 3 0  9 0 1 5 0 ]

 0 .5 7 1 k N

6/6=1 kN B

1

V B  [1  1 . 904 2

2

] 2  2 . 15 kN

(Fig.a) 8/6+0.571 =1.904 kN

Therefore B 



B



VB

 d

2

VB

4



dt



2 ,1 5 0

 ( 20 )

2 ,1 5 0 2 0 1 5

2

4

 6 .8 4 4

 7 .1 6 7

M Pa

VB

M Pa

Figure S15.40

SOLUTION (15.41) Rivet A is the most heavily loaded. As 



Vd 

P 5

4

(15 )



50 5

2

 176 . 715

 10

kN

mm

2

V a ll  1 0 0 (1 7 6 .7 1 5 )  1 7 .6 7 2

kN

Centroid C of the line AB, with respect to A, is determined from: 5 0 x  7 0 (1 0 )  2 5 0 (1 0 )  3 2 0 (1 0 )  3 9 0 (1 0 ) ,

x

A

x  206

mm

C d

e

B (CONT.)

P

255

15.41 (CONT.) Thus Mr

FA 



A 2

rj



50 , 000 e ( 206 ) 206

2

2

 136

2

 44  114

2

2

 184

 93 . 875 e

V A  1 0 , 0 0 0  9 3 .8 7 5 e  1 7 , 6 7 2 ,

e  8 1 .7 m m

and d  54 . 3 mm

SOLUTION (15.42) The A is the highest loaded point. A s   (15 )

4  176 . 715

2

Thus

FA 



A 2

rj



46 P ( 206 ) 206

2

 136

2

2

x  206

Refer to Solution of Prob. 15.41: Per

mm

2

 44  114

2

2

 184

F 

,

mm,

P 5

 0 .2 P

e  206  70  90  46 mm

 0 . 086 P

Hence V A  ( 0 .2  0 .0 8 6 ) P  0 .2 8 6 P and 

A



 100  10 ;

P  6 1 .7 9 k N

6

0 .2 8 6 P 1 7 6 .7 1 5 (1 0

6

)

SOLUTION (15.43) A  0 . 707 hL  0 . 707 ( 7 )( 60 )  297 P 

S

ys

A

n



200 ( 297 ) 2 .5

mm

2

 23 . 76 kN

Cross-sectional area of one plate A p  40 (10 )  400

mm

2

. Then

P  ( S y n ) A p  ( 2 5 0 2 .5 ) 4 0 0  4 0 k N

Hence the capacity of the plate significantly exceeds that of the weld.

SOLUTION (15.44) Table B.4:

for plates,

Table 15.8:

for weld,

S y  427 M Pa . S y  345 M Pa .

Since 3 4 5  4 2 7 , the weld should yield first. The maximum load that can be applied equals P 

SyA n



3 4 5 (1 5  8 7 .5 ) 4

 1 1 3 .2 k N

SOLUTION (15.45) Refer to Solution of Prob. 15.44. S y  0 .5 S y  0 .5 ( 4 2 7 )  2 1 3 .5 M P a From Eq. (15.44):

(for plate)

S y s  0 .5 S y  0 .5 ( 3 4 5 )  1 7 2 .5 M P a

(for weld) (CONT.)

256

15.45 (CONT.) Since 1 7 2 .5  2 1 3 .5

 The weld should yield first.

Hence, S ys A

P 

1 7 2 .5 (1 5  8 7 .5 )



n

3

 7 5 .4 7 k N

SOLUTION (15.46) For plates: S y  4 6 0 M P a

(Table B.3), S y s  0 .5 S y  2 3 0 M P a

For weld: S y  3 7 9 M P a

(Table 15.8), S y s  0 .5 S y  1 8 9 .5 M P a

(Eq. 15.44) (Eq. 15.44)

Since 1 8 9 .5  2 3 0

 weld would yield first.

Thus, Fig. 15.27a: S ys

P 



n

1 8 9 .5 ( 0 .7 0 7 )( 8 )( 2  7 0 )

 4 2 .8 7 k N

3 .5

SOLUTION (15.47) For plates: S y  5 3 0 M P a

(Table B.3),

S y s  0 .5 S y  2 7 5 M P a

For weld: S y  4 1 4 M P a

(Table 15.8),

S y s  0 .5 S y  2 1 2 M P a

(Eq. 15.44) (Eq. 15.44)

Since 212  275

 weld would yield first.

Thus, Fig. 15.26a: S ys

P 



n

2 1 2 ( 0 .7 0 7 )( 5 )( 2  6 0 ) 4

 2 2 .5 k N

SOLUTION (15.48) A p  75  10  750

 

mm

2

P  A

,

all

 750 (140 )  105

kN

R 1  21 kN 

(along AB)

M

D

 0:

R 1 ( 75 )  105 (15 )  0 ;

M

A

 0:

R 2 ( 75 )  105 ( 75  15 )  0 ;

Check: Hence

R 1  R 2  105 L1 

R1 Sw



21 1 .2

R 2  84 kN 

(along DE)

kN

 17 . 5 mm ,

L2 

R2 Sw



84 1 .2

 70 mm

SOLUTION (15.49) I x  2 (1 0 0 t )( 6 2 .5 )  2

3

2 (1 2 5 ) t 12

 1 .1 0 7 (1 0 ) t

A  2 (1 0 0 t  1 2 5 t )  4 5 0 t m m

We have

6

1 2

  [( 1455000t0 )  ( 3 .71 .15 0672t .5 ) ] 

Thus

   a ll ;

and

h 

0 .1 3 4 0 .7 0 7

2

2 1 4 .3 t

 5 5,

 a ll  5 5 M P a

M  1 5 ( 2 5 0 )  3 .7 5 M N  m m

2

2

4

mm ,

2 1 4 .3 t

t  3 .9 m m

 5 .5 2 m m

257

SOLUTION (15.50) I x  1 .1 0 7 (1 0 ) t m m , 6

From Solution of Prob.15.49: We have Pm  1 5 k N ,

Pa  5 k N ,

K

Refer to Example 15.12. We obtain C

f

A  450t m m

4

 1.5

(Table 15.9)

 A Su  272(420) b

f

2

 0 .9 9 5

 0 .6 6 7 .

Equation (7.5a): S u s  0 .6 7 ( S u )  0 .6 7 ( 4 2 0 )  2 8 1 .4 M P a S e  C s C f (1 K f ) S e  ( 0 .7 )( 0 .6 6 7 )( 11.5 )( 0 .5  4 2 0 )  6 5 .3 7 M P a '

Then, from Eq.(7.21): S us n

m  (

a

)

m

Su

2 8 1 .4 2 .5

 1

 3 5 .8 3 M P a

1

420 ) 1 3 6 5 .3 7

(

Se

Also, from Solution of Prob.15.49:  m  Thus

2 1 4 .3 t

 3 5 .8 3

and

h 

5 .9 8 0 .7 0 7

1 . 072 t

t  5 .9 8 m m

or

 8 .4 6 m m

SOLUTION (15.51) Table 15.8: S y  4 1 4 M P a

S y s  0 .5 S y  2 0 7 M P a

We have t  0 . 707 (12 )  8 . 484

mm

A one  weld  8 . 484 L

T  100 ( 60 )  6 MN  mm

Total

3

J  2

 2

tL 12

8 .4 8 4 L 12

3

 1.4 1 4 L

3

At point A: A  S ys

and

P A



n



207 2 .5

Tr J



100 ,000



1 6 .9 6 8 L

 82 . 8  

6

6 (1 0 )( L 2 ) 1. 4 1 4 L

3



5 ,893 L

2 ,1 2 2 , 0 0 0



L

(1)

2

(2)

A

From Eqs.(1) and (2): 82 . 8 L  5 ,893 L  2 ,122 , 000  0 ; 2

L  71 . 17 L  25 , 628  0 2

Solving L 

1 2

[ 7 1 .1 7 

7 1 .1 7  4 ( 2 5 , 6 2 8 ) ]  1 9 9 .6 2

mm

SOLUTION (15.52) Pm  100

Pa  20 kN

kN ,

Table 15.9: K

f

 1.5

Refer to Solution of Prob.15.51: m 

Also

5 ,893



L

S u  496

C

f

S

ys

 AS

2 ,1 2 2 , 0 0 0 L

MPa , b u

(1)

2

S

y

 272 ( 496 )

 0 . 5 ( 414 )  207

 414  0 . 995

MPa

MPa

(Table 15.8),

 0 . 566

Refer to Example 15.12:

S e  (0 .7 )(0 .5 6 6 )( 11.5 )(0 .5  4 9 6 )  6 5 .5 1 M P a

(CONT.)

258

15.52 (CONT.) We have, from Eq.(7.21) with S y s and S y replacing S u s and S u : S ys n

m  (

a m

)

Sy

2 0 7 2 .5

 1

(

Se

 3 6 .5 7 M P a

1

414 ) 1 5 6 5 .5 1

(2)

Equations (1) and (2) are therefore L  161 . 1 L  58 , 025 . 7  0 2

L 

or

1 2

[1 6 1 .1 

1 6 1 .1  4 (5 8 , 0 2 5 .7 ) ]  3 3 4 .5 2

mm

SOLUTION (15.53) S u s  0 .6 7 S u  2 8 6 .1 M P a ;

Table 15.8: S u  4 2 7 M P a; We have C

f

 1 .5

A b o th  2[ 0 .7 0 7 ( 6 .5 ) 2 5 0 ]  2 2 9 7 .8

mm

 A Su  272(427) b

f

 0 .9 9 5

K

(Table 15.9)

 0 .6 5 7

Refer to Example 15.12: S e  ( 0 .7 )( 0 .6 5 7 )( 11.5 )( 0 .5  4 2 7 )  6 5 .5 M P a

We have Pm  Pa  3

J  2



tL 12

Pm a x , AL 12

2

2 , 2 9 7 .8 ( 2 5 0 )



2

12

 1 2 (1 0 ) 6

We have Pm  0 .5 Pm a x ,

At point A: m 

and

1 2

Pm



A

Tm r J



Pm a x

4

T m  7 5 Pm  3 7 .5 Pm a x

3 7 .5 Pm a x (1 2 5 )



2 ( 2 2 9 7 .8 )

mm

2

6

1 2 (1 0 )

 0 .0 0 0 6 Pm a x

Also, from Eq.(7.21): S us n

m  (

a m

)

Su

2 8 6 .1 2

 1

(1 )

427

 1 9 .0 2 M P a

1

6 5 .5

Se

Thus 0 .0 0 0 6 Pm a x  1 9 .0 2 ,

Pm a x  3 1 .7 k N

SOLUTION (15.54) 150 mm

y A

B 8

200 mm

C

6

x

T

30 ( 10 A

D

E

40 ( 10 A

3

)



3

)



T ( 200 )

Figure S15.54

J

T ( 75 ) J

Inspection of Fig. S15.54 shows that point E has the highest stress. We write T  4 0 (1 7 5 )  3 0 (1 0 0 )  4 k N  m

A b o th  2 (1 5 0 t )  3 0 0 t m m

2

(CONT.)

259

15.54 (CONT.) t (1 5 0 )

I x  2[

3

 1 5 0 t (1 0 0 ) ]  2 ( 0 .2 8 1 t  1 .5 t )(1 0 )  3 .5 6 2 (1 0 ) t m m 2

12

6

I y  2[ 0  1 5 0 t ( 7 5 ) ]  1 .6 8 7 (1 0 ) t m m , 2

6

6

J  5 .2 4 9 (1 0 ) t m m

4

6

4

4

We have 3

v 

and

4 0 (1 0 ) 300 t

4 (75 )





6

5 .2 4 9 (1 0 ) t 1 2

 E  [ v   h ]  2

2

1 3 3 .3 t

1 6 6 .6 t

h 

,

3

3 0 (1 0 ) 300 t



4 (1 0 0 ) 6

5 .2 4 9 (1 0 ) t



100 t

M Pa

Therefore, by Eq.(15.44), n E  0 .5 S y ;

3(

1 6 6 ,6 t

)  0 .5 (3 5 0 ),

t  2 .8 6 m m

and h 

 4 .0 5 m m

2 .8 6 0 .7 0 7

SOLUTION (15.55) J  5 .2 4 9 (1 0 ) t m m , 6

From Solution of Prob.15.54: From Table 15.9: C

K

 2 .7 ;

f

 A Su  272(427) b

f

A b o th  3 0 0 t m m

4

2

S u s  0 .6 7 S u  0 .6 7 ( 4 2 7 )  2 8 6 M P a

 0 .9 9 5

 0 .6 5 7

Refer Example 15.12: S e  ( 0 .7 )( 0 .6 5 7 )( 21.7 )( 0 .5  4 2 7 )  3 6 .4 M P a We have Pm  3 0 k N ,

Pa  2 0

a m  2 3

kN ,

Thus, by Eq.(7.21): S us n

m  (

a m

)

Su

2 8 6 1 .5

 1

(

Se

2

427 ) 1 3 3 6 .4

 2 1 .6 M P a

(1)

At point E: Use the method of Solution of Prob.15.54, with P  Pm  3 0 k N Then Pm v  2 4 k N

Pm h  1 8 k N

T m  2 4 (1 7 5 )  1 8 (1 0 0 )  2 .4

kN  m

Therefore

and

3

 vm 

2 4 (1 0 )

 hm 

1 8 (1 0 )

300 t 3

300 t

2 .4 ( 7 5 )



6

5 .2 4 9 (1 0 ) t 2 .4 (1 0 0 )



6

5 .2 4 9 (1 0 ) t 1 2

 m  ( v m   h m )  2

2



80 t



60 t

100 t

(2)

Equations (1) and (2) give 100 t

 2 1 .6 ,

t  4 .6 m m

and h 

4 .6 0 .7 0 7

 6 .5 1 m m

End of Chapter 15

260

CHAPTER 16

MISSELLANEOUS MACHINE COMPONENTS

SOLUTION (16.1) Equation (16.17) and Eq.(16.16a) at r=a:  1    , max  p i

(a) 1 

 Sy;

2

2

2

2

2

a b b a



5 4



pi

 

2

p i  (  p i )  260 ,

5 4

  pi

r , max

p i  115 . 6 MPa

( b )  1   1 2   2  S y 2

2

2

1

p i [( 54 )

 ( 54 )(  1 )  (  1 ) ] 2  260 ,

2

p i  133 . 2 MPa

2

SOLUTION (16.2) T 

 b

3



2

 ( 100 ) b

3

 157 . 08 b

2

3

Also

T  2  b fp l  2  b fp ( 3b )  6  fb p

and

6  fb p  157 . 08 b ,

2

2

3

 

Hence

p 

3

h 

We have E h  E s  E ,  

3

2 bpc

2

2

2

2 bp ( 4 b )



2

E (c b )

2

 0 . 706 (10

8 ( 55 . 56 ) b 3

3 ( 210  10 )

(Eq.16.27b)

 55 . 56 MPa

  , and a=0. Equation (16.25) becomes

s

8 pb



2

E (4b b )

157 . 08 6  ( 0 . 15 )

3E 3

)b

SOLUTION (16.3) ( a ) From Table B.1: S y  2 5 0 M P a ,

  0 .3 .

E  200 G Pa,

Applying Eq. (16.17), p i    ,m ax

2

2

2

2

b a b a

 250

2

2

2

2

0 .1 8  0 .1 2 0 .1 8  0 .1 2

 9 6 .1 5 M P a

Equation (16.16c) at r  a : u m ax 

2

Pi a

2

( b2 a2   )  b a

E

6

9 6 .1 5 (1 0 ) 9

2 0 0 (1 0 )

2

2

( 0 .1 2 )( 0 .1 8 2  0 .1 2 2  0 .3 ) 0 .1 8  0 .1 2

 0 .1 6 7 m m

( b ) Equation (16.19): 2

Po     , m a x

b a 2b

2

2

 250

2

0 .1 8  0 .1 2 2

2 ( 0 .1 8 )

2

  6 9 .4 4 M P a

SOLUTION (16.4)   ,m ax  p i

(a) Su  and

5 3

pi ,

2

2

2

2

b a b a



pi 

Su  pi ,

pi  1,

5 3

3 5

 r ,m ax   p i   2

( 350 )  210 p i  350

MPa

(governs)

MPa

(CONT.)

261

16.4 (CONT.) (b)

1 Su





2

S uc

5 pi

 1;

 pi



3( 350 )

 1

650

p i  158 . 7 MPa

or

SOLUTION (16.5) ( a ) Use Eq.(16.17) with p i  p ,   ,m ax  p

2

2

2

2

c b c b

a  b,

b  c:

6 2 .5 p 1 0 0 1 0

9

[

6 0 1 0 p

2

2

c b

By Eq.(16.25), with a  0 , 0 .0 5 

2

c b

 60 M Pa,

6

2

(Fig. 16.6b) 6

6 0 (1 0 )



  0 . 05 mm :

b  62 . 5 ,

 0 .3 ] 

6 2 .5 p 2 0 0 1 0

(1)

p

[1  0 .3 ]

9

or 50  10

6

 37 . 5  10

6

 0 . 188 p  0 . 219 p ,

p  30 . 71 MPa

( b ) Equation (1) becomes 2

2

2

2

c  0 .0 6 2 5



60 3 0 .7 1

c  0 .0 6 2 5

c  110 m m

,

2c  220 m m

SOLUTION (16.6) ( a ) a=0, b=12.5 mm, c=50 mm F 

T b



 12 kN

150 0 . 0125

Thus

1 2 ( 1 0 )  2  b fp l  2  ( 0 .0 1 2 5 )( 0 .1 5 )( 0 .0 5 ) p

or

p  20 . 37 MPa

3

(Eq.16.27a)

Equation (16.25) gives then  

2

3

1 2 .5 ( 2 0 .3 7 )

5 0  1 2 .5

1 0 0 (1 0 )

( b )   ,m ax  p

2

[ 5 0 2  1 2 .5 2  0 .3 ] 

1 2 .5 ( 2 0 .3 7 )

2

2

2

2

c b c b

2 0 0 1 0

2

3

(1  0 .3 )  ( 3 .6 5  0 .8 9 1)1 0

3

 0 .0 0 5

mm

2

 2 0 .3 7[ 5 0 2  1 2 .5 2 ]  2 3 .0 9

M Pa

5 0  1 2 .5

SOLUTION (16.7) We have a=15 mm, b=25 mm, c=50 mm. Equation (16.25): 0 . 025 

2

25 p 210  10

9

2

[ 50 2  25 2  0 . 3 ]  50  25

2

25 p 105  10

9

2

[ 25 2  15 2  0 . 3 ], 25  15

Steel, Eq.(16.17):   ,m ax  p

2

2

2

2

c b c b

 3 7 .3 9

2

2

2

2

50  25 50  25

 6 2 .3 2

M Pa

Bronze, Eq.(16.19):   ,m ax   2 p

b 2

2

b a

2

  2 (3 7 .3 9 )

25 2

2

2 5 1 5

262

2

  1 1 6 .8

M Pa

p  37 . 39 MPa

SOLUTION (16.8) Equation (16.25) with a=0, b=50 mm, c=150 mm.  

bp Ec

2

2

b c

bp

[ c2 b2   c ]  2

150  50

50 p

0 .0 3 

12010

9

Es

[1   s ]

2

50 p

[ 1 5 0 2  5 0 2  0 .2 5 ] 

21010

9

( 0 .7 )

Solving p  3 7 .8 9 M P a Shaft:     r   p   3 7 .8 9 M P a Cylinder:   ,m ax  p 

2

2

2

2

c b c b

2

150  50

  p   3 7 .8 9

r ,m ax

2

 3 7 .8 9[ 1 5 0 2  5 0 2 ]  4 7 .3 6

M Pa

M Pa

SOLUTION (16.9) Equation (16.23): 

 (u d ) rb 

2

bp E

2

b c

2

bp

[ c2 b2   ] 

E

( 3  0 .3 )  1.9 6 7 5

bp E

or p 

E 3 .9 3 4 b

Then, Eq.(16.24) with a=0, us 

bp E

(1   ) 

0 .7  3 .9 3 4

 0 .1 7 8 

Therefore,  d s  0 .3 5 6 

SOLUTION (16.10) Equation (16.31a) with (  r ) p  0 and b  c : 

r

 

3  8

(a  b  2

3  0 .3 4 8

2

2

a b r

2

2

 r ) 2

[( 0 .0 2 )  ( 0 .0 4 )  2

2

2

 p 2

( 0 .0 2 ) ( 0 .0 4 ) ( 0 .0 3 )

2

2

]8 5 0 0 

2

 9 0 (1 0 ) 6

Solving,   8 , 0 7 5 .5 tp s  4 8 , 4 5 3 r p m

SOLUTION (16.11)  m ax 

3600 60

 2   1 2 0  ra d s ,

 m in  1 1 4 

ra d s ,

p  0

( a ) Equation (16.32), with p  0 ;   ,m ax 

 4

2

[ (1   ) a

2

 ( 3   )b ] 2

(CONT.)

263

16.11 (CONT.) Let a=b and b=c=4b: 75  10

7 , 800 ( 120  )



6

2

 3 .3( 4 b ) ]

2

[ 0 .7 b

4

2

Solving, b  7 1 .1 2 m m ,

c  2 8 4 .4 m m

( b ) Equation (16.37) of Sec.16.5: I 

 l

7 .8  ( 5 0 )

(c  b )  4

2

4

( 0 .2 8 4 4  0 .0 7 1 1 2 )  3 .9 9 2 1 N  m  s 4

2

4

2

Thus Ek 

I (  m a x   m in )  2

1 2

2

(3 .9 9 2 1)(1 2 0  1 1 4 )  2

1 2

2

2

 2 7 .6 5 9

kN  m

SOLUTION (16.12)   2 4 0 0 ( 2  6 0 )  2 5 1 .3 ra d s

( a ) Equation (16.35) with a=b and b=c:  

bp E

2

b

2

[ b2  c 2  1]  c b



20 ( 10



20 E

3

2

4E

2

[ 0 .7 b

2

[ 100 2  20 2  1 ] 

)p

E

2

20 ( 7 . 8 ) 

 20

100

 3 .3 c ]

2

[ 2 . 083 p  64 . 896  ]( 10 2

For p  3 . 2 MPa   1 .0 2 5  1 0

[ 0 . 7 ( 0 . 02 ) 3

2

 3 .3( 0 .1) ] 2

(1)

)

  2 5 1 .3 ra d s , Eq.(1) gives.

and 3

2

4E

mm

We have at   0: 3

1 .0 2 5  1 0



20 2 1 0 1 0

p  5 .1 6 7 M P a

( 2 .0 8 3 p ) ,

9

( b ) Thus   p

2

2

2

2

b c c b

 5 .1 6 7 (1 .0 8 3 )  5 .5 9 6 M P a

SOLUTION (16.13) ( a ) Equation (16.26) with a=0: p 

2

E b

c b

2



2

2c

200 ( 10

9

2

)( 0 . 02 ) 300

50

 50

2 ( 300 )

2

2

 38 . 89 MPa

Then 

 , max

 p

2

2

2

2

c b c b

 38 . 89

300 300

2

 50

2

2

 50

2

 41 . 11 MPa

( b ) Equation (16.35) with b=0.05 m, c=0.3 m, p=0,   7 .8 k N  m , and E  2 0 0 G P a : 0 . 02 ( 10

3

)   

b  4E

2

[ 0 .7 b

2

 3 . 3 c ]  145 . 64  10 2

Solving,   3 7 0 .6

ra d s . Thus

n  3 7 0 .6 ( 6 0 2  )  3 5 3 9 rp m

264

2

 12

SOLUTION (16.14) ( a ) From Eq. (16.17), we have p    ,m ax

2

2

2

2

c b b c

 30

2

2

2

2

( 0 .1 2 )  ( 0 .0 6 ) ( 0 .0 6 )  ( 0 .1 2 )

 18 M Pa

( b ) Using Eq. (16.27a): F  2  b p fl  2  ( 0 .0 6 )(1 8  1 0 )( 0 .1 8 )( 0 .2 ) 6

 2 4 4 .3 k N

( c ) By Eq. (16.27b): T  F b  2 4 4 .3 ( 0 .0 6 )  1 4 .6 6 k N  m

SOLUTION (16.15)    4 I 

 2

 m a x  2 4 0 0 ( 2  6 0 )  2 5 1 .3 ra d s 

(b  a )l   4

4

2

 m in  1 2 5 .7 ra d s

[ 0 .2  0 .0 5 ]( 6 0 )( 7 .8 )  1 .1 7 2 N  m  s 4

4

2

Therefore T   

I (  m a x   m in ) 2

1 2

2

or T 

2

2

1 .1 7 2 ( 2 5 1 .3  1 2 5 .7 ) 2 (4 )

 2 .2 0 8 k N  m

SOLUTION (16.16) (a) I 

 2



(b  a )l  

 m ax 

4

4

3000 60

[ 0 .2 5  0 .0 2 5 ]( 7 .8 )( 6 0 )  2 .8 7 1 N  m  s 4

2

4

( 2 )  1 0 0 ,

2

 m in  0 .9 (1 0 0  )  9 0  ra d s

Equation (16.32) with p=0:   , max  

( b ) E k 

1 2

 4

2

[( 1   ) a

7 ,8 0 0 (1 0 0  )

2

2

 (3   )b ] 2

[ 0 .7 ( 0 .0 2 5 )  3 .3 ( 0 .2 5 ) ]  3 9 .7 8 M P a 2

4

I (  max   min )  2

2

1 2

2

( 2 . 871 )( 100

2

 90

2

)

 26 . 919

2

kN  m

SOLUTION (16.17)

Dimensions are in millimeters.

A2

25 50

B

A

25

A1

r A  ri  2 1 5 m m , A  12 , 500 r 

150

50

A1 r1  2 A 2 r2 A1  2 A 2

mm 

rB  4 1 5 m m

2

( 5 0  1 0 0 )( 2 1 5  2 5 )  2 ( 2 5 1 5 0 )( 4 1 5  7 5 ) 5 0  1 0 0  2 ( 2 5 1 5 0 )

 300 m m

r

(CONT.)

265

16.17 (CONT.) Equation (16.50): R 

A



12, 500

 dA r



265 dr r

100 215





 2 8 8 .4 3 9 6 m m

415

25 265

dr r

e  r  R  3 0 0  2 8 8 .4 3 9 6  1 1 .6 0 4 m m

Equations (16.55a): (  ) A  

100  

P A

[1 

P 1 2 ,5 0 0

r ( R  rA ) e rA

[1 

]

3 0 0 ( 2 8 8 .4 3 9 6  2 1 5 ) (1 1 .5 6 0 4 )( 2 1 5 )

]

or P  1 2 6 .7 k N

(  ) B  

100  

P A

[1 

P 1 2 ,5 0 0

r ( R  rB )

[1 

e rB

]

3 0 0 ( 2 8 8 .4 3 9 6  4 1 5 ) (1 1 .5 6 0 4 )( 4 1 5 )

]

or P  1 8 0 .8 k N

SOLUTION (16.18) ro  ri  h  5 0  4 0  9 0 m m A  b h  ( 2 0 )( 4 0 )  8 0 0 m m

2

We have h

R 

ln

ro

40



ln

1

 6 8 .0 5 1 9

50

ri

r 

90

( ri  r )  7 0 m m

2

e  r  R  1 .9 4 8 1 m m

( a ) Using Eq.(16.52): i  



(b) 

7 0 0 ( 6 8 .5 1 9  5 0 ) 8 0 0 (1 0

6

7 0 0 ( 6 8 .0 5 1 9  9 0 )

o

 

o

  i 

8 0 0 (1 0

6

Mc I

  1 6 2 .2 M P a

) (1 .9 4 8 1) ( 0 .0 5 )

 1 0 9 .5 M P a

) (1 .9 4 8 1) ( 0 .0 9 )



7 0 0 ( 0 .0 2 ) 1

( 0 .0 2 ) ( 0 .0 4 )

 1 3 1 .3 M P a 3

12

266

SOLUTION (16.19) h

ri  r 

 2 0 0  3 2 .5  1 6 7 .5 m m

2 h

ro  r 

 2 0 0  3 2 .5  2 3 2 .5 m m

2

A  b h  ( 4 5 )( 6 5 )  2 9 2 5 m m

2

Therefore h

R 

ro

ln

65

 ln

2 3 2 .5

 1 9 8 .2 2 7 m m

1 6 7 .5

ri

e  r  R  2 0 0  1 9 8 .2 2 7  1 .7 7 3 m m

( a ) Applying Eq.(16.52): i  

M ( R  ri )

1 .5  1 0 (1 9 8 .2 2 7  1 6 7 .5 ) 3

 

A e ri

  5 3 .0 6 M P a

( 2 9 2 5 ) (1 .7 7 3 ) (1 6 7 .5 )

( b ) Use Eq. (16.52): 

o

 

M ( R  ro )

1 .5  1 0 (1 9 8 .2 2 7  2 3 2 .5 ) 3

 

A e ro

 4 2 .6 4 M P a

( 2 9 2 5 ) (1 .7 7 3 ) ( 2 3 2 .5 )

SOLUTION (16.20)

45 mm

rA  1 2 5 m m ,

5 mm

5 mm

A  325

A 25 mm

B

r 

A1  A 2



2

r

Equation (16.50):

A1 r1  A 2 r2

mm

A1

A2

R 

rB  1 7 0 m m

A



325

 dA r



130

25

125

dr r

2 5 ( 5 )(1 2 7 .5 )  ( 4 0  5 )(1 5 0 ) 125 200





 1 3 9 .9 7 5 3 m m

170

5

130

dr r

 1 4 1 .3 4 6 2 m m

e  r  R  1 .3 7 9 8 m m

Equations (16.53), with M   P ( r  2 5 )   1 6 6 .3 4 6 2 P and P   P : (  ) B 

P A

120 

P 325

[1 

[1 

( r  2 5 )( R  rB ) e rB

]

1 6 6 .3 4 6 2 (1 3 9 .9 7 5 3  1 7 0 ) (1 .3 7 9 8 )(1 7 0 )

]

or P  1 .9 2 2 k N

267

SOLUTION (16.21) h

R 

ln

60



ro

ln

1 2

 2 4 8 .7 9 5 4 m m

220

ri

r 

280

1

( ri  ro ) 

(220  280)  250 m m

2

A  ( 6 0 )( 6 0 )  3 6 0 0 m m

2

e  r  R  2 5 0  2 4 8 .7 9 5 4  1 .2 0 4 6 m m

Using Eq.(16.52): i  

M ( R  ri )

M ( 2 4 8 .7 9 5 4  2 2 0 )

 1 5 0 (1 0 )   6

;

A e ri

3 6 0 0 (1 0

6

, M  4 .9 7 k N  m

)(1 .2 0 4 6 )( 0 .2 2 )

Similarly, 

o

 

M ( R  ro )

M ( 2 4 8 .7 9 5 4  2 8 0 )

; 1 5 0 (1 0 )   6

A e ro

3 6 0 0 (1 0

6

,

M  5 .8 4 k N  m

)(1 .2 0 4 6 )( 0 .2 8 )

Therefore M

a ll

 4 .9 7 k N  m

SOLUTION (16.22) A  5 0 b  2 (1 5 0  2 5 )  5 0 b  7 5 0 0

We have rA  1 5 0 m m and rB  3 5 0 m m . Applying Eq. (16.52): 

A

 

B

 

(  M )( R  r A )



(  M )( R  rB )

A e rA

A e rB

from which  rB ( R  r A )  r A ( R  rB ) ,

or

R  210 m m

Then

R 

A

 or

350(R  150)  150(R  350)

A  210

dA r

 200 b d r   1 5 0 r 



350 200

2(25)dr   210  r 

 6 0 .4 1 3 2 b  5 8 7 5 .9 6 5 8

Hence or

5 0 b  7 5 0 0  6 0 .4 1 3 2 b  5 8 7 5 .9 6 5 8 b  156 m m

268

4 7  b ln  4 0 ln   3 4 

SOLUTION (16.23) r  150 m m

A  5000 m m

2

M  ( R  d )P

Table 16.1, Case A: R 



h ln

ro r2

100 ln

2 1

 1 4 4 .2 6 9 5 m m

e  r  R  1 5 0  1 4 4 .2 6 9 5  5 .7 3 0 5 m m

Equation (16.53): (  ) A 

P A



( r  d ) P ( R  rA ) A e rA

]

P A

( r  d )( R  r A )

[1 

e rA

]

or 3

2 5 (1 0 )

80 

5000

[1 

(1 5 0  d )(1 4 4 .2 6 9 5  1 0 0 ) ( 5 .7 3 0 5 )(1 0 0 )

]

1 5 ( 5 7 3 .0 5 )  (1 5 0  d ) ( 4 4 .2 6 9 5 )  6 , 6 4 0 .4 2 5  4 4 .2 6 9 5 d

Solving, d  4 4 .1 7 m m

SOLUTION (16.24) Locate centroid : 120 mm 50 mm

A2

r 

C A1

O

75 mm

 80 mm

A1 r1  A 2 r2 A1  A 2 4 5 0 0 (1 2 0 )  ( 3 0 0 0 ) (1 6 0 ) 4500  3000

 136 m m

r

1 2

R 

h ( b1  b 2 ) 2

( b1 ro  b 2 ri ) ln

ro ri

 h ( b1  b 2 )

( 0 .5 ) (1 2 0 ) ( 7 5  5 0 ) 2



[ ( 7 5 ) ( 2 0 0 )  ( 5 0 ) (8 0 ) ] ln

200

 1 2 7 .1 3 3 0 m m

P

 (1 2 0 ) ( 7 5  5 0 )

80 e  r  R  8 .8 6 7 m m

( a ) Use Eq.(16.55a), 

A

 

P

[1 

r ( R  rA )

A

A

B ]

O

M=P r

e rA

P

r

 (1 3 6 ) (1 2 7 .1 3 3 0  8 0 )    1     1 0 0 .4 M P a 6 7 5 0 0 (1 0 )  (8 .8 6 7 ) (8 0 )  75000

(CONT.)

269

16.24 (CONT.) ( b ) From Eq.(16.55b): 

P

 

B

r ( R  rB )

[1 

A 75000

 

]

e rB

7 5 0 0 (1 0

6

 (1 3 6 ) (1 2 7 .1 3 3 0  2 0 0 )  1     4 5 .9 M P a ) (8 .8 6 7 ) ( 2 0 0 ) 

SOLUTION (16.25) A d

r  100 m m

4  7854 m m

2

2

From Table 16.1, Case B: R 



A 2 (r 

r

2

c

2

 9 3 .3 0 1 5

7854 2  (1 0 0 

)

2

100 50

2

)

e  r  R  6 .6 9 8 5 m m

(a)

Equations (16.55a): (  ) A  

P A

[1 

r ( R  rA ) e rA

]

or 150 

P 7854

(  ) B 

(b)

P A

1 0 0 ( 9 3 .3 0 1 5  5 0 )

[1 

( 6 .6 9 8 5 )( 5 0 )

[1 

r ( R  rB ) e rB

]

P  8 4 .5 8 k N

], 3

8 4 .5 8 (1 0 ) 7 8 5 4 (1 0

6

)

[1 

1 0 0 ( 9 3 .3 0 1 5  1 5 0 ) ( 6 .6 9 8 5 )(1 5 0 )

]

 50 M Pa

SOLUTION (16.26) rA  1 2 5 m m , r 

1

rB  2 2 9 m m , 1

( ro  ri ) 

2

a  100 m m ,

b  50 m m

(229  125)  177 m m

2

From Table 16.1 A   a b   (1 0 0 )(5 0 )  5 0 0 0  m m



dA



r

2 b

[r 

r

2

2

P

 a ] 2

a 

2 (5 0 )

[1 7 7 

1 7 7  1 0 0 ]  9 7 .2 4 9 5 m m 2

2

r

A

100

Hence A

R 



dA A



5 0 0 0

 1 6 1 .5 2 1 5 m m

9 7 .2 5

P M=-P r B

r

(CONT.)

270

16.26 (CONT.) e  r  R  1 5 .4 7 8 5 m m

Equation (16.55a) with M   P r : 



A

P

[1 

r ( R  rA )

A

3

 1 7 7 (1 6 1 .5 2 1 5  1 2 5 )  1   )  (1 5 .4 7 8 5 ) (1 2 5 ) 

1 2 5 (1 0 )

]

e rA

5 0 0 0 (1 0

6

 3 4 .5 4 M P a





B

P

[1 

r ( R  rB )

A

3

 1 7 7 (1 6 1 .5 2 1 5  2 2 9 )  1   )  (1 5 .4 7 8 5 ) ( 2 2 9 ) 

1 2 5 (1 0 )

]

e rB

5 0 0 0 (1 0

6

  1 8 .8 6 M P a

SOLUTION (16.27) rA  1 3 0 m m r 

1

rB  2 0 0 m m

( ro  ri )  1 6 5 m m

2

A   a b   ( 7 0 )(3 5 )  2 4 5 0  m m



dA



2 b

r

[r 

r

2

2

 a ] 2

P

a 

2 (3 5 )

[1 6 5 

1 6 5  7 0 ]  4 8 .9 6 0 1 m m 2

2

70

A

R 



dA A



r

2 4 5 0

A

 1 5 7 .2 0 7 6 m m

4 8 .9 6 0 1

P

r

e  r  R  7 .7 9 2 4 m m

M=-P r B

Using Eq.(16.55) with M   P r : 

B



P

[1 

A

r ( R  rB )

]

e rB

 9 0 (1 0 )  6

Pa ll 2 4 5 0  (1 0

6

 (1 6 5 ) (1 5 7 .2 0 7 6  2 0 0 )  1   )  ( 7 .7 9 2 4 ) ( 2 0 0 ) 

Solving Pa ll  1 9 6 .2 k N

271

SOLUTION (16.28) 1

A 

bh

2

The section width w varies linearly with r. Thus (1) w  c 0  c1 r Since w  b

( a t r  ri )

w  0

dr (2)

( a t r  ro )

r

Substituting Eq.(1) into Eq.(2); c1  

b

c0 

h

w

O

b

b ro h

ri

h r

Then



dA A





r

ro ri

w

c 0  c1 r

dr 

r

dr

r

Inserting c1 and c 0 into this, after integrating and rearranging, we have dA



 b(

ro

r

ln

h

ro

 1)

ri

Therefore 1

A

R 





dA r

2

ro

ln

h

h ro

1

ri

SOLUTION (16.29) r A  c

2

r

Through use of the polar coordinates we write: w  2 c s in 

r  r  c cos 

d r  c s in  d 

C

d A  w d r  2 c s in  d  2

2

w



O

c



dA r





2 c s in 

0

r  c cos 

 2

2

2

d



c (1  c o s  )

0

r  c cos 



2

ccos

2

 2



 c cos   (r  c ) 2

2

2

2

r  c cos 

0

 2  (r  c cos  )d   2(r 0

2

r

dr

2

 c )



2

0

d r  c cos 

(CONT.)

272

16.29 (CONT.)

r c 2



 2r

0

 2 c s in 



 2(r

0

2

2

c ) 2

ta n

r c 2

2

ta n





2

1

r c

2

0

This gives



dA

 2 ( r 

r c ) 2

2

r

SOLUTION (16.30) A 

1 2

( b1  b 2 ) h

ri

h w

The section width w varies linearly with r as

b2

w  c 0  c1 r

(1)

( a t r  ri )

w  b2

( a t r  ro )

O

r

dr

We have w  b1

b1

r

(2)

Introduce Eq.(1) into Eq.(2), then solve for c 0 and c1 c0 

ro b1  ri b 2

c1  

h

b1  b 2

(3)

h

Then, we write



dA r





ro

w

ri

dr 

r



ro

c 0  c1 r

ri

r

d r  c 0 ln

ro ri

 c 1 ( ro  ri )

This gives, substituting Eqs.(3):



dA

ro b1  ri b 2



r

h

ln

ro ri

 ( b1  b 2 )

Hence 1 A

R 



dA r



2

h ( b1  b 2 ) 2

( ro b1  ri b 2 ) ln

ro ri

 ( b1  b 2 )

SOLUTION (16.31) As in Example 16.7, we take c 1  c 2  0 in Eq.(16.60). Then, substituting Eq.(16.60) into (16.56a) we obtain an expression for the radial moment M r . (CONT.)

273

16.31 (CONT.) Boundary conditions: w  0

M

 0

r

(r  a )

now give p0a

 c4 

2

c3a

4

 0

64 D

p0a

c3  

2

32 D

3  1 

from which c 4  p 0 a ( 5   ) 6 4 (1   ) D 4

The plate deflection is thus p0a

w 

4

r

p0a

w m ax 

At r=0:

4

3  1 

( a4  2

64 D

4

r

2 2

a

5 1 



(1)

)

5 1 

64 D

Substituting Eq.(1) into Eq.(16.56b): p0

M 

[( 3   ) a

16

2

 ( 1  3 ) r ] 2

At r=a: 6 M

  ,m ax 

t

3 (1  ) p 0



2

4

( at )

2

SOLUTION (16.32) Refer to Example 16.7. At r=a: 

r



6M t

 

r

2

S

( a ) 1   2  or

y

n

1 2

p0a

3 4

2

  2,

2

t

p0 ( t ) (

a

S



2

2

2

p 0 ( t ) [ 16  4

y

1

S

y

)

n

1 4



3 4

6M t

S

)  S

n  2

,

n

( b )  1   1 2   2  ( or a

2

a

;

p0 ( t )

2

 

y

 

4t

2

2

 

a

2

p0a

1

y

n

t

(a)

P0



2

2

2

3 16



t

2

9 16

] (

Sy

2

7 4

) ;

n

p0 ( t )



Sy n

Solving, n  1.5 1 2

S

y

p0

(a)

SOLUTION (16.33) Table 16.2: w m ax  1 .2 5 

Also



or

m ax

3 16

p0a

(1   ) ( 5   )

Et

2

3

6

3 16

( 0 .7 )(5 .3 )

 Sy 

3 8

3 .5 (1 0 )( 4 0 ) 9

2 0 0 (1 0 ) t

(3   ) p 0

a t

2

3

2

t  0 .2 5 m m

,

5 6 0  1 .2 3 8

;

t  0 .5 6 m m

274

3 .5 ( 4 0 ) t

2

SOLUTION (16.34) From Example 16.7 1  

p0

a

(t)

4

2  

2

3 4

a

p0 ( t ) S

We have  1   1 2   2  ( 2

2

p 0 ( at ) [ 161  2

or

4

4 ( 10

or

10

4

)a

( 10 ) ( 10

4

 12



3 16

y

)

n

2 6

]  ( 150 2 10 ) ;

9 16

 12 , 857 . 14 (10

)

2

12

p 0 ( at ) ( 167 )  5 , 625 ( 10

2

2

4

12

)

), a  238 . 1 mm

SOLUTION (16.35) r  1 7 5  1  1 7 4

r  7 5  1  7 4

F

mm,

mm,

F   ri p z ,

p   pz,

2

t  2 mm

ri  7 3 m m

  90 , o

p  100 kPa

N

Equation (16.64b): N  



and





2

 ( 0 .0 7 3 ) (  1 0 0 )

 

F 2  r s in 

2  ( 0 .0 7 4 ) (1 )

 3 .6

kN

 1 . 8 MPa

3 , 600 0 . 002

Then, Eq.(16.64a):  r

or



 r

6

pz

 

1 .8 ( 1 0 )

;

t

0 .1 7 4



 0 .0 7 4



3

1 0 0 (1 0 ) 0 .0 0 2

   2 . 93 MPa

SOLUTION (16.36) N  is maximum at A (    9 0 ): o

  ,m ax 

pa ( b a 2 ) ( b a )t

S



y

n

240 1. 2

;

2 . 2 ( 5 0 )( 2 5 0  2 5 )



( 25050 )t

or t  0 . 619 

Similarly

n



mm pr

240 1 .2

;

2t



2 . 2 ( 50 )

, t  0 . 275

2t

mm

SOLUTION (16.37) 1   

pa

2  x 

t

Pa 2t

( a ) Since  1 and  2 are of the same sign (  3  0 ) : 1  0 

S

y

n

;

pa t



S

y

n

,

t 

pan S

y

(CONT.)

275

16.37 (CONT.) S

( b )  1   1 2   2  ( 2

(

(c)

2

pa

) [1  2

t

1





Su



2

S uc



1 2

1 n

1 4

S

] (

y

n

pa

;

y

)

n

) , t  2

pa



tS u

2

3 2



4 tS u

1 n

pan S

y

3 pan

t 

,

4 Su

SOLUTION (16.38) (a)

p  200   x  200  15 (16 )  440





all

pa t

pr

; t 



3

440 ( 10 )( 5 )



150 ( 10

all

6

)

 14 . 67 mm

( b ) p  200  15 [ 3 (16 4 )]  380 t 

pr





3

380 ( 10 )( 5 )

all

150 ( 10

6

kPa

 12 . 67 mm

)

( c ) Top-end plate, with p  200 kPa  m ax 

3 4

t  158

or

a

(Fig.16.18):

1 5 0 (1 0 ) 

2

6

p( t ) ;

3 4

( 2 0 0  1 0 )( t )

2

3 4

( 4 4 0  1 0 )( t )

2

3

5

mm

Bottom-end plate, with p  440  m ax 

kPa

3 4

a t

kPa :

1 5 0 (1 0 ) 

2

6

p( ) ;

3

5

or t  235

mm

SOLUTION(16.39) We have r  a . The loading is p   p z   a ( 1  c o s  ) . The resultant force F for the part intercepted by  : F  2 a

2





 a ( 1  c o s  ) s in  c o s  d 

0

 2a  [ 6  3

1

1 2

c o s  (1  2

2 3

c o s  )]

Substitution of this into Eqs.(16.65) and rearranging yield the equations quoted in this problem.

SOLUTION (16.40) ( a ) L w  1 .7 2 a t  1 .7 2 7 5 0  1 2  1 6 3 .2 m m (b) 

cr

 0 . 605

Et a

 0 . 605

210  10

9

750

( 12 )

 2 , 033

MPa

No failure in buckling, since  c r  S y and material would yield.

276

SOLUTION (16.41) 

cr

 0 .6 0 5

Et a

 0 .6 0 5

9

2 0 0  1 0 (1 0 ) 600

 2, 017 M P a

Thus Pc r  2  a t  c r

 2  ( 6 0 0 ) (1 0 ) ( 2 0 1 7 )  7 6 , 0 3 9 k N

End of Chapter 16

277

CHAPTER 17

FINITE ELEMENT ANALYSIS IN DESIGN

SOLUTION (17.1) We have (

AE L

)1,2 

A(2 E )

6 AE



L 3

(

L

AE L

)3 

2 A(E )



L 3

6 AE L

There are four displacement components ( u 1 , u 2 , u 3 , u 4 ) and so the order of the system matrix is 4x4. Using Eq. (17.1): [ k ]1  [ k ] 2  [ k ] 3 

 1  1 

6 AE  1  L 1

( a ) System matrix, [ K ]  [ k ]1  [ k ] 2  [ k ] 3 , by superposition is thus u1

u2

 1  6 AE 1  [K ]  L  0   0

u3

1

0

(1  1)

1

1

(1  1)

0

1

u4

u1

u2

u3

u4

0   0 6 AE    1 L  1 

 1  1   0   0

1

0

2

1

1

2

0

1

0   0   1  1 

( b ) Refer to Eq. (17.7b):  F1 x   F2 x  F  3x F  4x

  AE    L   

 1  1   0   0

1

0

2

1

1

2

0

1

0   0   1  1 

 u1    u2    u  3 u   4

(1)

Boundary conditions are u 1  u 4  0 and F x 3  P . Equation (1) is then 0 AE  2     L 1 P

Solving u 2 

PL 9 AE

 1  u 2    2  u3 

u3 

PL 18 AE

( c ) Equations (1) result in  F1 x   F2 x  F  3x F  4x

  6 AE    L   

 1  1   0   0

1

0

2

1

1

2

0

1

0   0   1  1 

The reactions are R1 

2 3

P 

R4 

1

P 

3

278

   PL  PL  

 2 P 3    9 AE  L P       18 AE  AE 0      0   P 3  0

SOLUTION (17.2) We have (

AE L

)1 

AE

(

AE

L

L

[ k ]1  [ k ] 2 

AE  1  L 1

AE

)2 

(

AE

L

L

)3 

4 AE

 0 .8

5L

AE L

Equation (17.1):  1  1 

[ k ]3 

A E  0 .8  L   0 .8

 0 .8   0 .8 

( a ) System matrix, [ K ]  [ k ]1  [ k ] 2  [ k ] 3 , by superposition is then  1  AE 1  [K ]  L  0   0

1

0

(1  1)

1

1

(1  0 .8 )

0

 0 .8

  0   0 .8   0 .8  0

( b ) Refer to Eq. (17.7b):  F1 x   F2 x  F  3x F  4x

  AE    L   

u1

u2

u3

 1  1   0   0

1

0

2

1

1

1 .8

0

 0 .8

u4   0   0 .8   0 .8  0

 u1    u2    u  3 u   4

Boundary conditions are u 1  u 4  0 , We have F x 3  P . Thus 0 AE  2     L 1 P

1  u2    1 .8   u 3 

Solving PL

u2  

2 .6 A E

u3 

PL 1 .3 A E

( c ) Equations (1) yield  F1 x   F2 x  F  3x F  4x

  AE    L   

 1  1   0   0

1

0

2

1

1

1 .8

0

 0 .8

  0   0 .8   0 .8  0

The reactions are R1 

1 2 .6

P 

R4 

0 .8

P 

1 .3

279

  P  P  

   P 2 .6     2 .6  L 0       1 .3  A E P      0    1 .6 P 2 .6 

0

(1)

* SOLUTION (17.3) We have A E L the same for all elements. Thus, Eq. (17.1):  1  1 

AE  1  L 1

[ k ]1  [ k ] 2  [ k ] 3  [ k ] 4 

( a ) By superposition, we have  1  1 AE   0 [K ]  L   0  0 

1

0

0

2

1

0

1

2

1

0

1

2

0

0

1

0  0  0   1 1 

(b)  F1 x  F  2x   F3 x F  4x  F 5 x

   AE    L   

 1  1   0   0  0 

1

0

0

2

1

0

1

2

1

0

1

2

0

0

1

0  0  0   1 1 

 u1    u  2   u3 

(1)

u   4  u 5 

Boundary conditions: u 1  0 and u 5   . We have F 2 x  F 3 x  F 4 x  0 . Hence,  0 AE   20  L  0  

1  0   0

2

1

0

1

2

1

0

1

2

0  0   1 

 0   u  2    u3    u  4   

This equation may be rewritten, after transposing the product of the appropriate stiffness coefficients by the known displacement (  ) to the left side. In so doing,   0   0  AE    L

   AE   L   

 2  1   0

1 2 1

0  1  2 

u2    u3    u4 

Solving u2 

 4

u3 

 2

u4 

3 4

(CONT.)

280

17.3 (CONT.) (c)

Equations (1) give then  F1 x  F  2x   F3 x

   AE    L   

F  4x  F 5 x

 1  1   0   0  0 

1

0

0

2

1

0

1

2

1

0

1

2

0

0

1

 0   4      4 0     AE       2    0      L 3 4 0          4 

0  0  0   1 1 

The reaction is R1 

1

AE 

4L

SOLUTION (17.4) We have AE L



1

(1 2 0 0  1 0

6

)(7 2  1 0 )  5 4  1 0 9

6

N m

1 .6

c  cos 30

o



s  s in 3 0

3 2

o

1 2

3 4



( a ) Through the use of Eq. (17.14), we have 3  4  3  4 6 [ k ]1  5 4 (1 0 )  3   4  3  4



3 4



1 4

 

3

3 4 3 4

4

3

1 4

4

   14   3 4  1  4  3

4

or 0 .7 5   0 .4 3 3 6 [ k ]1  5 4 (1 0 )    0 .7 5    0 .4 3 3

0 .4 3 3

 0 .7 5

0 .2 5

 0 .4 3 3

 0 .4 3 3

0 .7 5

 0 .2 5

0 .4 3 3

 0 .4 3 3    0 .2 5  N m 0 .4 3 3   0 .2 5 

( b ) Equation (17.11b), { } e  [ T ]{ } e :  u1   0 .8 6 6     0 .5  v1       0 u  3  v   0  3

0 .5

0

0 .8 6 6

0

0

0 .8 6 6

0

 0 .5

  0  0 .5   0 .8 6 6  0

 1 .5   1 .8 9 9       1 .2   0 .2 8 9       mm   2 .2    1 .9 0 5   0   1 .1 0 0     

(CONT.)

281

17.4 (CONT.) ( c ) Inserting the given data into (17.15) with i=1 and j=3, we obtain the axial force 6 F1  F1 3  5 4 (1 0 )  

3

1 2

2

  2 .2  1 .5  3   (1 0 )   2 0 5 .4 k N   0  1 .2 

So, axial stress in the element equals  1  F1 A   1 7 1 .2 M P a Comment: The negative sign denotes compression.

SOLUTION (17.5) We have E  2 0 0 G P a (by Table B.1). Refer to Solution of Prob. 17.4. AE L

1



(1 2 0 0  1 0

6

)( 2 0 0  1 0 )  1 5 0  1 0 9

6

N m

1 .6

c  cos 60

o

1 2

s  s in 6 0



o

3 2

( a ) From Eq. (17.14):  1 4  3  4 6 [ k ]1  1 5 0 (1 0 )  1  4  3  4

3 4 3 4 3 4 3 4

0 .2 5   0 .4 3 3 6  1 5 0 (1 0 )    0 .2 5    0 .4 3 3

 

1 4

   43   3 4  3  4 



3 4 1 4 3 4

3

4

0 .4 3 3

 0 .2 5

0 .7 5

 0 .4 3 3

0 .4 3 3

0 .2 5

0 .7 5

0 .4 3 3

 0 .4 3 3   0 .7 5  0 .4 3 3   0 .7 5 

( b ) Equation (17.11b), { } e  [ T ]{ } e :  u1   0 .5     0 .8 6 6  v1       u 0  3  v  0   3

( c ) F1  F1 3  1 5 (1 0 )  12 6



3 2

0 .8 6 6

0

0 .5

0

0

0 .5

0

 0 .8 6 6

  0  0 .8 6 6   0 .5  0

 1 .5   1 .7 8 9       1 .2    0 .6 9 9       mm   2 .2    1 .1       0   1 .9 0 5 

  2 .2  1 .5  3   (1 0 )   4 3 3 .4 k N   0  1 .2 

 1  F1 A   3 6 1 .2 M P a

282

SOLUTION (17.6)

Table 17.6 Data for truss of Fig. P17.6. E le m e n t

 o

1

45

2

315 o

3

0

4

90

5

90

o

o

o

c

s

2 2

2 2 

2 2

c

2 2

2

s

2

cs

1 2

1 2

1 2

1 2

1 2

1 2

1

0

1

0

0

0

1

0

1

0

0

1

0

1

0

Equation (17.14) u1

[ k ]1 

 1  1 2 AE  2L 1  1

v1

u2

2

1 2

1 2

2

1 2

1 2

2

1 2

1 2

2

1 2

1 2

v2 1 2  1 2  1 2  1 2

Similarly, for elements 2, 3, 4, and 5, we obtain

u1

[ k ]2 

 1  2 AE 1  2L 1   1

u1  1  0 AE  [ k ]3  L 1   0

v1

v1

u3

2

1 2

1 2

2

1 2

1 2

2

1 2

1 2

2

1 2

1 2

u4

v4

0

1

0

0

0

1

0

0

0  0  0  0

u4

v4

u2

v2

0  AE 0  [ k ]4  L 0  0

0

0

1

0

0

0

1

0

0  1  0  1

v3 1 2  1 2  1 2   1 2

u3 0  AE 0  [ k ]5  L 0  0

283

v3

u4

0

0

1

0

0

0

1

0

v4 0  1  0  1

SOLUTION (17.7) Table P17.7 Data for the truss of Fig P17.7 E le m e n t

L e n g th ( m )



1

7 .5

3 6 .9

2

6

0

3

4 .5

90

4 .5

0

4 .5

2

s

0 .8

0 .6

1

0

o

4 5

o

c

o

135

2

2

cs

s

0 .6 3 9

0 .4 8

0 .3 6

1

0

0

0

1

0

0

1

1

0

1

0

0

 0 .7 0 7

0 .7 0 7

0 .5

 0 .5

0 .5

o

o

c

Apply Eq.(17.14):   AE  [ k ]1  7 .5    

  AE  [ k ]2  6 .0    

  AE  [ k ]4  4 .5    

u1

v1

u2

v2

0 . 639

0 . 48

 0 . 639

0 . 48

0 . 361

 0 . 48

0 . 639

 0 . 48

0 . 639

0 . 48

 0 . 361

0 . 48

u1

v1

u3

1

0

1

0

0

0

1

0

1

0

0

0

u3

v3

1

0

1

0

0

0

1

0

1

0

0

0

u4

 0 . 48  u 1   0 . 361 v 1  0 . 48  u 2  0 . 361  v 2

v3

u2

0   0  0   0 

0  AE 0  [ k ]3  4 .5  0  0

u1 v1 u3 v3

v4

v2

u3

v3

0

0

1

0

0

0

1

0

0   1  0   1 

u2

0   0  0   0 

   AE  [ k ]5  4 .5 2    

u3 v3 u4 v4

v2

u2 v2 u3 v3

u4

0 .5

 0 .5

 0 .5

0 .5

0 .5

0 .5

0 .5

0 .5

0 .5

0 .5

 0 .5

 0 .5

v4 0 .5  u 2   0 .5 v 2   0 .5  u 4  0 .5  v 4

SOLUTION (17.8) Table P17.8 Data for the truss of Fig.P17.8 E le m e n t



1

0

2

o

60

o

3

120

4

0

5

o

o

60

o

c

s

c

1

0

0 .5

2

2

cs

s

1

0

0

0 .8 6 6

0 .2 5

0 .4 3 3

0 .7 5

 0 .5

0 .8 6 6

0 .2 5

 0 .4 3 3

0 .7 5

1

0

1

0

0

0 .5

0 .8 6 6

0 .2 5

0 .4 3 3

0 .7 5

(CONT.)

284

17.8 (CONT.) ( a ) Use Eq.(17.14):

  AE  [ k ]1  L   

u1

v1

u4

1

0

1

0

0

0

1

0

1

0

0

0

u1

  AE  [ k ]2  L   

  AE   [ k ]3  L   

  AE  [ k ]4  L   

v4

0   0  0   0 

u1 v1 u4 v4

v1

u2

v2

0 .2 5

0 .4 3 3

 0 .2 5

0 .4 3 3

0 .7 5

 0 .4 3 3

0 .2 5

 0 .4 3 3

0 .2 5

0 .4 3 3

 0 .7 5

0 .4 3 3

 0 .4 3 3    0 .7 5  0 .4 3 3   0 .7 5 

u4

v4

u2

v2

0 .2 5

 0 .4 3 3

 0 .2 5

0 .4 3 3

0 .7 5

0 .4 3 3

0 .2 5

0 .4 3 3

0 .2 5

 0 .7 5

0 .4 3 3

u2

v2

u3

1

0

1

0

0

0

1

0

1

0

0

0

v1 u2 v2

0 .4 3 3    0 .7 5   0 .4 3 3   0 .7 5 

 0 .4 3 3

v3

0   0  0   0 

u1

u2 v2 u4 v4

u3

u2 v2 u3 v3

  AE  [ k ]5  L   

v3

u4

v4

0 .2 5

0 .4 3 3

 0 .2 5

0 .4 3 3

0 .7 5

 0 .4 3 3

0 .2 5

 0 .4 3 3

0 .2 5

0 .4 3 3

 0 .7 5

0 .4 3 3

 0 .4 3 3    0 .7 5  0 .4 3 3   0 .7 5 

u3 v3 u4 v4

( b ) Global Stiffness Matrix [ K ]  u1      AE  L      

v1

u2

v2

u3

v3

u4

1. 2 5

0 .4 3 3

 0 .2 5

 0 .4 3 3

0

0

1

0 .4 3 3

0 .7 5

 0 .4 3 3

 0 .7 5

0

0

0

0 .2 5

 0 .4 3 3

1.5

0

1

0

0 .4 3 3

 0 .7 5

0

1.5

0

0

 0 .2 5 0 .4 3 3

0

0

1

0

1. 2 5

0 .4 3 3

 0 .2 5

0

0

0

0

0 .4 3 3

0 .7 5

 0 .4 3 3

1

0

 0 .2 5

 0 .4 3 3

1.5

0

0

 0 .4 3 3

 0 .7 5

0

 0 .2 5 0 .4 3 3

0 .4 3 3  0 .7 5

v4   0  0 .4 3 3    0 .7 5   0 .4 3 3    0 .7 5   0  1.5  0

u1 v1 u2 v2 u3 v3 u4 v4

(CONT.)

285

17.8 (CONT.)  R1 x  R  1y  0   P  Q   0  R  4x R  4y

{ F }  [ K ]{  };

  0     0     u2      v2    K   u   3  v  3      0    0    

SOLUTION (17.9) Table P17.9 Data for the truss of Fig.P17.9 E le m e n t

L e n g th ( in . )



1

7 .2 1 1

5 6 .3 1

2

5

3

o

o

3

90

5

 3 6 .8 7

o

7 .2 1 1

 5 6 .3 1

o

4 5

3 6 .8 7

o

c

s

0 .5 5 5

0 .8 3 2

0 .8

c

2

2

cs

s

0 .3 0 8

0 .4 6 2

0 .6 9 2

0 .6

0 .6 4

0 .4 8

0 .3 6

0

1

0

0

1

0 .8

 0 .6

0 .6 4

 0 .4 8

0 .3 6

0 .5 5 5

 0 .8 3 2

0 .3 0 8

 0 .4 6 2

0 .6 9 2

( a ) Use Eq. (17.14): u1

v1

0 .3 0 8

0 .4 6 2

 0 .3 0 8

0 .4 6 2

0 .6 9 2

 0 .4 6 2

0 .3 0 8

 0 .4 6 2

0 .3 0 8

0 .4 6 2

 0 .6 9 2

0 .4 6 2

u1

v1

0 .6 4

0 .4 8

 0 .6 4

0 .4 8

0 .3 6

 0 .4 8

0 .6 4

 0 .4 8

0 .6 4

0 .4 8

 0 .3 6

0 .4 8

  AE  [ k ]1  7 .2 1 1    

  AE  [ k ]2  5    u2

0  AE 0  [ k ]3  3 0  0

u2

u3

v2

u3

v3

0

0

1

0

0

0

1

0

0   1  0   1 

v2

 0 .4 6 2    0 .6 9 2  0 .4 6 2   0 .6 9 2 

u1 v1 u2 v2

v3

 0 .4 8    0 .3 6  0 .4 8   0 .3 6 

u1 v1 u3 v3

u2 v2 u3 v3

(CONT.)

286

17.9 (CONT.) u3

[k ]4

  AE    5   

v3

u4

0 . 64

 0 . 48

 0 . 64

0 . 48

0 . 36

0 . 48

0 . 64

0 . 48

0 . 64

0 . 48

 0 . 36

 0 . 48

u2

   AE  [ k ]5  7 .2 1 1    

v4

0 . 48  u 3   0 . 36 v 3   0 . 48  u 4  0 . 36  v 4

v2

u4

0 .3 0 8

 0 .4 6 2

 0 .3 0 8

0 .4 6 2

0 .6 9 2

0 .4 6 2

0 .3 0 8

0 .4 6 2

0 .3 0 8

0 .4 6 2

 0 .6 9 2

 0 .4 6 2

v4

0 .4 6 2    0 .6 9 2   0 .4 6 2   0 .6 9 2 

u2 v2 u4 v4

( b ) Global Stiffness Matrix [ K ] 

       AE      

u1

v1

u2

v2

0 .1 7 1

0 .1 6

 0 .0 4 3

 0 .0 6 4

 0 .1 2 8

 0 .0 9 6

0

0 .1 6

0 .1 6 8

 0 .0 6 4

 0 .0 9 6

 0 .0 9 6

 0 .0 7 2

0

0 .0 4 3

 0 .0 6 4

0 .0 8 5

0

0

0 .0 6 4

 0 .0 9 6

0

0 .5 2 5

0

0 .1 2 8

 0 .0 9 6

0

0

0 .2 5 6

0

0 .0 9 6

 0 .0 7 2

0

0

0 .4 7 7

0 .0 9 6 0 .1 7 1

 0 .3 3 3

u3

v3

0  0 .3 3 3

0

0

 0 .0 4 3

0 .0 6 4

 0 .1 2 8

0 .0 9 6

0

0

0 .0 6 4

 0 .0 9 6

0 .0 9 6

 0 .0 7 2

{ F }  [ K ]{  };

 R1 x  R  1y  P   0  0   Q  R  4x R  4y

  0     0     u2      v2    K   u   3  v  3      0    0    

287

u4

 0 .0 4 3 0 .0 6 4  0 .1 2 8

 0 .1 6

v4

  0  0 .0 6 4    0 .0 9 6  0 .0 9 6    0 .0 7 2   0 .1 6   0 .1 6 8  0

u1 v1 u2 v2 u3 v3 u4 v4

SOLUTION (17.10)

Table P17.10 Data for the truss of Fig.P17.10 E le m e n t

L e n g th



1

1. 2

0

2 3

c

s

c

1

0

0 .9 2 3 0

o

1.3

2 2 .6 2

0 .5

 90

o

o

o

4

1. 2

0

5

1.3

2 2 .6 2

o

2

2

cs

s

1

0

0

0 .3 8 5

0 .8 5 2

0 .3 5 5

0 .1 4 8

1

0

0

1

1

0

1

0

0

0 .9 2 3

0 .3 8 5

0 .8 5 2

0 .3 5 5

0 .1 4 8

( a ) Use Eq.(17.14);   AE  [ k ]1  1.2    

uA

vA

uC

1

0

1

0

0

0

1

0

1

0

0

0

uA

  AE  [ k ]2  1.3    

0   0  0   0 

uA vA uC vC

vA

uB

vB

 0 .3 5 5    0 .1 4 8  0 .3 5 5   0 .1 4 8 

0 .8 5 2

0 .3 5 5

 0 .8 5 2

0 .3 5 5

0 .1 4 8

 0 .3 5 5

0 .8 5 2

 0 .3 5 5

0 .8 5 2

0 .3 5 5

 0 .1 4 8

0 .3 5 5

uB

0  AE 0  [ k ]3  0 .5  0  0 uB

  AE  [ k ]4  1.2    

vC

vB

uC

vC

0

0

1

0

0

0

1

0

0   1  0   1 

vB

uD

1

0

1

0

0

0

1

0

1

0

0

0

uA vA uB vB

uB vB uC vC

vD

0   0  0   0 

uB vB uD vD

(CONT.)

288

17.10 (CONT.)

  AE  [ k ]5  1.3    

uC

vC

uD

vD

0 .8 5 2

0 .3 5 5

 0 .8 5 2

0 .3 5 5

0 .1 4 8

 0 .3 5 5

0 .8 5 2

 0 .3 5 5

0 .8 5 2

0 .3 5 5

 0 .1 4 8

0 .3 5 5

 0 .3 5 5    0 .1 4 8  0 .3 5 5   0 .1 4 8 

uC vC uD vD

( b ) Global Stiffness Matrix [ K ]         AE      

uA

vA

uB

vB

uC

vC

uD

1. 4 8 9

0 .2 7 3

 0 .6 5 5

 0 .2 7 3

0

0

0 .2 7 3

0 .1 1 4

 0 .2 7 3

 0 .1 1 4

0

0

0

0 .6 5 5

 0 .2 7 3

1. 4 8 9

0 .2 7 3

0

0

0 .2 7 3

 0 .1 1 4

0 .2 7 3

2 .1 1 4

0

 2

 0 .8 3 3

 0 .8 3 3 0

0 .8 3 3

0

0

0

1. 4 8 9

0 .2 7 3

 0 .6 5 5

0

0

0

 2

0 .2 7 3

2 .1 1 4

 0 .2 7 3

0

0

0

 0 .6 5 5

 0 .2 7 3

1. 4 8 9

0

0

0

 0 .2 7 3

 0 .1 1 4

0 .2 7 3

 0 .8 3 3 0

 R Ax  R  Ay  0   0  0   0  P  R  Dy

{ F }  [ K ]{  };

             

 0  0  uB  vB K  u  C v C  uD  0 

vD

  0   0  0   0 .2 7 3    0 .1 1 4  0 .2 7 3   0 .1 1 4  0

            

SOLUTION (17.11) We have AE=30 MN. Table P17.11 Data for the truss of Fig.P17.11 E le m e n t

L e n g th



1

5

5 3 .1 3

2

4

0

o

o

c

s

0 .6

0 .8

1

0

c

2

2

cs

s

0 .3 6

0 .4 8

0 .6 4

1

0

0

( a ) Use Eq.(17.14): (CONT.)

289

uA vA uB vB uC vC uD vD

17.11 (CONT.)   AE  [ k ]1  5   

  AE  [ k ]2  4   

u1

v1

0 .3 6

0 .4 8

 0 .3 6

0 .4 8

0 .6 4

 0 .4 8

0 .3 6

 0 .4 8

0 .3 6

0 .4 8

 0 .6 4

0 .4 8

u2

v2

u3

1

0

1

0

0

0

1

0

1

0

0

0

u2

v2

 0 .4 8    0 .6 4  0 .4 8   0 .6 4 

u1 v1 u2 v2

v3

0   0  0   0 

u2 v2 u3 v3

( b ) Global Stiffness Matrix     [K ]  AE      

u1

v1

u2

v2

u3

0 .0 7 2

0 .0 9 6

 0 .0 7 2

 0 .0 9 6

0

0 .0 9 6

0 .1 2 8

 0 .0 9 6

 0 .1 2 8

0

0 .0 7 2

 0 .0 9 6

0 .3 2 2

0 .0 9 6

0 .0 9 6

 0 .1 2 8

0 .0 9 6

0 .1 2 8

0

0

0 .2 5

0

0

0

0

0

0

 0 .2 5 0 0

v3

 0 .2 5

( c ) Boundary Conditions: u 1  v 1  u 3  v 3  0 .  F2 x     AE F  2y 

 0 .3 2 2   0 .0 9 6

u2  1  4     AE 3  v2 

 F1 x   F1 y (d)  F  3x  F3 y 

     AE   

0 .0 9 6   u 2    0 .1 2 8   v 2  3

0    0 .0 0 1 0      m  1 0 .0 6 3    1 0 , 0 0 0    0 .0 0 3 4 

  0 .0 7 2   0 .0 9 6    0 .2 5 0  0 

 0 .0 9 6   7 .6 3 2      0 .1 2 8  0 .0 0 1 0   1 0 .1 7 6        kN    0 .0 0 3 4  0  7 .5 0 0      0 0   

( e ) Use Eq.(17.16) F1 2 

F23 

AE 5 AE 4

 0 .6 1

 0 .0 0 1  0 .8      1 2 .7 2 k N   0 .0 0 3 4    0 .0 0 1  0    7 .5 k N  0 .0 0 3 4 

(C )

290

(C )

0   0  0   0  0   0 

u1 v1 u2 v2 u3 v3

SOLUTION (17.12) We have E  2 0 0 G P a

A  2 (1 0 ) m m 3

2

Table P17.12 Data for the truss of Fig.P17.12 E le m e n t

L e n g th ( m m )



1

3000

90

2

3000

3

2

45

3000

0

c

s

c

0

1

0 .7 0 7 1

o

o

o

2

2

cs

s

0

0

1

0 .7 0 7

0 .5

0 .5

0 .5

0

1

0

0

( a ) Use Eq.(17.14) u1

[ k ]1 

v1

0  0  0  0

AE 3000

u2

0

0

1

0

0

0

1

0

u1

   2   

AE

[k ]2 

3000

u1

[k ]3 

AE 3000

     

v2

0  u1   1 v1  0 u2  1  v2

v1

0 .5

 0 .5

0 .5

0 .5

 0 .5

0 .5

 0 .5

0 .5

0 .5

 0 .5

0 .5

u4

0

1

0

0

0

1

0

1

0

0

0

(10

11

0  u1  0 v1  0 u4  0  v4

) . Adding zero’s in proper locations and adding :

u1

[K ] 

4 3

(10

11

 1 . 354  0 . 354   0  0 )   0 . 354    0 . 354 1   0

 0 .5  u 1   0 .5 v 1  0 .5  u 3  0 .5  v 3

v4

1

4 3

v3

0 .5

v1

( b ) The common factor

u3

v1

u2

v2

u3

v3

u4

0 . 354

0

0

 0 . 354

 0 . 354

1

1 . 354

0

1

 0 . 354

 0 . 354

0

0

0

0

0

0

0

1

0

1

0

0

0

 0 . 354

0

0

0 . 354

0 . 354

0

 0 . 354

0

0

0 . 354

0 . 354

0

0

0

0

0

0

1

0

0

0

0

0

0

v4

0  u1  0 v1  0 u2  0  v2 0 u3  0  v3 0 u4  0  v 4

(CONT.)

291

17.12 (CONT.)

(c)

             

 u1     25000 v   1  F2x 0     F2 y  0     K   F3x  0   0  F3 y    F4x  0   0  F4 y    0

Eliminate rows and columns in [K] corresponding to zero displacements: 0   4 (10    3   25000 

11

 u1  1    11 ( 4 3 ) (1 0 )  v1 

0 . 354   u 1    1 . 354   v 1 

 1 . 354 )  0 . 354

 0 .2 0 7   0   0 .0 3 8 9  6     (1 0 ) m m  0 .7 9 3    2 5 0 0 0    0 .1 4 8 6 

 0 .7 9 3    0 .2 0 7

(d)  R2 y   R3x  R  3y R  4x

  4  11 (1 0 )   3   

1

 0   0 .3 5 4    0 .3 5 4  1

  1 9 .8 1 3      0 .3 5 4  u 1   5 .1 7 8        kN  0 .3 5 4   v 1   5 .1 7 8     0    5 .1 8 7 

( e ) Use Eq.(17.16): AE

F1 2 

L1

F1 3 

  u1  2 (1 0 )  2 0 0 (1 0 ) 1  0   3000   v1  3

0

AE L2

2 (1 0 )  2 0 0 (1 0 )

F1 4 

AE L3

  0 .0 3 8 9  6 0 .7 0 7    (1 0 )  0 .1 4 8 6 

9

3000

 0 .7 0 7

2

  u1  2 (1 0 )  2 0 0 (1 0 ) 0 1   3000   v1  3

1

  0 .0 3 8 9  6 1   (1 0 )  1 9 .8 1 3 k N ( T )  0 .1 4 8 6 

  u1  0 .7 0 7      v1 

 0 .7 0 7 3



9

 7 .3 1 2 2 k N

(T )

  0 .0 3 8 9  6 0  (1 0 )   5 .1 8 6 7 k N ( C )  0 .1 4 8 6 

9

SOLUTION (17.13) Table P17.13 Data for the truss of Fig.P17.13 E le m e n t

L e n g th



1

5

5 3 .1 3

2

4

180

o

o

c

s

0 .6

0 .8

1

0

c

2

2

cs

s

0 .3 6

0 .4 8

0 .6 4

1

0

0

(CONT.)

292

17.13 (CONT.) ( a ) Use Eq.(17.14):   AE  [ k ]1  5   

  AE  [ k ]2  4   

u1

v1

0 .3 6

0 .4 8

 0 .3 6

0 .4 8

0 .6 4

 0 .4 8

0 .3 6

 0 .4 8

0 .3 6

0 .4 8

 0 .6 4

0 .4 8

u2

v2

1

0

1

0

0

0

1

0

1

0

0

0

u2

u3

v2

 0 .4 8    0 .6 4  0 .4 8   0 .6 4 

u1 v1 u2 v2

v3

0   0  0   0 

u2 v2 u3 v3

( b ) Global Stiffness Matrix     [K ]  AE      

u1

v1

u2

v2

u3

0 .0 7 2

0 .0 9 6

 0 .0 7 2

 0 .0 9 6

0

0 .0 9 6

0 .1 2 8

 0 .0 9 6

 0 .1 2 8

0

0 .0 7 2

 0 .0 9 6

0 .3 2 2

0 .0 9 6

0 .0 9 6

 0 .1 2 8

0 .0 9 6

0 .1 2 8

0

0

0 .2 5

0

0

0

0

0

0

 0 .2 5 0

 0 .2 5

v3

0   0  0   0  0   0 

u1 v1 u2 v2 u3 v3

(c) 0 . 096   u 2    0 . 128   v 2 

0    0 . 322    AE    60000   0 . 096 u2  1    6  v 2  1 0 (1 0 )

 4  3

3

0    18  3     (1 0 )  1 0 .0 6 3    6 0 0 0 0    6 0 .4 

m

(d)  R1 x   R1 y R  3x

    AE  

  0 .0 7 2   0 .0 9 6    0 .2 5

 0 .0 9 6   4 5 .0 2 4    u2    0 .1 2 8     6 0 .0 3 2   v  2   0  45. 

kN

( e ) Use Eq.(17.16) F1 2  A E  0 .6

u2  6 0 .8     1 0 (1 0 )  0 .6 v  2

 0 .0 1 8  0 .8      3 7 5 .2   0 .0 6 0 4 

kN

(C )

(CONT.)

293

17.13 (CONT.) u2  6) 0   1 0 (1 0   1  v 2  

F23  A E   1

  0 .0 1 8  0   180  0 .0 6 0 4 

kN

(T )

SOLUTION (17.14) We have AE  125

MN .

Table P17.14 Data for the truss of Fig.P17.14 E le m e n t

L e n g th



1

5

1 4 3 .1 3

2

5

3

o

3 6 .8 7

5

1 4 3 .1 3

o

o

c

s

c

 0 .8

0 .6

0 .8  0 .8

2

2

cs

s

0 .6 4

 0 .4 8

0 .3 6

0 .6

0 .6 4

0 .4 8

0 .3 6

0 .6

0 .6 4

 0 .4 8

0 .3 6

( a ) Apply Eq.(17.14):   AE   [ k ]1  25L   

  AE  [ k ]2  25L   

u1

v1

u2

16

 12

 16

12

9

12

16

12

16

12

 9

 12

u2

v2

u3

16

12

 16

12

9

 12

16

 12

16

12

 9

12

v2

12    9   12   9 

u1 v1 u2 v2

v3  12    9  12   9 

  AE   [ k ]3  25 L   

u2 v2 u3 v3

u2

v2

u4

16

 12

 16

12

9

12

16

12

16

12

 9

 12

v4

12    9   12   9 

u2 v2 u4 v4

( b ) Global Stiffness Matrix       AE  [K ]  25L      

u1

v1

u2

v2

u3

v3

u4

v4

16

 12

 16

12

0

0

0

9

12

 9

0

0

0

16

12

48

 12

 16

 12

 16

12

 9

 12

27

 12

 9

12

0

0

 16

 12

16

12

0

0

0

 12

 9

12

9

0

0

0

 16

12

0

0

16

0

0

12

 9

0

0

 12

0   0  12    9  0   0   12   9 

12

 25000 AE  48    25L  12  40000

(c) 

u1 v1 u2 v2 u3 v3 u4 v4

 12  u2    27  v2 

(CONT.)

294

17.14 (CONT.) 12    25000    1 . 0026      (10  48    40000    1 . 927 

u 2   27 25 L     AE (1152 )  12 v2 

3

) m

(d)  F1 x  F  1y  F 3 x  F  3y  F4x   F 4 y

    1   1152    

  16  12    16    12   16   12

( e ) Use Eq.(17.16): We have u 1  v 1  0 ;

F 12 

F 32 

F 42 

AE



L

AE

u 2  0 . 6    v2 

0 . 8

L

AE



u3  v 3  0;

u 2  0 . 6    v2 

0 .8

L

1 1152

1 1152

     kN    

u 4  v 4  0.



 27 0 . 6   12

0 .8



 27 0 . 6   12

0 .8

12    25000     8 . 854  48    40000 

12    25000     48 . 958  48    40000 

 27 0 . 6   12

0 . 8

1 1152

u 2  0 . 6    v2 

0 .8

  7 . 083  5 . 313   39 . 167 12    25000      48    40000   29 . 375   7 . 083   5 . 313

12    9   12   27   9   12 12    9 

kN

12    25000     8 . 854  48    40000 

kN

(C )

(C )

kN

(C )

SOLUTION (17.15) We have E  210 GPa

4

A  5  10

m

2

Table P17.15 Data for the truss of Fig.P17.15 E le m e n t

L e n g th



1

5

5 3 .1 3

2

4

90

o

c

s

0 .6

0 .8

0

1

o

c

2

2

cs

s

0 .3 6

0 .4 8

0 .6 4

0

0

1

( a ) Apply Eq.(17.14):   AE  [ k ]1  5   

u1

v1

u2

0 .3 6

0 .4 8

 0 .3 6

0 .4 8

0 .6 4

 0 .4 8

0 .3 6

 0 .4 8

0 .3 6

0 .4 8

 0 .6 4

0 .4 8

v2

 0 .4 8    0 .6 4  0 .4 8   0 .6 4 

u1 v1 u2 v2

(CONT.)

295

17.15 (CONT.) u1

v1

u3

v3

0  AE 0  [ k ]2  4 0  0

0

0

1

0

0

0

1

0

0   1  0   1 

u1 v1 u3 v3

( b ) Global Stiffness Matrix u1

v1

 0 .7 5 6  1.0 0 8    0 .7 5 6 7 [K ]  10   1.0 0 8   0   0

u2

v2

u3

1.0 0 8

 0 .7 5 6

 1.0 0 8

0

3 .9 6 9

 1. 0 0 8

 1.3 4 4

0

 1.0 0 8

0 .7 5 6

1.0 0 8

0

 1.3 4 4

1. 0 0 8

1.3 4 4

0

0

0

0

0

0

0

0  2 .6 2 5

v3

   2 .6 2 5   0  0   0  2 .6 2 5  0

u1 v1 u2 v2 u3 v3

(c)  F1 x  100000

   10 

100  10

3

1 . 008    0 . 025    v1 3 . 969   

 0 . 756   1 . 008

7

 (1 . 008  10 )(  0 . 025 )  3 . 696  10 v 1 7

F 1 x  ( 0 . 756  10

7

7

)(  0 . 025 )  1 . 008  10

7

v1

or

or

v 1  0 . 00887

m

F 1 x   99 . 6 kN

( d ) Support reactions:  F2x   F2 y  F  3x  F3 y 

     10   

7

      

0 . 756 1 . 008 0 0

 1 . 008  99 . 59     1 . 344   0 . 025   132 . 79        0 . 00887  0 0     232 . 84  2 . 625  

    kN   

( e ) Use Eq.(17.16): We have u 2  v 2  0 ,

F 12 

F 13 

AE

0 . 6

L1

AE L2

0

u3  v 3  0.

 u1  105  10 0 . 8    5   v1   u1  105  10 1    4   v1 

6

0

6

0 . 6

 0 . 025  0 . 8    166   0 . 00887 

 0 . 025  1     232 . 8 kN   0 . 00887 

296

kN

(C )

(T )

SOLUTION (17.16) We have AE  20 MN . Table P17.16 Data for the truss of Fig.P17.16 E le m e n t

L e n g th



1

5

3 6 .8 7

2 3

8

0

5

c

s

0 .8

0 .6

1  0 .8

o

o

1 4 3 .1 3

o

c

2

2

cs

s

0 .6 4

0 .4 8

0 .3 6

0

1

0

0

0 .6

0 .6 4

 0 .4 8

0 .3 6

( a ) Apply Eq.(17.14):   AE  [ k ]1  5   

  AE  [ k ]2  8   

u1

v1

0 .6 4

0 .4 8

 0 .6 4

0 .4 8

0 .3 6

 0 .4 8

0 .6 4

 0 .4 8

0 .6 4

0 .4 8

 0 .3 6

0 .4 8

u1

v1

1

0

1

0

0

0

1

0

1

0

0

0

u2

  AE   [ k ]3  5   

u3

u2

v2

 0 .4 8    0 .3 6  0 .4 8   0 .3 6 

u1 v1 u2 v2

v3

v2

0   0  0   0 

u1 v1 u3 v3 u3

v3

0 .6 4

 0 .4 8

 0 .6 4

0 .4 8

0 .3 6

0 .4 8

0 .6 4

0 .4 8

0 .6 4

0 .4 8

 0 .3 6

 0 .4 8

0 .4 8    0 .3 6   0 .4 8   0 .3 6 

u2

v2

u3

 0 .1 2 5

u2 v2 u3 v3

( b ) Global Stiffness Matrix     [K ]  AE      

u1

v1

0 .2 5 3

0 .0 9 6

 0 .1 2 8

 0 .0 9 6

0 .0 9 6

0 .0 7 2

 0 .0 9 6

 0 .0 7 2

0 .1 2 8

 0 .0 9 6

0 .2 5 6

0

0 .0 9 6

 0 .0 7 2

0

0 .1 1 4

0 .0 9 6

0  0 .1 2 8

0 .1 2 5

0

 0 .1 2 8

0 .0 9 6

0 .2 5 3

0

0

0 .0 9 6

 0 .0 7 2

 0 .0 9 6

v3

  0  0 .0 9 6    0 .0 7 2   0 .0 9 6   0 .0 7 2  0

u1 v1 u2 v2 u3 v3

(CONT.)

297

17.16 (CONT.)

(c)

 F2 x   F2 y   F3 x

    AE  

  

0 0 .1 1 4 0 .0 9 6

 0 .1 2 8   u 2    0 .0 9 6   v 2    0 .2 5 3   u 3 

1

K  F

1 AE

u2     v2   u   3

 0 .2 5 6   0   0 .1 2 8 

1 2 0 1 0

6

 F1 x    ( d )  F1 y   A E F   3x 

 3 .8 9 2 9

 6 .2 1 7 7   3 .8 9 2 7   4 .6 2 2 9   0 .1 2 8   0 .0 9 6   0 .0 9 6

1 5 .3 2 8 5  7 .7 8 5 9  0 .0 9 6  0 .0 7 2  0 .0 7 2

4 .6 2 2 9    7 .7 8 5 9  9 .2 4 5 2 

 0 .1 2 5   0.   0 .0 9 6 

 40000  80000  0 

  0 .0 2 8 0         0 .0 6 9 1  m      0 .0 4 0 4 

 0 .0 2 8 0   4 0 .0 0 8        0 .0 6 9 1    4 5 .7 4 4       0 .0 4 0 4   7 5 .6 9 6 

kN

( e ) Use Eq.(17.16): We have u 1  v 1  v 3  0 . F1 2 

F1 3 

F3 2 

AE

 0 .0 2 8 0  0 .6      7 6 .2 4   0 .0 6 9 1 

 0 .8

5 AE

1

8 AE 5

 0 .0 4 0 4  0   1 0 1 .0 0  

  0 .8

kN

kN

(C )

(T )

 0 .0 2 8 0  0 .0 4 0 4  0 .6      1 2 6 .1 6 0  0 .0 6 9 1  

kN

(C )

SOLUTION (17.17) Due to symmetry, only one-half of the beam need be considered.  12  6L EI [ k ]1  3  L 12   6L

P/2

L

2

6L 4L

2

12 6L

6 L 2L

12

2

6L

0

0

0

0

0

0

0

0

6L 2  2L  6 L  2  4L 

1 1 2

k/2

0   3 E I kL E I [ k ]2  3  0 L   0 

0  0  0  0

(CONT.)

298

17.17 (CONT.) Therefore  12  6L EI  [K ]  3  L 12   6 L

12

6L 4L

6L 2  2L   6L   2 4 L 

6 L

2

6L

kL

12 

3

EI 2L

6 L

2

( a ) Boundary conditions are v1  0 and  2  0 . Equation (17.19a) with F 2 y   P 2 and M 1  0 :  4L  0  EI     3 L 6L  P 2 

6L    1  3 kL    12   v2  E I 

2

Introduce the data and solve:  1   5 .1(1 0

3

v 2   1 3 .5 (1 0

) ra d

3

) m

(b)  12  F1 y   6L   0 EI       3  F L 12 2 y    M   2  6 L

12

6L 4L

6 L

2

6L

12 

kL

3

EI 2L

6 L

2

6L 2  2L   6L   2 4 L 

 0      5 .1  3   (1 0 )   1 3 .5   0   

or  F1 y   7 .4 2 5 k N     F 2 y     9 .8 5 5 k N  M   3 0 .1 5 0 k N  m  2  F s p r in g  1 8 0 (1 3 .5 )  2 .4 3 k N

    

(C )

From symmetry: F1 y  F 3 y  7 .4 2 5 k N 

SOLUTION (17.18) L  6 .7 m ,

P = 9 kN , v1

 12  6L EI [ k ]1  3  L 12   6L

1 2

6 L 2L

5

u2

6L 4L

E I = 6 5 (1 0 ) N  m ,

2

12 6L 12 6L

4

2

k  210 kN m v2

6L 2  2L  6 L  2  4L 

0   3 E I kL E I [ k ]2  3  0 L   0 

2

u3  3

0

0

0

0

0

0

0

0

0  0  0  0

(CONT.)

299

17.18 (CONT.) Thus  12  6L EI  [K ]  3  L 12   6 L

12

6L 4L

6L

6L 2  2L   6L   2 4 L 

6 L

2

kL

12 

3

EI 2L

6 L

2

(1)

( a ) Boundary conditions are v1  0 and  1  0 . Equation (17.19a), with F 2 y   P and M

2

 0:  kL  P  E I 1 2  EI    3 L   0  6 L 

  6 L   v2      2  2 4 L 

3

Substituting the given numerical values and solving, we have v 2   0 .0 3 2 7 m

 2   0 .0 0 7 3 3 ra d

(b)  12  F1 y   6L   EI  M1    3  F L 12 2 y    M   2  6 L

12

6L 4L

6L

2

6L

12 

kL

3

EI 2L

6L

2

6L 2  2L   6 L   2 4 L 

0     0       0 .0 3 2 7    0 .0 0 7 3 3   

Introducing the data and multiplying: 2 .1 3 8 k N  F1 y       M 1   1 4 .2 4 5 k N  m     F2 y     9 .0 0 5 k N  M    0 .0 8 1 k N  m  2 

      

The spring force is Ps p r in g  2 1 0 ( 0 .0 3 2 7 )  6 .8 6 7 k N

(C )

SOLUTION (17.19) We have E I  7 0  1 0 N  m , ( a ) Use Eqs.(17.19): v1 1 v2 4

 12  18 EI [ k ]1  3  L 12   18

2

18

12

36

18

18

12

18

18

L  3 m,

P  50 kN

2 18   18  18   36 

v1

1 v2

2

(CONT.)

300

17.19 (CONT.) v2

2

v3

 12  18 EI [ k ]2  3  L 12   18

18

12

36

18

18

12

18

18

( b ) Global Stiffness Matrix v1 1  12  18  EI 12 [K ]  3  L  18  0  0 

3 18   18  18   36 

v2

2 v3

3

v2

2

v3

3

18

12

18

0

36

18

18

0

18

24

0

12

18

0

72

18

0

12

18

12

0

18

18

18

0   0  18   18  18   36 

v1

1 v2

2 v3

3

Use Eq.(17.20a):  F2 y   24 EI    M 2   3  0 L M   18  3

  

3

L EI

18   v 2  18   2  36    3

0 72 18

    

1

K  F 

 v2  3 L      2 EI    3

 0 .0 7 2 9 1 7  0 .0 1 0 4 1 7    0 .0 4 1 6 6 7

0 .0 1 0 4 1 7 0 .0 1 7 3 6 1  0 .0 1 3 8 8 9

 0 .0 4 1 6 6 7    0 .0 1 3 8 8 9  0 .0 5 5 5 5 6 

50 10  0   0 

3

   0 .1 4 0 6 m         0 .0 2 0 1 r a d    0 .0 8 0 4 r a d    

(c)  F1 y  EI   M1  3 L F  3 y  

12  18    1 2

18 18 18

0   0   1 8 

 v 2   3 4 .3 6 2 k N      2    5 6 .2 3 3 k N  m      3   1 5 .6 0 2 k N

    

From a free-body diagram of element 2: ( M 2 ) 2  4 6 .8 0 6 k N  m and ( F 2 ) 2   1 5 .6 0 2 k N

(CONT.)

301

17.19 (CONT.)

(d) 50 kN 2

1 1

1.5 m

3

1.5 m

2

34.362

V

+

(kN )

x 15.602

M

46.806

(kN  m )

+

x

56.28

SOLUTION (17.20) ( a ) The element stiffness matrices are, from Eq. (17.19a): v1

1

v2

2

v3

 12  6L  EI 12 [ k ]1  3  L  6L  0   0

6L

12

6L

0

6 L

2L

12

6 L

6 L

4L

0

0

0

0

0

0

0

0

0  0  0 EI  [ k ]2  3 0 L   0   0

4L

2

6 L 2L

2

2

0

2

0

0

0

0

0

0

0

0

0

12

6L

12

0

6L

4L

12

12 

kL

3

EI 0

6L

2L

6 L

2

  0  6L  2  2L   6 L   2 4 L  0

6 L

2

6 L

0  0  0  0 0  0

0

0

0

3

(CONT.)

302

17.20 (CONT.) (b)  12  6L  12  [K ]  6L    0   0

12

6L 4L

2

6L

2L

24

0

0

8L

6L 2L

2

12

0

6L

0

2

0 12 6L

2

6 L

12 

kL

3

EI 0

6L

2L

2

  0  6L  2  2L   6 L   2 4 L  0

6 L

( c ) Boundary conditions are: v1  0 ,  1  0 , v 2  0 System governing equations, by Eqs. (17.19a), after rearrangement:   8 L2  0  EI    2  0   3  2L L  P     6L 

2L 4L

2

2

6L

 6L   6L  3  kL  12  EI 

 2     3  v   3

Solving, v3  

2  

where k 1  k L

7PL

3

(

EI 3PL

3

EI

1 1 2  7 k1

2

(

1 1 2  7 k1

)

),

 3  3 2

EI

SOLUTION (17.21) Boundary conditions are v1   1  v 3   3

v 2    (given)

Equation (17.19):  24  EI 12 L [ k ]1  3  L 24  1 2 L

12 L 8L

2

12 L 4L

2

24 12 L 24 12 L

12 L  2  4L  12 L  2  8L 

 12  6L EI [ k ]2  3  L 12   6L

6L 4L

2

6L 2L

2

12 6L 12 6L

6L 2  2L  6L  2  4L 

After assembling [ K ] and considering the boundary conditions, the pertinent equations are found as (CONT.)

303

17.21 (CONT.)  P  EI    3 L  0 

 24  12  1 2 L  6 L

12 L  6 L      2 2   8L  4L   2 

Multiplying, EI

P 

(  3 6   6 L 2 )

(1)

(6 L   12 L  2 )

(2)

L 0 

EI L

3

3

2

( a ) Equation (1) is then P  33

EI L

3



( b ) Equation (2) gives 2 

 2L

SOLUTION (17.22) through (17.26) It is important to take into account any conditions of symmetry which may exist. Use a 2-D finite element program such as ANSYS. End of Chapter 17

304

CHAPTER 18

CASE STUDIES IN MACHINE DESIGN

SOLUTION (18.1) a2=0.16 m a1=2.6 m

B

P=15 kN

L=2.5 m

C

H

D 40o

a3=1.0 m

80o FBG

A

FC F

60

o

o

50

Figure S18.1 Free Body diagram of loader arm FAE

( a ) Member forces Dismember the arm ABD. It is assumed that the links and hydraulic cylinder are all in tension. The conditions of moment equilibrium are applied to Fig. S18.1:



M

 0:

B

 F C F c o s 1 0 ( 0 .1 6 )  F A E s in 5 0 (1 .0 )  1 5 ( 2 .7 6 )  0 o

o

F A E  0 .2 0 6 F C F  5 4 .0



Fx  0 :

(1)

F A E c o s 6 0  F B G c o s 4 0  F C F s in 1 0  0 o

o

o

F B G   3 5 .2 4 6  0 .3 6 1 F C F



Fy  0 :

(2)

 F A E s in 6 0  F B G c o s 4 0  F C F c o s 1 0  1 5  0 o

o

o

FC F   4 2 k N ( C )

Substitution of this into Eqs. (1) and (2) result in F A E  4 5 .3 5 k N ( T )

F B G   2 0 .0 8 k N ( C )

Comments: Since the result obtained for F A E is positive. A negative sign means that the sense of the force is opposite to that taken originally. ( b ) Diameters of pins at A, B, and C in double shear. We have S ys n



F 2

d

2

4

d  [ 2 SF n ]

,

1 2

ys

Thus, dA  [

2 ( 4 5 .3 5 ) ( 2 .4 )

dB  [

2 ( 2 0 .0 8 ) ( 2 .4 )

dC  [

3

 (1 5 0  1 0 )

3

 (1 5 0  1 0 ) 2 ( 4 2 ) ( 2 .4 ) 3

 (1 5 0  1 0 )

1

]

 2 1 .5 m m

2

 1 4 .3 m m

1

] 1

]

2

2

 2 0 .7 m m

305

SOLUTION (18.2) The location of the critical point is at K, where the maximum moment and the shear force are M  P L  1 5 ( 2 .5 )  3 7 .5 N  m

V  P  15 kN

The cross-sectional area properties: A   ( c 2  c 1 )   ( 7 5  5 0 )  9 .8 1 7 5  1 0 2



I 

4

2

2

( c 2  c1 )  4

4



2

3

( 7 5  5 0 )  1 9 .9 4 1 8  1 0 4

4

4

mm 6

2

mm

4

The maximum tensile stress due to the bending occurs at point K. Therefore, 

m ax

M c2



I



3

3 7 .5 (1 0 )( 0 .0 7 5 ) 1 9 .9 4 1 8 (1 0

6

)

 141 M Pa

The shearing stress is zero,   0 , at point K. The maximum shearing stress is at the neutral axis z and parallel to y axis. From third case, Table 3.2:  m ax  2

V A

3

1 5 (1 0 )

 2

9 .8 1 7 5 (1 0

3

)

 3 .0 6 M P a

This is a very low stress for the specified material. The bending stress vanishes at the neutral axis,  H  0 . The factor of safety is thus n 

 3 .4

480 141

SOLUTION (18.3) A sketch of Mohr's circle is shown in Fig. S18.3 constructed by obtaining the position of point C at (  x   y ) 2  4 0 0 μ on the horizontal axis and of point at ( x ,  

xy

2 )  (1 0 0 0 μ ,  3 5 0 μ ) from the origin O.

The principal strains are represented by points A1 and B1 . Thus, referring to the figure: 

( 1 0 0 02 2 0 0 )  3 5 0

 400 

2

1 ,2

2



'=400 D

y B(-200, 350) B1 O

”s C

’p

A1



A(1000, -350) x

E Figure S18.3 or  1  1 0 9 4 .6 μ ,

 2   2 9 4 .6 μ

(CONT.)

306

18.3 (CONT.) As a check, note that  x   y   1   2  8 0 0  . The planes of principal strains are 2

1 350 600

'  ta n

p

 3 0 .3

o

2  p "  3 0 .3  1 8 0  2 1 0 .3

and

o

and  p '  1 5 .1 5

o

 p "  1 0 5 .1 5

and

o

(1)

From Mohr's circle,  p ' locates the  1 direction. The maximum shearing strains are given by points D and E:  m ax   2

( 1 0 0 02 2 0 0 )  3 5 0 2

 1389 

2

Alternatively,    1   2  1 0 9 4 .6  2 9 4 .6  1 3 8 9 μ . SOLUTION (18.4) From Prob. 18.3, we have  1  1 0 9 4 .6 μ ,  2   2 9 4 .6 μ ,  m a x  1 3 8 9 μ The first two of Eqs. (2.7) together with (1) give 1  



2

2 1 0 1 0

3

1  ( 0 .2 8 )

2

2 1 0 1 0

3

1  ( 0 .2 8 )

(1)

[1 0 9 4 .6  0 .2 8 (  2 9 4 .6 ) ]  2 3 1 M P a

2

[  2 9 4 .6  0 .2 8 (1 0 9 4 .6 ) ]  2 .7 1 M P a

From the last of Eqs. (2.7):  m ax 

E 2 (1   )

 m ax 

3

2 1 0 1 0 2 (1  0 .2 8 )

 p '  1 5 .1 5

From Prob. 18.3:

o

(1 3 8 9 )  1 1 4 M P a

 s  6 0 .1 5

and

o

Using Eq. (3.35),  '  12 ( 2 3 1  2 .7 1)  1 1 6 .9 M P a SOLUTION (18.5) Use Eq. (3.40):  a   x c o s  a   y s in  a   2

1 1 0 4 (1 0

6

2

xy

s in  a c o s  a

)   x c o s 0   y s in 0   2

o

2

o

o

xy

 x  1104 μ

o

s in 0 c o s 0 ,

Similarly,  b   x c o s  b   y s in  b   2

4 3 2 (1 0

4 3 2 (1 0

6

6

2

xy

s in  b c o s  b

)   x c o s (  6 0 )   y s in (  6 0 )   2

o

)  0 .2 5  x  0 .7 5 

2

y

 0 .4 3 3 

o

xy

s in (  6 0 ) c o s (  6 0 ) o

xy

o

(1)

and  c   x c o s  c   y s in  c   2

 9 6 (1 0

6

2

)  0 .2 5  x  0 .7 5 

y

xy

s in  c c o s  c

 0 .4 3 3 

Subtract Eq. (2) from Eq. (1): 5 2 8    0 .8 6 6 

Thus



xy

 610 μ ,

xy



y

 144 μ

307

xy

(2)

SOLUTION (18.6) Equation (5.78a): 2 E Sy

Cc 

2



2

3

( 2 1 0 1 0 )

 1 2 8 .8

250

For the 1.6 m link column, L B G r  1 6 0 0 1 0 .6 9  1 4 9 .7  C c

and Eq. (5.77b) is used. Hence, 

a ll

2

 E 1 .9 2 ( L B G r )







2

9

( 2 1 0 1 0 )

1 .9 2 (1 4 9 .7 )

2

 4 8 .2 M P a

Comment: This stress is very low compared to 250 MPa; The link will not yield.

SOLUTION (18.7) From Prob. 18.6: A  3 1 8 m m ,

E  200 G Pa ,

2

r  1 0 .6 9 m m .

The required value of  a ll : 

a ll

FB G





A

3

1 1 .3 4 (1 0 ) 3 1 8 (1 0

6

 3 5 .7 M P a

)

(1)

Assume L m r  C c . Equation (5.77b): 

a ll

2

 E



1 .9 2 ( L m r )

2





2

9

( 2 0 0 1 0 )

1 .9 2 ( L m r )

Lm

Equating Eqs. (1) and (2), we obtain

(2)

2

r

 1 6 9 .7

Since L m r  C c , our assumption is OK. Thus Lm r



Lm 1 0 .6 9

 1 6 9 .7

or L m  1 .8 1 4 m

Comment: If this link is more than 1.814 m in length, it will buckle.

SOLUTION (18.8) ( a ) Central cross brace. Stain energy due to bending. Equation (5.18) with M  W x 2 : U  2[ 

c 2 M 2 EI

0

dx] 

1 EI



c 2 0

W 4

2

x dx  2

2

3

W c 96 EI

Due to shear, Eq. (5.23) with V  W 2 : U 



c 0

2

3V 5GA

dx 

2

3W c 20 G A

Side supports. Strain energy owing to bending, with M  W x 2 : U  4[ 

b 2 0

2

M 2 EI

dx] 

2 EI



b 2 0

2

W 16

x dx  2

2

3

W b 384 EI

(CONT.)

308

18.8 (CONT.) Due to shear with V  W 4 : U  2

b

2

2

dx 

3V 5GA

0

3W b 40 G A

Total strain energy is then Ut 

2

3



W c 96 EI

2

3



W b 384 EI

2

2



3W c 20 G A

2W b 40 G A

or 3

3

U t  W [ E1I ( 9c 6  2

b 384

)

(c 

3 20 G A

b 2

Q.E.D.

)]

(P18.8a)

( b ) Introducing Eq. (P18.8a) into Eq. (5.31), we obtain  st 

U t

3

 W [ 4 81E I ( c  3

W

b 4

)

(c 

3 10 G A

b 2

(P18.8b)

)]

SOLUTION (18.9) ( a ) Substituting the given data into Eq. (P18.8b) result in  s t  W [ 4 81E I ( c  3

W{

)

3

4 8 ( 2 0 0  1 0  0 .2 7 8 )

6

6

(c 

3 10 G A

[( 0 .8 )  3

1

 W (1 0  10

3

b 4

b 2

)]

(1 .2 )

3

4

]

3 3

1 0 ( 7 9 1 0  8 1 9 )

[( 0 .8 ) 

1 .2 2

]}

){0 .3 7 4 7[ 0 .5 1 2 0  0 .4 3 2 ]  [ 0 .0 0 4 6 4[1 .4 ]}

W {0 .3 5 3 7  0 .0 0 6 5}  1 0

6

W ( 0 .3 6 0 2 )

or  s t  0 .3 6 0 2 (1 0  5 .4 0 3(1 0

3

6

) W  ( 0 .3 6 0 2  1 0

6

)(1 5  1 0 ) 3

) m

( b ) The impact factor, by Eq. (4.32): K  1

1

2h

 st

 1

2 ( 250 )

1

 1 0 .6 7

5 .4 0 3

Equation (4.35) is therefore  m a x  K  s t  1 0 .6 7 (5 .4 0 3)  5 7 .7 m m

SOLUTION (18.10) ( a ) Thin-walled cylinder is in biaxial stress (  3  0 ) with     1 and  a  2 . From Eqs. (3.6) at r  a : 1 

pa t

20 (350 )



t





7000 t

,

Sy

2

2



1 2



3500 t

(1)

Equation (6.14):  1   1 2

2



2 2

 (

n

)

(2)

Substituting Eqs. (1) into (2), we have 6

[( 7 )  ( 7 )(3 .5 )  (3 .5 ) ] 1 02  ( 5 55 2 ) , 2

2

2

t

t  55 m m

Hence, b  a  t  405 m m

( b ) We have a t  6 .3 6 : the thin-walled analysis does not apply. So, the solution is not valid.

309

SOLUTION (18.11) Refer to Prob. 18.10. For a closed-ended thick-walled cylinder under internal pressure, the critical section where the maximum stresses occur is at r  a (see Fig. 16.3). The stresses, from Eqs. (16.16a), 16.16b), and (16.15) with p  p i and p o  0 : r  p   p 

 p

a

2

2

2

2

b a b a a

(1)

2

2

b a

2

We observe that     1 ,  a   2 , and  r   3 , where algebraically  1   2   3 . With a safety factor included, Eq. (6.13) appears as [ ( 1   2 )  ( 2

  3 )  ( 2

2

  1) ]  2( 2

3

Sy n

(2)

)

Substituting Eq. (1) into (2), we have [(b  a  a )  ( a  b  a )  (  b  a  b  a ) ]( 2

or

4

3b p

2

2

2

2

2

 (b  a ) ( 2

2

2

Sy n

2

)

2

2

2

2

2

2

p

2

2

b a

)  2( 2

2

2

Sy n

)

2

(3)

By introducing the given data ( a  0 .3 5 m , S y  5 5 2 M P a , p  2 0 M P a , n  5 ) and simplifying Eq. (3) becomes: 9 .1 5 7 b  2 .4 8 8 b  0 .1 5 2  0 4

2

Let x  b and solve the resulting quadratic equation to find x  0 .1 7 7 8 . The outer radius is then 2

b  0 .4 2 1 7 m = 4 2 1 .7 m m

Hence, t  b  a  4 2 1 .7  3 5 0  7 1 .7 m m Comment: The outer diameter equals 2 b  8 4 4 m m . A standard cylinder with about 8 4 5  m m outer diameter and 7 0 0  m m inner diameter should be selected.

SOLUTION (18.12) ( a ) Element Stiffness Matrix. Referring to Fig. P18.12 we sketch Fig. S18.12. F1 y , v 1

L

1 F1 x , u 1

 45o 

F3 x , u 3

2



F2 x , u 2

F2 y , v 2

3 F3 y , v 3

Figure S18.12 Finite element model (CONT.)

310

18.12 (CONT.) Using Eq. (17.4), Fig. S18.12, Table P18.1, and the given data: u1

v1

 c  cs 7 [ k ]1  4 (1 0 )  c2   c s 2

u1 0  0 7 [ k ] 2  4 (1 0 )  0  0

u2 c

cs s

 cs

c

s

cs

2

u3

0

0

1

0

0

0

1

0

u1

 cs  2  s  cs   2 s 

2

 cs

2

v1

v2

2

 1  v1 0 7  4 (1 0 )  1 u2  v2  0 u1

v3

v1

u2

v2

0

1

0

0

0

1

0

0

0  0  0  0

u2

0   1  0   1 

 0 .5   0 .5 7 2 (1 0 )    0 .5   0 .5

u1 v1

[ k ]3  2

u3 v3

u1 v1 u2 v2

v2

u3

v3

 0 .5

 0 .5

0 .5

0 .5

0 .5

0 .5

 0 .5

 0 .5

0 .5    0 .5   0 .5   0 .5 

u2 v2 u3 v3

In the foregoing, the column and row of each stiffness matrix are labeled according to the nodal displacements associated with them. Observe that displacements u 3 and v 3 are not involved in element 1; u 2 and v 2 are not involved in element 2; u 1 and v1 are not involved in element 3. Thus, before adding [ k ]1 , [ k ] 2 , and [ k ] 3 to form the system matrix, two row and columns of zero must be added to each of the element matrices to account for the absence of these displacements. 7

In so doing, and using a common factor 1 0 , the element stiffness matrices become: u1

v1

u2

v2

u3

 4  0  4 7 [ k ]1  (1 0 )   0  0   0

0

4

0

0

0

0

0

0

0

4

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0  0  0  0 0  0

u3

v3

u1

v1

u2

v2

0  0  0 7 [ k ] 2  (1 0 )  0 0  0

0

0

0

0

4

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

4

0

0

0

v3

0   4  0   0  0   4 

u1 v1 u2 v2 u3 v3

u1 v1 u2 v2 u3 v3

(CONT.)

311

18.12 (CONT.) u1 0  0  0 7 [ k ] 3  (1 0 )  0  0  0

v1

u2

v2

u3

0

0

0

0

0

0

0

0

0

0

0



2



2

v3

2

2

0



2

2

2



2

0



2

2

2



2

0



2



2

2

2

         

u1 v1 u2 v2 u3 v3

System Stiffness Matrix. There are a total of six components of displacement for the truss before boundary constraints are imposed. Hence, the order of the truss stiffness matrix must be 6  6 . Before addition of the terms from each element stiffness matrix into their corresponding locations in [ K ] , we obtain the global matrix for the truss: u1  4  0  4 7 [ K ]  (1 0 )   0   0   0

v1

u2

v2

u3

0

4

0

0

4

0

0

0

4

0



2

2

2

0



2

2

2

4





2

2

2





  4  2    2    2   4 2 0

0

2

v3

2

2

u1 v1 u2

(1)

v2 u3 v3

System Force-Displacement Relationship. From Fig. P18.12, the boundary conditions are u 1  0 , v1  0 , and u 3  0 . In addition F 3 y  0 . Equation (17.17 is therefore  R1 x  R  1y  P  W R 3x  0 

      [K    

 0    0    u 2  ]  v  2  0     v 3 

(2)

where [ K ] is given by Eq. (1). ( b ) Displacements. To find u 2 , v 2 , and v 3 only part of Eq. (2) relating to these displacements is considered: (CONT.)

312

18.12 (CONT.) (4  2 )   24, 000      7     3 6 , 0 0 0   (1 0 )   2     0 2    

P  W  0 

2 2 

   2   (4  2 )  2

2

u2     v2  v   3

(3)

Inverting, u2    8  v 2   2 .5 (1 0 ) v   3

1

 1  1   0

0  1  1 

4 .8 2 8 1

 24   1 .5      3   3 6  (1 0 )    4 .9 4  m m      0    0 .9 

Reactions. Inserting of the preceding values of u 2 , v 2 , and v 3 into Eq. (2) gives the reactional forces:  R1 x   R1 y R  3x

 4   0   2

  7   10  

0 0 2

0   1 .5  60     3  4    4 .9 4  (1 0 )   3 6  k N   36   2    0 .9   

The results may be verified by applying the equations of equilibrium to the free-body diagram of the entire truss, Fig. SP18.12. Axial Forces in Bars. Using Eqs. (17.16), (3) and Table P18.12, we obtain F1  F1 2 

AE L

[1

F 2  F1 3 

AE L

[0

F3  F 2 3 

AE 2L

u2  7 0 ]    4 (1 0 ) [1  v2 

 1 .5  3 0]   (1 0 )  6 0 k N   4 .9 4 

0  7  1]    4 (1 0 ) [ 0 v  3  u2   1]    2  v3  v2 

[1

 0  3  1]   (1 0 )  3 6 k N   0 .9  2 (1 0 ) [  1 7

 1 .5   3  1]   (1 0 )   0 .9  4 .0 4 

  7 1 .8 k N

Stresses in Bars. Driving the element forces by the cross-sectional area results in 1 

3

6 0 (1 0 ) 4 8 0 (1 0

6

)

 125 M Pa



2

 1 2 5 ( 36 60 )  7 5 M P a

 3  1 2 5 (  7610.8 )   1 4 9 .6 M P a

The negative sign means a compressive stress. Factor of safety against yielding. Dividing the yield strength of S y  2 5 0 M P a (from Table B.1) by each stress, we obtain n1 

250 125

 2

n2 

250 75

 3 .3 3

n3 

250 1 4 9 .6

 1 .6 7

Comments: The bar axial stresses found are relatively low for the well known material considered (see Sec. 1.6). End of Chapter 18

313

Related Documents


More Documents from "pbsrivinay"

March 2021 0
February 2021 0
Machote Recurso De Amparo
February 2021 1
Chapter Five Class 9th
January 2021 1