Calculo Estructura Fotovoltaica

  • Uploaded by: qwqw
  • 0
  • 0
  • January 2021
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Calculo Estructura Fotovoltaica as PDF for free.

More details

  • Words: 907
  • Pages: 8
Loading documents preview...
 

  ENERGÍA SOLAR FOTOVOLTAICA I  Módulo Estructuras    ESTUDIO DE CARGAS SOBRE CUBIERTA FOTOVOLTAICA    Ejemplo:  Ubicación en zona 1 según el mapa de vientos y zona urbana  Altura de la cubierta: 15 m  Dimensiones panel: 1,575 x 0,826 m  Peso panel: 18 kg  Cubierta plana  Ángulo de inclinación de las estructuras: 25º  Configuración: 1 panel en vertical (“Portarretrato”)    ACCIONES EN LA ESTRUCTURA    ACCIONES DEL VIENTO SOBRE LOS MÓDULOS SOLARES    Según  el  Código  Técnico  de  la  Edificación,  en  el  Documento  Básico  SE‐AE  Seguridad Estructural Acciones en la edificación, para las acciones del viento sobre  la estructura de una instalación fotovoltaica se puede estimar dicho cálculo como  se muestra a continuación.    La  acción  del  viento,  en  general  una  fuerza  perpendicular  a  la  superficie  de  cada  punto expuesto, o presión estática, qe puede expresarse como:     

qe = q b · c e · c p

  Siendo:  qb 

la presión dinámica del viento. 

ce 

el coeficiente de exposición. 

cp 

el coeficiente eólico o de presión exterior. 

  Presión dinámica del viento  El valor de la presión dinámica del viento puede obtenerse con la expresión:     

qb = 0,5 · δ · v2b

   

Considerando como densidad del aire δ = 1,25 kg/m3.     El valor básico de la velocidad del viento vb en cada localidad puede obtenerse del  mapa de la figura siguiente. El de la presión dinámica es, respectivamente de 0,42  kN/m2,  0,45 kN/m2 y 0,52 kN/m2 para las zonas A, B y C de dicho mapa.   

   

El cálculo para la zona A es:     

qb = 0,5 · δ · v2b = 0,5 · 1,25 · 26 = 0,4225 kN/m2

    Coeficiente de exposición  El  valor  del  coeficiente  de  exposición  depende  del  entorno  (efecto  por  tanto  más  local que el de la presión dinámica del viento) y puede obtenerse mediante con la  expresión:     

ce = F · (F + 7 k)

Siendo  F  a  su  vez  el  grado  de  aspereza  del  entorno,  que  se  puede  calcular  mediante:  F = k ln (max (z,Z)/L)    Siendo z la altura del emplazamiento, en nuestro caso 15 m.    Y siendo k, L y Z parámetros característicos de cada tipo de entorno, según tabla  siguiente.   

    Max (z,Z) = Max (15,5) = 15 = z    F = 0,22 · ln (15/0,3) = 0,86064   

ce = 0,86064 · (0,86064 + 7·0,22) = 1,1407    Coeficiente eólico o de presión exterior.    El  viento  produce  sobre  cada  elemento  superficial  de  una  construcción  una  sobrecarga  unitaria  p  (kg/m²)  en  la  dirección  de  su  normal,  positiva  (presión)  o  negativa (succión), de valor dado por la expresión:     

 

p = cp qb 

  siendo  qb  la  presión  dinámica  del  viento  (ya  calculada)  y  cp  el  coeficiente  eólico,  positivo para presión, o negativo para succión, que depende de la configuración de  la construcción, de la posición del elemento y el ángulo a de incidencia del viento  en la superficie.    Para elementos con área de influencia entre 1 m2 y 10 m2, el coeficiente de presión  exterior  se  puede  obtener  mediante  la  tabla  siguiente.  A,  B  y  C  indican  las  diferentes  zonas  de  influencia  de  la  superficie.  La  zona  C  es  la  más  desprotegida,  por  tanto  la  hipótesis  más  conservadora  es  tomar  este  valor  como  válido  para  el  conjunto de la cubierta a estudiar.   

 

 

    Considerando la estructura de módulos fotovoltaicos como una marquesina, y  según el caso más conservador de la tabla anterior, obtenemos un coeficiente  eólico de ‐2’8.    Por tanto ya podemos obtener la acción global del viento o presión estática  mediante la expresión      

qe = q b · c e · c p

  Donde       

qe = 0,4225 x 1,1407 x 2,8 = 1,35 KN/m2=137,66 Kg/m2

De  estos  coeficientes  obtenemos  las  sobrecargas  producidas  por  el  viento  en  los  paneles.    FUERZAS SOPORTADAS POR LOS PERFILES DE LA ESTRUCTURA:    Las fuerzas soportadas por los perfiles dependen de a su vez de la acción del viento  sobre los paneles, y la longitud de los perfiles mediante la expresión:    F = qe · l    Suponiendo  estructuras  de  un  único  panel  en  vertical  de  longitud  l  =  1,575  m  tenemos:     

F = 137,66 Kg/m2 x 1,575 m = 216,81 Kg/ml.

    MODELIZACION DE ACCIONES.     

     

ACCIONES DE SOBRECARGA DE LOS MODULOS SOLARES SOBRE LA CUBIERTA.    Calcularemos  el  peso  de  los  paneles  y  la  estructura  que  recae  en  un  recinto  de  3  metros x 1,7 metros; es decir, un rectángulo de 5,1 m2. 

    La estructura y los paneles solares que recaen en este recinto son los siguientes;    * Cada panel tiene un peso de 18 kg y una anchura de 826 mm.    18 kg/0,826m = 21,79 kg/ml.     

En dicho recinto habrá 2 paneles instalados.  

  * Se considera el peso que origina la propia estructura de la siguiente manera    -

Perfiles de aluminio natural. LF 40.3 ‐‐‐> 270 kg/m3.   Longitud del perfil= 4 x 0,826 + 2 x 1,575 =6,45 m   (podemos despreciar la distancia de separación entre paneles) 

Longitud del lado del perfil = 4 cm = 0,04 m.  Espesor = 3 mm = 0,003 m.  Volumen Total = 6,45 x (0,04 x 2) x 0,003= 0,001548 m3.     

Peso Total = 270 kg/m3 x 0,001548 m3 = 0,42 kg, que es muy inferior 

 

al peso de los 2 paneles = 2 x 18 = 36 kg 

  Por tanto en dicha superficie de 5,1 m2 habrá un peso de 36,42 kg y una densidad  de 36,42 / 5,1 = 7,14 kg/m2.     Podríamos  considerar  también  el  peso  de  la  chapa,  o  el  material  del  que  esté  realizada  la  cubierta,  aunque  correspondería  a  un  estudio  ajeno  al  conjunto  estructura + paneles solares sobre ésta. 

Related Documents


More Documents from "Rosa Centeno"