Abutment Design

  • Uploaded by: hemantkle2u
  • 0
  • 0
  • January 2021
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Abutment Design as PDF for free.

More details

  • Words: 6,441
  • Pages: 49
Loading documents preview...
Abutment Design

DESIGN OF ABUTMENT INPUT DATA Levels Proposed road level Existing ground level Depth of foundation Founding level Depth of superstructure Size of bearing Size of pedestal Number of bearings Bed block level Thickness of wearing coat C/C distance between face of dirt wall Projection of girder C/C distance between bearing

= = = = = = = = = = = = =

Dimensions Top width of abutment Bottom width of abutment Back batter Size of foundation Width of toe Width of heel Length of abutment

= = = = = = =

750 mm 900 mm 1 in 5600 x 3200 mm 1500 mm 8.20 m

Dirt wall thickness Dirt wall height Top width of Return wall Bottom width of Return wall

= = = =

400 0.825 0 0

Fly wing Depth of wing wall Thickness of wing wall

= = =

No 0.00 0.00

Concrete data and Permissible stresses Grade of concrete Grade of steel

= =

M 25 Fe 415

Unit weight of Concrete

=

25 kN/m3

Allowable Bending Stress (IRC:21-2000,Table - 9,Page18)

=

8.33 N/mm2

Allowable stress in Steel (IRC:21-2000,Table - 9,Page18) Modular ratio

=

200 N/mm2

100.773 94.823 900 93.623 600 400 700 5 99.948 75 6400 200 6000

=

10

mm mm x x

mm m m m

Unit weight of Soil



=

18 kN/m3

Angle of internal friction of soil



=

30

o

Surcharge angle Angle of inclination of wall from verticle face



=

0

o



=

88

Angle of friction between wall and soil



=

20

=

x x

36.166667 8200

x

50 100

mm mm mm mm

Soil data

Safe bearing capacity of soil

630 930

o

o

150 kN/m2

KLESCET Consultants

900

Abutment Design

Arrangement of Abutment System e2 300 3500 300

400

700

RL 100.773 Formation Level in Metre

Approach Slab

0

300 150

200 500

750 RL 99.948 Top of Abutment Cap in Metre

Abutment Cap

400

750

RL 99.548 Top of Abutment stem in Metre 350

375

998 750

6175

7150

5425

60 G.L

o

RL 94.823

0

RL 94.523 Top of Footing in Metre

A 1.20

0 900

1728

900

1500

150

750

RL 93.623 Foundation Level in Metre

3200

900 5600 SECTION OF ABUTMENT SYSTEM

Longitudinal eccentricity between CG of Bearing and CG of Abutment Stem

e1

=

0.225 m

Longitudinal eccentricity from centre of dirt wall to centre of pedestal Self Weight of Abutment Structure

e2

=

0.525 m

Element No.

Description of structure

1

Footing

2

3 4 5 6 7 8 9

Shape

Rectangle Triangle Rectangle Abutment Wall Rectangle Triangle Rectangle Triangle Abutment Cap Rectangle Dirt Wall Rectangle Approach slab Rectangle bracket Triangle Return Wall Rectangle Triangle Pedestal Rectangle Fly wing Rectangle Triangle Soil over burden Rectangle Triangle Triangle TOTAL C.G of abutment about A

Dead load from superstructure

Nos.

Length (m)

1 1 1 1 1 1 1 1 1 1 1 2 2 5 0 0 1 1 1

8.2 8.20 8.20 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 1.50 0.15 0.93 1.728 1.728 8.2 8.2 8.2

Lever Arm Bredth Depth (D) Area (m2) about (B) point A (m) 3.65 1.50 1.50 0.75 0.15 0.75 0.35 1.1 0.4 0.3 0.3 0.00 0.00 0.70 0.00 0.00 1.50 0.15 1.5

0.90 0.00 0.90 5.425 5.425 0.35 0.35 0.4 0.75 0.3 0.15 6.25 5.425 0.10 0.00 1.00 6.250 5.425 0

3.285 0 1.35 4.06875 0.406875 0.2625 0.0613 0.440 0.300 0.09 0.0225 18.75 0.81375 0.35 0.000 0.000

30.20 = = =

128.26 30.20 4.25 m 394.36 kN

KLESCET Consultants

3.650 4.600 4.850 3.575 4.000 3.575 4.067 3.750 4.100 4.450 4.400 4.850 4.050 3.700 6.464 6.176 4.850 4.050 5.10

Weight (kN)

Moment @ Toe of Footing (kN.m)

673.43 0.00 276.75 834.09 83.41 53.81 12.56 90.20 61.50 18.45 4.61 0.00 0.00 8.14 0.00 0.00 1383.75 83.41 0.00 3584.11

2458.001 0.000 1342.238 2981.885 333.637 192.380 51.062 338.250 252.150 82.103 20.295 0.000 0.000 30.109 0.000 0.000 6711.187 337.808 0.000 15131.10

Abutment Design

SUMMARY OF LOAD CALCULATION

CASE1: WORKING CONDITION

Moment due to Active Earth Pressure

Moment due to Live load Surcharge

=

133.51 x

=

400.942

kN.m/m

= =

44.816 160.217

x

7.15

0.5 kN.m/m

0.42

x

7.15

x

x

Total Moment due to soil & surcarge For 8.20 m carrigeway Total Moment due to soil & surcarge

=

561.16

=

4601.503

kN.m/m kN.m

CHECK FOR STABILITY (Refer IRC : 78 - 2000, Cl.No.706.3.4, Pg.No.21) Sl.No. DESCRIPTION VERTICAL HORIZONTA RESISTING OVERTURNI OF FORCES FORCE L FORCE (kN) MOMENT NG MOMENT (kN) (kN-m) (kN-m) 1 2 3 4

Dead load from superstructure Live Load from Superstructure Load from Abutment structure Active Earth Pressure & surcharge

394.36

-

1459.13

-

247.42

-

884.51

-

3584.11

-

15131.10

-

532.24

1462.30

-

4601.50

5

Braking force

-

123.71

-

1032.96

6

Secondary force

-

25.34

-

158.99

i) Construction stage a) F.O.S against Sliding

= = =

b) F.O.S against Overturning

= = = KLESCET Consultants

0.6 x W > H 0.51 4758.12 1611.35 1.51 SAFE

1.5

Mr Mo 15131.10 5793.46 2.61

2

>

Abutment Design

SAFE

KLESCET Consultants

Abutment Design

ii) Working condition a) F.O.S against Sliding

0.5*W > H 0.51 4758.12 1611.35 1.51 SAFE

= = =

b) F.O.S against Overturning

Mr Mo 17474.75 5793.46 3.02 SAFE

= = =

>

CASE 2 : SEISMIC CONDITION Moment @ bottom of Toe due to seismic due to soil

x

=

x

261.81

7.15

0.5

133.51

Moment @ bottom of Toe due to seismic and static due live load surcharge

Active earth pressure due to surcharge for static

=

617.78

=

16.52

=

77.94

=

0.20

= Total pressure

= =

Horizontal component

= = =

Moment @ bottom of Toe due to static

kN.m/m x

21.60

7.15

xx

0.309

7.15 x 9.54 kN/m

9.538 x 9.538 x 8.963 kN/m

=

8.96

cos 20 0.94

0.5 32.04 kN-m/m

=

77.94

32.04

45.90 kN-m/m

m carrigeway =

x

0.66 kN-m/m

x

1.334

= For 8.20 Total moment due soil and surcharge

2.38

1.334 kN/m2

= Moment @ bottom of Toe due to seismic

x

376.36 kN-m

KLESCET Consultants

7.15

1.5

2

Abutment Design

KLESCET Consultants

Abutment Design

CHECK FOR STABILITY (Refer IRC : 78 - 2000, Cl.No.706.3.4, Pg.No.21) Sl.No. DESCRIPTION VERTICAL HORIZONTA RESISTING OVERTURNI OF FORCES FORCE L FORCE (kN) MOMENT NG MOMENT (kN) (kN-m) (kN-m) 1 2 3 4

Dead load from superstructure Live Load from Superstructure Load from Abutment structure Load from soil pressure & surcharge

394.36

-

1409.84

-

49.48

-

884.51

-

3584.11

15131.10

385.09

1058.02

5442.12

-

85.18

615.44

5

Seismic force

6

Breaking force

123.71

1032.96

7

Secondary force

25.34

158.99

i) Construction stage a) F.O.S against Sliding

= = =

b) F.O.S against Overturning

= = =

0.5*W > H 0.5 3969.19 1292.25 1.54 SAFE Mr Mo 15131.10 7249.52 2.09 SAFE

>

1.25

1.5

ii) Working condition a) F.O.S against Sliding

= = =

b) F.O.S against Overturning

= = =

KLESCET Consultants

0.5*W > H 0.5 4413.04 1292.25 1.71 SAFE Mr Mo 17425.46 7249.52 2.40 SAFE

>

1.25

1.5

Abutment Design

CHECK FOR BASE PRESSURE

For working condition S.B.C. of soil Total load

W ML

x = Length of footing Total width of footing

ML/W L B B/6

Eccentricity

e

=

150

= = = = = = = =

4758.12 Mr - Mo 17474.75 11681.29 2.455 8.20 5.60 0.93

= =

B/2 - x 0.34 m

kN/m2 kN -

5793.46

kN.m m m m m

< (B/6)

SAFE

Pressure, Max Pressure at Base = = =

(W/BxL)x(1+(6e/B) 150.00/(8.20x5.60)x(1+6x0.34/5.60) 141.92

kN/m2

Min Pressure at Base = = Hence

= < S.B.C

Max Pressure

(W/BxL)x(1-(6e/B) 150.00/(8.20x5.60)x(1-6x0.34/5.60) 65.32

kN/m2 SAFE

For seismic condition S.B.C. of soil Total load

W ML

x = Length of footing Total width of footing

Eccentricity

ML/W L B B/6 e

=

225

= = = = = = = =

4509.31 Mr - Mo 17425.46 8661.55 1.921 8.20 5.60 0.93

= =

B/2 - x 0.88 m

kN/m2 kN -

8763.91

kN.m m m m m

< (B/6)

SAFE

Pressure, Max Pressure at Base = = =

(W/BxL)x(1+(6e/B) 150.00/(8.20x5.60)x(1+6x0.88/5.60) 190.70

kN/m2

Min Pressure at Base = = Hence

Max Pressure

= < S.B.C KLESCET Consultants

(W/BxL)x(1-(6e/B) 150.00/(8.20x5.60)x(1-6x0.88/5.60) 5.70

kN/m2 SAFE

Abutment Design

DESIGN OF RETURN WALL

0.30

FRL=

RL100.773

Due to surcharge

h= 6.25 m Top of footing = RL94.523

Soil parameters      KA

= = = =

30 0 88 20

=

18

=

0.309

1). Active Earth Pressure Active Earth pressure, p=

Total Pressure=

0.5 h

0.42 h

1.2*Ka*

0.90 C/s of Return wall

Due to Soil

Ka**h

° ° ° ° kN/m3

 

= =

Ka 0.309 x

=

34.741 kN/m

= =

x

h 6.25

p x 34.741

h 6.25

2

0.5 0.5

x

= = =

108.565 kN/m 108.565 x cos x 20 102.017 kN/m

Vertical component=

= =

108.565 x sin x 20 37.131 kN/m

Moment @ bottom of Toe=

= =

lever arm h 102.017 x 0.42 x 6.25 267.796 kN.m/m

Horizontal component=

2). Live load Surcharge (Refer IRC:78- 2000, Cl.710.4.4, Pg.No.55) Live load Surcharge = =

Active Pressure due to surcharge

Total Pressure

1.2 1.2

x Earth fill 18 x

=

21.600

= = =

Ka x 1.2 0.309 x 1.2 6.670 kN/m

=

6.670

kN/m2

KLESCET Consultants

h

x x

18 18

Abutment Design

= =

6.670 6.25 41.689 kN/m

KLESCET Consultants

Abutment Design

Horizontal component

= =

41.689 x cos 20 39.175 kN/m

Vertical component

= =

41.689 x sin 20 14.258 kN/m

= =

lever arm 39.175 0.5 x 122.421 kN.m/m

Moment @ bottom of Toe

x

6.25

Total Vertical Comp.Force due to soil & surcharge Total Horizontal comp.Force due to soil & surcharge Total Moment due to soil & surcharge Hight of Dpro at base of wall Therefore "d" available = 0.900 Grade of concrete Grade of Steel According to IRC-21:2000 Design Constants: σcbc Modular Ratio Neutral Axis Factor

= = = 6.250 m 900 mm

= =

25 415

=

8.33 N/mm2

σst m

= =

200 N/mm3 10

k

=

m σcbc/( mσcbc + σst)

= =

Lever Arm Factor

j

Q

=

1-(k/3)

dreq

=

1

8.333

-

+

200

0.294 3

0.90 0.5 x σcbc x j x k

=

0.5

=

1.11

=

x

10 x 8.333 0.29

= Moment Factor

10

=

=

51.390 kN/m 141.192 kN/m 390.217 kN.m/m

x

8.333

390.22 x 1000000 1.11 x 1000

KLESCET Consultants

x

0.90 x

0.29

Abutment Design

Dia of bar Overall Depth Provided Clear Cover Center of reinforcement Effective depth Provided

= = = = = =

594.2 32 900 50 16 834

mm mm mm mm mm mm

KLESCET Consultants

< dreq

SAFE

Abutment Design

Area of Steel Required

=

Area of Steel Required

Minimum reinforcement required

Hence required Diameter of bar

M x 106 j x σst x d

=

390.22 x 1000000 0.902 x 200 x 834.000

=

2593.71 mm2/m

= =

0.12 % of cross sectional area 0.12% x 900 x 1000

=

1080 mm2/m

Ast,req

>

Astmin

Ast

= =

Spacing required Spacing provided

= =

2593.71 mm2/m 32 mm 310.1 125

mm2

Provide 32mm dia bars @125mm C/C Total Steel Provided on Embankment Face

=

6433.98 mm2 SAFE

Check for Shear As per IRC-6:2000, Cl:304.7.1.1.1. Shear Force

V

=

141.192 kN

v

= = = =

141.192 x 1000 x 0.169295

Pt

=

(100 x Ast) / (B x d)

= = = As per IRC-6:2000, Table 12B, Page no 37.

100 x 6433.98 1000 x 834.00 0.771

Design Shear stress

Pt

1000 834

0.37 0.31

c =

0.375151

>

v

x

0.50 c

SAFE

0.771 0.271 0.25

KLESCET Consultants

0.06

0.75

Dirt Wall Design

DESIGN OF DIRT WALL Dirt wall is designed as a cantilever member subjected to following loads 1)Active earth pressure 2)Live load surcharge 3)Braking force 0.4

Live load surcharge

h=

Active earth pressure

0.825 m 0.5 h

0.42

1.2*Ka*

C/s of Dirt wall

h

Ka**h

Height of Dirt wall, h = FRL-Top of Abutment cap FRL= h

=

=

100.773 0.825

99.948 m

h =

Top of Abutment cap= Soil parameters     = KA =

30 0 88 20

˚ ˚ ˚ ˚

18 kN/m3 0.309

1). Active Earth Pressure Active Earth pressure, p

Total Pressure

Horizontal component



=

Ka

=

0.309



=

4.586

kN/m2

=

0.5 x

=

0.5

x

p

1.892 kN/m

=

1.892 x cos 1.778

0.825

h

x

4.586

=

=

h

x

0.825

x

kN/m x

x

KLESCET Cosultants

20

100.773 m 0.825

99.948 m

Dirt Wall Design

Vertical component

= =

Moment @ bottom of Dirt wall

= =

1.892 x sin 0.647

x

20

kN/m

lever arm 1.778 x 0.42 x 0.616

0.825

kN.m/m

2). Live load Surcharge (Refer IRC:78- 2000, Cl.710.4.4, Pg.No.55) Live load Surcharge = 1.2 x Earth fill =

ctive Pressure due to surcharge

Total Pressure

1.2 x

=

21.600

=

Ka

18 kN/m2 1.2

x

=

0.309 x

=

6.670

=

6.670 x

=

6.670 x 0.825

=

5.503

x

1.2 x kN/m2 h

kN/m

KLESCET Cosultants

 18

Dirt Wall Design

Horizontal component

Vertical component

Moment @ bottom of Dirt wall

=

5.503

cos 20

=

5.171 kN/m

=

5.503

x

sin 20

x

=

1.882

kN/m

=

5.171 x

=

2.133

lever arm 0.5 x

0.825

kN.m/m

3). Braking Force Following Vehicles are considered to act on Dirt Wall a) 70R Bogie b) Class A ( Two Lane ) According to the IRC-21:2000, Cl:214.20, Page no 33, braking force is taken as 20% of actual load of wheel on the span a) 70R Bogie

H 1.2

85.00 2.13

Wheel Load

85.00 1.93

0.825

a= 2.025

In Plan 0.22 0.86

0.86 FOOTING

Minimum Axel width in longitudinal direct

1.37

Effective width of dispersion, beff 1.2a + b1 Braking force acts at 1.2 m above Road level Thickness of wearing coat = 75.0 mm b1 = 0.86 + 2 x 0.075

m (Refer Cl.305.16.2 of IRC:21- 2000) (Refer Cl.214.3 of IRC:6- 2000) =

1.010

m

1.2 x 2.025 + 1.010 = 3.440 beff > Spacing of the wheels (1.2m) hence dispersion width over laps

m

beff =

Total Dispersion Width

=

Tb

=

Total axel load

=

2.13

+ 1.93 + 3.440 /

2

5.780 m

Braking Force(20% of axel load), H Braking Force per metre width

170 kN = =

KLESCET Cosultants

34.0 H/Tb

kN

(Refer Cl.214.2 of IRC:6- 2000)

Dirt Wall Design

=

5.882

kN/m

b) CLASS A (2 No.) 57.0 0.9

Wheel Load

In Plan

57.0 1.8

57.0 1.7

0.25

57.0 1.8

0.25

0.5 Minimum Axel width in longitudinal direct

0.5 1.2

m

b1 =

0.5

+

x 0.075

=

0.650

m

beff =

1.2

x 2.025 + 0.650

=

3.080

m

2

KLESCET Cosultants

Dirt Wall Design

beff > Spacing of the wheels (1.2m) hence dispersion width over laps Total Dispersion Width = 0.5+0.15+0.25+1.8+1.7+1.8+(4.506/2) Tb = 7.740 m Total axel load = 228 kN Braking Force(20% of axel load) = 45.6 kN Braking Force per metre width = 5.891 kN/m Hence Class 'A' 2 Vehicle is critical, hence governs the design lever arm Moment due to Braking = 5.891 x 2.025 = 11.93 kN/m = =

Total Bending Moment

Design S.F

= =

Depth Required

11.93 + 0.616 + 0.616 + 15.295 kN.m/m (1.78+5.17+5.89) 12.840 kN

15.30 x 1000000 1.11 x 1000 117.6 mm

=

dreq

=

Overall Depth Provided Clear Cover Diameter of bar

= = =

400 50 20

mm mm mm

Center of reinforcement

=

10

mm

Effective depth Provided

=

340

mm

Area of Steel Required

0.20% x 400

= =

800.00

Spacing required

=

393

mm

Spacing provided

=

150

mm

Astreq

> dreq

15.30 x 1000000 0.902 x 200 x 340 j st. stress eff.depth 249.38 mm2/m

= =

Astmin

2.133

x

1000

mm2/m

< Ast min

Astreq =

800.000 mm2

Provide 20mm dia bars @150mm C/C Total Steel Provided on Embankment Face = KLESCET Cosultants

2094.40 mm2/m

Dirt Wall Design

SAFE

KLESCET Cosultants

Dirt Wall Design

Check for Shear (Refer IRC-6:2000, Cl.304.7.1.1.1, Shear Force

V

=

v

Design Shear stress

100Ast/(bd)

12.840 kN

=

12.840 x 1000 1000 x 340

=

0.038

=

100 x 2094.40 1000 340 x

=

0.616

N/mm2

0.31 0.23

0.25 As per IRC-6:2000, Table 12B, Page no 37. c = c

>

0.347 v

N/mm2

SAFE

KLESCET Cosultants

x

0.616 0.366 0.25

0.08

0.50

Abutment Design

LOADINGS 70-R Wheeled

170

170

170

1.37

3.05

170 1.37

0.2

120 2.13

120 1.52

80 3.96

6 1.17

RA

RB

RA

=

170 x 6.2 + 170 x 4.83 + 170 x 1.78 + 170 x 0.41 + 120 x -1.72 + 120 x -3.24 + 80x-7.2

=

179

kN

Class A 68

68

68

3

68

3

3

0.2

114 4.3

114 1.2

27

27

3.2

1.1

6 2.8

RA RA

RB =

68 x 6.2 + 68 x 3.2 + 68 x 0.2 + 68 x -2.8 + 114 x -7.1 + 114 x -8.3 + 27x-11.5 + 27 x

=

-324 kN

For two lane of Class A

=

-648.0 kN

350

+

350

=

50

50

50

50

50

50

50

0.653

0.653

0.653

0.653

0.653

0.653

0.653

Class 70 R Tracked Total load =

700 kN

KLESCET Consultants

Abutment Design

4.57 50

50 0.653

50 0.653

50 0.653

0.2 0.453 RA

RA

50 0.653

50 0.653

50 0.653

6 RB

=

50 x 6.2 + 50 x 5.55 + 50 x 5 + 50 x 4.24 + 50 x 3.59 + 50 x 2.94 + 50x2.28

=

247

kN

KLESCET Consultants

Abutment Design

Eccentricity in transverse direction Width of carriageway No of lanes

= =

8.20 m 3.00

1 lane of Class A

0.45 0.5

0.15

1.80 8.20

eT

= =

4.1 2.35 m

1.8

2 lanes of Class A

0.45

0.5

0.15

1.80

1.2

8.20

eT

= =

4.1 0.60 m

3.50

KLESCET Consultants

Abutment Design

3 lanes of Class A

0.45

0.5

1.2

0.15

1.80

1.2

1.80 8.20

eT

= =

4.1 1.15 m

5.25

KLESCET Consultants

1.80

Abutment Design

1 lane of Class 70 R

0.45

0.86

0.15

1.93 8.20

eT

= =

4.1 2.105 m

2.00

1 lane of Class 70 R + 1 lane of Class A

0.45

0.86

0.15

0.5

1.93

1.2

1.80 8.20

500

1.93

500

277

1.88

277

1.80

KLESCET Consultants

Abutment Design

Eccentricity due to load

eT

= =

=

4.1 0.770 m

2.30009

3.33

KLESCET Consultants

Abutment Design

DESIGN OF ABUTMENT WALL The abutment wall is designed as a section subjected to Axial force and Bending moment for the following forces 1) Self weight 2) Dead load from superstructure 3) Vehicular live load from superstructure e= 0.525 4) Braking forces 5) Horizontal forces due to secondary effects 6) Active Earth Pressure 400 700 7) Live load surcharge 300 750 0.8 FRL= RL100.773 Due to surcarge Due to Soil150 0.225 Abutment Cap

h=

6.25 m

400

750 0.5 h

Topof foot RL94.523

1.2*Ka*

99.548

0.42 h Ka**h

5.025 750 94.523

Soil parameters  =  =  =  =  = Ka = Ca =

1). Self weight 1)Dirt wall

Moment @bottom of Wall 2)Abutment cap Rectangular area Moment @bottom of Wall Triangular Area Moment @bottom of Wall

3)Wall

C/L of wall 30 0 88.4161884 20 18 0.309 0.569

˚ ˚ ˚ ˚ kN/m3

= =

0.4x0.75x1x25 7.5

= =

7.5

= = = = = = =

1.1x0.4x1x25 11 kN/m 11 0.175 x 1.925 0.5x0.35x0.35x1x25 1.53125 1.53125 x 0.491666667 0.752864583

= =

0.75x5.02x1x25 94.21875 kN/m

x

3.94

kN/m

lever arm 0.525 kNm/m

KLESCET Consultants

Abutment Design

2). Dead load from super structure Total, R Load per meter width Wd Long. Moment ( ML )

394.36 = = = = =

(from staad analysis) R 8.20 48.09 kN/m lever arm x Wd e1 48.09 x 0.225 10.82 kNm/m

3). Vehicular live load from super structure Following Vehicular loads are considered Eccentricity, e1= 0.225 m

R/meter Moment Total Type of Load Reaction Rm ML=Rm*e1 in kN R A) Class A( 2 No-647.97 -79.02 -17.78 B) Class A( 3 No-971.95 -118.53 -26.67 C) 70R Tracke 494.83 60.35 13.58 D) 70R -3.97 Wheeled + -144.62 -17.64 Class A (1 No.) D) 70R 4.69 tracked + 170.85 20.84 Class A (1 No.) Hence 70R Wheeled + Class A Vehicle governs the design

Long. Moment ML = Total , R=

13.58 494.83

eT

Resultant

2.35 0.60 2.11 1.15

554 1108 1000 1662

kNm/m kN

Moment Type of Load A) Class A( 1 No B) Class A( 2 No C) 70R Wheele D) Class A( 3 No

E) Class A( 1 0.77 No.) + 70R Wheeled Total transverse moment Total transverse moment/m

1554 = =

MT=Rm*eT 1301.90 664.80 2105.00 1911.30 1196.44 2105.00 kNm 256.71 kNm/m

4). Braking forces (20 % of Axle Load upto 2 Lane & 5 % live load for additional lane.) As IRC-6:2010, horizontal seismic forces in the direction perpendicular to the traffi 20.00 % Total Axial load(kN) 1st 2nd lane

3rd Lane

For Static

5.00% -32.40 -48.60

Force -161.99 -242.99

Type of Load 1) Class A 2 VEH 2) Class A 3 VEH

2 lane -647.97 -971.95

3 lane -647.97 -971.95

20.00% -129.59 -194.39

KLESCET Consultants

(without impact)

Total in Force/A BM at kN bt /m Fdl -161.99 -19.76 -242.99 -29.63

-164.95 -247.43

Abutment Design

3) 70R tracked + Class (1 No.) 4) 70R A Tracked

170.85

170.85

34.17

8.54

42.71

42.71

5.21

43.49

494.83

494.83

98.97

24.74

123.71

123.71

15.09

125.97

-28.92

-7.23

-36.15

5) Class A( 1 -144.62 -145 No.) + 70R Wheeled Effective width of dispersion, 1.2*a+b1 1 for Class A = 0.41 beff= 70R Tracked = 1.00 beff= 70R Wheeled = 1.02 beff=

10.43 11.02 11.04

8.20

KLESCET Consultants

-36.15417 -4.40904 -36.82

Hence bef

Max =

125.97

=

8.20

m

Abutment Design

m Total width of dispersion = 8.20 kN total force/trestle= 24.74 ng. Moment due to braking = 125.97 kNm/m

lever arm for the Braking force(m)=

8.35

lever arm for the secondary forces(m)= 6.275

5). Horizontal forces due to secondary forces Span length Length of Bearing L Width of Bearing B Total depth of Bearing D No. of Steel laminates Thickness of steel laminate Shear Modulus G Modulus of elasticity of concr E Co efficient of thermal expans  (IRC 6-2010, Cl 218.4, Page 46) Maximum Temperature (IRC 6-2010, Fig 8, Page 42) Minimum Temperature (IRC 6-2010, Fig 9, Page 43) Temperatue difference t

= = = = = = = = =

6000 630 400 50 4 3 1 25000.0 1.17E-05

mm mm mm mm

Strain due to Temperature

=

Deformation due to Temperature

= = =

Shear deformation

= =

Deformation / Depth 0.16

Force on each bearing

= = =

Shear deformation x Shear modulus

mm N/mm2 N/mm2 / oC

=

37.5 oC

=

10 oC

=

27.5 oC

Number of bearings Force on abutment Force / meter length along abutment

= = =

Moment @bottom of Wall

= =

0.00032 Strain x 0.00032 x 1.93 mm

5067.56 N 5.1 kN 5 25.34 kN 3.09 kN/m 3.09

x 6.275 19.39 kN-m/m

KLESCET Consultants

Span 6000

x Area of bearing

Abutment Design

6). Active Earth Pressure Active Earth pressure, p

 18 kN/m2

= = =

Ka 0.309 34.741

Total Pressure

= = =

0.5 p x 0.5 34.741 108.565 kN/m

Horizontal component

= =

Vertical component

= =

108.565 37.131

ment @ bottom of Abutment

= =

lever arm 102.017 0.42 6.25 267.80 kN.m/m

= = = = =

1.2 1.2 21.600 Ka 6.670

Earth fill 18 x kN/m2 1.2 x xx kN/m2

= = = = = = =

6.670 6.670 41.689 41.689 39.175 41.689 14.258

x

= =

39.175 122.421

=

274.08

=

566.59

7). Live load Surcharge (Refer IRC:78- 2000, Cl.710.4.4, Pg.No.55) Live load Surcharge

Active Pressure due to

Total Pressure

Horizontal component Vertical component

Moment @ bottom of Abutment

Total Vertical Force, P Total Longitudinal Moment ML

h 6.25

h 6.25

108.565 cos 20 102.017 kN/m sin kN/m

x

KLESCET Consultants

h 6.25 kN/m cos x kN/m sin kN/m

20

18

x

20 20

lever arm 0.5 6.25 kN.m/m

kN/m kNm/m

Abutment Design

DESIGN OF ABUTMENT AS WALL Longitudinal moment

ML

Effective depth required

=

dreqd.

Overall depth provided Clear Cover Diameter of bar Half dia. of Bar Effective depth provided Area of Steel Required

Ast Spacing required Spacing provided

=

566.59 kNm/m

√(M /Q.b)

=

566.59 x 1000000 1.11 x 1000

= = = = = =

715.96 825.00 75.00 25 12.50 737.50

=

566.59 x 1000000 0.902 x 200 x

=

4258.8

= =

mm mm mm mm mm mm

> dreq SAFE 737.50

mm2

115 100 mm

Provide 25mm dia bars @100mm C/C Total Steel Provided

=

4908.74 mm2/m

KLESCET Consultants

SAFE

Abutment Design

Check for Shear (Refer IRC-6:2000, Cl.304.7.1.1.1, Shear Force

V

v

Design Shear stress

100Ast/(bd)

=

141.192 kN/m

=

141.192 x 1000 1000 x 738

=

0.19

N/mm2

=

100 1000

x 4908.74 x 737.5

=

0.666

0.42 0.37

0.75 As per IRC-6:2000, Table 12B, Page no 37. c

=

c

>

0.353 v

N/mm2 SAFE

KLESCET Consultants

x

0.666 -0.084 0.25

0.05

1.00

Abutment Design

CALCULATION OF ACTIVE EARTH PRESSURE

i) Static case Active earth pressure is calculated using Columb's theory as per IRC:78 - 2000, Cl.710.1.3

Soil parameters     

Unit weight of soil Angle of internal friction of soil Surcharge angle Angle of inclination of wall from horizontal face Angle of friction between wall and soil

= = = = =

18 30 0 88 20

kN/m3 ° ° ° °

F.L Due to surcarge

RL 100.773

Due to Soil

7.15 m

h=

0.5 h

0.42 h

Found. Lvl 1.2 x Ka x 

RL 93.623

Ka x x h

Static Earth Pressure Diagram Active earth pressure coefficient Ka

=

sin 2 (-  ) sin 2  x

sin (  -  )

1

= 0.930

x

1

+

0.309

Active Earth Pressure = = =

 Ka x  0.309 x 39.743 kN/m2

PA

= = =

0.5 p x x 0.5 x 39.743 x 142.08 kN/m

Horizontal component

= = =

Vertical component

= =

Active Earth pressure

Total Static Pressure

p

sin (  +  ) sin (  -  ) sin (  - ) sin (  +  )

2

0.7735451475 0.99923607x

=

+

x x

PA

cos 20 x 142.083 x 0.94 133.514 kN/m PA

x

142.083 x

sin 20 0.34

KLESCET Consultants

h 7.15

h 7.15

0.766 x

0.5

0.930 x

1.000

2

Abutment Design

x

=

48.595

kN/m

KLESCET Consultants

Abutment Design

Live load Surcharge (Refer IRC:78- 2000, Cl.710.4.4, Pg.No.55) Live load Surcharge = = = Active Pressure due to surcharge Total Pressure

Horizontal component

Vertical component

1.2 x Earth fill 1.2 x 18 21.600 kN/m2

= = = = =

Ka 1.2 x x 6.670 kN/m 6.670 h x 6.670 x 7.15 47.692 kN/m

= = =

47.692 47.692 44.816

cos 20 0.94 kN/m

= = =

47.692 sin 20 x 47.692 x 0.34 16.312xkN/m

x x

Total Vertical Comp.Force due to active earth pressure & live load surcharge Total Horizontal comp.Force due to active earth pressure & live load surcharge For

8.20

18

=

64.907

kN/m

=

178.330 kN/m

=

532.235 kN

=

1462.304 kN

m carrigeway

Total Vertical Comp.Force due to active earth pressure & live load surcharge Total Horizontal comp.Force due to soil & surcharge

ii) Seismic case Seismic active earth pressure coefficient Ca

=

( 1 + Av ) cos2 (  -  - )

x

cos  cos  cos (  +  +  ) 2

1

+

1 sin (  +  ) sin (-  -  ) cos (  -  ) cos (  +  + )

Where, 

Ca

= =

13.6

=

1.036 0.794

=

Total AEP due to Static and Siesmic

tan-1(Ah/1-Av)

PAE

°

x

1

1 + 0.766 x 0.999618

0.569

=

0.5 x  x h2 x Ca

KLESCET Consultants

2

0.282 0.817

2

Abutment Design

= =

0.5x18x7.150x7.150x0.569 261.8 kN/m

KLESCET Consultants

Abutment Design

F.L RL 100.773

Due to surcarge

Due to Soil

7.15 m

h=

0.66 h

0.5 h

Found. Lvl 0.2 x 1.2 x  x Ca

RL 93.623

(Ca - Ka) x  x h

Seismic Earth Pressure Diagram

Active Earth pressure

Total Seismic Pressure

p

PAEQ

Horizontal component

Vertical component

= =

 

(Ca - Ka) x 0.260 x

=

33.491

=

0.5

x

h 7.15

x

h

x

kN/m2

p

x

= =

0.5 x 33.491 x 119.73 kN/m

= = =

PAEQ

x

PAEQ

x

= = =

Live load Surcharge (Refer IRC:78- 2000, Cl.710.4.4, Pg.No.55) Live load Surcharge q = =

7.15

cos 20 119.731 x 0.94 112.511 kN/m sin 20

119.731 x 0.34 40.950 kN/m

0.2 0.2

=

4.320

=

Ca

1.2 1.2

x x

x Earth fill

18

x

kN/m

2

(Refer IRC:6- 2010, Table 1, Pg.No.6) Active Earth pressure due to surcharge

p

= = Horizontal component

Vertical component

q

x

h

x

0.569 x  x 17.58 kN/m

7.15

= = =

17.58 17.58 16.52

= = =

17.58 sin 20 x 17.58 x 0.34 6.01xkN/m

Total Vertical Comp.Force due to active earth pressure & live load surcharge

cos 20 0.94 x kN/m x

=

KLESCET Consultants

46.962

kN/m

Abutment Design

Total Horizontal comp.Force due to active earth pressure & live load surcharge For

8.20

=

129.027 kN/m

=

385.088 kN

=

1058.020 kN

m carrigeway

Total Vertical Comp.Force due to active earth pressure & live load surcharge Total Horizontal comp.Force due to active earth pressure & live load surcharge

KLESCET Consultants

Abutment Design

DESIGN OF ABUTMENT STEM The length of column (Height) The following details obtained from Abutment Stem Design: (Nd) Load

=

6250mm

=

274.08kN

Moment

(Md)

=

566.59kN

Stem thickness

(h)

=

900mm

Breadth

(b)

=

1000mm

Grade of concrete

=

M25

Grade of steel

=

Fe415

Tension face reinforcement

=

20

Area of

20 mm dia. bars

Compression face reinforcement

@

=

180 c/c 314sq.mm

=

12

No. of bars in tension face

=

11.11

[or]

12

No. of bars in comp. face Area of steel in tension face ( AS )

=

5.56

[or]

6

=

3770sq.mm

Area of steel in comp. face ( A'S )

=

679sq.mm

Area of

@

12 mm dia. bars

e

Modular ratio

180 c/c 113sq.mm

=

10

As per page 365 of Reynold's Handbook To find eccentricity, Md e = Nd h 6 h 2 3h 2 Therefore,

e

=

566.59

x 274.08 900

=

6 900

= = >

1000

2 3

x

900

2 h/2

>

=

2067.2mm

=

150.0mm

=

450.0mm

=

1350.0mm

3h/2

Effective cover to tensile steel

=

Effective depth

=

50

+

20

=

60mm

=

840mm

2 900 - 60 fcu x h = 900

d = 840 60 b=

Assumed depth of N.A

1000 =

243.00mm

SAFE

KLESCET Consultants

0%

Abutment Design

K1

= b.x

=

1,000 x 243

=

243000sq.mm

To determine the centroid of stressed area K1.x + e.As.d + (e-1) A's.d' 1/2 x = K1 + e.As + (e-1)A's 0.50x243,000x243 + 10x3,770x840 + (10x1.5-1)x679x60

=

1

=

2

=

3

=

= 212.83mm

243,000 + 10x3,770 +1.5x(10-1)x679

e-x

+

d

x

1-

2d

1

x

1-

d'

243

1-

2x840

=

x

+

840

=

3d

(e - 1)

2,067.25 - 212.83

=

(10x1.5-1) x

1-

243 3x840 60 243

Compressive stress in concrete Nd.1 Fcs

=

2.b.d + 3.A's.

1-

274.08 =

x

d'

1000

0.131x1,000x840 + 10.543x679x

d x

3.208 1-

60 840

= 7.551Mpa

FC

=

=

=

Nd bx+eAs+(e-1)A'S 274.08x 1000 1000x243+10x3,769.91+(10-1)678.58 274077.95 286806.37

= 0.956Mpa Fcs max

=

( Fcs + FC )

=

7.55

+

0.96

=

8.51MPa

>

8.33Mpa

UNSAFE

KLESCET Consultants

1

= 3.208

= 0.131

= 10.543

Abutment Design

Calculation of Tensile stress in steel Permissible tensile stress in steel = fcs (0.5 K1 + b3 A's) - Nd fst = As =

200.00Mpa

7.551x (0.5x243,000 + 10.543x679) - 274

1000

3769.9111843078

= 184.992Mpa fst max = ( fst + Fc ) 184.99

=

= 184.04MPa

-

0.96

<

200.00Mpa

SAFE Check for the depth of Neutral Axis: Actual depth of Neutral Axis based on the stress level in concrete and steel and the effective depth is calculated from the formula d xa

=

1+

840 fst

=

e.fcs

% error is assumed N.A

=

184.99

1+

=

243.49mm

10x7.55 243.49 - 243.00

x

243.49

100

=

0.20%

<

5 %

SAFE

CHECK FOR MINIMUM REINFORCEMANT IN THE SECTION : The length of column Min. radius of gyration

r

Effective length factor

=

6250.0mm

=

sqrt(I/A)

=

sqrt[(1,000x900^3) / (12x900x1,000)]

=

259.8mm

=

1.75

(Refer IRC:21-2000, Cl.306.1, Table 13) leff

Effective length

= leff/r =

Slenderness ratio,

Min. steel in pedestal

1.75 x 6,250

=

42.10

=

0.30%

(Refer IRC:21-2000, Cl.306.2.2, Pg.No.59)

20 f

Actual area of steel provided

180 c/c +

10937.5mm SHORT COLUMN

of gross area

0.30 x 1,000 x 900 =

(Ast + Asc)(

=

10,937.50 / 259.81

12 f

2700sq.mm

180 c/c )

= 3769.91118431 >

=

100

+

678.58401 =

2700sq.mm

KLESCET Consultants

SAFE

4448sq.mm

Abutment Design

SEISMIC COEFFICIENT Seismic coefficient is calculated as per provisions made in IRC 6 - 2010, IS 1893 - 1984 and IITK guidelines. Soil type = Medium soil Zone number = V Zone factor Z = 0.36 (Refer IRC 6 -2010, Table 6, Pg.No.47) Importance factor I = 1.20 (Refer IRC 6 -2010, Table 7, Pg.No.51) Reduction factor R = 2.50 (Refer IRC 6 -2010, Table 8, Pg.No.52) CALCULATION OF TIME PERIOD (Refer IRC 6 -2000, Appendix - 2, Pg.No.61) T = 2√D/(1000F) Where, T = Fundamental period of the pier/abutment in secs for horizontal vibrations D = Appropriate dead load of the superstructure and live load in kN Horizontal force in kN required to be applied at the centre of mass of superstructure for one mm deflection at the top of the pier/abutment F = along the considered direction of horizontal force. = = = = =

Grade of concrete Dead Load Live load Self Weight of Abutment Total ( w )

25 394.36 494.83 983.87 1873.07

kN kN kN kN

Height of abutment

L

=

5425 mm

Breadth of abutment

B

=

8200 mm

Thickness of abutment wall

t

=

750 mm

Young's Modulus

E

=

5000√Fck

=

25000

=

(B x t3 / 12)

Moment of inertia

Igr

=

KLESCET Consultants

N/mm2

8200 x 4.22E+08 12

Abutment Design

= T=2√W/(1000F) FL3 / 3EI F

=

1

=

3EI/L3

=

T

3

x25000.00 x2.88E+11

1.60E+011

=

135.418635 kN

=

0.235 Sec

Sa /g = 2.50 ( Refer IRC:6-2010, Cl.219.5.1, Pg.No.50) Design horizontal seismic coefficient Z I Sa Ah = 2Rg = =

(0.36x1.2x2.5) 2x2.5 0.216

Av is taken as (1/2)Ah as per IS: 1893: 1984 Av

=

0.108

KLESCET Consultants

2.88E+11 mm4

Abutment Design

For

8.20 m carrigeway

Seismic force at bearing level

=

0.216 x 394.36

= Longitudinal moment upto footing top level

=

85.18 kN

85.18

=

Longitudinal moment upto footing bottom level

=

x

6.325

538.77 kN-m

85.18

=

x

7.225

615.44 kN-m

Per running meter carriage way Seismic force at bearing level

=

10.39 kN/m

Longitudinal moment upto footing top level

=

65.70 kN/m

Longitudinal moment upto footing bottom level

=

75.05 kN/m

KLESCET Consultants

Abutment Design

DESIGN OF FOOTING Abutment hight above footing Unit weight of soil Unit weight of concrete

= = =

B

1.5

6.3 m 18.0 kN/m3 25.0 kN/m3

1.0

3.2

A 0.9

0.9

0.9 5.6 65.319 kN/m2

141.916 kN/m2 85.836 kN/m2 99.514 kN/m2 Upward pressure diagram 112.5 kN/ 11.655kN/

m

22.5 kN/

mm

22.5 kN/

mm

m

Downward pressure diagram

Design of toe slab Outstand w.r.t face of Column Design Bending Moment at face of support

dreqd.

Overall depth provided Clear Cover Diameter of bar Half dia. of Bar Effective depth provided

= =

3.2 m 144.73 + 509.51 triangle rectangle

=

539.05

=

√(M /Q.b)

115.20 rectangle

kN-m/m

=

539.05 x 1000000 1.11 x 1000

= = = = = =

698.34 900.00 75.00 25 12.50 812.50

=

539.05 x 0.902 x

=

3677.8

mm mm mm mm mm mm

> dreq

SAFE Are of Steel Required

Ast Spacing required Spacing provided

= =

1000000 200 x

812.50

mm2

133 120 mm

Provide 25mm dia bars @120mm C/C Total Steel Provided =

4090.62

mm2/m

KLESCET Consultants

SAFE

Abutment Design

Check for shear stress Shear is critical @ distance 'd' from face of support Centre line of abutment critcal section 0.8125

2.3875

99.51

m

141.916

kN/m2

kN/m

2

110.280 kN/m2 3.2 Shear Force across the critical section

V

=

37.77

+

triangle



Developed Shear Stress

=

247.34

=

V bd

= = 100 As

=

bd

53.72

rectangle

rectangle

kN/m

247.34 x 1000 1000 x 812.50 0.30

N/mm2

4090.62 xx 1000 x

x

=

263.3

0.50

100 812.50

%

Permissible Shear Stress (Refer IRC:21 -2000,Cl.304.7.1.3.3, Table 12B, Pg.No. 37) For 100 As/bd 0.50 0.75 Allowable Shear Stress, c=

0.311

MPa

c (Mpa) 0.31 0.37 

>

SAFE

Design of heel slab Outstand w.r.t face of Column Design Bending Moment at the face of support

=

=

1.5

126.56 +

m

13.11

+

8.74 7.69

KLESCET Consultants

73.48

Abutment Design

=

67.24

=

√(M /Q.b)

=

67.24 1.11

=

246.64

Overall depth provided Clear Cover Diameter of bar Half dia. of Bar Effective depth provided

= = = = =

900.00 75.00

Are of Steel Required

=

67.24 0.902 j

Ast

=

456.22

Ast(min)

=

0.12%

=

1080

mm2/m

=

1080

mm2/m

dreqd.

Ast,required Spacing required Spacing provided

kN-m/m

x 1000000 1000 x

mm

mm mm 16 mm 8.00 mm 817.00 mm

= =

> dreq

SAFE

1000000 817 x 200 xx st. stress eff depth

x

mm2/m 900

x

< Ast(min) x

1000

186 150 mm

Provide 16mm dia bars @150mm C/C Total Steel Provided Ast,provided

=

1340.41

SAFE

mm2/m

Check for shear stress Shear is critical @ face of support critical section 1.5

65.32

kN/m2 85.8

kN/m2

1.5 Shear Force across the critical section

V

=

168.75

=

89.13

+ 33.75 kN/m

KLESCET Consultants

113.37

Abutment Design

Developed Shear Stress



=

V bd

=

89.13 1000

=

0.11

1000 817

x x

N/mm2

(As per IRC: 21-2000, Table 12A) 100 As

=

bd

=

1340.41 x 1000 x 0.164

100 817

x

%

Permissible Shear Stress (Refer IRC:21 -2000,Cl.304.7.1.3.3, Table 12B, Pg.No. 37) For 100 As/bd

Allowable Shear Stress, c=

0.204

c (Mpa)

0.15

0.20

0.25

0.23

MPa

>



KLESCET Consultants

SAFE

Related Documents

Abutment Design
January 2021 0
Contoh Perht. Abutment
March 2021 0
Abutment Design_notes
January 2021 0
Design
January 2021 2
Design
March 2021 0

More Documents from "Nicole Rodil"

Abutment Design
January 2021 0