Thermodynamics Formulae

  • Uploaded by: Helmi Hamzah
  • 0
  • 0
  • January 2021
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Thermodynamics Formulae as PDF for free.

More details

  • Words: 476
  • Pages: 2
Loading documents preview...
Table FI 9

9

THERMODYNAMICS FORMULAE m

Density ( p )

p = mass volume

Specific volume (v)

V- 1 ---v = volume mass m p

Specijc weight ( y )

weight - mg y=---- volume v pg

=

Virial Equations

V

P= RTI(v-B)

Continuity equation

m = c inlets

1. .

pv =

z=l+(BrPrITr) B(O)

p~~-cp~~

-

Ideal-gas Equation of State

Br = BP, I RT,

B(') = 0 . 1 3 9 - 0 . 1 7 2 1 ~ ~ ' ~

eritr

R T M

--

= 0.083- 0.422 1 T,'.~

Br = ~

( 0+(,,B(' ) )

R = universal gas constant M = molar mass of substance '

v2

v2

m e ( u , + p,v, +'+gz,)

Energy balance for an open system

Q-W

Work of steady -flow, open system

Kn = v d p + Ake + Ape

Thermal eflciency of heat engine

rl=

Coeflcient ofperformance (refrigerator)

copR =

Coeflcient ofperformane (heat pump)

c o p H P= &L!L : Kn

=

-mi ( u i + pivi + -+gzi)

2

2

I

f aw

-

Qin

Change in entropy

Qin - Qout Qii

q=-

Bn,L

TH- TL TH

COPR= 'TL TH- TL

Kn

COPm = TH TH- TL

inf rev

Change in entropyfor open system

+ s

ds0, =

~

-m s26m2 ~

rev. 0s

Change in entropyfor ideal gas

d =

j:cp$ R l n -P;I -

P2

d~

=

Isentropic Turbine Eflciency

rlr"

work of actual expansion - hl - hz. work of reversible expansion hl - h2,

Adiabatic CompressorEflciency

rlc =

work of reversible compression - h23- h work of actual compression h*o- h 1

Expression for a Reversible Process (Expansion/ Compression) in which

PVY= constant

Isothermal AU

0

Q

-nRT 1{?]

Adiabatic, c A V(2") nR -(T2-T,) Y-1

1 or -(P2V2-45) Y-1

0

Process

Q

S:fJ dV

Constant volume

m cV(TZ- T I )

0

Constant pressure

m ~ , ( T z- T I )

Constant temperature

plv1 1n4

Sf V

~ P

V(Pz - P I ) 0

P( VZ- V I )

AU

p- V-T Relations

Exponent in

mc,(Tz - T I )

--Tz - P Z TI PI

pP=C n=a

--TZ- VZ

n =0

mc,(Tz - T I )

TI plv1 I&

yl

plv1 I&

Vl

o

VI

VI

n=l

PI VI=pzvz

p1v:=pzvzl Reversible adiabatic

0

Reversible polytropic

k 01VI-PZVZ) k- 1

PlVl -pzVz k- 1

m cv

(E)

1-n

PI~I-pzvz n-1

(T2- T I )

I:* v

Constant volume

v

v

Constant pressure

01v1 -PZ~Z)

v

Tlly*pl \; v

Constant temperature

"TI= ( K ) " ' = ( ~ + I W p1VF=pzVz" -Tz - (?)*I = TI

;(

m cv(Tz - T I )

n

n-1 n#l

n=k

mcV(Tz- T I )

v

n >o

)(*l)'n

\; v

Reversible adiabatic

v

\: v

Reversible polytropic

v

Related Documents

Thermodynamics Formulae
January 2021 4
Formulae
February 2021 2
Thermodynamics
January 2021 1
Excel Formulae
January 2021 1
Thermodynamics
January 2021 1
Thermodynamics
January 2021 2

More Documents from "Rhoderic Radomes"