Heat And Mass Transfer

  • Uploaded by: Praveen
  • 0
  • 0
  • February 2021
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Heat And Mass Transfer as PDF for free.

More details

  • Words: 147,840
  • Pages: 515
Loading documents preview...
Scanned by CamScanner

[ ANNA UNIVERSITY SYLLABUS

I

_

ME1351 : HEAT AND MASS TRANSFER

_

hanical Engineering -(R'egulation For B.E. VI Semester Mec ----

CONTENTS

:201l4f,

l. CO~OU,~TlONt_

Mechanism of Heat Transfer - Conduction BaSIC Concep!) ... f ' . d Radiation - General Differential equation 0 Heat Convection an .. d C I' . y mdncal Con ducii UCllon - FOllrl'er Law of Conduction - Cartesian an . Steady State Heat . Conduction C oor d·lilates - One Dimensional Conduction through Plane Wall, Cylinders and Spherical Systems _ Composite Systems - Conduction with Internal Heat Generation _ Extended Surfaces - Unsteady Heat Conduction - Lumped Analysis _ Use of Heislers Chart. 2. CONVECTION Basic Concepts - Convective Heat Transfer Coefficients - Boundary Layer Concept - Types of Convection - Forced Convection _ Dimensional Analysis - External Flow - Flow over Plates, Cylinders and Spheres - Internal Flow - Laminar and Turbulent Flow - Combined Laminar and Turbulent - Flow over Bank of tubes - Free Convection _ Dimensional Analysis - Flow over vertical plate, Horizontal plate, Inclined plate, Cylinders and Spheres. 3. PHASE CHANGE HEAT TRANSFER AND HEAT EXCHANGERS Nusselts theory of condensation - Pool boiling, flow boiling, correlations in boiling and condensation. Types of Heat Exchangers _ LMTD Method of Heat Exchanger Analysis -- Effectiveness _ NTU method of Heat Exchanger Analysis - Overall Heat Transfer Coefficient _ Fouling Factors. 4. RADIATION

CHAPTER 1: CONDUCTION

~H;at .

1.1.4. 1.1.5. 1.1.6. 1.1.7. 1.1.8. 1.1.9. 1.1.10. 1.1.11. 1.1.12. 1.1.13. 1.1.14. 1.1.15. 1.2.

1.3.

1.3.5.

Scanned by CamScanner

Data

Book

is

1.3.6.

1.4.

1.1

Modes of Heat Transfer _ I. I Fourier Law of Conduction .. .1.2 General Heat Conduction Equation in Cartesian Co-ordinates . 1.2 General Heat Conduction Equation in Cylindrical Co-ordinates 1.9 Conduction of Heat through a Slab or Plane Wall.. .1.14 Conduction of Heat through a Hollow Cylinder 1.16 Conduction of Heat through a Hollow Sphere 1.17 Newton's Law ofCooling........................ . 1.19 Heat Transfer through a Composite Plane Wall with inside and Outside Convection 1.19 Heat Transfer through Composite Pipes (or) Cylinders with Inside and Outside Convection 1.22 Solved Problems 0" Slabs 1.25 Soilled University Problems 011 Slabs 1.74 Solved Problems 011 Cylinders 1.111 Solved University Problems 011 Cylinders 1.144 SO/lied Problems 011 Hollow Sphere 1.160 Radius

of Insulation

Critical Radius of Insulation Solved Problems

Heat Conduction

1.3.1. 1.3.2. 1.3.3. 1.3.4.

Basic Concepts - Diffusion Mass Transfer - Fick's law of diffusion _ Steady State Molecular Diffusion - Convective Mass Transfer _ Momentum, Heat and Mass Transfer Analogy _ Convective Mass Transfer Correlations. Transfer

Critical I? I

1:2:2:

Basic Concepts, Laws of Radiation - Stefan Boltzman Law, Kirchoff Law - Black Body Radiation - Grey Body Radiation Shape Factor Algebra - Electrical Analogy - Radiation Shields - Introduction to Gas Radiation. 5. MASS TRANSFER

Note : . (Use of Standard Heat and Mass pernulled 117 the University Examination).

Transfer

1.1.1. 1.1.2. 1.1.3.

1.167

for a Cylinder

1.167 1.169 1.179

with Heat Generation

Plane Wall with Internal Heat Generation Cylinder with Internal Heat Generation Internal Heat Generation - Formulae Used Solved Problems 011 Plane Willi with Internal Heat Generation Solved Problems 011 Cylinder with Internal Heat Generation Solved Problems Oil Sphere with lnternul Heat Generation

1.179 1.183 1.185 1.187 1.196 1.202

T;~~·~·~t~·Fi;~~·::::::::· ..::::·.:·.·.:::·.::::::::::::::: ..::=:'::::::: ::~~~

~.i:SI. 1.4.2. Temperature Distribution and Heat Dissipation in Fin 1.4.3. Application......... .

.

1.206 1.21

r.: 1.4.'-l.

Fill Ftliciellc)'

·· .

..1.217

1.~.5. Fin rfkcriVt'ness. 1.~.6. Ftll"lllllllicUsed..... I A. 7. So/I't!d Proh/ellH" 1.4.8. SII/I'd U"itl(!f.5i~I' Prublctn« 1.4.9. Pr()hkllll/Or Practice ················ ..·

15.

Transient Heat Condul~tioll (or) Unsteady Conduction

" .. 1.217 1.2IS

.

1.219 1.245 1.263 1.264 1.264 1.266 1.269

tteot AII(I~I'jiJ ........•..........•..•......••....•...•..•.........•.•...••. Heat Flow in Semi-lnfiutie Solids SO/lied Problems - Semi-illfillite Transient Heat Flow in an Infillite

1.288

2.7. 2.8.

... 1.329

1.5.8.

1.332

I.S.9.

1.351

2.9.

1.374

2.1.1.

HEAT TRANSFER -..-..-..-..-..-..- -..-..-..-..-..-..-

Dimensions

... 2.1

2 1.2. Buckingham 1I Theorem. . .. 2.1.3. Advantages cf Dimensional Analysis

. .

2.14. Limitations of Dimensional Analysis Dimensionless Numbers and their Physical

2.2.

2.11.

2.2.1. Reynolds Number (Re) 2.2.2. Prandrl Number (Pr) 2.2.3. Nusselt Number (Nu)

2.4 2.4 2.5

2.11.3. 2.12.

~e\Vlonion and Non-Newtollioll

Fluids

2.6

EL;;;~~~:~~::;~p·:~:.::::·:::::.::::~~~::: ..:::::::::::::::::::~~::::::::::::::~:7;

2.3.

L~;~;~·:::············································";'8

2.4.

2 ~ I. Types of Boundary 2.:.~. !iydrodynalllic Boundary 2.).). r~lenn;]IUoUfldarylayer i~lIlve~~~:lt~;;:~

2

-u.

1.~··~·r:·· y .. ·

'l'~~'"rC' ..···..·..:

Types ofC~nveoc!i

Scanned by CamScanner

······· .. ······· .. ····2·9 ····· 2·9

,..:::::::::::::::::::::::::::::::::2: 9

onveC!rOfl 011....

··

.

2.9 2.9

for Combination Flow...

2.13 of

Formulue Used lor Flow Over Balik of Tubes Solved Problem it

Cylinder

-Internal

Flow

Formulae usedfor Flow tit rough Cylinders (lnternul flow) S;)lved Problems - Flow through Cylinders (lnteruat Flow) Solved University Problems - Internal Flow

Formulae Used/or Free Convection Solved Problems 011 Free Convection (or) Natural Convection 2.12.3. Solved University Problems - Free Convection Problems for Practice TII'o Murk Questions {lilt! Allswers

CHAPTER III: 3.1.

2.10

Free Convection 2.12.1. 2.12.2.

2.13. 2.14.

for

and Spheres

~;~~t~::t~~r~,~~::; (~~?••.•.••••••••••••••.•••••••••••.•••••••••.•.••••.•.• ;; 2.2.6.

Coefficients

Formulae Usedfer Flow Over Cylinders and Spheres Solved Problems - Flow Over Cylinders

Flow through

2.11.2.

2.4

for

Flow over 'lalli, of Tubes

2.11.1.

2.3

Significance

Coefricients

Problems 011 Flat Surfaces - Forced Convection Solved University Problems 011 Flat Surfaces Forced Convection

How over Cylinders

2.10.1. 2.10.2.

2.2 2.3

2.9 ..2.10

Laminar and Turbulent .. 2.15 Layer Thickness, Shear Stress and Skin Friction Coefficient for Turbulent Flow 2.IR Heat Transfer 1'1'0111 Flat Surfaces - Formulae Used 2.23

2.9.2.

:~~

ocificient

.

Boundary

2.9.1.

2.10.

CHAPTER II : CONVECTIVE 2.1. I)i 111(~ns iona I A IIa lysis

l leat Transfer

( .3

..

Local and Average Heat Transfer Plate - Laminar Flow Local and Average Heat. Transfer Plate-Turhulcnt Flow

2.8.1. 2.8.2.

1.30R

Solids Plate

The Flat The Flat

Free (or) Natural Convection Forced Convection

2.6.1.

1.306

Solved Problems - lufintie Slllitl,· SO/lied University Problem" - Infinite Solids 1'11'0Mark QlleJtiOlIl & AII.'"II'en

1.6.

2.5. 2.6.

State

1.5. I. l3ior Number . . 1.5.:? Lumped Heat Anal)' is . 1.5.3. Solved Problems -1_llIlIped lleat AII(I~I/JiJ ....•.........•. '.5.4. Solllcd University Prohlelll.,·-Llllllped I. -.S 1.5.6. 1.5.7.

2.4.3. 2.4.4.

( 'onteuts

2.26 2.83 2.115 2.116 2.117 2. 122 2.123 2.124 2.126 2.127 2.129 2.150 2.162 2.162 2.165 2.194 2.217 2.219

PHASE CHANGE HEAT TRANSFER AND HEAT EXCHANGERS Boiling and Condensation ~.I 3.1.1. Introduction . ).1 .... 3.1 Boiling . 3.1.2. Condensation 3.1 3.1.3. . . .3.1 Applications . 3. 1.4.

C.4

Heat and Mass Tram/a

Contents

3.1.5. 3.1.6. 3.1.7.

Boilll1g Heat Transfer Phenomena Flow Boiling... ········ .. · · Boiling Correlations

3.2 3.4

3.1.8. 3.1.9.

Solved Prohlellls Solved A11IUIUniversity

3.1 10. 3.1.11. 3.1.12. 3.1.13. 3.1.14. 3.1.15.

Condensation. . Modes of Condensation · Filmwise Condensation Dropwise Condensation ..· Nusselt's Theory for Film Condensation Correlation for Filmwise Condensation Process

J.)

3.7 3.23

Problems

3.29 3.29 3.29 3.30 3.30 3.30

3.1.16.

3.2.

Solved Problems Oil Laminar Flow, Vertical Surfaces 3.1.17. Solved Problems Oil Laminar Flow, Horizontal Surfaces 3.1.18. Solved Anna University Problems 3.1.19. Problems for Practice Heat Exchangers

3.2.1. 3.2.2. 3.2.3. 3.2.4. 3.2.5. 3.2.6. 3.2.7. 3.2.8. 3.2.9.

3.32 3.54 3.61 3.65 3.66

Introduction Type of Heat Exchangers Logarithmic Mean Temperature Difference (LMTD) Assumptions Logarithmic Mean Temperature Difference for Parallel Flow Logarithmic Mean Temperature Difference for Counter Flow Fouling Factors Effectiveness by Using Number of Transfer Units (NTU)

32I

3.73 3.77 3.81

Shell and Tube Heal Exchangers Solved Anna UI1iversity Problems Solved Problems Oil NT(! Method m1 ; b"1University Solved Problems ro ems for Practice Two M k . ..· ..·..· · ur Questions and AI1swers

Introduction Emission Properties

3.82

4.29.

Electrical Network by Using Radiosity

3.1 09 3.117 3.J24 3.138

4.30. 4.31.

Radiation of Heat Exchange Solved Problems

3.145 3.146

.. ·

·

·

Scanned by CamScanner

·

·

Emissive Power 4.1 Monochromatic Emissive Power 4.2 Absorption, Reflection and Transmission 4.2 Concept of Black Body 4.3 Planck's Distribution Law 4.4 Wien's Displacement Law 4.4 Stefan-Boltzmann Law · 4.5 Maximum Emissive Power 4.5 Emissivity 4.6 Gray Body 4.6 Kirchoff's Law of Radiation 4.6 Intensity of Radiation 4.6 Lambert's Cosine Law 4.7 4.16. Formulae Used 4.7 4.17. Solved Problems 4.8 4.18. Solved University Problems 4.25 4.19. Radiation Exchange Between Surfaces 4.31 4.20. Radiation Exchange Between Two Black Surfaces separated by a Non-absorbing Medium 4.31 4.21. Sha pe Factor 4.36 4.22. Shape Factor Algebra 4.36 4.23. Heat Exchange Between Two Non-Black (Gray) Parallel Planes 4.37 4.24. Heat Exchange Between Two Large Cocnentric Cylinders or Spheres 4.41 4.25. Radia tion Shield 4.45

4.26. Solved Problems 4.27. Solved Problems 011 Radiation Shield 4.28. Solved University Problems

CHAPTER IV : RADIA nON 4.1. 4.2.

4.3. 4.4. 4.5. 4.6. 4.7. 4.8. 4.9. 4.10. 4.11. 4.12. 4.13. 4.14. 4.15.

3.82

Problems on Parallel Flow and Counter

Flow Heat £\:cllangers , 3.2.10. Problems 011 Cross Flow Heal Exchangers (or) 3'2'1~' 3'2'13' 3'2' 14' " . 3.2.15.

3.66 3.66 3.73 3.73

4.1 4.1

C.5

Analogy for Thermal and Irradiation for Three

4.32.

University

Solved Problems

4.33.

Radiation

from Gases and Vapours

4.34.

M ea n Bea m Length Problems

4.49 4.60 Radiation Gray Surfaces

4.79 Systems 4.IOO 4. 104 4.105 4.129 4.153 4.154

4.35.

Solved

4.36.

Problems for Practice

· 4.155 4.166

4.37.

Two Mark. Qlte.5tiOl1!iand Al1swers

4.168

~C~.6~~R~ea~t~a~n~d~~~a~s~s~r.~ra~n~sfi~e_r

-

=C-H-AP-T-E-R-V-:~M7.A~S~S~T~RA~NS~F~E~R~-----------------5.1. 5.2. 5.3. 5.4. 5.5. 5.6. 5.7. 5.8. 5.9. ~.I O. ~.II.

5.12. 5.13. 5.14. 5.15. 5.I6. 5.17. 5. J 8. 5.19. 5.20. 5.21. 5.22. 5.23. 5.24. 5.25. 5.26. 5.27. 5.28. 5.29. 5.30. 5.31.

J ntroductlon · . Modes of Mass Transfer ·..· · · ·..· Diffusion Mass Transfer ..· ·..· ·· · · · Molecu~ar ~iffusion ·..· · · ·..·..· · Eddy Dlffuslon Convection Mass Transfer ·..· · Cocentrations ·· · ·..·· ·· ·..··..·· Fick'~ Law of Diffusion ·..·..·..· Steady State Diffusion through a Plane Membrane So/J'ed Problems Oil Concentrations Solved Problems Oil Membrane Solved Univeristy Problems on Membrane Steady State Equimolar Counter Diffusion Solved Problems Oil Equimolar Counter Diffusion Solved University Problems 011 Equimolar Counter Diffusion Isothermal Evaporation of Water into Air Solved Problems on Isothermal Evaporation of Water into Air Solved University Problems Oil Isothermal Evaporation of Water into Air Convective Mass Transfer Types of Convective Mass Transfer Free Convective Mass Transfer Forced Convective Mass Transfer Significance of Dimensionless Groups Formulae Used for Flat Plate Problem.') Solved Problems on Flat Plate Anna University Solved Problems 011 Flat Plate Formulue Used for Internal Flow Problems Solved Problems on Intemal Flow University Solved Problems Problems for Practice Two Mark Questions and Answers

------

5.1 S.1 S.1 5.2 5.2 5.1 5.2 5.3 5.4 5.6 5.17 5.21 5.23 5.26

cr

Basic Concepts

CF

General Differential Equation

5.31 5.34 0"

Fourier Law of Conduction

C7

Internal Heat Generation

c:r

Extended Surfaces

c-

Unsteady Heat Conduction

cr

Solved Problems

(7'

Solved University

5.35 5.44 S.54 5.54 5.54 5.S4 5.54 5.56 5.57 5.65 5.68 5.69

5.72 5.75 5.76

ANNA UNIVERSITY SOLVED QUESTION PAPERS ........ S.1 - S.71

DO

Scanned by CamScanner

Chapter 1: Conduction

Problems

CHAPTER-I 1.CONDUCTION 1.1 HEAT TRANSFER Heat transfer can be defined as the transmission from one region to another region due to temperature

of energy

difference.

1.1.1 Modes of Heat Transfer

* * *

Conduction Convection Radiation

Conduction Heat conduction is a mechanism of heat transfer from a region of high temperature to a region of low temperature within a medium (solid, liquid or gases) or between different medium in direct physical contact. In conduction, energy exchange takes place by the kinematic motion or direct impact of molecules. Pure conduction is found only in solids.

Convection Convection is a process of heat transfer that will occur between a solid surface and a fluid medium when they are at different temperatures. Convection

is possible only in the presence offluid

medium.

Radiation The heat transfer from one body to another without any transmitting medium is known as radiation. It is an electromagnetic wave phenomenon.

'2

Scanned by CamScanner

I.': Heat tnd

HII.\.\'

1.1.2 Fourier

tal"

Transfer Conduction

or Conduction

Rate of heal conduction is proponional 10 the area mea lIred to the iirection of heat OO\V and io the temperature gradient

1.3

O.

1101'111:11

in that direction. Q O.

°C.·Ch)

Element volume

\ here A - Area in

111-

dT _ Temperature gradient in k/m dr k - Thermal nducti iry in W/m"Thermal conducti to conduct heat.

Fig. 1.1.

it)' is defined a the abilit

fa

ub tan e

[The negative sign indicates that the h at 0 w in a dire ti along which there is a decrease in temperature] 1.1.3 General heat conduction cartesian coordinates

equation

Consider a small rectangular

Net

heat

conducted

into

element



dx

be the heat flux in a direction

The rate f heat' fl '"nine. t th the face AB 0 i fide

all the

coordinate

directions.

Let q x be the heat flux in a direction n

in

element

from

f face EF

and

H.

e Iernent .In x diirection

I Q,

dx, d I and

of face ABO

dz

through

I

... (1.2

d: as shown in Fig.I.I.

where The energ balance of this rectangular from first law of thermodynam ics.

=>

Net heat conducted into element from all the coordinate directions

l

Heat generated

element

element j

t

Heat st red =

l

hermal

The rate heat fl \ the fa e EFGH i

Q

in rhe elern nt../ ...

Scanned by CamScanner

k

nducti

btain d ernperature

1

\\ ithin the

i

1.1

+dx

ity, W/mK

gradient

f tJre e Iernent In . x directi

ut

Q

ax

-k

-d x

) dx

aT

I

d:

n

thr

ugh

/4 Heata~_

..

Subtracting ( 1.2) - (1.3)

Ox -

= -k

Net heat conducted directions

. dydz= l. .~.QI ox

aT dydz _I-k x

Q(I' + dxl

Conduction 1.5

~

AX

~[ :.[ ~

er ax

= ·-k..t

dydz

kx :]

+

[kx aT Jdx dy dZ]

ax

ax

into element from all the coordinate

M

ky :]

+

![

k, :]

] dx dy dz ... (1.7)

of + kx -8

dydz +

x

Heat Stored in the element We know that,

=>

Q _Q .I'

(.I'

+ dx)

or] dx dy dz

= .1_ ax [kx ax

{ ... (1.4)

He~t stored} m the element

Mass Of} { SpeCifiC} the x heat of the element element

= {

m

x Cp?<

!

Similarly Q)' .- Q (y + (M

= ~

[k

y

:;]

dx

dy dz

{

Rise in } temperature of element

aT at

,. .•. (1.5)

x

aT

p x dx dy dz x Cp x

at

[v Mass ••• (1.6) Heat stored in } { the element = p Cp

= Density x Volume]

er

at dx

dy dz

... (1.8)

Adding (1.4) + (1.5) + (1.6)

Net heat conducted =

a~ [k'l:

g: Jdt

Heat generated within the element dy dz +

Heat generated within the element is given by

Q

Scanned by CamScanner

=

q dx

dy dz

... (1.9)

1.6 Heal ami Mass Tran.~ler Substituting (\'1) ~

eqllation

I;_ [k\

(1.7), (1.8) and (1.9) in equation

~,\ 1 + 0'.... c [k,.

..

c~] a~ [k: 0·

0_

or at

I.?

Case (i) : No heat sources dx

L~l'

In the absence

dz reduces

P Cp

+ q dx dy dz

J]

~

+

Conduction

{I.I) of internal

heat generation,

equation

(1.10)

to

02r ax2

dx dy dz

02r 02r 0,2 az2

or

+-+-

This equation equation.

oc

..•

at

is known as diffusion

equation

(1.11 )

(or) Fourier's

Case (ii) : Steady state conditions Considering

k,

the material =

ky = k, = k

is isotropic.

=

In steady

So,

with time.

constant.

reduces

&r &r -~r] -+-+-k+q=pCax2 0~ c:z2

P

or at

to

So,

state condition,

or at'

iJ1r

in

q k·'

p Cp =--

or

or

It is a general three dimensional in cartesian coordinates

through

.

02r

0'2

o:z2

Thermal diffusivity . ..

Thermal diffusivity a material during

) q V-T + k

at

k

a:

=;:

iJ2r

q

+k

does not change equation

=0

...

(1.10)

(1.12)

(or)

+-+-+0,1 &2

a:

the temperature

O. The heat ~onduction

+-+-

Divided by k,

where,

=

...

at

(1.10)

In the absence becomes :,

heat conduction

k

= --

- m2/s

pCp

0

is known of internal

as Poisson's

equation.

heat generation,

equation

.

is nothing but how fast heat is diffused changes of temperature with time.

Scanned by CamScanner

This equation

=

equation

... (or)

This equation

is known

as Laplace

equation.

(1.12)

(1.13)

I. 8 Heal and Ma.H' Transfer Conduction J, 9

Out! (iii): One dimensional steady state "e(lf condllcliOll---

If the temperature varies only in thex direction the e . , ,quatloll (1.10) reduces to q

o2T ----

1

ax';

z-

0

•.• (1.14)

I.;

In the absence of interns I heat generation, becomes:

equation ( 1.14)

'"

(1.15)

1.1.4 General

Heat

Conduction

Equation

in Cylindrical

Co-ordinates

The general heat conduction equation in cartesian coordinates derived in the previous section is used for solids with rectangular boundaries like squares, cubes, slabs etc. But, the cartesian coordinate system is not applicable for the solids like cylinders, cones, spheres etc. For cylindrical solids, a cylindrical coordinate system is used. Consider a small cylindrical as shown in fig.I.2.

element of sides dr, dcj> and dz

Case (iv): Two dimensional steady slate "eat conductio" If the temperature varies only in the x and y directions, equation (I. 10) becomes: ...

In the absence of internal heat generation, redcues to

the

(1.16)

equation

I

(I. 16)

: dr I

J~_(r,4J,z tYT

ax2

if1 -j----

oyl

/ /

=0

...

(I. 17)

Elemental

'

volume

/

Q(r+dr)

dz

Case (,~: Unsteady state, one dimensional, without internal heal generation :

, oin un~teady i.e.,

-a,

:t:

state, the temperature changes with time, O. So, the general conduction equation (I. J 0) reduces to Fig.J.2 ()

o:

("'"

...

(1.18)

The volume of the element

dv

=

r d~ drdz .

I Let us assume that thermal conductivity and density p are constant.

Scanned by CamScanner

k, Specific heat

ep

1.10 Hea/I.Jf1J Mass Transfer The energy balance of this cylindrical from first law of rhrmodynamiocs.

I

Net heat conducted into element from all the coordinate directions

Heat}-' generated + within the { element

=

(Heat } I stored ~ in the

Heat entering in the element

through

Or=-k(rd~dz)

cr or

Qr (1.19)

(II/ the co-ordinate

= Qr-

/

= -k

(r d~ dr)

~ de az

ell'

=

T

d: =

Net heat conducted time de. =

= -

:,.

r

[-k (rd~.dz).

=

k (dr d~.dz).

o

oz (Qz) dz

Qz

+

+

[ :Jde

Jdr

aT] de or

L1/:

or

-#-(Q_) az -

dz

Net heat conducted through (~, z) plane

dz

! [k (rde.dr). [~J de J dz

-- k. [OZTJ. 0:;2 (dr~rd~.dz)

Heat entering in the element through Q~ = -k tdr.dz)

de

[~T a,.1

k (dr. rd~.dz)

or

ra~

(z, r)

_

- k

OZT

[oz2]

. (dr.rdq,.dz)de

l

Scanned by CamScanner

...

(1.20)

+

_!_ r

~T J cr

de

I...

(1.21)

plane in time de.

de

Heat leaving from the element through (z, Net heat couducred through (r,~) plane

plane in

0,. + dr

-#- (Q ) dr or

z)

into the elem~nt through (r, ~) plane in

Q= -

.=-

Q= +

dB.

de

into the element through (~,

Heat lea ing from the element through (r, ~) plane in time de.

Q=

plane in time

Q r + _E_(O )dr or r

= -

Heat entering in the element through (r, ~) plane in time de -

+

Net heat conducted time de.

directions

Q_

(~, z)

Heat leaving from the element through (~, z) plane in time de.

L element

... Ne! heat conducted into element from

Conduction 1.11

element is obtained

r)

plane in time de.

I. 12 Heat and Mass Transfer Net heat conducted rime

into the element

de.

=_

=

=

t,

Net heat conducted into element from all the co-ordinate

__L [ ro$

-k

directions

de]

tdr dz). or

ro~

k -04>a ['-r D~ -OT] (dr k

Conduction 1.1J

(z, r) plane in

,.a~ (Q+) rd$

= -

Q, - Q~ ., d~

through

=

rd¢

If

de

Q

.

=

r&T

... (1.22)

=

OT] 0,.

Net heat stored in the element

de

C~~n

Substituting

(dr rd$ dz)Cp

equation

+

k

(1.19)

::::::>

k (dr rd$ dz) de

(dr rd~ dz) de

or

x

de

...

00

1- &T _ 0,.2

+L

or

,. a,.

1.20, 1.21 and 1.22J p (dr rd$ dz)

=

k (dr rdql dz) de

r- &T + iYT +_}_ oT oz2

or2

,. or

I a2r J+-;2 ~)~2

Divided ::::::>

Scanned by CamScanner

k

r &T

L or2

by (dr rd$ dz)

(1.25)

(1.23). (1.24) and (1.25) in (1.19) +

.L acp2 &T

,.2

+ q (dr rddz) de [Adding equation

is equal to

Increase in internal energy

de

r

by

. .. (1.24)

The increase in internal energy of the element the net heat stored in the element.

from all the co-ordinate

+ .!.._

within the element is given

ci (dr rddz) de

= p

Lor2

(1.23)

Heat stored in the element

+ k (dr rd~ dz)

i3z _

Heat generated within the element Total heat generated

W J (dl rd$ dz) de

Net heat conducted into element directions k ~; (dr rd$ dz)

r2 ocp2

... dtk dz)

_r2

cPT

I -&T +&T-/ +-2

aT

or

1_

[l_ 8$2 &TJ (dr rd~ dz) de .

/Net heat conducted _ . [' L~hrOugh (z, r) plane - k 7i

r 0.2T +.!.._ or2 r

k (dr rddz) de

ep

L'T x de

re

de

+ _!_ OT_ + .L &T + &TJ' + . ,. 8,. ,.2 0$2 oz2 q =- p. C, :-

I

~! J-

OZ~

Conduction 1./5 . From Fourier law of conduction, dT dr

Q=-kA ... It is a ~general three dimensional in c~'lindrical co-ordinates. flT OIl

+ L aT + r r

heat conduction

.L

&T + &T + ~

,.2

13cp2

az2

=

k

(1.26) =>

equat' IOn

ae

Q.dr

=

-k A dT

. the above equation

Integrating

l_ aT ex

L

=>

r

a,.

= 0

...

1.1.5 Conduction

Q

(1.27)

=>

T2

f dr = - kA f dT

of heat through

...

0

TI

o

a slab or plane wall

Q [L - 0]

=

-k A [T2 - Tj]

Q

[T

1 -

=

--J d~'1---

kA L

T 2]

~T overall R

where ~T L

--.J

Fig 1.3

R

=

=

T1-

(1.29)

...

(1.30)

L kA

Q =

Let us consider a small elemental area of thickness 'dx'.

...

TI- T2

Q

T 2'

Scanned by CamScanner

TI

(1.28)

Consider a slab of uniform thermal conductivity k, thickness L, with inner temperature T I, and outer temperature

T2

Q [x] =-k A [T]

=> =

1

k A dT

L

(or)

l,. . drdT J

tl e limits of 0 to L

TI'

o

&T + _!_ aT

_!__ _{__ ,. dr

f

= -

L

and no heat generaion ,

( 1.26) becomes: 13,.2

etween

T2

f Q dr o

equation

b

and TI to T2· =>

If the flow is steady, one dimensional

we knoW that,

T2

C. - Thermal

resistance

of slab.

~~~~~~~~--------~----------/.16 Heal and

-

l.L

Tram/er

MLI.\"J

6 C' nduction of Heat Through Hollow Cylinder

Conduction 1.17

0

onsidcr a hollow cylinder ofillllcr radiu rl' outer radius r2, inner tcrnperatllr~ T I' outer temperature T2 and thermal

Q==

Q

cOllducti, it ". Let II c 11 idcr a small elemental area of thickness "dz" From Fourier law c nduction, we know that,

T2

~

of

Q ==

In(;n

...

(1.31)

...

(1.32)

TI- T2 1 ('2rl ) --In2nLk

.1Toverall R

where

dT -

Q=-kA

27tLk [T, - T2]

dr

Fig 1.4

1

R = 2nLk

(r21 Thermal Inrtr

resistance of the hollow cylinder.

Area of a cylinder is 27trL A

=

1.1.7 Conduction of Heat Through Hollow Sphere

27trL

s, Q = -k27trL Q

d,.

x -

,.

=

Consider a hollow sphere of inner radius rl, outer radius r2, inner .ernperature T I, outer temperature T2 and thermal conductivity k.

dT dr

-k27tL dT from rl to "2 and TI to T2·

Integrating the above equation ~, dr

Q

J

r

T2 = -

k27tL

f dT TI

rl

Let us consider a small elemental area of thickness 'dr'. From Fourier law of heat conduction, we know that

Q = -kA dT dr Area of sphere is 4m-2

=

Q

[111'2

Q

/11 [:~ 1 = 27tLk [T, - T2J


= -

Scanned by CamScanner

k27tL [T2 - TI1

Fig 1.5

A = 47tr2 Q

= - k 4m2

ciT e1r

.,.

(1.33)

p'n

eep •

------------------

Conduction 1.19 1.1.8 Newton's

Law of Cooling

Heat transfer by convection lntegrating

...

12

r

Q

dr:;;;

:::>

_

,.1

rl

j

47tk dT

'2

I

Q

:::>

A - Area exposed

(-

d~ == - 41tk . dT

. r '1

1

'2

Q

:::>

\=1-1 r

Q

:::>

:::>

Q

:::>

Q ==

I

h - Heat transfer

1

12

== - 41tk [T]

'2

41tk[T1-T2]

(r2-rl)== rl r2

...

(1.34)

r2 - '1

in W Im2K

Ts

-

Temperature

of the surface in K

T a:

-

Temperature

of the fluid in K.

T1-

Q

to conduction.

T2

r2 - rl

41tk (rl r2)

Q=

:::::>

ilT overall R

...

(1.35) Convection

where

_

r2 - '1.

R - 4 k( 1t

.

- Iherrnal resistance of hollow sphere.

A

'1 '2)

Fig 1.6

Scanned by CamScanner

Plane Wall with

Consider a composite wall of thickness L1, L2 and L3 having thermal conductivity kl> k2 and k3 respectively. It is assumed that the interior and exterior surface of the system are subjected to convection at mean temperatures T and T b with heat transfer coefficient hQ and hb respectively. Within the composite wall, the slabs are subjected

r1 r2

Q==

co-efficient

in m2

1.1.9 Heat Transfer Through a Composite Inside and Outside Convection

== - 41tk[T2 - Td

41tk [T, - T2]

:::::>

to heat transfer

Tl

r1

lL- l1 '1

(1.36)

where

11 T)

I

is given by Newtons law of cooling

on both sides

~

il

Conduction /.21

1.20 Heal and Mass Transfer From Newton'S law of cooling, we know that,

Adding both sides of the above eq ua tiIons

Heat transfer by convection at side A is

Q = ha A [Ta - T,

J

[From equn. (1.36)]

...

(1.37)

...

(1.38)

...

(1.39)

=> Ta - Tb = Q·hA[_1_ + a

_!j_ + -+ L2 k( A k2 A

L3 + I hb A

k3 A

1

Heat transfer by condl1ction at slab (I) is

Q = k, A [T, - T.,]- -[From equn. (1.29)]

=> Q=

__s_

_I + L2 L3 +-+-+ [ ha A k( A k2 A k3 A

L(

I] hb A

Heat transfer by conduction at slab (2) is Q=

k2A[T2-T3] L2

=> Q

=

~Toverall R

...

(1.42)

where

Similarly at slab (3) is Q=

k3A[T3-T4J

...

(lAO) Thermal resistance , R

L3

= R a + R I + R 2 + R 3+ R b

Heat transfer by convection at side B is ...

We know that,

We know that,

To-T,

=Qx_1

[From equn. (1.37)] haA

T,-T2

=Qx~ . k( A

T2 - T~)

=

Q

(1.41)

x~

L2 k2 A

T3 - T4 =Q x ~

[From equn. (1.38)] [From equn. (1.39)]

k3 A

[From equn. (1.40)]

hb

[From equn. (1.41)]

R=_l_ UA

Ta-Tb .:::... => Q= __ _I_ UA

=> Q

A

Scanned by CamScanner

U A [T a - T b ]/

...

where '(0"

T4-Tb=Qx_'_

=

IS t he overall heat transfer co-efficient

(W /m2K).

(1.43)

~I

r

1.24 Heal and Mass Transfer Q

-~

= .1Toverall •"

R

Conduction I. 25

(1.48)

t,1.1J Solved Problems

where

fZJ

On Slabs

Determine the heat transfer through the plane of length 6 111, heigh' 4 m and thickness 0.30 m. The temperature of inner and outer surfaces are 100 C and 40 C. Thermal conductivity of wall is 0.55 WlmK. 0

0

Give" : Inner surface Temperature, T I

we know that,

=

100° C + 273

= 373

K

Outer surface Temperature, T 2 = 40° C + 273 = 313 K I R= VA

Thickness, L = 0.30 m Area, A

Ta-Tb

~

Q=

~

Q = VA

x

4

=

24 m2

Thermal conductivity, k

_I_ VA [To - Tb J

=6

...

=

0.55 W/mK

(1.49)

where U = Overall heat transfer co-efficient, W/m2K

Tofilld:

I. Heat transfer (Q) Solution : We know that, heat transfer through plane wall is

Q = .1Toverall R HMT DOlO book (C P Kothandaraman)

Scanned by CamScanner

[From Equn. 110. {I. 30) or page no. 43 (Sixth editiont]

1.• 6

Heat and Mass Transfer

where

Conduction 1.27

Tofi"d: Thickness

of insulation (L2)

SOIUlion: Let the thickness of insulation be L2 We know that,

373-313

= 2640 watts

0.30 0.55

Q

=

x

Q =

[From £qun no. 1.42 (or) HMT Data book page no. 43 & 44 (Sixth edition)]

where

24

2640 watts

AT=Ta-Tb

I

Result: Heat transfer, Q

AToverall R

R =

(or) T)-T3

L I +_)_+ ha A k) A

__~ + __L3 +_ J k2A k3A hb A

= 2640 W

In A

wall of 0.6 m thickness having thermal conductivity oJ 1.1 WlmK. The wall is to he insulated with a material having an average thermal conductivity of 0.3 WlmK.lnllerandouter surface temperatures are 1000 C and 10 C respectively. If heat transfer rate is 1400 Wlm1 calculate the thickness oj insulation. Wall Insulation I-I-I Given: 0

Thickness of wall, LJ

=

0.6

0

::::> Q =

I haA+

Heat transfer

Heat transfer per unit area, 0/A = 1400 W/m2

Scanned by CamScanner

ha' hb and thickness L3 are not

[T)- T31 L)

L2

k) A

k2 A

--+-[T)-T31 L)

L2

k)

k2

-+-

of

Outer surface Temperature, T) = 10° C + 273 = 283 K

co-efficients

::::>Q=

III

Inner surface Temperature, TJ = 1000° C + 273 = 1273 K

~ L3 I k2A + k3A + hbA

given. So, neglect that terms.

Thermal conductivity of wall, kJ = 1.2 W/mK Thermal conductivity insulation, k2 = 0.3 W/mK

L) k)A+

~nl

1273-283 ::::> 1400 =

[L2

Result :

Thickness

0.6 +

.!:1.

1.2

OJ

= 0.0621 .'

~

of I11sulatJOll, Lz

= 00621 .

m

ZFF

1.28 Heal and Mass Transfer

III The wall of

{I cold room is composed of three layer. Til layer is brick 30 em thick. The middle layer is cork e OilIer thick, the inside layer is cement J 5 em thick. The temp 20 c", of the outside air is 25° C and 011 the inside air is _20~~/II'es film co-efficient for outside air and brick is 55.4 Wlm2/( . ~he co-efficient for inside air and cement is J 7 Wlm2 K. Fin~ ~i/", ~wro~ ~

Conduction

1.29

Tofintl: Heat flow rate (Q/A) solution: . . b Heat flow through composite wall IS given y

Take ~Toverall

k for brick = 2.5 WImK

Q ==

k for cork = 0.05 WlmK

R

[From Equn no. 1.42 or HMT DolO book page No. 43 and 44]

where

k for cement = 0.28 WlmK Given: Thickness of brick, L3

= 30 em = 0.3 m

Thickness of cork, L2 = 20 em = 0.2 m Thickness of cement, L) = IS em Inside air temperature.T a Outside air temperature, Film co-efficient Film co-efficient kbrick kcork

=

k3

=

k2

=

=

k)

Tb

0.15 m

-20 C + 273

=

253 K

=> Q

=

= 2S C + 273 = 298 K 0

for inner side, ha = 17 W/m2K for outside, hb = 5S.4 W/m2K

=> Q/A

2.S W/mK

=

kcement

=

=

0

1 L( L2 L3 -+-+-+-+ha k( k2 k3

O.OSW/mK =

1 hb

253 - 298 => Q/A ==

0.28 W/mK

1 + 0.l5 +_Q1__+..Ql_+_l_ 0.28 0.05 2.5 55.4

17 Inside

Cement

Cork

Brick

k(

k2

k)

Outside

I Q/A == -9.S W/m2! The negative sign indicates that the heat flows from the outside into the cold room. Result: Heat flow rate, Q/A == -9.5 W/m2

Scanned by CamScanner

1.30 Heat and Mass Transfer

(!]

A wat! of II cold room is composed of three layer; Tile (JUte, layer is brick 20 em thick, t"e middle layer is Cork 10 c", thick, the inside layer is cement 5 em thick. The temperature of the outside air is 25° C and tltat on the inside air is -20 C TI,efilm co-efficient for outside air and brick is 45.4 WI",2 K and for inside air 011(1 cement is 17W/m2 K. 0

Conduction 1.31 Film co-efficient

for outside air and brick, hb = 45.4 W/m2K

Film co-efficient

for inside air and cement, ha = 17 W/m2K

K) = 3.45 W/mK

K2

= 0.043

W/mK

K(

= 0.294

W/mK

Find i) Thermal resistance ii) The heat flow rate. Tofind:

Take

I. Heat flow rate

k for brick = 3.45WlmK Ii for cork

2. Thermal resistance of the wall

= 0.043 WlmK

sotutio» :

k for cement = 0.294 WlmK

Heat flow through composite wall is given by Given : Q= In ide

Outside ement

kJ

Cork

Brick

k2

kJ

~Toverall R

[From Equn (1.42) (or)

HMT Data book page No.43 &44J

where ~T=T{/-Tb

I L( L2 L) R =--+--+--+--+-ha A kJ A k2 A k) A

I hb A

=>Q

j

kne

f brick LJ

= 20 em

=

0.2 m => O/A

f ernent LJ

= 5 em

= 0.05 m

=> QIA UI

ide air temp ~rature, Tb = 250 C

III ide air len perature, To = -200

Scanned by CamScanner

273 = 298 K 273 = 253 K

253 - 298 _1_ + 0.05 + __Q:l_ + 0.2 + _1_ 17 0.294 0.043 3.45 45.4

lOlA =-17.081 W/m21

/. 32 Ileal and Mass Transfer TIle negative sign indicates that the heat flows fro~ into the cold room.

COnd/l(;liml I. JJ

e OUt. s~

(i;"C'II .'



(PT2

outer layer

Inner layer middle laye

For Unit Area ~

I

k, LI

L2

L)

R =-+-+-+-+ha kl k2 k)

= 2.634 KJW

kJ

k2

I hb

_1_ +0.05 + _QL + _Q1_ +_1_ 17 0.294 0.043 3.45 45.4

~ IR

Thermal conductivity

of inner layer, k I = 8.5 W/mK

Thermal conductivity

of middle layer, k2 = 0.25 W/mK

Thermal conductivity

of outer layer, kJ = 0.08 W/mK

Inner thickness, LI

I

= 2S em = 0.25

Midddle layer thickness, L2 = S ern Rault:

Outer layer thickness,

= -17.081

I) Heat flow rate, Q/A 2) Thermal resistance,

R

= 2.634

W/m2

LJ

Inside wall temperature, OUI

K/W

ide wall temperature,

=

3 em

(I] A furnace wall is made up 0/ three layers, imide layer

T4

I. Equivalent electrical circuit MI~~

2. Heat flow per m2

thermal conductivity 8.5 WlmK, the middle layer MIll' conductivity 0.15 WlmK, the outer layer with cO/l(luClivi~

3. Thermal resistance

0.08 WlmJ(. T,.'lerespective thickness of the inner, n~i{ldlea~ outer layers are 15 em, 5 em , and 3 em respectively- T~

4. Interface temperatures

inside {/~d outside wall temperatures lire 6000 C and ~O·~ respectively. Draw the equivalent electrical circuit f~ conduction 0/ Ileal through the wall and find t"ernl ~ and interface temperatures4

Scanned by CamScanner

=

III

=

0.05111

0.03

III

T t = 6000 C + 273

Tofintl .'

resistance, heat flewlml

(

= 50° C

= 873 K

273 = 323 K

1.34 Heal and Mass Transfer

.---=--------------..._

Solution:

Conduction 1.35

electrical circuit for COIl(llICtioll

1. Equivalent

873 - 323

9.25 + 0.05 + ~QL. 8.5 0.25 0.08

~IQ/A

W/I11~

= 909.97

3) Thermal Resistance

2. Heat flow through composite wall is given by L\ToveraJl

Q=

[From Equn.

R

110.

(1.42) (or)

(Neglecting ha' hb terms)

HMT Data book page No. 43 & 44J

where L\T=Ta-Tb

=T,-T4 For unit area

,

R

=

L, L2 L3 I ha A + k, A + k2 A + k3 A + hb A

~ Q =

0.25 -I-

0.05

8.5

0.25

+

0.03.

0.08

4) Interface temperatures We know that,

[Convective heat transfer co-efficients ha and hb are not given. So, neglect rh{lt terms] = - ... -.-.--~.-.----

r, =:)

()

--

=-">

Q

=

'14

-,-{---

T,-T2

R,

Scanned by CamScanner

T, - 1'2

T:2 - T 3

= -R-,-= --~

=

T 3 -- T4

R3

... (

1)

I: 36 Hear and Mass Transfer

Conduction

1.37

Resllll:

= 909.97

I. Heat flow per m2, Q/A

klA

2. Thermal Resistance, R

0.604 K/W

TI -T2

Q/A

T 2 = 846.23 K

3. Interface temperatures,

LI kl

909.97 =

T)

873 - T2 0.25 8.5

I T2 = 846.23 Kj

@

= 664.23

A mild steel tank of wall thickness

20

K

111111

contains

water fll

100" C. Estimate lite loss of heat per square metre area of lite tank surface, if lite 11IIIk is exposed 10 OIl atmosphere til

15° C. Thermal conductivity of steel is 50 WlmK, while hem transfer co-efficient for lite outside wid inside II,£, tank are 10 WI1112K and 28.50 WI",2K respectively. WIItII will he lite

Silllilarly (1)

=

W/m2

o

=:>

= T2-T3

,

where,

lemperalllN'

R2

Oil

lite outside o.f lite tank wall.

Given :

L2 R2=-k2A

Thickness of steel wall

Q =

Inner water temperature

LI

T2-T3

L2 k2A

Ta

0.05

-

0.25 664.23 K

= 373 K

air temperature

Thermal conductivity steel, k I = 50 W /mK

= 846.23 - T3

I T3 =

100° C + 273

Atmospheric

~ k2 909.97

=

Inside

In

Th= WC+273=288K

T2 - T3

Q/A

= 20111111 = 0.02

I

Scanned by CamScanner

of

Inside heat transfer co2 efficient, ITa = 2850 Whn K Outside heat transfer coefficient, hb = I 0 W/I11~K

Outside

1.36 Heal and Mass Transfer where Conduction

Q

=

TI - T2 LI

1.37

Reslllt: I. Heat flow per m2, Q/A

=

909.97 W/m2

klA 2. Thermal Resistance, R

TI - T2

Q/A

=-L-

=

0.604 K/W

-

I

3. Interface temperatures, T 2

=

846.23 K

~ T 3 = 664.23 K

909.97 =

873 - T2 ----=0.25 8.5

I T2 = 846.23 Kj

@]

A mild steel tank of wall til ick ness 20 111mcontains water (It / 00° C Estimate tile loss of heat per square metre area of tile tank surface, if tile tank is exposed to an {Itmo."plwre (It /50 C. Thermal conductivity of steel i...50 WlmK. while heat transfer co-efficient for tile out s ide and in ...ide tile ttlnk are JOWl",] K am/ 2850 Wlm2 K respectively. What will he the

Similarly

Q = T2-T3

(1) ~

temperature

R2

Q

=

T2 - T3

T2 - T3 k2 846.23 - T3

0.05 0.25 / T3 = 664.23 K

Outside

Inside

Ta=100°C+273=373K

To

Atmospheric air temperature Th= 15°C+273=288K

ha

Thermal conductivity steel, k I = 50 W ImK

~

=

tank wall.

Inner water temperature

k2A

909.97

01 the

Thickness of steel wall L, = 20mm = 0.02 m

L2

Q/A

tile outside

Given:

L2 R2=-k2A

where,

Oil

I

Scanned by CamScanner

of

Inside heat transfer coefficient, "a = 2850 W 1m2 K Outside heat transfer coefficient, lIb = 10 W/m2K

1\ -----\

...-

I. 38

!...~:!.!~ and

Mass Transfer -------

To .Ii" tI : i)

" II)

..

_--- ----------_ " /

Ileal loss per square metre area of the tank Surface ( T ,Hl1\"doutsi c temperature, T 2 , Q 1\)

Conduction 1.39 We know that, TG -Tl

T1I -T,

~

Q =

-R-

=> Q

= T -T,

=R;--

Solutio" : Heal loss,

_G __

AToverall

Q =

---R---

where

Ra [From Equn, I/o. (I.42j~

I-IMT Data book page NO.4J

& 44J

1

= -, A

where, Ra

1£1

I-H=Ta-Tb R

I

L, k, A

L2 k2 A

LJ +__ I k3 A hb A

= --+--+--+-

ha A

_ Ta-T, I/h

=> Q/A -

a

=>

843.66

=

373 - T, 1/2850

(Neglect L2, L3 terms)

=>

IT,

=

372.7

Similarly

=> f)/A I LJ I -+--+-h{/ kJ fib

3 73 - 288

'_.) Q/;\

,

where, R, --'-

----- --------

:- (V/\

- _. ---.

-I-

2S50

_O_:_Q£ 50

+

.L '()

T,-

--------.-

-, S43.6(j

1

kJA => Q/A

Scanned by CamScanner

T2

L,

Willi ~1

-_- .-._------ "_-

Ll

= k,A

KI

_~

T,-T2 __

R,

=

T2-Tb_

Rh

1.40 Heat and Mass Transfer =>

843.66

=

372.7 - T2 0.02

Conduction

50

I

T]

=

Hot gas temperature.

372.4 K

I

Result: =

2. Outside surface temperature, A steam boiler furnace

843.66 \Vlm2

Heal now b) radiation

from gases

T2

=

Convective

372.4 K

is made of fire clay. rite

temnerature imide the boiler furnace r

is 2100

transfer co-efficient at tlte interior surface is 12.2

Illleril r wall

to

""(11

8.2 kWln'; and interior wall sill/ace temperature is 1080"('. Calculatefor external surface I. Sur/ace temperature 2. Convective conductance Given:

Scanned by CamScanner

inside surface

"0

=

=

of the

from external

J

2.2 W/m2K

58 W/mK surface

to surroundinc

10·) WlrnK

+ 273

1'1 = 1080°(,

urface temperature,

= 1353

is

K

Tafind :

1¥111I'/(,

slirrouluJi"K

323 K

10

i) External

thermal conductance of the wall is 58 WII1IK, heat flow ~v susface

10

=

103 W/m]

x

of the wall

QI{2 = 8.2 kW/11l2 = 8.2

t, roo-.., (II,. caSel"

at interior,

conductance

Ileal now by radiation

hOI CQJ

inside surface of the wall is 25.2 k Wlm], cOllveclio"

extemal

transfer

Thermal

temperature is 50 'r, heat flow by radiation from

radiation from

T b = 50 C + 273

= 25.2

I..J I

C

Room air temperature.

wall. Ol{ 1 = 25.2 kW/m2

I. Heat loss per m2, (Q/A)

o

Ta = 2100

surface

ii) E.\lerll,il

C

temperature,

'1']

nvc rive c nductancc.

hh

Solution : We kn: \ Total

hca:

e n Ic r i n ~

the

\I

all

Ihill

} ()

=

Heat nvc

Inn fer

ti

h~

n (II interior

l le at radiation

Irat I . fer

h)

at interior

r ,I

1.42 Heal

"

Mass

(11/(/

TrLlm!er ('(lnductiun

We kn \\ !haL

'1 - T, .-E-- _ R

o

R

-s:

Resull:

T, - T2 _ T2 - '1'"

T-l"_.-!!----R

I

-

1.43

I. [.x!<.:rfl
0

,,/;

"'2 = 703.4 K

(I

2. _xlemal convective

co-efficient,

hh = 77.3 W/m~K.

T, - TZ ~Q==~

@ A wall

is constructed

of several layers. The first layer o/I/Ia.\'OII(/ry brick 2() cm thick (lJ tlt er m al conductivity fl.66 WlntlC, lite second layer consists of 3 em thick 1/101'1111' of tltermal conductivity 0.6 WlmK, lite third layer consists oJ 8 em thick lime MOlle of thermal conductivity 0.58 WlmK and the outer layer consists of 1.2 em thick plaster 0/ thermal conductivity 0.6 WlmK. The heat transfer coefficient Oil the interior 1I11(1 exterior of the wall lire 5.6 WIIII1K and II Wlm2K respectively. Interior room temperature is 2rc and outside air temperature is -5" C. consists

WJ- T2 RI

LA,I--.V't"" -

J

1353 - T2 I -8

l''-

Re5istance =

External surface temperature,

T 2 = 703.9 K

3 .644

==

Heal loss due

d

con uctancc

Calculate (I) Overall heat transfer co-efficient

radiation at exterior

to

J

b) Overall thermal resistance c] The rate of heat transfer Hear 10>5by

vection at exterior

= T! -I hea entering - Heat

loss by radiation

at exterio

d) The temperature {II the junction between the mortar and lite limestone Given :

=

37.644 - 8.2

Y

103 k2

--..'Qc = _9.!

rr

~Tl

---- lib A

II

T

,=

29, 4

!

/ A / IT! - Th) -= 29,441

!

hb / I / [ O~.9 - 323 j :: 29,444 F.\lCrnal

'omccl; e

CO-Cf!lCI'CIlt

__

I , 'b::

Scanned by CamScanner

) 77.3 W/III-K

I

eDT,

2

I

asouary

Mortar

I .

. Limestone

Plaster'

lib

I

-1 ----'

/I('a1 and Mm.' Transfer ,=

Thcnna I (I

IH.lIII.. '1ivity

1 hidlll::-'l

~I

ondu

f Plasicr.

I..n~ss

OJ1dll 111;31

Exterior

.~

rJ1

Conduction

-,

_.

uvity,

z:

_'_'1_ ~ "1 k A kl A

I

L

~

k A

k" A

== 0,08 III -

2C)S - 268

O/A I 5.6

= I.~ em == 0.012111

"4

0.08 + 0.012 + .L 0.58 0.6 II

0.20 + 0.03 0.66 0.6

0.6 W/mK

hctlllrallsfcrco-cfficient,

hh

Tb = -

Ileat trallsfer

h" = 5.6 W/m2K

trnnsfcr, co-efficient

Ollh';dc air Itl1lpcratIJre

0 h,A

"3 == 0.58 W/I11K

L4

=

o

V. e knov

II W/m2K 273

per L1l1itarea, Q/A

34.56

W/m2

that.

Q=

Heat transfer,

= 295 K

=

UA (Til _ T b) [From equation

no.I.4J

where. U - overall heat transfer co-efficient

C - 27" = 26R K.

Tolind: . ) (h

c.:rall lint transfer

11) (h'~rjJII !lrcnlltll . Ih·allrall·fl:r/lll-.

co-efficient,

reo istancc,

U

(I<)

34.56 U == _.::.._:_.:.;:_::295 - 268

(()fA)

d) '111(' temperature at the junction

Ilw limes!

between

ihc Mortar

and

Overall heat transfer co-efficient,

U

=

1.28 W/m2K

ne. (Tl) We know (hat,

Solution :

Overall Thermal

.II "11 Il( \\ C)

'\ I

thrnugll )\I'J'

COIJIP(

sire wall

I IAtr I (I

R

by

/ h()1JI Equn.

"'1.'

"

given

is

For

11

H \111

1.../5

T,,- T"

IIIIK

r room ll:rnpcratIJrc, To = 22" C

lntcr:

0.20

r-,

"2:;- 0.6 W/IIlK

= ~ ern

ue. L,

ThLTm. I 'Olldllclivily,

Interior

0.66 \\

tivuy Oflllol1ar.

of limcst

~1l~:\S

Thermal

.!-'

0 em

~_

f me rtar, L_ = 3 em == 0.0" rn

henna!

Thi

=

, (1I1;1:-ollary. 1.,

Thickncss

. hi

_~ ~

,~._,_c_

__=

/)11/0

hook

j}(lJ,{('

I/O.

= --

(R)

LI L2 LJ L4 --+--+--+--+-kl A k2 A k3 A k4 A

I

hb A

unit Area

(In) or

No. -I3cC-I-Ij

I

hI A

resistance

R

=

I L, L) LJ L4 -+ -+-- +-+-+h(l k1 "2 kJ "<j

1 hb

_I + 0.20 + 0.03 + O.OS + 0.012 +_1 56 0.66 0.6 0.58 0.6 II

I;,

L,

I.,

.1

1< \

/\

Scanned by CamScanner

0.78

K!WJ

I

I 46 Hid

__:_____ eo a17 Mass Tran.~fer

Interface te mperature between mortar and ------..' the Interface temperatures relation

Q _

"1-T2

To--TI

--~=-R-I-=~

"2-T3

T -..........

linrel'IOIIe,

_ T3

.

-"4

-~-==~R

..>

Conduction 1.47

3

T4-l

5 4

TS-Tb

=>

278_3 - T3

Q=

=~

~

T,,-' TI

Q=

k2A

Ra

278.3 - T3

Q/A

295 - TI

Q

)/ha

~ k2

A

295 - TI Q/A

34.56

=

11170

278.3 -- T3 0.Q3 0.6

295 - T, 34.56

Temperature

1/5.6

IT,

between Mortar and limestone (T]) is 276.5 K

Result:

=

288.8 K)

I) Overall heat transfer co-efficient, 2) Overall thermal resistance,

T,-

T2

=> Q=--R,

3) Heal transfer, Q/A ,1) Temperature

288.8 - T2

Q

L, k,A 288.8 -, T2

Q/A

L,

", 34,56

__ _3!8.8 - ~~ 0.20 0,66

I

IT?

=

27S,3E]

I

Scanned by CamScanner

R

= 34.56

U = 1.28

= 0.78

W/Il12K

K/W

\\ /m2

between mortar and lilllcstone,(T3)

=

276,5 K

[!J The wall of (/ refrigerators is made

lip oftwo mild steel plates 2.5 111111 thick with (I 6 em tltick glass wool ill between the plates. The interior temperature is' -20" C, while tile outside of the refrigerator is exposed /0 40" C. Estinuue tile heat flow: Thermal conductivity of steel alit! glass wool are 23 WllltI( and 0.015 WlmK respectively.

(Madurai

L

Ll

=

L'l

= () ern = 0.06

J

= 2,5 111111

=-=

III

0.0025

III

A{/III01'Oj

University

/l.'OI'-I.}-I)

I. 48 Heal and Mass Transfer

-

I

Glass wool

Mild steel

Conduction 1.49 Convective

Mild steel

heat transfer coefficient is 1I0t given.

So, neglect ha' lib terms

Ta

k,

k2

I

.

L,

~

Ta

k3

Tb

I

L2

• I-

-/-

L3

~QIA.

..,

= -20 C; Tb = 40 C 0

0

k, = k3 = 23 W/mK;

Q/A

- -.---.

0.0025 + 0.06 23 .015

k2 = 0.015 W/mK

I

Tofind : i) Heat flow, (0)

Heat flow through composite slab is given by vera II R

23

Q == -14.99 W/m2!

Result : i) Heat flow,

,1 To

+ 0.0025

The '-ve' sign indicated that the heal flows from the outside into the refrigerator.

Solution:

Q

-20 - 40

[From Equn. no. (1.42)]

where

o

W/m2.

IZ!fl

The inside temperature of the refrigerator is -1tl" Cand outside surface tempera/lire is 30t) C and area is 301111. This refrigerator consists of 2.2 ntnt of steel at the inner surface, 15 111m plywood at the outer surface and J() em ofglass wool ill between steel (lilt!plywood. Calculate the heat Ion and the capacity of the refrigerator ill tons of refrigeration. Assume k(sleelj == 20 WlmK. k(p()'",oot!) == 0.05 WlmK. k(g/as!J'H'oo/)== 0.06 I-Vlm/(.

Given : Inside

Scanned by CamScanner

Q == -·14.99

Temperature,

T, =_IOL'C

f'273

=-=263

· 1.50 Heat and Mass Transfer Conduction /.51 kI

k2

k)

Steel

Glass wool

Plywood

T4 == 30° C + 273 == 303 K

Outside temperature, Area, A ==30 m

~~

~ T)

~DT2

(DTI

where

2

Thickness

of steel, L) == 2.2 mm == 0.0022 m

Thickness

of plywood,

Thickness

of glass wool, L2 == 10 cm == 0.10 m

Thermal conductive

L3==

co-effficients ha and hb are not

15 mm == 0.015 m

of steel, k) == 20 W ImK of plywood,

Thermal conductivity

of glass wool, k2 == 0.06 W/mK

Toflnd :

263 - 303

Q

0.002 + 0.10 + 0.015 20 x 30 0.06 x 30 0.05 x 30

k3 == 0.05 W/mK

Thermal conductivity

IQ

=-610.1

W==-0.610KWI

The -ve sign indicates that the heat flows from the outside into the refrigerator.

i) Heat loss, Q 2) Capacity of the refrigerator

We know that

Solution:

3.5 kW ==I ton

Hear flow throu?h composite Q=

(Convective heat transfer given. So, neglect that terms) T)-T4

wall is given by

0.610 3.5

ton

==0.174 ton

t1To vera lJ R

:=)O.610kW==

[From Equn. no.(/.42) ~ HMT Data book page No.43 & 441

Scanned by CamScanner

:=) Capacity

of the refrigerator

==0.174 ton

'{

r 52 HealandMassTrc.!'!!f!!_.-------"-~ Result:

I' id .iqut surface conductance,

Heat transfer, Q ::::610 W Capacity of the refrigerator::::

f1D

A s'tetlm to liquid

Steam surface' con d uctance, hh

0,174 ton

heut exclulIlger

area

copper Oil lite steam S/{Ies.

I lie

re.\'ISIIV/~V of

en, (I

/

.'"' ;,

k2(copper)

=

OJ

k) (Nickel)

= 55

p (II'"n .Vfller

=

I 53

.

5400 W/Ill2K

Steam " , , temperature, Tb = ) ) 00 C· _,+ 27"., -- .,83 K Liquid temperature: T(I = 70" C + 273 = 343 K

of 25

11.5 •em nickel and• •0.1 I 7'1 .. '

cOllslrllelell ",illi

Conduction

h(/ - 560 W/m2K

t>

is {}.0015Kiw. The steun, (I1lti/it-sCa/! surftlce C{JIIt/uel'IIIee lire 5400 WI", 2K and 56() W. 14~ reJpeClive~y.Tile Itealeds'lell", is filII Ou C (flllillefllet[ ~",2k

350 W/IllK W/IllK

deposil 011 lite steam side

is' al 70° C.

"ql/id

Toflnd : i) Overall

2) Temperature Solutio

Calculate transfer co-efficient

J) Overall steam IO/iquidllelll

2) Tempemllire drop IICrOS,\'lite settle deposit

heat transfer co-efficient, (U) drop across the scale deposit. (T, -- T4)

II :

Heat transfer through composite wall is given

Q

=

Take

r

~Toverall

Front Equn. no, (I. 42) or lIMT Data hook page No.43 & :J:J}

R k(copper) = 35(1

W'ImK

filii/

k(Nickel)

= 55 WlmK.

by

where

Given : Inside Liquid side

[

Outside

R = _I_+_L_I_ ... L2 ,L) I ha A k A . kA kA + _-

"b

T

,

1\2

Steam

side

2

3

A

Ra + R, + R2 + RJ + Rb

T2

Til 11(/

G:~~.:

R,~ value is given,

R" = k~~ = 0.00) 5 K/W

~

Copper R

I

---t--

lin A

_-'-

__

560 x25.2

=

Thickness

of Nickel

,

L I -- 0 ).- em

Thickness

of copper t'

'

L'2-- 0 , I cm=O.1

Resistivity

of scale,

R_l = 0,0015

Scanned by CamScanner

0,5

K/W

x x

10-2 10--111

L,

"I

A

+ 0,5 x 10-2 + 0, ) x 10-2 350 x 25,2 55 x 25,2 I

+

111

5400

~ ~IR

J.~58~x~IO~-_J~K~/W~1

x

25,2

+ 0,0015

/.5.1

Conduction/.55 fllrll(~c~ is made up of 13 em thict: of fire day,of thermal condllctlv/~" fJ.6 WlmK alU160 em thick of red brick of conductivity 0.8 . WlmK. Tire inner ~nd outer surface . . I. temperature of wall are 1"000 C and 75 C Determine

fllJ A wall of

(I

0

0

1.

Tile amount of heat loss per square metre of lire furnace wall.

2.

It is desired 10 reduce lite thickness of lite red brick layer ill litis furnace to half by filling in the space between lite two layers by diatomite whose k = 0.11J + 0.00015 T. 'Calculate lite thickness of the material.

Give" :

Furnace

Overall heat transfer co-efficient,

k,

k2

Fire clay

Red Brick

25 W/m2K

U

Temperature drop (T~.) - T4 ) across the scale is given by L1T Q=-Rsca/e ,

25.2

x

W

[.:

L,=13cm= k,

L1T

= 0.0015

=

Result: Overall heat transfer co-efficient, (U) = 25 W/m2K

T41 = 37.8

0

C

k2

=

T,

=

T3

=

= 0.6

111

0.8 W/mK 1000° C + 273 75° C + 273

=

=

1273 K

348 K

Tofind: I) Heat loss per square metre .2) Thickness

Scanned by CamScanner

0.13m

0.6 W/mK

L2 = 60 em

~ltlT=37.8°CI

Temperature drop across the scale, (T3 -



I:H = T3 - T4]

0

f the furnace wall.

of the material. whose k=OIII+O.OOOIST .

__ ._-" - ---

.

Sol"tim, : CondUCI;OJ1 1.57

2.

1. I teat transfer through composite

wall is given by Diatomite

... Q = Il To\'<:.~~~I

[From EC/III1. no. (1.42)'», JlMT Data book page No.43 & 44]

R where

Red brick

13

Furnace

K. .'

We know that,

TI -T3 ~Q

=

·-----;---·i,_ h~-A+

.~+~+-1-

k, A +

Neglect unknown terms ~Q

348 = ...-1273·-_. __.._ --

"2 A

Q kJ A

=

T, - T.f R

=

T I - T2 _ T2 - T3 -R-,- R2

= Tr

T4 R3

••• ( I)

hb A

=> Q =

T,- T2

R) 1273-T2

Q =

L, k, A

=> Q/A

=> 956.8

=

=

1273 - T2

1273 - T2 I.,

k, 1273 - 1"2 -0.13 0.6

Scanned by CamScanner

,.: A

= 1m2 J

---------------------

/. 58 Heal and Mass Trumjer

Conduction J .59

T) - T4 Q=

L3 .956.8 .. '

kJ A

='

,

358.8 L2

k;

. T) - T4 QIA =

__!2__ kJ

k

=

0.111 + 0.00015 T

::::::>k2=0.111 +0.00015T

T4 - Outer surface temperature of red brick' k) - Thermal conductivity L) _ Halfofthe

k2 = 0.111 + 0.00015 [T2: T31

of red brick

2

thickness of the red brick == 0 6

=

= 0.111 + 0.00015 [1065.6 + 2

O.3m

I k2 = 0.243 WimK I

T) - 348 Q/A ==

0.3

D.8 ~

Substitute ~

=

956.8

706!KJ

Q=

T

T2-

1.

R2 Q=

1065.6-706.8

Scanned by CamScanner

(

~.

0.243

~.

L2 = 0.091 m

Thickness'ofthe (I)~

,

956.8 == 358.8

T) - 348

IT =

706.81

k2 value in Equation (2)

0.3

~ IT)

is

Given thermal conductivity for diatomite

where

~

.... '(2)

diatomite, L2 = 0.091 m

Remit: Heat loss, Q = 956.8 W 1m2 Til ickness of the, d iatOl;nite, L2.=' 0.091 m

),

'"

.

I

(10

Heat and

Muss r,'(/l1s[er

-'[ijl A [urnace wull hi made of ~

inside silica hrie~ • • 'J ther contlllctivill' 1.7 W/mK, 12 em thick and outside m ",~ • •• ~ ~ IV (Ig'l~f' brick of thermal conductivity .1••1 ,,'/mK, 22 em thic ",, temperature Oil the inside of the wall of the silica bk: rh, . magnesite. bri 92(1UC (111(1olltsult! nc«t. sur/ace tem'Pe r'rk'~ rmUre' 120" C. Calclliate the heatflow tit rough tit is compos I'te IVaI(~ lf the ('011 tact resistance between the two wall is 0.003Ktlt find tile temperlllllre of the surfaces at the illter/ace.

~;:::-::--------where

~C~o'~ld1!_''!'£Cli(}~!J_._61

Sf

=

R = --I_+~+~+~ ha A kI A

I

Given:

k2

Neglect

(DT2

(~TI

Magnetic

brick

brick

k3 A

unknown

L, +_J_+

k) A

1 h A b

I fib A

terms (11(1, hb and L))

TI -T3 =:>Q=------__.:__-

~~T3

Silica

...

k)- A

I + __LI + __L2 ___ h(/ A kl A k2 A

r----.---r------~

k1

TI -lJ

LI

L)

--+--kl A k2 A TI - T3

Q=

Thermal conductivity

of silica brick, kl

Thickness of silica, LI = J 2cm Thermal conductivity

of magnesite,

Thickness of magnesite,

~

Inner surface Temperature, Outside surface temperature, Contact

O. J 2

=

1'1 - T3

=

[where, Rc is contact resistance between walls]

III

RI + R2 + Rc

k2

=

5.5 W/mK

= 22 ern = 0.22 TJ

RI + R2

J.7 W/mK

=

m

920" C + 273

= J J 93

T 3 = 120 C + 273 0

resistance between t, .•vo wall, Rc

=

K

= 393 K

Q=

1193 - 393

0.003 K/W

Tn find:

Temreralurc of thee

1193 - 393 surf lace SUI

. at the Interface,

Q/A =

(T 2)

0.12 + 0.22 + 0.003 1.7 5.5

So/utioll :

HCallraJl!.,fer .

thr

" .... oUb" composite

7042.9 W /m2

wall is given by

Q :;

{From £qlll1. no. (J.42)fI)

R

II MT 0(1£0 hook page No.

Scanned by CamScanner

43 c(

4J

I

1.62 Heal and Mass Tra:.:'.:.:ls~ife=-r

~ Conduction 1.63

We know that, Given:

Brick

Inner

Insulation

Timber

Outer

Cold

Hot

T2

1193 Q=

Ll kl A 1193 -

Q/A

T2

0.12

Diameter

of the aluminium

rivet, d

=

4 em

=

0.04 m

1.7 Thermal

conductivity

of the aluminium

1193 - T 2 7042.9

=

0.12

Area of the surface,

1.7

A

=

I

Thermal

conductivity

Thickness

Result:

Thermal

conductivity

insulatine wall has three layers of material /JeI~

together by 4cm dian:eter aluminium (k :: 200WlmK) riV~ per O.J m2 of surface. The layers of materials consist 0 12 em thick brick (k= 0.90 WlmK) with hot surface 01

Thermal

material,

conductivity

=

22 em

Cold surface temperature.

T1

=

T4

0.90 W/mK

=

L2

=

of the timber, k)

temperature,

200 W ImK

0.12 m

of the Insulation,

of the timber, L3

Hot surface

=

of the brick, kl

of the Insulating

Thickness

IE] A composite

=

O.I m2

Th ickness of the brick, L I = 12 ern

IT2 = 695.8 K

rivet,

kriv<:l

=

I.S em

k2

=

Scanned by CamScanner

Percentage

of increase

0.015 111

0.170 W/mK

0.22111 =

0.11 W/mK

2200 C + 273

=

493 K

ISO C + 273

=

288 K

=

220°C, 22 em thick timber (k = O.J 10 WlmK) with colt!sl'rf{lC~Tofind: at 150 C. These two layers are interposed by a third layer0, .. I . J 70 W/"'~' IIlSU ttttng material 1.5 em thick of conductivity O. CI I . .~r~ a ell ate the percentage of increase ill "eat trans)' due to rivets.

=

in heat transfer rate.

1.6./

Heal Gild

Mas ,. Transfer _ ...

----------

Solution:

(',,"dUCli(J11

I.fij

Lrivel

Heat transfer (without

Rrivd

Q

rivet)

:::

krivCI x Arivet

R

where

0,12 + 0.015 + 0.22

~T

==

[Front fI!IIT d

T I - lt~

R

17(/ A

1/(1

book '0I')

20a x 1.25 x 10-.1 I~e

/IV.';]

& Rriv":l == 1.42 K/W

1.1

L..,

L"

kl A

k] A

k,A

We know that

h,

__

"1"1- T-t

L__

_I _ +- _'-

==

Rc:quiv:llenl

=> Q II

Ila !\

~--

L

L,

k1 A

k, !\

--T--

kl A

.'

Rwall

-

I{riwt

I x ~1.·~_~i.!!IEivct_. Arca \\ ithour rivet

/ill !\

-I-

R

-_1I{rivel

L .. , (I) where

=

<)

R==

__ I ",,/\

+ __LI klA

l.~ +_k!A

I.}

I

f----

f--.--.

kjA

"I,A

{From 1I.\.It dat« hook page no. Neglect

O.(H)

O. I

O. I 70

- ----

~-----

idcriug

0.1

0.11

0.1

area

LI

L,

LJ

klA

kzA

kjA

R==--+---+--

rivet I{

Rivet

"b terms

+-. _Q·~L_ R == _.Q.JL_ + 0.015 O.QO x 0.1 0.170 x 0.1 0.11 . 0.1

'----------_ ow con

A

11(/.

= 22.2

K/W

~'rrf.l J2 Substituting

- It/t! " (O.04)~

[!\rca~~~~).-~:·.I>S_-· 10-3

Scanned by CamScanner

JlI21

R value ill Equn (I)

_1.---R.;qul\'al.:nl

==_L 22.2

,(i~'! .. 1.~5,( 10-·;) 0.1

n/

r

is 23') C.

fC!"'flt!rllfllre

iusid« resiSfllll

c!

",I'glcclillf:

thr th ermal

of.5 nun mortar joint between marble lI11dbrick.

I ttiefotlowing.

fill

1. Overall

transmitance

•. He II loss through

:. Temperature of

T I - T~

-I. Thermal

for the wall

II,e 14'(/11

lire brick - pine interfa

conductivity

e

0/ tire mortar.

[Assume ,\lorlar brick interface temperature i 21" C, Given :

heat loss is reduced

. :e='

, n.age (}

ing thickne s of mortar

v

Q p~

by J 0%/

• T,

TI

rivet.

I

e

Q,

lnvidc

0

T

l{l"

4.13-9.22

=

15 .13

hb

ha

/ 100

'% ] ., ickncvs of marble, L = 75 mm = J.O 5 m ~

A lurJ(e composite

wall ill made

up (Jf 75 mm tnJlrhltl

thermal conductivity 1.25WlmK, 7fJmm brick fJ.fi2WlmK,

2fJ5mm pine

I 75mm Imide ptaster

0/

O,J2WIK

(J.25WlmK. 1he (Julsj . ..Ie uJ I,,, 33Wlm2X and m'ilu

I,,, 12Wlm2K. Outside

tempet"

'l hcn (II conducti Lhickncw

brick

i y of marble, k4 I.}

IUft j

T hcrmal c. nducii

70 mm

=

',25

ImK

O,07() m

'I hickncss

it)' of brick, k3 = 0,62 W/mK

of pine, 1'2 = 205 rnrn - 0,205 m

Thermal c nductivity of pine k2 = 0,12 W/mK Thicknc:

s f plaster, LI = 175 mrn = 0,17

'1hcrmal conductivity

Scanned by CamScanner

=

=

aI

conductivity

unit surface conductance ,'iur/tu:e .onductance 2fJ0(' and

of conductivity

0/ conducfit1

of plaster, kl

=

m

0,25 W/mK

.e

!_._(i8 .!"I
--------_

Outside

...

.__._-----

surl;lce cOllductance ,

Inside surtilce

conducrauce

"

hl == 3'J WI I11K 2. -----~

---._---

('OIlC/llc1ioll

h == I'"- U'/ 'K '0 no 111-

ICllIpt:ratlln..:, Tb::: 20" C + 273 :.::293 K

Outside

Insidl.:· kll1pl:ralllrc,

To ==

2]0

C + 273

==

= .5

111111

== 0.005

111

l'vlortar joinllhid:lh.::-;s To/illll: I. Overall

-------.

_L

2% K

12

__

oo

2.69

~-----

Q/A __rate, -.--

;'.11

==

- -_.

W/m2/

of brick-pine

interface, (TJ)

I lcat transfer,

Q

= IJ x

ACTa" Tb)

IFrom cqun,

of the mortar

[Mortar hrick interface lelllperu/ilre i.v] It: heal/ass

is reduced

1.11 = lJ

by 10%/

y.

(296 - 293)

SOIIlI;oll :

Heat transfer through composite wall is given by ~=

We know that, Interface temperatures relation

,\Tovl.!rall

R

where 1'4 - 1 ~ _ 15 - ""

Sf:; Ttl ·-lb

= ~-

1

R

=

7;-;;11.-

LI

-I-

_

We know that,

-L Thermal conductivity

()

••

+ 0.175 + _Q)J!~~ + O.O.~, + _QJ~~ + ,_!_ 0.25 0.12 0.62 1.25 33

r.lcallransfer

(U)

2. Heal luss. (Q) 3. Tempcnuurc

---

3 'C)I/\

trunsuuuance,

-.

I.

"'1-"

L2 + "'2"

LJ

-

-Ti;,--

. , . (,)

L,J_'

+ kJ ,,- + k,J" + lib A

(1)

::::>

Q= /.,'

Scanned by CamScanner

I{"

"0. (1.43)1

( 'r,IIIItIl:I!lIn

}) .12

I 'II

,'f !

II. () (1.1 ~ 2() •.

'f

1

I

II. 115 0.12

Il, c=

~I) -:-

C

I)

.I~

'1',

L"

K\

293.22 K

TClllpcralUJ'c

T

or brick

lical loss is reduced

RI

I - pille interface

2() .22 K

I

by 10%

L\ KIA

CmlsitierillJ;

tl,iclme.\·s of tire mortar,

295.9 - T Q/A

L\

TI

kl

295.9-T2 1.11

\T2

Inside

0.175 0.25 295.12

KI 0

Mortar brick interface temper~tllre is 21 C 1

-'

=>T4=21°C

Q

T4

=

210 + 273

295.12-T3 ~ k2/\

££IIIi1t1M'6~'_

Scanned by CamScanner

I. 72 Heal and Mass li'an~k/' _--_._----.---_. - ..__ .-.. _---_----_-

Mortar thickness,

1'4 =

5

Illlll =

0.005

III

0.99:: We know that,

T5 -- 293.03 0.075 1.25

IT5::

293.08 K]

294 - 293.08 Q ::----~

L4

T(,- Tb

(2) => Q =

k4 A

---_._Rb Q/A =

Q= T6-2~~.

0.92 0.005 k4

1

hhA Q/A=

T6 - 293

_--

.i. Thermal conductivity

T6 - 293

0.99

= --.'

of the Mortar, k4 = 538

x

3

10- W/I11K

..-~-

j_

Result :

33

I. Overall transmittance,

293.03 ~"]

U

=

2

0.37 W/m K

1. Heat loss, Q

=

3. Temperature

ofhric~ - pine interface

1.11 W/1112 =

293.12 K

T< - T(J =:~

L~ ~~ ;\

Q/A

15 - 293.03 0.075 1.25

Scanned by CamScanner

4. Thermal

COlldllctj\,jl~

of the Mortar

3

:=

5.38;.10-

\\'/IllK

/. 74 Heal and Mass Trans er

1.1.12 SOLVED UNIVERSITY

f1]

PROBLEMS

ON SLAIl

.r Inner surface temperature

A [urnace wall consists of three layers. Th~ litem thickness is made offire

brick (k= 1.04 Wlt,,~Yer~

intermediate layer of 25 em thickness brick (k = IJ.69 WlmK) followed by

(I

is made if ). 1~ o nzlll'o 5cm/hick co ' ~~

(k = 1.37 WlmK). When the furnace is in continuou' tire inner surface of tirefurnace

trcrele II' ,\ °perllJ'

~

is at 800 C while t'

I~

concrete surface is at 50"C. Calculate the rate oifl,

~

per unit area r., '

0/ tire wall, the

0

Ire 0llt

.

temperature

rellllo~

at the illl"" erj



tirefirebrick (lilt/ masonry brick am/the lel1l1Jerlilll I Ire interface 0/ tire masonry brick (111(/ COil crete.

lice q 11/ IN

'

Outer surface temperature,

T

800 C 0

Conduction

2

1.75

1+ 73=1073K T 4 = 50 C + 273 = 323 K 0

Tofilltl :

I) Rate of heat loss per unit area of the wall, 2) Temperature

(QI A)

brick, T2

at the interface of the fire brick and masonry .

3) Temperature

at the interface of the masonry brick and

concrete, T3. Solution : (i) Heat loss per square metre (QIA)

[Anna Uuiv -June'06j

Heat transfer Q

,

Give" :

= ~ Toverall

R

where Fire

Inner side

Masonry brick

brick

( T,

Concrete wall


[From HMT data book

page

no.43 & 44 (Sixth editionj]

Outer

side


~DTJ

=> Q

=

I L, LJ L3 --+--+---+--+ha A

k, A

k2 A

k3 A

I hb A

[Convective heat transfer co-efficients ha, hb are not given. So, neglect that terms] Thickness

of firebrick,

Thermal conductivity Thid;ness

L) ==. I Ocm == 0, 10m

of

fire brick,

of masonry brick; L2

==

kl

== 1,04

25cm = 0.~5

W/Il1K III

Thermal conductivity of masonry brick, k? = 0,69 W/IllK Th ickness of '-"0 ncre t e wa II,L.1 = 5cI11 == 0,05- m Thermal conductivity

of concrete

Scanned by CamScanner

wall, k3

==

1.3 7 W/n1K

Q/A

_~--:---:-

~C~'o_o'lI(jIIlCliO" I. 7

Similarly Q= TrTJ R2

(I)~

where.

LJ

RJ

= _-_

-

k2 A

ii) Iff1nftK,~ tepualU,es (T] and Tj) We

T2 - T3

~ Q=

that,

J rdL-rf

see temperat ures re lat iem ~

Q/A

1515.24 I

= 927.30 - T)

0.25 0.69

ere,

~78.30KJ

'r ,- T2

0"---'

~-

Result : I. Q/A = 1515.24 W/m2

kl A

'1',-

T2

2. T2=927.30K

3. T3=378.30K

Q/A

III All 1073··· "'2 1515.24 = _-' .,.0.10 1.04

[li~_~~~. 3·~i.·.Kl

Scanned by CamScanner

external wall of II house is made up of 10 em commo« brick (k = O.7 WlmK) followed by II 4 em tayer (II gypsum plaster (k = 0.48 WI",K). Whu: thickness of Iml.,·(v plIL'ked

insulatlon (k

= 0.065 WlmK) slwulll

be lidded to reduce

the I,eat loss II"ougl, the wal! by 80%. [May 200-1 _ AIIIW Univ. Ocl-99 & Oct 20tJ/-

,\4.

Uj

1.78 Heat {llId Mass Tran.lfer

Give" :

Conduction

Thermal conductivity

= O.lm of brick, kl = 0.7 W/IllK

Thickness

L2

Thi(;kness of brick, LI

=

10 em

L2 kL) -,.1] R. = _l_A [-1-'ha ,_.!::Lk,. +-+-+ k -r

2

of gypsum,

=

4 em

=

0.04

of gypsum, k2

Thermal

of insulation

conductivity

=

k-

'J'

/7'1' ,

0.48 W/mK R

= 0 065 WI IllK

=

Ib

and hb are not eziven . S0, neg Iect t Iiat terms)

_l_[.!::L A

Considering

Gypsum

Brick

,3

III

[The term's

Thermal conductivity

I. 79

. where

J:L + _s_ 1

+ k,

k2

k)

two slabs, i.e., neglect L3 term

sr

[''- A

Q =----

=

I 1112)

_s_+~ k,

k2

kI

k2

6T 100 ",,' - .....__::::...:_~ _QJ_ -I- 0.04 0.7 0.41\

Ilril:~

(iYI

~IIIII

II IS

()

'III

luss is red" .cd h)' IilJ%

Thi

.(d')

I I ·!.:II('. S 01'

wall hy 80%,

msulnrion

to reduce tile

(L1)·

insulllt ion. So, hcnr trnnsfcr

()

o .

e111l:10

r Assume heat CO) == 100 WI

W,

" I

1il [lnd :

transfer

I leA

t I

. thrOl1uh

oss

10.1 0.7

I ().()il I

OJIS

1'1 (l.()(,.

I

II

'

r~

0.0. ~Ii 111/

.

Result :

Solution : J

[eat flow rate, Q

=

,1T overall

Thickness of insulauon

R

'[From I-1M?'data hook page

Scanned by CamScanner

,/1

4J I~ /11)

I.J

0.0 XX III

__j

I.SO Heat atld Mass Tratlsfer

-II)

A composite

brick, "

wt,lI consists of 10cIII Ihick lay~

= fl. 7 WlmK

Conduction /.8/

and 3('''' II,ick pla.'iter,1c == 0.5 W/~

ilI.mltlti"g nUlterialof"

= fI.ORWIIIIK is to he tltldedlo (~

the I,et,tlrtlmft!r 111T0III:" II,e wull by 411%. Fintl its th' rr~ .

{Dec- 200-1

.11I1I1I

& Dec-lO(lj

Uuiv

Id~

Considering two slabs, i.e., neglect LJ term

:ll/l/u Viii!

Give" : Thickness of brick, L I = 10 em Thermal conductivity

0.1

=

111

~IOO

of brick, k I = 0.7 WImK

Thickness of plaster, L2 = Jcm

=

0.03 m

0.7

= 0.5 W/mK

of plaster, k}

Thermal conductivity

of insulation, k 3 =: 0.08 W/mK

~:---~ast~

Insulation

k,

k,

~ I IH Q

~T

R

=

~T

Q=

I

60

Ttl find :

Heat now rate, Q -= where R

=

J__ A

(~+~+~l

1 A

-

----_._._ ----_. -_.__ ! f---. L I - --ic- - I. !---..j

Solulio" :

1

k3

[_QJ_ 0.7

+ 0.03 + _!::L_ 0.5

0.08

~1

:::) 60 r _QJ_ + 0.03 + 0.7 0.5 0.08

l

R

+

:::) 0.1 0.7

.!:l_ _I 1 kj

+ 0.03 +..!::L 0.5

L3

lib

:::) 0.08 =0.135

The terms I/{/ and "" are not given. So, neglect that ten11S. 7

Scanned by CamScanner

k2

20.28

_!_

sr overall +

kl

=

to reduce the heat loss through !Ii

(_L11(/ + .!:Lkl + .!:L k2

I

20.28 K

=

transfer (Q) = 100 WI

0.5

Heat loss is reduced by 40% due to insulation. So, heat transfer is60 W.

I

Thickness of insulation wall by 40%, (LJ).

[Assume heat

_QJ_ + 0.03

Thermal conductivity

I

~T __

= -~

0.08

=

1

20.28

= 0.338

I.S2 Heal 0/1(/ Mass nOl15jer

IL

= 0.0108

In

( 'ouduct inn 1.83

I 'If/jiuff

: i) II

RemIt: L) = 0.0 I08

Thicknc s of insulation,

o A sw{ace

10. s per quar

;It

ii) Interface

111

is made lip of 3 layers one of fire brick 0 insulating brick and one of red brick. The inner (III 'd Oil) nIl HlIIII

surface temperatures are 900 C lind so: C rejfJective~ll. n respective co-efficient of thermal conductivity of thelal'~ are 1.2, 0.14 and 0.9 WlmK lind tile thickness of 20 em,8 and L/ em. Assuming close bonding of the layer.\·at interfaces. Find the heal/on' per square meter and illlerf~ temperatures. [/11. U OCI-9 J 0

SO/lIlioll

(i)

metre, (011\)

(T2 and T )

temperature:

:

/JI'(I1/0.H

per square metre (QIA)

I kat Iran fer. Q

/Frolll

Tavera II

==

IIMT data hook

[lag(' 170 . .J3 Gild ./4

R

J

where

L2

1.1

--j--

I- I

k2 A

Given : lnsulatins

Fire

Inner

side

(bT ~


(

h"A

heat

[Convective

(

T3

.I-

So" ucglcct

k3

k2

kl

,

-....0

tha:

kIA

f-- LI --tc- L T,

Outer temperature,

T4

900 C + 273 0

= =

30° C + 273

1173 K

= =

k,

Thermal

of

brick '- k?

Thennal COlldllCti Thi

knes

Thic~ne Thicklle

s

it

iusulatins

of red brick, LI

=

f Iire brick, f' III ulatiug

brick, L2

r re d

L3

brick,

o

=

20

CI11 =

II em

Scanned by CamScanner

k)

=

=

= 0.14

\\/111

CIll

=

0.11

= 0.08 III

111

1 rill

J

L_ k2 A

"4 --'1'1'-- ---LI

I.,

Q/A

L

1

k, A

hb A

-'-~-

co-efliciellts

transfer

L.

~

1173 - J03

III

8

k2A

~

= 0.9 W/rnK

0.2

KIA

~'~

1.2 W/rnK

of fire brick,

conductivity

01

303 K

Thermal conductivity

L2 --

=

LI --j--

Inner temperature,

LI

--j--

brick

brick

side

-~0

Outer

Red brick

0._

0.08

ill

1.2'

0.14

0.9

h(/, hb

arc nut

given.

/. 84 (ii)

Heal and Mass rransfer

Interface teperatures (T) am/ Tj) ~ We know that, Interface temperatures relation

Condur, I.85 ---------------____:_._-;0/1

Q/A TI - T"

Q

R 1004.457 - T3 ----.::.... 0.08 0.14

1011.2546= where LI

R1=---

kl A

Result: (i) Heat loss per square meter (Q/A)

TI - T2 LI kl A

Q/A = 1011.2546 W/m2 (i i) Interface

temperatures

(T 2 and T 3)

TI - T2

Q/A

T2 = 1004.457 K

L,

1;1011.2546=

IT

T3 = 426.597 K

1l7J-T2 0.2 1.2

2 = I 004.4 57 K

[I)

I

Similarly

The wall of a furnace is made lip of 2.f0 mm fire clay of thermal conductivity 1.05 WlmK, 120 mm thick of ins Illation brick of conductivh, O.15 WlmK anti 200 mm thick red brick of conductivity

0.85 WlmK. The inner and outer surface

temperatllre oj wall are 850 C tlntl 65- C respectively. Co/cilIate the temper(l/ures at the contact surfaces. G

[Bharathida an

niversity

ov- 95}

Given: Thickne

of fire cia

Thermal conducti

Scanned by CamScanner

L1=2S0mm

=0.

5m

ity, kl = 1.05 W/mK

Thi knes of insulation

bri

Thermal

2 = 0.15 W/mK

ndu tivity,

., ~ = 120

m = 0.1

In

/. 86 Heal and

Thickness

Mass Transfer of red brick, L3

Thermal conductivity,

k3

==

==

200 nun

==

---

0.2 rn

__ Conduction 1.87 [Heat transfer co-efficients ha and hb are not given. So, neglect that terms]

0.85 W/mK

Inner surface temperature,

T1

Outer surface temperature,

T 4 = 65 + 273

==

850 + 273

== ==

1123 K 338 K

~

Fire

Insulation

clay

brick

• T,

k,

k2

T,-T4

=

L,

L2

Redbrick QfA

_s_+ ~ k,

Q/A

kJ

T

slab is gi en by

1123-338

0.25 + 1.05

= 616.46

Q/A

T, - T2

Q=--

1~

[From H \17 data book page no. 43 & 4.{

'erall

where

~ Q=

fA

Scanned by CamScanner

k3

= ------

Souaion : ....

+S_

k2

We know that,

ro eft composite

k3 A

TI-T4

=


I

Heat

~

k, A + k2 A

°nj

(~T2

Q

=

RJ

0.12 + 0.2 0.15 0.85

W/m21

> 1.88 Heal and Mass Transfer Conduction 1.89

1123 - T2 => 616.466 = 0.25 1.05

.' Similarly

wall made up of 7.5 cm offire plate anti O.65 em of mild steel plate. Inside surface exposed /0 hot glls lit 650" C anti outside air temperature 27" C. The convective Ilea/transfer co-efficient for inner side is 60 WIm1K. The cOnl'ective heattmnsfer co-efficient for outer side is 8 Wlm1K. Calculate the heat lost per square meter area of the furnace

wal! and also find outside sutface temperature. {M U. April-98]

T2 - T3

Q=~-

(I)=>

@] A furnace

Given:

where

Fire

Mild steel

plate

plate Outside

Jnside T(I'

=> Q=

n2

n,

hb

f.c-- L,

976.22 - T3 Q/A

k2

==

-----fo--- L2

--l

L2

Thickness of fire plate, LJ == 7.5 em == 0.075

k2

Thickness of mild steel, L2 == 0.65 cm == 0.0065 m

976.22 - T3 => 616.46

T/J'

Ita k,

=>

( TJ

0.12 0.15

Inside hot gas temperature, Outside air temperature, Convective

III

T a = 650 C + 273 0

= 923 0

0

T b == 27 C + 273 == 300 K

heat transfer co-efficient

for

inner side, ha == 60W/m2K Convective

heat transfer co-efficient

for

outer side, hb= 8 W/m2K.

Result: Tofi IIlI : (i) 1'2 == 976.22 K

(ii) T3;: 483.05 K

Scanned by CamScanner

(i) Heal lost per square meter area, (QI A) (ii) Outside surface temperature,

(T3)

K

1.90 Heat and Mass Transfer

Solution :

Conducnnn I.91

(i) Heat lost per square meter area, (QIA) Thermal

for fire _ plate (Refract ory clay) k, = 1.0035 W/IIIK.

{From H.UT data book page no. 9 (I- iflh edition •

Thermal

.

conductivity

or page



.

I) JlO.

-

.

Sitt"

r.~

(ii} Olltside surface temperatllre,

conductivity

We know that, Interface temperatures

retarion

edlt,

for mild steel plate

k2 = 53.6 W/I11K

... ( I)

[From HMT data book page liD. where Heat flow,

Q

Toverall R

where TrTb

~

Q= J

LI ~ --+---_ kJ A k2 A

fib A TJ

QIA

- Tb J

fib

~Q

[The term LJ is not given. So, neglect that term

,

I

8

I

Ta- Tb

~Q

T) - 300

=

2907.79

T3

=

663.473 K

I

Result : (i) Heal lost per square meter area, (Q/A)

Q/A

.. Q/A

Q/A =

_, +

I

60 QI1\

=

923 - 300 0.071+ 0.0065. 1.035 53.6

(i i) Outside

I

t-"8

= 2907.79

W/m2

surface temperature,

.. T]

=

(T 3)

663.473 K.

2907.79 W/m2!

(b!

Scanned by CamScanner

( 'flliilliNil/il

1\'1

-

[]

I.)

"j

I

h(l II t I'

I A t. IJ,

''fill ..

Fh

Imllilll(inA

bl'k~

brick

.:Iori/.

Il'hul

I

I 'J 1

I

kl A

,,~ A

II", 1..1 II lid "b nn

1'1Ilt!

Lj I

IIO(

"I

A

hi)

/I

II,lv·,1. So. nogl

tthar rerrns]

6 0

Q/A

0.23 0.115 --+-OL 0.27

kI

872 W/m2!

I---

Ll--~--

Thi kness

f fire bri k. L]

r

f insulating

L =

j

ern

0.23

=

Result:

III

Rate of heat lost per square meter, (QI A)

i kness

brick, L_

I!. - ern

=

=

0.115m Q/A

Thermal c ndu tiviry of fire brick e al conductivity

of insulating

perature difference,

6T

=

kI

=

brick, k2

=

0.2 \\/rr

[!]

TI,e 60 em

650 K

872 W/m2

inner x

dimension

of a freezer

cabinates

are

60 em. The cabinates wall consists of /HIo 2 mm

thick steel wall (k = 40 WlmK) seperated by a 4 em layer of

Tofind:

fiber

10

=

0.72 W/rnK

per square meter, Q/A

SOlUlvm:

glass

insulation

(k = 0.049 WlmK). D

TI,e inside

C and the outside

temperature

is 10 be maintained at _I5

temperature

on a hot summer day ;J 45° C. Calculate the

maximum amount of heat transfer, assuming a heat transfer

To /erall R [From IIMr data book page

co-efficient no.

4J'

of 10 Wlm] K both on inside and outside of tile

cabinate a/JO calculate outer surface temperature

of tile

cabinate. [M. U. Oct-2002}

Scanned by CamScanner

JUt" /. 94 Heat and Mass Transfer Give" "

Conduction 1.95 where Fiber

Steel

L\T=Ta-Tb

Steel

glass (DT2


R


(

k3

k2

Thickness of fibre glass, L2 Thermal conductivity Inside Temperature,

=

=

4 ern

k3

=

=

0.04

of fibre glass, k2

T b = 450 C + 273

Heat transfer co-efficient,

110 = lib

==

l:J

)

ha A

k A

k2 A

kJ A

hb A

J

258 - 318 _'--

III

+ _0.002_ +

) OxO.36

=

/Q

III

=

(ii) Outer surface temperature

+_,_ )Ox0.36

10 W/1112K.

Q

T -Tb

= __:::_[/-"-

R

inside]

(T~

TI - T2 _ Tr

R, T 3 - T4

R3

(T4)

(i) Maximum (111101111' O/hNI"Tnm/er

-21.25=

Heal flow, Q ~ .1Tovera"

0.36 x 10

R [From /I MT data book page 110.43 &

10

We know that,

318 K

"

Scanned by CamScanner

0.002 40x0.36

=-21.25W]

(i) Maximum amount of heat transfer, (Q)

Solutio"

+

0.04 0.049xO.36

[The negative sign indicates that heat flowsfrom outside

0.049 W/IllK

Tofind :

(ii) Outside surface temperature,

40x0.36

40 W/mK

To = _150 C + 273 = 258 K

Outside Temperature,

I~

J

Q/A

Thickness of steel, L) = L3 = 2 mill = 0.002 of steel, ",

L

~ Q =

Area, A = 60 ern x 60 ern = 0.36 m2

Thermal conductivity

,

--+--+--+--+-

=

4t

-

T3

R2

= T4 - Tb Rb

.•. (I)

-1. 96 Heal and Mass Transfer Conduction I. 97

Result: (i) Maximum amount of heat transfer,Q

T4

(ii) Outer surface temperature,

=

:::-2 I .25 W

Tojiml: (i) Rate

312.09 K

l!1 A mild

steel tank of wall thickness 10 mm Contllins IIIUle'l 90 C. Calculate tile rate of heat loss per ml Of tank surfll/J. area when the atmospheric temperature is 15 C. rite tile,.". conductivity of mild steel is 50 WlmK ami tile hea: trUIU!, co-efficient for inside ami outside tile tank are 2800 "II WlmlK respectively. Calculate also tile temper(lturt~ tile outside surface of tile tank. [M U. Apr-2000]

0f

heal loss per m2 of tank surface area (QI A)

(ii) Tank outside surface temperature (T2) Soilltio" :

0

Heat loss, Q

=

.1Toverall R

0

where .1T

= T{/- Tb

__ 1_+_S_+~ R - haA k, A k2A

+_!1_+_I_ kJA hbA

[LJ' ~ not given.So, neglect that terms]

Give" : Inside

k

T(I> ha

~P2


=> Q/A

= _1_+ ha

_s_

+_1

k,

hb

363 - 288 Thickness

of wall, L,

Inside temperature Atmospheric

Q/A =

10 mm

=

0.01 m

of water, T a

=

90° C + 273 == 363 K

=

temperature,

Tb

2800

= 15° C + 273

Heat transfer co-efficient

for outside, hb == II W/J112K

of mild steel, k

=

I

50

II

2800 W/J112K

for inside, ha

Thermal conductivity

0.01

+-+-

[ji:__~19.9W/2]

== 288 K

Heat transfer co-efficient

=

1

50 W/mK

8

__..

Scanned by CamScanner

1. 98 Heat and Mass Transfer We know that, Conduction 1.99 _ T2-T - ---..Q_

Q

Rb

I T2

==>

".

(I)

= 362.5

K

I

Result: (i) Heat loss per m2 surface area, Q/A

where, Ra= haA

(ii) Outside surface temperature, T2

= 8)9.9 W/m2

= 362.5 K

363 - T) Q=

I2!l Consil/ering

the heating surface of a steam boiler to be plane wall oftllickness 1.2 em and having k = 50 WlmK. Determine the rate of heat flow and surface temperatures for tile

1 haA

QIA

363 - T)

following

1

data.

Flue gas temperature

1000°C

Boiling water temperature 200° C 819.9 =

Heat transfer co-efficient on gas side 100 Wlm1 K

363 - T) ----!....

Heat transfer co-efficient on steam side 500 Wlm2K

_1_ 2800

[Manonmanium

Sundaranar University April- 97]

Given: Thickness LI

(I) ~

where, R, = k A I

T)-T2

Q=

. LI kl A

Q/A

T,-T2

___!j_

k, 819.9

362.7-T2 0.01 50

Scanned by CamScanner

L, Thermal k,

= 1.2 ern = 0.012 m conductivity,

kl Tb

Ta

hb

ha

= 50 W/mK

(DT2

( TI

Flue gas temperature, Ta

= 1000 C + 1273 K 0

I-

Boiling water temperature, Tb

..j

= 200 C + 273 = 473 K 0

Heat transfer

co-efficient

Heat transfer co-efficient Thermal

Ll

. ' conductIvIty

h 100 W/m2K on gas side, a = , 2K id h =500W/m on steam 51 e, b

ild steel k = 50 W/mK of rru ,

1.100 Heal and Mass Transfer

._-----

Tojintl:

- -~---_._.

Heat transfer rate. Q/A

(i)

(i i)

1I1' t'act'

teperutures,

(T,

[lllll

( I)

Tz)

::':>

COlldl/(:/ioll

Q;-:

Solution : lIeat

II

uisfer.

\T=T

(I

R=

Q

- l L,

.1

A

k ~.'\

[lZ L, values an:' II

R=

~

t

R(I

C.J'

- '1' __T (I_I

(.)/A

=

,r_I'

['.: R =_1 _I (I' A (I

'I

'1'_1

1

,,,A

(l).~59 ::: -

1_7. -1'1 _ ___:_ _1.

uiveu. oo, negle~.t(h,l!(

100

_-

..

A

1,A

Q = -_-"'--_=---_-

=:>

T -T

_!.I_I-

II" }

1

L,

h A

", A

Q==

(I

T1-

I

A Q=

T2

R,

I

_-~--+--

TI - T_ LI

kl A

QfA =

Q/A

~ kI

0.012 +_1 50 500

I

100

I

T1 - T2

800

=> Q/A =

65,3 59 ==

1 - Tb o = .is. -R~

relation =

Scanned by CamScanner

619 - T2 0.012

SO

65.)59 W/m2 1

Interface temperatures

=>

J. J 0 J

IT2 =

603.3 KJ

1.102 Heal andMass

Transfer

Result:

~ (i) Heat transfer, Q/A = 65,359 W/m2 (i i)

Surface temperatures,

T1

Conduction 1./03

L2

T2=603.3K

[ll) A

composite

12 em thickness respectively. Tirefirst layer is made 0' m ~ 'J a'e~

with k

=

1.45 WlmK, for 60% of tire area and lire re

material

with k

material

with k

= =

S"

2.5 WlmK. The second layer is madt; 12.5 WlmK for 50% of area and res,;

material with k = 18.5 WlmK. The third layer is madeols;",

=

material of k

=

10 em

=

0.1 m

L) = 12 em = 0.12 m

layers 15 em, 10 c",

slab is made ofthree

15em=0.15m

1,,:;::

= 619K

0.76 WlmK. The composite slab is expOil

on one side to warm at 26 C and cold air at -20· C n inside heat transfer co-efficient is 15 Wlm2 K. The outsideh,

k'a

=

1.45 W/mK,

k'b==2.5

k2a

Ala =

W/mK,

.60

Alb=·40

12.5 W/mK,

A2a =

.50

k2b == 18.5 W/mK,

A2b =

.50

==

k) =

0.76

T a ==

26

0

W/rnK C

0

Tb == -20

+ 273

C

=

299

K

+ 273 = 253

K

ha == 15 W/rn2K

0

transfer co-efficient

is 20 WI",2 K determine

heat flow rt

and interface temperatures.

[MU Nov-~

hb

==

20 W/m2K

Tofind : (i) Heat flow rate, (Q) (ii) Interface temperatures, (T, , T2, T3 and T4)

Solution: Heat flow, A,a = 60%

A2a = 50%

k1a

k2a

(DT2

(DT, A,b

= 40%

k,b

Q==

.1Toverall R

A)

(

= 100%

[From HMT data book. page no.43 & 44}

where

(

T)

A2b = 50% k2b

Scanned by CamScanner

k)

-

I LI - --+--+-- A a h a A Ik I

L2 +_3_+_ L I A k Abh A2kJ3 '3 b

1.104 Heal and Mass Transfer COl/duc/ion 1.105

Similarly •.. (I)

... (3)

where 0.1 12.5 x 0.5 = 0.016 K/W

I Ra

K/W

= 0.066

I

[R20

=

0.016 K/W] 0.1 18.5 x 0.5 = 0.0108 K/W

... (2) IR2b

R 10 --

I

Ria

=

L k

In

I

x A

0.1724

---

0.15

1.45

10

x

==

0.6

I

=

==

0.016 x 0.0108 0.0161-0.0108

I R2

=

0.0064 ~

R~ = ~;_c__QJl_ .)

= 0.15 K/W

IR3

) xO.76

:\3k3 =

O.)578~

Rb = _1_ ..= _I Ab hb I x 20

~0.05

Substitute R In and Rib value in (2) (2) => R 1

R2

(3) ~

I

RIb = 0.15 KIW

0.0108

KlW

Kiwi

Rib = __ L_;_I_ _ 0.15 klb x Alb 2.5 x 0.4

I

o. I 724

Kiwi

=

K/\\]

o.

I724 x O.) 5 0.1724 + 0.15

RI =0.08 K/W

I

Scanned by CamScanner

(I)

=:>

Q

=

0.066

-1-

---=..:29~9--..::..2~53:----0.08 + 0.0064 + 0.15789 + 0.05

1.106 Heat and Mass Transfer Conduction 1.107 (ii) Interface temperatures (Tl' T2, T3 and T.f)

TrT4

(4):::>

We know that,

Q==~

127.67=

279.532 - T4 0.15789

[T4 = 259.374 K Result:

T -T]

(i) Heat now rate,

Q==T

(4)~

I

a

Q = 127.67 W

(ii) Interface temperatures, (TJ, T2, TJ and T4)

299- T]

T] = 290.57 K

0.066 127.67 == 299 - T] 0.066

IT] == 290.57 (4):;" Q==

I

K

T]-T2

127:67 == 290.57 - T2 0.08

IT2 == 280.35 K!. i

."(4) ~

)

1: Q ==--1:_l "J

..

T

R2

Ii.

127.67 == 280.35 0.0064 .

[!!

== 279.532

KJ

Scanned by CamScanner

==

280.35 K

TJ

=

279.532 K

T4 = 259.374 K. . ~

R]

T2

Afurnace wall consists of steel plate of20 mm thick, thermal conductivity 16.2 WlmK lined on inside with silica bricks ISO mm thick with conductivity 2.2 WlmK and on the outside with magnesia brick 200 mm thick, of conductivity 5.1 WlmK. TIre inside and outside surfaces of the walt are maintained at 650 C and 150 C respectively. Calculate the heat loss from the wall per unit area. If the heat loss is reduced to 2850 Wlm2 by providing an air gap between steel and silica bricks, find the necessary width of air gap if the thermal conductivity of air may be taken as 0.030 WlmJ(. D

D

[Madurai Kamaroj University April 97J

1.J08 Heat and Mass Transfer Give" : kI

k2

________ where

k3

----------------------~C~·o~,,~d~uc=Il~·o~n~/~./

6.T= TI-T4

T2

I

LI kl A

Ll k2 A

L3 k) A

I

R =--+--+--+--+ha A

Steel

Silica

Magnesia

Steel plate thickness,

L, = 20 mm

Thermal conductivity

of steel, kl

= =

TI - T4

0.02 m Neglecting unknown terms (ha and hb)

16.2 W/mK

TI-T4

Thickness of the silica, L2 = 150 mm = 0.150 m Thermal conductivity

Thermal conductivity

Q=------LI ~ L3 --+--+-kl A k2A k3 A

of silica, k2 = 2.2 W/mK

Thickness of the magnesia,

'-3 = 200

mm

of magnesia, k3

=

= 0.2

III

5.1 W/mK

Inner surface temperature,

T I = 6500 C + 273 = 923

Outer surface temperature,

1'4

=

150 C + 273 0

=

Q

= ---~-----

923 -423

0.150 0.2 -0,~.0:..::..2_ +--+-16.2xl

2.2xl

500

Q

= 0.1086

Thermal conductivity

I

= 4602.6 W/m2

of the air gap kair = 0.030 W/mK

Q

Tojind: air gap]

Heat loss is reduced to 2850 W1m2 due to air gap. So, the new thermal resistance is

(ii) Thickness of the air gap

Q=

SOIIlI;oll :

~T

Rnew

Heat transfer through composite considering air gap] Sf

Q=-

R

Scanned by CamScanner

5.lxl

423 K

Heat loss reduced due to air gap is 2850 W/m2

(i) Heat loss [without considering

hb A

wall is given by Iwith~

/./10 Heal and Mass Transfer Conduction 1.111

923 - 423 Rnew

Rnew Thermal Rair

=

=

1.1.13 Solved Problems On Cylinders

2850

I

0.1754 K/W

resistance

o A Itollow cylinder 5 em inner radius and 10 em outer radius has inner surface temperature of 200 C anti outer sur/ace temperllture of 1000 C. If the thermal conductivity is 70 WlmK,jind heat transfer per unit tength. 0

of air gap

Given: Inner radius,

Rnew - R

=

0.1754 - 0.1086

Outer radius,

"1

= 5 ern = 0.05 m

r: = 10 cm = 0.1 m

Inner surface temperature, T 1 = 200 + 273 = 473 K

I Rair

== 0.066 K/W

Outer surface temperature,

I

T2=100+273=373K Thermal conductivity, k = 70 W/mK

We know that,

Ttl find :

Lair

Heat now per unit length

Rair == k air )( A [.: A

Lair 0.066 == 0.030)( 1 ::::>

I

Solution :

6Tovcrall Q= __::.:...::.:..:::oc R

1

3 Lair == 1.98)( 10- rn _

.

[From equn. 110.1.32 or HMT data book page 110.43 & 44J

where 3

In

.I . ) - 4602 W/m2 (i) Heat loss (Wit rout air gap (ii) Thickness

1m

Heat transfer through hollow cylinder is given by

Thickness of the air gap == 1.98 x 10Result:

=

_

of the air gap, Lair - I.

98

x

I R=--ln2n:Lk

10-3 rn

::::>

Q

= I --/11 2n:Lk

[r2] rl

[r2- ] rl

-----... &.~

\

Scanned by CamScanner

/. 1/2

Heal and Mass Transfer

Q

=>

-----~

2itkL (1', - T2) /11

Conduction I.J 13

T2 = 27.9° C + 273

outer temperature,

[;:n

=

300.9 K

Heat transfer, Q = 120 W Toft"d: Thermal conductivity, k

=> Q/L

SolutiOJl :

Heat transfer through hollow cylinder is given by

2rrx 70(473-373) => Q/L = -----___:_

L\ Taverall

IIl[O~O~ 1

I Q/L

Q=--R

[From equn. 110.1.32 or HMT data book page 110.43 & 44]

where

= 63453.04 W/m = 63.453 kW/m./

Result: Heat transfer per unit length, Q/L

=

R = _I_

63.453 kW/m.

111 [r2]

211Lk

III Determine thermal

~

conductivity of asbestos powder pllckedu between two concentric copper pipes 25 111m and 36 m diameter length. The inner pipe housint; has (I heating Coi/I which 120 HI power is supplied. The average telllpef(/Iu't~ inner (111(1outer pipes are 42.,r C (11/(127. 9° C re.\pectively

rl

Q

111 [r? -=- ]

__ I 211Lk ~ 120

rl

315.4 - 300.9

= --------

111[_0,_0'_8] 0.0125

I

211 x I

x

k

Give" .. Inner diameter, D,

=

25 mrn

r, = 12.5

Inner radius,

mm

=0.0125111 Outer diameter, D2 Outer radius,

r2

/k

Inner temperature, T,

=

=

0.018

Thermal conductivity, k == 0.48 W/mK. III

42.4° C + 273

=3J5.4K 9

Scanned by CamScanner

I

Result: T2

= 36 mm

= 18 mm

0.48 W/IllK

[':L=lmj

J.1J4 Heal and Mass Transfer Condllclion 1.11 5

III A

hotlow cylinder 5 em inner diameter an~' diamel~r has inner surface temperature of 200 c", Olllrt surface temperature of 100 C Determine Iteatj1C llnd 0111(1 , Ow tilr the eylmder per metre length. Also determine tit e temper QlIg . of the point half wa) between 'he inner and out er Sur I:11/41r 0

Take k

0 1 ft!,

= ] WlmK.

473 - 373

o

0

I

2n L

I

x

[OIL

= 906.47

(ii) Temperature

between

::::>

ln [0.05 ] 0.025

W/m

I

Gil'm: dl

=

'1 =

5 em

0.05 m

=

Put T2

0.025 m

=

T and

inner and outer surfaces, (T) 1"2

= r in heat transfer equation

d = 10 em = 0.1 m ::::>

r =

0.0- m

T1

_00t> C

=

=

0 [ -r

J --In 2rcLk

4 3K

1

'1 rl

T 2 = 100e C = 373 K

T]-T ::::>

Q/L

= -------

k = I W/mK.

2rc x

::::> r=

_/ /I [0.0375]

__ 1 1

0.025

Tofind:

::::>

(i) Heat flow per meter, (ii) Temperature

(Q/L)

between

::::>

inner and outer

surfaces,

906.4 7

IT [From HMT(kll(/~(X page /10.43 & ~j

473 - T

= 414.5 K I

Result:

(ii) Temperature

between

= 906.4 7 W /m

inner and outer surfaces,

T=414.5 R

=

--/11 I

2nLk

l _1_ I" 1 1"]

Scanned by CamScanner

= 0.0375

-..-:...:.-=----=---

(i) Heat flow per meter, Q/L

where

r

0.025 + 0.05 2

_I_ / [.QJ>J 75 ] 2rc /I 0.025

(i) Heat flow per meter (Q/L)

~ T overall R

=

(T).

Solution:

Q=

+ r:

.: r= -2-

K.

III

1.116 Heal and Mass Transfer An insulated steel pipe carr) ing a hot liquid. Illller d' ~ of tile pipe is 25 em, wall thickness hi 2 em ti,' 1.lallieler

Condllction

r:tl

.

".



'

Temperature

1.1/7

of hot liquid, T a == 100° C + 273

lelliless

insulation IS 5 em, temperature of hot liquid is 10 of temperature of surrounding is 20° C, inside heat tr 0 (', . / 2K w. co-efficient is 730 /m an d outside Ileal tr alls/er . 2 (IIIS/ co-efficient is 12 Wlm K. Calculate tile IIeat loss per er '"elre length of the pipe. 0

Ta == 373 K

Temperature

of surrounding,

T b == 20° C + 273 Tb == 293 K

Inside heat transfer co-efficient, ha == 730 WIm2K Take

kstee/:::: 55

WlmK,

killslliatillg

lIIateria/::::

0.22 W/"'K

Outside heat transfer co-efficient, hb == 12 W/m2K

Given,' ksteel

==

55 W/mK

kinsulation

==

0.22 W/mK

Tofind,' Heat loss per metre length SO/lItiOI1 :

Heat flow through composite cylinder is given by Q

=

~Toverall R

[From eqllll. no. 1.48 or HMT data book page no. 43 & 45 (Sixth edition})

where Inner diameter,

~T=Ta-Tb

d( ::::25 em

Inner radius, 1'( :::: 12.5 ern

h =0.125 radius, 1'2 =

R 2nL

ml

/'( + thickness

== ~3

Ta- Tb =:> Q =

0.14Sml

radius, 1'3== r-, + thickness

0.145

== 0

+

of wall

0.125 + 0.02 [1'2

[h:"

2rrL of insulation

0.05

195 mJ

Scanned by CamScanner

r '

harl +

III [~~ 1

III [~~ 1 +

k(

k2

,j

+--

hbr3

","78

"7

1.118 Heat and

Mass Transfer 373-293

~

Q-

;:::>--

L

I

I

I [.145]

-21t [ 730)(.125 +

11

m

111 [~] +

Hot air temperature,

--------

1

+~ 0.22

55

----

Conduction 1.119

Inner diameter, d,

==

281.178 W/m]

Result: Heat transfer per metre length, Q/L

III

cm

40° C + 273 == O. I

==

3 13 K

m

Intermediate radius, r2 == r, + 4 em Outer radius. rJ

@/L

== 10

==

r, == 5 cm == 0.05 m

Inner radius,

12x.19j

Ta

= 1'2

+ 3 ern

=9

=5

+ 4 = 9 cm

+ J== 12 ern

= 0.12

= 0.09 m

m

k,=o.IW/mK

k2 == 0.32 W/mK ==

281.178 W/m.

ha == 50 W/m2K

hb == 15 W/m2K Hot air at 40° C flowing through a steel pipe of 10 Outer temperature of air, Tb == 10 + 273 = 283 K diameter. The pipe is covered with two layer of ;nsulali"l material of thicklless 4 em an d 3 em and Ihtu Tofind: corresponding t"ermal cOlldllctivities are 0.1 a.1 Heat lost per metre length of steam pipe 0.32 WlmK. The ills ide and outside convective heat tram/e co-efficient are 50 WlmlK and 15 WlmlK. Tile OUID Solution: temperature is 10° C. Find the neat toss per meier Itngrl Heat flow through composite cylinder is given by

f.

of steam pipe.

Q

[From equn. no. 1.48 or

llToveraJl

=-.=.:..::.:.=.:.

R

Given:

HMT data book page 110.43 & 4jj

where llT=

Ta-Tb

R

2.L

I

2nL

Scanned by CamScanner

[,,~,

+

f , I "

I

J. J lU

Heal and Mass na"'::,jPI'

Q =>-= L

Inner air temperature.

T a '"

ITa

f the copper,

Inner diameter

Q/L

24.37 W/m

fer p r unit

d1 '" 5 em

radius,

Result,' Heat tran

= 363 K I

len III

1'1 '" 2.5 cm

II'I '" 0.025 /

= _4.

\ 1m

Thermal

[1] Air

at 90° C flows ill a copper tube or 5 ell, . . 'J tnner d,u," with thermal con d uctiviry 380 Wlm/( and wirt, O. elflr wall which is healed from tit ' (/111 ide by water II( 1]0'1 A scale of O. 4 em thick i Iep ositcd 0" lite outer surfa I, tile tube whose th ermul on du uivitv is I.S2 W/mK. nl. (111(1water side unit urfa e ontluctance are 220 1I1"r (In,l3650 W/m? K resp tctivelv. alc ulate

ndu tivitv.

r r diu'

L11

PI cr, 1'_ '" Inner radiu wall 1'2

0.025

~_ radiu

,

2. Water

Harer 10

10

air tran imittance

I

air h eat ex h ang e

3. Temperature

drop a ross II,e scale deposit.

L11

id icrnp

r lure

r« '" '2 +

0.007

ndu livily

. urfa

e

nul, d

urfa

e

ndu

I

III

thickness of .cale

0.032

f water,

Tb

=

0.004

27

LO°

= "9" Thermal

of

= 0.0361nl

r,

Give" : \ ter

thicknes

0.03}3

=

l. Overall

I

= 80 \\/mK

k,

I the

III

K

k = 1.82 W/I1lK

n .e

fair, ha = 2 .. 0 W/m-K

n e

f water, h

= "650 Whn-K

To filld : vera ll he I Iran 2

.eff

ieru

v arer I air heal Iran f r, Q ) Temperature

Scanned by CamScanner

er

dr p

ihe

ale dep

,

II, (

T

, -

T)

2

1.122 Heat and Mass 1'ransfer

--

Solution:

Heat flow through composite cyl inlier is .

Q

Heat transfer, Q = U

R

[Fro", C(i7L1n I . 110. J 4 HM'{ (.uta book pag . • e 110.43 & I

where ~T

R

Ta-

= _I

2nL

We know that,

by

given

T overall

harl

.L 2nL

T

U - overall heat transfer co-efficient

r,

l-I

A

where

A - Area = 21t rJ L

+

In

l:~\ k(

+

6T= Ta-Tb

In [:~

1

Q

+-L

k2

~

l

In

h:rl

-739.79

In (~~

k(

1 + I

k2

hb'3

1

Overall

x

21t r3 L

= U

x 21t r3

= U

x

IU

l:~I

U

=

Q/L

hbr3

Ta-T

~ Q=

Conduction I. 123

2

x

(T a - T b)

x (T a - T b)

x It x

0.036

= 109.01 W/m2K

heat transfer co-efficient,

x

(363 - 393)

I U = 10901 W/m2K.

Interface temperatures Q=-=

I II [.036) JD2 2n:L 220~.02S

1.82

Ta - Tb = Ta - T I

T

R

R

-

T3 - Tb

1

3650~. :

Rb

\ here 'j

ha

hea f1

fr

m out

ide to inner S·'

1 R)=-

-

Scanned by CamScanner

Ra

2nL

...

(1)

1/('(1'

/ 1)1/

(/lid

M(I,VV

'l'''(lmjl'I' 'f)

'f

I

('(111{/," I 1m

~()

/'' 1;'11

711 .

r

'1

()

11f-J7'

~.

L 11'

1'1('/'/ "lpI' o] 12(1 """ 1,,111'( "'"m('ll'( , I"(j" .. "1m lillie, 111('11" 11,/,11 1111"111,,1 ('''''(/11('111111 H W./nIK , /111 ( . , "/1 "",t! HI/'" two /11)11"1II/I"tl/IIIIIIIII ('11('" hlllllll)( II /""·,,,,£,U II/ .H 11,,11. Tlu: th rr nut] ('111/(/11('1",11 II/ Ihe /Iffl Inwlll//flll "",11·,1,,/ ts 1I.1I,f W/",K 11111/ III", (lj th « ,rl'l'/iII" I, 11.// W/",K. till' trmprrutur» 1'./ tI", /111/111' tub» I'llf/II('I' I" 24(r C "lid IIIII'I~/I"(' IIIII,I"'C ,I/Ifjll"e 1'./11,,' IIIfIIllIlll/1l If MJ" C. (',,/('11/"'(' 1/11' /11,1,1 11/ ""III/lI'f metre h'IIl1lh 1// pipe (//11/1"(' IlIlcrjIlC(' tempcrutur« helHiCCII thr twn IlIyef.f of A t"

ill.I'II/'" irm,

Gille" :

-739.79

-7.6 K 7.6 K

I J'I'J

I sea I e depo Temperature across tne

T, - T2 == 7.6 K Inner diameter,

Result: I) Overall heat transfer 2) Heat exchange

.

co-efficient,

;;::

Q/L = - 739.79 W/lll j1

[Negative sign indica

I S 1/7(11

h

II

OW

109.0 I \Vln/

==

1',

==

II',

120 mm 60

dr par

the

Scanned by CamScanner

al dep

111111

== 0.060

0/11 /

Outer diameter,

III

1

d2 == 140111111 1'2 == 70

inner side] J) Temperature

dI

'd L from

it,

I 12

[ '2 ==

mill

0.070

Ill]

~("fr'beMMMM'."W:r::

/.1]6 Heal and Mass Transfer radius,

r3

[1"3 radius,

Conduction 1.127

= r2 + thickness of insulation = 0.070 + 0.055 =

0.125

----;:ieat

I

In

th,t

rerms

[

r,

111 r2j

I

~ R=27tL

r4 = rJ + thickness of insulation

=

transfer co-efficients ha and lib are not given. So, neglect III [;~

+

k,

j

+

_::j;; IJ k3

k2

0.125 + 0.055

[r4 = 0.18 m

I

Thermal conductivity,

TI- T4 z» Q=

k,

=

I

k2 = 0.05 W/mK

= 0.11

k3 Inner surface temperature, Outer surface temperature,

[

55 W/mK 21tL

W/mK

T, = 240 C + 273 :: 513 k

III [;:

1 +

k,

111 [;~ j + In [;;

I]

k3

k2

0

T4

=

Q L

~

60° C + 273 :: 333k

513 - 333 I

Tofind :

between

0.060

- [ 21t

i) Heat loss per metre length of pipe (Q/L) ii) Interface temperature insulation (TJ)

Ill [ 0.070]

two layer;

~I

Q/L

55

= 75.83 W/m

In [ 0.125 ]

+

0.070

0.05

III

[...Q.:..!!_] ]

0.125 +----=0.11

I

We know that,

Sohaion : Heat flow through composite cylinder is given by Q

= 6Toverall

IFrom ,equn. 1I0lil

_;::..;..:;.:_=

R

HMT data hook page

Interface temperatures relation

Q

T, - T4

T, - T2

R

R,

= ---'---'-

1I0.m.

where (I) ~

Q

=

T, - T2

where

[ III I I"1--21tL

[;:2 ] J ,

> -

Scanned by CamScanner

kI

... (I)

I. 128 Heal and Mass Transfer COlldll(·,irm I. 1]1,1

-----

Q _I

21tL

[/11

[~Jl

k

Q/L



I

TZ .- TJ _--=---;:..___

[~t; IJ

2.

512.7-TJ 75.83 = I"

I 21t

=> 75.83 =>

[_·rJ__

I

[.QJ.£]j 0.070 0.05

3 7_2_.7_K_-]

Resut«: I) Heat loss per metre length of pipe,

Q/L '"

75.83

WIlli

2) Interface temperature between two layers of insulntion

512.7 K

TJ = 372.7 K. (I)

=> Q

III A steel

pipe of /70 "'''' inner ,dame/er tllldl90 """ outer diameter with thermal conductivity 55 WlmK is covered

where

with two layers of insutation.

[

rile thickness

IIf 'lie first

layer is 25 mm (k = 0./ WlmK) III1tI the second layer thickness is 40""". (k = 0./8 WlmK). rile temperature of the steam and inner surface of tile steam pipe is J20· C

R2= _1-

21tL

allll outer surface temperature

::::>Q

of the insulation

is Sf)" C. Ambient

is 25~ C. rile surface co-efficient

(IIId outside

surfaces

respectively.

Determine

tire }JO

Wlm]K

air

for inside

alltl 6 Wlm]K

IIII! heat loss per metre letlgll. of

tlte steam pipe and layer of cantuct temperutares t,,"1 atso calculate

10

Scanned by CamScanner

the overall IIellt transfer

co-efficiellt.

I. 130 Heal and Mass Transfer Given:

Conduction 1.131

of first layer, k2 = 0.1 WImK

Thermal conductivity Radius,

'4 = r3

+ thickness of insulation of second layer

= 0.12

+ 0.040

In

Ir4=0.16ml Thermal conductivity air

of second layer, k3 = 0.18 W ImK

Temperature of steam and inner surface of the steam pipe Ta

= T I = 3200

C

+ 273

ITa=TI=593KI Outer surface of the insulation,

T4

=

80° C + 273

IT4 =353 K d) = 170 mm

Inner diameter,

'1

I '1

=

r2

I

"2

0.085 m

I,)

Heat transfer co-efficient at inner side, ha

Heat transfer co-efficient at outer side, hb = 6 W/m2K

of steel, kl

III

i) Heat loss per metre length, Q/L

I

ii) Contact temperatures,

= 55

W/mK

· f firslla)~ of insu Iatlon 0

0.095 + 0.025 m

= 0.12

= 230 W/m2K

Tofind:

= 0.095 m

') = '2 + thickness =

I

= 95 mm

Thermal conductivity

= 25° C + 273

~Tb=298KI

d2 = 190 mm

Outer diameter,

Radius,

Temperature of air, T b

= 85 rnrn

I

I

Scanned by CamScanner

(T2 and T3)

iii) Overall heat transfer co-efficient, U

Solution:

Heat transfer through composite cylinder is given by ~Toverall Q=_:.....::..::.=

R

j I.

i.

I I

L' llcut utu!

AlII.\',I'

'/hl/I,I/,·,.

We

Ihnt.

I,IIUW

1kill

1l'lIl1sfcl'.

U'I' A

()

o

U

x

6'1'

2nl'4L

OIL :: U

x

2n

1'4

x

('I'o-T,)

(To - T b)

= 2n 1'4 L)

[.: A T(/ -T b

368.5

=

U

x

2

x nx

0.16 (593 - 298)

Q= Overall heallrilnsfcr

co-cflicicnl, U :: 1.24 W/m2K

/trter/ace temperatllres

21tL

T( - T2

T2 - T3

R(

R2 T4 - Tb

"'--

Rb

593 - 298

--------------------------._---I

21t L

r 230

111 [~] [ 0.1 r f)/I,

-

+ [I

I x

0.085

II 0.095] [ _0.085 55

1 + [III [W]]

-~/-=-I

+ where

[/11 [.::~ 1]

_I 2nL --k --

_____!--,

l

+ 6 x 0.16

0.18 -.

f):-

___

'_r ,_-

6~~_~

1

2nL

Scanned by CamScanner

'11._

=

T3 - T4 R3

... (I)

1.134 Heat and Mass Transfer Conduction 1.135

593 - T2 => Q/L = ----!:...__-

r/n[~]l

-I 27t

IT2 = 592.9 K

(I) => Q

592.9 _....;.._ -T3 __ =-_. I

_1_ [ 2X7t

55

593 - T2 3.21 x 10-4

=> 368.5 =>

368.5

~

[TJ

= 4?5.88

[ 0.12 "o:o9f

1

0.1

KJ

Result:

I

I) Heat transfer, Q/L

= 368.5 W /m

2) Interface temperatures,

T2 - T3

= ---R2

T2

= 592.9 K

TJ

=

455.88 K

3) Overall heat transfer co-efficient, U = 1.24 W/m2K

where

R2=

]

In [;~ 1 .L [ 27tL

k2

J

[2]

A steel pipe saturated material

=> Q =

steam.

['n [~] 1

27tL

k2

diameter

wit" thermal

Steel pipe is covered

carrying

with insulating

of 5 em thickness. The thermal conductivity

the insulating

_I

of 20 em outer

50 WlmK of 6 mm inner thickness

conductivity

of

material is 0.09 WlmK. TIre inside film "eat

transfer co-efficient is /100 Wlmz K and outside film heat transfer co-efficient is 12 Wlm] K. It is fo und til at the heat loss is more and

it is proposed

to add another layer of

6 em thick insulating material of Slime quality without

=> Q/L =

592.9 - T~ .)

challgi"g

outer conditions.

Delermine

reduction ill heal trails fer. Givell : Ctrse (i)

Outer diameter, Outer rad ius,

d2

=

20

Clll

'2 = 10 cm

("2 == O. 10 III j

Scanned by CamScanner

lire percentuge

of

1.136 Ileal a"d Mass Trm1.~·le" Conduction 1.137

ToJinti : Percentage of reduction in heat transfer. SolUlioll

:

ca« (i) Heat flow through composite cylinder is given by 01

Inner radius,

1'1 == "2 -

o. ._I "_:

Thermal conductivity Radius,

I'J

I

I'J

~T

thickness

III

27tL

I

of steel, k 1

=

r2

=

o. ] 0 -1- 0.05

=

+ thickness

O. I 5

III

Thermal conductivity

~ToveralJ R

0 - 0.006

O_. 094

__

=

=

r

01

of insulation

50

I I 01

material,

=

1.2386T

co-efficient,

Ita

=

lib

2

1100 W/f11 K =

12 W/m2K

Case (ii)

011

6Toverall

= _;___

R 1'3

r: +

thickness of insulation (old) . I'all0n (new) + thickness of msu

0.101- 0.05 + 0.06

I

1'3 =

0.2

111 /

Scanned by CamScanner

b 3

.11'

(J_Q_]] ['"

co-efficient,

1

=---------------------------

Case (ii)

Radius,

r

_, I 27txI [ 1100x.094 + ['11 .094 + __ !_.15] .I~ +-- I

of insulating

Outside heat transfer

2

I

50 W/mK

k2 = 0.09 W/mK

Inside heat transfer

I

[~n

In In [~~ ha'rl +-.!....kl~+-k,:_:.._+-h

27rL

0.09

1

12x.15

1.138 Heal and Mass Transfer

011

=

I 2),[xl

I QII

=

Percentage

r

+ [I n I 1100x.094

1-+~~+r [-d..

[.094 I0 ]

~o

In

0.09

0.772,1T

--

-------------------

~C~'o~nd~u~c~/io~n~/~./~3~9

Given:

I

I

~

I

of reduction

in heat transfer

Steam pipe diameter, 1.238,1T - 0.772 tlT

x

100

dI

radius,

'=

15 em 7.5 em

'1'=

1.238 tlT 1.238 - 0.772

x 100

Magnesia

1.238

diameter,

d2

=

Percentage

Asbestos of reduction

in heat transfer,

Q

=

37.7 %.

1'2

'=

0.125

d3

'=

30 em

diameter,

radius.v ,

I1fI A J 5 em outer diameter

steam pipe is lagged /0 l~~ with maen esi a of til erma I COli ducllfl' o 0 diam111 0,05 WlmK and further lagged with 3 em d , , 'I 007 W/1fJ lanllnllleti asbestos of thermal conductiv! y, ( doPl Inner temperature of steam is 20 0 C all " of sit temperature is 25° C. Calculate the mass pI , meter dill

, e AsS

latent heat of steam is 1900 k l/kg.

Scanned by CamScanner

'=

m

I

15 em

1'3=0.'5ml Thermal

conductivity

of Magnesia,

Thermal

conductivity

of Asbestos,

Inner steam temperature,

0

condensed per hour for 120 m length of pIP'

25 em

= 12.5 em

radius"2

Result :

ml

0.075

1'1'=

Outer temperature,

Ta

kl k2

'= =

0.05 W/mK 0.07 W/mK

= 200 C + 273 0

=

T b = 250 C + 273 = 298 K

Length of the pipe, L

=

120 m

Latent heat of the steam, hfg

=

1900 kJ/kg

473 K

J. J 40 Heat and Mass Transfer Tofind: ___ ----------------------Mass of the steam condensed

h per our.

~C~o~n~d~~~·II~-O~,,~J.~J~4J

Q = 10,294 W

~

Solution: [Heat transfer, Q = 10,294

Heat transfer through composite .1T

li cy

.

Inder IS given by

~

overall

Q =

Q

R

where

Q

w]

= 10.294 kW = 10.294 kJ/s =

10.294 )( 3600 kJ/h

=

37058.4 kJ/h

Mass of steam condensed per hour R =

m =

_9__ l'Jg

27tL

37058.4

1900

-~

I

Ta-Tb

Q [ 2nL

)

+ In [~~ kJ

harl

I

111 [;~ +

k2

I

In=

19.5 kg

I

Result:

+_1_ hil3

Heat transfer co-efficients ha and hb are not given.So,neglca that terms

Mass of the steam condensed per hour = 19.5 kg.

@]

A steel pipe lias 18 em inner diameter (k

=

70 WlmK)

with 1.4 em wall thickness. A liquid temperature pussillK

~ Q

through tile tube is 200· C and ambient air temperature is =

23· C. Tile inner unit surface conductance of tile liquid is 690 Wlm2 K. Calculate tile heat trailsfer rate antl the over all heat

transfer

thermocouple

~ Q

473-298

==

111 [~]

2

x

7(

x

120

[

0.05

Scanned by CamScanner

__

1+

[:l§l] 0_07

til 170·

C.

co-efficient

embedded

for this system

IllIlfway

through

of

tl

tire pipe

1.142 Heal and Mass Transfer Given,'

____ ~~~----------------------~C~o~nd~u~c/~ Solution: Heat transfer at halfway is given by ~T -

Q=

R

where

Inner diameter, radius,

d1

=

rl =

[_I

R =

18 cm

21tL

To- T"

Q=

[ Thermal conductivity radius,

I

of steel, k) = 70 W/mK

r2

=

rl

r2

=

0.09 + 0.014

r2

=

0.104 m

Liquid temperature,

21tL

+ wall thickness

To

[Put

=>

I = 200

0

C + 273

=

Ambient air temperature,

T b = 230 C + 273 :: 296 K

Inner surface conductance,

ha = 690 W/m K

Temeperature

= 170 C + 273 Th = 443 K

2

at half way, T h

1'2

+

kJ

21tL

In[:']] kJ

ha,)

-[~"":"":';;__In 473 - 443

=> Q/L

=

I

0

2

where [Q/L

=

1

[-0.097---=-J

I 690

x 1t

I'

I. Heat transfer at halfway

Scanned by CamScanner

1n['2r 1]

To-T"

[_I

Tofind:

2. Overall heat transfer co-efficient.

I ha'J +

= ,]

Q=

473 K

In [;:1] kJ

hdJ

9 cm =>

+

10,976 W/m

x

0.09 0.09 +

r +'2 - 097 = - .

2

I

70

m

_!_. 144 Heal and Mass Tramjer we know

Q= ~

_-------------~C~o~n~du~clion 1.145 Gillen:

Q =

10,976 - U x 2 x ~

lu

1t

x

l

0. 104 x (473-296)

I.

=

94.89 W/m2K.1 Ambient air

Result: I) Heat transfer at halfway,

Q/L = 10,976 W/Ill Inner diameter of steel, d I '"'5 em

2) Overall heat transfer

co-efficient

U

= 94.89

W/m2K.

Inner radius, rl

=

0.025 m

Outer diameter of steel, d2 Outer radius, r2

1.1.14 University Sol\'ed Problems

f1)

Radius, r)

On Cylinder

A steel tube with Scm I D, 7.6clII OD III1lI II = 15 W/",,(: covered with (III insuiative covering oflllicllllfsJlc",' II = 0.2 W/","c. A 1101 Iteas (II JJO°C with I, = 400 U~I' flows inside II,e lube. Tile outer surface of lire i/lSMJ. . 0 uri If ss exposed to cooler air (II JO"C with I, = 6 ",f«' Calcuate the heat toss from tilt! tube 10 tile (Iirfor [0" tile tube (IIId the temperature drops reslillillg fro.: 1llbt tllerm,,1 resistances of tile IIuI gIll' flow, tile stetl , insutatto« layer lind tile outside air.

[May 2005 . AIII/(ll

-

= 0.038

=

7.6 em

=

=

r2 + thickness of insulation

=

0.038 + 0.02

=

0.058

m

III

of steel, kl

Thermal conductivity

of insulation,

Hot gas temperature,

0.076 m

III

Thermal conductivity

Ta

=

=

15 W/moC k2

= 0.2 W/mOC

330° C + 273

603 K

=

400 W/m2°C

Heat transfer co-efficient

at inner side. ha

Ambient air temperature,

T b = 30° C + 273

Heat transfer co-efficient

at outer side, lIb = 60 W/m20C

Length, L

"

Scanned by CamScanner

r)

= 0.05 m

=

10 m

=

=

303 K

1.146 Heal and Mass Transfer Toftnd:

____ ------------------------~C~O~~~~"~~~J·IJ

i) Heat loss Q ii) Temperature drops; (T - T ) (T I,

Q

,

and (T

J

I -T

_ T ),

) (T 2,

Q ::>

-

2 -IJ)

603 303

°

1 [ 1 1 [ 038] 2 x 7t X 10 400 x 0.025 + 15 In 0:025

b

Solution:

+_1 In[_0._05_8]+ 1 ] 0.2 0.038 -60-x-'0;"".0-5-8

Heat flow

IQ

Q = .1Toverall R

where

[From equn 1.48 or HMTtk page no.43 & 45 (Sixrtn e~

= 7451.72

WI

We know that, Interface temperatures,

R =_1_ 21fL +

1 -In k3

{r...i+_1 I . '3

(I)~Q

hb'4, =

~ Q

=

21fL

[-h'11"1+ -'kJ

TQ-T1 1 1 -x--21fL

111['2]+_1k2 In['3] '2

hQ'1

'J

:3

In [;:

h-~4J

(The terms K3 'and z, are not given. So neglect Ihaltenf

7451.72 =

~TQ-TI

= 11.859K

[Temperature drop across hot gas flow, TQ- T 1 = 11.859 KJ

-

Scanned by CamScanner

l. 1-18 Heal and Mass Transfer ~

.

~

drop across the

Conduction 1.149

InsUlation,

T2 - T 3 = 250.75K \

T 3- Tb

Q

(1) ~ = __ T..:....1

_- _T-=..2

I

_I

2itL

kl

_

T 3- Tb

Inl!i \

=:

rl J

2~L

... R 1=-I [I 2nL

_ 451.72 = 2

x it x

Rb

=:

(h:rJ

.

,.

kllll( h.

T..!.I __ --T-=2~---_I In l- 0.038 0.025 10 IS

1-

1)

= -----~~----~ 3 7451.72

r,

2 x ~ x 10 ( 60 x ~.0581 ~ T 3 - 1 b = 34.07 K emperature drop across the outside air, T 3 - T b = 34.07 K

Temperature drop across the steel tube, TI- T2 = 3JIOK' (I)=> Q = T2-T3 Result:

R2

=

T2 - T3

---=--~--2~L

(-~2

In [~~

1]

(_I In(!'l\·l 2nL k2

.: R2 = _I [

7451.72 =

T2 - T3 2

x

1 [_I In [ 0.058 ] ] n x 10 0.2 0.038

Scanned by CamScanner

'2

7451.72 W

(i)

Q

(ii)

Ta - T (

=:

T(-T2

= 3.310K

T2-T3

=

11.859 K

2S0.7SK

T 3 - T b = 34.07 K

1.150 Heat and Mass Transfer

fJI A steel tube I!J

(k= -/3.26 WI",Kj of 5.08 CIII



'"""ef .

and 7. 62 em outer diameter is cOveredHlil"2

dlQ",.

---Thermal

. .s C", lIljt~, insulation (k ;:;: 0.208 WlmK) the Inside SUI':I'. l . lelllne, JQceolt~tl~ receivers heat fro", a 1101gas at the r

Q/llfe!

with heat transfer co-efficient of 28 WI",2g

Hot gas temperature, T a = 3 16° C + 273 = 589 K Ambient air temperature, Tb = 30° C + 273

3J6'(

. outer surface exposed to the amh,ent air Q/30.C. lJI~ilt . ~ "'Ilk ,."
[Madras University Given:

OCI

Conduction 1.151 conductivity of insulation, k2 = 0.208 W/mK

= 303

K

Heat transfer co-efficient at inner side, ha

= 28

Heat transfer co-efficient at outer side, hb

= 17 W/m2K

W/m2K

Length, L ==3 m

~J9~ Tojind: i) Heat loss,

Q

Solution,' Heat flow, Q == where

.1Toverall

R

[From HMT data book page no,43 & 45}

R==-

I

21tL

Steel tube thermal conductivity, Inner diameter

k, = 43.26 W/mK

of steel, d, = 5.08 cm == 0.0508 m ~Q=

Inner radius, r, == 0.0254 m Outer diameter of

steel, d2

== 7.62 cm == 0.0762 m

Outer radius, r2 == 0.0381 m Radius, r3 ::: r2 + thickness

of

insulation

Radius, r3 == 0.0381 + 0.025 m '3 ::: 0.0631

m

Scanned by CamScanner

_1_ + _, In 27tL [ harl kJ

[;2] + tin [;n ['4]+_1] k;"I In'3 ht/'4 J

2

I. /52 Heal and Mass Transfer [The terms k.3 and

Q =

r4

are not' given. So ----, neglecllh T ~~

_I [_I _I +

21tL

589 [ 28

x

0.208

IQ

=

[r2]

-....._

+I-In[.!i]l 2 2

<, 1

+ ';', h~!

r

303

I 0.0254

+-I-In[

Give" :

~I

k) In rj

hell

Q

a-Tb

Conduction 1.153

+ _I _--------[Om ' 43.26

In ~I

0.0631] I 0.0381 +~006 .

JI

Inside temperature,

1129.42 W

Result:

Heat loss, Q = 1129.42 W

/1)

Urll

A hot steam pipe having (Ill inside !)'urfi,,:e lempera/ 2500 C has (In inside diameter of 80 111mand a wall 'hick~ of 5.5 mm. II is covered with a 90 mm layer ofinsu/~ having thermal conductivity. 010.5 WlnrK followed V . '"ofb)'1 mm layer of insulation having thermal conductlv/~ .D WI, .r t ula/l ' mK. Tlte outside surface temperature o,,ns lODe A ",etlltl . Calculate heat loss per metre lellgtll. JSU I

conductivity of the pipe as 47 Wlm K. M d. [ a ras University Apr 2002, Baralh~yar

Scanned by CamScanner

U . /,silY Apr /1/ve

.

T1

=

dl

Inner radius,

= 0.040 m

Wall thickness,

==

Radius,

+ thickness of wall

r2 = rl

I "2 Radius,

523 K

5.5 mm

=

0.040 + 5.5. x 10-3 m

=

0.0455

r3 = r2

=

= 80 mrn = 0.080 m

Inner diameter, rl

0

250 C + 273

111

I

+ thickness of insulation (I)

= 0.0455

+ 90

x

10-3 m

r3=0.1355111 Radius, r4

=

r3 + thickness of insulation (II)

= 0.1355 + 40 x 10"4 =

0.1755

111

3

m

1.154 Heal and Mass Transfer Thermal conductivity

of pipe k == 47

Thermal conductivity

of Insulation (I)

Thermal conductivity . Outs Ide temperature,

of insulation (II)

'

I

W/rnK _ , k2 - 0.5 W _

IrnK

' k3 - 0.25 W T 4 == 20°C + 273

IrnK

In

_1_

[~I

+

21tL

== 293 K

Tofind : Heat transfer per metre length.

~ 0

_---;~:__:_:----=5~2=-3

==

Solution: _I_

Heat flow through composite cylinder is given by

Q

21tL

~Toverall = __;:::....:...:.:..:..:..: R

l

/n[O.0455] 0.040 47

=--

+

!:229~3

_

j

In[O.1355j ,n[0.1755 0.0455 + 0.1355 1

0.5

0.25

[From HMTdalabool [lage no,43 & 4J}

where

~ lOlL

=

448.8 W/m I

Result: Heat transfer, Q/L

o => Q ==

[;n

21tL

[;4 ]

In I _::.--3_+_ + kJ hbr4 ho' hb are not given. So, n~

hat terms.

Scanned by CamScanner

448.8 W/m.

A thick walled tube of stainless steet lt: = 77.85 kJlllr m·CJ 25 mm ID alll150 111m OD is covered with a 25 mm layer of ashesto~'lk = 0.88 k.l/hr m"Cj. If the inside walltenrperc,ture of the pipe is maintained at 550" C and the outside of the insulator at 45" C. Calculate the I,eatloss per meter lengt" of the pipe.

In In [~] [ h~rl + -k-=-I--=- + k2

Heat transfer coefficients

=

[Madras University April 1995. EEEl Given:

Inner diameter of steel, dl Inner radius, rl

==

Outer diameter, d2

==

25 nun

12.5 rnm => 0.0125 m ==

50 rnrn

----

__ ------------------

_:C~·o:n~d~uc~tl~·o~n~/.

solution: Heat now through

m

yl inder :

ite

To crall

T:

i en b\ {From Hi fT

R

I R=-

o

2 L

r:e no

l~

I er

on e ti e heat tran

0.0

rn

rn=

-effi len

ha and h are n t

o ne le t tha term .

m

T(I- T (it un

inless

Ihr rn° .

1=

J/~

=

=

o

rn

el

=>

_._5 3

me .021

::::)

l"'[:~\ In l:~\1

_I 2nL

KI

k2

_

VIm 'C Ta- T =>

IL

Similar! ~II err al

C

nducti

it

0

as

.st s.

2

2

·1

(I

l'n

_1-

=

2n

= 0.88 kJ/hr 1'(

=

0.24

Wlm:i_

5500 1 21t

To find: I. Heat loss per metre

Scanned by CamScanner

[Q/L length

l:~\ In l:~\1 kl

k2

550 - 45

IL

= \ 103.9

l' [~lll/n[~11 0.012

0.025

2 \ .625

0.244

n

W/m

rJ

f-1

I

haT

n

I

ive

1.158 Heal and Mass Transfer

----------------------~==~~ Conduction1.J 59

Result: (i)Q/L=

II03.9W/m.

Solution: Heat flow through composite cylinder is given by

ill A steam

pipe of 12 em outer diameter is at 197. lagged to a radius of 10 em with asbestos Of C.llt 'J Ihtl"'. conductivity of 1WlmK. The temperature 0" SUr is 25" C and heat transfer co-efficient

'J

!iT overall R

Q=

[From HMT data book page no. 43 & 45]

rO"ft~i.

outside;s 12 IJI .., "/fIIll Calculate the heat loss per meter length of tl'e pipe.

[Madras University, OCll9r,

l

R=_1 11 + 21tL haTl

Given:

=> Q

=

--1

21tL

[

I

+

harl

Neglecting unknown terms Ta-Tb

=> 0

d)=12cm

=

r) = 6 em => 0.06 m r2 = 10 em => 0.1 m k)

=

1 W/mK

Ta = 1970 C + 273 T b = 250 C + 273 hb

=

=> OIL = =

470 - 298 .:..:....::..---=c::...=:..----

=

470 K

_1 21t

298 K

[In [~]

+

I

1 12xO.1

1

12 W/m2K [OIL

Tofind: I. Heat loss per metre length

Scanned by CamScanner

=

804.01 W/m \

Result: Heat loss per meter length

=

804.01 W/m.

1.158 Heat and Mass Transfer

--

Result: (i) Q/L

= 1103.9 W/m.

solution: Heat flow through composite cylinder is given by

IIJ A steam pipe

of 12 em outer diameter is at 197. lagged to a ra d·IUS 0if 10· em witli ashestos 01' hc'/'i 'J t trill conductivity of 1 WlmK. The temperature 01" sun • D

Conduction 1.159

'J

Q=

~Toverall R

{From HMT data boole page no.43 & 45]

oundi

is 25 C and heat transfer co-efficient outside is 12U'/~~ Calculate the heat loss per meter length of the pipe. [Madras University, OCI199il

R = _I

Given:

27tL

=> Q

[] harl

+ In [~] k,

+ In

=

Neglecting unknown terms Ta-Tb

d,=12cm T)

=> Q =

= 6 em => 0.06 m

T2=IOcm=>0.lm k, = 1 W/mK T a = 1970 C + 273 = 470 K T b = 250 C + 273 = 298 K

:::) Q/L

=

470 298 --_'!~~~--:I

27t

[/n[~]I

1

+ 12 x 0.)

1

hb = 12 W/m2K [Q/L = 804.0) W/m) Tofind: I. Heat loss per metre length

Scanned by CamScanner

[;n + k2

Result· Heat Joss per meter length = 804.01 W/m.

_I ] htl"3

1.160 Heat and Mass Transfer Co"duction /./6/

1.1.15 Solved Problems on Hollow sPher~

II]

-----Jo;ide

0

It; covered

rite

10 illsicle (:;

temperatures (Ire 500" C and 50" C respecli"el),. the rate of heat flow through this sphere.

5 00" C + 2 7J - 77 J K

outside temperature, T b = 50 C + 2'73 == J23 K

A hollow sphere (k = ~5 WlmK~of 120 m~ and 350 mm outer diameter ins ulatlon (k=JO WlmK).

temperature, T a

Ill,

IIl)lt,.

C:;'1;4, clllt"

roftnd:

Heat loss, (Q). Solul;Oll :

Heat loss through hollow sphere is given by Given:

6Toverall

Q=

[From HAfT data book page

R

/JO.

43 (~45(.5ixlh cdiuon]

where

R

I

=4n

=>0 = ---------------

_I [_IhJf + _I [.l.._..!_]+ _Ik [.l_ fJI J+_Ilib"; ] 4n

kl'l

'2

Z'1

Heat transfer co-efficients ha and hb are not given.So, neglect that terms.

Thermal conductivity of sphere, k I = 65 W/mK =>Q=

Inner diameter of sphere, d I = 120 rnrn Radius,

4n

rl = 60 mm = 0.060 m

Outer diameter of sphere, d2 Radius, r2 = 175 mm

=

=

_I [_I [ITj- r;1]+ k;-1 [Ir:;-"'3I] J kl

350 mm

773 - 323

•. [*[O~ - o:7shk[o:75

0.175 m

Radius, rj = r2 + thickness of insulation

~ [§ = 28361

rj = 0.175 + 0.010

W

-oiss]]

I

Refllll:

Ir3=0.185ml Thermal conductivity of insulation,

Heal transfer, Q

k2 = 10 W/rnK 12

Scanned by CamScanner

=

28361 W

_j

}./62 Heal and Mass Transfer

o A ho/low sphere

1.2 m Inner diameter alld 7 diameter is having a thermal ClJnlfUClivil 1. /Jr, o~ The inner surface temperature is 70 K an/ Of I "'/IIf( lemperatllre is 300 K. Determine, Oilier slill~

.~__

R ==

fII it

47r

[-!_11,./

+

-4~-.

b'2

T)- T2

0=--fffdillS of 650 "'III.

[h~-:-12-+ -k-II [,.11 (1

Given: d)

_Ikl'l [J_ --,:;I] +-h I] 2

a

(i) heat transfer rate

(ii) Temperature

.t,

Conduction 1.163

..

;2

]+~]_11b'2

[The terms ha and' hb are not given. So, neglect that terms] ==

1.2 m

~) -. T2 T

... (I) .

r) == 0.6 m

•• 1,

d2

==

).7 m

r2

==

0.85 m

70 - 300

k) =J W/mK T)

==

70 K

T2

==

300 K

~ [0

r = 650 mm = 0.65 m

= -

5896.1iW]

[The negative sign indicates that heat flows from outside to inside]

To/inti : (i) Heat transfer

rate, (Q)

(ii) Temperature

at a radius

(ii) Temperature at a radius = r = O.6~m

of 650

Put 1'2 = T and '2

111111

Solution:

(I)

(i) Heal transfer rate, (Q)

Heat transfer, Q

.

Q=

-------

4~

= L\T overall

._ 5896. J 4 == __

R

.

where

:::>

[Front IiMT data book page na

4.1&/';

47r

[T == J30.1ii]

Scanned by CamScanner

= ,. in

equation ( J )

TJ -T

[* [*-f-]] ____:_7..::__0~T __

[+ I

.

1 0 6 - 0 ~5

lJ

... I. /64 Heal alld .V{ClS.I.!!_U:_'_ls-=-;fi_e,_" -----

_

....----h

ReJlt/t:

Q = - "896.1

(i) Heat trallster

rate,

(ii) Telllperallin.:

at a radiu

W

\I

re

sr=T,-Tb

f 650111111

T = I 0.15 K ill A hoI/ow Jphere hus inside surface I.:!J. (11111 the»

olltJl~/e

.Htrj(l~e

.r

tempeT(UIITe

OJ

t'f

temperatllre

I{

[t-

I

JO'[

*

-1-1

[*- /-

IIbr.-

T, - T_

/,J k =111WI",K. (a/CII/flfe (I) hcat tost by CQllt/II" C. _ " ((lUll fIJI inside diameter oj.\ CIII and outside dlflmeler of 15 CIII(" . if . r. iii 'ieat/m'l. bvJ COIltI uctton, / equal/oil/or.' (I I' I{I ill wul] " ere« . equut to sphere area.

r \ ladras

= -;

J (/0'

=T,-T:

_I

" :;-:,

l

h

1'1

and\1 II b

lh(·t'·rITI·;' ,

"iverSI/Y,lprlr

I-_I-

-I

k,

r,'J'

III '.

_1-2 hbJ'~

aree n01'given. .o. ueplcct

thai terms)

(

Give« :

= J 000 C

T,

f-

27 J = -7

K

T 2 = 300 C + 27 J = 30" K k, = 18 W/IllK

= 5 em "" 0.0:5

d,

1', = 0.025 d2

=

15

III

'--

III

= 0.1 -

CIII

0.07 -

III

(i) Heal 10SI,

Q

f2 =

1 4•

III

(ii)

1Jt'{/(

b~[

0 ~_5 - 0 ~J:

iJ

lost ( If the

111'('(1

is

Tofiud : .. O. 7. - 0.0 S )::;

(ii) Heat lost (Ifthe

So! 111;011

area i equal

I III plain

)

,\all area

:

(i) Heut tost (Q)

[Frolll /1 \ tt Heat 11m.

() = _L\_'_'o_e_ra_1I

R

Scanned by CamScanner

.1

III

II

,l!

[L:.:0.5m

lJ

l

(!lJIIIIIIO

the pluin

Willi

area] Q/

!}!!!_~·~====I~-··---~ l\~2~(rf /. /66 Heat (mel MaH Transfer

~ Critical Radius of !""ularion 1.167

+ r~)

CAL RADIUS OF INSULATION eRIT.I . ~

material on a surface does not reduce. f heat transfer rate always. In fact under certain mount 0 . . the a it actually increases the heat loss up to certain thickness . stances I '. . circum on . The radius of insulation for which the heat transfer IS . ulall . .... . of InS . ca lied critical radius of insulation and .the corresponding . um IS . maxim . lied critical thickness. If the thickness IS further 'ckness Ie; ca . rill d he heat loss Will be reduced. increase ,t

We know that, ~T R

TI - T2 L kA

Addition

of insulating

1

L

1 I

Critical

Radius

= rc

Critical

thickness

=

rc - rl

k. Let

r, and

1 I 1 1 1 1

573 - 303 IS

x

0.05 21t(0.0252 + 0.0752)

Q

1 1 1

1

10,=

3S17.03W

Result: .I{i) Heat lost,

1

I

1 1

r i.-c-:::::

=,~_.J_,

_,rc'-----J

0 = 2290.22 W

(ii) Heat lost (If the area is equal to the plain wall area),

0, = 3S17.03 W.

Fig 1.8

1.2.1Critical Radius of Insulation For A Cylinder Consider a cylinder having thermal conductivity ro inner and outer radii of insulation.

Heat transfer,

Q

Tj-Ta;: In (~) 21tkL

Scanned by CamScanner

[From equII.no.(I.31)}

P'IZWfiJlfwttd6'1f{WiUMM

()

,

of

/«(Ir/i",v

('1'11/('(1/

Imllllll/rm

I 1(i(J

.., III

I'tl ) (

I1J A II

"1 I

;1

7tkL

I

Here Ao

C(I-(:fllclt'"1 Th« ttiermat

,

I '

/

T; - Toc

Q=

wlrr

dl!t'Irit'fI/

(~l/ {J", "'''Illit

1I1It/ / III",

llill"'I!It!I'

I" uir nt lJ"C 11", convectio» heat ITf1I1.~fer heIHIt!t'II lilt' wire ,.."r{fln' flllt! uir ts /J If!1m) K.

d/JJlpfllt,,"]fI(JW

I I I

11,£,crtticul

uf

CfJlltllI('I"'i~v

of ;I1,wlllllm,

"111111,\'

~fit

oftlu: wire II,ic:kllt!!i," of insulatinn, lenlpt!Ttllllre

---

I" (;~ J ----+--Znkl, 2nrOLh

wire is

(J.

J81 WI",/(.

tll1Il

tI/.WI

insutoted

is

(;11/('1111"1'

dt~/ermille the 1(1 II,e

crttical

( June 2006 - Anna Univ] Give" :

Length of the win', L = 10 rnm

To find the critical radius of insulation, respect to 1"0 and equate it to zero.

difTereniiale~l

Diameter

of the wire, d

Radius of the wire, dQ

0- (T; - T,,oJ [2n~Lro

-

2n~Lr[1

Heat transfer, Surrounding

---

In

2rrkL

(;0, J+

2nhiLro

J

2nkLro

_

I

Thermal

O.S mm

=

O,S

200 W'

temperature,

conductivity

10-3 m

x

Tb

= 2SoC + 273

of wire, k

1 ~ __

_L

.:

1'0 filld : I. Critical

radius of insulation,

2, Temperature

Scanned by CamScanner

of wire, >10

298 K

= 0,S82 W/mK

air Q, hb T b (wire jd-Olr""--------:-·,:::<·o--....,.'_:]

I

=

between

=0

2

2nhLrO

ro~+~rc

=

1 mm

Convection heal transfer co-efficient surface and air, hb = 15 Wm2K.

since (T; - To:)"# 0 ~

Q

r =

=

r('

the wire

II

U

1.1 O nea

I and ~{(]5SrrollSfer

ri(ieal

.

I..lhl\\

of bmdatio1/

1.1 I

with 1 mm thic« insulatiolt co-efficient rio "I' the ill!iliialing surface and air is lJ 'Jim) K find bt'tl.·t!
Sol.ti"" : We

of 6

Radius

diameter

IfInI

r,] A ""re . . t:J. ':::::(1.11 WI",K). 1/II,e COIII'eCIH't'ht'allransft'r

rhat.

('ritical rldius of insulati

ll.'

=-k

II :; 0.58_

IS

I 'c = Heal transfer through an insulated

0.0388

Gil·tn:

~

dl==6J1Hll '1 == 3 mrn

wire when critical ra

is IL~ is siven by

.

=

0.003 m

'2 =='1 + 2 == 3 + 2

air

= 5

mill

= 0.005 m

Q==

In (~~) ___ 2itL

k==O.IIW/mK hb ==25 W/m2K

+_1-

kl

111/.

Tofind: I. Critical

200

= ------------2it

200 :;

x

2. % of change

Ta - 298

10

in heat transfer

Solution :

[In [g.~~:]

I

thickness

I. Critical

+

0.582

J

J 5(0.0388)

k

radius,

r

. I'

T(/ - 298

c

=

c =

_Q.JJ_ 25 4.4

[From equn. no. (I.50)}

h

J =

4.4

10-3 m

x

x 10-3 m

I

0.146

Crilicallhickncss,

~ era:: 327.28

K J

Ie='e -'1 = 4.4

x

10-3 - 0.003

= 1.4 )( 10-3 m

Relult: Ie" .

rrtrca]

. radlllS of insulation,

rc

Crilicallhickllcss,

= O.0388mm

2. Tcmpcralu re o ,. llcwire,T I a=327.28K(or)

e

54 .i>: 2 D

...

Scanned by CamScanner

Ie = 1.4 x 10-3

m (or) 1.4 mill

po

1.172 Ileal and Mass TranJ/er 2. Heat transfer

Q _ I -

through an inslliated ~~:-~ '''"els' , given by (T _ T ) a

b

[In [~l

__I

27rL

~j

hi r J

2

'00

0.55 % Result: I. Critical

0.003

'e = 1.4

thickness,

2. Percentage of increase radius = 0.55 %.

25 x 0.005

II]

2nL (T a - Tb) Q, =

x

12.64

~

II04J~1

-In--;(--=O-=.0--=-0-5:--) ------_+ O. 1)

12.57 - 12.64

=

1rdQ1Q

Page

27rL (T a - Tb) =

Critical Radu if I. . ~~~o~n~s~ul~m~/o~I1~I.~/7~3

[FronIHA'

+ __

k,

~,

.--~

x 10-3

in heat transfer by using critical

A wire of 7 mm diameter is covered witlt material (k = I W/mK). rite wire temperature

12.64

Heat flow through an insulated wire when erilicalradi used is given by

(III

insulating

(l1U1

ambient

temperature

are BOt}C and 15° C. If the inside convective

Ileattrtlllsfer

co-efficient

tllickness

is B.2 Wlm2K, find tile minimum

of insutation and also find tile percentage of

increase ill the heat dissipation. Given:

[In

__I

[;~~ ]

2nL.

+

kJ

1

]

d,

hbrc

= 3

+

0.11 Q2=

I ---10-1

25 x 4.4 x

I11Ill

3.5

/', =

k

111[4.4 x 10- ) _.:__0_._0_03_-

7

=

111111 =

3.5

10-3

x

III

I W/Il1K

=

Ta

=

80° C + 273

=

353 K

Tb

=

15° C + 273

=

288 K

ha

=

8.2 W/m2K

.

Tofind :

2rrL (T a - Tb)

I. Minimum

12.572 . ) . fl bv uSing ... J e-rcentage of increase ill heat 0" .

thickness

2. % of increase

of insulation

in the heat dissipation.

I

critical

r~dills

=

Q2 - QJ

x

100

OJ

= ••• ,

Scanned by CamScanner

Solution:

I.

ritical radius. "c

=

Critical Radiu5 ot I . I . . 'J nsu at/on 1175

r-------_~

------

k II

89.74 W/m

Percentage Irc = 0.121901

of increase Q2 - QJ

\

----'-

=

-,-8-,-9_.7_4 _-_;1...:..1_;.7-=-2 x 100 11.72

O. 12 19 - 3.5 x 10- 3

'c=0.11801 \ Minimum Insulation

thickness,

2. Heat loss without

insulation

665.69 % tc - 0.118 m

Result:

) . Minimum

2nL(353

insulat ion thickness, 'c

2. Percentage

2nL (T a - T b)

Wim

8.2 x 3. 5 x I 0-:1

find the outer surfcc temperature. 11.72 W/m \

Given :

I kat los. with insulation

d, = 10cm=0.1111

0.05

III

d == 11

III

/'1

==

1'2 == 0.0)) I

.

=

0.11

III

ITI.

kl == I \\' lllK

- - ~~ == ~ =. "

-_.-:--

Scanned by CamScanner

III

=

665.69

%.

pipe J 0 em inner diameter J J em outer diameter is covered with an insuluting substance (k = J WlmK). The steam temperature and the ambient temperatures are 200" C and 20" C respectively. If tire convective heat transfer co-efficient between the insulating surface alii/ air is 2 8 K. Find the critical radius oJ ;I/\'II/al;OI1 (lilt! the heal 10.'11per metre of pipe for the vulue of r(~ And II/SO

- 2RR)

k.l

= O. J J 8

of increase in heat dissipation

III A steam

1

=

100

x

Ic=rc-rl

Criti al thickness,

\ Ql/L

01

in heat dissipation

\\'

r - -

-

I. J 76 Heat and Mass Transfer Cri/ical Radius oj Insulation

I R=-

21tL

[ --+-In I klI hal'l

If']

[1'-'I2] + k; In

t.tr;

I" '

3 '2

I

I,

)

t

Q =

I [I --+ -In I ['-'I2] +-InI f'3] 21tL kl k2 '2

--

hal'l

Tofind : (i) Critical radius of insulation, "c

+ _Ik3 In[''3 4]+ _Ih '4 ]

b [The terms ha, k2 and k3 are not given. So, neglect that terms]

(ii) Heat lost per meter at "c (iii) Outer surface temperature,

TJ

I

1

I

r

Ta-Tb

Solution: 1. Critical radius of insulation (rcJ k

rc

=_

Put I' 2 = I' c and

h r = I c

III

I

2. Heat lost per meter at 'rc'

.

~=----~4~73~2~93~----~1

[From HMT do/a book page no:. 43&Jj)

L

21t

We know that,

_ Q -

in the above equation.

8

Irc = 0.125

H ea t tl ow,

1',

1'1 = _

£1ToveraJl

R

[ I I (0.125)+ -I n 0.055

I 8xO.125

[1-~

621 W1m I

where

13 __j

Scanned by CamScanner

Heat Conduction With Heat (,eneralion 1.i79

1.178 /leal (/lid Moss 71'aIl5fer (iii) Ollter SIIr/ace temperatllre (T3)

1.3

We kllo\\ that,

t-IEATCONDUCTION WITH HEAT GENERATION . .

In many practical cases, there rn Typical examples are Ie syste . 11 E lectrJc"1 COl s ).. Resistance ). Nuclear

QfL

= 91.S K

,,11251

I

reactor

•1 III

in the fuel bed of boiler furnaces.

Consider a slab of thickness shown in fig. 1.10. fin

Heat 1 t per meter, utcr

offuel

1.3.1 Plane wall with internal heat generation

Result: riti alradius

within

In electric coi I and resistance heater, heat is generated due 10 electric current flowing in the fire. In nuclear fuel element, heal is generated by nuclear fission.

T - 293 621

[s

a heat generation

heater

4. Combustion

2~

IS

ulati

n rc=O.125m

Con ider a mall elemental

L, thermal conductivity area of thickness dr .

IL = 621 W/m

urfa e temperature,

T

= 391.8 K

Qg ~ ()

L Fit! I. If}

Scanned by CamScanner

k, as

I 180 Heal an •

dMmSff~a~n~sift_er

.

_

Heal Conduction

1 w of conductLOn, we know that From Founer sa. . dT Q =-kA Heat transfer at r, x dx . " (1.5 I) •

Heat con

I

ducted out at x + dx

= -kA

Qx+dx

dT _ kA d T dx dr dx2

q A dr

x2 --=

-

:::>T+

k

' .. (1.52) saJ11e tWO

• " (1.53)

Sides.

boundary

T

_!_

ee -

APply T

2

=

2

dT dx2

::::)

q A dr

conditions; •

i..

+

CI = 0

+ C2

x2

k

T w' x

,

dx2

(1.56)

.•

ApP IY

::::)T w = -

::::)

'"

The temperature on the two faces of the slab (Tw) is the because it loses the same amount of heat by convection on

(1.56):::>

Qx + Qg = Qx+dx

2 kA d T +

C2

r:

We know that,

,

Cjx+

2

2

Heat generated within dx

Qg=

~q'

With Heal Generation /.18/

L

=

2"

q (L)2 k 2

+ C2

= 0

+_!_ dx = 0

...

(1.54)

k

Integrating above equation Substituting (1.54) ::::)

J

+J

ddx2T2

=f0

qk dx

C t and C2 value in equation (1.56) •

T = -

I q

2k

., .r-



+ 0 + Tw +

qL

2

8k

••• (1.55) ::::)

--. T _"

Integrating

(1.55)::::) J~

+: Jx=JC

t

Scanned by CamScanner

=

Tw

q

2

2

+ -8k (L - 4x )

... (1.57)

J.l8

2 Heaton

d Mass Transfer

Heat Conductiun

-~

ature T max (at the centre) is b ' temper 0 ta' The Olaxunulll , (1,5 7), Int~ , :: 0 in Equation by putllng x

~\'ith internal heat generation Z CyJlll, ' 1.3. 'der a cylinder of radius r and thermal condUclivit

k

'I I' d Y , ConSI , genera ted (Qg) 111 t re cy III er due to passag'e of an e Iectnc'

~eat IS rrenl, ( 1,58)

with Heat Generation 1./83

ell

, law of conductIOn,

Fourier's

Fwm.

qr d2T _+= 0 r dr2 k

we know that

'

...

(1.60)

'"

(1.61)

Heat flow rate i : Q:: _qA

Integrating

L

2 , Heat transfer by convectIOn Q :: => Q::

h

A

(Til' -

r

Too)

1- q AL :: h A .L q AL :: hAT

(Til' -

II' -

hAT

11'::

Til'::

dr2

k

dT qr -+dr 2k

h A Too

h A Too + 2 q AL

Too

i:I+I~=Jo

dT q r2 _ C, _ +--dr k 2

T ex,)

,.

2

I

.

Integrating dT + j j Tr

qL

+?Ji'

q 2k

r

Surface or Wall temperature

J

~I

C I /n r + C2 :::> T:: '"

qr2

- --

(1.59)

4k

Apply boundary

(1.61):::> Tw=-

+ C I In r + C2

conditions

~I'J

-+C,

4k

Scanned by CamScanner

=

-

[PUI T :: T w ' r

=

roJ

dM~s~~a~n~if_e,

_

J.}84 Heal an

Heal Cnnduclion

wilh Heat Generalion

1.185

. ,( I 63) and ( 1.64)

Equat rng

.

hx2nroL(Tw-TaJ)

2L':=

APply CI an

q

1('0

d C value in Equation (1.61) 2

- h x 2 x (Till - Too)

'0 q

. 2

qr

::>

_+0+ T '" - 4k

(V6 T + HI 4k

+3- [rg T'" T II' 4k

'0

>

q

:=

21t T 11':=

,2J

-T

Till -

2h TIII'0

q+

2h Too 2h T co

'oq

00

+-2h

At centre r :: 0,

::>

T'" TllIax

q - T +Tmax - II' 4k

temperature,

(1.65)

...

(1.66)

Similarly, For sp here , temperature

Tmax

T

II'

+ qro 4k

'" (1.6.'

at the centre TC

=

q'r2 0_ T III + __ 6k

We know that, Heat generated 1.3.3 Internal Heat Generation 2

...

?

[roJ

• 2

Maximum Temperature,

T 111-- T00 + roq 211



Q = 11'0 Lq

.,'

- Formulae used

(1.6))

Forplane wall "

Heat transfer due to convection

Q = h x 211ro L (Till - TO')

Scanned by CamScanner

, " (1.641

I. Surface temperature,

TII'=

1.Maximum temperature,

T rna'

+ qL

T 00

2h

ciL2

T 1\1 +-8k

"

tk\l{ (Ilk' M(l~S

Ikt/t Conduction with Heat Gene rutton . \ 1./87

TroflSjer

Solved Problenls 1).4,

r;

Fluid temperature,

K

o

_ Thickness, m

k - Themal conductivity,

Generation

I An tltctric c;lrrellt is. passed

~ _ Ilt':It generation, W 1m3

h _ Heat transfer co-efficient,

Plane Wall with Internal Heat

011

.

2

W Im K

W/mK.

l'

W"'C"

t/,;ckneS J5f} mm

through

generates

a plane wall of

''£'(It at tile rate of

50,000 Win/. tt« convective "eat transfer coefficient between w(llI and ambient air is 65 WI",] K. ambient air It",peratttre is 28°C (1/1(1the thermal ('ontlll('tivity of tile wal! ",alerial is

22 WlmK. Calculate:

J, Sur/(Iu temperature

2. Maxim"m temperature in tile w(,11

Q

I. Heal generation,

q

=V

2. Jlaximu", temperature

qr2 Tmax = Tw+ 4k

(X)

rq +2h

where V - Volume -

= .

150 mm •

Heatgeneration, q

=

0.150 m

=

50,000 W 1m

Convective heat transfer coefficient.

J. Surface temperature

T w =T

Given: Thickness, L

Ambient air temperature. Thermal conductivity,

T

3

h

=

65 W/mlK

= 28°C + 273

I

=

301 K

k = 22 W/mK

Tofind: 1t r2

L

r - radius - n. For sphere I. Temperature at the centre

I. Surface temperature 2. Maximum temperature

in the wall

Solution: Weknow that. Surface temperature Tw

=

T" + 301 +

lilt,

1~

[FI'IIIII Fil'I.

I/O.

1.5YJ

50 000 )( 0.150 2)( 65

358.6 K

I

&z_i1.4fufJHl

Scanned by CamScanner

as H lS:J ~Tr~a~11J~if4.::t!r:__

!~~?:.~~~ c -_

1.188_

Heal

_

Conduction

with Heal G

. eneratlon 1.1119

J

"""" un urn

i 1

• llperalure It I

-

, Ina(

51'11;011

q. L-,

r From £~/I"" n

.1'It' +-8k .. 3 8.6 +

.

50,000

x

0

I

.j8j

:

-~" I.

oW Ihal, T max -- T w

. lun lemperalure, MaX,111

(0.150)2

8)( 22

_ T + 65 423 w

x

T Itl"~ '" 364.9 K

423=

.,,,,It .' I

$UI f~

c

Til' - )' lUi K

1~'II)p\'rllllrC

Tnl(\\

-: M~,"nll1ltllrllllwrf\IUrt',

~'" =

1f,·1.1)

: ("'!!Ii

.1""

.l!4fol""rl

v v]

1'1'1'-C'

InM

402.6 K

I qL

+211

T",;:o T

is 1'4"·WC/IAN'''J:A u ptunr "'(III I'flh/t .• • ""1'lJ

1;,\' ".\','cI II' h"1I1 " JI"id III i,\ 0.( , /I,. I,' ",,I. Thr'lfIiII tlll'rl,rt( i.\· .'.( ... ",1\, ('"iI"111I11' tb« Arill

trlll'flllll'If

!.'kll' t'J

NilI'

,",';"'11/'" (h,·

11''''1,,'rlllllr,'

.1(L.6

'~llhi" rl,lIt

lit

.' iser.

\\ '\ \\

Tw+20.31

ICl1Ipcl'lllure.

fMI!,J 1.'(1 ",," "'10/(, "'/tJeA

,til' C '1)r

105 x (0.025)2 8 x 25

K Surfllce

['I '" rk 'rril' """,'III I.:J' \

I ~ I 11111

{l

. + - qL2 8k

)03

XI

t

lIS

x

I05 )\ 0.025 -It

,7W~Ill~KJ

120m

1].411electric current is pm;,H'" II",IIIgl, a co"'pol'ilf! "",11n",de "I' of '''-0 layers. First layer is steel of 10 em thickness m,d ftrond laycr;s bran of 8 em thickness. The outer surface 'tmptralllre of steel ami brass are maintained at 120~C and _-3 =·L . K. rtlJi"l:: litJ!

65"Crespectively Assuming tluu the contaa between 01'17 slab is perfect and lite heat generation

is 1,65,000 Wlmj•

Dtltr"'ine rnn-fer CO-efficient, (h)

I, Heal flux througn lite Oilier surface of brass slab 2, Inter/ace temperature.

-. Scanned by CamScanner

\

Man' 7ram/er 1190 Heaton d . " , .. ~-- ~ -== , fi aee! ls ~5 WIttiK. K/or brass is Hfllt', ~ Ttlkt k or, IIPr'(

'"

(I)

Given: 'l1sfer through Hca t tra

tccl,

Sf

T

R

T)-T2

[': R=

LI

l] kA

k)A

Let interface

temperature

T2 is greater than TI, So,

T2-T) Thickness of steel, L)

=

10 ern

Thickness of brass, L2 = 8

CI11

=

0.10

=

Heatgeneration,

qg = 1,65,000

Heat transfer

120 C + 273 0

Outersurface temperature of brass, T)

= 65°

= 393

through

W/m3

T2 - T)

L2 k2A Total heat transfer

~~~ S0111;011: I

gh

[Adding

the surface of the brass slab, q?

ce temperature T '

,.

Q=

-

q -H

Scanned by CamScanner

T

-

T)

2 +---

L2 k2A

Let 1 eat flux. th q _H rough the surface 2 eal flux th rOugh the surface

(3)

R

k2 = 80 W/mK

ou

...

is given by

~T

C + 273 = 338K

To filld: .

brass

K

k) =45 W/mK

1) Heat flux. thr

(2)

111

= 0.08 m

Surface temperature of steel, T)

...

of the steel slab. of the brass slab.

(2) + (3)]

with He

,=

C

enenu ion 1.193

45

.J;. =

~

QJ

L

T - .>38

m equation

0.08 80

I ,

He.a generation,

q

1,65,00 1,65,000 - 3 .020

Heat nux throu = T (4'4.5

- 1O()(J1 - 1,78,6]6.3

=T2(144.'41-[5,16,6361

- 3]8000

1,.1i .I)(J(J+

'

"

16636

= T2 [1454.51

h he

surfa e f the brass slab Rault: (i)

::::>

1,3 ,980 \ 1m2

q2

T

q2

(ii) T2

=

I 30,980

=

468.

1m2

K.

T2=46~.6 K

lJ A plane

wall 10 em thick generates

heat at the rate of

4 x 104 WlmJ when an electric current is passed through it.

Theconvective heat transfer co-efficient be/ween eachface of tile wall and the ambient uir is 50 WIlli]K. Determine (a) the surface temperature (b) tlte maximum

air tempera/lire on the wall. AJ .ume

lite ambient air temperature to be 20°C and tile thermal conductivity of the

Willi

material to be 15 W/",K. [ 10 lr ts

Scanned by CamScanner

/17

iv r 'tv :-Ipnl 8)

1.194 Heaton

T

dM~sva.~n~~~er __ ------------_

Heat Conduction with Heat G _:.:..:.-__ ------_.:_.:..._.:.~~~elnerat

.

0.10 m

==

te wo/l of Im thick is poured with

~~

~nN~n

or concrete generates 150 W/m3 h . e ~ Jr(ltlO1l 'J eat. If hoth th hY" or the wall are maintained at 350 C. e .faCes 'J. . Find th sur)" m temperllture In tIre wall. e (t1 ,4 C

Gi,'t" : L ::::10 em Thickness,

ion J. J 95

'_4xI04W/m3

He.atgeneration, q . heat transfer co-effie ient, h = SO W 1m2 K Convective . . temperature Too = 20 C + 273 = 293 K Ambient air '



",~I"'U

[Madras Univenity' ' Apri '19 9]

0

Thennal c.onduetivity, k

=

G'plt" .

15 W/mK.

: 1 Thickness, L == ~

Heat generation,

Tofind: I. Surface temperature

q

1SO W 1m3

==

Surface temperature,

_. Maximum temperature in the wall.

qL

SMwW": Surfac.e temperature,

Tw

= To::

+ -

293 + 4

35 C + 273

r.,

==

308 K

Maximum temperature x 104 x 0.10

2

x

in the wall

Solution: Maximum temperature

50

Tmax Maximum temperature,

=

Tofind:

2h {From equn no(1.59 ]

=

0

Tw

qL2

==

qL2 Tw+8k

Thermal conductivity

T max- - T w + -

of concrete,

8k

x

104

8 ~ max = 336.3

Result:

Surface temperature T _ ,

Maximum

t

emperature

w -

x

1,279 W/mK

Page No.18 (Sixth editiont]

(0.10)2 IS T max

K.I

=

1SOx (1)2 308 + -----~--8 x 1279 x 10-3

l

T max = 322.6 K. \

333 K .

T , max = 336.3 K.

Scanned by CamScanner

x

=

{From HMT data book.

(From equn no. (1.58)]

= 333 + '4

k

ReSUlt:

Ma .

X1mum temperature,

Tmax

=

322.6 K.

1.19

fle(ll

--

o/ld Moss 7i'ol7sfer

" problems on Cylinder with internal

1••3 ;}

rn A copper wire of 40 mm diameter ~carries 250

l!.J

n

A--J

Heat Conduction

heat ge IICtatio A

(Illd

l

resiSlanceofO.25 x Iv· cmllellglilsurfacetem III.I·u . . 250' ell' , bi 'Per(lfll cO'{1perWife IS anc 'If ant U!I1t air t empert 'tOIJ 10. C. If lite Ihermal cOlldllctivity of tile c opper illite (I IV' J 75 WlmK, calculale

"e i,

I. Hea/lransfer co-efficienl ambient air. 2. Maximumlemperalllre

between

V q

I

(2

Sy I utlun



'w

ler,

o

[From £'1111'1 no.t / (2)1

4

Y

175

I-

I'll II

52J.()7 K.

KJ

52io7

h max.

thill-

SIl/'li,CC

, l'Ollll)CI'l'Illll'U,

'1'

;

II'UIIIUII

2

q r: -1-4k

523 "'" 124140 / (O.()2U)2

IV~ kunw '

_"

- 10° . + 27 - 2RJ K

Lrrnux

.

124140 Wlm.1)

(I:::

max -

273=523K

TQfind.'

T

1'2 /. I.

1I %

_.!..;J 5~6,--_ x (0.020)2 x I

temperature '1'

ern/ length

2500

I) IIcul IrllIl.,'cr C" . o we ,'I" ucrcnt,

'"

T

12R (2 0)2

1.197

We know that,

k - 175 WltnK

2) MaxilllUllltclIlpl;;/,uturc

=_ 1I

Maximum

'1hermal conductivity,

-

. Q = - :::----..::__-

in tile wire.

Ambient air temperature, T

.

allon

q

lind

urrent, I = 250 A.

=

156 W/rn.

Heat C·lenl!f

102 Wlm

Y

wire .S.lIr/ace

Radiu , r'" 20 mm = 0.020 m

Tw

==

Heat generated,

Diameter, d '" 40 mrn '" 0.040 rn

urfacc temperature,

1.56

We kllow that,

Gillen .'

Resistance, R .. 0.25 x 10-4

=

.h

Wit

/ F/'(JIII

x (0.2

. -3

_1(1

I

/':1/1111 1/11. (/

U.(U) ~

121114~ It

1.62 W/I,;

II I

Scanned by CamScanner

1/5)!

With fI .

Heal Conduction

_--------.:.::~~e'(I(l11 Gen eru/lnn

/./98 Heal and M(J$sTransfer 'null : I. Heattransferco-efficient,

1.19fJ

h = 5.17 W/m2K.

2. Maximum temperature,

T max

=

523.07 K.

wire of 1m long is used as a heating e/e~", . IJ kW /teater. TIre copper surface temperature is /j III.

.

103

x

I

7t x r2 x

llJ A cop~r

tDJJbielll air te"'Peratwe is 11"C,

13

q =

u~.

outside Surface co-elfi ~

is 11 kWI",1X. Tlrenrud conductivily and resist an ~ copper lITe 15 WlmK and 0.11 n respectively. Ca/culale follJlwillg

Surface temperature,



Tw

T

=

co

+ ~ 2h

{Fro", Equn. ,,0./.65J

1. DilDlldU of copper wire 2. /lJlJe of

CIUTUII

flow.

295 + r

1573

x

G;reJr :

Length, L

4138 r2

= 1m

Heal transfer,

Q = 1HW

2"1.1)(103 =

13 x loJ W

Surface temperature, T", = 1300" C + 273 Ambeint air temperature,

1278 =

Too= 220 C + 273

r

1573 K =

295 K

1278

=

Outside surface co-efficient,

Ir

or Heal transfer co-efficeiet,

Id

h = 1.1 kW/m2K = 1.1 x loJ W/m2K

ThennaJ conductivity, k = 15 WImK

Q

Toruul:

13

1) Diameter of copper wire, d ::)

2) Rate of current flow , I

Scanned by CamScanner

x

103

!

1

1.88 r

ml

1.47xIQ-3 =

2.94 x 10-3 m

=

12R

Weknow that,

Resistance, R = 011 O.

4138 2200

x

= )2 x

=

0.21

248 A

I

I

2 (J

.

: ([~ f JI

,

/

I () ) m.

.-----

I

II is pcmtd through a "ainle"

MK, Jmm ill diamet t

if]

f.

The resiui

II

"ttl ..

jiO em and 'he I n;(lh ofth.

. uid iu J /(1'

;;;iJh heal/ramIer

()

'41ht

t

IJ.O,)') (2

== J2p.

::; (20(1r / ((UfJ"Ij

~i, >-e/li."," (

uku« the eentre I mp fa[ure 'iflhe [Modr

k

==

Lm enlly, Ap J (,_~

J9~ ()

/L

q = ----,

)960

-=-,-

(J/IQ-"r / I

_.

.,.

(

..l~

'f C - ~-:; = "'!

)<

3

.- m1 (

q alue in Equn / loj

I)

(

4

...

(J)

{From Equn no (/ ,.,."

Area

Scanned by CamScanner

(

tre temperature

of wire, T

y

19

= 399.' K

Heat Conduction

with Heat Generation 1.203

1.202 Heat and Moss Transfer 250 4/3 1tr3

1.3.6Solved problems on Sphere with Internal heat generation

= q

rIl A sphere of J 00 mm diameter

having thermal conduelill' 0.18 WlmK. The outer surface temperatu Fe IS. BOCllyOI7 250 WI",z of e"ergy is released due to I,eat sou rce. CalclI Qlld I. Heat generated

G

=

250 x 4 4/3 1t

(0.050)2 (0.050)3

x 1t x x

15.0~0 W/m31

/tllt

2. Temperature at the centre of the sphere.

Temperature at the centre of the sphere

Give" :

qr2

Diameter of sphere, d = 100mm

- T +Tc w 6k

r = 50 mm = 0.050 m Thermal conductivity, k = 0.18 WlinK Surface temperature, T w = 80C + 273

15000

= = 281

281 +----'---'6

K

Energy released, Q = 250 W/m2.

~c

Tofmd:

=

[From Equn no.(/.66))

315.7K

(0.050)2

x

x

0.18

]

I

1. Heat generated,

r-

q.

I

2. Temperature at the centre of the sphere

q = _g_ V

q/A

q/A '"

Q/A V

250

4/) nr3

Scanned by CamScanner

[.: Q/A

.

q = 15,000 W/m

3

2.Centertemperature, T c = 3 15.7 K

SOIUlwlI :

Heat generated,

I. Heat generated,

= 250

W/m2]

T

1.204 Heal and Mass Transfer

Fins 1.205

~~~-----------------t.4FINS

~

It is possible to increase the heat transfer rate~ c. Th t: Y Inere . the surface of heat transler. e surraces used for in creasln. asln,e transfer are called extended surfaces or fins. g heal 1.4.1 Types of fins Some common types of fin configuration

are shown'

fi

In Ig.!.I!.

(iii) Splines

(i) Uniform ,traigl,t fin

(iI)

Tap ered straight fin (iv) Annular fill

z

Scanned by CamScanner

, I.206 Heal and Mass Transfer

Fins 1.207

M P;IIjlns Fig 1.11 Commonly there are three types of fin 1. Infinitely long fin 2. Short fin (end is insulated) 3. Short fin (end is not insulated) 1.4.1 Temperature distribution and heat dissipation

in fin

Fig. 1.12 (a) and (b) shows the straight fin or longitudinal tin of rectangular section and circular section respect ively, One end of the fin is enclosed in a heating chamber and the other end is exposed to atmospheric air. Heat.iS transferred across the rcciangulllr fin and circular r~ by conduct~on. From the surface of the fin, heat is transferred 10 air by COIIVCl:llon. Let Us consider a sm II I I I of'tll,'ckncss ". IS at a distance of x rro ., tha Cb cmcll It arelt dx, which II In elise.

¥AA&CiU&CiMiDNiRM

Scanned by CamScanner

I.l~~::...=-Heat artd Mass Transfer

! I I

pi

_ ---------_ Fins 1.209 state conditions, heat balance e~th stca dY or at A. follows. enl IS as (1,111 conducted out ofth n dueted into the element = Heat tCO . . e !-lea onvected to the. surroundlllg air. -/-heat c nl l(I1le Q ( Qr::: Q.r ... dx + conv •.• (1.67) ?

]I~ -c"

where,

"'C t::

II

c.. '<x+d\

=-kA

Qeonv

=

f'l

.!::

-dx ( dT)

f':l

-kA

(ddx- T) dx 2

2

OIl

:::: "t:l

::::

hA (T - T cx:)

::::I

...... 0

::: h(P dx) (T - Tcx:)

::::I

rJl

Substituting Qx,

~

'-

~

Qr.,.dt

and Qeonv values in equation (1.67)

dT = - kA (dT' - J - kA cilT.J dx

(167) ~ - kA -

...;

.

·tc·

dr

dx

.1.\-

~

+ h(P

~

kA d1T

dx2

= liP (T - T cx:)

~kA ( T-T.) d1T _ ~

(tt2 d2T

dx2 L

---=. ::= ... ~"_'_"""---

Scanned by CamScanner

15

kA

.r:

(T _ Toc)

=0

dx) (T - T.x:)

1,210 Heat and Ma.I',I' f'r(III.~I(!r where,

Flns 1.211 lIP kA

JIl2

c _

bsll'tllting At

SlI

-' cr., T

X -'

(T C/. (PT -

dx2

- JIl2

I 70 (l. )

T a: ) = C Ie -mrs:. + C 2em".

-

e =0 ..• (1,68)

Equation (1,68) shows that the temperature is f ~f,,1 x and III, It is a second order, linear differential equatio a ,UnCtion Of solution is, n, ts Beneral

c",ct. ~ 0, So, [C2 = 01 substituting.

The temperature distribution Upon the following lin conditions.

... (1.69) and heat dissipation d

=0

C2c"'OC

[':0 "'1' '

().71)::=:>Th-oc-

C 2 =Ovalucinequation(1.71) T

ePend! ::=:> rTb-Toc=

Case (i): Infinitely Im,gjin

If a fin is infinitely long, the temperature that of the surrounding fluid, At x = 0; T = Tb and At x

,

= T a. in equation

== ac;

at its end is e qUalto

, ' Suhstitutlllg

e I lind

- CI + 0

ell C2 value in equation (1.70)

(J.70)::=:> T - T a: = (T h - T)a: e -liLT + 0

T:: T",

Tb - Base temperature of fin From equation (1.69), We know that

o

,

== C I e-nlt + C emx 2

Temperature

T - Toc == Cle-nu + C enlt 2

SUDstituting At

T-Toe offin, Tb _ Toe = e

... (I.70)

[.: e X== 0; T

distribution

==

= Tb

T - T«l

Where, Tb - Base temperature, K

(l.70) ==>

T a.

-

Surrounding temperature,

T - Intermediate temperature, K ...

(1.71)

.\'- Distance, ",

-

Scanned by CamScanner

K

IIIX

...

(1.72)

v: I

If

I. 11/-

/I

I

II

~

~.'\

,,- heat transfer co-efficient, p- Perimeter,

W/1112K

III

k -1 hcrmal onductiviry, W/I11K r\ - Area.

...

III

11/ \

II

hea

II

We kn

w

Heat I

Q

through the fin is obtained by intoeg . . rating the over the entire fin surface.

/hP

z:

-A (T

- 'r ,

//'" " I

that, t

by

Qeo,1\' == hA (T - T"..)

nvection,

(4jt(ilJ: Fill with insulated end 'Short jill)

Q == hP dx (T - TCf_)

Thefin has a finite length and the tip of fin is insulated.

if.

Q == fliP (T - T ) dx At r= L' dT == o· 'dx '

o Q==

Atx = 0; T == Tb From equation (1.70),

we know

that,

T-1' ---Tb -T

- 1'-T "(1',(_)

hI> (T - T,.)

J C

o hp I'll'

r. ) _

.

(T - TrfJ == C I e-II/X + C2ellIX

II/X

r.:

e:"

dT dx

J

:::>

I

r

l'

1/1.\

III

== C,e-lIIx

x (-111)

ApplVilJ~ II Ii. . te trst bOLIndary

dr

11/\

"'e 'F..

J

0 == C

.-1111.",

,e . x -1/1

+ C2efllx

x 111

ciT condition, i.e., at x = L. --=0 • dy + C°2\.·nllli. X III

.r

()

//JC,e-IIIL

e,e-

lIl).

=:

=:

C

I/I(',(;'IIIL

2e

ml

. . .. (1.74)

Scanned by CamScanner

d "",,r,,,,ufe~r

.",.....-

-

_

/.214 Heal an.

70) we know that, , -mx + C emf 2 (T - T a. )==C,e

Fins 1.2/5

equation ( I.

From

Applying the Seeon (T b -

d boundary condition,

. ting C, and C2 value in equation (1.70) bsutu

su i.e., aLt::: 0,

1'::::

(Tb - Tcr.)

(T - T ex:) =

Ib

1+

---.:_

T a: )

"elllX

1+ e+2111L

T ) == CleO + C2eO a.

(Tb - 'I'a. ) '" C, + C2

Tb -

x e-mx + (Tb -

e-2mL

--+_ entX]

e-nu

[

- C2 e2mL + C2

I + e-2mL

1+ e2111L

Ta. -

[e-

+_elllY]

mx (T - T ex:) (Tb-Tex:) l+e-2mL

l+e2l11L

Tb-Tex: ... (1.75)

~ '" [e2mL +1]

Multiplying

the numerator

and denominator

e-nu . . C2 value in equation ( 1.74) Subsu,utmg Tb-Tocl C '" -,

I

e2mL+1

x __ emL

1+ e·-2mL

x e2nrL

emL

+-----

e-m(x-L) elllL

C, =------------e2mL x e-2nrL

+ e-IIIL

e-mL

r,

(,=I + e-2mL

e-m(L-x)

+

e-IIIL

+ emL

... (1.76) em(L-x) + e-m(L-x) em!..

Scanned by CamScanner

em(.\-L)

+ ------e-mL + emL

em(L-x)

+ e-2nrL

enrL + e-IIIL

Tb-

e-mL x __

1+ elmL

x -e-2111L

.

by emL and e-mL

+ e-nrL

... (1.77)

1.2/6 Heal. and Mass Transfer In terms ofhypcrbolic T-

.>:

function it can be w rltten . a~ ,cos h 11/ (L-x)

Tif.

cos h

In

L

traJ1sferred Q Heat fi . sulaled In,

Temperature distribution of fin with insulated end cos h

111

cos h cos

»( _ m

= (T b _ T

~

1

111

•.• (1.78)

L

II 111 (L-x)

At x

sin II In (L-x) c~hmL

dT

x

3. cooling

of small capacity

4. Cooling

of Iran formers

5. Cooling

of radiators

llr,n= For insulated

Q=kAm(Tb-T"Jx

etc,

l1fin =

- T,,:) tan II (mL) (T b - T cJ tan h (/ilL)

III =

max

/ilL

1.405 Fin effectiveness

It IS defined

[.:

Ofin

-0

Ian II (mL)

sinh(mL) cos h (/ilL)

J kA

Scanned by CamScanner

and refrigerator:

end

.

'=kAxlhP

compres: or

The efficiency f a fin i defined a the ratio of actual heal transferredfin (0 the maximum po ible heal Iran ferred by the tin

sin h 111 (L-x) cos h 111 L

= 0,

III (Tb

motor cycle engine.

IA.4 fin efficiency

dr

kA m (Tb _ T,,)

'= kA

-

pJicalions (,4.3'\P .' . ain appllcallon of fins are rhe J1l I. cooling of electronic component

2. Cooling of

cos hili L =

(T b -. T,,) Ian h (/ilL)

.. (1.79)

= -kA (T b - T aJ x _ /11)( sin hili (L-x) Q

JhPkA

b - T,,) Ian h{nrL)

(L-x)

\\e know that, Heat transferred. Q = -kA

('1'

fOf 111

=> T - T IX == (T b - T ,,) ----'--__:,_ cos h m L => dT

JhPkA

Rf]

.'

~

as the ratio of heat trans er

ilhout fin

Fin effectivenes

, E ==

Q\\iiholll fin

II

ilh lin

10

heal transfer

1.218

Ht!(/I and Mass Transfer For insulated

Fins 1.219

end

E

Fin effectiveness,

=

tan h (mL)

J

~d

1.4.6 Formulae used

~

[Refer HMT data book page

(I.

LONG

110. 49(SiXth

.

edllj~ ';

b)Hea

where T b - Base temperature,

T - Intermediate

cosh

I trails/erred

'12 (T b -

Too) tan h (mL).

K

temperature, temperature,

K K

Find tire heat loss J,.om a rO.d of ~ mm in diameter IIntl infinitely long when Its base IS maintained at 140" C. TI,e conductivity of tire material is 150 WlmK andth« lreattransfer co-efficient on tire surface of the rod i.\·3()~ WIlli] K. TI,e temperature oJ tire air surrounding the rod is 15" C.

Given: Fin diameter, d

x - Distance.

[mL)

~4 7 solved Problems 1..

I1J

- Surrounding

-

Q == (hpkA)

FIN (OR) LONG FIN

Temperature distribution

T

d

stl .' Ilire tlistrlblillOIl fell,pera iI) T _ T rIJ _ cos hill [L-x]



kP

1. INFINITELY

[ _1_ < 301

is insulated] Olrr

=

3 mm

11/

Base temperature,

lIP

Surrounding

kA

Tb

=

3

k

Hea trans er o-efficien

x

10-3 m

1400 C + 273 T,I'. = I So

Temperature,

Thermal conductivity,

I .ieni, \\' m-K

=

=

= 413

K

273::_

nil K

150 W/mK h

= 3(J<J

'K

To find :

" -

·IllUJII :

-:;.

.

.2~

Scanned by CamScanner

Fins 1.221 -------------~

1.220 Heat and Mass Transfer Area

IA

. Tetnperature. T = 20°C + 273 = 293 K olltldIII g 511rr \' == 20 em == 0.2 III llce T == 60~ C + 273 = 333 K Oist:l •.. tCInperature. lcdl!ltC Illterll . 'tv k == 200 W/mK IcOlldueUvi s : 'fhenn:l

2L d2

==

4

6 m2]

== 7.06 x 10-

P - Perimeter

nd

==

3

x

I 0-3

9.42

x

10-3 m

1t x

IP

fofi"d

III

I

~ \Q = 6.838 Watts

co-effie ient, Jr

J.

tran!)ler

solutiO" :

Apply A, P, T i» T co' hand k value in equation (I)

ono tin tempe For l :::> T - Too

10-3

(I) ~Q=(413-288)J300x9.42;(

:

!-tea t

x

150X7.06~

I

--:::-

rature distribution [From HMT data book page 110 ~9J

== e-lIIx

Tb- Too ~==e-/II>.O.2

423 - 293

Result:

0.307

Heat loss, Q == 6.838 Watts.

== e

III (0.307)

\1l

A long rod 5 em diameter its base is connected to afurnacl wall"t 150· C, while the end is projecting into the room a/ 20· C. The temperatllre of the rod at distane of 20 cm apart from its base is 60 C. Tile conductivity of tile material is 200 WlmK.Determine convective heat transfer co-efficienGive" :

_III

x

== -III x

-\. \ 8

==

0.2

0.2

-/11)(

0.2

G'' ---:=-S -.9-,-,rj

G

We know that,

fhP

/II

:= rk~

where Fumace

e

1500C 60"C 20cm

20D

A-

I

Diameter of the rod, d ~ 5 Cm::

Base temperature, T b ~ \ 500

5 )( 10-2

C + 273

Scanned by CamScanner

=:

m 423 K

Area

4

~rr dara book [From f/ . page /lo.~9J

1.224 Heal and Mass Transfer P _ Perimeter:::

xd =

_

1(

A - Area = 4

x 0.050

1(

Ii"": st dissipate d , Q

~o.m;J

for

d2

. 90 mrn, it is treated solll ti~'': he length of the ro d IS h Sil1ce tid as s ort fin. d is insLi ate .

He

~t11e ell

::: _l!_ (0 050)2

4

fA ::: (1) :::>

.

1.96

Q::o (hPkA)

t transfer,

ASS

y:.

,WI

3 m2/

:2

30 x 0.157

2.55

=

6.50

= -k-X:=';"~.9-6~x:..!..'~0~-3-

k > 1.96

x

(T b-1 exl) tan h (mL)

[From HMT data book page No49}

10-

x

2

Q

::0

10-3

(90 x 0.69 x 55 x 5 tan h ( III x 0.09)

x

1O-3)Y2 (673 - 323)

30 x 0.157

[k :::369.7

W/mK

I ==

Resull: Thermal conductivity

of the rod, k

=

90 x 0.69 55 x 5 x 10-3

369.7 W/mK. ~::o

[!) A carbon steel (k :::55W/mK) 90 mm long rod wil/I croSJ ~

seclional area 5 x Nr] m2 and permiler 0.69 m is allac/ltd 10 a pintle wall which is mailltailled at (Itemperatllre of 400'(. The surmunding environment is (II 50" C and heat trallS!fr co-efficient is 90W/1112 K. Calclllale lite Ileat dissipated hy tilt

Q

15.02 ::: (90

x

Ill-~

0.69

x

55

x

5

x

IO-3)Y2 (673 - 323)

tan h (15.02 x 0.09)

[Q:::

1264.8 Watts]

rod. Given : Thermal conductivity, Length, L = 90 mm Area, A = 5

x

10-3

Perimeter, P

= 0.69

Base temperature. Surrounding Heal

luult: Heat transfer,

k = 55 W/mK

= 0.09

III

I 5 em] area, J 50 mm ~ A stainless steel blade oj 80 mill ,Ollg, b of the bIad e IS. perimeter and the temperatur« at tlte use Til heat 750'C. Tile blade is exposed to hot gas (It J 000 C. te is

• if)

1112

D

III

Tb == 400 C + 273 == 673 K

temperature,

Q = 1264.8 Watts.

0

Too

transfer co-efficient, h

==

0=

SO" + 273

==

I

transfer co-efficient

323 K

90 W/m2K. 16

Scanned by CamScanner

betweell tlte blaM

.face and the gas

SIlT)'

/.226 Heal and Mass Transfer

<.

500 Wlm2KfIIlfltllermal c~. the heat flow lit tile root of the blalle. A . "'/(.lJpl_ "" ,'f.~"", e(~t e l,~(', firom the tip of tile blat/e.

500 x 0.150

"0 "'i~ 10

30

Area" A := 5

cm2

:= 5

~ Q

III

x 10--4 012

Perimeter, P = 150 mill := 0.150

(I) -;?

0

0

Too = 1000 + 273

Hot gas temperature,

Heat transfer co-efficient,

x

10-4

::: 1.06

x (-250)

[tan It ( 70.7

x 0.080)]

::: _ 265 [tan It (5.65)J

III

Th = 750 C + 273

Base temperature,

5

11

Given: Length, L:= 80 mm := 0.080

x

t

= 1023

=

::: _ 265 x 0.999

K

1273 K ~

h = 500 W/m2K.

Btsu1tHeat : transfer rate, Q = - 2649. W .

Thermal conductivity, k = 30 W/mK. Tofind:

A" alll",i"illlll

Heat flow

@]

T

Solution: No heat loss from the tip of the blade i , .. " tip isS IIlSU i IHIed. . Length of the blade IS 80 mrn, so, short fin. This is sho t fi • • r 111 end Insulated type problem. Q

Heat transferred [Short tin, end insulated] Q

=

(hPkA)~

(Tb- Too)

Givtn: Thickness, t

tan h (mL) [HMT data book page

=

[500

x

0,150

x

30.x 5

x

Length, L

N049J

...

(I.)

Thermal conductivity,

fhP

tkA

, .--'

..

I '

Scanned by CamScanner

[HMT data book flag" No ~9J

I

Tofind:

Heat loss, Q

m

T b = 420° C + 273

=

693 K

Too = 25°C + 273

Heat transfer co-efficient,

where

\

= 40 mm = 0.040

Ambient temperature,

= 1.06 x (-250) tan h ( m x 0.080)

In

= 5 mm = 0.005m

Base temperature,

1O-4]~ (1023 - 1273)

tan II ( rn x 0.080)

;

alloy fin of .'i mm thick anti 40 mm 100'g /fIules from a H'{II/. The base temperature is 420° C ami pro "mbient air temperature IS. 250C • 11,e heat transfer coefficient between aluminiuIII rod (Inti environment is 2.'i Wlm2K. Calclliate tile heat loss from tile fin of material taking its thermal comtuctivity as 200 WlmK.

h

= 25 W/m2K.

k = 200 W/mK.

=

298 K

~''4'el'ri' I

,,7X

f d M ,,11'clIIs~~er

Ile~

~

S(}/II,loil : " III' 1"llUlh of the tin is 40 nun, it is Ire'll"d SInce c 0 <" AsslIme cnd is inslIloted. . ,sf;'rred I Shun till, end insulated I lleat t rlIl, " ' . Q (hPkA)i/2 (Tb- T .) tan h [ml.] ... V

tI ~

IS

llad .\' tlr(' M"e ' e ".

hUll I'III

(I)

.

C~ , b,d, 11/11/

'5 It' neot- 1he ('TO,U !ICU/mlll/i" 'I' III , '. I. e I 'S H 'J tile /, III IU/" , (II" e .,rimeter 0/ each blude 1\ 7 em. TI,e "(1\' • If , .",1, pc / . H( ", " .. 'empera''''e 1.5C , 1 {Jve r thc him e I." If) C. Temperll""" ' (, , ttu: , fIllll Of 10111"'11 ~ " J2 50° C, th ermul elllll/llcilvily 1/ hi J '.... ij tu« IIIle is / blade U 1/1£ J( (lIId hell' tr(llu/a co-effictem ls /1 n WI 2

~ ;I

19

nuulc of ,\(111,,/.\, \(' -t

/1"

(II

(I UAT duta I ook p

I

(IRe No,49/

where 2

P _ Perimeter

x

Length

Will',

.'

m 1(.

]] ,,,,,,,e . the /,Clf:ht of 'he bltule IICS:/{'('Iill" .. the " eat f1ow tC (lfi to the eml of the blade.

oe

(Approximately)

fro'" ,Ire g ,

::: 2 x 0.040 Give": 1~leattransfer

[p ::: 0.08 I III

ctional erOS

.\ _ Area

::: t x L

.

perllne

::: 0.005 x 0.040

IA ::: 2x

Q- 8 W area of the blade

se ter

p:=

,

7 ern

[HMT data book page No.49)

m

Heattransfer

ti it o-e

1

III

1071 K

273:::

0

Tb

Thermal condu

where

800 if.)

Rool temperature,

1

7 . 10-2

rr

Gas temperature,

10-4m2

:=

m? = 4. / 10-4 m2

A::: 4.5

:=

J

:=

12 0°

273 = 1523 K

r

k= 22 W/mK. 2

ient. II:::

110 \ Im K,

Tojiml:

25 x 0.08 200 x 2 x 10-4

Im Substitute (I) ~

Q

7.07

Heighl of the bl d So/ulioll : Negle ling h at

m-I!

m, h, P, k, A, T b» Too values in Equation,

(I).

= (25 x 0.08 x 200 x 2 x 10-4]Y2 (693 - 298) tan h ( 7.07 x 0.040)

.--\ Q-= -30-.7-7W-1

Scanned by CamScanner

n

L

w Ir 111 the end fa e of the bl de [ livellj,

.ihis is hort fin, end in ulatc

Heal Iran ferr d

Q

=

hPk

I

I)

pc pr \ lein.

h rt fin. end in. ulaied]

'12 Th- Tu

I 11

h trnL!

Scanned by CamScanner

I I. 232 Heal ane

Mass o-

Transfer

/YII

alllte middle of tl'e fin

./'

ern/ure Ji ferrtP -:; 1.)2 in Equation (I)

where

_(hP !11

_

JkA'

p

Pllt"

I

Perimeter:::: 2

x

-;::::.>

L (Approx)

-r _

'

cos h m [L - Ll2]

Tet) _

.s--e-> Ib-Too

cosh(mL)

(I)

2

[p

0.050

x

cos h 26.9 [0.050 - ~250] Tet) __.!--:::- == 'f"_

O.G]

A - Area:::: Length x thickness

IA

Ib - Too

-;::::.>

::::0.050 x 0.007

1- 295

_

~-

3.5 x 10-4m21

;:::J

393 - 295

j 1m::::

(2)

~

140xO.1

T - Too T b _ Too

[T

I

[ T x= cos h (26.9 x 0.050)

T -295 393 - 295 =:>

~

T-295

IT

---

== 354.04 K

Ll2

iii) Total !lcal dissipated

[From H MT data book page no. 49J

I

Q == (hPkA)Y2 (Tb- Too)

2.05

:::: [140 ---

x

2.05 =47.8 = 342.8 K

I

== 354.04 K

Temperature at the middle of the fin

i

T - Too Tb-Too

== 0.6025

393 - 295

55 x 3.5 x 10-4

26.96 m-I

}.234 2.049

1-295 ;:::J

cos h [26.9 x (0.050)]

I

I

I

I

Q

=

x

0.1

x

55

x

tan h (mL)

3.5

x

10-4]lh

--

= 342.8 K

44.4

WJ

Result:

/

"

Scanned by CamScanner

L

== 342.8

2. Temperature at the middle of the fin, T x = LJ2

3. Total heat dissipated,

.

(393-295)

tan II (26.9 x 0.050)

1. Temperature at the end of the fin, T1'= Temperature at the end oCthe fin, Tr _ L

x

Q == 44.4 W

::::

K

354.04 K

1.234 Heal and Mass Trans er Ial

A rectangular ailiminium fins of 0.5 """ s

I qll(l'e are attac"ed Oil a ptane pltlte IV/iicll r., (lI/rll' lJ .' Il ",. < '" 80· C. Slirrolillflmg atr temperatllre is 22° C C(lil/IOilltl/ '" IlIImher 0/'fins required to generate 35>< J 0'-3 ;.v (llclllCitIIr rr 0lli t'4 k = 165 WII1IK and II = 10 WI",] K. Ass""" 'efll. 1'; e e l Q*e from the tip 0/ tilt!fin. leQll

~

101'"

"0

all

Givell : Fin dimensions = 0.5 mm square, 12 mm long So, Fin thickness (t) = 0.5 mm Fin breadth, (b)

=

= 0.5 mm = 0.5

Fin length, (L)= 12 mm Base temperature, Tb

=

=

x

~ Q ::;: 0.0526 tan h (m x 12

x

...

(I)

10-3 m

10-3 m = 353

K

(0)<2><10-3

Too ::: 220 C + 273 :::295 K x

10-3)

x

0.5 x 10-3 rn

800 + 273

Surrounding temperature, Heat generation, Q = 35

12

. Fins I' tin IS 12 mm and there is n h ·~J5 ofpe .' 0 eai ] ellgtlt Oss frOllllhe ' this is short fin end 1Il1isiated ty l- {ill. So, pe problelll f tile _ [short fin, end insulated] . liP 0 rallsfer !-Ieat t [From HMT data boo k page flo -I9} J(A)Y2 (Tb- Too) tan h (mL) . P I - (I ~Q - [10><2>< (0-3>< 165x2.SxI0-7]~)«(3 ::;: h(l11xI2xI0-3) 53-295) x tan

165

x

2.5

x

10-7

10-3 W

Thermal conductivity, k::: 165 W/mK.

~

Heat transfer co-efficient, II::: 10 W/m2K.

(I) ~ Q

== 0.0526

E

Tojind:

tan h (22

0.0135 W per fin

12

x

x

10-3)

I

Number of tins required. We know that,

Solutioll : Fin area, A::: b

/A:::

I ::: 0.5

x

x

10-3

x

0.5

x

10--3

Heat generated

Number of fins required

Heat transfer per fill

2/

35

2.5 x 'O-7m

Perimeter p::: (for rectangular tin)

2.57 x

10-3 W

0.0135

2 (b + t)

::: 2 [0.5

x

I Number

IO-J + 0.5 x 10-3)

tr.p:-e-fJ:-· rn-e-te-r,-p-:::-2-x-, 0---3-m

J

of fins

=

3

Imlit:

Number of tins required is 3.

Scanned by CamScanner

I

==

3

I 36 Heal and Mass Transfer

/.

2

-~

@Tenthin brassfins (k -100 WlmK), O.7S mil, Iflick ~ axial/II on a lm long lind 60 mm diameter . Q'epi J " eng,,, Qre4 which is surrounded by 27 C. rhe.fins are e. e cYIi"" "Xle"d "e, from the cylinder surface and the heat transfer ed I.S c between cylinder and atmospheric air is 1S Win 2 CO-emC!!;'" I /( C ~I the rate of heat transfer ami the lemperalur . (I/t'14IQ( e lit Iii e fins when the cylinder surface is at 160" C. Ie e"d OJ

Fins Thickness. t:: 0.75 x 1Q-3 m Length, L = 1.5 x 10-2 m

(MU April 2

OOOJ

Given: Number of fins

We knOW that,

= 10

Thermal conductivity, k

=

Heat transferred, Q1 = (hPkA)112 (T, - TI>:»)tan h (mL,)

100 W/mK

Thickness of the fin, t = 0.75 mm Length of engine cylinder, Ley Diameter of the cylinder, d

=

=

=

0.75

x

(From HMT data book page no. 49)

10-3 m

I m

where

60 rnrn = 0.060 m

Atmosphere temperature, Too = 27 C + 273 0

Length of the fin, Lf= 1.5 em = 1.5 x 10-2 Heat transfer co-efficient, h = IS W /1112 K.

=

= 2 x 1

Ip

or =

433 K

I. Rate of heat transfer Q

IA

2ml

Length of the fin is I 5 . . . the fin end is . . em. So, this IS short fin. Assumms Ihal Insulated.

=

1 x 0.75 x 10-3 m

=

0.75 x 10-3 m2

A

=

[m

I

1H

m

2. Temperature at the end of the fin Solution:

Scanned by CamScanner

=

A= Area = Length of the cylinder x Thickness

Cylinder surface temperature

Base temperature, Tb = 1600 C + 273 Tofind:

2 x Length of the cylinder

p _ Perimeter

300 K

III

... (I)

15 x 2 100 x 0.75 x 10-3

= 20 m-1

123H Ib!OI an~_~~~~'\'?~:!~I:r(j·~_ ~;__..,_,._ ..(.;..:- (hPkA)Yl (Th- Toc) Illn II (nIl; (I) ~..'> <', . jl • 115 x 2 x 100 x n,75 ' 10 ,1 J ~ 1111111(20)< 1.5 x 10.2) . (4 3 3()()) -e-

z= s

)!

0, :: 1.5)(

133 x 0,29

0, ::: 58,1 W

=

Heat transferred per fin

Heallransferred for 10 fins [QI::: 581 W

58,1 W =

0.95

58, I x 10::::: 581 \V

l

...

:=

(2)

0,95

Heat transfer from un finned surface due to c onVection' IS Q2

Tb - Too

_---

1'00+

T

t

[,.' Area of unfinned surface

x Lfi (1'b - 1'(1)

r

(1)

095

= h A sr :::II x (n d Ley - lOx

1'b-

:=

433 - 300 300+--0.95

Area of cylinder - A rea offinl =15x[(nxO,060xl)-(IOx075 . x I 0-3 x =

1.5

x

10-2)] 1433-30°1

Result : I Heat transfer,

I 02 = 375.8 Wi·

.. (3)

2. Temperature

Q = 956,8 W at the end of the fin, T

=

440 K,

So, Total heat transfer, Q = QI + Q2

ITotal heat transfer,

Q

= 581

Q

=

+

375.8

956.8 W

I

I

[illA circum/erential

rectangular fins 0/ 140 mm wide, ami J mnl thick are/Wed Oil a 200 mm diameter tube. The fin base temperatllre is 17()" C ami the ambient temperature is 25°C.

We know that,

Estimate/in efficiency

Temperature dis . [short fin, end insulated] istnibuuon

T{lke

T T -

=rr_

heat

conductivity,

Heat transfer

coshm{Lf-x]

if)

Tb - T

Thermal

(//1(/

/Oo5S

k

per fin.

= 220

co-efficiem. h

:=

WlmK. 140 Wlm2X.

__ __:.__.. cos h (mL )

f

(From IIMT do/a hook pag«

/10.49

J ~

Scanned by CamScanner

fir

seZW'l1 \

___ -----:----_ .._1.24 Heal and Mass Trans er 0

________ ~

Give":'d

L::: 140 mrn == 0.140 m WI e, . k ss t::: 5 mill == 0.005 III Thlc «ie , . ter d == 200 mm ~ r == 100 111111 == 0 I Dlame , . Fin base temperature, Ambient temperature,

0

.

/

"Ill

1.24/

- r II -

:::: 0.005 [(0.242»

_. (0. 100)1

lO"'lm21

~>(

[~--.--_j

III

C + 273 == 443 K

0

Too = 25 C + 273 == 298 K

= 220 co-efficient, h =

Thermal conductivity, Heat transfer

T b = 170

I [rze

/'":::

40

W ImK.

k

140 W/m2K.

Tofind:

30 fill dliciellCY

I. Fin efficiency, T1 2. Heat loss, Q

20

11

10

Solution: A rectangular fin is long and wide. So, heat loss is calculated by using fin efficiency curves.

Corrected length, Lc

=

1.5

o

{From HMT data book page no.50 (Sixth edition)]

1.5

t

L + 12

Lc

2

2.5

3

f_h \0.; l kAm

= 0.140 + 0.005

2 ILc

From the graph, we know that, [ flAlT claw book page 110.50]

=0.14251111 '1 + Lc

X . = LeI.) ans

0.100 + 0.1425 0.2425 m I

-

21t [I'2C2 - I}] 21t [(0.2425)2 0.30650

Scanned by CamScanner

1112.1

- (0.100)2]

05 .

-[ " 1 -kA

,r 1.5

- (0.14_:»

, [~= 1.60 I

III

l

220

x

140 7.125

1°·5

x

10-"

neaI and Mass Transfer U

/.242

Curve~

-

r,

.

0.2425 = 2.425 0 I

==

r2(

.

'fe'" 61 Oia(J1

Curve value is 2.425

Fin efficiency,

1') ==

Heat transfer, Q ==

,~

Q = 0.28

IQ=

x

1742.99

Dr..

t:>'Gph

As h [Tb - TC()]

1')

0.30650

rOil]

28 %

[From HMT data bookp

=>

f

x

140

x

10

ft", : Fi

efficiency, 1') fin . ture at the edge of the rod, T, =L 2. Tempera ,J eat dissipation, Q 1

age n050j

[443 - 2981

10

3. n 4.

Wi

d:::: 1.2 ern == 1.2 x 10-2 m

Length, L == 6 cm = 6 x 10-2 rn . ht or HelS ductivity, k = 25 W/mK. (J1al con filer . temperature, T co = 600 C + 273 = 333 K dmg Olm . _ Sorr f r co-etliclent, h = 4:> W/m2K. at trans e He ature, T b == 1000 C + 273 = 373 K temper Base

X axis. value is 1.60

By using these values, we can find fin efficiency

eter,

fin effectiveness, E

So/Illion:

Result:

. .m 'ency (For insulated end)

J. Fm ell'C'

l. Fin efficiency, TJ = 28 %

tan h mL

2. Heat loss, Q = 1742.99 W

TJfin

1m A stainless steel cylindrical

rod fin 0/1.2 em diameter and 6cm height with thermal conductivity 0/25 WlmK is exposed to surrounding with a temperature 0/60° C The heattrensfe: co-efficient is 45 Wlm2K and the temperature at the haseo! the fin is 1000 C Determine

where m=

... (I)

mL

==

rtf

[From HMT data book page no.49]

hP

kA

P> Perimeter

==

nd

==

0.0376 m

2 A - Area == TC/4 d == 1.13

x

10-4 m2

I. Fin efficiency 2. Temperature at the edge

0/ the

rod.

~

m ==

3. Heat dissipation

j kAhP

4. Fin effectiveness. Assume fin end is insulated

Scanned by CamScanner

~ [m

=

24.4

m-II

45 x 0.0376 25x1.13xl0-4

I

/

I. ~"d

Mass n'ollsjer tan 11(24.4 x 6 x I o-~~


=:}

24.4 x 6 x 10-1

thin =

'llin

= 0.61

(or)

C~!..ill==

~ 61

o/j

Tenlperalure llllile edge of the rod,

J)

tall h (24.4 ::=

Temperature distribution [short tin, end inslilated] T - TX)

cos"

= -------

III

J. J 3 x ] o-~

J --25 x 0.0376

xJ

[L -

-.-t:s--~

x 6 x J 0-2)

cos" (/ilL)

cos II 11/ [L - L 1

,tSIl/I:J. flO• e fJicienc)"

cos" (IIIL)

2. Temperature at the edge of rod, T, = L == 350.5 K

T - 333 373 - 333 T - 33J 373 - 33J

cos" (24.4

x

6

0.439

=

19_:r-Q

= 2.48

4. Fin effectiveness,

E

= ] 2.2

o L=

350.5 K.

tlissiplIlitJll[shor:jill, em/ lnstdated] ("PkA)~ (T s: Tx» tall" (mL)

[45 x 0.0376 x 25 x 1.13 x 10-" x tan It (24.4 x 6 x 10--2)

-=_-~i@-8 W

-----------

1!tS

x

(373 - 333)

alliminilllll rod (Ii = 204 WlmK) 2ent in diameler and 2fkm prolflllies fro", a wall which is mainlained al 300·C TIlt end of the rod is insulated and the sutface o/Ihe rod is txposed 10 air III .woe Tile heat transfer co-efficient between 'hi rod stir/ace (II1dair is JOWl",] K. Calculale I/It /Ielillosl ~I' the rod and the temperature of the rod at a dislance 0/ JOcm/rollltlll? WII/I. All

/ollg

[Anna Univ- June 2006J Givm:

Thermal conductivity

Diameter, d

Scanned by CamScanner

W

___--:S Soh'ed lJni~'~rsity"ProbJems

{ From NUT data book page no.49] ~ =

Q

~-.

Temperature at the edge of the rod, Tx =

Q

" J~eatdissipation,

J.

x 10-2)

IT = 350.5 K I J) Hetll

11 = 6) %

of aluminium

= 2cIlI "'-,0.02 III

rod, k = 204 W/mK

r

. N~ t!

tlr 111,1 HI,I,I

"

. II· I -

0 'II' -

\.

Hil

11

o.zo "'

I\:\~

I

~I"\\

IlIhlhl 1\.11111''-'1,,1111

c\·nll"\'.

"I'~II1I;",~t~ I \.'"

er

., 'il/I.

dl

I,

I '

I

1'", - Ill" \ \ I-

\.'1"111,

_J:'I'

II'

l\)1\" \'

1'1\ -

'"

I

i

1- 10 I "

II) \\1," " "

1111

\I'~'"11 \

1\l'ill

I\\d

11111 111:-1"11\.'\

S.Ilt4fil'" : I hllllt'l 1'1'1' Ih\1 t II, II - 0,0

I t'''~lh l,l'lh(

t

II,

1'1' 10\.'111 I .

I)

[<> ,... ,VI)

I - 0,"0 m 10

I

x-'/Ol

1,11"IO"IYi'('1I

H),t)7 W

1(1)

I

III

I

~1I0\V

III

It.

Isho!'1

di~ll'ihlllinll

. 'flilif'

P' ,

)0

'()'hill/(L-

d

till,

'lid in ..lllIedl

')1

cos II (",1 )

So, Ihis is short lin. We knov that,

[From /I M1' III I book p(/~e 110. ·19 (Slxtlt t.:d:'/OII)

Heat transferred =

I '" I

_IIIIJ,(),III),I)

1 1111 II \\1111

'i'I)III

Q

1.1

()_~IO.()'O('

hid, l.,.)

.

\ 'I '11'1'

, 41

~ I 1\

,..1 .I, Il'al h'~1h~ Ih{'

"/,,

1

[short fill, end insulated]

(hPkA)Y: (Tb- Too) tan It (rnl.)

I)UIX

... (I)

~

[From HMT data book page no. 49 (Sixth editioll)}

=

1OcIII

=

O. 10m h [3.13(0.20

T - 303 c

573 - 303

- 0.10)]

h(3.13xO.20)

where,

T - 303 A - Area

= 2!_

4 _ 7t

::)

d2

- 4 (0.020)2

IA

=

3.14 x 10-4 rn2

P - Perimeter = 7td = 7t x 0.02

.,

[p

=

0.0628 m]

~~-J ~

Scanned by CamScanner

0.8727

573 - 303 =>

I

IT

=

538.63 K

I

Illu!! :

I. Heat lost by the rod,

Q = 30.07 W

2. Temperature of the rod at a di tance of l Ocrn from the wall == 538.63 K

-

Fm

1249

'''I; -

Fin . ThickneM.

t•

4"''\'

0.76 mm

Length, L· 1.27 em WC kllow that, Diameter of the cylinder, d - 5 rn Armo pheric temperature NUI1Ib<'r of fins

=

1

=

»

0.05

45°

Heal transferred, 01

ITt

; 27

... (I)

3 ....318 K ",here,

10

Thermal conductivity

of fin, k = 120 W/nlK

Thickness of the fin,

(hPi
:::

I

c:

0.76

111111

=

p _ Perimctcr:::

0.76 )( 10')

x

::: 2

III

Length (heiglu) of the fin L/= 1.27 em = 1.27 Ileal transfer co-efficient. II = 17 W/m2K

2

Length of the cylinder

x \

\p ::: 2m I

10-2 III

A - Area ::: Length of the cylinder x thickness

ylinder surface It'lllp<'ralure or

Ba e

temperaiure

T h:: 1SO C + 273 ==

4

::: IxO.76x\0-3

3K

Tofind:

\ A ::: 0.76 x \ 0-3 m2

I. Rate of hear transfer. Q -.

ernperaru--

III

at the end of the fin.

==

j kA hP

Solution:

1

e'

ng h en

10

0 IS

he fin is 1._ em S hi . o. r IS insulate .

IS

short fin. Assumins

\ 20 m == \ 9.30

L.

Scanned by CamScanner

x

0.76

-

O1-1J

x

10-3

d Mass Transfer 1250 Heal an

we nee d temperature

Q, ::: (hPkA)Y2 (Tb- Too) tan h (ml )

.

f

(1) ~

::: [17

x

2 x 120 x 0.76 xtanh(19.30xI.27

10-3]~)( (423 x 10-2) -318)

x

::7

Tb - T ~

::7

..:.---:::Tb- r~

T-

[Q, ::: 44.3 WJ Heat transferred per fin

=

44.3 W

Heat transferred for 10 fins

=

T-3IS

I Q, =443 wi

105

Q2 =hA~T

17 x [(n

x

0.05

= Area

(T

b-

:= rel="nofollow">

=

280.21

of cyl inder - Area of fin]

+ 2S0.21

[Q = 723.21

wi

We know that,

I

Q = 723.21

W

2. Temperature at the end of the fin, T

=

419.94 K

o Aluminiumfins

Calculate tile heat loss per fin. K == 200 WlmoC for aluminium.

Take I, = 130 WI",2 C and

[Madras University Ocl-99, OCI-2001} G;Vfn:

Temperature distribution [short fin end insulated]

T-T co

4 19.94 K

1.5 em wide and 10 mm thick are placed on a 2.5em diameter tube to dissipate the heat. rile tube surface temperature is 170° C ambient temperature is 20" C.

Wi = 443

Tb-T

0.970

x I) -

So, Total heat transfer, Q = Q, + Q2

co

~:::

I. Heat transfer,

To:»

(10 x 0.76 x 10-3 x 1.27 x 10-2)] x (423 -318)

IQ2

1.030

Result: t x Lf) x

(nd Ley - lOx

[.: Area of unfinned surface =

=

x 1.27 x 10-2)

_

••. (2)

Heat transfer from un finned surface due to convection is

==

L

_

cos h(19.30

423 - 3 IS

10

W

=443

=h

r~ :::

r-31S

x

==

cos h (mlf)

.-:-----:- -

44.3

' put x

::: cos h [111 (l - L)]

~._

::: 1.76 x 105 x 0.240

at the end of fin. So

,

~s h [m (Lf- x)] cos h (mLj)

-,\,.

Scanned by CamScanner

'

Wide of the fin, b == 1.5 ern == 1.5 x 10-2 m Th' Ickness, t == 10 rnrn == 10 x 10-3 m.

~mt e er of the tube, d == 2.5 cm ::: 2.5

x

' . IO'--m

d Mass Transfer 1.252 Ileal (111 ~c

temperature, Ambient temperatureT Heattral

o

r, ~J7~0.~: + 2:3:::: 443)( <, 00 -

isfer. co-efficient

Them1al conductivity

----~

k

II)~~]

20 l. -I- 273 ::::293 )(

h = ) 30 W 11112 "C

= 200

~

W/moC

llsferred by fin, Q

I(

,1

Tofind:

('lesttra

=

14.3 W



. hi reclangular

jill has II lengll, 0/ J5 mm I~. k I d " . lie nes« TI,e tl,ernla con uctlVlty IS 55 IV/m"e T'l • 11 I ",,1" " • I tiejill IS t:J il. 10 II cOllvectloll envlronmellt at 20" C ~ set! ,VI",] " e. Ca Icu Iate the I,elll loss 1'.0 b(IIId t-"pO O"/j J"a~

Heat loss

..A;" A sll" "

Solution: Assume fin end is insulated; So, this is short fin end' Insulal

type problem.

ed

h$ll

Heat transfer [short fin, end insulated] Q

------FillS I 2' ::: 130)( 0.05 x 200 x 1.5 x 1()-4]~-;---::':~ [xtanh(14.7xI.5XI0-2) (443-293)

=

=

P - Perimeter

.F/50"e.

r,,'UreoJ

data book I)

I

age

Lellgd1,

L == 35 nun

1I0.49J

s

Thicknes ,

Breadth

x

x

10-2

1.5

x

10--4 m2

x

10 x 10-3

IP

=

0.05 m

m

=

T b = 1500 C + 273

Heattransfer co-efficient, I

x

10-2)+(IOx

m

1.4 mm = 0.0014m

Base temperature,

2 (b+t]

2[(1.5

t ==

= 0.035

conductivity, k = 55 W/mo C Thertna I 0 Fluid temperature, Too = 20 C + 273 = 293 K

thickness

1.5

=

. [Madras Umversity Apr-1002j

'" (I)

~: [FromllMT

A - Area

SO

It"rpe

(hPkA)Y2 (Tb- Too) tan h (ml.)

where

I

IO-3)}

h

= 500

= 423

K

W/m2 OC

r,p.d: Heatloss, [Q1

;Wlllioll :

JhP

~ Since the length of the tin is 35 mrn, it is treated as short fin.

kA

'~sumeend is insulated. 130 x 0.05

200

x

1.5

14.7 m-I

Scanned by CamScanner

I

x

10--4

Heattransferred [short tin, end insulated] Q

=

(hPkA)Y2 (T s: T~) tan h (mL)

..• ([)

[ From H MT dol a book page 110.49J

Fins 1.255

_ 25 d d- .

/.254 Heal and Mass Transfer where

P _ Perimeter

~ A-Area

[A

== ==

2 x Length (Approx' 11a e 2 x 0.035 ll t ly)

==

0.07 m

I

==

Length

x

==

0.035 x 0.0014

==

4.9

I

1Ifi~d: bY the rod. Heallost

.aJ11eter of

==

113.9

x

4.9

m-

1

x

I

[500xO.07x55x4.9x

L

d - 0.025 So, thiS

== 6.4 < 30

155 0

I

We know that

Heattransferred [short fin, end insulated]

10-5]~x(423-293)

Q

==

(hPkA)I/2 (Tb- Too)

... (\)

tan h (mL)

where

w·1

P-Perimeter=

Result: Heat loss, Q == 39.8 W

-:

_...QJ2_

. .. h rt tin. Assume end is insulated.

x tan h (113.9 x 0.035)

[I]

the fin, d == 0.025 rn

DI - 0 16 rn Length of the fin, L - .

10-5

Substituting h, p, k, A, T b: Too, m, L values in equation (I)

== 39.8

I"

1IIl11ioll:

[m

IQ

T:;::::2

..",81 COo

500 x 0.07

(I) ~ Q==

gthO

J11perattlre, b ::; 160 C + 273 ::; 289 K ase te erattlre, Too 2 e 1)11d'og tel11P a-:' t h::; 15 W 1m K. I f r co_eulclen , surro h at trailS e vective e . k == 190 W ImK. Con dtlctiVlty,

I;en

rite 1

m

55

0.025 rn

{tlte ro ' ::; 0.16 m _: eler 0 J..,:;:::: 16 clTl 6j,~Oi~(1l {the rod, 600 C + 273 == 533 K

thickness

10-5 m2

x

COl ::;

An aluminium rod 2.5 em in diameter and 16 em IO/lg protrudes from a wall which is maintained at 260"C The rod is exposed to an environment at 16"C, Tile convective heat transfer co-efficient is 15 Wlm1K. Calculate tile Ileal/Osl by tile rod. Take k = 190 WimK. [Madurai Komara) University Apri/-97}

Scanned by CamScanner

xd = n x 0.025 = 0.0785

I P = 0.0785 m\ A-Area

=..!_

d2

= ~

(0.025)2

4

~ =

4.9 x 10-4 m2 \

m

r "6 u t 011(/ I. ]) ne«

Fins 1.257

Mass transfer "--- ______ III =

R

---'-',

(Jf ferred. pi' ItrailS

()

~e8

=

{15- x 0.07~

1190 [m

= 3.5

4.9

x

x

de length is 8 ern, it is treated as short fin A he bla . Ssume SiOCe I d . su ~te . s: red 1 short fin, end msulated] JIS iO

1/

'Q~:

10-4

f

1l1~

He

8

t trlll1sler

PkA)~(Tb-TCXl)tanh(mL)

... (1)

Q::; (h .

(I) ~

Q = (15 x 0.0785 x

190 x 4.9 x 10-4 ]~ x (533 0.16) - 289)

x

tan" (3.5

[From HMT data book page n0.49]

x

where

IQ = 41.03 w.j

m

==

lesult : Heat lost by the rod, Q = 41.03 W

1* kA

465xO.12 ==

I!l A

turbine blade 8 em 10llg made of Sillilliess Sleel Wln,K) has a cross sectionat area of if. 75 em} tIIltla perimeter of 12 em: Tilt! bast! temperature of the billtleis 6IHr C Find the qualllily of I,eal given to blade if in the blade is exposed to Ilot gtlses 850"C. Take heat transfer co-efficient to be 465 WlmJK.

[m

(It = 32

I) ::>

(

length of the blade, L = 8 cm = 0.08111

Perimeter, P = 12em

=

x

0.12

-230.2 ~

Heat transferred, Q

=

-230.2 W.

111

+ 273

Hot gas temperature, T'Xl= 8500 C eat transfer co"efficient,"

==

ltsuJl:

10-4 1112.

Base temperature, Tb = 6000 C

H

I

[-ve sign indicates that heat flows from gas to turbine blades]

Thermal conductivity, k = 32 W/I11K. Area, A = 4.75 cm2 = 4.75

I == 60.5 m-

Q == [465 x 0 12 x 32 x 4.75 x 10-4]Y2 x (873 -1123) x tan h (60.5 x 0.08) [Q

Given:

32x 4.75 x 10-4

= 873 K

+ 273

=

1123 K

'jJ

'.!J I

.

= 465 W/1112K.

'11

Scanned by CamScanner

• -l S 6 em diameter Aheatmgunit made in the form of a eyI'inaer I . . 20 Iong!'tudinalfins 3. mm and 1.2 m long. It IS. provided With J . .r. Of the eyltnuer. Ifllck whicl, protrude 50 mm from tire sur,aee 'J bi t . 800 C The am len The temperatllre at the base of the fin IS •

J.2j

i

Heal and Mass Transfer

'n"rnlllres is 2.~"C. Ttiefio» heat 'ral1\·r.

rem,."'. ''Jerco_ l e el,lillller and JIIIS 10 'he :H"rolilldillg . :lJici(!11 -, " . (Ur IS J 1ft

C leulnlt the rate of heat transfer from 'heli 0 If;/ (/ 11111e(/ ",1,. _IrrOllll(lillO. Take k = 90 '~/' 1 'ImA. 1v(1//, ~.

' I

V"

0/

"

[ Man0l11110nilllll SlIl1daranar

VI . 11lJerSily

V

o.



(lfl ell

()~I

jl

f t Iie fin is 50 mrn. Assume end is insul a tiS en.

I'flgth

d

IIlSU

. nor1

lshort

ferred

1,5

Ip

lated Iype problem.

thi IS

.

if)

tan IT (mLf)

'"

(J)

~ '9(J

Gil'en:

l}

Oiameter of the cylinder, d

=

Length of the cylinder,

= J.2

Ley

6 ern

=

(From HMr datn book page n0.49]

0.06 rn \vhere

III

.

J11e

Number of fins

=

p- Pen

20

ter

===

===

= 3 mm = 0.003 m

Thickness of fin (t) Length of fin, Lf

=

Base temperature,

50 mrn Tb

Ambient temperature,

=

Thermal conductivity,

0.050 m

T IX

k

2

x

Length of the cylinder

2

)<

J.2

[!_2_.4~

= 80° C + 273 = 353 K

Length of the cylinder

===

A - Area

= 25° C + 273 = 298 K

Film heat transfer co-efficient,

h

= J

1.2

0 W Im2K

[A

= 90 W/mK.

Toftnd: J11

-3.6

=

j III

L--

d=~jomrt_--

~~~

~~ (I) ~

0, = [10

~-r-r-r-~ 01 t =

0.003

Length, L = 0.050 m

Scanned by CamScanner

_

x

x tan h

Thickness,

{-

=

=

x

0.003 10-3

m21

IOx2.4 90x 3.6

x

10-3

~~f2J

2.4

x

90

x

3.6 x 10-3)12 x (353-298)

(8.6 x 0.050)

62.16 W.

J11

Heat transferred

thickness offin

J kA

Sotution :

I

x

x

~hP

=

Rate of heat transfer

. -i-

'

fin, end IIlsulated]

Heat trans 1/. Q, ::::= (hPkAV2 (1 b- T

No

0

per fin

=

62. I6 W

1.260 Heal and Mass Trans er Fins 1.261

Number of fins = 20

0, :; 62.16

So, Total heat transferred,

x

20

10, :; 1243.28~ Heat transfer from untinned surface due to Cony

d

0

t

. eCllon'

IS

1,,"l1oth, c;:>

,J,)

-

0.050 rn

-x:

3

rnrn :;

0.003

0.0 2 0

111111 :;

I conductivity.

m 111

k= 45 W/mK

0

298)

[o_ = 122. 5 W 1

Surroun

r,fif/d: I'

=

111 :;

. . co-efficient, II = 100 W/m2K etlan nve Co _ erature. 1 b:; 120 C + 27J = J9J K P Base tem d'10 temperature, T C1J = 35° C + 273 = 308 K

[ .. Area of un tinned surface= Area of cylinder - A . . reaoff!n) ]0 [x x 0.06 x 1.2 - 20 x 0.003 x 0.050J f3'~

Q

50

Ine(1J18

= h x [11 d Ley - 20 x t x Lji (T, - TyJ

Q=Q,

===

. kneSS, Inle L === 20

02 = h A t1.T

So, Total hear rraasf e t,

:

6jl'tJI 1.alTlcter.

I. Heat

+Q2

~.."

II::>

n 0\

rate per fin, Q

Fio efficienc

_43.28 - 122. ~

..,

,

, Fin effecti ene s. E ).

Q = 1366 If.!

I

)4IJlliDfI :

20 rnrn, it i treated as hart fin.

; e the fin len Inlllt :

~: '. ilD lated,

Heal rans err

!l

urne

A dlcum/uential rtC/ungulor profile fin on a pipe of 5fJmmlluJutli!uneler nJ mm 'ltick uno 20 mm Mn;:. Thermal fJntlucti.,il i. 45 WlmK. Convection co-efficient is 100 W/",1X. Bote temperature i, /2(1" • and urrounding

0:;

hP

I. /legl jll'if41 rut.eper [in

fin, en i ula ed]

)Y2(Tb-T'f)Lanh(mL) [FfI'Im HMT d.

P _ Pcrimc -r

fllr lemperu/ule I. JJ" C Determine

[sbo

-

11 /

[P -

(J, J

0.050 57

mJ

2. FIn ejJkkn(:, 2 . f'lli tj/et:II'Iene.u.

I M(lnriMlflnllHrI

/:/H1d(Jf(~nar I/nM;rKlly,

( /,/r I

Scanned by CamScanner

/I/{JV ()6/

..!..

((),(J5(J

P

.. ' /0

Q(j.

I) page!1O ,')/

)$·'':

s For Practice

~

[t.

J.QO

x 0.157 -1 - ,---.:...:.__ 1.96 x 10-3

'_3.3 m-

...... 1_11_1

=> Q

=

,.-__

Jj

J

O.157

. . 1{llet . 0

(f//II 1/

d/·I

.

tan" (13.3 ' 0020)

Fin efliciell~Y,

'

I

'C

tall

'1=

x 10-)

1y, 2)(

.

lell'P .' b KI I (If II Inllg .' rod of• I em dml1leler if'llel",lIilllfll' , ell~ 'J (It a furnace. The rod is 1!\/7o"e(11 .'1 Otll! • (I"C bv• pl{lcillg It 1/1 .... . ... () utr. (It ,!(/ '(11 (I c:ollveUIOII co-efflclelll of 15 WI,II1K .,.., "I' C wt . . t ne .1/' Illlfe melHllred III II dlSIIlIH:e 0 78 6 "" "perl , :J" • n Will' l de Delermille (t lite thermal eOllllliClivilV Of lite "'(II . I 141.5 • . '.I ertat.

J(8)

[Ans k = 45 WI",KI

tall" ",L

=

'l

(39' .J -

1llL.

, Oder",;ne lite Iteal flow for-ti} rectangula» fins (ii) Triallgular

=

Ii (13.3 13.3

x

x

0.020

-

97.7 ~

tan II IIIL ----_ ..

E==

jf~ Etl'ectivcnss, E == 1.56J

tan h (13.3 /-'00

=:

tJ/ 20 "" ami J ""~' buse ~/lic/(//e.H. Tlter",a/ CIIJI(IIIc1iv,Iy ts 45 WlmK. Convection coefficielll is 100!VIm]/(, base temperature is 120vC. SlirrOll/lllillfJ fluu! ((",pertltllre is J5" C. Determine also jill effectiveness. Use lite eI/nrl /AII,\' I. Rectangular jill Heat flow, Q == 285 W Fill effectiveness, E == 11.6 2. Triallgu/ar jill Heat flow, Q = 268 W Fill effectiveness, E == /(UI

0,020)

Fill effectivelless

x

45

x 0.020)

1.96 x

x

0.157

10~J

WlmK) 3 mm thick 11/1(/7.5 em long prolrudesfrom II 11',,/1 tu JOO" C The ambient temperature is 50·C wit" " = 10 WIlli] K. Compute heat loss from the jill per IlIIil dept" of the material. AI!;() calculate its efficiency 11IIt! effectivelless. / AilS Q = 359 Wlm T] = O.9J7, E = 4UI

I, All"llIlIIinilim

jill (k

= 200

-

i. A one meter long, 5 CI1I diameter cylinder placet! ill {I atmosphere I. Heat flow ' Q -). - 2' 9 W

w--(

(II

'J'

/JII'

.I, fill

Re.m/I:

I'.

39.1 nuujrom tue Iurnace end. D'I . '. • e trlll"'e the er{l/llre oj the rod. {Ami T == 773

. "IIIIICe

45 x , 96

~J

_5.9

'ltin

()

I'I!

[I 00 x

IQ

-

1ertl r,.ob .-J.9 .fIlII" rOil I em diameter 1IfI,Villa a Ilte----' " d II] II ""(1 COlltlU'I'( IVtty. I/ttll II' i\·,1i(lced 1/1 a furnace, Tlte rod is ' V W/IIII\ '. exposed 10 . /'H' 0 er its !I'lIr/act! (l1Il1 the COlivcction '{','fi' tur (/( Ilj • C I' , • . co-e tctetu . /6(1 . I (II 1.5 I,Jljm'" R.. TIle lemperullire is relit/liS 2651) IS

2. Fin efticicncy n - 9 , '" - 7,7 % 3. FIll dfectiv cness, E ::: 1.56

~/

Scanned by CamScanner

11/40· C is provided with 12 IOllgillll/illa/llrfliglll [ins (k:::75.6 WIIIlK). The fins art! 0.8 111111 thick and protrude ~.5('111/rolll the cylinder surface. T"e "ellllrall!Jjer co-eflil.ielll IS 23.25 WI",] K. Catcutatc lite rate ofhea! IramIe, illlle mr/(Ice (ell/pert/tllre is 1JO" C 1;1/1.)' Q = /170 JIll

Transtent . Heal ( ,

1.264 Heal and Mass Transfer

-ondUClion 1.265

}.5 TRANSIENT HEAT CONDUCTION UNSTEADY S!ATE CONDUCTION

0 ( Q.)

where

If the temperature of a body does 110t vary .-~ . " With ti . to be IIIa steady state. But If there IS an abrupt cl .rne, It is . . . lange In . sal~ temperature, It attains a steady state after SOlne p' lis s~r[ . . . ertod. D . aCt period the temperature vanes with time and the b dv : lJrlng tho . 0 )'Issa'd II an unsteady or transient state. I to be in Transient heat conduction Occur in Cooling of automobile engines, boiler tubes, heating and coolina f Ie enginel • • t> 0 metal b'l ' rocket nozzles, electric Irons etc. I lets, Transient heat conduction can be divided flow and non periodic heat flow.

in to

varies on a r

I

.

. . Ien gth , L c -terlstlc

for slab : .. Characteristic

I

In non p~no. diIC h eat flow, the temperature the system vanes non-linearly with time.

Example .. Heat' mg a f an an i . ingot 111 a furnace,

L - Thickness

A

::J__ _ A

Lc~

~ \

x

L

A --:;;:-

of the slab

For cylinder: Characteristic

V

Lc = -A

length,

=

~

at any point within

~ cool ing of bars.

The ratio of int I . convettion' erna conductIOn resistance reSIstance is k nown as Biot number. Biot. umbe r -- _Intemal con ducri . uctlOn resistance Surface co . nvectlOn resistance

where

R - Radius of cylinder

1.5.1 Biot Number to the surface

For sphere: Characteristic

tI ength

Volume - V Surface Area -

_ Lc -

. length,

n

egu ar basIs.

Surface of earth during a period of 24 ho urs. (ii) Non periodic heat flow:

Scanned by CamScanner

Charac

length or Significa

where

Examples.' Cylinder of an IC engine,

8.I ---.::. - h Lc k

Characteristic

Lc -

'. penodlc heal

(i) Periodic "eat flow

In periodic heat flow, the temperature

.. hennal conductivity, WlmK T kh _. Heat transfer co-efficient, W/m2K

lenzth Lc = V 0' A

n:R2 L 2n:RL

hA (T - T )

. 'ble

=

p

Ne~"!'

V ciT cit

Internal where

.

Resistance

R - Radius ot the sphere.

For c"be: Characteristic

length, Lc

T V A

T:::: To at t

LJ

· Lumped/,etd fIg 1.13

6L1

. · 've heat \ convect I bodv fronl t h e '

\Lc~ ~]

.

5

::::

-

-::::>

1.5.2 Lumped beat Analysis [Negligible

internal

In a Newtonian heating or cooling

is assumed as

resistance

process

is considered to be uniform at a given time. called lumped parameter analysis.

is known as

the temperature

Such an analysis is

.

energy

p

X

Cp x V

dt

-hA

respon

determined by relating its rate of change conve ti e exchange at the surface.

-

energy with

-hA

dT

~

T - T

dt

/11

~

b und

ry c ndiu



0

III

· lib titutin

t

cit

t + C\

At t = \.&0)

x \

L

t -T

e of the body can be of internal

x

Integrating

r\ppl

Let us consider a solid whose initial temperature is To and it is placed suddenly in ambient air or any liquid at a constant

Scanned by CamScanner

ot

pCp V

T-T~

resistancel

resistance

negligible in comparison with its surface Newtonian heating or cooling process.

T~. The transient

Rate of change dT

dT

temperature

ctlp"cily system.

-::::>

L - Thickness of the cube.

The process ill which the internal

0

internal

-hA (1' - T F)

where

=

o-T \== jj

C\

. .. (\ ,80)

Transient Heat Conduction 1.269 _ Lumped

Heat Analysis

bleJ1lS I,ed fro

1.268 Heal and Mass Transfer

I SO

~ In [T - Too]

-

-

-hA

p Cp V

t

+I

11

-------[To - T <xlJ

~

alum'

2

y

'"illm slab of 6 mm thick is at 400· C , ,

50 c"', d /ellly immersed In water, So Its surface ;0 ~ illS SU ( " ~li',/1" gJld ed to 50 C Determine tIre time required IV '/1# / 's lower ~I Ilre' DC ~~(r"t reacl. 120 ' I ~~ lab 10 I for/h{ S fer co-efficiellt, I. = 100 Wlm1 K D

=> In [~ ,-_ T.;:.

Mal ,ra"s

I ra~{ ,

:

_ SO x SO em:!

. OS-

~ Di,(enSlo L'" 6 mm

=

6

SO x SO x 10-4 m2

=

10-

x

3

m

. knesS,

,hie T = 4000 C + 273 = 673 K .' temperature, 0 Initial T = 50 C + 273 = 323 K . I temperature, co na fl . mperature T = 120 C + 273 = 393 K mediate te ' Inter f o-efficient, h = 100 W Im2K Beat trans er c

, , , (1.81)

0

I

where

0

To - Initial temperature of the sol id, K T

- Intermediate temperature

of the solid, K

Too - Surface temperature of the solid (or) F' temperature of the solid, K Inal - Heat transfer co-efficient, W/m2K A - Surface area of body, ml.

lIioll :

-

Speci fie heat of the body, - Time, s.

Cp -

t

0

I I

Density of the body, kg/rn-' V - Volume of the body, m3

p

'fiwd:

. (t) required to reach 120 C Time

h

J/kg

Propertiesof aluminium

K.

Specific heat, Cp

I. In lumped parameter than 0.1. i.e.,

T

Bj <0.1

-Initial

~

system, hLc

-

temperature,

- Intermediate

k

are

Density, p = 2707 kg/rn '

Note

2. To

{From HMT data book page no. I}

Biot number value is less

=

896 J/kg K

Thermal conductivity,

k = 204.2 W/mK.

irllab,

< 0.1

Characteristic length K

. (or) Significant length, Lc

temperature, K

Too - Surface temperature or Final temperature,

~'~-=:m-=~

Scanned by CamScanner

__'~_L-

K

.J_

L =

2

1.270 Heal and Mass. Transfer where

H

_------71:.:.r~alnsielll

_______

=ue:

\,/~cre

L - Thickness of slab

K

10 - Initial temperature,

L = 6 x 10-3 c 2

.,.. _ Final temperature 1<1)

1 - Intermediate

I

I'

Ii

K

,

We know that ,

C

. hL B lot number , B.I = __k c

p

-

Specific

p _ Density 3

x

x

W /1ll2K

length,

III

kg/rn!

10-3 t - Time,

204.2 Bi = 1.46

,

heat, J/kg K

Lc - Characteristic x

K

temperature,

h _ Heat transfer co-eflici('nt

100

eat CondUCTion 127

10-3 < 0.1

S

393 - 323

~iot number value is less than 0.1. So thi " analysis type problem. ' IS IS lumped heal

(Il :::>

673 - 323

For lumped parameter system,

In (0,2)

-1,609 '"

(I)

[From HMT data book page no, 5 i (.'iixlh editioni]

-100 XI]

[

= e 3 x IO-J )( 896 x 2707

G" .~

-100 x 1 3 )( IO-J x 896)( 2707 -IOOxl 3 x 10-3 x 896 x 2707 117.1 s

I

Nfsu1t :

Time requ ired for the slab

10

reach 120· C is "7, I s,

We know that, Characteristics

T - T~ (I) ~

"C

length, I.e

=

:i._

[Lc:~p,p"'1

To - T",

Scanned by CamScanner

A

o A copper

rod of oilier diameter 10 mm illilia/~I' (I' a umperature of 31J(}UC is sllll(lell~11immerseti ill a water allOO"C. Determine the lime reqllired/or Ihe rOt/IOreach 2 J O"c. Tali e COli l'eCI;W! Ire(II ITlIIIS/tr co-e//iciol' is 9J WlmlK.

.'.

Transient Heat C

onduc( value is less than 0.1. So th" Ion 1.273 Inbcr ' IS IS lu , '011111 blerll. Illpedheat l I' e pro . :; I)'P d parameter system,

,~~l~"C(l1and Masj' Transfer

()'/,·.,,, .Dlnmctcr of the rod, D

20 mm - 0.020 Radius of the rod, R = 0.0 10m =

e

In

I ,.,1

/'fo(

To = 380° C + 27 _ 3 - 65" K T = 100° C + 273 ==373,)K

Initial temperature, Final temperature,

x

t] ... (J)

~~e

T ==210° C +

fo - T

273==483 h ==95 W Im21(

[-hA' pCp V

IX)

Intermediate temperature, ~.' Heat transfer co-efficient,

C

1lI(llP

[F rOI1/ H MT data b ookpa ge nO.5 J

0)

K

n'llntl: Time (t) required to reach 210° C Solutlon :

[From H,\fT data book

Properties of copper are Density, p

=

page "o.l)

8954 kg/rn!

Specific heat, Cp

=

383 J/kg K

Thermal conductivity, k ::: 386 \\ ImK.

-95 In (0.392)

For Cylinder.

Characteristic length, Lc :::

R 2

5

[1

x

10-3

x t

x

383

x

8954

=169.03s

::: 0.010

/JjMlt: Time required

2

We

know that, .

B lot

to reach 210° C is 169.03 s.

] A 5 em thick copper

hLc number , B,'::: - k

suddenly immersed

0

slab is at 200 C initially and it is in water. So its surface lemperature is

lowered to 90° C. In one test run, the initial temperature is ::: 95

x

5

x

386

I

Bj ::: 1.23

x

10-3 < 0.1

Scanned by CamScanner

I

10-3

decreased by 40° C and the time taken is 6 minutes. Determine the heat transfer capacity method

of analysis.

co-efficient by using lumped

't

/-: . kl1(1'

I'.L .•:'''"~ .

If

Iii

II

I

il :lllenrper:llure.

\I~

III

T; :::90

0

.

I I L - V engt 1. c - A

.'

(hMae

T ::: _000

erarure.

Transtem Heal C . I

______ --------------~~~O~I~Ir.~II~C/~I~OI~/~/

lensllCS

1 _T

[P

== e

-11 Cp

x

Lc

x

x t

1

.:.------:;To-' fcc

Ti ie,

I=

6 min

~3 - 363

= 360 s

4 473 - 363

Heallransfer co-efficient.

h

== -----.::....:...::.._-

360

x

8954x 383x 0.025

d,

ata book Page no.•}

Pr perties of copper are

107.77 W/m2K

~

Density p = 8954 kg/m-' 383 J/kg K

=

Thermal conductivity,

,

-h

/11 (0.636)

{From IiMr

So/ution:

For

-11 x 360 ] [ e 8954x 383x 0.025

~

Tofind:

Specific heat, Cp

==

JtS,,/1 :

k = 386 W/IllK.

Heat transfer

h == 107.2 W/m2K.

co-efficient,

Slab. Characteristic

length, Lc

==

L

B.A

2

For lumped

==e

0.05 2

Lc

==

Lc

= 0.02)

again measured ==

III

0.025

I

J

O

(IS

of tile cylinder is

C. Determine

unit surface

conductance by using lumped heat analysis method. Givtll :

Diameter of cylinder,

parameter system. -hA [ pCp V ... (I) {From f-f "'"T data book page no 5ij

Scanned by CamScanner

diameter is initially at a suddenly dropped into ice

IS

water:After J mill utes tile temperature

where L - Thickness of slab

I

of _7 ""

solid copper cy/:"der

temperature of 25 C and it

D

Radius of cylinder,

R

Initial temperature,

To

Cylinder

is dropped

is 0 C, i.e., Too 0

==

==

==

7 em

0.035

==

==

0.07 m

111

25 C + 273 0

=

298 K

ill to ice water. So, final tempcralure

0 C + 273 0

==

273 K

6 Heal and Mass Trans er __

---...:7.:_:ra:::n_:::s,_,i"ent

lieal • Conduct'

[-h Time, t.,

min - 180

/

774-273

::.:-:----;::;: nit surface conductance,

=el~l<180\

h

So/"t;o" :

[From flMT d

Pr pcrties of copper

ala

book

383 p 10

.,c

are

,]

[h

length,

Lc

=

unit surface conductance,

I Lc F r lumped parameter

T-T

=e

= 0.0 I 75

sy

0

2 0.035

=O.OI75m In

==

1073.21 W/m2K.

'



L

L

Girt" :

= 7 kg Initial temperature, To = 320° C + 273 == 593 K

1

MasSof the sphere,

rem,

[-C-_I~......;.~-x-p x

h

aillm;nium sphere weighing 7 kg d'" ] A" an Initially at a . ",peralure of 320 C 1.'1 sUc/tieniy immers d . '. Ie. e In CI lIqUId at 25'C. Tile cOllve~/lve heal, transfer co-efficient is 50 W/ml K Valermine the time required for the sphere t0 reuc II 100'C'

R

-2

1073.2IW!m2~

=

Ili"ll:

k = 386 W/mK.

'ylinder. haracteristic

x

1)0 ,

Specific heat, Cp = 383 J/kg K Thermal conductivity,

x 180 0.0175 x 89S4

-h

/11 (0.04)

Den ity, p = 8954 kg/m!

Final temperature,

t]

P

, .. (I)

To - T

[From I-IMT dat a book page

n0.57j

m

Too = 25° C + 273

==

298 K

100° C + 273 == 373 K

Intermediate temperature,

T

Heat transfer co-efficient,

h = 50 W Im2K

=

Tofind:

We know,

Time requ ired for the sphere to reach 100° C

Characteristics

length, Lc

Solulion :

= V

[From HMT data book page no.l]

A

(I) I

'

1.277

298 - 273

Tofi"d:

For

IOn

~

T-Too

Properties of aluminium

JCp:l~c' "1

= 2707 kg/m3 Specific heat, Cp = 896 J/kg K Thermal conductivity, k = 204.2 W/mK.

Density, p

p

To-Too

J

Scanned by CamScanner

are

I 11{f/Jf I till

fl71.!

" • ~.",

f

110

1/1111'/1'1

Itl~'

'"'/

IIDif';';

1M ~ 1/ I'

/1.lmlr

(

/

/ ,I

/' ;t

, , ,,

II'

II 'J tlly'!

III

'Z'1,/

~ "1 { "

4

/

"'h

. 'J II -

1 Jd

~/

'

'''/,

-'

(),(JX5 rn

373 - 2<)~ 593 - 2c)~

I'

h' t: Cti" ic leng h, Lc

It

3

----

W)61' ()'(J2~31' 27()7

c

In (0,25 ) -

For Sph('fe.

- SO

--

1 /

-50 ~961' 0,0283/

2'1(J7

/

/

=1881.33

O,DRS

---

ltlU/t :

3 Lc '~I (;

cnow Bioi

= (J,(J2IO

m

Time required

1

to reach

hLc umber. . 13·I =-k

initially at

1I

made

of copper of dtumeter 6 mm of 2(r C These spheres are

annealed in a annealing unneuling furnace

50 /. 0.0283

for the sphere

204.2 13i ana Iysi

= 6.92 /. I 0- 3

10

furnace.

The temperature of the

L\'450" C. Calculate the time required reach the temperature It

=

J 0 W/ml K.

D

=

6 mrn

heat transfer co-efficient

of 320 C Take 0

CiVet! :

O. j

/3iot number value is less than 0.1. S ,this type problem.

s

temperature

~ Thousand sphere

hat,

IO()O • is 1881,33

is lumped heat

umber of sphere

= 1000

Diameter of the sphere,

=

0.006 rn

___(

Scanned by CamScanner

1iIIl4""

,u~ . \1,' .11lt'

c,

R = l. OJ

P

11\

. 1 11,11' It

\

.n'· 1

UI, I \.:,'I :r:\1 I

Inl nll('dinle

II '.

e. r =

T ==

lellli ernture.

-effic

Ir:\H~fa'

Y

4' 0"

ient.

,

") -

h ==..,

J;:::-

W 11ll- K

'I(

1+,

'L...

ime rec uired

10

r'" _0° c

reach the leillperature

S{lIUlilln:

(Fr m H.I(T d crt ies

f

en ·il~·.

I

book

, red l)fHllmeter -r

I-I

_:----;=-

==e

-hA [C «v « P P

... (From HAn dala b k

, 1'1,0'"

(I ) page no.5il

that

\\ ~ I'

c,aI racteristics

Lc

length,

==

"!_ A

S - 4 ,,::/111'

pC'il'heal. ( The mal /-'0

S

It

ndu livir).

'8

,,==

W/mK.

-30 x

t

593 - 723 293 - 723

.

R ::::>

--

.

j

111 (0.302)

-30 x t 383x 0.001

x

8954

== 0.001

\1

136.87 s

I

1m Rt'Hllt: Time requ ired to reach the temperature is 136.87 s

~o " 11.00 I Jso ().I

Scanned by CamScanner

I

',

• t.

y. tern,

f r Il.Iln

pper are ==

..

I'"

"problem.

. I) II;, 51

00

:

.. ,.,

,ber value i

10-

Ti) fiff"

-

of 3200 C

·''"1~1.. ~

",I,

,

>h....

/.lBi lieal an d~ Mass Transfer

Transien; He

_

, d ;cal stuinless steel i"l:0t 170 mm il',.

r:7I A ('ylm r

~

Lc

_

0,0425

==

II

OlldllClioll

1.2 J

I~

( '(11"1.'1 I "" pll,ue:i t",ollg" II "CIII tremmelllji',r e'r'''rl '50 em I} t.I , 11(,(,(, IV ' 10 "" le"gt", T"e tC'mpcrm"'e of '''C'ji", /"C/, ;,~5(1(" '" 'It'ce • "

;",'1111 1111:(1(Icmperfll",c is 12()" ~("113' I' I C'. 'fl ,mlim" 11111 CI)l/I'C'C:/'I'eleflllrall,\/er C 'r ('''III "",. ,o'c{fi " " I~II'IIII} K, C.,lelll,,'e tlu: "'"xi",,,,,, '\'J1ced '\I' ," (Ir", 1,\ H, ',II , "'/'i, ' I ,,""'(',~ IImJIIJ:II 11",./ ""'''Ce 1110 fllI(lill 800" e/, IIIf! "'1/" "" C'. l' , I(Idc.

I,ft h ' ,I

1/1<1'"111

Tile

a

is

fI,

46 x I (h~

"I' Ih\' steel '\lil, l) .. I 0

\),;,,"cl~'r

",h,I'"'~, I,,'III\, ,

L\,

'lI).tlh,

I

~ll.'d

I\ld,

511em

1\11II;IIe"-' kll, Ih

hI

:111 ~'" 1,1

O.\IS:i

~O \\)

111111.. 0, I 0 'II III

\' II

,r",

\:11'1""

for :i

1\\1\\

I

;11111 -,

r

N\ \ " 1...'

~

==

c

. T

1"1"\. "\. ,• "I,',

"

[Fran, J /.1 IT 1,1/I I 01) • I .~,J

Il)

,I '

I

_;

\:i \\' '"'1\.

I { '~

K

r r. ~\ - r,\,

.. ,( I)

,I~ \\ HlI\. \. I

.... ~

-

t ,l :-;,

Scanned by CamScanner

0, I

I:':P. l ~::~v '1

-

1\1

1 J 1 I"~ ,

0.099

' I til' 11\ I, ue'r value is less than 0,1. So, this is lumped heal H'O 'problem . ."IYP~ ~~,~ I' II\~'. cd purruuetcr s S em,

l)" 0 1\\

IHIllal klllll\,f:III1' '.

I-'i II ,11 1,'11 I ,1:11111

R

s, =

(I"tl

III}/ ,\',

(l'i,·",. : I

45

I I' "",111('111"'1'" III '\'(fllllle,\'~',"/I'cI is, 4 ,~ .JlI "'I( (lAr

,h"fllUI I t lillll~iI'i'" \,' ,

105 x 0.0425

==

~ , , II - $,

13i - Hi

)1 HlIl\1\

:1'

III),

'"J

Transient Heat Conduction 1.285 T == 20° C + 273 = 293 K rature, . tc(11pe ature, T = I SO° C + 273 = 423 K 'f)1II te!11per fl d'ate . r!11c I nsfer co-effiCIent, h = 110 W/m2K 1~le . e heat tra ccttV 3 cof)V "" 7850 kg/m ef)sitY, P .. ty ex. == 0.044 m2/hr O diffuSIVI , fhertllal [; == 1.22 x 10-5 m2/s r:f)

1.284 Heal and Mass Transfer ~

-0.099

In (0.423)

~

Ingot speed

3_4_1_2_.5_3_s--,'

1__

,--I

x 0.46 x 10-5 ~ (0.0425)2 x t

I

Furnace Length

=

Time

C == 474 J/kg k .fic heat, p CI Spe d ctivity, k = 43 W/mK Icon u erJlla 'fh

5 3412.53 I ingot speed

=

1.465

x

10-3 m/s·1 (0

Result: Ingot speed

filld:



.

e requIre

I. TIJll

=

1.465

x

d for the sphere to reach 150° C . s heat transfer at I SO° C

tantaneou 2. Ins II eat transferred 3. Tota 1

10-3 m/s.

[!) A mild steel sphere of 15 mill diameter is planned to he cooled by an air flow at 20° C. The convective Iteattransfer co-efficient is 110 W/m2K. Calculate the following 1. Time required to cool the spit ere from 700 to 150 C 0

0

up to 1 SO° C

Solution: For

Sphere, Characteristic

length, Lc

=

R 3

I;

2. Instantaneous

heat transfer rate at 150 C 0

7.5 x10-3 3

3. Total energy transferred up to 150 C. 0

p = 7850 kg/m3

Takefor mild steel

Cp

= 474 J/kg K

a = 0.044 ",2/11

We know that, hLc

k=43 W/",K

Biot number, Bi = -k-

Given: Diameter of the sphere, Radius of the sphere,

Initial temperature,

R

D

= 15mm = 0.015

=

7.5

x

III

To = 7000 C + 273 = 973 K

Scanned by CamScanner

~ 43

10-3111 Bi

=

9

6. 3

x

10-3 < 0.1

r TranSient Heat . d

.

em UCllon 1.287

ana),

q

. ber value is less than 0.1. So, this is I Blot num . Ulllpcd h . woe problem. I:~I I ),..For lumped parameter

T - T a)

::::

::;;110 x 7.06 x 10-4 t423 - 2931

.~

q:::: 10.09 W

system,

-hA e[ Cp x V

x x

ow upto J 50° C

t}

I heat ~fola

.

p ... (I)

qt

~p'i-

fl

c..> P

V [T - T 01 [From HMT dala bo k 0 pageno.57j

",here

(From HMT data book

4 Volume,

page nO.57]

V

:::

We know that, Characteristics

length,

Lc

4

V

=

= 3

A V

423 - 293

=

[-IIOxt el474X2.s

3 .

31tR

x10-3x 7850

x

1t x (7.5

x

10-3)3

=1.76X10--f>m3.J

==' qt::: 7850 x 474 x 1.76 x 10--f>[423 - 9731

1

Total heat transfer,

qt = -3616 j

973 - 293 {The negative =>

-110

In(0.191)

474x2.s

It Time required

Xl

Result:

= 139.9 s \

to reach

1500 C is 139.9 s.

q ::::hA [T - T (1)]

{From HMT data book page 110.57 J

where

A - A rea ::::4 x \

1t

2 R ::::4 x

0-4 1Ta2

Scanned by CamScanner

1. Time required

for the sphere to reach 1500 C is \39.9 s

2. Instantaneous

heat flow at \ 500 C is \ 0.09 W

3. Tota\ heat flow up to 1500 C is -36 \ 6 J.

0

A ::::7.06

coming out ofthe

Iphere 1

x 10-3x 7850

2, lnstantuneous Ileal flow at 150 C

l

sign showSlhaH-R~~s

1t x

(7.5

x \ 0- 3)2

Transient Heat C

onduClion 1.289

hLc

s, =

ul1lber

8Ix8·~H~ea~l~a~1I~d~A~la~s_s_Tl_ra_n~sfi~e~r-------___ /.2,, '4 Soh:ed Unh'ersity problems - Lumped H eat All alYsis

8

I5

1'ot

=

ill An alu",inium

plate (k = 160 w/mrc, p == 279 C == 0,88 KJ/kg°C) o/thickness L = 3cm and 0 kgllrrJ P ,('225"C ' dd at a Ii' temperature oJ IS su enly immt?rsed at' 'd ' ' d t""e t a well stirred f1UI mamtame at a constant te "'"(}ill T tD == 25"C. Take h = 320 Wlm2oC. Deter mine ,tnperatllr th e

~

"'fo,,,, I

required/or the centre of the plate to reach 50"C e tilrre [Dec-2005-Ann Given:

Q

Thermal conductivity

of aluminium

,k

=

8

1 _ TtD _ e vx p x ..:---:::..,(I) 10 - Tao [From HMT data book page no . 57 !,IS'/XI h edlllon)] ..

160 W /moc

We knOW that, Characteristics

To == 225° C + 273 Too = 25° C + 273

=

=

298 K

T ,;" 50° : + 273

Heat transfer co-efficient?

h

=

323 K

(1) =='

320 W Im20C

r 323 - 298

Tofind:

Solul;on:

In (0.125)

We know that, For slab, length, Lc

=

L 2

-2.079

2

-320 Xl ] x 103 x 0.015 x 2790

l 0.88

0.88 = -

x

-320

x t

103

0.015

0.00868

x

x

2790

t s

I

ltsull ' '

\

lIme

I

-I

Scanned by CamScanner

e

= 239.26

0.03

0.015m\

=

498 - 298

Time (t) required to reach 50° C.

Characteristic

= y_ A

length, Lc

498 K

Intermediate temperature,

=

system,

l~:~I]

Univ]

L == 3 em == 0.03 m

Final temperature,

Illber value is less than 0.1. So ' thiIS IS . Iumped heat e problem.

= 0.88 x 103 J/kgoC

Specific heat, Cp == 0.88 KJ/kgoC

Initial temperature,

== 0.03 < 0.1\

lysiSt)'P for lumper parameter

Density, p == 2790 kg/m-'

Thickness,

320xO.01S 160

IlU

iot

I'"

k

"

r

required

to reach

50° C is 239.26 s.

~

~

NVH&/i.~

'.-' v,

I Transient Heat Cunduction /.29/

:}

(

__

~ - ....

1) ...fr

i,lu",ilflu",

~lIbc 6 e",

s;dr is or; ,;

011 (I

'(5 0 O· C . I 11,\' . Hulth'"''

Ii'HlPI"Mlllrt'

()J

,

• ,

i

~'/ "lilly .

b"'"l!r\"

"

..____''.

c ((

1I, "

(I,

!

Q

I'

10' C for M'lflClt h U' 1]0 "r",] /(. 1:'.\·li"'flle u ''1'';'1 uquire'(/ ' for Ih~ cub« to reach (I "''''[la'''"r', ,r te "''PIt e ''.1 250' For (J/u"'illi~'" p ] 7(10 1.1:/",3, C" ::: 900 J/~. ~. Ilf

, • ]04 "I"'~'

lOCI - 00] "'I.

To::: SOO

Initial temperature, Final temperature,

Intermediate

T

I.sis type

Heat tran fer co-efficient,

Den it). p

= _700

pe ifie heal.

--

::: 283 K

T-T.Xl

I

k

=

, .. (I)

[From HMT data book page no.57]

V

Characteristics

length,

Lc

=A

_04 W/mK [ Cp~hLcx P x t]

To filld: Time required

for the cube at reach _ -0°

SOllll;Oll :

(I)~

TO-T<Xl

=e

Xl]

-120 =e [ 900xO.01x2700

523-283

For Cube. Cbaracteri

t]

CpxVxP

We knoW that,

p = 900 J/kg k

onductivity,

x

-hA

[

==e

system,

To - T <Xl

It::: 120 W/rn~K

kg/rn '

.d parameter

For IUlllpe

T::: _'0

temperature,

10-3 < 0.1

problem.

~~,)

- "::: 773 K

= 10

x

. nunl b er value is less than 0.1. So, this is lumped heat Slol

J

f ubc. L ;:; 6 em ::: 0.06 m

Thickness

204

B, == 5.88

II ~,

GiI,tll :

Thermal

120xQ.01 ==

773 - 283 tic length

Lc

=

L

-120

6 -

In (0.489)

0.06 6 0.01

III

I

G

X

t

900xO.0 I X 2700

== 144.86 ~

Rtsult: ach 250 C is 144.86 s. . r the cube to re . Time reqUired fo 0

Scanned by CamScanner

1.292 Heat and Mass Trans er

rn A copper plate 2mm thiclc is heated

up to 400 quenched into water at 300 C. Find the time r . C Q"d eqUlred the plate to reach the temperature of 50 C H, fo, • eOI Ira" co-efficient is 100 WlmZ K. DenSity OF sfe,

Transient Heat Conduction 1.293

0

~ wekn

0

[Oct '97 M U. Apr'97 Bharmhiyar u'n'

=

.

l\lerSlfy}

s, =

Thickness of plate, L = 2 mm = 0.002 m Initial temperature, To = 400 C + 273 = 673 K =

=

50° C + 273

Heat transfer co-efficient, h

=

100 W Im2K

=

2.59 ~ 10-4 < 0.1

. type problem. lJIalyslS for lumped parameter system,

303 K

Intermediate temperature, T

IOOxO.OOI 386

. num ber value is less than 0.1. So, this is lumped heat Blot

0

Final temperature, T eo = 300 C + 273

k

Blo

J cOP , . 8800 kglm3. Specific heat of copper = 0.36 kJ/kg K.Pe IS Plate dimensions = 30 x 30 em

Given:

hL c

. I number, Bj -

323 K T-Too

Density, p = 8800 kg/rn!

[~::vx xt] p

=e

... (1)

[From HMT data book page no. 57]

Specific heat, Cp

=

360 l/kg k

Plate dimensions

= 30

We know that,

x 30 ern

V

Characteristics length, Lc

Tofind:

=

A

Time required for the plate to reach 50° C. Solution:

{From HMT data book page no.l]

I

(I)

=>

Thermal conductivity of the copper, k = 386 W/mK For Slab.

323 - 303

Characteristic length, Lc

=

=e

-100 x [ 360xO.00 Ix 8800

673 - 303

_1._ 2

=>

In (0.0545)

-100

x

= [ 360xO.001 x 8800

t]

t]

=~ 2

I Lc

= 0.001 ~

=> Result: h 50 C is 92.43 s, late to reac Time required for the p 0

Scanned by CamScanner

r s:

I. ]Y-I

_

1I1'(/I_III!d_M,:.:(I~.~.I~· l_i_·(/_I1..... f

II 12

1.295

Transient Heat COlldliC/ioll

lOll/: bur illililllly (II It . l!J '. II "1/ , temperature 0/40" C I.~"I(fcet! III II mediu", (II 65(JoC0Iv.'" 1.11

II

('III

diameter

convective co-efficient

0/22

WI",}

K. Deler"'i",

I' .. '1/,

e ne .II" Ie required for lite center 10 rca cit 255"C. For lite "'(11 11,e' bar k = 20 WI",K, Dell!Wy . == 580 /( m • e"cllo. / fll 3 heal = 1050 ' llkg K. e ','Pee'/ie-

:= 22 x 0.03 20 Bj:=

[OCI '98 MUj

Given : Diamctcr of bar, D

= 12

em

Radius of bar, R

6 CI11

==

==

Initial temperature,

To

Final temperature, Intermediate

T

rs)

==

650 C + 273 0

T

Heat transfer co-efficient,

h

Density, p

=

k

== 2550 C

22

==

== 20

==

=:

=:

313 K

+ 273

==

BIO

ForIUl11pe

923 K

W/1Il2K

W/IllK

580 kg/m3

Specific heat, Cp

I

0.06111

temperature,

Thermal conductivity,

. t number value is less than 0.1. So, this is lumped heat , problem. I)sis type I)l d parameter system,

== 0.12 III

== 400 C + 273

528 K

-

T-Too

[~h~vx =e

P

•••

(1)

[From HMT data book page no 57}

I Weknow thaI. Characteristics

length,

Lc

==

V A

1050 J/kg k 'I' _ T", ·,I)~

Time required (t).

---'

,

[ Cp~hLcx p

To - 100

For Cylinder.

~ length. Lc

==

5211 - 923) III [ 313 - 923

R 2 0.06 2

=:

J

Time required

I

for the cube to rcac h 255 C 0

I' _

Scanned by CamScanner

t]

2 105~ 2x O.~3t x 580]

360.11 s

ult:

x

=e

:

Characteribtic

XI]

p

To - Too

To [ln« :

SO/Iltioll

< 0.1

0.033

. 3£'0 IS

u

II .0

S .

-_£\--

Transient Heat Conduction 1.297

1.296 Heat and Mass Trans er

rn

A steel ball (specific "eat = 0.46 kJlk /( .. 35 "'ImK) 16/ • g . alld IIr conductivity = having J em dia", trlflo, eleralld' at a uniform temperature of 450· C is " II,ilill/I] SUudelll in a control environment in whie" II'e tem Y PlaCed maintained at 100" C. Calculate II,e li",e,e ~erQIllrt i. qU"ed/o ball to attained a temperature of 150.C. r Ille Take h = 10 Wlm1K

10)( 8.3 35

::

x

10-3

l

1M. V. April-lOOO,

2001, 2002, Barathiar Uni A . . Pfl/98]

Given: Specific heat, Cp

= 0.46

Thermal conductivity,

k

kJ/kg

Radius of the sphere, R

D ::s

J/kg K

ee

5 ern

0.025

=

0.05 m

In

TIlJ - 1000

Final temperature,



-I-

273 - 373 K

tempcrarurc,

T

1500

Heat transfer co-efficient,

h

10 W/m2K

Intermediate

To flnd: Time: required for the ball to reach

I From

Solution:

T- T

-

so

To - T

To - 450" C + 273 - 723 K

Initial temperature,

value is less than 0.1. So, this is lumped heat Siot num b er . type problem. aoa1ysiS ed parameter system, For I urn P

35 W/mK

=

Diameter of the sphere,

= 460

K

Bi:: 2.38 x 10-3 < 0.1

+ 273 • 423 K

(

1)

V length, Lc"

To - T""

0

"MT data book. pO~Jeno. II

423 - 373

A

R J (),025 3

-_

8.33 )( 10-3

-e

-10 ( 460 ~ 8.33 x JO-J

_l<

x

t]

7833

723 - 373 -10

~ Rtf"lt :

Ill]

_Mt

In ...;4.;:..23~-_3_73• ----8-3-)-x-,0-3)( 723-373 460)(·

For .'pllue,

Scanned by CamScanner

•••

(I) -

150 C

p - 7X 1-'-k-gl-n-13-'~

Ci; -

x ,]

I From H MT data boo. page no. 37J

(f)

Characteristics

I

I.e -

p

We know that,

De:nflit)' of steel is 7833 kg/rn)

Ch,.ractc:riKtic length,

J C;.h:.

.Time required

78)3

- 5840'B

o. C is 5840.545.

. • ball to reach 15 for the

/,2')1)

n~II'\~'1I1 /"'/11 ('III11/III'/jOll j.,j

I.:.t.I

,i" {,I"",III/"",

_\",,,"", "

111",\',\'

l.f 46:

,

,",,1/

,!

11/111111,

IM'I'i'f{""rtl 'if 2911 ( 1,\' ,\,,,,ItJ,'''~I'/""",'r,\'"" I"~ .I '" II , J" C 11,1", lu'{" "'1-,:1111'/,'''' IN """"A' 1':"~',/'1", , 1:,\'1' lilt' ,(,,,"If'~" ", ('11111tlu (""111",1, '1""1" "" I" 9r. For 111"",1111",,, iliA,' P 17m) *1:/111" C 9 'c.

'f'''',~/'''

"'",,!

3V _ 3

lUI J/k

2,()J)

4;- - -

1

'I'

A 10J 11'/",1:,

nl{J

J

:::; 0,0786,11

I: A',

,,; -

10

I

I

/tI/.{/, 0('(-99, 11(/I'(/fltiu/, U,' 1/,

GII'i'II "

Mass,

III ;:: 5,5

To:: 290 C + 17 J :: 563 0

T :: 15° C + 273 :: 288

temperature.

Heat transfer co-efficient. Thermal conductivity. =

Specific heat,

.!

;::

r:: 95" C + 273

3

I(

0,0786

=--

I( ==

3

3681\ r

" :: 58 W Im21(

k :: 205 W /I11K

, , knoll' that,

Lc

=

0.0262 m

I

IL

III

1 C

Biotnumber, Bj = -k-

2700 kg/m3 (p =

'.,

, !'riSIIC length, Lc , C~Brnct

Final temperature,

Density. p

Jphi,re

I

kg

luitial tcmpcrature,

Intermediate

Nov 96/

58

900 J/kg K

0.0262

x

205

Tofind,'

Time required to cool the aluminium

Bj=7.41

at 95° C

10-3<0.1

x

. nunl ber value is less than 0.1. So, this js lumped heat BiOt ~I)sis type problem.

Solution:

mass volume

Density, p

For lumped parameter

= _!!!_

V

t

T-T'IJ V

system,

:: • .!!!_

[C(l~I~xp

x]

To - T

J)

/

=

2.037 )( 10-3

Scanned by CamScanner

Ill]

I

(1)

From HMT data boo]:page

5.5 2700

IV

...

_=c

p

Charactcrist ics length, Lc ::

V

A

1/0.57/

Transient Heat Conduction 1.301

= 1.300 Heat and Mass Transfer

[k

-h

T - T r;r, (I)

~

To-

~

. :;::7865 kg/m! DenSIty, p 1 d'ffusivity, ex

p x t

Tr;r,

368 - 288 563 - 288

~

]~

= e [ Cpx Lex

Thenna = e [ 900

2700)(

x

= 55.55 W/mDC

=

900

-58 0.0262

x

= 1355.36 s

I

[.: lIs

=

WI

0.06 m2/hr

=

0.06 3600

=

t]

2700)( t

x

I

I

= 1.66

368 - 288] In [ 563 _ 288

It

~.~~62

x

55.55 lIs m DC

Specl'ficI heat

,

c, = 0.45 =

x

m2/s 10-5 m2/s

kl/kg DC

450 l/kg DC

Heat transfer co-efficient,

h = 140 kllhr m2 DC

= 140 x 103 l/hr m2 DC

Result:

Time required to cool the aluminium to 95°C is 1355.6s

ill Alloy

steel ball of 1.5 em diameter

= 140 x 1031/36005 = 38.8 lIs h = 38.8 WI

heated to 700' C alld

quenched in (I bath at 100" C. The material properties of tk« ball are thermat conductivity, k = 200 kJ/m hr' C, Density, p = 7865 kg/m}, Thermal dijjusivity a= 0.06 ml/lt, Specific heat, Cp = 0.45 kJlkg"C, Conveai« heattransjer co-efficient, It = 140 kJII" ml• C. Determint the temperature of lite ball after 10 seconds. Given:

(Manonnranillm Sundaranar

= 1.5 cm = 0.015 m

Diameter of the steel ball, D Radius of the ball, R = 7.5

x 0

Final temperature, Tctj'= 100 C + 273 0

Thermal conductivity k - 200 kJ -

= =

973 K 373 K

1m hr" C

'=

200

'=

200 )( 103 JIm x 3600 soC

Scanned by CamScanner

x

=

105

Tofind:

Temperature

103 Jim hr" C

of the ball after 105.

Solution: For Sphere,

Characteristic

10-3 m

Initial temperature, TO = 700 C + 273



University Nov- 96)

Time, t

length, Lc

==

R 3 7.5

x

3

10-3

m2 DC

m2 DC

m2 DC [.: lis

= W]

1.302 Heal and M, _ W ass rransf'e . e know that, I Bior number,

Transient

~cI

B, == ~

38.8 . .., -

C- " . (i) Temperatllrl!'

~I

5).5 B·I --

.

anal

balf to cool

I . 746

-hA . == e ( CpXV . p

~

To- Tco

Charact

==

.

SIS

IUn lped heal

t] ... (I) HMT d uo book page no 5ij

[froll/

. . ensne, length, Lc

(0

4 hall

afer I (J second atul

Gille" : Diameter of the ball.

0

= 12

T-T<Xl T == e 0- T<Xl

[c

0

TO = 800 C + 273

=

Final temperature,

T

1000 C + 273

:=

Thermal conductivity,

:=

k

=

10 3r K

205 kJ/m hr K

56.94W/mK :hL p

X

C

P

[. .:

". Density, p

==

7860 kg/m3

T - 373 [ -38.8 973 _ 373 == e 450 x 2.5-x-I-0--3-x 7865 x 10]

T-373 973 - 373

m

205x 1000J 3600 s mK

:y_

Heat transfer =>

= 0.012

rum

Initial temperature,

Specific heat, Cp =>

tu,

= 0.006 m

A (I)=>

=

0,45 kJ/kg K

=

450 J/kg K

co-efficient,

h

=

150 kJ/hr

"

J

= ~lltH

0.957

11I~

3600

S 1\\- "

= 41.()6 W/ \\\~" To find:

Result: T· ITIpcralurc

or

(i) Temperature I 11Cbali

nner 10 s is 947.2 K.

Scanned by CamScanner

/

of ball after I 0

S~'(

(ii) Time for ball to cool to 400"

'.

:/,

:

MI"" I

/11

400" C.

Radius of the ball, R

-

We know that,

h e atrt!

10-3

x

Blot numb 0.1 . er value is I ysis type probl em. ess than 0 . I . S o.lhi F -or lum ped pa ( rameler S\·_,stem T-T

///11

~ ;l11OY " ,/,ed ill a but]) at 100" C. Tire "'fller/all"'II" !) '. if,'il 1.1 I '" h{lIl arc k :: 205 Ii.///II I" K, P 7f!f,/, /I(. _1 Ie('145 kJ/Ii~ K. Ir :: 150 KJ/ ltr 1112 I<. IJK'

k ==

11i.:01 ( 'fit/dill

---------------~ htlll of 12 nun diameter

11

l 1"£

I~

v

___ .Iss(1_'~/.'i.:...:ie.:...:".:.....;{ /{e

J. 304 Heal and Mass Transfer

(I~

(a"d

Lief ion

-41.667

SoiuJion: Case (i) Temperature of ball af/~~ J 0 sec

o.oo~ ,

7860

==e

For Sphere, Characteristic

~

length, Lc == _.!i_ ~3 I

,

== ;,__ 0_.0_06_ _ 3

[LC

== 0.002 m

-:)

.

'J Ttn1t

(pi III

41.667

x

==---:----

0.002

10-3 < 0.1

x

:::>

p

x t

1 I

... (I)

{From HMT data book page no.57]

We know that, Characteristics

lenzth o

I

L 'c

=

V A

•.. (2)

Scanned by CamScanner

t

'If

1

-41.667 0.002 7860

I

==e

111 (673 - 373 ] ==

system,

-hA

[ 450

1(7) - J 73

Biot number value is less than 0.1. So this is lumped heal analysis type problem.

=e [ CpXV x

40lr C

T:= 4000 C + 273 ==673 K

673 - 73 1073-373

56.94

T-Ta;

coo/to

T-T?J To - T

hLc Biot number 'IB· ==- k

For Jumped parameter

fior hal/to

I

We know that,

Bj == 1.46

1031.95 K.'

450

== 143.849

-41.667 0.002 7M60

I

A

sJ

llsII1, :

of ball after 10 sec. t: 1032.951\ 1-13.8-19. (ii) Time for ball to cool 10 -IOO~C. t

(i)Tcmperaturc

I.J05

Transient Heat Conductio" /.307 are

conditions

1.306 Heat and Mass Tram; "er 1.5.5 Heat Flow in Semi-Infinite

fhe

Solids

dir •. .. cellon' ' S Of IS spill ' . IIIlite nile Solid In II semi infinite solid, lit any instant oftitnc tl ' ' , lere IS 81 II point where the effect of heating (or COoling")" . Ways . . . " ,\I One f' boundaries IS not felt at all. AI this POIIII the IClllll' . 0 lIs cralnre re . unchanged. ilia Ins

OllOd3r)'

b

- T·

I. 'f(x. 0) -

A solid which extends itself infinitely in all . k.nown as In . fuute so I'dI. If' an infinite . splice IS solid' .. middle by II plane, each half IS known as semi infi

,

2. T(O, t) ::: To for t

0

u=

0

). T(Cl,

Ti for t

I tical solution

for thi case is given by

'n: ::: r :~ o Y

!b'

err \ 2

Tj - T~o:!--

(l

t

...

( I.R2)

_

. ,rf indicates "error function of' and the definition f ction is gencrally available in mathematical texis. ~(rror U~~IatiOnof error values are available in data hooks. where e

where ~'j -

r0 -

Initial temperalure Surface temperalure

1111= 0

usually til ' (,(_ Thermal I -

Time,

diffusivity,

m2/s

S

x - Distance. m Tj -Initial

temperature,

K

To- Surface temperature T, - lmermediaic

x

FiR I.U Semi II,/illite P/flle Consider a semi infinite bod . . the +VC x directio 'rl . y and It extends to infinity in n. Ie entIre bod . . .. temperature 'I'... 1 . Y IS Initially at uniform I Inc ud Illg the su rface . _ . tempcrature at r == 0 . d at " - O. The surface . IS su denly raised to T

2

dT

equation I

d\,2 == a

l. In semi infinite

number value i.e.,

solid, heat transfer co-effici~1l1 or biot is

00.

or Bi 2. Tj -Initial T

0-

S

temperature,

urfacc temperature

Tx - Intermediate

Scanned by CamScanner

K

"

is

dT dt

temperature,

Nolt



The governing

(or) final temperature, K

K (or)

tempcrature

fl'11al temperature. K K

/;'(I!,siC11I 1/c'lIl Conduct ~--1.308 Ileal and Mass trails er

1.5.6 Solved problems - Semi Infinite Solids

ill A /t"ge

WI~1' illili{/Ih -

high

concrete

70 C mill stream water is direcled U

fit

h

1,-::------flllperfit

:=

~ 0J

fill lilt! Ilirrl.

Ure of '''flY \. the surface temperature is sliddellly low ·0 I"u/ eret/ to 40. Determine lilt! lime required 10 reach 55" C C IlIlld. I " em from the surface. f'Pt" of e ,

,

IS W,

6.I,a Iu C I

For

Given :

..

solid type p

lfinlic s('I'id,

5C;:I~IT0 "':--T

Initial temperature. Tj =70° C + 273 = 343 K

So.• ihis is semi infinite

T·I

:=

0

elf [..,j.\' _] - (l I

(From IIMT I

agl'

110.58(Sl.r/ll

l

e

Final temperature or

Tr - To

==

_:.--

Surface temperature, To

I

= 40° C

Intermediate temperature, Depth. .r =

4

em

= 0.04

Tx

=

+ '273

= 313 K

55° C + 273

= 328 K

0((1

l

k

b 001(I. page (Si.l'lh

=

0.48

1.2790 W/IIIK

Z

1.1:..

.. ,.

2300~O" ..

• Il~"-I co-cltlcl~'Ill"

II -

= 0.4') ...., f) (,

::::. is 111)1~i\~'11. S,•.

::::.

"I).

.r

=

2...;at

1I1~1,

0.48

.r

2jOi

0.48 2

d

Scanned by CamScanner

I

Z is O.-lS

I From nut 1"'Ke

\I.e know that,

== prllhklllh~';)llJ"1

0.5. corresponding

crf (Z)

edition)/

1.2790

r:

0.5

110./8

Thermal diffusivity,

IlIlh;,

er] (Z)

0.5

Properties of concrete are

1.lh, ll;)~

Z = 2/0 I

err (Z {From HI/7'd .

J

.r

343 - 3 J3

Sailitioll :

i

\\ here

328 - 3 13

Time (t) required to reach 55° C

Ii

(Z)

III

Ttl filltl :

Thermal conductivity,

('11

Tj- To

,/O.59(Sixlh

data

edil/(

.

,..

,...

a: ~.: .:.._:_~.;.

.. :...

1.312 /feat alld Mass Transfer

111 A

Transient Heal Conduclioll 1

large wall 2 em tltick

II(U~

illitial(" and the W(/1/ temperfltllre . maintained at 4()O(}.C. FWd

is

SII'"e"'Perlll lire 30'

"lle,,/), r'

, (

(1lSerl "~d

I. TIll' t(''''peratllre at (I deptlt of 0 8 .5IIT/(lel' of the wall (ifter lOs. . . ell, firo",'hi 2. Instantaneous

Item flow rare tl"olloll

per m-, per hour. Take a

e ,

1l

: . So "lioIn thiS . pro blem heat transrerC co-e ff"icrenr h IS. 1I0tgiven. ' lake

it as

cf).

i.e

t. .,

h~

00.

I

We know that,

1

"'nt SlIr'

JQCt

h

= O.OOH /112/It,.,k = 6 W/m0C. Bj value

J..

=

. IS

C/).

Tj ==

400 C + 273

To ==

Thermal diftusivity,

(.( == 0.008 1112/h =

Thermal conductivity,

0

So , this is semi infinite solid type problem

2.22

x

==

673 K

T.,. - To 'rj- To

c=

Depth,.r == O.~ em

[From

('1/

T, - To:" Tj- To

k == 6 W/m°C.

=

=

==

0.8

x

JO-·2

Z Putr

=

=>

Tofind : I. Temperaun., ofthcwall
O.OOS m,

IZ

the surface 0f

0 .8 em from

I

lOs. I that stir ~ace , heat flow rate (qx) throug 1

Scanned by CamScanner

t

. .. (I)

(Z)

2 22 .

x

10-6

1II2/s.

2'1':'" ==

0.S4iJ

I eli (Z) := O. .

:=

= 10 s, a

Z == 0.84S, correspOI1 =::>

110. 58

0.008 !?2? x 10 6xlO

Z:=

== 3600 s

(I. .x) at a depth

lata book page

(

== 2Jc11

10 s

Case (iij

jJHT 7)

x

III

0.008 m

::.: I lt

t]

[-2/atX a

crf

10-6 m2/s

where,

I

I

For semi infintie solid,

Case (i)

Time.

CI)

Cns£' (i)

30° C + 273 == 303 K

Surface temperature,

I

==

2 em == 0.02 m

Initial temperature,

Time,

CI)

[B;

=> [Apr'97 MUj

Given: Thickness,

hLC k

Biot numbcr, B;

di g erf (Z) ;S 0.7706 111

.

ni61 ~

[Re/e

rHA

IT dala boo k page no. 59]

~ ..'

LV

r

1.314 II eat and Mass T ransfer

Tx - To

(1) =>

T, - To

:: 0.7706

Tx - 673

Transient Heat Conduction 13 J5 sltlnlllneous

heat flow rate at a depth ·1"300 2. I n 0./ mmand on surface after 7 hours.

3. Tottll heal energy after 7 hours.

303 - 673 ::: 0.7706

Take k == 0.75 WlmK,

Tx - 673 ::: 0.7706

-370

Gillen: Initial temperature, final temperature,

::: 387.85 ~ Case (ii)

Depth, x

Instantaneous

heat flow

Time, t = 7 hr

[-x e 4a. t

-_.:..___:..::_

=

25 C + 273 = 298 K

To

=

700 C + 273 = 973 K

mm =

0

T.

=

0

0.300 m

25,200 s

Thermal diffusivity,

2

k[T() _ Tj]

= 300

a = 0.002 m2/hr.

a =

0.002

m2/hr

5.5

10-7 m2/s

]

=

JWrt

{From HMTd

ala

ilatA

page no. 58(Sixlh ed"

Thermal

conductivity,

x

k = 0.75W/mK.

ItU)ftIJ'

t

=

3600 s ( iven)

Tofincl :

(

6 (673 _ 303 -"'Ix =

In

)

/c

/2.22 / IO-I'i;; 3600

I qx=13982.37

I. Intermediate

[-(0.008)2, 4x2.22xIO-liYJ6fXJ

2. Instantaneous

.

heat flow, q.x

3. Total heat enrgy, q,

In this problem take it as

Intermediate

temperature,

Heat flux, qx = 13982.37

Tx = 387.85 K

Scanned by CamScanner

h ~

'I

(I

jro/tllk

surface after 7 hours.

i.e.,

B.lot number

temperature of 25' C a~d ftJ u C nd re/tlal wa II temperature is suddenly raised to 70O {t constant there after. Calculate the following l ill plane (It

00.

(I

depth of 300 nlfn

heat transfer co-efficient

h is not given. So

00.

We know that,

W/m2.

very thick wall initially at

1. Temperature

r,

Solution:

W/m2.!

Result :

!iJ A

temperature,

hLc B· = k h = 00

B B j value is

00.

So, this

. IS

semi

. . fi't olid type problem. 111 uu e s

J.316 ____

Heat__:~.:.::~~. and Mas' :_'.!_J!: s 'T!_IiilI11S,er .c

I. For semi infintie

SOlid~

Transient Heat Cd' on

~_

T, - T 0 T;- To

[~l

~ erf

::=

[From HMT I

? qx

(.Ola

=>

= erf.

book

Page n~~ . . . . ( I)

(Z)

where

::=

q.r.__

0.75 (973 - 298)

Ii x 5.55 x

x

----...J [From HMT data book page

x

2/S.SSx

0.75 (973 - 298)

q = 121.72

r

r------

Z

=

1.2iJ

25,200 x 5.55 x 10-7

106 J/m2

x

Result : I. Temperature

Z = 1.27, corresponding

at a depth of 300 mm, Tl

err (Z) is 0.92751 2. Instantaneous

I elf

J

x

7t

10-7 x 25,200

110..17/

J 7t~

0.3

Z

]

10-7 x 25,200

q,.::= 2k [TO - T j]

2J(Xt

-(03)2 [ 4x555 I' -7 e . x 0 x2),200

483.36 W/m2 .

2

=>

X

]. Total heat energy

z

1.317

UCllOIl

-------~

I

(Z) = 0.927SI

heat flow, qx

= 483.36 W/m2

q, = 121.72

3. Total heat energy,

= 346.9 K

x

106 J/m2

[Refer /-I MT data book page 110j9j (I)

=>

T,. - TO

large cast iron

750 C is taken out from afurnace and its one of its surface is suddenly lowere{llIIul maintained

~ if = 0.92751

Tj-TO

(1/

T,. - 973 => =>

45° C. Calculate

0

tile following 0

I. The time required to reach tile tempertltllre 350 C lit tt

= 0.92751

depth of 45 nun from tile surface 2. ill.'itallllllleoll.'i heat flow rate at a ,Ieptll of 4.' 111111 and

298 - 973

I Tx

(It

=

346.9

K

l

Olt .\. IIr

l'ace

after 3() minutes.

3. n,ta/II(,'al e~,er{:y after 2 I" for ingot. 2. 1nstantaneous heat flow

Take

[;~~ ] e [From

Scanned by CamScanner

a ==

(J.(M m2//".

k

=

48..l w/",K.

Gh'ell : HMT

d

book !,ng ala

C/1041]

Illiti a I klllpl.:ratlirc S ' 'llrfa.:. l: klllpl.:raturc,

r ""'7S0~ I

C + 273

='

1 10s» ' K

318K 1'0 == 45° C + 273- -

~

Intertnediats

temperature,

.r = 4- mm

Depth.

=:

Tx == 350° C +- 2

0.045 m

a

Thermal diffusivity,

j

I

1.3/8 Heal and Mass Transfer

Transient Heat Conduction

:~432~

I?

k

conductivity,

==

48.5 W/mK.

Tofind :

er. I

'. The time required

to reach

2. Instantaneous heat flow surface after 30 minutes. 3. Total heat energy Solution ;

~ of 4Ure _ J Sf}' C

at a depth

mill an '-'

\\e k.now that

Z

co-efficient

h is

nOI

0.045

0.41

gi en.s,:

")

B· ,

f

h

=

hLc __ k

=



:::- 0.41f

~

I

1_8_I_A_2_s_1

L_t

Time required OJ value i

r/).

Z is 0.41

0.41

[Z

after 2 hr.

We know that. number

;;:;0.432. c rresponding

the temperat

In this problem heat transfer ta .e il as -r.,. i.e., h ~ 'ZI.

Bi

0.432

==

Z

erf

:::: 1.66 ~ 10-5 Thermal

er/(l)

.

= 0.06 m2fhr

1.319

$0, this i semi

infinite

solid type problem.

1.lnstunlflneous

t

reach

350°C

is 181.42

s.

It eat flow

I. For semi lnflntle solid, T -To ., j -T()

=erf

[2yCt.t ~]

I From - elf (7)

II MT dar a book PQ}?,c110 58J

where

Z _Q_2 J -l.!! 1023 - 18 0

err (Z)

Scanned by CamScanner

=

.x 2fo1

[From HUT data book page no. 58} I:: 30 I::

minute

1800 ,

(Given)

.-.,ILI;"

Transient Heat COlldut:tion 1.311 ~

Gilt"· .. ,tc:tnperature T i = 6000 C 2 3::: 8 3 K a \olU e tc:tnperature, TO =50 C.1. - 1"' ::: ' _ ' K sur f ac Thermal diffusi\,ity, sign show , that heat I f osr rom th e .In!! 3. Total heat ellergr ~o 1

a

0.004 m- hr

=

["egati\e

.

[From

H.\fT d

3600

.

a/a book Or

e tJl;:.

La

I

ito.

== 2

IT'

48.5018 . .

l Ime IS given,

2 hr

X

it /

1.66;

\

10--'

I

\ \qT == -803.5

Toji/ld : \. Temperature

I

106 J/m2 \

/

=

1.11

x

IO~

1.2 W/mK.

\~

51

7,200

=

=

k

Thermal conductivity,

- 1023)

Y

m-) Ilr

--0.004

\

,

(T x) at a depth of 3 em after 6 minutes.

2. How much time (t) required,

the temperature at

J

de

of 3 em will reach to 350 C. 0

[Negative

1'1)

how

\

that heat lost from the ingot}

3. Cumulative

Result :

heat (qT) at a depth of 3 till within first

hour.

I. Time

required

Ilcat

n

3. Total heat cncr 'y,

'IT

2. Instantaneous

350 C is 1&1.1:1: Solution:

to rca h the temperature

0

w, qx = -I ()1)72SA W/m2 -

-XO".5

/

In this problem hcat transfer take it as i.e., h ~ 00.

10(' J/m2

A IlIrlo:C .,111" ;1I;1;lIlIy III surfuce temperature

ICIIII'et'lIlIIrc

(I

h .'illddc"ly IlIlI'act/

n is not given

CY).

We know that,

@)

co-efficieut

of' Mill'

. \3 lot nllmber,

C ilndin



105(1"(. CII/(wl~1

u.,

= I

h

=

k CIJ

tile! /i,llol\';"1o: I. T"IIIf1"rtIll1rC

2. II,,,,' 3

011

.,

3. 1/,,·

. ""h'III111ll'

or 3

required.

will rc aclt

'0

01 .

,

tI"I'0l (~,.3

Scanned by CamScanner

<'III

.

,~I~I

.

III)

I(fit'r (, ",;IIIIIt'S. i~ , IIIre! /II II ilt'p'

3 -' 0" C.

'.' ,'''111''/1111''''

= 0.004

nil

III,' tc'/IIpcNl

" 11"1111(1/1'

[l1c",' til II

Tuk«

11/11 tlc'[lIII .'

~H'IIIIITf"'~

lu 1111"'" . "1 Iwe

11·"1",, .f"s

IIr. I. == 1.1,,-,,,,1\·

III,IIT.

,

\

B·I vai . a lie IS

00.

S 0, this.,

IS

seuu .' III 1-III itcI.: solid type pro oV

~~~-

/.322 Heal and Mass Trails er Case (i) Depth, x

= 3 em = 0,03

Time, t

6 minutes

=

For semi infintie Tt - To Tj-TO

= 360 s

solid, =erf

T.x _ To T. _ To

=>

C'

III

Transient Heat Conduction 1.323

jet;;)

- 0 03 m === 3 ern -, 0 Depth, x 'ate temperature, T x::: 350 C + 273 = 623 K d loterrne t Forsemi infintie solid,

0::: erf r· !c.1 Tj-To l2...;ut

[21at] [From HMT d ata book

= erf (Z)

."

page no 58]

(I)

Tx- To

erf (Z)

==

Tj-To

where where

x

Z Z 0.Q3

Z

2-/1.11 x 10=6

r: LZ Z

==

==

x

623 - 323 873 _ 323

360

erf (Z)

erf (Z) == 0.545

II1g erf (Z) is 0,71116

elj(Z)

erf (Z) == 0,71116

==

==

0,545 = erf (Z)

O,75J

0 ' 75 ,correspond'

2#

==

[Refer HMTd 0,71116

ala bo k 0

== 0,545, corresponding

Iz

= 0,53] (Refer HMT data book page no. 59]

pageno.59} We know that,

==>

~

873 - 323

==

0,71116

Z

x

=

2-:;at x

0,53

:=

2-:;at 0,03

0,53

Scanned by CamScanner

Z is 0,53

:=

2jl.ll

x

10:::()x t

pa . I .,325 __ 7;'ans I.e 11]' Heat COl1dUCI1O!1__ I

/

Mass transfer '!ea!_ llII!i__ :._:;:__---

/.m

(0.5))'

(2)'

---I )'

~.

(0.03)' 1.11" \0-('"

I. " . Oux,

@'

t

_ 0 25

n

}-le

-

MW/m

.

I 06W 1m

-'0

llt

qo

C

::=

0.25

x

lime,

I ==

=-=

1:1)1'semi infinite

J

1.:11\

== 0.03

\.

11\

I hr == 3600 s

. T) after 1 Surfocc rem pcrat '" e (0 . . ..c (T .\ .) (\t a cit. ranee 2.TcmpcJ'(\tlll

It

-424

x

1.11

IQ-6

Heat fill',

-1'06l/~

Si!!n shl)ws

that heal

.

.. , (I)


),',

n I

lost from Ihe slabl

/1,

R,·.\'IIII:

rrun

11M'! data how,I J1 iv,I'; e /11 A'IT . rial

I. l" 2.

10 minute .. nil em from Ihe surface

50"";011 :

-~

lN~'gativc

-

md:

r.fi

=

29R K

solid.

Total hcnt energy

['I r

=

_ 0 10 III - 30 em - .. Distance, . . := (l00 s \0 lllinutes Tillle, t :.::

11,'IUll

Depth,

?73

1-I = 2S

. , temp erClture

Om! (iii)

1

2

"=

7I-U I\.

==

-42.4

x

106 J/m(

III A ".,1 Infl,,;t, 'lab of hetll Jlllx

til

I

Propcn ic: of aluminium

I == 721.6 S

3. 4 T

I

nie Sllr/ace

01" ml" I"m

I, «spose« to 0""",,,

0/ O. 25 \1Wlm2.

1)

' Thcrmal

diffusi"ity.

Thermal

cOlldllCtlvlt).

=.::>

025 '.

I

)I)t)

...

5!() /}

I/O.

2 Xt1. ! R )' 10

(I. ••

III)

k fJ(/" ('

k

'''-

II III /~

7.04.2 W/mK. .

204.2 (Ttl - 29~) _. -~- R4.1.. n «oo

;-='10 (;.

10(' :-

Illitialtemperatilri

u/lhe slab is 25° C. ClIICIllllle tlte :lllr/llce telllpeNltllre il/ttr 10 milllltes and alsu /illt/tlte temperatllre 3(J em from lite SlIr/ace after 10 milllll . es

til if tlistallcl!/if

(ii) For sellli infintie '1 \. - T 0

_

-:--1- '-T

.

i-

Scanned by CamScanner

~olid

0

-r \ ... x _. 1 l'1.

/')(11 . /1'/,0111

Ii

I

I-IM7 dat a

100

IllW

J)II

e.

58)

FTTtt 1.326

Heal and Mass Transfer ~

T.\.-

To

T'-T I

0

Transient Heat CondUction 1.327 == erf

(Z) ... (2)

I

e s Ia b initially at a temperaturo of J 20° C alld itS peralllre is suddenly lowered to 0° C. Calculate , .Iace tent '11

where i

Z

.

x

==_

2.jOi

Alatg slit}'



foJlowtng the The time reqllired for tire temperatllre gradient at the J.

2)84.18

[Z

==

.f.

e to reacll 6°C/cm

Sllt,oc. . . 2. The {Iepth (~t which tire rate of cooling IS m(Iximum after two nun ute. Take thermal diffusivity, a = 0.612 m1/II.

0.30

Z

! ,

x 10-6 x 600

0.667 ]

Given: Z

==

0.667, corresponding

elf (Z) is 0.65663 [From HMT dala book

,---___

[ell (Z)

(2)

"('.f

=

Initial temperature,

T, = 120° C

Final temperature,

TO

=

0° C + 273 ::::273 K

page nu.59)

Thermal diffusivity,

0.65663]

a

=

CI

0.612 m2/h

----m 0.612 3600

-To

T'-l I 0

0.65663

I Tx

2/h

1.7xIO-4m2/s

=

T{ - 785.61'( 298 - 785.68

+ 273 ::::393 K

To find:

= 0.65663

I, The time required

::; 465.4SK]

2. The depth at which the rate of cooling is maximum after two minute.

for the temperature surface to reach 6°C/cm

gradient at the

Sfllul/OII :

Tcmperaturc Resutt ,

at 30 em is 465.45 K

at a distance

.In this problem take It a . S C1.l. l.e.,

I. Surface

temperature,

2. Temperature

TO = 785.68 K

at a distance

of 30 em, T,

h ~

heat transfer

II is not given. So

We know that , =

465.45 K

".

Btot number

B. . 'I

~ 13· . ,V.lue IS

hL k

=

00

\ Bj =

00 \

h

Scanned by CamScanner

co-efficient

tJ).

c

'.

00.

. I'd

So, this is semi infi,"" sou

t .pe

)

problem.

A

1.32H

------__

neat and

",,'

Moss 7'.

lan·Ve,.

Case (i)

---.--

~

I

I,

Transient Heal 'onduction I.J2~

We know Ih(l1. Temper(llllrc

=> ---:>

!!radicnl


_6nc.


(inC .-~.:.--

IS

-

~oo

dT

~ -fo1lt

dx

273 - 393

em IO-2m

cll
0==

- .MIOne

---

74.89 s

Case (ii)

III

1==2 min We know

= 600

I

=

120 s

that,

For maximum

Heat transfer.

:::::::>

x=

:::::::>

:::::::>

qo dT

/2

x 1.7 x -10-4 x 120'

Result:

ciT k ,._ cix

required for the temperature 6 "Czcrn is 74.89 s.

J. The time

J o

[Heal flux,q

A

2. The depth at which two min lite is 0.20

~

dx

k

~=

600 nC/m

k

rate

I x = 0.20 m I

ciT

k -. cix -

cooling

x=~

Q == kA ciT

dx Q A

I

1.5.7Transient A solid

600 °C/I11

space is known Consider

K

gradient

the rate of cooling

to reach

is maximum

after

111.

Heat Flow in an Infinite Plate

which

extends

as infinite an infinite

Shown in fig. I. 15, which

Tj• It is slIcicienly

exposed

itself

infinitely

in all directions

flat plate of uniform is initially

thickness

2L as

at a uniform temperatllre

to a large mass of fluid having

1cnlperfltllr" Tv. Thi. temperature is aS~lJIned to be constant IhrOllnl . '1" ie p I a te. is extended . r 1 out the process of cooling or heating. 10 InC'

.

Illlty In the y and z directions.

Scanned by CamScanner

of

solid.

of a

,

/.330

----

Heal and MaS\" Tor "f, __ ..:.:._:::. ~1~/ans.ler

Transient Heal Conduction 1.331

~

r.: r,

I-I

==f[~' ht,~~)

tion we know that conduction resistance is this equa , fro~ The temperature history becomes a function of liulble. neg hLc] Fourier number [a-2t and the dimensionless , L JTIber [ OU k (.!-)which indicates the location of point within the

I

0

I :: I

.!f3rneter

"

L

e temperature is to be obtained. The dimensionless dale Vi h er ~rameter is replaced by [ ~ lin case of cylinders and

l~ 1

-x

I

Heisler has prepared

Fig. 1.15 Infinite plate The heat transfer C f . plate and the fluid O-e ficlent between the center of the I .on both sides is assumed t b surface of the p ate IS selected as tl .. 0 e constant. The ie orgln. The governing different' I . d2T ra equatIon is ==i_ dT dx2 a dx The boundary ,

dT cJx

2.Atx==0, 3.Atx==±L,kA bo

The solution Ulldary conditio

0 -

fj

solutions

of the

steady state conduction

problems. These charts have been onstructed in non-dimensional parameters. The charts are : 9Jitablefor problems with a finite surface and internal resistance. I for suchcase the biot number lies between 0 and 100. These heiler charts were further extended !rober.

T i-Initial

ciT

dx ==hA [TO - T ifJ

Scanned by CamScanner

for graphical

and improved by

For infinite solids Take '

==0

of the ab . . . .' ove dIfferentIal n IS gIven by

charts

The heiler and grober charts are used to solve the problems ofsUddenim'rnersion of plate, cylinder . .' or sphere 1I1toa fluid, NOle:

co di . .n Itlons are

I. At t ==0 1" _-

.pberes.

T C7;J

.' equation

with these

temperature

F'mal temperature

- K.

- K. To - Center line temperature - K. It. T x - Intermediate temperature - K 11~lfinite solids, biot number value is in between 0.1 and 100 r.e 0 I ., . < B, < 100.

Transient

Heat

I.JJJ

COlldUClioll

l 2

0.05

I Given:

We knoW that, lhic.kncss, Initial

L == 5 ern ::::0.05 rn

Finaltcmperature Distance, t

T

v-

1 minute

Heat transfer

1800

==

III

Biotllumber

60 s

III \

k

==673K ::::900 C + 273::: 363 K

.r = 10 rnrn == 0.0 I 0

0.025

hlc

I3j =

T == 4000 C + 273

temperature

I

Time

BiotllUl\lber.

L.

i in between O. I and 100.

value

i.e .. 0.\ < I3j

0.025 204.2

0,

\ 00.

thi

i infinite solid type prubleill.

h = 1800 W/m2K

co-efficient,

To Ii IItI :

Case (i)

1. Mid plane temperature 2. Intermediate

(TO)

lifter I min

( T .r ) at a

temperature

distance

ofO.OIOm

X axis ----)fourier

Sotution :

rt-

-

Propel! ies of aluminium l diffusivity,

/

I

at

from the mid plane.

Thr-rma

I

A

1'0111

IJ '1'( doto hun' I 7/1

iHC (1

'l hernia I conduct ivity, k

~-=

~4. J R

==

204.2\\

Scanned by CamScanner

/mK.

iter

r ;n'il/;te fI £)11'. rej "pera(llre fio 'J' J {Tv calculate III/ p ane et .. f!e;\'/er "hart n . 6- (S'/x III e(//t/O ) HAfT data book p .Ige no.o: .,

lIumber

==

'(lg~ 110 11 ==

L; ~

10-6 (0.025)2

x

60

. nt Heat Conduction J .335 Trans re 1.334 Heal and Mass Trans er

.'

hLc

Curve

#

k \ 800 x 0.025 204.2

X axis value is 8.08, curve value is 0.22 F can find corresponding Y axis value is O. \ 9 lFr' rom that, ~t om graph\.

(II)

distance

0

f 0 0 \ m from mid p\ane .

ra\Ure at a

1et1\\)e

HM

T data book page

no 66 (Sixth

.

J [Refer charI ,~eisler _ hLc:: . Blot number, B, - k Y. at-is ~ x _ _Q_.O\ :: OA Cut'le ~ :: 0.015

0.11

Lc -

. 0 4 from that, 'Weca . 0 11 curve va\ue is . . . ova\ue \S . , 'j. aY.\S . '{ axis va\ue is O.9S. lInG corresponding

Q\

o II QO

0: o II

at

--

_

-

8.08

Lc2

Y ax is = TO - Too

~= \r.

= O.\ 9

T-T 1

0.11

00

TO-363 =0.19 673 - 363

TO

= 421.9

K

\ Mid plane temperature or Center line temeprature, To = 42 \.9 K J

Scanned by CamScanner

edition).

\x-363

41\.9 - 363

~

=O.9S

Trans I'ent Heal Conduction 1.33 /.336

Heal and Mass Transfer

Temperature

at a distance

of 0.0 I 0 fr

420.72 K.

om the mid

plane'

IS

.....cificheat,

5yTo

2. Temperature at a distance T, = 420.72 K.

= 421.9

(l

c::::

896 J/kg K

·tfuSIY1t)'.

11'ef11lal dl

Result,' I. Mid plane temperature,

10-6 m2/s

:::: 84.18 .'

fIIe

K

of 0.0 10m fro In

I tIe rn'd I

.....,alcoo

p

'.

ductivlty.

k:::: 204.2W/mK.

ll"

_L plane

Slob.

eharac

If

.' length, tenSue

Lc::::

2 0.120 2

== -

III A

slab of aluminium 120 "'''' thlck is illitiall .1' 600" C I' . temperature oJ . . tIS slIddenly itnmer!)"edin IIYIi "' .II "0"(' . I' . I.' qUId til 1~ ,re'HI ttng III (I teat transfer c()-e//iiciefl' 0/ 1400 WlmlK. Calculate the [ollowing

I. == 0.06 ffiJ ~~c:....-__ --We knoW that,

I. Temperature (It tile center line after I millute. 2. Temperature (It tile surface 3. Total thermal energy removed per unit area Give" : Thickness,

L ::;:120

mill

== 0.120

= 600

C

273

=

873 K

final temperature,

1'0 = 1200 C

273

=

393 K

co-efficient,

Toflnd : I. Temperature 2. Temperature 3. Total thermal

Density,

J(

= 1400

[Bi = 0.41

iJ

.' . olid type problem. 0.\ < Bi < \ 00, So this IS infinIte 5

W/Il12K. CUt (i)

at the center

. 11111.:

a t" ter I'

III

ture/or [To calculate mid plane temperah tJ 'H ar i AfT data book page 110.65 H e IS. Ire e

inute

at the surface

.. book page [From HAn data

of aluminium

are

..

'illiteplate, refer

In}'

I

at

energy remover I pe r unit area

Solution " Properties

h

a, == k \400 O.Q§ 204.2

~

T,

Heat transfer

Biot number,

III

Initial temperature,

0

h Le

X axis -+ Fourier number::;

L; "AIK)I.~

,,0 / J

0-6

)I.

60

:::~)2

l. t=

\

minute=

I

60 51

p = 2707 kg/rn-' ~

Scanned by CamScanner

1.33

Transient Heat Conduction 1.339 Hear and Mass Transfer

I "J I..tIll

tUre at t V" re(1lpera

he surface

i.e., x

hLc

Cune

-...

.

k =

X a,XIS ~

0.411

X axis value is 1.403, Curve can find

rresponding

alue is 0 4 alue is 0.62.' II. From that, lI.e

Y axis

curve ~

B· = -

Biot number,

~=

x == Lc -

k

I

=

0.411

I

0.06

1 . 0 411 curve value is I.From that, we can va ue IS. , • :) rresponding Y axis value IS 0.85. X

.

a,XIS

hLc -k-= 0.411 1-

Too

= 0.85 ~

~~

- Too 1.403

Y axis=

TO - T ---

=

0.62

hLc= 0.411 k To - 393

=

0.62

873 - 393 TO

I Centre

=

line temeprature,

To

Scanned by CamScanner

=

Y axis

=

T -T x

ee)

= 0.85

To-Tee) Tx - 393 = 0.85 690.6 - 393

690.6 K 690.6 K

I

.c HMT data book page nO.66 - Heisler chart] [ Rejer

:::; 0.411

hL

Lc

\ x = 0.06 m

urvc -... I -:;

=

T,

= 645.96

K

Tronsie,,' Heo: CQMuction 1.341 1.340 Heal and Mass Transfer

C4S~ (Iii) Total thermal enercv . e.J re moved or Total heat energy removed. [Refer HMT data b

0.8 ook Po

_ h2 at ----..:....

X axis

ge

110.6 }

0.6

k2 Q

- (1400)2 -~I(M>£,

x

84 18

/" 04 ~ .

(240.2)2~ \ X axis Curve ~

==

0.171J

hLc -k-

\()2

\0

1400 x 0.06 204.2

I

Curve

(J):::::>

hLc = 0,411 \ -k-

i--s

_g_ =

0.24

Q

0.24

Qo

:::::>

X axis value is 0.171, curve value is 0.411. From that we can find corresponding Y axis value is 0.24. '

Y·axis = - 0 = 024 00 .

~~7::

0.24

x

x

Q

o

\39.7

x

lO~

\Q Rts .. " :

00 = pCp LITj

= 2707

=

... (I)

We know that,

=

x

-

T

[Refer HMT data bool page "0.6J)

896 x 0.120 x [873 - 3931 106 J/1I12

Scanned by CamScanner

I. Temperature at the centre line, TO = 690.6 K

2.Temperature at the surface, T, = 645.96 K 3. Total heat energy removed, Q = 33.52

x

l()6 J/m2,.

1.342 Heat and Mass Transfer

I1J A

long steel CYlinder 15

. temperature of 350 C. It is Icm lI'am . eler 01';0' p ocea Ill( a/"l1/t Calculate tl,e fOllowing 0 Q fur"ac Y 01 Q • e Qt 950' r. . 1 ,.,..,. . lime reqUiredfor tile ax' IS temperatu 2. C·orrespondtng temperatur re 10,.elle!, 820' . e at a radius 01" C t'me. 'J 6 e", III

Take a = 6.11 x 10-6 m2/s, k = 20 W.

Transient Heat Conduction 1.343 ~ we~(10 hL c . number, Bi - k 610t

150

:::>

IhQl

Diameter,D=

0.0375

[

Bi == 0.281251

0.1
'/tng, /1 :::: J 50 WI",1!.

Given:

x

20

15cm==0.15m

Radius, R ==7.5 ern ==0.075 m

I cast (i)

Initial temperature,

I

Final temperature,

Tj ==35° C + 273 == 308 K T

ex)

==950° C + 273 == 1223 K

a == 6.1 I

x

10-6 m2/s

AXIS.

.

temp erature (or) centre__Ime temperature

I

To==8200C+273=1093K

I

To ==1093 K

Time (t) ==? k == 20 W/mK [Refer HMT dolo book page no.68(Sixth edition))

h == 150 W/m2K Tofind:

Curve

I.Time required

for the axis temperature to reach 820°e.

2. Corresponding

temperature

For

x

0.075 = 0.5625

20 Yaxis

To-Too T, - Too

Cylinder, Characteristic

K ISO

at a ra d IUS . 0 f 6 ern at that time.

Solution:

hR

length, Lc == R 2 0.075 2

0.0375 m ]

Scanned by CamScanner

1093 - 1223 308 - 1223

= 0.142

. 0 5625. From that, we Y axis value is 0.142, curv e value . 2IS5 .

can fiInd Corresponding X axis. value

IS

.

'*li!J/l::

L "

'-:;-'

1.344 Heal and Mas. Transfer

Transient Heat Conduction I.~

X ,axis 0. t ,. ., -- -""'25

R2

.

==

. 0 8 X axis value is 0.5625. From that, . . 08on diIn g Y axis alue IS . ).

value

CurVe corres P (LIl d

15

Tr - T

.;J)J

yaX

is ==-

= 0.85

To-Ta.,

(J. t

-=

2.5

R2

T, - T if.

_:.----

0.85 th-----~

-:=

To - T,FJ

-R2 U t

6. J J

x J ()-6 x t

(0.075)2

= 2.5 hR == 0.56 k

= 2.5

/t = 2301.55/

== 0.85

Case (ii) r = 6 em

Intermediate radius,

[r

= 0.06

=

Tr - 1223

0.06 m

1093-1223

mj

== 0.85

_8200C+273=10931< [ .: To-

{Refer HMT data book page no. 69(.S Ixth edilion)]

Curve

r R

=

0.06

Result: 0.8

·dt-230 I. Time require , -).5s

0.075 . 2. Intermediate

X axis

=

hR ,

k

Scanned by CamScanner

tern perature, T r

:=:

1112.5 K.

1.346 Heat and Mass Transfer

o

Transient Heat Conduction 1.347

A sphere of 30 mm dia

meter is . temperature of 450°C It is t ,nitlally III · p aced in· Q IIJ,' center lme temperature rea h llir at 2' c es 3500 ~oC transfer co-efficient /, = 15 W/nr2 C "'ith tire IIIrtiJ ~ immersed in a water at 220C . K. After thlll fir locoJ ~ wlIh he e $ph of 5500 W/m1 K until the cent . attrQlISJer Cn.... tlti

if,

~ for

. .

. Characteristic

I Lc

Calculate the following:

3. Surface temperature after cool'

mg

,

III

a= 6,6 x 10-6 m1/s.

= 30 mm == 0.030 m

=

3.4 x 10-3 <0.1.

OC)

Density, p = 3100 kg/m' Specific heat, Cp = 1005 J/kg K

For lumped parameter system, -hA [ CpxV x p x

W/mK,

t] .. , (I)

==e

Thermal diffusivity, ex. = 6.6 x 10-6 m2/s.

[Refer HMT data book page no. 57]

V

Characteristics

Solution: Case (i): Cooling in air We know that,

(I)

::)

T-TOC)

where,

s, = T h

=

15 WIm2K

length, Lc ==

A

.[Cp:hLc'

p

'I]

==e

_xt]

hLc

Biot number,

I

Final temperature, T = 220 C + 273 == 295 K 0 . Intermediate temperature, T -- 350 C + 273 == 623 K

Radius, R = 15 mm = 0.015 m

= 22

10-3 m

To = 4500 C + 273 == 723 K

Initial temperature,

Thermal conductivity, k

x

analysistype problem. For lumped heat analysis (Cooling in air)

Given: Diameter of sphere, D

5

Biot number value is less than 0.). So. this is lumped heat

lVtlJer

,

0.015 3

15 x 5 x 10-3 22

B·I

C p = 1005 Jlkg, k = 22 WI""

= 3100 kg/mJ,

=

B·I

1. Time required/or cool,'n'o' , Gina" 2. Time required for coolin»G in Water Take p

3 =

ter /llre t v-tf!~ elllperOll4re r~

from 350°C to 60°C

= R

length Lc

623 - 295 723 - 295

15 [ ==e lo05x 5 x 10-3 x 3100

fi '

;

Scanned by CamScanner

.r~I.;'.

.1,

,.

Transient Heat Conduction 1.349

1.348 Heat and Mass Transfer In [623-295]_

_

-~

It;: Time required

_-

-15

723-295

)( 10-3 '(100)(

sJ

276.3

t

k

~=3.75

"'"

for cooling in ..

air

22

276.3 s.

IS

Case (ii) Cooling in water 333 - 295 :::623 - 295

B·lot num b er B· == --hLc , I k where h - Heat transfer

co-efficient

=

5500 W/m2K

I

For sphere Characteristic

length, Lc

R

=

3 75 Y axis value is 0.1158. From that, we Curve value IS . , . 8 d· X axis value IS 0.4 . :In find correspon 109 •

Xaxis=

3

== 0.1158

~ R2

== 0.48

0.015

3 I

= 5

Lc

x 10-3 m

5500

B·I

5

x

_E!_

I

To- T

__

00_

== 3.75

k

= 0.1158

r, - Too

10-3

x

22

I Bi

=

a. t == 0.48

R2

1.25 ]

0.1 < Bi < 100. So, this is infinite so

I·d I

ty

pe problem.

E:...L

== 0.48

R2 for infinite solids (Cooling •



Initial temperature,

I



Final temperature,

in water) 0

T, = 350 C + Too

Centre line temperature,

= 22

0

C+

273 ==623 K

273==295

0 C + 273 To == 60

[Refer HMT data

Scanned by CamScanner

6.6

K

bOOK

pO

geno)1

10-6

x t

== 0.48

(0.015)2~

333 J( ==

x

t

== 16.36 s

. 1636

]

1. in water The time required for CO mg

IS·

S ~.

' ..... '

.~~ "....':

7

/ I~II IfNI/lind M'I"e

.

n", II)

'l"il'"

,

, ''''?,t'f'

~rt-'J/" (

r ~

::().J

;:;

To - Trl..

~

333 - 295

, ~

T, - 295 J,(J ~ (j (1' I

1'1 X

It I)

"'1;

fi1IJ(",M

<.

I

~lJit;,-"

rrr =

'

.,,·,.r-kJ

k

villo

i. o,'}, ,

= 276.3

s

2. Time required for cooling in water, t = 16.36 s

- ,,7 i1,d~

after cooling in water is 306.4 K.

L Time required for cooling in air, t

22

,I}

I

In'" :

. ')(J(J / C).{j I

Curv« v~llI(;

3()6.4K

surface temperature

III'

lf~I'"

:: 0,3

J. Surface temperature after cooling in water, T, = 306.4K.

I. X axivalue ; ~ ),75,

com: pon M d' mg Y

1.5.9Solved University

Problems

on Infinite Solid!

I1]A

L: R

I:

I

slab of aluminium 10cm thick is originally at II temperature of SOODe. It is suddenly immersed in a liquid at /{)ODC resulting in a heat transfer co-efficient of 1200 Wlm2 K. Determine the temperature at the centreline and the surface 1 minute after the immersion. Also calculate tire total thermal energy removed per unit arell of tireslab during this period. Tireproperties of aluminium for the given conditions are

a = 8.4 hR T-

3.75

p

«

x 10-5

m]ls

2700 kglm3

k = 215 WlmK C = 0.9 kllkg K [ May 2005. Anna un.iv.]

~

~.l~

Scanned by CamScanner

I.>.,

1:_1~_~ Iltffl/ tmtl A111.\·.~ -

---

(ti"ctn .'

~

7h"""re,.

----~..::::::.--....c----="=>-_

Transient Heat Conduction 1.353

llli '''"eSS,

L

10 ell)

0.10 111

Initial

hllllP~1'II11I1'



.73 ... 77 273 .. 373

h::::: 1100

c\)- 'I)'icirlll,

Prop,.rtico!tof "'''",ini"",

"'('

p - .700

kg/Ill

Density,

~. (11

00"

T - 100"

FillaltcmpCl'lItlll'(" I kilt lntllslcl'.

Tj

~

L' 1\

plane temperature for infinite plate. refer rTo ca 10 6S bOOkpage I . (Sixth edition) - Heisler chart] leu late

condul:ti,

uv, k ::: .. I" W/mK

Specific

heat,

I,

I

. Fourier number X aXIs -+

[.: t

r:l_!axis. -+ Fourier

k.l/kg K

. 103 J/kg~ K . Curve

I. Temperature

at t.he

-. Temperature

at the surface

entre line after 1 minute.

energ

c2

removed

per unit area.

I

We know that for slab,

= 0.05 m

=

1 minute

number

= 60 s]

=2.0161

hLc k

Carve -> "~"

0.2791

. 0279. From that, we . 2. 016 , cu rvevaluels. X axis value IS . 064 Y axis value IS . . can find corresponding.

L 0.10 L =_=c 2 2

ILc

--+

=

10-5 x 60 (0.05)2

x

1200 x 0.05 215

Solution:

length

L

=

8.4 . 10-5 m2/s.

== 0.9

Characteristic

i!.!._

i) :::::

1lJjilld:

I hLc

hLc

s, =T

Biot number,

~

I

k

1200 x 0.05 215

Bj = 0.279/ at

. In . between 0 . ) and 100, Biot number value IS blefll. i.e., 0.1 < B, < ) 00, So, this IS., infinite. sorid type pro

lJ

• Scanned by CamScanner

1

I

8.4

Thermal

I I

I( I

,

3. Total thermal

III id

·t'fdllIS ~~

Whn2K

Thermal ditTusivit

p " O.

I

I

(

== 2.016

=

0.279

Scanned by CamScanner

\).119

~2

Tran . _-=-:=--=-:-7_~:..::.:~sl~en'!!_t!}_H.~e(Jalend' Temperature at the surface T _ 0 llello" 1.357 . , x - 598.28 K 3. Total thermal

Q

Qo = 0.34

Q

=

energy removed per urut. area 33.04 x 106 J/m2 '

r1I A large iron plate of lOcm tl,iclcnessad' . I.:J n ongma/lyat 800-C is suddenly exposed to an environment at O.C • ,1"1"... ",'here'''e convectIOn co-efficient IS 50 Wlm1K . Calcula'e 'he ttmperature at a depth of -Icm from one OJ'he .£ facts 100 seconds after the plate is exposed to t'he tnv"OIf~IIL .

We know that ,

How. muclr .£ th l .. energy has been lost per unit area oJ e pille durtng this time. [June 2006 - Anna. Univ]

[Refer HMT data bookp

= 2700 Qo = 97.2

x x

0.9

x

103

x

age no.63 (Sixth td"1I101lj!

0.10[773-373)

106 J/m2.

Q

=

= 0.34

= 0.10

m

Initial temperature,

Ti

= 8000 C + 273 = 1073 K

Final temperature,

Too

=

Distance,

x = 4 em = 0.04

time, t

100 s

=

0 C + 273 0

heat transfer co-efficient,

Io flnd : I. Temperature

0.34 'Qo

= 0.34

of iron plate, L = 10 em

Thickness

Convective

From graph, we know that,

Q Qo

GiI'en:

= 273

K

h = 50 W/m2K

m

(Tr) at a depth of 0.04m from one end of

the plate. 6

97.2

10

2. Total thermal energy lost per unit area, Q

Q = "3.04 ' 106 Jim·

Solution: Properties of iron are

l raj Q=33.0-l

Thermal

1

10 Jlnt

Th erma I diff .' I· USIVlty,

• ~.Sldl:

I. Temperature

at

the centre line

Scanned by CamScanner

conductivity,

To::: 629 K

(l

k = 72.7 W/mK 2 - 20 .34 x 10-6 m /s. -

1. 358 Heal and Mass Transfer 7897 kglmJ

Density,

p

Specific

heat, Cp = 452 J/Kg K.

=

Transient Heat Conduction 1.35 ______ .> curve::::

For Slab Characteristic

L

length,

L 2

c " -:::

0 .10 -....::.

hLc k

50

2

§i"ve

x 0.05 72.7

:::: 0.0343/

~ We know that, Biot number,



hLc

== _

I

can

k

is 0 183 curve value is 0.0343. From that, we X xis va Iue I . , a ding Y axis value is 0.92 [From graph}. find correspon

50 x 0.05 72.7 TO- Teo Ti - Teo [Note:

Biot number value is less than 0.1. So, thisislumped heat analysis i.e., Neglecting internal resistance. Bur we have to find temperature at a depthof 4cm from one end. So, we can go for Heisler Chart} Y axis

TO - 273

To calculate mid plane temperature, refer HMT data bookpage

axis ~ Fourier number

=>

at

Scanned by CamScanner

0.813J

1009 K

Case (ii)

Temperature at a depth ofO. 04 m from mid plane.

(0.05)2

number

TO == 1009 K

. plane temperature or Centre I·me temperature, To Mid

20.34 x /0-6 x 122

~ Fourier

= 0.92

= -2

Lc

I X axis

== 0.92

1073-373

edition). .

X

To - Teo

0.0343

Ti - Teo

Case (i) no.65(Sixth

=

:LC =

= 0.92

I,

[Refer

HMT

H""'A

66 (Sixth edition)

data book page no. -

1.360

Heal and U ass Transfer X axis ~ B'

lot

Curve

::::

t- ",~ c

can

numb er, B.", I

1

h Lc k:::

0.0343

y

Val

aXIS value' IS

. Ue IS

0.90

.

2

~Fourier

number = h

X 8,,15

0.05'" 0.8

. X axis value is 0 03 find corresponding 4~, curve

Transient Heal Conti . _-------.....::..=.:::.:..:-:::::..~UC~/lIloon 1.36/

~

11 t

k2

= (50)2 x (20.34 x 10-6)x 100 0.8 F . tOrn th

(72.7)2

I

at, "'e

X axis = 0.962

x L"'0.8 c

x

10-3 ]

hLc

I

Curve

= @urve

=

-k-

50

x

0.05

72.7

0.0343/

10-3, curve value is 0.0343. From that, wecan find corresponding Y axis value is 0.02. X axis value is 0.962

x

hLc

k=

0.0343

0.6 Tx - 273 1009 - 273

r, Temperature

=

=

0.90

935.4 K

at a depth of 0.04m from one endoftheplate, T, = 935.4 K

Q

Qo

0.4

0.2

10-5

10-4

10-3

10-2

h2a

Case (iii)

1 xlOl

10-1

t

k2

Total thermal

energy lost per unit area, Q

67 (.'Six/h edition)} [Refer HMT data book page no.

Scanned by CamScanner

Y8)(15·=_Q_=002 Q . o

... (I)

Transient Heal Conduction 1.363 _

1.362 Heat and Mass Transfer We know that.

.. edition)]

I

= 7897

x

452

x

0.10 [1073 - 273]

Qo

=

0.285 x 109 J/m21

go

=

0.02

. iry k::: 42.S W/mK

,henna

x

Qo

0.02

x

0.285

2. Temper x

109

,

To

ature inside the plate

~"';o": fll Platt:

106J/m2

Q=5.7x

\ conduCtlVI

~fj"d: . e temperature, I. center lin

Q = 0.02 =

25 min :::0.0125 m

80 .inutes::: \ s 3 Ill fit1le, t :::; fficient, h = 285 W/m2K sfer co-e O tlest tra . iry a.::: 0.043 m2/hr I ditTuSIVI , fhef(lllJ = \. \ 9 x \ 0-5m2/s.

Vista

[Refer HMT data book page no.63 (Sixth

(lCe,·

r - \.

hL

leogt

Characteristic

c

Result: I. Tx = 935.4 K

2. Q = 5.7

x

106 J/m2

Weknow that,

111 A

large steel plate 5 em thlck is initially at a uniform temperature of 400· C. It is suddenly exposed on hoth sides to a surrounding at 60·C wit" convective "eat transfer co-efficient of 285 Wlm}K. Calculate the centre line temperature and the temperature inside the plate 1.25 em from tile mid plane after 3 minutes. Takek for steel

= 42.5 WlmK,

a for steel

= 0.043 m1/hr. [Nov'96

Given:

Thickness, L I ..

;, ~ ~

= 5 em

n.llIal temperature, Flnalte mperature,

= 0.05 m

r, = 400

0

C

+ 273 = 673 K

TaJ = 600 C + 273

Scanned by CamScanner

=

333 K

MUj

hLc

Biot number, ~

=

L 2

=

0.025

= Q;Qi 2

m]

_ _]8S .::-Q.:021.

a, = k ~i::

\ 2S em from the mid plane. .

42.5

0.167~ id

O.\ <

s, <

\ 00, So,

hi . infinite soh ty

pe problem.

t IS IS

. temepratul rature or Mid plane line tempe....ook page no. 651 {Tocalculate centre . HMT data vvv for infinite plate, refer

Case (i)

Transient Heat Conduction 1.365 J.364 Heat and Mass Transfer ~ X axis ~ Fourier number

=

Ti - Tet)

at

Lc2 =

=0.64

~:::0.64

673 - 333

1. 19 x I 0-5 x I 80

1--------

(0.025)2

-

\ X axis ~ Fourier number = 3.42 ,

~

550.6 K

= hLc

Curve

k

~~

285

=

I

=

Curve

0.025 42.5 x

=

.

Temperature (T;t) at a distance of 0.0125 m from mid plane

0.167

{Refer HMT data book page no.66}

hLc

u., = 0.167 \_ -k-

X axis ~ Biot number,

X axis value is 3.42, curve value' . can find corresponding' Y r.. . IS 0.167. From that, we axis value IS 0.64

x

e urve ~

::: --Lc

a, :::k:::

0.0125 0.025

==

0.167

0.5

X axis value is 0.167, curve value is 0.5. From that, w == 0.64

TO-T T i-

tan find corresponding

hLc

"',

=

0.64

-k-= 0.167

T 1- T

(I,;:::

0.97

Y axis value is 0.97.

~~...,_:>....--~

O.S

To-Tu:

0.6

T."

h~ k

Scanned by CamScanner

0.\67

Transient Heat Conduction 1.367

1.366 Heal and Mass Transfer

:::::1 hour == 3600 s

fme Y axis ==

T, - Ta>

P == 998 kg/m3 . 2 fer co-efficient, h == 6 W 1m K tieat trans h at C == 4180 J/kg K specific e , p al conductivity, k = 0.6 W/mK Therm k _ 0.6 al diffusivity, ex == -p C 998 x 4180 Ther m p I

To-Too

= 0.97

To-Too T, - 333

----'''----

=

550.6 - 333

'.

penslty,

== 0.97

Tx-Too

t

0.97

(ex == 1.43 x 10-7m2/s.\ Temperature at a distance of 1.25 em from the mid plane is 544 K. Result:

ToFind: Center line temperature (To)

1. Centre line temperature, To == 550.6 K 2. Intermediate temperature, T x == 544 K

Solution For

III A 10 em diameter

apple approximately spherical in shape is taken from a 20° C environment and placed ill a refrigerator is 5° C and average

where temperature

Sphere. Characteristic

length, Lc == ==

heat transfer

= 998 kglm3. Specific conductivity = 0.6 WlmK.

Thermal

heat == 4180 J/kg K,

We know that,

hLc

Biot number, Bi == [Apr'98

M.UJ

Given:

k

:::

Diameter of sphere, 0 = 10 em

=

.

ma temperature, Too= 5° C + 273

Scanned by CamScanner

0.6

~

~

Initial temperature, T, = 20° C + 273 == 293 K I

~

0.10 m

Radius of sphere, R = 5 em = 0.05 m F'

0.05 3

Gc ~ 0.016 mJ

coefficient is 6 Wlml K. Calculate the temperature at the centre of the apple after a period of 1 hour. The physical properties of apple are density

R 3

= 278

K

~.

0.1 < Bi < 100. So,

lid type problem.

. . . finite so this IS In

1. 368 Heal a"d Mass Transfer

I"fi"ile Solids d

--------b [To calculate centre I'me temp ala ook page no.71 (S'IX th editionj] " erature for sphere ' reler c. Ii

Xaxis

MT

= ~

R2 =

1.43

10-7

x

x

3600

,tsll/f: Center

(0.05)2

I X axis

= 0.20

I hR k

Curve

6

I

.Curve

0.5

=

c,

~90.9K

] A long steel cy! i,,"« 1_ cm ,/illmtltr and illi,ially ., 20' C 0 i> plac,,1 in 0 [ur nil<' at 820· C wi,h h = 14 IfI m ' K. \ C.lc. ,I" ume "if"ir_" fur ,I.. «
'0

".eI,

0.05 0.6

x

0.5

I

To - Too Ti-Too

Z

stee! CITe k

X axis. value is 0 20 find corresponding Y '. ,curve. value is 0.5. From that w axis value IS 0.86. ' e can ~ Y axis

r

line t~l1ll;pr:ltLln.:.

= 0.86

:: 21 WI",K, a= 6.11 )( Itrb m /!.

GiI'tn:

Diameter Radiu

f c lin lcr. \) :: 1- em :: O.\ f phere,

R -

Final temperature. Heat transfer

or Axi temperature

cm " 0.06

111

273 = 109- K

2K _etli~i';llt. II - 140 W/ln } .,

=

800· C 21)

o 4 0.05 III \ 0-6 mIls.

~t1I::

1 Thermal dillusi it)" u. ;::: 6.1 Th . I·:: 2 \ W /In K ermal conducti It),,"

~

Scanned by CamScanner

til

273:: 293 K

T, == T = 8,0· C

Centre line temperature Intermediate radiu , r:: SA

~.

M. Vj

II

Initialtemperatur·.

hR _ k - 0.5

[0(.'('99

= ,01'

K

Transient Heat Conduction 1.371

1.370 Heat and Mass Transfer To find:

_____

I. Time (t) required for the axis temperat

ure to reach 800

0

2. Corresponding temperature

(T ) at a r

ra

d'

IUS

Solution: i

of5 . 4 ern

C.

1073 - 1093

.

::: 293 - 1093

or Cylinder, _ 0.06

Characteristic length, Lc ::: R

-2

2

0.03 m

lue is 0.4 Y axis 0.025. From that, we can find curve V a '. l.,rr~~I[)()n(Jlm~X axis value IS 5.

1

We know that, Biot number B.::: hLc k

'I

~

::: 140 x 0.03 21 Ir--B-:::-0-.2-1 j at

0.1 < Bj < 100. So, this is infinite solid type problem.

':ase (i)

= ~

~ X axis

Axis temperature } or To ::: 8000 C Centre line temperature

5 t =

TO::: 8000 C + 273

=

-

R2 -

1073 K

It

Time (t)?

=

=

R2

x

5

5

(0.06)2

(6.11 2945.9

x

10--6)

sJ

Case (ii) [Refer HMT data book page

Curve ::: hR

no. 68(Sixth edition)]

Intermediate

k :::

140 x 0.06 21

radius, r = 5.4 em'

::::0 054 m

[Refer HMT dala book p g

::: 0.4

Scanned by CamScanner

Curve

_L

R

= ~::::0.9

0.06

. h dition)]

a e no.69(szxt e

I. J 72 Heal alld Mass Transjer

Trans,

LJ

lent neat

X axis

hR K

==

, ~ems

cylinder 5 em in diameter and initially ot

/. 200 C is suddenly

exposed to a convection environment ' at 2 70llC and I, = 525 Wlm K, Determine the temperature at a radiUS 0/1.25 em and the heat lost per unit length 1minutes nfter the cylinder is exposed to environment. 11

== 0.4

21

for practice

~uminium

140 x 0.06

Conduction I. 373

Curve value . is 0.9 ,.~X axis va I lie IS. 0 4 find corresponding Y axis val . 0 .. FrollJ that lie IS .84. '

We can

Take P = 2700 kglm3, C = 0.9 kJlkg K, k a= 8.4 x 10 52' m Is. R

0.9

=

215 WlmK

I Oct' 2002 M U] ]. A slab of rubber of thickness 40 em, initially at a uniform temperature of 300 e. It is exposed to air at 30" C, the convection co-efficient being 240 kJII" m1 "C. Assuming that il is a large slab, find the mid plane temperature after 15 11

-

Y axis

==

T -T r

hR k

minutes.

== 04.

{Manonmanium
TO-T(1J

== 0.84

J.

Wlmll C) thickness 5 em initially at uniform temperature of 200 C is suddenly immersed in an oil both at 20°e. The convection heat transfer co-efficient between the fluid and the surface is 500 Wlml "C How long will it take for the centre plane to cool to 100"C { Madurai Kamara} University Apr'97]

= 43

11

== 0.84

Tr-1093 1073 - 1093

(a = 1.25 x 10-5 m1ls, p = 7833 kglmJ,

Cp = 465 Jlkg ° C, k

Tr -T (1J

TO-T(1J

A steel plate

Szmdaranar University Nov'96]

== 0.84

4

~1076.2KJ R~sull :

initially at a uniform I' 't . I d b"jirsl coo »s I tn temperature oif400° C. It is "eallrea e 'I ' ntralltmperalure air (/, = 10 WI",2 K) at 20° C unll ~/S ce both 01 20" C hed m awaltr reaches 335° e. It is then quenc if Ihe sphere cools re with h = 6000 WI",1K until the cenl 0 uired/orcooling uJ Ihe time req from 335°C to 50° C. Co",p e . oJ ro.nertieso/sphert . fi L wing phYSIC p r '" air anti water for the 0 ,0

.' , A metallic sphere of radiUS 10 mm

IS

J

IT" . nne required for I . 2945.9 s. t re aXIS temperature

to reach 800°C is

2. Temperature (T r) at a radius of 5.4 em is 1076.2 K.

Scanned by CamScanner

A

~

I

74 Heat and Mass Transfer 1. 3

~onduction, In c motion or ~irect impact of molecules. Pure conduction is found only in sohds.

p= 3000 kglnr3, C

= 1000 Jlkg

K

Define Convection.

k=20 WlmK

4. convection is a process of heat transfer that will occur between solid surface and a fluid medium when they are at different a . . temperatures. Convection IS possible only in the presence of

a= 6.6 xlfr6 m2ls.

[ Bharathiyar

UniversityA

pr'97]

A 15 em thick plate initially at 20 C is suclden/u Pt' U Into a furnace at 1100 C. The values of thermal condu CtilV,ty . J 0

5.

Conduction 1.375 energy exchange takes place by the k'memauc.

I

fluid medium.

:J

0

I

and diffusion co-efficient

of plate are k = 30 WlmK I

an

d

a= 0.042 mllhr. The average heat transfer co-efficient;s 350

WI",2 K. Find the temperature after 5 minutes of heating.

at tire surface and at the centre

[Nov'97 Manonmanium Sundaranar University]

Define Radiation.

5. The heat transfer from one body to another without any transmitting medium is known as radiation. It is an electromagnetic wave phenomenon. 6. Sttrte Fourier's law of conduction. [Apr'97, Oct' 98 Madrasllniv , May'04, May'05 , June'06 Anna Univ] The rate of heat conduction is proportional to the area measured normal to the direction of heat flow and to the temperature

1.6Two mark Questions and Answers

gradient in that direction. 1. Define heat transfer.

Qa-A

Heat transfer can be defined as the transmission of energy from one region to another due to temperature difference. 2.

Q= -kA dT dx

What are the modes of heat transfer?

1. Conduction 2. Convection 3. Radiation 3.

dT ~

where, A - Area in m2 dT _ Temperature gradient, KIm d.x

What is conduction.

Heat conduction is"amechan ism of heat transfer from a region of h~gh temperature to a region of low temperature within a medlUm(solid I'IqUiid or gases) or different medium 10 . direct " . I phYSicalcontact. I

Scanned by CamScanner

k - Thermal conductivity, W/mK 7 .

'97 M U. Oct' 99 M lJ.' ., bility of a substanceto . defined as the a

. 'ty Define Thermal conductivi .

.' Thermal conductivtb' conduct heat.

IS

[Apr

Conduction 1.377 1.376 Heat and Mass Tra17~r('_,.__

s.

n

Write down the three dimell!i;0IU1/~u

where

cIon e

in Cartesian co-ordinate system,

heat conduction

I

L _ Thermal resistance of slab

R:::::V:

[May'05 & June'06 A

The general three dimensional , , cartesian co-ordinate IS

T - T2

Sf:::::

qUatioll

nna Univ.) e . qUatlon in

T hiic kness of slab

J..,l( -

a2T + ax2

a2T + ay2

2

a T + ._~ = .L a~ az2

k

A - Area

01

a

\ ,

where

9.

conductivity of slab Thenna I

q. -

Heat generator - W /m2

a-

Thermal diffusivity - 1112/s

Write down the three dimensional

heat conduction

eqllation

in cylindrical co-ordinate system.

[May'05 & June'06 Anna Univ.] The general three dimensional cylindrical co-ordinate is

heat conduction

equation in

lotion for conduction of heat througlr a

"'"'te down tire eql , h 1I0wcylinder. o 6.T overall Heat transfer, Q = R

J2 "rl

where 6.T=T\-T2 1 R=_'n 27tLk

~2) _Thermal resistance of slab r I

L _ Length of cylinder k _ Thermal conductivity

2

.s. = j_a

crT + .L aT + .L ;/T + a T + or2 r ar r2 a$2 8z2 k

aT

ae

10. List down the three types of boundary conditions. 1. Prescribed temperature

[Dec-2005. Anna Univ]

rOuter 2 rl -

radius

Inner radius .

13. Write down equatIOn

t through

fi

spl,ere

2. Prescribed heat flux

3. Convection boundary conditions 11. Write dow" the equation for conduction of heat through a slab or plane wall Heat transfer, Q = ~ T owrall

R

~c

Scanned by CamScanner

or condllction of I,ea

Heat transfer, Q :::

~T ~

overall

R

/IO/low

Conduction 1.379 1.378 Heal and Mass Transfer

..,n tIle eq til! ile tI0

U. State Newtons law of cooling or convection la;;-----'__

I~"r'pes of cylinder.

[ April'98 M Uj

r

Heat transfer by convection is given by Newtons I

aWofcool'

Q = hA (Ts - Too)

uation for heat transfer throug" composite

109

where A - Area exposed to heat transfer in m2 B

h - heat transfer coefficient in W/m2K

Convection

A

Ts - Temperature of the surface in K

hb

Too- Temperature of the fluid in K 15. Writedown tire equation for heat transfer tllrouo/I a compOSlIe . to plane wall. [ April'97 M u.} Tb

d) T2

(DTI

L\T overall

Heat transfer, Q::::

R

(D

(i)T)

where LI

Heat transfer Q _ 6T

,

L2

L\T::::Ta-Tb )

I R=-

21tL

overnll

R 61-'1' u- 'l b

-L+ I A

--.s_+ L2 L3 ,--+--+

'. kl A k2A L - Thickness of slab

k3A

, hbA

A - Area 11(/

-

Ileut transfer' coe.f'Tiicienr " ' , at Inner diameter

hI; - Ileat transfer" " coe ffici ic lent at outer side

Scanned by CamScanner

r

2.)

lr,

In

r ~3

.-l..-+-+ k hart

)

___l.2k

2

1

.

I + --hbr3 •

uation

I steady state conductIOneq

lOna, . 17. Write down one t/imens without internal/leat generatIOn.

where

R-

In

ciT ::::0 QX2

'



I conduction equation

wo dinrenslOna 18. Write dow" steady stllte, t without heat generlltion.

1.380 Heal and Mass Transfer /9. Write down the general equation for one dim .' state heat transfer in slab or plane wall witbout ell.~/O"(l1 l SIf.'(fdy leut gener . llt1o" a2T + a2T + a2T = .L aT

ax2

ayl

az2

<X:

al

20. Define overall heat transfer co-efficient. . The overall heat transfer by combmed in terms of an overall conductance efficient 'U'. Heat transfer, Q

= UA

[ April'97 MU modes is Usually .J expressed or overall heat trail l' sler Co-

dT.

Conduction U81 ~1

AddlUO of insulating material on a surface does not reduce ount of heat transfer rate always. Infact under certain t~eam s tances it actualiy increases the heat loss upto certain Ircum . c. nesS of insulation. The radius of insulation for which the thick " " I ra d'IUS0 f iI11SUIa tiion, sfer is maximum IS ca IIe d cntica heat tran ". . . thickness IS called critical thickness. and t Iie c orresponding .Ii

U~M

fins or Extended surfaces.

C transler ar e called extended

21. Write down the general equation for one dimensional steady state heat transfer in slab witll heat generation. [Oc('99 MUj

22. What is critical radius of insulation or criticaltllickness. [May'04 & Dec'04 Anna Univ - Nov'96 ,Oc('97 MUj

Q

= rc

radius

Critical

thickness

= rc -

surfaces or sometimes

nown as

24. Stale the applications of fins. The main application

offir.s are

I. Cooling

of electronic

2. Cooling

of motor cycle engines.

components

3. Coo[ingoftransformers of small capac Iity compressors.

25. Define Fin efficiency. rl

.

fins.

4. Cooling Critical

.

. ible to increase the heat transfer rate by mcreasmg [t IS possi . hthe f heat transfer. The surfaces used for increasing eat surface 0 . k

[Dec'04 & Dec'05 - Anna Uni!'] [ Nov'96, Oct'97 M U]

e ratio of actual heat f ' define d as th f The efficiency of a III IS ibl h at transferred by the III . m POSSI e e transferred to the maxunu Qfin Tlfin = Qmax 26. Defille Fin effectiveness.

~~_r_I

r,,c

J

[Nov

.

'th fin to that , of heat transfer WI F·III et of,'ectivenes SI'S the ratto without fin

Scanned by CamScanner

Dec'05 - Alllla Univ] [Dec'04 & '96 Ap,'2001 M Uj

(

Conduction 1.383

J,382 Heat and Mass Transfer

Qwithout fi~ 17. What is meant by steady state heat condu CIOn? tt If the temperature ofa body does not vary Wit. I1tlln . . to be in a steady state and that type of cond uctlon . IS .e,kIt is said steady state heat conduction.

n°Wn as

18. What is meant by Transient heat conduction conduction?

or unsteady state

lfthe . temperature of a body varies with time ' it' IS salid to be in transient state. and that type of conduction is kno wn as transient ' a heat conduction or unsteady state conduction. 29. What;s Periodic heat flow. In periodic heat flow, the temperature

varies on a regular ba SIS,'

Example: 1.Cyl inder of an Ie engine. 2. Surface of earth during a period of 24 hours, 30. What is non periodic heat flow?

In non periodic heat flow, the temperature the system varies non linearly with time.

. meant by Lumped heat analysis? {Oct'98 M VJ . I' heatmg or coo mg process the temperature 111 a n~out the solid is considered to be uniform at a given time. throUg analysis is called Lumped heat capacity analysis. _ such an . meant by Semi-infinite solids? '~ {Oct'99 MVj ot IS . I'nfinite solid, at any instant of time, there is always a \ JJ. Jfh semi i 111 ~ h re the effect of heating or cooling at one of its lint w I pO . e is not felt at all. At this point the temperature remains boundanesd In semi infinite solids, .' the blot number value 'ISCXl. unchange . IS wtonian J1, '.JI/,{lt "

,Fin effectiveness ~ Qwith fin ~

at any point within

34.

WI,at is meant by infinite solid? id hi ch extends itself infinitely in all directions of space A soh W I is known as infinite solid. , fi't ol'lds the biot number value is in between 0.1 and In m iru e s , '00. 0.1 < B; < 100.

35. Define Biot number. , ' 0 the It is defined as -the ratio of internal conductive resistance t surface convecti~ resistance, Internal conductive resistanc.:_ Bj == Surface convective resistance

Examples: I, Heating of an ingot in a furnace. 2, Cooling of bars. 31. What is meant .b~ Newtonian II.T· I,eatin~ f or cooling process. ?

The process in w hiIC h the internal . '~ r sistance IS . assume d as , neg igfble in comp' " . as N' anson with Its surface resistance ISknown " ewtonlan heatin g. or cooling . process.

Scanned by CamScanner

hLc Bj== k . . .' ., Bioi Number". 36. What IS the sIgnificance oJ , U APr'2002 M. V] [ NoV 96 IYI, , , . Semi infinite . '. d heat analySIS, .. . d to find Lumpe .~ B lot number ISuse ." solids and Infinite solids 1.(

l

1.384 Heat and Mass Tram,fer If

n, < 0.1 ~ B.

I

= r:IJ

~

\

Lumped heat Rnalysis

_________

Semi infinite solids

0.1 < B; < 100 ~

Infinite solids.

37. Explai/l the significance of Fourier number, .,

"

It is defined as the ratio of characteristic temperature wave penetration

.

nSl01l to

depth in time.

Characteristic Fourier Number

( Apr'2002 Mu) body dime

«r BastC Concepts

body dimension

=

Temperature

cr Dimensional

wave penetration

depth in time. It signifies the degree of penetration

Analysis

cr

Boundary Layer Concept

«r

Forced Convectlon

«r

. d Turbulent Flow Lammar an

of heating or cooling effect

ofa solid. 38. What are the factors affecting the thermal conductivity? 1. Moisture [Apr'9 7 M. u.] 2. Density of material

«r Internal Flow

3. Pressure

r::?

4. Temperature

it problems

39. Explain the significance of thermal diffusivity. [Oc/'98 M u.j The physical significance of thermal diffusivity is that it tells us how fast heat is propagated or it diffuses through a material during changes of temperature 40. What are Heisler charts?

with time. [Oc/'99

M u.j

In Heisler chart, the solutions for temperature distributions and ~eat flows in plane walls, long cylinders and spheres with tinite Internal . . . and sure" lace resistance are presented. Heisler c Iiar ts are nothing but a a na Iytica . I solutions . .In the torm . of graphs. /

I

" ,t.

Scanned by CamScanner

Free Convectlon

cr Solved Problems

5. Structure of material.

~

Chapter 2: Convection

C?

Solved Unlversl y

------

-

Ctl~PTER - II

2. fONVECTIVE

HEAT TRANSFER

~~~=========================== 2.1.DIMENSIONAL ANALYSIS Dimensional analysis is a mathematical, method which makes of the study of the dimensions for solving several engineering0 ~.e • prohlems. This method can be applied. to all types of fluid resistances, heat flow problems and many other problems in fluid mechanics and thermodynamics. 2.1.1.Dimensions

In dimensional analysis, the various physical quantities used in fluid phenomenon can be expressed in terms of fundamental quantities. These fundamental quantities are mass (M), length (L), lime (T), and temperature (0). The dimensions of commonly used quantities in heat transfer analysis is listed in Table 2.1 with reference to MLeT where M

Mass,

-

L -

Length,

0

-

Temperature,

T

-

Time.

For example, Velocity V Scanned by CamScanner

=

L :: LT-I Distance - - T Time

~ /

] 2

Heal

and Mass 7i'C/I/!Jjer

. ,

r--j---------------- .

-__

No.

Length

2,

Area

1

Velocity

1"',,, I pr

In

uch

h is kn

"hi

"'0

"

~cOreI1'l' rem t te t1 foil ws. l3IJCkil1gharn 1t the ..If I~cr< 3re n v3fiabk in a dimensi nail' h moe , lntalll In funds mental dimensi I n inen h he <'loai n and I the-c

Quantity

I.

applie.

61'ffef(Oua o'~ hire I. required

TUb/~~

S.

learl

,,,i,bt Or<.1 ran ed inl n dimen ink" le dio i IIle icrrn arc ailed 1t term .. >

term . The

'"

1cl1

Acceleration

1.1. . ,.d._nlage. 3

Mass

I.

Density

It exprc varia

2.

fJ

01 Dimension_I An.lysls the fun ti nal relation se ionic s term'.

\

n:tical

hip between

'olutiun

the

in a implified

It en

W T

r

3.

11'1

the experilllental

data or direct solution of

P [ern.

\I

ne 'eric'

Q

4.

The re

of tests call be applied to a large problems with the help 01

Q dimen

II k

W/I11K

(L

11111s J/kg K

i nal analysis,

2.1.4. Limitations of Dimensional AnalysiS The omple,e inlo""alion is not provided by dimensional onsh \. analy is. It onl indical's Ihal Ihere is some rel,II ,P ani between the paral~leters. al No inf r nation i given aboul Ihe in"rn n,,,,,h m ,f 2.

the ph~ -Jl:al phenornenon.

2.1.2. Buckingham 1t Th eorem A more general sit be profitably . . employed uation is one'in wllie. I1. dimensional analysis may . In which tl 'ere IS . no governing

Scanned by CamScanner

3.

DimcII~o!,al electidn

analysi f ariables.

doe

not

give

allY c1llC re~

Irding Ihe

~

24

Ileal and Mass Transfer

2.2.

DIMENSIONLESS NUMBERS AND TH SIGNIFICANCE EIR PI-t'rSIC

_------

I ~l

2.2.1. Reynolds Number (Re)

(1"

ellcc

~Lon\lecli\le

num ber provides a Pr andt' measure tivencss of the momentum and energ t

Heal T. ranifer

of th

e relative Y ran sport by d·ffi . I USlon.

It i defined a 2.2.3. Nusselt Number (Nu)

It is defined as the ratio of the heat flow b . . Y convectIOn process gradient to the h fl nde,. an urut temperature Ll. . eat ow rate by onductlon under an umt temperature gradient th h . c roug a stationary thickness of L metre. qconv

Nusselt Number (Nu)

qcond

Velocity

L \I

==

Length,

rn/s , where

m,

Prandtl Number (Pr)

It i the ratio difiusi it)'.

0

h

f h t e rnomentum

diffusivity

L

-

1]

Nu

Length,

k

k A t1T

=T L

... (2.3)

f 111,

Thermal conductivity, W/mK.

The Nusselt number is a convenient measure of the convective heat transfer coefficient. For a given value of the Nusselt number, the convective heat transfer coefficient is directly proportional to thermal conductivity of the fluid and inversely proportional to the significant length.

to the thermal 2.2.4. Grashof Number (Gr)

Pr ==

MOlllentum diffusivity Thermal diffusiviry

as the ratio of product of inertia force and buoyancy force to the square of viscous force. It is defined

E~~;J v

... (2.2)

_

Kinematic viscosity,

m2/s,

(l

Therrnal ciiffusivity,

Scanned by CamScanner

m2/s.

Inertia force Gr

I

Heat transfer coefficient W/m2K,

-

L

H

p Kinematic viscosity, 1112/s. Reyn Ids be . num r. is therefore ' m nltude of the i . , a measure of relatlv!.' e merna force to til . n "'. e VISCOUSforce Occurring in the

2.2.2.

I

... (2, I)

/

u -

"here

h

=~

=

x

(viscous

Buoyancy force forceY

e.. U2 L2 x e P g iH (J.' U L)2

LJ

/

Convective

Heal and Mass Transfer

J.6

'~Ow 1. L.a

:J

g x

~;r where

p

p x L3

. of tOw. ~f a smooth

'" (2.4)

L

Length,

v -

Kinematic

~T

1I111lnar 1 the

x L1T

Coefficient

-

13)

m,

and each

. . fluid panicles

.. path. The fluid panicles

sequence

2i

tream line now. In this

called lavers

fer

without

mixing

in each with each

other.

visco it)', 1112/s

2.2. 8 . I

diffe renee K.

Grashof Number has a role' played by Reynolds numb . f III free convection I er III creed convection.

~. illlilar to thai

Turbulent Flow

In addition :~rbul~nt

turbulent to th

e product

n

the lam.inar

t

b erved

Ire uentl w.

Th

11

type of fl~w,

In nature.

::I

distinct

irreg~t1ar flow

This type of flow

path of any individual h \\

irregular. Fiu.2.1

2.2.5. Stanton Number (St) It is the ratio of N I nu b usse t NUlllber III er and Prandtl number.

III

COlltll11101lS

an order!

er rel1la

al

. .

and

joIl0\\5 .. in in

of expa nSIIIII, . K-I

Temperature

. (lmetlllles .' [luid move

floW is

I IJ

\12

-

.

Heal Trail

the ill iantaneou

L

called

panicle

is zig-zag

and

velocity

in laminar

and

w.

Turbulent

flow

Laminar

flow


of Reynold

0>-

gE

_ 0 c'Q) > II>

Nu

St

E

~ x

Jl Ce k

Time Fig. 1./.

eJU: Jl St 2.2.6. Ne

==

x

2.3. BOUNDARY LAYER CONCEPT

Jl Ce k

Th

e concept II ie staning pint

__}1__ pUC P

...

(2.5)

Vilonion and N on-Newto . he fluids wl . mon Fluids the N uch obe h ewtonioll fll . y t e Newton's I . io flu: lids and thos . aw of viscosity are called n ulds . e which do not ohey are called nonT

.ed by Prandtl forms layer as propOs . . . f h equations of mOllon for the simplification 0 t e f a boundary

and energy. . . 1 along a stationary towS . When a real fluid i.e., VI COli fluid, . . . 'ontact Wit. h th e sohd boundary a layer of fluid which comes III C . wa bo fl id which callnot slip a ) undary surface. Thu the la er of III '. d d laver th b dation ThiS retar e . e ollndar), urface and undergoe retar . f h fluid. So, Iu h . d' ent layer 0 t e n er cause retardati II for the a .lac . . ..... of the s . edlale VIUlllt) Illall I egi n is developed ill the 1111111

I

r":

Scanned by CamScanner

Convective

_______

boundary

surface

in which

the

velocity

increases rapidly from zero at boundary velocity of main stream.

of the~o . Wing urface and " fiUid ( PJ)roaches the

/

HydrodynamiC

:.3.2.

Boundary

boundary .' layer 111 drodynamiC hy 99% of free stream velocity.

[hall

In this concept, the flow fie Id over b d . . regions . a 0 y IS divided

rfJ% of free stream temperature.

int o~

1. A hi'thin region near the body calle e d t Ite bounda I were me velocity and temperature grad' ry ayer, . . lents are large .2. The region outside the boundary la yer w Ilere velo . . temperature gradients are very nearl city and stream values. Ileal y equal to their free The thickne s of the distance from the surface reaches 99% of the extern' .

boundary la -er ha . at whi I I I) S been def.lIled as the rcn tne ocal velocit I I .. I Y Or temperature a ve ocrry or temperature.

a solid surface

of the fl UIid IS . less

velocity

Thermal Boundary layer 2,3..3 111thermal boundary layer, temperature

2.4. CONVECTION convection is a process

2.9

Layer

.

The layer adjacent to the boundary. IS k nown layer. Boundary layer is formed wheneve r tl iere IS . rei' as bounda ry between the boundary and the fluid. at,ve motion

Heal Transfer 'J'

of the fluid is less than

of heat transfer that will occur between

and a fluid

medium

when they are at different

temperatures. 2.4.1. N'.!wton's Law of Convection Heat transfer

from the moving fluid to solid surface is given by

theeljuation,

Free stream velocity

U""

This equat ion is referred where

h A Til'

Trailing edge

Fig.1.1. BoUII dary layer 2.3.1. Types of B oundary Layer l. Hydrody namic. boundary I ayer (or) Velocity • bo un d ary layer 2.

Themlal boundary

layer.

Scanned by CamScanner

011fit/t

_ _

Too _

to as Newton's

law of cooling,

Local heat transfer coefficient

in W Im2K,

2

Surface area in m , Surface (or) Wall temperature Temperature

in K,

of the fluid in K.

plate

2.4.2. Types of Convection I. Free convection,

2. Forced convection.

2.4.3. Free (or) Natural convection

. to change in denSity If the fluid motion is produced ue d f heat transfer is res I . di t the 1110 e 0 :u tltlg from temperature gra len s, said to be free or natural convection. d

2./0

Convective Heal Transfer

Heal and Mass Transfer

2.1 J I'

\

2.4.4. Forced Convection If the fluid motion is ar1ificialh . .' created b external force like a blower or fan , tl iat type of YI Illeans II " known as forced convection. leat transfer'

illl IS

Q

THE LOCAL AND AVERAGE HEAT T COEFFICIENTS FOR FLAT PLATE RANSFER - LAMINAR FLO At the surface of the flat plate heat fl W , ow may be wrl'tt _ Q. ell as q - A = hx(lll'-Ta-.J

A

8y

'" (2.6)

y =0

l

r, x

~

vx

T", - T so x ~

x ( 8e )

8n '1

1)

=

°

We know that, Local N usselt ~ number, Nu, J

x 0.332 (Pr)O)]]

8e [ .: (8 ) 11 11 = 0 T", - T~ x ~

x

(T", - T~) x ~

h:o; x

k

-\I -;

_ •. ,ubstituting '\\

0

=

T".-Ta',) x

(~T) UY

X III

0.332 (Pr)O.133

(Pr)0333 x

x

x-'

x 0.332 (Pr)O)]]

in equation

x 0.332 (Pr)OJ33

(2.6)

y=O

Scanned by CamScanner

'

J

.. , (2.8)

o

'\1 -;

_

k

J-

x ~J x 0.332 x (Pr)OJ33

_ ~ x

==

x;k (R e)05

x 0.332 x PrO)]]

rill

x

T '" - TO')x -~

y

J

... (2.7)

0.332 x ~ (Re)05 (Pr)om

0.332

(,aT) oy

Re = -;

1

:::J

Local heat transfer coefficient, h x J

We know that, Till -

Ur

h, == 0.332 x ~ x (Re)05 (Pr)OJ33

1c(8T)

(~n,.-0

rL':

k oS (pdJ33 dx 1.L SO'".-' 32 x -x (Re) o L

I

I

J

2.12

Heat and Mass Transfer

Convective Heat Transfer

L

.!_ L

fo""".s s : x .~k (UX)O.5 -;o

'~A"erageN~~elt} • number,

m dx

(Pr)O

)0.5

x (Pr)03J3

m eq

11.

F rO

L.

x

.\" x (.\"

)05

(U)O.5 x kx ~ k

x

x

0332

LX, 0.5

0.664

III

Avcrugc

.

(P

r

)0333

x

IL. x-I

x xo

5

I

dx

IX-05

x (Pr )0333 x

The heat transfer coefficient for turbulent flow can be derived by using Colburn analogy,

L.

From colburn analogy, we know that,

dx

sr, ( Pr

x

x

!d )0.5

(

y

(~Y'

(k)L

x

x (

PI' )03JJ

s

-:

..

[.,'

heat tmnsfor

(t) ( Re

- 0.664

=

UL v

J

_

"L -

0.664

(t) ( Rc

0.664 ( Rc

)05

Scanned by CamScanner

)-0.2

r 0.2

0.0296

(Rex

>- 0,2

0.0296 ( Rex

r 0.2

Nux x ( Pr Rex

'r

1/3

>-1/3

Nux

Local Nusselt

1

NlI~,

)0.5 (

PI' )U m x L

k Nu •

ex

=

ex

0.0296

x ( Rex) ( Re,f

0.0296

(Re.{)O

0.0296 (Re

8 (

Pr

r 0.2

)J/J

)08 ( Pr )OJJJ

.. , (2. J J)

We know that,

k Nu

2

x [ pl"]213

Number, N urn bcr, N II.

= 0.0592 (R

(R

(PI' )om ... (2.9)

Nussclt

2

0.0592 2

Nux (PI' )0.5

~

sr, ( PI' ) 2 NUr

--'_

Rc

=

/3

0

Rex PI"

)0,.133

3

[From I1MT data book, 'Page No.113 (Sixth Edition)]

J

0,5

m

(Pr)o

)21

0.5 + I ] L.

x ( Pr )033J x [ L 05]

(UI)O

"

[X-

- 0.5 +

(C) ( Rc )o.~ ( PI'

coc:llil.:icnl,

x

We know thllt, Avel'U~C

... (2.10)·

uation (2.7) and (2.9), we know that, h = 2 h .r

o

Qlll

_J

tHE LOCAL AND AVERAGE HEAT TRANSFER :2.6. COEFFICIENTS FOR FLAT PLATE-TURBULENT FLOW

o

0.332 L

)0333

dx

°

(!l)0.5 v

[ x 0.332 x k x

L

(Pr

)05

.

--.!_ LX 03"2 . ..) x k x ( ~U

QlE

= 0.664 (Re ~_1I....t.-

ll3

(

PI' )O,JJ3

h,

0.0296

(Rex

0.0296

P )0.333 x k ( R,:e:!..x :.-)O_'8 _x_(_r_ -

)0,8 (

x

Pr

)0 JJJ

Convective Heat 2.14

Heal and Mass Transfer h; = 0.0296

::::)

,...-__ Local he~t .lran~fer) coefficient. II .1 .__ _._

e icrent

l.

LI

(Re

r

'

II

.

IS

( Pr )0 JJJ

8(

Pr

.

, .. (2,13)

)0.333

'" (2.12)

._-._- given

0.037

)08

__.

= 0.0296 (~)..\' v ( R e)O

The average heat transfer co· t't- . h

=

(~) :r

by

j' hI' d x

we kllow that, Average Nusselt} Number, Nu

hL k (Pr)03J3xL

0,037 (t)(Re)OR

(l

NlI 1

L

L

IO.0296 (~)

t f°

( Re.,

)0.8 (

I'r

)0 J)J d x

(u.:r)o.8 v

J<

(P

° r)

0,037

Average NlIsselt } Number, NlI

I.

0.0296 x (.~)

k

Fronlequation (2.12) dx

333

(Re)08

(Pr)O.JJ3

,,,

(2.14)

and (2.13),

we know that,

Average heat transfer} coeffie ient, h

1,25 x

fix

["-17--1-,2-5 -h• = 0.0296

x

k

L

U

L [ '.:

Re - ~x

J' (1.)x

x

0.'

x ( ~ )

( Pr )0 33J

x O.S dx

o = 0.0296 x

=

(!) L (!) L (!)

0.0296 x

= 0.02% x

L

0.037

= 00"'7 . J

x

x

~

(U)0.8 ~ (U)O

x

(!) (UL)O L -;(. k )

L

)0.8

(U

(Rc)08

..< (Pr)(I333

x (Pr)0.3JJ 8

~

x (Pr)03J3

(Pr)OJ3J

(Pr)OJJJ

Scanned by CamScanner

2,6.1.

Heat Transfer Coefficient for combination of Laminar and Turbulent Flow

Heat transfer

Ix-L o.

° 02 1

[x-

+

coefficienl

for laminar-turbulent

cOJllbined flow is

given by

dx

2

.r

]

- 0.2 + I [LOS]

0.8

8

1

L

h

~f

hxdx

°

(Turbulent)

(Lammar) 0

t [j

°

I

I

O.JJ2

U) (R<)" L

f x

0.0296

(Pr)' JJJ dx +

(!)(Re)OS(pr)OJ3) X

dXJ

2.16

Heal and Ma!,'S Transfer

t [J

=

Conveclive Heal Transfer

U)(~)O.~

0.332

o

I (,x

(Pr)OJ3J

~!cpr)O.333 /1 _. L

i-

2. J 7

(Rex)Oj + 0.037. (Re )o.8 L

[0.664

I.

f 0 0296 .,'

::: Ii

( U X)O.8

(~) X

-;;--

(

(PI')O.33,J[ 0.332

L

v

I'r )°,)]3 dX

["R .

(~)(J..~IX ~

.

- 0.037 (Rex)08

e::::_

U.t] V

]

.' occurs at critical R.eynolds number, Re,. = 5 x 105, TranSitIOn . floW IS . Ian iinar upto Re = 5 x 105, after that flow IS turbulent. /.t'., . t e Re c = Re x = 5 x J 05 . SubstJtu

x

dx-+-

o

h

(~)C.8 ft ~ ds.] v

0.0296

]

= ~ (Pr)O 333 [

0.664 (5 x J05)O.5 +

X

0.037 (ReL)O.8

x

f

° 00296

!::

Lk

(Pr)03J]

[ 0.332

.r

(~)"

(!l)O.5[~] V

0.0296

f

L

-

(PrJO]]] [ 0.332 (~)"'

°

-.~

[ ~05']

M ,

(Pr)0333

[ 0.8 U (!l)0.8 v - 0.8 [O(N-~ (~)O.5 . + ~ (UL)O.8 0.8

\

x08 ]]

Scanned by CamScanner

871 ]

h -

-k (Pr)

- L

0333 . [

]

0 .037 (Re L )0.8

-

871

.

... (2. 15)

Average Nusselt Number,

Nu

T

0.037 (ReL)08 - 871]X L _ L k :::> N u 7 (R )OB- 87 J 1 _ Prom [0.03 eL ~~~Nusselt Number, Nu .. , (2.16)

!!.. (Pr)OJ33

[

. v.

_ 0.029Q (' U X)0.8 O.H

-

ilL

+ J8

0.037 (Re,f8

We know that,

.r

0.0296

E

+

(!l)0.8 [ x~ ~2++: ] L ] V

[

0.037 (5 x 105)0.8 ]

rage heat transfer coefficient,

dx ]

x-02

x

0.5 + I

C

(Pr)OJ33

-

v

]

-

Convective Heal Transfer

L f 63 0 ~

~J 8 I

AND-

uation for b 'II equati

We know that, Von Karman momentum

layer flow is

7 do 72 dx

:::----

oundary £,

Substitute,

~

!!..U

_-

;x [[ ~ (I - ~)

P t~

... (2.17)

.J_

U2 do 'to :::: 72 P dx

dy ]

(?)In

We knoW that,

_jL.

u

'to :::: 0.0225 P U2

s

~

~

;x [[ (i)'" [ (i)'" ] I -

WI" - (i

~ ;x {[[

)211 ] dy

s

dy ]

I

J y211 dy

dy - 0:"

o

=>

dx

,7+ {

0 117

(

(.JLU0) (.JL::: 0.0225 U 8 )

dx

,1/4

0.0225 P tJl

J +,

_'_L(7+ J

0 -

0

L~

217

~

+,

p

11/4

p

.-l!- ,\114

I

u

0114 do ~ 0.0225

I2 )

/;

.. (2.18)

PU&)

0

II

,\14

do ::: 0.0225 ( p U 8 )

0

= __d

do

72 p lJ2 dx ~ 1.. do 72

(

(2.17) and (2.18),

Equating equation

7

0

;x { o~n J yin

1

56&

72

~~ l ~o 1

2.7. BOUNDARY LAYER THICK"NESS SHEAR SKIN FRICTION COEFFICIENT FOR TURB~TLRESS ENTFlQ

pt~

l

:::: dx

Heal and Mass Transfer

0\14

0

do ~ 0.2314

(

72 x -:; dx

,\"4 72

~)

(;0)'"

x 7" dx dx

Integrating

~ ;x { o~"(~):-

[I (0

_. <)7

817 !!.... 8 8ii7 )

dx

_- !!.... dx

[78

I) -

Scanned by CamScanner

7 ]

9

I)

0:" (~): (B

917 ) B217

]

)

2.19

=>

J 0'/4

do

.l.- ,\1/4 + C ( 0.2314 pU) x

r

, Convective Ileal Transfer

_.---.-----....:..:..:..:...:..:....:..:.:::.:.:~:2~::-.~21 ~""

u, )11,1

( plJ

5 ~ ~S

. ~'J~

OW thut, IVc kll shear stress, to

,

+

I)U.\'

I'

Assumilll.!, boundarv • 11\\'(:r I'S t III 'b u I~lIt ov J

the plate.

fo:

\",e"f

.\' ...

( J!..)II-I

0.2314

_

I er t ie entire length of

'tUting () Sllbstl

to

0.0225 p U

==

2

(_l!. )1/4 . pU8

valut.!,

z:

[

0.0225

] 1/4

P U2

pU x 0.370 (Re

,_-0.2 x

?

So. at x

~ ~

=

O. 0 = 0 ~

4

-5 0 .'/~ OS!~

=

=

(l!_)114 pU

x

(_g_)1/4

x 0.2314

~

O. 022- :> (0.370)1/4,

C =0

0.2314

U2 [ L x P

pUx

0.0225 U2 (0.370)114 p

r

pU

.

0.0225

s

= [~

4

=

[

x

(_g_)1/4

0.2314

0.289 x

=

(0.289)415

=

0.370 x

pU

x

(~)"4 x

(_g_)~)( ~ pU

(ptt.)'/5

(0.370)114 pU

] 4/5

rl5

X

x x

0.0225 (0.370)1/4

l/5

4/5

x

0.370 x

= 0.370

x

- 0.370 x

(_l:.!_)115 pUx

(~xY'5

( Boundary layer thickness,

x

(ieYl5

5 = 0.370 (Ret 5

02

x

x

X x

Scanned by CamScanner

1/4

~--~ pU1

We know that,

J

0.05769 Shear stress,

Also, we know x x

I .. , (2.19)

to to

CfX

x

[.,'v=~J

J 1/4

[.,' Re=~

]

1/4

]1/4

1-01

[ .,' v = ~ ]

[ .,' Re = ~

1/4

p

2

Local Skin Friction coefficietll• Cf(:

xx 03. 70 (RetO.2

J

115

~~=~~o

X

..__ -~ 2

0.2

x

)

pU2 [(Re)1I5 x (Re)-I]

0.05769 pU2 [Re ~

=

2 [~e)O.2 Re

0.02884 pU2 [Re]-

x~/5

Rc (

[Y-Ux (Re)02]

0.02884 pU2 [( Re r 4/5

x x

2

eY.: er02 2 (K eY.: 2

.. ' (2.20)

Convective Heat Transfer 2. 22

Heal and Moss Transfer

-----

Equating both equations, ~

0.05769

pU2 2 (Re)-O.2

C

pU2 2

fx

=

CIx Local friction coefficient, C Avullge Friction Coefficient

0.05769 (Re}:

~

0.2

= 0 . 057 69 (Re )- 0.2 (elJ : x

x L-I x

::: 0.072

(~Y'/S

x L-

elf.fL

L

=

::: 0.072 (~L

)-115

::: 0.072 (Ret

lIS

Average friction codficient,

LI

x

(~t/S

... (2.21)

L

(U)-I/S ~

0.072

We know that, A verage friction coefficient,

y

::: 4 . 0.05796

X

L4/S

L4/5

lIS

1

C

L ==

2.23

0.072 (Ret0

[ .: Re

Clx dx

...

(2.22)

==

u~ ]

o L

tf

2.8. HEAT TRANSFER 0.05769 (Re)-O.2 dx

USED

I. If velocity is given, that types of problems are considered

o

as forced convection problems. TIP + Tao 2. Film temperature, Tf == ~, where T; _ Plate surface temperature, oC,.

L

tf

0.05769 (Re)-1I5 dx

o

tf

L

0.05769

(~x }~/5 dx

T

_

3.

x 0.05769 x

(U)-1/5 -;

IL

x-

liS

dx

flow is laminar. Re

==

x 0.05769 x

-'- 0.05769 LXv

Scanned by CamScanner

v

(~r/~[~:+1JL - +1 5

(!I)-1/5

L415 4 5

!Lh

If Reynolds number value

is turbulent flow.

0

==

Re where

u -

. _ 1_ v .-

. IS

IS

5 x 105 then the

th



If Reynolds number value

o

t

Fluid temperature, °C.

r1J

o

L1

FROM FLAT SURFACES-FORMUlAE

less

an

'

< 5 x 105 -+ Laminar floW 105 then the floW ater t h an 5 X '

gre

!:!h:;>

5 x 105 -+ Turbulent floW

v

Velocity, mis, Length, rn, . sit)' Kinematic VISCO '

2/

m s·

1.24

Hear and Mass Transfer

i

For Flat Plale Laminar Flo", : IFronlllMT

l ---

data book. Page No.112 (Sixth Edition)!

I. Local Nusselt Number, Nux where

0.332 (Re)05 (Pr)0333

Pr

Prandtl number.

-

2. Local Nusselt Number,

\

Convective Heat Transfer

flat plate,

Turbulent Flow (Fully Turbulent from leading lFrom HMT data book. Page No.113 (Sixth Edition)\

(If

l,Jge)

. \ Nusse\t Number, LO~a Nux::: 0.0296 (Re)o.s (Pr)0.333 \. 1Nusse\t Number, 2. LPca h L _.1_ Nux::: k

h~L =

NUt

where

3.

h

where

k

k

Thermal conductivity, W/mK.

4.

II -

Average heat transfer coefficient, W/m2K

A -

Area, m2,

T" -

Plate surface temperature, 0(',

T." -

Fluid temperature, °C.

5. Hydrodynamic boundary layer thickness, Sx

0hx

X

x (RerO.5

3. Average

=

0h.r(Pr)-o.m

=

0.664 (Ret

=

TIV

-

T", -

Film temperature, °C.

5. Boundary layer thickness 8 ::: 0.37 x x

-0.2 x (Re) .

For Flat Plate. Turbulent Flow:

1.328 (Re)-O.5

Scanned by CamScanner

Heat transfer Q ::: h A rr,- T~) 4. h _ Average h~at transfer coefficient W/m2K., where A - Area, m2, Plate surface temperature, °C,

No 114 (Sixth Edition»)

MT data boOk., Page . ) lFrom H t wall temperature

0.5

8. Average friction coefficient,

efL

heat transfer coefficient,

x

7. Local friction coefficient, C/.r

Thermal conductivity, WImK.

6. Local skin friction coefficient C/ ,:: 0.0576 (Re)-02

6. Thermal boundary layer thickness,

O-r..

Length, m,

h ::: \.25 hx

2xhr

Heat transfer Q = hA(T,,-T,.,) where

x

01,

Average heat transfer coefficient, h =

Local heat transfer coefficient. WIm K.

k _

Length,

-

2

_

L -

hx - .:-Local heat transfer coefficient, W/m2K, L -

2.25

(Laminar, Turbulent com \.

bined - constan

Average Nusselt Number, , Nu ::: prOJ3J

037 (Re)o.s - 871 )

lO.

Conve tive Heal Tran 2.26

----

Heal and Mass Transfer 2. Average Nusselt Number, Nu where

h -

=

hL k

Average heat transfer coefficient,

L

Length, m,

k -

Thermal conductivity,

rropt ",t.'

. . ./,,;, at 40 ~ : oJ I r mHMTdlJ

.33

0.02756

ol1du ti iry k Tlwrl11 a I . iry, v

Kinematic prandtl

2.17

I.I 28 kg/m

en iry, p

W/rn2K,

W/mK.

K, Pa e

r

16.96

W/mK, 10-6 m-/s

"I C

number.

Pr

Re n II.!' number

Re

0.699

:::

We knOW that,

3. Average friction coefficient, elL

=

0.074 (Re)-O.2 - 1742 (Re)-I.O

2.8.1. Problems on Flat Surfaces

I Example 1 I Air

- Forced Convection

at 20 "C~at a pressure of / bar is flowing

over aflat plate at a velocity of 3 m/s. If the plate is maintained til 601:(', calculate tile heat transfer per unit width 0/ the plait. Assuming the length of the plate along the flow of air is 2 m. Teo

200e,

Pressure,

P

I bar,

Velocity,

U

3 mis,

Tw

so-c,

Given: Fluid temperature,

Plate surface temperature,

Tofind:

Width, W

1m,

Length,' L

2m.

Heat transfer (Q).

4 5 lOs )5.377 x 10 So this i laminar than 5 x I 0 '

Re ReynoldS numb·r

i le

vahle

flow.

For Flat plate. Local

II

ell

.

flow

Lanllllar I



:::

0.332 (Rd

u...

umber

IF r

, . book, Page m II cil data

0.332 (35.377 )(

We knov

that,

IQ4)O 5

h )( L

Solution: We know that, Film temperature,

:::

_!.--

TI

Scanned by CamScanner

Tw + Teo 2 60 + 20 2

:::

Local Nusselt Number

Nux

k

(Pr

.

)0 J

112 ( ixth Edition)!

o. 0) J x

(0.699)

Convective Heal Transfer 2.28

Heat and Mass Transfer

----

We know. A veragc heat transfer

coeffic ient

h

[From HMT data book, Page No. 33 (Sixth Edition))

2 x 2.415

h Heat transfer

~fa;rat80°C: oner I Pr r

p

1 kglm3

v

21.09 x IQ-6 m2/s

[/7

4.83 W/m2K]

Pr

Q

h A (Til" - T a:»

k

0.692 0.03047 W/mK

UL 4.83 x 2 (60 - 20)

=

[.: Area

Width x Length

[Q = Res"lt:

Heat transfer

I Example

2

I Air

0 =

=

I Re

at 25'1:' flows over aflat plate at a speed of

T ff)

Plate surface temperature,

Til'

25°C

L

3m

Wide,

W

1.5

III

Distance,

x

0.5

III

-[N-u.-

We know,

_-_

Solution:

Nux = 100.9

Heat transferred

I

=

0.332 (Re)Os (Pr)0.333 ..

[from HMT data book, Page No. 112 (Sixth Edl~lon))

Tofind:

2.

1.18 x 105 < 5 x lOS

_

For flat plate, laminar flow, Local Nusselt Number Nux

5 rn/s

Length,

Local heat transfer coefficient

J05

1.18 x

. R < 5 x lOS flow is laminar. Since e '

x

I.

L = O.S m]

0.332 (1.18 x 105)0.5 (0.692)°33>

U

Velocity,

=

5 x O.S 21.09 x 10"-6

386.4 Watts

Fluid temperature,

[x

v

J

5 mls and heated 10 135 '1:'. The plate is 3 m long and 1.5 m wide. Calculate the local heat transfer coefficient at x = 0.5 In and the heat transferred from the first 0.5 m of the plate. Given:

Re

Reynolds Number,

I x 2::= 2]

386.4 Watts

2.29

(hx) at x

= 0.5

(0) at x = 0.5 m.

Ill,

~10;:-:-0.~9 ] h xL 2..k h x 0.5 ...!---

ee

[.,' x= L :::0.5 m]

0.03047

Local heat transfer coefficient, -c coefficient, Average heat nansrer

hx ::: h:::

2xhx

h ::: 2 x 6.14

We know that,

~

TII'+Tff) Film temperature,

Tf

2 135 + 25 2

Scanned by CamScanner

Heat transfer,

Q

_

_

::=

[~

T)

h A (T\I' (I ~)5_ 25) S 0 5) x 12.29 x (I. x . . C/)

Convective Heat Transfer 2.30

---

Heal and Mass Transfer

Result: 1.

Local heat transfer coefficient,

hx

6.14 W/m2K,

2.

Heat transferred,

Q

1013.9 W.

I Example 3 I Air

at 20°C at atmospheric presSure /1ows

. We know

so/lIlio" . . tel11perature Flltll

.

~

rtle

4. Averagefriction coefficient, 5. Local hea~ transfer coefficient,

T", + T a: 2 ~ = SO:C I

latic viscosity,

V

prandtl Number,

Pr

l conductivity, Therm a We knoW that,

k

ReynoldS Number,

Re

0.698 0.02826 W/mK

UL V

JxOJ

17.95

7. Heat transfer.

Fluid temperature,

T co

20°C

Velocity, U

3 mls

Wide, W Surface temperature,

Tw

Distance, x Tofind:

2

1.093 kg/Ill} 17.95 x 10-6 m2/s

=

6. A-verage heal transfer coefficient,

Given:

80 + 20

[From HMT data book. Page No. 33 (Sixth Edition)!

p

.

3. Local friction coefficient,

liL

Density, i(lnen

2. Thermal boundary layer thickness,

T!

. s of air aI50°C:

prope

over aflat plate at a velocity of 3 mls. If the plate is 1 m wide and 80 'C, calculate the following at x = 300 mm. 1. Hydrodynamic boundary layer thickness,

[':x=L=O.3m]

x 10-6

. Since Re < 5 x 105 , flow is laminar. For FIL-t plate, laminar now,

)

N

112 (Sixth Edition)]

[Refer HMT data book, Page o.

1m 80°C 300mm

I. Hydrodynamic =

0.3 m

I

I iyer thicklless :

bounc ary. ( 05 5 x x x (Re):"

5

5 x OJ x (5.01 x 104t0

I. Hydrodynamic boundary layer thickness, 2. Thermal boundary layer thickness, 3. Local friction coefficient, 4. Average friction coefficient,

[}ltf

3

=__ 6.7 x - 10-

2. Thermal boundary IOJ'tier thickness: S (PrtO

"x

S. Local heat transfer coefficient,

(6.7

x

Scanned by CamScanner

[~x =

tn] 3JJ

10-3) (0.698t

it!iJ

6. Average heat transfer coefficient, 7. Heat transfer.

2.3/

7.5x

0 JJJ

----

Heal and Mass Transfer. 3. Local Friction Coefficient:

Cfx

0.664

r:-__

(Re)-05

0_._66_4_,(, _5,.01 x 104)-

Ie

2.96 x 10-3

fr

l

Convective Heal Transfer

I~ansfer: \\ e knoW that.

I

12.41 x(1

(Q 0,

\. 1.328 (5.01

x

l
x 10-3

2.

Tx

3.

f

4.

elL

5. Local heat transt; OJ er coefficient (hx) -:

x

10-3 m,

7.5

x

10-3 m,

2.96 x 10-3,

I

.

0_.33.2(5.01 x 104)06~

(0.698)0.333

I

)__:.9:__

We know,

5.9 x \0-3, 6.20 W/m2K,

hx

6.

h

12.41 W/m2K,

7. Example 4

Q

223.38 W.

0.332 (Re)0.5 (Pr)OJ33

____

6.7

5.

Local Nusselt Number

1:"7

I

5.9 x 10-31

I ell

NUl"

0.3)(80-20)

223.38 Watts

Result :

1.328 (Re)-05

5.9

II A (T'I" - TaJ

Q

0 5

4. Average friction coefflcient : C/L

2.33

I Air

at 10 ~ (It atmospheric pressure flows over

aflat plate at a velocitv of 3.5 m/s. If the plate is 0.5 m wide and at 60 ac, calculate tire following at x

Local Nusselt Number

(i) Boundary layer thickness.

n,» L

=t: hx

65.9

x

l hx ~-;6-:::-.20::-:W-I-m-2K-1 6. A verage heat transsfer coefficient (II): h

Lh

==

2xh

x

2 x 6.20 12.41 W/m2K]

Scanned by CamScanner

m.

,...

(ii) Local friction coefficient. A verage friction coefficient.

0.3

0:02826

= 0.400

[.: x == L == 0.3

mJ

(iii) (iv) (v) (vi) (vii)

Shearing stress due to friction. Thermal boundary layer thickness. Local convective lIeat transfer coefficient A verage convective heat transfer coefficient.

(viii) Rate of hea! trlrnsfer by convection. (h:)

(x)

Total drag force 3n the pillte. Total mass flow rate through the boundary.

\ el

iry,

3.5

Wide, Plate

urfa e temperature,

0.5

T '"

60°C

x

To find:

(I) Boundary

Local friction

(iiI)

Average

(iv) Shearing

0.400

coefficient

Local heat transfer coefficient

(vii)

Average heat transfer

(viii)

Rate of heat transfer

by convection,

Q.

the boundary,

0.5

5 x 0.400 x (8.25 x 104)-0.5

=-

CIX': 0.664 (RetO)



0.664 (8.25 x 104)-05

coefficient,. Cit : efL == 1.328 (Re)-os " \.328 (8.2S x 104)-°.

~~ •



(IV) SIIC'(/rlllg

P,op~rties of air at 40 ~ :

.

[From HMT data book, Page No. 33 (Sixth Edition)1

1.128 kg/m? 16.96 x 10-6

1112/5

0.699 W ImK

___"'_'-J.

stress or j'C(/

We know that,

Scanned by CamScanner

(Re)-

:-0

2

0.02756

x x

l-.S_-fx-:-=-2~-\-~.

m.

60 + 20

k

book, Page No. 112 (Sixth Edition)]

fPJ

FD.

T",+Too

Pr

5x

=

C[x

(iii) A ver(lge friction

=

105

0.400 m :

==

Local friction coefficient,

(ii)

h .

= --2-

v

5x

6.96 x 10-3 m )

We know that,

p

x

oor&hxJ'

h x'

,

coefficient,

(x) Total mass flow rate through

Tf

(It

layer thickness , 0 Tr:

Total drag force on the plate,

.I F I m temperature,

.

,,,;ckness, 8 or 8trx

t;.

stress due to friction,

(VI)

8.25 x 10~<

Boundar)' layer thiCkness,.\.

Cfl.

Thermal boundary

e So/lIIion:

v

5 flow is laminar. Re < 5 x 10 , IRefer H n data

Boult(

(i)

, Cf x :

(v)

(ir)

Re

lar)' laver t/rickness or Hy(lrodynamic bOllndary layer

0

friction coefficient,

2.35

3.5 x 0.400 16.96 x I Q-{l

Since

III

Heat Transfer

Ux Reynolds number,

I Re

layer thickness,

(il)

s

n

W

Distance.

----

20°C

T'll

GiwIf : Fluid temperature.

Convective

J;lIear stress, .

Crt =,

" 2 2

f~:

.

2.36

Heal and Mass Transfer

Convective Heat Transfer

M Thermal boundary layer thtckness, 0rx

-

0T.\".' •

elL

x (Pr)-- 03J3

(> hx

. )-

6.96 x 10-3 x (0699 Orr 7.84 x 10M) Local heat transfer coefficient, ".1:.'

3 IrQ

I

Local Nusselt Number. Nu,.\ r+:__

I Nu

==

1Xusse

~ge

shear stress, Drag force,

0.)"2 . .) (R e·))0· (Pr)0333

FD

==

I

Drag force on two} sides of the plate

2

[ Total drag force, FD

Here,

0lx

== Q.,

02x m

Result,'

0_5 x 0.400 [.:

r----

W> k " orce e no\\ lha!. cragt fn

Ii

~

==

9~

0" the plflle,

n C cft-· IClcnl

F

" D

_

, C IL.

==

_'

eJE 2

Scanned by CamScanner

6.38

10-3

x

I

0.0127 N

(60 - 20) .r == L == 0.400 rn]

5

'8 p U [ 82.r - s 8 x = 6.96

i x

1.128

x

3.5

( i)

6.96

x 10---3m

(ii)

c.,

2.31

x

4.6:!3

CfL

x

[6.96

x

10---3]

I

0.017 kg/s

(iii)

lr ]

10---3m

x

I "'0

:=)

T(,,,j;

x

(x} Total mass flow rate, m :

L

m

(L\") TU(u/d

t

0.5 x 0.4 x 0.Q319 6.38 x 10-3 N

l'iu k --2__

11.66

Area x Average shear stress Wx Lx

" .. L k

s

N/m2 I

0.0319

't

I

Nu

2

2

O_..)_' 3~_ (8.25 x 104)0.5 x (0.699)0333 84.

I 'umber.

e.!E

x

4.623 x 10--3 x 1.128 x (3.5i

0333

We know that, L

2.37

10---3 x

10---3

0.0159 N/m2

( i\')

tx

(v)

°Tx

( vi)

hT

5.83 W/m2K

( vii)

h

I 1.66 W/0l2K

(vi ii)

Q

93.28 W

(ix)

FD

0.0127 N

(x)

111

7.84 x 10---301

0.017 kgls

( I?

Convective

2.38

239

4x0.4

Heat and Mass Transfer

\ x

[ Example 5 , A flat plate -measuring 0.8 m x 0;;-;;;---' longitudinally in a stream of crude oil which /lows witl Placed of 4 mls. Calculate tirefollowing: ' a veloCity

(iii) Friction drag on one side of the plate. Take Specific gravity of oil = 0.8 Kinematic viscosity 1 stroke

\<

:::::)

Length,

L

0.8 m

:::::)

Width,

W

0.25 m

Velocity,

U

flow is laminar. &

layer thickness,

&

'Boundary

0.8

Density of oi I, p

0.8

x

.

5x

X

_ ..

x (Re)- 0.5

= 5 x 0.4 x (\.6 x 104)- 05

\':x=L=OAm1

-:?

[8 -:?

0.0\58

ni]

ess at tile middle of plate,

'l'x:

tr ("") S/tear s :lction Loca \ f \

4 m/s

Specific gravity oil

5 x \05

{Refer HMT data book, Page No. 112 (SIxth l:dltlon)1

0.8 m x 0.25 m

Plate dimensions

\0-4

= \.6 x 104

lRe . Re -: 5 )( \ 0\ Since

(i) Boundary layer thickness at the middle of plate. (ii) Shear stress at tire middle of plate.

Given:

Heal Transfer

.

coefficlc.nt,

=

CJ x

0.664 (Reto.

~

1000

800 kglm3 Kinematic

viscosity,

V

I stroke

=

1 x 10-

4

We know that,

m2/s

Tofind: (i) Boundary

~ layer thickness

L

at the middle of plate, 8

(i;) Shear stress at the middle of plate

, 1: x

(iii) Friction drag on one side of the plate,

FD

\

33.54 NIln2

Boundary layer thickness at the middle of plate, 0.8 L =2 =0.4m: Reynolds number,

Re

UL

\

V

\

Scanned by CamScanner

x 800 x (4)2

2

© Solution: 1.

'tx

.., 2.40

Com ecti

I

Heal and Mass Transfer

t. l:::

I x 10-4

I Re

=

3.2 x IO~ < 5 x 105

Since Re < 5 x 105, flow is laminar. Average friction coefficient , -C JL --

1.328 (Re)-o.s

1

1_.3_28_{3_.2 x

I

7.42x I!rJ

elL

104)-0.5

]

{l1If1

lJ.5 .,,';5: I ({OWIng·

. L. all, of plale over which the boundary la) er is laminar.

1[0

/. e"~

Thickness of the boundary layer. 1. Shear streSS (II lite location where boundary layer is J.

lamillar. where toto! drag force on both sides of IIIe plate 4. boulldar) layer is laminar. rake, p == 1.205 kg/m3; v= 15.06 x 1tJ-flnt]/J Gil'en: Fluid temperature,

pU2

20 e

Too

Velocity,

2

3.5 n s

U

5m

Length, L 7.42 x 10-3

I Average

=:>



47.488

shear stress,

t

47.488

Drag force on } one side of the plate FD

==

i/m2 N/m2

0.25

0.8

x

9.49 N (i) (ii) (iii)

Tofind:

0.0158

I

x

47.488

Wide,

W

Density,

p

K ineJ113tic viscosity,

V

2m 1.205 ks m}

15.06

\{ laminar condition,

Length of the plate, L. (ii) Thicknes fthe boundary layer, 8. Shear tres , • x . Total drag force on both ides, FD·

Solutiou : \

that,

e knov

Reynold

!&

number,

Re

s:

v

~

III

1506)(

33.54

N/m2

10-6

~5)(IO~

~

9.49 N ince R eynold

Scanned by CamScanner

10

(i)

(iii) (iv)

W x Lx.

Result:

I

.Are a x A verage shear stress

r.::-----

2 m wide. Calculate the

D

r

We know that,

is 5 m long

~/(Jle 0.8 Ill)

2." /

Air at 20 't'flows over a flttl plate {II a velocity

~ ~

Heal Transfer

R number

5

105. vallie

nO\\

. I

))(

. I rbulenl i.e., IS II . now 105 after Ihal

i.laminar is Ilirbulent.

uplO

"-rewm 2.42

Hreal and Mass Transfer

(i) Length of lite plate,

L (AlIa

Reynolds number,

!~.----=-~

.

ml11l1r COllditi

!:_Ii

Re

we knOW

011) ..

that,

CJ L

=

~

v

5

x

_. 3.5

105

I~

L

.:.2.15

II,

Tille/mess

~~-;I~ear

I

layer thi c k ness, 0 .,:::: 5 0 (AI/lIlllin ar cOlldit' . x x x (R )_ _ I()II):

BOllndary

[From HM"I'

data hook I)

.

r;--"_ L~~_ j~:20

. SS,

LoCClI frict ion

X -

Ed .

105)-

x

[.. x

I~

r.\. (AI/al11il1ar'

II 1011

(5 x 105)-

__~.664

(i1~

T,otat draofi

~~

..~2~~

e

COI/ditioll)

.

orce

-T - ..z;'.

Oil

Averaoc f.' . . ~. "ellon eo'ffi . \: IClen!, -C'

• ~\

\

.

Drag force on both} sides of the plate (J

Result:

----

__

f.

1.32R

11.

(Re)-U.-\

.. ...I..~~.~ __(~ x W)-- ()'i ~-~

· .._1.87~ /

Scanned by CamScanner

t

0.0138

N/m~

2 x 0.0593

FD

[F

'i

x 1.205 x (3.5)2 -

N/m2

0.0593 N

T\

-1-'

z. .. ---. v. 9

0.0138

2 x 2.15 x 0.0138

2.151111

x 10-3 N/,V b I' '~ 011 Slfle!!' of III I e J1 file, FD (At laminar -

t

. (.: At laminar condition, L = 2.15 Ill] ==

We know that,

2'

1I

Ill_J

~

L ocal shear stress.

1.205 x (3.5)2 2

Area x Average shear stress

I

iO-3 ~

cotu 111011) .. coe rcient, C zr: .fl 0.664 (Re)-05

=.:

Drag force, F D

O.S

ffici

0.939 x 10-3

stress,

t

eO)

. o :::: 5 ,x 2.ageI 5No.x (5112 (Sixth

(iii) Sh(!ar stre

10-3

III

e, ~ - 2 ~ of II b ------.~ . Ie Olllldary laver

.

x

.

IIiL~e~n-:gt-;-h-o-=-ft-h-epl-at-.I (ii)

1.878

L

x

2

0.1186 N

D

(i)

L

2.15 m

(ii)

0

I S.20 x 10-3 m

(iii)

Tx

6.9 x 10-3 N/m2

(iv)

F[)

0.1186 N

I Example

7

I Castor

I

oil at 30 °C flows over a jl(1t plate at

{I

velocity of 1.5 mls. The length of tire plate is 4 m. rite plale is heated

uniformly

ami

maintained

(II

90 'C. Calclliate tile

following. 1.

Hydro{lynamic

2.

Thermal bUlIIlllary layer tllickne:;'s, Total drag force per unit widtlr on one side ofille plate,

3. 4.

boundary layer tlricklless,

Heal transfer rate .

2.44

Heat and Mass Tramfer Convective Heat Transfer

90 +30 T/ -_ ~::::

At the mean film temperature properties are taken as follows,'

p= 956.8 kg/m3;

Fluid temperature

0.065 m

Length, Plate surface temperature,

L

6QoC ,

3Qoe

T CtJ

U

=

"-"slefl/

a= 7.2 x 1()-8m2/s.

Velocity,

At Tf

5 x 4 x (9.23 x 104t0.5

c,PL,., .

V= 0.65 x lO-4m2/s;

k = 0.213 W/mK,' Given:

60 °

2

p

k v

2.

a Tofind:

956.8 kglm2

6.74 x 10

a

W/mK

0.65 x 10-

4

m2/s

=

0.65 x 107.2 x 10-8

Total drag force per unit width on one side of the plate, Heat transfer rate.

4.37 x 10-3 t

We know that,

We know

~ U2

2

R eyno Id' s N urn b er, Re

__ U L v 1.5 x 4 0.65 x 10-4

[Re 9.23 x 104 < 5 x 105 5 Since Re < 5 x 10 , flow is laminar. For flat plate, laminar flow,'

4.37 x 10-3

I

=>

r

Average shear streSS r Drag force, F D

{Refer HMT data book, Page No. 1 12 (Sixth Edition)]

1. Hydrodynamic boundary layer thickness,' 5 x x x (Re)-

Scanned by CamScanner

I

0.5

0.5

1.328 x (9.23 x 104)-05.

3. 4.

==

902.77

Average s kiIn friction coefficient, 1.328 (Ret

°ltx

m

3

=

7.2 x 10-8 m2/s

Thermal boundary layer thickness,

L = 4 m]

OJ33

force on one side I 3. Total {.rag . of the plate:

I. Hydrodynamic boundary layer thickness,

("\\

4

~

2.

Solution,'

I

0.065 x (902.77)-

4m 9QoC

0.213

=

[.: x=

Therl1l{l I boundary layer thickness: s: = 8 x (Pr): 0333 UTx hx

1.5 rn/s

Til'

2.45

]

l

J

Convective 2.46

Heal

and Mass Transfer

-------

4. Heat transfer rate : We know that, Local Nusselt Number 0.332 x (Re)o.S (Pr)O.333 ..- __

0.332 x (9.23 x 104)0: x (902.77)0

\ Nux

~

3)

le 8 Air at 30°C flows over a flat plaIt at II velocity . Calculate tht plate IS'. 2 nI long and 1.5 m Wide.

of 2

r: :

e

folli,,,"II~ydrodynamic and thermal boumlary layer thickntss at 1· . trailing edge of the plale, the rotal drag force, 2. rota nWH flow rate Ihroug/. II.t boundary layer ~twtt" l J. _ ~O em and x = 85 em. Given:

Local Nusselt Number

F\lIid temperature,

Length,

0.213

To Jintl : I.

Local heat transfer coeffil.: ient

h~ - 5 I .7 W /111- K

A verage heat transfer coeffic ient 2 x hr

U

2 m/s

L

2m

Hydr

dynamic

2. Tota\ drag f rce. tal rna s flow rate through the boundary layer between 3. T r == 1\ rn and x == 85 em.

Solulion:

Pr perties of air at 30°C.

fA

"

103.58 W/m2l{]

p

Q

It A (T," - T )

v

" x L x W (T\II - T, )

Pr

103.58

\Fro

m

x

4

24.859 kW

Result:

x

I

~\x

0.065

2.

0Tx

6.74 x 10-3 Ill,

3.

Drag force

4.

Heat transfer , ()"

Scanned by CamScanner

1.165 kglm) 16)( 10-6m2/s 0.701 0.02675 W/mK

We know that,

Ids Number.

Re

v ~

Ill,

F IJ

HMT dilta book, Pag~ No. }3

k

I (90 - 30)

Reyn I.

\.s m

. and thermal boundary layer thickness.

2x51.7

Heat transfer,

,

30°C

Wide. W

h; x 4

972.6

T

Ve\ocity,

h~.L k

Nu x

&

18.8 N, 24.859 kW.

2.47

£_to'" rh

x- ..

We know,

Heal Transfer

10\ floW is laminar. Since Re

5

tSixth

.. Edl\lon)J

Convective Heat Transfer 2 .J8

Heal

0.036 N

and Mass Transfer

--------

For flat plate, laminar flow, (From HMl data book. Page No. 112

Hydrodynamic

""-1

(S'

Ixth Edi .

5x x

(Ret

x

'fotal rn

aSS

f1 0

w rate between x == 40 cm and x = 85 em.

Am

n lJo ))

boundary layer thickness

bhx

0.5

=

.c boundary

5 x 2)< (2.5 x 105)-05 b- --O.-02-m___;1

BY

drodynalnl

5

"8 p U

~

rf' bhT=40

-

1 ... (1)

== 5 x r x (Ret 0.5

uhx == 0.85

hx

5 xO.85x

= 0.02 x (0.701)-0333

u [~

x

X

J-:-O.5

1-

r 2 x 0.85 5 x 0.85 x L 16

==

I~J

= 0.0225

r-..,0J

[0hx=85

layer thickness

Thermal boundary layer thickness, &rx bhx x (Pr): 0.333

I &rx

2.49

0 .5

X }O-6

[.:' x

== 85

em,= 0.85 ml

A verage friction coefficient, CfL

Ghx

1.328 (Re)-os

r------

I SL

1.328

(2.5

x

105)-

x

0.0130

== 0.85

==

0.5

Ohx

0:

OJ

5 x x x (Re

0.40

r 0.5

(u ) -

0.5

2 x 0.40

)-0.5

== 5 x 0.40 x

2.65 x 10:]

We know,

==

5 x 0.40 x (

_?';

16 x 1Q=6

t

e.!!: 2

~

2.65

x

10-3

=

~

1.165

t

shear stress, Drag force

= 6.1 x 10-3 N/m2

't

Area

I

Average shear stress

x

2 x 1.5 x 6.1 x 10-3 [.: L = 2m; W = 1.5 m]

I Drag force.

0.018 N

I

Drag force on two sides of the plate ;: 0.018

Scanned by CamScanner

3 ]

(l)~

x (2)2

2

~ I Average

5 [00130 - 8.9 x 10_ x 1 165 x 2 . .

x

2

=

0.036 N

~

.

..

I: :::: 0.02 m, thicknesS,Uhx \ . Hydrodynamic boundary layer . k"ess Orr:::: 0.0225 m, layer thlC ,., , . ry Therma\ boun d a _ 0036 N, 2. Drag force, F 0 _. _ 97 x \0-3 kg/so f).m - 5. 3. T ota\ mass floW rate,

R esult :

Convective Hear Transfer

2.50

Heal and Mass Transfer [Example 9

\.060 kg/m3

I Air at 30.oC,flows over aflat

Plate--;;;-;;----:O . . . d at a unl 01" 4 mls and tireplate IS maintatne at a uniform temo ei CIty 'J rerature 90 'C. If the transition occurs at a critical Reynolds nUlllb of 5 x 105, calculate the thickness at which tire boundary lerOf . changes from laminar to tur b uI ent. A t that location fi daYer , ' n lire following: (i) Hydrodynamic boundary layer thickness. (ii) Thermal boundary layer thickness. (iii) Local heat transfer coefficient. (iv) Average heat transfer coefficient. (v) Heat transfer from both sides for unit width of the plale. (vi) Mass flow rate. (vii) The skin friction coefficient. Given: Fluid temperature, T eo Velocity, U Plate surface temperature, TlI'

\8.97 x \ 0-6 m2/s Pr ::: 0.696 k ::: 0.02896 W ImK

UL

ids number,

Re ::: -v

R~~ 5x

\05

4xL \8.97 x

:::

5

x

turbulent.

. lfrom HMT data

book Page 'No. , , '

(ii) Thermal boundary layer thickness, (iii) Local heat transfer coefficient,

~Iu

.

::::

\ 05)- 0.5

237><(5)< .

["x::::L::::2J7m.

0.0\67 ~

\a er thickness .

0Tx'

(ii)

hx'

(iv) Average heat transfer coefficient,

5><

==

0 hx

2 (Sixth Edition»

At L == 2.37 m . \ yer thickness: od mic boundary a 05 (i) Hydr yna &::: 5)(. x x (Re t .

105

Tofind : At, Re = 5 x 105 (i) Hydrodynamic boundary layer thickness,

\0-6

~ [L::: 2.37 m~ 237 m. After that flow . r uplO the length, L - . F\oW is \am\Oa

h.'(

Critical Reynolds number, Re

2.5/

Therma\ boundary

Y:::: 0 Iu (pr OTx

h.

r 0.333

::: 0.0\67 (0.

696t 0.333

(v) Heat transfer from both sides for unit width of the plate, Q. (vi) Mass flow rate, m. (v i i) The skin friction coefficient,

~ CIx .

Solution: We know that, Film temperature,

Tf

(iii)

\ N usse\t \ :::: 0.332 (Re) 6)0 333 Number, NU 105)0.5(0.69 :::: 0.332 (S )( f

Tw+T<Xl 2

90+30 2

I

~

---

Scanned by CamScanner

o (pr),J)]

.Loca

We know that,

h_!--L 'Nux::::

k

r

~ Convective Heat Transfer 2.51 Healand Mass Transfer hx

208.07

2.37 = 0.02896

::) h,

= 2.54

Local heat tranSfer} coefficient, h,

-----

x

W/m2K

Ohx

~

(iv) Average heat t~ansfer} _ coefficient, h - 2 x h x

Ih (v)

!

J

5.08 W/m2K

-

Heat .transfer from both} sides for unit width - 2 of the plate, Q -

h

x

x

A

x L\

T

11'

2 x 5.08 x I x 2.37 x (90-30)

IQ Mass flow rat'e, Here

=

1444.75 W 5

= - pU [

III

8

=

OJ/IX

.

°

0,

°

['," W

1

211,r -

= 8"

(vii)

[il

h;r;

2.54 W/m2K

(iv)

h

5.08 W/m2K

(v)

Q

1444.75 W

(vi)

III

0.04425 kg/s

c.,

0.939 x 10-3

~mple

perI m width of the plate. Given: Fluid temperature,

=

0.0167

III

Tofind :

T"fJ

30°C

4 m/s

Tw

130°C

Length, L

1.5 m

Width,

lm

W

I. Average heat transfer coefficient, h.

Solution:

We know that, TIP + T",

x 1.060 x 4 x 0.0167

Skin friction coefficient} .. or ocal fnctlon coefficient

pressure of 1bar is flowin

2. Heat transfer, Q.

x 0llx

Film temperature,

1

0.04425 k

L

II

Velocity, U

= 1 m]

0, IIx]

2hx = 0hx =

pU

10] Air at.30 °C, at

Plate temperature,

5

= 8"

.

(iii)

5

m

0.0188 m

overaflat plate at {I velocity of 4 m/s. If the plate is maintained a uniform temperature of 130 'C, calculate the average he transfer coefficient over the 1.5 III length of the plate. Al calculate the rate of heat transfer between the plate and the a

= 2 x h x W'x Lx (T .- TUJ)

(vi)

111

°Tx

(vii)

2 x 2.54

0.0167

(ii)

~tSIl

W/m2K

= 2.54

-

Tf

2

130 + 130 2

gls

C'fx

= 0.664

2

(Re )-

[fL

0.5

80°C]

Properties of air at 80'C :

[From HMT Jata book, Page No. 33 (Sixth Edition:

p

Scanned by CamScanner

=

I kgllnJ

2.

Heat and Mass Transfer

4

1~ '\I

Pr k Reynolds number,

c::

= =

Re

hxWxL(T

21.09)( 0.692

10~~

0.03047

W/Il1I(

'

n2/

s'

1.:'__

IQ = /(1!.\lIll:

UL v 4 x 1.5

[ Re

Local NUSSeIt} Number, Nu,

5

:J < :; x 10

/oJ sfi

(II)

. O.332(Re)05(Pr)0333

=

I From

J

IM'r data book, Page No. I J 2



Nu, = 0.332 (2.84 x 105)05 x (0.6~~;~~~:itiOnjl

I Nux

h = 6.358 W/m2K

2.

Q = 953.7 W (II 30°C, flows over a flat plate (tl (t

of

Paral/ello

50 em,

(b) Paral/ello 30 em. Also calclIlale the percentage of heat loss, Givell: Fluid temperature, T:1,) - 30°C

U

Velocity,

I

156.51

=

-T '1')

4 m/s. Tile plate measures 50 x 30 emm~il . I ,,'IIi/lt/tilled (II (I uniform temperature of 90°C Compare lite heat romthe plate when the air flows '1'(1) ~~J.

2.84 x 1051

S rnce Re < 5 x I 05 , flow i'5 I am rnar . For flat plate, laminar flow. .

1t'

6._3 _S8_x_, I x 1.5 x (13 0 - 30 953.7 WJ )

1.

-----., Air EXlIm

21.09 x 10-6 .

__ ----------~~:('~on:I~'e~C/~il~~~~~e~a/~T.~~, ran.",er2.55

Plate dimensions

We know that,

4 rn/s 50 em x 30 ern 0.50 x 0.30 m2

Local Nusselt Number,

Nu

hx L .r

156.51 hx

Local heat transfer} coefficient h , " We know that, .

Surface

k

hx x 1.5 0.03047 3.179

W/m2K

3.179

W/m2K

temperature,

T;

To find : I. Heat loss when the flow is parallel to 50 em, QI' 2. Heat loss when the flow is parallel to 30 em, Q2' 3. Percentage

of heat loss.

T •• + Too Solution : Film temperature,

TI

h

[rr

2 x 3.179

Ih

We know that, Heat transfer,

Q

Scanned by CamScanner

2 90+ 30 2

-

A verage heat tranSfer}

coefficient,

90°C

6.358

I

Properties

of air at 60°C,

..

[From HMT data book, Page No. 33 (SixthEdillon)]

p :::

1.060 kg/rn3

, Convective

~ 2.56

-----_

Heat and Mass Transfer v

18.97 x 10-6 m2/s

=

PI'

Q\

~-

case"(

0.696

.

~:

Reynolds number, Re

=

30 em side.

v

==

r

\I

[.: L = 50 em 105 < 5 x 105

-i~o~'x

<:

t: Since R

10-6 =

"

"

,

. te laminar for flat p I u ,

0 50

1

. S . lOs flow is laminar.

III]

Local Nil

st;;\1

flow,

Number

0.332 (Rer

NUf .

105, flow is laminar.

x

10

4xO.3 (':L==30em=O.30m\ 18.97 x Io-t' Re == 6.3 x I O~ < 5 x 16~J

UL

18.97x

Since Re < 5

,

ReyllO

._~..9.2Q__

~-:-

2ji

UL

Re

Case (i): When the flow is parallel to 50 ern.

I

I

99.36\\

==

, ihe flo\\ is parallel ..) . \\ hell Id.; Nurnhe,r

0.02896 W/mK

k

I

Heal Trallsfer

(Pr)o

J3J •

.. ..'} (632 x 104)0) (0.6

0.))-

For flat plate, laminar now, Local Nusselt Number, Nu, ~ 0.332 (Re)O 5 (Pr)OJ.H

96)0333

.

74.008] h.L

..2-

k

[From HMT data book. Page No.112 (Sixth blillUlI1!

Nu,

=

0.332 (1.05 x

105)05

x (0.696)0

'.:=~~3T]

-L-oc-a-I-N-l-Is-se-I-t -N-lI-n-lb-e-r,-N-lix

'I

0.02896

7t008 :::

We know, k

95.35

=

_!2_x__ ~:~~_ 28.96

10

r------------------L.ocal hcnl transfer coefficient.

J

II~

coefficient.

>

~I§ill

----------~ 5.52 W/1I1 K

It

2

h,

It "

2

5.~

lit I kill truustcr,

f

Ilcallr;II\$fcr,

We know rhar, Average hent transfer

0

1

" t\

('1'"

~\

"1', .. ) (I.

11.0 I

(OJ

II.W

\')

OJ)

_ O2 '"

\~'~

II.n·1 WhwK

11.0 I'

Scanned by CamScanner

7.141 W/1ll1K

hx \41 WIln2K . I /, :::7. coefliclen, s Local heal \ran er . h::= 2)( h, r coefficient. e Ilcal tr3nSler h ::= 7- x 7 • 14 A era"

::::>

"x L

NlI.,.

I

h. x 0.30 ~

3H

(1"", (f)()

'J',J \0)

(ii/) : l'

n 41

\'IKIII

loSS

11' - T:f}) A x \ \I' 1 W (T\I'~ T,,) /,)( ~ . 6) - ..0 ) O. ( O . 14"8

"

W'~

2. 58

C 011\ ective Heal Tr(Jllsj'er

Hear and Mass Tran~rer 128.5-99.36 99.36 -

[oX of heat Result:

loss

I.

QI

29.3% 99.36 \V

2.

Q2

128.5 W

J

-

Case (i) :.

v

18.97 x 10-0 1112/s

PI'

0.696

.

..

For first halfofthe x

a

m

Plate

tit (/

L

==

==

plate, •

0.4) m U xL

\\e knoW.

Reynold

number,

Re

v

4

First hut]:of tile plate,

I Re

3. Next half of the plate. Fluid temperature,

I For flat pate, Local Nus

Plate' dimension

90

X

It

1.

First half of the plate, i. e., x

2.

Full plate,

3.

Next half of the plate.

i. e.,

laminar flow,

.).

umber. Nux'

I Nu .•

0,

0.45

rn,

==

(Pr)

x

10)

I

90.21

L oca I Nu sell Number, Nux

k

0.90 rn,

90.21

We know that,

[!ix

= ==

T". + T~.

T

f

2

~------z.:-;; efficient, Local heat transfer co

2

Average heat trans

~ [..._T...__/

fer coefficient h == 2 x hr

_~~~

Properties of air at 600C : [From HMT dala bod

Scanned by CamScanner

~ v •

Page No, 33 (Sixth Ediuonj]

Heat transfer,

Q1

112 ( iXlh Edillon 0333

405

0.332 (9.4 1112

" )1

N

[From HMT data book, I age == 0332 (Re)O.5

h_x_ xL

x

I

flow is laminar.

Heat transfer for

Film temperature,

0.45

9.4 x J04 < 5 x 105

-

30 ern?

0.90 x 0.30

Solution:

5 x 10\

Since Re

T rn

Velocity, U Plate surface temperature, T".

Tofind:

x

18.97 x 1~

2. Full plate, Given:

2.59

0.02896 W/mK

fl

velocity of " m/s. Tile plate is nUlilllllilled at 90 t The pltl/e dimension is 90 x 30 cmt, Calculale the heat transfer for the following conditio" 1.

1.060 kg/m?

k

3. % of heat loss == 29 .... .-,-E-x"-u-"p-'-e-1-2-'1 Air at 30°C flows (J1'''r .

~

~ 100

?\

P

hx A

- T",) x (T II'

(0696)0.333

.

____ 2.60

Heat and Mass Transfer

_

Case

2.61

//~ (lise "(iii': Heat lost from the nextxv half I , nau of ot tl tne pate

hx L x W

[~I

Convective Heat Transfer

X

(Til" - Tn)

----

\_x=~~~

11.61 x 0.45 x 0.30 x (90 .. _ -·30) [ . x - L = 0.45 Ill' W= 94.04W -0.30111]

I

~\ \-0,-\_0

'

(ii) :

Reynolds Number,

Q3 =

L = 0.90 m

For full plate. ~

\33.48-94.04

v

, Q3

4 x 0.90 18.97 x 10-0 1

Re

1.89 x 105 < 5 x 105

-

Since Re < 5 x 105, flow is laminar.

J

-

For flat plate, laminar flow Local Nusselt Number , Nu x ' 0.332 (Re)o.s (Pr)0.333 0_._33_2......:(~1.89x 105)05

r:-;- __

I Nux

128.18

I

x (0.696)0333

We know,

=

1.

Heat lost for first half of the plate

Q,

2.

Heat lost for entire plate

O2

3.

Heat lost for next half of the plate

03

O~xample

= =

Ih -

2 x hx

=

J.

Overall drag coefficient,

2.

Average shear stress, Compare tire llverl'ge slrear aress withloeal shear stress

Velocity, 1'0 find:

= 2 x 4.12

I

8.24 W/m2K

h x A x (T 11' - T co )

Scanned by CamScanner

133.48 W

I

U ::: 3 m/s

\. Overall drag coefficient, 2 . Averaoe0 shear streSS,

3. Compare

Solutlon :

. loc hear stress with

the average s

shear stress. . f ir at 40°(. : Propel11es 0 a HMT data IFroll1

8.24 x 0.90 x 0.30 x (90 - 30)

(91 -

39.44 W

a velocity of 3 m/s. ClIlculllte tirefollowing:

Heat transfer for entire plate

Q2

l33.48W

13J Air at 40 °Cflo ws over a flat plate of 0.9 m at

4.12 W/m2K

A verage heat transfer coefficient

h

94.04 W

(shear stresS at tire trailing edge). Given: Fluid temperature, Ten 40°C Length, L ::: 0.9 m

hx x 0.90 0.02896

Local heat transfer coefficient hx

I

39.44 W

Result :

3. 128.18

Q2-Q,

UxL

Re

3-

:::

P

bOO\;,

1ll3

1.128 kg/

e No. pag.

..

33lSixth EdItIO

\ t !,

2.62

v

I t'i

----

Heal and Mass T ransjer .c

=

Pr 0.02756 W/mK Reynolds Number, Re

.

I Re

=

For flat plate , la mmar . flow, D

x

we ~now that. _t_.t

tpCs' skin friction coefficient CIt

2 '.66)(

0.9

5

1.59 x 10 <5

J

x \O~

Local shear stress, 'tx

CIl.

1.328

r

.:..:.1.3~2~08 x (1.59 3.3

x

0.52

x (Re)-O,5

10-3

x

105)-

Result: t. Drag coeffICient or

05

\

3.3 )( 10-

1

A\'erage shear streSS,

2.

P U2

~

t

=

-

C

fl

3.3

x ~

r

lfl 1.128

x

-

Exampl.

Given:

I

O.S

Fluid temperature, T:f)

plo" '"

61llfs I III 0.5 III 6 kN/1ll2 6'1. \03 N/II'!

Pressure of air, P

'

Plate surface temperature,

30

Scanned by CamScanner

0'" • fI'"

p'''''

Ve\ocit)', lJ Length, L Wide, W

HMT . (1 data book, P age No. 112 (Sixth Edition)}

.59 x 105)-

aI 290'C flow'

290°C

pllJl~.

Local skim frinction . coeffiicient . Cjx = 0.664 x (Ret05 - x

141 Air

'.mp.,.,."

I

1-=-.66- x 10-3

:; 052

't

p""."

(3)2

Average shear ~tress t 2 w~e~k~n~o~w~,~~~~,~~JO~.0~1~6~N~/m~2 \

(From 0.664

0.016 N/tn

0

."ocity of 6 ,,;;.. r•• pial' is I .. long on4 0.5 .. wide. TIl' of I.' .1, Is 6 ANI"". If IA. is "",in,.i.tII '" • of 10 'C, .. ,i..... Ibt ,."t ., h•• ' ,. ... .""

2

x 10-3 x

't.1'

3.

2 '

't ==

1:

Average friction coeffiicient, . C- fl

___

3

=

Average skin friction coefficient, ell

We kno~' that,

______

S.4 )( 10-3 N/m2 0.0\6 N/m2

Local shear stress, 't x A "erage shear stress, 't

[From HMT data bo .

~,

\.\28x (3f

2

rag coefficient (or) A verage skin. friction ok, Page No. 112 (S' . h .. c ffici rxt Edllionll _ oe IClent

.

,0-3

S.4 x 10-3 N/m2

nar.

\ C/l

_

~

16.96 x 10'

105 , flow i lami ow IS

Since Re<5x

3

UL

2.63 __ ------~C~o"~v~ec~t~ive~H~ea~/!.~a~1'{.e, n.~er

_::~ .t

70°C

r lI'

,ro" ,••

~2~.6!4~R~e~a~ta~n~d~~~m~S~T~~a~m~~_r ~

________ Convective Heat Transfer

Tofind: Heat removed from the plate. Solution: We know that,

=

-----flow is laminar . ...........--'nee Re SI' late. laminar flow, ,

o

Local

70+2~

,

[From HMT data book. Page No. 112 (Sixth.

Ed" )1 ilion

Nusselt Number Nu = 0.332 (Re)05 (Pr)0.333

2 x

Properties of air at ISO°C (A t atmospheric

2.65

< 5 x 105,

F r flat p

Tw+T~ 2

TI =

Film temperature,

--..._

=

~=

preSSure) :

0.332 ( 1.10 x 104)05 (0.681 )0333 30.631

We know that, [From HMT data book, Page No. 33 (Sixth Edition)]

= 0.779

P

kg/m)

= 32.49 x I~

v Pr

Loca m2/s

Nu,

0.037S0 W/mK

Note: The given pressure

=

_x_

k

presSure. The

is not atmospheric

properties of air such as k, Pr and Cp do not change mUch with

V

We know,

. I at transfer coefficient, re

, h It = 2 x I. 15

PO/III

va/m x~ Pgiven

32.49

::::

x

l1iiO:_ill-W-/m-2K--'1

1Q-6 x 6

r',' Atmospheric

x

I bar 103 N/m

-.![:....:••_• ..:_I .:.b=ar_=_1 x 105 N/m2] 5.415 x 10- 4 m /s

Reynolds Number, Re _ 6x 1 5.415 X 10-4 1.10 x 1Q4 < 5 x

IO'J

lI,)

2.31 x (I x 0.5) x (563 - 343) Q thI sides

. b Heat transfer from 0

254.1 W of the plate

I ::0 ::0

2 x 254. J 508.2 W

Q = 508.2 W Heat transfer, J 5 nrl area and -# mm [ EXlImpleJ 5: I A sq uare glass . ir at 10 'r' ~ plate d it is cooled ~, a _, I to 90 \... an l, Ilrick is heated uniformy .-/ paral/ello lite pate at 3 "VS. . bot" slues Which is flowing over ling the plate. . .. I te Calculate tire initta ra oJcoo I '''_? 1500 kglmp Take for glass :

Result:

C

p

Scanned by CamScanner

It A (Too - T

2

preSSure:::: I bar]

2

Q

Heat transferred,

105 N/m2 6 32.49 x 10- x 6 x 103 N/m2 , v

I

A verage

Kinematic viscosity, v

[v Lr= l m]

= 37.S0 x 10-3 ----~----~~~~~~~h~~1.15_w./m2K Local heat tr~nsfer coefficient, x 30.63

pressure. But the kinematic viscosity will vary with pressure.

~e

h L

0.681

k

r.:-:--~:--:-Kinematic viscosi

I Nusselt Number,

=

0.67 KJlkgK

",'

l I

I

~ ~,

\

66 Heal and Mass Transfer ~2.~~~~~~~~~

Convective Heat Transfer

_______

For air at mean tenrperature.55 '(' : p

Cp

= =

0.132 (1.63x W)

~

1.076' kg/m3 1008 J/kgK

.

. :::: 0.332 (L63

k = 0.0286 W/mK

V ~,'I'"l':

x

105)0.5

2.67

Pr ~ ~ ~P

J

\ 19 8 x 1000{)x 100810.333 0.0286

l .

\ I

p Given:

=

19.8 x 1(j-(J N-S/m2

G lass plate area, A

Thickness of the plate, t Plate surface temperature, Til' Fluid temperature,

4 mm

p p Cp k

4 x 10-3 In

Ten

20°C 3 rn/s

h

= 0.67

0.67 KJ/kgK

= =

x 103 J/kgK

1.076 kg/m! 1008 J/kg-K

We know that,

Reynolds number, Re

UL

v

=

pUL

~

1.076 x 3 x I 19.8 x 10-6

[ .: v

=; ]

[.: L = I m]

1.63 x 105 J < 5 x 105 Since Re < 5 x lOS, flow is laminar. [Refer HMT data book, Page No. 112 (Sixth Edition)]

Local heat transfer coefficient for the air flow parallel to the plate is given by Nux·

=

0.332 (Re)05 (Pr)OJ33

Scanned by CamScanner

(.: L = 1 m]

=, 3.40 W/m2K

h :> 3 40 WIm2K x . .

x.

t transfer coefficient, Loca I h e a

=

2 x hx

= [h =

x 10-6 N-S/m2

To find: Initial rate of cooling the plate.

Solution:

::::>

hx x I 0.0286

We know that, A verage heat transfer l coefficient, h J

0.0286 W ImK

~ = 19.8

=

\\8.90

2500 kg/rn!

Cp

For air,

=:

90°C

Velocity, U For glass,

\

~ VI e knoW that,

1.5 m2

Heat transfer from both l sides of the plate, Q J

2 x 3.40 6.80 W/m2KJ

:::: 2 x hA (Tw

- T
680 x 1 x (90-20)

:::: 2 x .

[Q ::::952WJ

\ .

Convective Heat Transfer 2.68

Heal and Mass Transfer

I Example

/6

I Air

.

Reynolds

over a jI--;;;--:----_,

at 300C flows ..

number,

3 x 0.9 18.97x\(T6

IRe-'=

I. Heat lost by the plate. 2. Bottom temperature of the plate for lire steaely condition. Given: Fluid temperature, T eo

Slate

Since

Re

For fla

Length,

~ x \ O'i-, flow is laminar.

t plate laminar now

'

[Refer HMl data book, Page No. "2 (Sixth Edition)l

Til' 900

Width, W

I. Heat loss,

0.9

III

= 0.6

III

0.03

III

111m =

600 mm

=> Thickness, t Thermal conductivity} of the plate, k Tofind :

Loca \

I = 0.332 (Re)Oj (Pr)o.m "Nusselt num b er, N ty

= 0.332 (1.42 x lQ5)05 (0.696)°.333

900 rum x 600 nun x 30 nun

L

30 mm

=

27 W/mK

~ Nux We know that,

~'l~_:~

of the plate for the steady

II Local heat transfer coetTlcient, hx

We know that, Tf =

Tw+T;fJ

I

Properties of air CIt 60'C : 1.060 kg/m!

v = 18.97 x 10-6 m2/s

Pr k

Scanned by CamScanner

f:;

3.567 W/m2K

L __---

A verage heat transfer \ :; 2 x h.t

= 60°C p

:; 3.567 W/m2K

2

90 + 30 2

~

hx L k

.f

state condition.

Film temperature,

=

Nux

h x 0.9 2--I 10.88 :; 0.02896

Q.

2. Bottom temperature

Solution:

\.42x\OS\<5x\05

<)

Velocity, U Plate dimension

= -;

P ale ell

velocity. 01/ 3 m/s. TIre plate IS maintained CIt 90 ar-.", \... lire I (' dimension is 900 nrnr x 600 mm x 30 mm, lt Ilr I P tile 'J e I 'er" conductivity of II,e plate is 27 WlnrK, find, 't"

Plate surface temperature,

Rt:

2.69

UL

0.696 0.02896 WlmK

coefficient, h j :; 2 x3.567

[[~~ Heat losS, Q

:; h A~T It xWx L " oJ

(r

-

r) .'fl

II'

09:< (90 - 30)

7.\34)( 0.6 x .

2.70

""\e1\2.th of the plate is turbulent WhO'"\ ... .

Heat and Mass Transfer

TO : I. ft"tl 'thickness of the boundary layer, I).

We know that.

Q

= (). RT

where

R

L kA

~

Q

Heat flow by conduction,

(

]}

2-

dean value of heat transfer coefficient h

I"·

' .

solution: properties

T,

0

of air at 20

\_

=

p ::: \ .205 kglm3 v ::: 15.06 x \0-6 ml/s

{)'T LlkA

[From HMT datakA book. '. I:.ditionll . ().T Page No. 43 (SIxth

\

~

Q

= _-

e:

lFrom HMT data book, Page No. 33 (Sixth Edition)1

\

Pr ::: 0.703 k ::: 0.02593 W/mK

L

\

We knoW that, Reynolds where L - Thickness

of the plate ~

Bottom temperatu~e-} of the plate,!, 1. 2

0.03

m

27

0.9

x

Number,

x

0.6

x

(T, -90)

Re

.~6~.6_4_X_l~06_>~5_X_l_0~_5

~~e

0.03 Since Re > 5 x \ 05, flow is turbulent. 1 f or flat plate, turbulent flow. [fully turbulent - given

(T, - 90)

90.47SoC or 363.47;1

Q

23-1-14--\. \ . W IE' T, = 90.475°C . xample 17 \ Air at 20°C' . 1 O.S m wide at a velocity 0' ;ofloowmg over aflat plate of m

Local Nusse\t Number ,Nux::: 0.0296 (Re)O:8 (Pr)o.m [From HMT da;' bOok. P"; No. I t J

engtll 'J m/s. I of tile . P "ate IS made turbulent C I Tile fl ow over tile wllOl, . Thickness of the bounda . a culate tile flowing

Q"-N-u- -7§J

Wide, W Velocity, U

We

know

" hx xL

k

Nux:::

h

1m

\l__

0.5 m

~~~~-!----~

100 m/s

' ,"

x

2. Mean valu ,£ ry layer. G'iven : e OJ heat transijer I: Fluid coefficient. temperature '<Xlr 20°C Length, L

lSixth Ediiio

0.0296 (6.64 x IO'i" (0.103)°333 '

t:

Scanned by CamScanner

\JL v \00 x 1 \5.06x lQ-6

231.14 __:0,..4,75

rr;--:-:- __

Result:

2.71

Heal t-« 11sJer .r.

__ -------c::..:o::n:..:v~eC:"'-lllr·vV((.'

7552

~fi

~ ==

x

1

0.02593

.

1~--:;\9s~

1

ConvectiveHeat Transfer 2.73

I I

~1~.7~2~~H~e=w~an~d~~~a~s~s~f,_ra_'~~fi~e_,.___________________ For nat plate, turbulent

..

tlow,

Average heat transfer

-----

coefficient

h

I 25 I .

Mean heat transfer coefficient,

1x

h

1.25 x 195.8

h

244.75 W/m2K

h

244.75 W/11l2K

Boundary layer thickness: Boundary

I

~

/'foft"t1:

.

eat translerred

I

l-{ .

(i) Entire laminar

for.

plate

.

is considered

and turbulent

flow .

. ' E ti e plate is considered (II) n rr 2.

Percentage

as combination of both as turbulent flow.

error.

. . We know that, SolutIOn.

layer thickness 0.37

x x x

Film temperature,

(Re)-02

T'F +T'fJ TJ

2 300 + 40 ::::443 K 2

0.37 x I x (6.64 x 106)-02 [.: x = L = I rn]

IL....:O~_=o.-=-O 1:..:.59n~ Result: I.

Properties Boundary

layer thickness

o 2.

p

0.0159

m

v

Mean heat transfer coefficient h

I Example

._

= =

Pr

244.75 W/m2K k

I

18 Air at 40°C flows over II flat plate, 0.8 m long at a velocity of 50 ntis. The plate surface is maintained at 300°C Determine the heat transferred from the entire plate length to air taking into consideration both laminar and turbulent portion of the boundary layer. Also calculate the percentage error if the boundary layer is assumed to be turbulent nature from the very leading edge of the plate. Given:

Fluid temperature,

T'"

Length, Velocity, Plate surface temperature,

of air at 170°C:

L

0.8

U

SO m/s

Til'

300°C

Scanned by CamScanner

111

0.790 kgltn3 3 1.1 0 x 1Q-6 ro2/s 0.6815 0.037 W/roK

We know

Reynolds Number,

UL

Re ::::

v

~:::: :::: 31.10xl~

~,~D ~--

t.26x106 _.

. bulent floW. tlow is s this IS tur [It llIeans, . Re > 5 x 10', so ombilled. that floW IS . _turbulent c. x 10;, after Case (i): Lall\ltlar ber value IS 5 Ids num laminar upto Reyno turbulent.1

Convective Heal Transfer 2.74

----

Heat and Mass Transfer Average Nusselt Number

} Nu

=

(Pr)OJ33 [0.037 (R )0.8 e - 871]

(From HMT data book, Page No. 114 (S· . . rxth Edit" 0'"

Nu

=

(.6815) O

x

Nu

=

QI

80.75

I Nux We know

Nu

x

2010.15

I hx

x

92.96

1_16_:.2:...:_0_W_/m:..:_:-

L-.

hxA

1.25

x

(T w

~

24169.60 W

I

W/m2K

1co)

Percentage 2.

error

J

QI Q2~

QI

24169.60 - 16796 16796

n x L x W x (Tw - Too)

43.90

80_.7_5_x_0~.8x I x (300 - 40)

I QI

16796W

I

flow'

0.0296 x (Re)0.8 x (Pr)0.33

[From HMT data book, Page No. 113 (Sixth Edition)]

Nux

O2

hx

116.20 x 0.8 x I x (300 - 40)

r-:-

=

Heat transfer,

x

h x A x (Til' - To)

(ii) : Entire plate is turbulent

Local N usselt } Number Nux

1746.09]

Ih

heat tran~fer} coeffiCient

1.25

h x L x W x (1 w - Tco)

80.75 W/m2K

Case

Average

106)08 -871]

h x 0.8 0.037

Average heat } transfer coefficient h

92.96 x

k

1746.09

h

coefficient,

hL

Nu

Heat transfer,

coe

I heat transfer

A verage heat transfer } . (for fully turbulent flow) h f{iclent

IOn))

..).).) [0.037(1.286

[AVerage Nusselt Number We know

~~a

= 0.0296 x (1.286x I06)0.8 x (0.6815)0.333 = 2010.15

I

hx xL 'k

=--

=

hx x 0.8 0.037

=

92.96 W/m2K

Scanned by CamScanner

2.75

W/m2K

I

Result: \

Heat transfer

bi d) (Laminar-Turbulent com me QI == 16796 W

Heat transfer

(Fully turbulent)

.

2

.

3.

Q2 :::: 24169.60 .

x

100

W

Percentage error == 43.90 fl tplate at a speed of "1 0 OCflows over a a \ Example 19 J Air at , 60 em long and 75 cm

0 °C Tile plate IS I ce al 90 mls and heated to' 10 dary layer take P a '( n of boun wide. Assuming t/le transl 10 , , Re = 5 x 105, Calculate the followmg , , ' coefjicient, 1. AveragefrlctlOn '.JJ , .fer coeffiCient, 2. Average Ileat trans), ' sipation, 3. Rate of energy ciIS

Convective Heat Transfer

27~.1~6 __ ~H~e~a,~a~n~d~A~la~s~S~Ti~ra~n~sfi~e_r-: __ ~~~ .: Given: Fluid temperature, T a: - O°C

__ --------

~inar-turbulent ~

Speed, U = 90 rn/s

loooe

Surface temperature, T

H,

Length, L

60

Wide, W

em

75cm

0.60 In

flow

for

[From HMT ~ata book, Page No. 114 (Sixth Editionj]

friction } C J L. Average fficient coe ::::> CfL C IL A~e

2. Average heat transfer coefficient,

=

3 .16 x 10-3

friction} coefficient

3. Rate of energy dissipation. Averag e Nusselt } N u Number

::!>+T

10

1742 [3.0 x 106]-10

ToJind: 1. Average friction coefficient,

=

C

L =

3.16 x 10-3

f

(Pr)0.333 [0.037 (Re)08 - 871]

k P No 114 (Sixth Edition» [From HMT data boo. age .

oo

Film temperature, T/

0,074 (Ret 0.2 - 1742(Ret ~ 0.074 [10 x 106]-0.2 -

= 0.75m

Solution : We know that,

2.77

2 100 ---+ 0 2

(Pr)0.333 [0.037 (3 x 106)0.8 - 871] . (3 106)0.8 - 871] (0.698)0.333 [0,037 x

[N~1215J Properties of air at 50°C :

We know,

[From HMT data book, Page No. 33 (Sixth Edition))

p v

1,093 kg/m'

=

Pr k

17.95

X

h

10-6 m2/s

0.698

Average heat tran~fer h coefficient T ) '------;Q == h A (TIY - eo Rate of energy dissipatIOn, = h » L)( W (T", - T <Xl)

0.02826 W/mK

We know, Reynolds Number, Re

Average Nusselt Number, Nu

UL

::: 198.5)( 0.60){

v 90 x 0.60 17.95 x 10-6

3.0 x 106 > 5 Since Re > 5 x 105, flow is turbulent.

~ x

iQ£J

[Note: Transition Occurs means flow is combination of laminar an~ turbulent flow. i. e., the flow is said to be laminar upto Re value is 5 x 10 , after that flow is turbulent.]

Scanned by CamScanner

Result:

1. eft. 2. h 3. Q

== 3.16)( 10==

075(100-0) .

3

198.5 W Im

2

J(

== 8932.5 W

(

I 2.78

Convective Heat Transfer

Heat and Mass Transfer

I

, Example 20 Air at 40 C(' flows over a jl;;;-::----'_, . . . Pate Qt velocity of 2 mls. The p Iate IS maintained at 100 cc. Th Q . e length the plate is 2.5 m. Calculate the heat transfer per unit:..I of W",th Us' (a) Exact method, llig (b) Approximate method. Given: Fluid temperature,

~(')

. Using exact solution,

ClIst , . .n

for I,a

tplate,

laminar flow.

Local Nllsselt. \ Nux Nutnbel I

x

.

Nu ... = 0.332 (2.49

Length L

=

~~

(Pr)om

\05)05

x

(0.694)°333

hx L Nux =

We knoW,

T

hx x 2.5

Tofind : 1. Heat transfer (Ql) using exact method. Heat transfer (Q2) using approximate

x.

146.6_}

2.5 m

Width = 1 m

\46.6

method.

~-hea.t

L-

Solution: Film temperature,

= 0.332 (Re)05

[From HMT data book. Page No. 112 (Si'>..1h·Editiont!

Too

Velocity, U Plate surface temperature, T w = 100°C

2.

2.79

tran~fer coefficmet

= 0.02966

l

hx = \.74 W/m2K

1

.

Average heat ~ h = 2 x h transfer coefficient I x = 2 x \.74

Tf

QiiOl48 W/m2g ~

Q

Heat transler.

Properties of air at 70°C: p

=

\

::::. 11)( L x W )((1

IV -

1.029 kg/m! 0.694

k

0.02966

~2Y-J

W/mK

We know that, Case (ii): UL

Reynolds Number, Re

2 x 2.5 20.02 x 10-6 I'S

Scanned by CamScanner

2.49 x lOs < 5 x 105 Iammar .

I

t solution:

.

Approxllua e

Local Nusselt Number Nux

v

[Re Since Re < 5 x 105 , flow

1co)

3,48 xl.5 x \ )( (\00 - 40)

v = 20.02 x 10-6 m2/s

Pr

II x A x (1", - 1<1:)

r ;::.O.m

~J

'05

J3J

x (pd

x (Re) .. ') . . 06C)4)ll)J 9 x \05)0) ;< ( . ;::. 0.323 x (2.4

{

Convective Heat Transfer

2.81

Specific heat, Cp = 1.005 KJlkg-K 2.80

Heal and Mass Transfer hx xL We know that, Nux k hx

= 1005 J/kg-K

Thermal x

2.5

I hx

=

h = 2

Average heat} . transfer coe ffiicient

h Heat transfer,

I

1.69 W/m2K

=

x

roJind:

hx

~

We know that,

2 x 1.69 3.38 W/m2K

Q2

hxA

X

(TIV

Prandtl number, Pr

I -

T

~C . e =

2.29 x 10-5 x 1005

;::;

3.38 x 2.5 x 1 x (100-40) Q-2--50-7-W

-'1

[!>r

0.034

= 0.676J

hx

Result: Exact solution,

Qt

522 W

2. Approximate solution,

Q2

507 W

I

Stanton numbe(, St = Cp p U N III (Sixth Edition)) HMT data book. Page o. [F rom n h

I

Example 21 Air flows over a flat plate at a speed lif 60 mls. If the local skin friction coefficient on a plate is 0.005, calcukue the local heat transfer coefficient at that point. Take for air:

p IJ Cp

= =

k

Use Given:

k :

[From HMT data book. Page No. III (Sixth Edi~ion))

<1;»

h x L x W x (Til' - T co)

1.

2

Local heat transfer coefficient. hx'

Solution:

Ih

""-1

0.034 WImK

St Prl13.=

142.7 = 29.66 x 10-3 :::)

=

k

conductivity,

l'

5t ;::; 1005 x 0.89 x 60

0.89 kg/m3 2.29 x J

o-s

kg-m/s

1.005 KJ/kgK 0.034 W/mK

sr

Sa2

We know that,

~

~

St p,.vJ

Pr2f);::;

~ 53,667

2

Velocity,

Local friction coefficient,

U

C [x

Density,

p

Viscosity,

Il

Scanned by CamScanner

60 m/s =

0.005 0.89 kg/rn!

=

)( (0.676~] ~

2.29 x 10-5 kg-rn/s

Result:

Local heat transfer ;::; 174.19 } coefficient, h%

WI

21( III

) I

..-_-------~COOlnvecl;veH
1 Heal and Mass Transfer

I

11 Air at JO~ an~~1 plate• til• a velocity 0" 50 nv.\. .~. Tile plate ..OI.J] bur Ilow s O"e 'J maurlallled al 70 -c. C I " . a cutate the heat e I.'. 1.5 n, 10,,· ' II:.':mmp/~

I

enl combintdfl

T'

Average Nusselt \ Number. Nu J

. Q

/l,III

I e plme, II,king into consider ,. Irtlll·'ill!rlor It I I( ""d ,. portion ollhe boundar'"J Iayer. II ton bOlll IU"';'lttr (II1t1" 1IIIklitlll,'I/S

Gi"en •.

PI

FI'd UI temperature

''F.

T

p

1.013 bar

Velocity,

U

50 m/s

Length L ate surface temperature , 'T II' --

Width, W I. ~Ieat transfer Q SolUlioll .. W e k now that, ,.

Tofind:

Fihn temperature,

T,

1.5

___ [

Pressure.

=

!'!_~=

(0.698)0333[003 5728.28 \

h x 1.5 0.02826

5728.28

~

I

~

h

107.92 W/m2K

Average heat transfer 1. coeffic ient, h J

=

Til' + T.~. -.' 2

Heat transfer,

- 871]

hL k

III

700(

. .]

Sixth [dlhon)l

. 7 (4.17Sx 1(6)0.8

Nu

We know that,

III

- 871

[From HMT databook. Page No. 114 ( .

Nu

'h",'':'"

300(

nw:

= (Pr)0.333 [0 .O~7 J (Re)08

107.92 W/m

Q

~

=

h x W x L (Tw -T )

=

107.92 x 1 x 1.5 x (70 - 30)

C1)

')

Propert]res of air at 500

~6475.2

e:

[From HMTd ala book , Pago: No. 33' . P _ (Sixth Edllionll

v

-

1.093 kg/m!

=

17.95 x 10-6

m 215

W/mK

:::: ~1.5 17.95 x 1tr6

ro:--4"'-1 -~ ~_:_Z_8_~>

Scanned by CamScanner

=

6475.2 W

Convection

. \ Example 1 \ Air tl' atmospheric pressure and 200'C flo ~ver tf plate wi,h a velocity of 5 m/s. The plate is 15 mm wide a at a temperature of 120 'C. Ca/culale the thickn IS" taintained • Of hydrodynamic and thermal boundary layers and lite local h transfer coefficient at a distance of 0.5·m from the leading ed

Reynolds numb er, Re :::: -...!:: U v

I

Heat transfer, Q

I

2.8.2• Solved U'nlvarsity . ProblemS on Flat SUrtKII - Forc

Pr :::: 0.698 k :::: 0.02826

Result:

W

Ass ume t'IU' the flow ls on Me side of the plate. 5 x 10;

1 84

Convective Heat Transfer 2.85

Heal and MasJ Transfer p. 0.815 ",1",1, u= U .s» /(t-(I Pr .. 0 7, k = 0.0364 WlnrK

Gil'e,,:

.

NsI",1 ;

~",;c /f!ydfodynal

~

{May 2004 An • n« {ln' = 200°C ,ve,s;ty/

Fluid temperature, T eo Velocity, U

=

5 m/s

Wide of the plate, W Plate surface temperature, Tw

=

=

IS mm :: 0.015 m 120°C

Distance, x

=

0.5 m

Pr

=

5hx = 'S x x x (Re)-0.5



I 0hx ~pu

I OTx h:r

:

3. Local heat transfer coefficient, hx.

I

=

elt} N number "x

NUSS

0.332 (Re)os (Pr)0.333 0.332 (8.32 x 10")05)( (0,7)°.333 85.03

= L = 0.5 m]

hx)( L

Nu, =

We know that,

5 x 0.5

[ .: v =~ ]

!:!. 'p

8.32.x

=

Nux [.: x

85.03

5 x 0.5 24.5 x 10-6 0 -,815

104

~.l'

Result:

1.

Ohx

< 5xlOS]

Since Re < 5 x'IOs , flOW'IS. laminar, .' For flat plate, laminar flow, . [Refer HMT data book, Page No. 112 (Sixth Edition))

Scanned by CamScanner

m

(0.7)- OlB

Weknow that,

v v

·IRe

. 0.)33

10-3 x

x

9.76 x IQ-J

=

UL 5 x 0.5

"

011%x (Pr):'

I

m

3, Local/reat transfer coefficient, It % :

Local

Solution: We know that,

.

=

0Tx

8.667

,

x 10-3

",al boundary layer thickness:

0.7

2. Thermal boundary layer thickness , 0 Tx

U

8.667

=

10-6 Ns/m2

1. Hydrodynamic boundary layer thickness 0

Reynolds number, Re

5 x 0.5 x (8.32 x 104)-0.5

,=

k = 0.0364 W ImK Tofind:

.

= 18.667 x 1(}-3 m

p = 0.815 kglm3 ~ = 24.5 x

boundary layer thickness :

h x 0.5 0.0364

.2---

=

= 6.19 8.667

= '9.'76 x

2. 3.

=

-r

h.;

!:::

x

1010-3

[.:x::::L::::O.5m]

w/m2ig 3

m

m

6.19 W/m2K

Convective Heal Transfer 2.86

_ Heal and Mass Trall.~fc.'r

I Example 2 I Air

III

,I

1

----

J 34 't' a' a velocity of 3 m/s. The plate is 2 m Inllg c Pierre a, wide. Calculate .the ..thickness of the hvdrod . (111(1 . YIlallllC b 1.5 sn ayer ami the skill friction coefficient at 40 c fi OUII(/a ..., m rom the l ..)' I edge of 'he plate. The kinematic viscositv .£' . eerdi"D r...J. , • oJ til r lit 20 eo

IDee . ... '005 , AmICI lJ . 't' iS . . J 5• 06 X. J U - nrls. ver Given : Fluid temperature, T <J'.' = 200C ", silJ,1 Plate surface temperature; T",

134°C

Velocity, U Length of the plate, L Wide, W Distance, x Kinemati~ viscosity air at 20°(,"

3 m/s

2

III

1.5 m = 40 em = 0.40111

~f} =

To find:

15.06 x ,10-6 m2/s '

Solution: We know that,

.

Reynolds number, Re

UL

==

local friction

v

1041

. [Re 7:96 x Since Re < 5 x lOS , flow I'S Ialllll1ar. . For flat plate, laminar flow,

[',: L

<5x

=

x

= 0.40

m]

105

. 1. Hydrodynall'l1c boundary layer thickness, 3 bhx ::::'7.08 x 10- m 3 2. Skin friction coefficient, CIx = 2.35 x 10- . .. ~ Air at 25~flows over J m x3 fit (3 mlong) 'zontal plate maintained at 2·00~ at 10 mls. Calculate the M" e I,eat transfer coefficients.for both laminar and turbulent averag . '\ 'ons "'ake Re (critical) = 3.5 x lOS. r~ .1'· . ' [Dec. 2004, Anna University} Fluid temperature, T

[5lrx

==

Scanned by CamScanner

Soilition:

We know that,

'T1I'+ Tci:l := ~

200 + 25

5 x 0.40 x (7.96 x 104)

_7.08 x

Plate temperature, T", == 200°C Velocity, U == 10 m/s Re(critiCal)= 3.5 x lOS

:=~

. [From HMT data book, Page No. 112 (Sixth EditiQIl)]

10-3

=

25°C Length, L == 3 m ci:l

Film temperature, T/

rodynamic boundary layer thickness: Sir.\' :: 5 x x x (Re)-o.s

?_!~=

\()4,05

ToJind: . fl 1. Average heat transfer coefficient (h) for lammar ow. · t (h) for turbulentflow. 2. Average heat transfer coeffilClen

3 x 0.40 15.06 x 10-6

H d.

or

0.664 (7.96 x 2.35 x \0-3 \

llesll1t:

1. Thickness of the hydrodynamic bmm~~~ d 5 2. Skin friction coefficient coefficient, C (x .

y

\ Cp

Given:

hx :

1.

cllefficient or local friction coeffic~nt : Cj:f = 0.664(Re)-Oj

~,",i(lft

20'r is flowing (Ilollg a "eclte1 .-----

2.B7

an

I

'

~ Properties of air at 112.5 C(' :

»MT datil boOk, Pa~e

lfrom OJ

_

p - Q.

No. 33 (Sixth Edition)]

922 kglro3

It

Im.o)'

Z,)

r'

~

I

I

i

...

24.29

Pr

:c:

0.687

k

=

0.03274 W/rnK

\I

IH~w

Rc,(~~

'I)

number value is 3.5 Case

(I) :

.. lot;

Re = 1.23

x

x

},89 '

J)

[From IIMT data book, Page No, 113 (Si, th Ediu nH

0,0296 (1.23 x l06fl.8 (0,687)0 ). 1945

I

3 1Q-6

x

J

06

3,5 x lOS, i.e. flow is laminar 105,

~

[Nux

\I

10 24.29 I

For turbulent flow, number, Nux = 0,0296 (Re)O,I(Pr)O

Nux

UL

Re .....

Con\lecti'Ve Heat Tt'Cmift' ,

Sf (il) . _ .It '1.11 NlI~~t.:

I I

Reyn ld number,

,~.

l/Ca

10-~'~

--

1

1945 upto Reynolds

after that flow, is turbulent,

~

= 0.03274

h r = 21.22 W/m2K

For laminar flow.

Local Nusselt

Number,

(Re )0,5

0.332

Nul'

(Pr)OJJ3

[From HMT data book" Page No, 112 (Sixth Edition))

Nux

I Nux We kno« that.

~

0.332 (3.5 x J 05)05 x (0,687)0 173.33

Nux

hx L k

173.33

hx L k

173.33

hx x 3 0.03274

h l'

m

Result : ~ oefficient for laminar flow, er c I . Average heat trans 2K h == 3.78 W/m . f rturbulent flow,

sfer coefficient

1.89 W/m2K

Local heal transfer coefficient, hx = 1.89 W/m2K Average heat transfer coefficient, h

2

x

hx

2 x 1.89 h Average heal transfer coefficient} for laminar flow If

Scanned by CamScanner

3.78 W/m2K 3.78 W/m2K

0

2 Average heat tran 2 . h - 26525 W/m K d1 '" long is 10 be . 'de an 5. 0"C ---:--:-:11 flat late 1 ", WI eralure of J ' [ Example 4.J A . P, , h a/ree strea'" temp over flat plale 90'C in air Wit . ",ust floW the maintained at 'with which air dissipalio" fro'" Determine tile velOCity the rate 0/ energy. of air 0150"{;, . I SO that along 1.5 m su e, fi /low;ng pr opertleS 007 KJ/kg "C', UI -rake t/le 0 Cp ... J. '1tJ/ plate is 3, 75 k"· I' 8 WI'" I{' ; Anna Vnb,ers"J mJ' k ::::0.02 [Mar 20M, p = 1.09 kg~ 'S' n= 0.7. ' JJ = 2.03 x 10-5 kgl",- ,

r

2.90

Heal and Mass Transfer

Given :

Wide. W

=

_----~(_·~O::.t7\:::'(!~CI~il~.e.!.H~e~(I!...1!}.T/~·a~/l;!!J.sfi~i!l:_· ~2?!.!_ _~_L2 0 ......2 ( pLU )0.5 .91 ___ . 0.028 .-'-' ~l x (Pr)OJJ3 I'~S

Im

-:;:J

Length. L = 1.5 Plate surface temperature, Fluid temperature,

Tw

90°C

IT

ro-c

Heat transfer or Energy dissipation,

00

Q

[.,'

3.75 kW

817.0S

o .-'-'~x .....,

837.0S

83.66 x (U)05

3.75 x 103 W 1.09 kg/m!

Velocity

2.03 x 10-5 kg/m-s To find:

We know that, Heat transfer, Q hA (T 111 .- T ex> )

=> ~age

3.75

x

103 = h (1.5

h = 31.25 heat transfer coefficient,

x

1)(90-

10)

W/m2K h

31.25

We know that, Local heat transfer} coefficient, h, h

Given:

Flu id temperature,

=

=

0.332 (Re)05

Velocity,

air at 2 75 K and a free stream

(Pr)O.333

Critical

T

To find:

0.332 (Re)O.5 (Pr)0333 [ .: Nu~~=

hie L ]

T",

Reynolds

=

275 K

=

2°e

==

S2°e

U = 20 nvs

Length, L Plate surface temperature, T If Width, W

h~ (From HMT data b 00,k P age No. 112 (Sixth Edition))

number, Re,

=

=

1.5 m 325 K

==

1m

=

2 x lOs

I. Average heat transfer coefficient. hi Boundary layer is laminar] [ '. t, h transfer coefficten I 2. Average h ea t [Entire length of the plate] 3.

Scanned by CamScanner

I

[June 2006, Ann« Universityl

h = 2

31.25 x 2 ~--:-)~5.-62-5-W-/m-2-K-1 Local NUSSelt} number, Nux

100.10 m/s

velocity of 20 nrls flows over a flat plate 1.5 m long tI,nt is nraintai"ecl at a uniform temperature of 325 K. Calculate the average heat transfer coefficient over tl,e region where the boundary layer is laminar, the average lIeat transfer coefjiciellt over the ell lire length of tire plate und tire lotll/lreat transfer rate front the plate to tire air over the lengtll 1.5 nt and width I m. 5 Assume trm,sitim, occurs at Re, = 2 x 10 ,

Solution: =>

=

of air, U = 100.10 m/s

Result: a-i-x-,,-n-,p-'-eS"""'] Atmospheric

0.7 / Pr Velocity of air, U.

7J

[1.09 x 1.5 x UJ OJ 2.03 x 10-5 x (0.7)OJ3J

[_~ e-'ocity of air, U

1.007 kJ/kgOC

=

100.10 Illls

U

0.028 W/moC

Rc

'fotal heat transfer rate, Q.

Convective Heat Transfer 2.92

Heat and Mass Transfer· Solulion:

~

Film temperature,

\Lbc31 heat transfer ~oefficient,

T,,+T-..:: 2 52 + 2

T,

Average heat transfer} coefficient, h

Average h~at tra.risfer coefficient for laminar flow, , hi

1.185 kg/m!

v = 15.53 x 1Q-{i m2/s Pr

=

0.702

Reynolds number,' Re

v'

= 2 x 105

Transition occurs at Re,

i.e., flow is laminar upto Reynolds number value is after that flow is turbulent. 20 x L 2 x 105 15.53 x 10-6

2x

lOS,

I

m

For flat plate, laminar flow, Local Nusselt number, Nux = 0.332 (Re)0.5 (Pr)O 333 [F;om HMT data book, Page No. 112 (Sixth Edition)]

Nux 0.332 (2 N-u-x--13-1.-97~1

x

105)0.5(0.702)°·333

='

44.84 W/m2K

20 x 1.5 15.53 x ]0-6 1.93 x 106 >, 5 x 1Q5 ~eL,;; '., . . 5 105 flow is tur~ulent. .', .., ' . ReL> x .' SInce .. ,. . .: ..,. 'b··l t combined flow,. For flat plate, lammar-tur u en !

Itl'

Av~rage, N US~~ number, Nu ., Nu ~1I

We kn0r-:that, '.

(pr )0'" [0,031 (ReLl"~~ 87:J ns .. i. .. 0.3)3 (0.037 (1.93 x 10 ) == (0.702).". .. .

d,'

:=. 2737J!]. ,

"

b Nu· == , Nusselt-num er, ,..

.

0

v

:

hL

k

, ~4 2737.18 == 0.0263 . . , h == 48.06,

We know that, Local Nusselt number , Nu It 131.97

1 l

., UL

0.155

44.84 W/m2K

Case (ii) : , Reynolds number, ReL (For entire, lengthlJ

= 0~02634 W/mK

k

Scanned by CamScanner

2 x hx h

25 '(' : p

r-I

=

2 x 22.42

{From HMT data book, Page No. 33 (Sixth Edition)]

Case (i):

= 22.42 W/m K

= 27°e

T, 1:1

2

hx

VI e knoW that,

2

Properties of air at 27'('

hx = 22.42 W/m2K

_._.

We know that,

=

2.93

hxxO.155

. 0.02634

.I.,

, ..

2"

'1!/m ~

_ 871J

Convective Heal Transfer 2 94

~d

Heal and Mass Transfer '

temperature,

~G'tJvee"":'

Average heat tranSfer} coefficient for turbulent flow, hi

I

.

Total heat transfer} . rate, Q

Coe

hi A Il T

= 2

I Air

(II

=

To find;

I

WlmK;

Solution: (I

plate

(,t

u

at 60 't', calculate the IIeat

Cp = 1006 JlkgK;

R = 287 Jlkg-K; Pr = 0.7. [Madras Ulliversi(V, 98/

Scanned by CamScanner

19.8

x

10- kg/m-s

.,

ndary layer thickness, ~\ .

rate

,

'flow per unit width, 1/1, 2. M ass Q .\ Heat transferre~ per hour, . case (ii) :

per hour. The properties of air tit mean (27 + 60) temperature of 2 = 43.5 OCare given below.

= 0.02749

'

6

= 1006 J/kgK

p

,,'

Case (;) : .J!_

Density, P = RT ~ 287 x (27 + 273)

g~,~ Reyno\ds number,

Re -

-

transferred

k

=

~l

x 1()-6 kglms at 27OC.

If tile plate is maintained

0,400 m ,

. I

Case (i) :

1, B ou

3604.5 W

270C anti I bar flows over

= 19.8

"

Pr == 0.7

Calculute the boundary layer thickness at 400 mm from tile leading edg« of tile plate. Find tile mass flow rate per unit widtt: of the plate. For air p

m/s

= 400,mm =

I.

N/m2

R '= 28'7' J/kg-K

speed of 2 mls.

(2)

Velocity, U

C

2. Average heat transfer coefficient [For entire length of the plate] h, = 48.06 W/m2K

(1)

= I bar = 1 x 105

ffiIC"'1"11tof viscosity,

I

Result : I. Average heat transfer coefficient [Boundary layer is laminar] h, = 44.84 W/m2K

6

Pressure. p

..) . Plate surface temperature, Til! = 60°C

48.06 x I x 1.5 x (52 -- 2) 3604.5W

3. Total heat transfer rate, Q

-

elise (II '. ' ties of air at 43.5'(' : proper, ' k = 0.02749 W/mK

",xWxLx(TII-TT.)

IQ

27°(

=

Distance, x.

We know that.

I Example

Tz.

1:' lUI

!:!h V

UL

:s:

~ p

I

••

2.95

Heal and Mass Transfer

2. 96

I Re

.

.

I'S

'

[h

~

8.772 Wlrn2K ~

Heat transfer, Q

=; 4.686 x 1O~ < 5

Since Re < 5 x 105 flow

la .

x

hA (Tw- T..r.)

105

h x W x L (Tv - T,.J

mmar.

8.712 x 1 x 0.4 (60 - _

[Refer HMT data book P

Boundary layer thickness

~

=:

'x

5 ' age No. J 12 (Sixth Ed' . Xx x (Re j-us IliOn))

Q

in

Here,

~ Ix

=:

115.79 Jls

5

115.79 x 3600

8" x

0 , U2x ~

~x

5 8

In

[in

Case (ii): Local Nusselt number :::::> :::::>

N '

Q

Nu

=:

x

Nux

=:

p x U [ ~2x - 0

= 9.23 x I 16

.

IQ Result:

Case (iJ :

0.0133 kglJ' _

Ux - 0.332 (Re)o.s (Pr)Om 0332 (4 68 . . . 6 x 104)0.5 x (0.7)0.333 63.8D

I Example

9.23 x 10-3 m

m

0.0133 kg/s

I

= 416.84 x 103 Jib

I

Fluid temperature,

Too = 25°C

Velocity, U Plate surface temperature, To find: Solution:

= 7 mls

T; = 85°C

Distance, x

=

20 cm

We know that, Tw

Average h

== 2 x hx == 2 x 4.386

=

0.2 m

Local heat transfer coefficient (h;r)'

Film temperature,

Scanned by CamScanner

103 Jib

7 Air at 25'(' flows over aflat plale at a ~ -I 7 mls and heated to' 85 '('. Calculate the local lIeat tTtoGfor coefficient at a distance of 20 em. IOct. 98, 2000, MU (EEE)/

k

eat tranSfer} coefficient, h

x

~x

Q

Case (iiJ :

N _ hx L ux-

= 416.84

x 2- [9.23 x lO-3J

Given: ,

J

h

]

x 10-3 m

We know that , Nusselt number

Ix

)j

115.79 W

5 x 0.4 X (4 686 . x 104)'-0 9.23 x rO-3 .S

iii]

Mass flow rate,

Tra

Convective Heal

2 x 0.4 19.8x 10-6 1.16

Tf =

+ Leo

8S + 25

---r- -z =

Conveclive Heal Transfe,. 1.98

Heal and Mass Transfer

Air at 20'(' flows over aflat plate at 60 or with £~ ", l·(!lllci(V of 6 m/s. Determine tire value of the sirea , . (ret . 'e('/ive heat transfer coefficiem upto tllength of I nr I't, 8

'{llfl

Properties

of air at 55°C: . [From HMT data hook,·Page No. 33 (S' Ixth Edit' •

Kinematic

Density,

p

viscosity,

v

Prandtl Number,

Pr

Thermal conductivity,

k

We know that,

1.075 kglm3

=

18.41 x 10-6 m2/s

oe com'

'.

x

'

directIOn. ;~(/leflow IManonma~ium

avertltJ

Give" :

0.697

Sundamnar University, April 97/ T 20 e 0

rF.l

'

T

Plate temperature,

0.02857 W/mK

600e II'

Velocity,

6 m/s

U

1m

Length, L

UL

Re

[x::: L::: 0.2 m]

v

~:::

7.6

x 104

rojincl :

A verage heat transfer coefficient

Solution: X

104

Tf

Film temperature,

~

lOS, flow is laminar.

"r

111 . ,. , ,Pr€)pertles

a

{From HMT (fat book, Page Nd. 112 (Sixth Eahibn)]

0.332 (7.6 jr--'N-u-x -8-1-.15-,

x

2

< 5 x 1051

For flat plate laminar flow, . '.., . Local Nusselt .,} .' ,,', ~,' . ,. \\ .... Number ,NLt.l'.\:=. 0.332 (Re)0 ..5 (Pr)03~3'

104)0.5 (0.697)0:333

We know,

=

}' , Nux

hx xL k

81.15

hx x 0.2 0.02857

Local heat tran~fer } coefficient

11.59 W/m2K

Local heat transfer,coefficient,

Scanned by CamScanner

r.

v •

f ai t40oe:' . air a " , k P 'No 33 (Sixlh Edition)] 'From HMT data boo, age . . . ' ( ":" k m3, .: " Density, P 1.128 gJ " ., Ie - 'Q.02756 W/mK Thermal conductiVIty, II\.J. m21s' . . v' 16:96)( 'V Kinematic VISCOSity, ,. , '. .' ' ._'., 0 699 " Prandtl Number; Pr ,~ . 0

Reynolds

!:Lh Number,

Re

,\

'

v 6)(1_

"

[.: x

=

L

=

0.2 m]

L _ hx

2

40°C 1 .

We know that,

Local Nusselt Number

Result:

#)'

Fluid temperature,

7 x 0.2 18.41 x 10--6 ::: 7.6

Since Re < 5

1011)]

.

.

Reynolds Number,

2.99'

, hx ::: 11.59 W/m2K

=1~_,

___ Re '"

3.53)(

IO~ < 5 x 10 .

, is laminar. . 105 floW I Smce Re < S x , . arflow '" ...., For flat plate, lamm, book. Page ,.0, , HMT data IFrom

' . th [dilion)]

))?(51"

-

1.100

Heat and Mass Transfer 0.332 x (Re)o.s x (Pr)0.333--------

LocalNNussebelt } Nu Ul~ r x

I Nux

Convective Heal Transfer

I

Number

Local heat transfer coefficient.

film temperature,

k

x

4.

'o ' We know that, solll't n .

hxx L

Local Nusselt } N u

Local friction coefficient,

3. Thermal boundary layer thickness,



.- 0.332 x (3.53 x 105)0.5 x (0.699)0.333 175.27

~

Til' +T
Tf

2 75 +25

hx x I 175.27

j 1~

Local Nusselt Number

}

Nu

2

0.02756

Density,

9.66 W/m2K

Average heat transfer coefficient

I Air

h

I

= 9.66

. Kinematic viSCOSity, W/m2K

at 25'r:' at the atmospheric pressure is

flowing over a flat plate at 3 m/s. If the plate is 1 m wide and llu temperature T'III= 75 'r:'. Calculate the following at a location of 1 IIIfrom (i) {ii) (iii) (iv)

leading edge. Hydrodynamic boundary layer thickness, Local friction coefficient, Thermal boundary layer thickness, LOCIll heat transfer coefficient. (April, 97, MU/

Given:

Fluid temperature, Velocity,

Distance,

Prandtl Number, Pr = Thermal conductivity,

k

=

Wekoow, Reynolds Number,

{.: x=L= Re

3x 1 = 1.67 x 105 17.95 x 10-0 1.67 x 105 < 5 x lO~ . laminar

3 m1s

For flat plate, laminar flow,

1m

IS



MT data book, Page [From H

1m

x

I m]

v

U

75°C

m2/s

0.02826 W/mK

Since Re < 5 x lOS, flow

r;

1()-O

0.698

25°C

Hydrodynamic boundary layer thickness,

Scanned by CamScanner

17.95 x

,=

V

1. Hydrodynamic

boundary s

-

Uhx

-

TofUld: I.

50°C

1.093 kglm3

p =

T co

Wide, W Plate surface temperature,

=

[From HMT data book, Page No. 33 (Sixth Edition»)

2 x hx

Ih 9

323 K

Properties of air at 50°C:

2 x -4.83

I Example

=

4.83 W/m2K

x

Average heat } h transfer coefficient

Result:

1.101

~

_

No 112 (Sixth Edition)) .

layer thickness, x (Rer°.5

5 xot

5 x I x (1.6

7"



toStO'

.--::::-----=-:;-\..

:

I ,Ie J 0 "tn,,>spherlc "" ,,' ]00 K' with a vr/o ~. . '"" O"er pi ..te ~(I.n.,h L = 2 crty oj l/~ 1,{lK.. ." m and wid,h WI'; rl . .(1 (It "IIiform tc",pL'rlrtllre oj 400 K C I -1m

, /5 I /

2. J 02

----

Heal and Mass Tnlllsjer

2. Local friction coeffil:ient

ef,

0.664 (Ret

05

(f~""

"fi'"

,,'",II'"''"(,, "",ffie".' (I' J ,I "" -;

1.62 x 10-

3

[};'.,

0.01375

==

x

(0.698)- o.m surfa'c

I

tcmperature,

Til Pllc/ : \.

\ .ocai h at iran

We know that,

2.

t\\'era~

3.

Heat iran

0.332 (Re)0.5 (Pr)0333 _ 0.332 (1.67 x \05)05

(0.698)0333

120.415 Nux

'II'

400 K

f r Q.

Sol Iltion : Ctlse' (i): Locallreat

transfer coefficient

=

T,

=

L == 1m.

~

, 400 + 300

==

['.: x

0.02826

=

~

==

. 'II 350\(

~

L == I 01)

Properue

770C ~ SO°C·.

of air at \
2

hx = 3.4 W/m K

I.

s;

2.

<

1.62 x I O-~

3.

bT.\

O.0137~ m

0.0122 m

3.4

til

1",+1",

\ kg,ltn3

p

2 1.09

Result:

h\

,~th,., h,..

k

Local heat-} transfer coefficient

4.

AIsa fiI.d

,

0('

fer coefficient at L == \ m, heat uansfer coeffIcient at L == 2 m.

Film temperature,

hI. x I 120.415

"'''ag'

2m lm

h; xL We know,

"

~~~ill~ 300 K 2.S m/s

Total length, L Width, W

4, Local heat transfer coefficient (/1.) :

Local Nusselt } . Number NUl'

0 III L ::; 2m.

Fluid tClnpera\\lre, T"" Velocity, U

(;;l't'/r:

8", x (Prt0333 0.0122

' • cu''''' . 'h' I

.. lellg,h and "

~~.

\

3. Thermal boundary layer thickness. 81x

=

from L ",,,I'•r codJiciCllt ..

~t

0.664 (1.67 x I O~)· 05

Le"

i

COllvecrj,e Hear T· . " '."1" IIOJ

I

W/m2K

Scanned by CamScanner

Pr k We know that,

0.692

y.. \

o-b 1\,2/5 ,

0.03047 W/n \(

.-v

\\L

,/

~ \ 'I, \

Healand Mass Transfe,.

2.104

2.5 xl 21.09 x lQ-6 .

Since Re < 5 x

,()S ,

I

----

\ Re H 8539 45 < flo W .IS lami . ' 5 x 1O~ ammar. :._j

1

{Refer HMT data boo . k, Page No. \ 12 (Sixth: Ldillon)l '. N

Number

Ux

=

0.332 (R e )0 '.'\ (Pr)0,333

_

_:_\O::_:iJD:.:..l~8 ,



'VI e know that, A verage heat

0.692)0\33

Local heat } transfer coefficient hx

0.03047

1.10;

2

x

x

2.17

4.35 W/m2K \ 4.35 W/m2K h A(T",- Too)

3.0832 W/m2K 3.08 W Im2K

.--_-~l:-,·:L = 2 m ; W = 1 m] ~Q

\ -

Re

UL v

Re

2.5 x 2 21.09 x 1~

S. \ Re = 237Q79 mce Re < 5 x lOs fl . .18 < 5 x lOs For flat ' ow IS laminar. plate, laminar flow

870 W]

Result : 1. Local heat transfer coefficient, at L = \ m = 3.08 W/m2K 2. Average heat transfer coefficient at L = 2 m

: Average heal transfer coefficient at L ~ 2nL

= 4.35 W/m2K

3. Heat transfer, Q = 870 W \ Example 11] Air at 20 ~ and one almosphere flows overlll II

mis, The platt is 75 cOl long "nd is "",UrtBintd 600C. Calculate the I.eat transfer per unit width of the platt. Also calculate th« turbulent boundary /tryer thickness IIIt/o< tnd oftltt

}hit pI.te at 35

I

pl.te assuming

of tltt pllJU. University, Apr. '}7

it to develop fro .. the /eOdiJlg ..".

/Bharathidasall

0.~32 (Re)O.5 (Pr)OJ33

0.332 (237079 .18)°,5 (0.692)°,333 r:\N~-U:r---=1~4'3_'\

Scanned by CamScanner

.c ansjer

4.35 x 2 x 1 (400 - 300) hxx1

\ hx

Nux

2xh

\ h

J Nux

eynolds Number,

l Ih

Average heat l transfer coefficient J h Cast (iii): Heat transfer, Q

101.18

CIIS~ R(i;' ""

HealTr

h, xk L

h

1.

=>

Nu,

transfer coeffICient

We know,

Local Nusselt Number

we know Ihal.

0....332 (1185395)0,5 (

..--- __

_--,--

-------~(·~o~nv~eecclive .'

Local heat '\.. 2 transfer coefficient i h."( = 2.\7 WIm K

For flat plate, laminar flow , ' Local Nusselt

/

::: 20°C

Given:

fluid temperature, Tao

35 rnJs Velocity, U ::: 15 cro ::: 0.75 m Length, L :::

2 J 06

Convective Heat Transfer

Heat and Mass Tramier Plate temperature, Width,

Tofind:

-----

T", W

1.

Heat transfer.

2.

Boundary

1111

~

hI xL

l I

Local Nusselt . Number

2107

k hx x 0.75

2341.6

layer thickness.

Solutlon :

0,02756

Local heat

T" + T'l T}

Film temperature,

2 For flat plate, turbulent

60 + 20

A verage heat } I transfer l:oeffciellt '

2

Properties

flow, 1.25 hx 1.25 x 86.04

"

of air at 40°C: p

1.128 kg/m '

k

0.02756

v

=

W/mK

Heat transfer,

16.96 x 10-6 1112/s

107.55 W/m2~1

0

h x A x (T" - T Ul)

Q

h

x

A

X

h x L x W x (T

[0

UL

Re

v

.

Boundary

16.96 x 10-6

, NUl

=

,

'

0.0296 (Re)08

,',

x

I N HI'

=

2341.6

Scanned by CamScanner

I

2

0.37)( 0.75)( (1.54

2

106t0 [.:x=L=0.751 x

- given] ~

(Pr)om

I From HMT data book. Page No, , 0.0296 x (1.54

WJ

0.37 x x x (Ret0

,\ " '\1 '--'_R_e_~I.:..:..5_.:_4_x__;I:...::0_6 _>....::5:....:x~10::._5.....J1 .. "Sinc,~ Re.> 5 x ,lOs: flow is turbulent. flow,[Fully,turbulent

3226,50

layer thickness

:

Local Nusselt} , ,NulJ\ber

11)

Bount/ary layer thickness:

35 x 0.75

,',for flat plate" turbulent

T

107.55 x 0.75 x 1(60 - 20)

We know that,

"

II' -

0.699

Pr

Reynolds Number,

(T", - T'/J)

113 (Si:\lh Edition)1

x 106)0,8 x (0,699)0333

Result: 1.

f Heat trans er

2.

Boundary

,W

0 - 3726.50

- h'ckness 8 layer t I

. ===

(I,01601\l.

2. J 08

Heal and Mass Transfer

I. Example 12 t For a particular engine, the und erslde .

0"

crank case can be idealised as a flat plate :J the . "'ellS 80 em x 20 em: rile engine runs lit 80 km/h» and the UI';lIg . .. ' crank is cooled by air flowing past It at tile same speed. Cal clIse culate th loss of heat from the crank case surface of temperature 75't e the ambient air temperature 25 'C. Assume the bounda to becomes turbulentfrom the leading edge itself. IApril ~ laye, Given: Area, A 80 em x 20'cm ' M(Jj ==

1600'cm2

U

Velocity,

Convective Heal Transfer 1.109 22.22 x 0.8 17.95 x 1ij-6 [",' L = 0.8 m] '[iii-e-:--9.-9 X-I-O'-]

0.16 m2

80

[Fully turbulent Local Nusselt Number

from leading edge - given] } Nu.

=

m "-1

0.0296 [9.9 x N-u- --16-:-:4~5.4-:-11

We know that,

k

= 25°C

hx x 0.8 o:o2s26

Flow is turbulent from theleading edge, i.e., flow is fully turbulent. To find: 1. Heat loss. Solution: Film temperature,

75 + 25 =-2-

T,

(0.698)033

h;rxL

Til' .= 75°C T co

WJO.8

x

22.22 m/s Ambient air temperature,

0.0296 (Re)D.8 (Pr)OJ33

l

[From HMT data book, Page No. 113(Sixth Edition)]

3600 s

Surface temperature,

> 5 x J()5

Flow is turbulent. Since Re > 5 x For flat plate, turbulent flow,

80 km/hr x 103

= 9.9 x 105

Re 105,

IT,

[.,'

58.12 W/m2K ] Local heat } h transfer coefficient x For turbulent

= 58.12 WIm2K

flow, flat plate

A verage heat } h transfer coefficient

Properties of air at ·50°C :

h

Or

[From HMT data book, Page No. 33 (Sixth Edition)]

P

1.093 kg/m-'

v

17.95 x 10--6 m2/s 0.698

Pr k We know that, Reynolds Number,

Re

Scanned by CamScanner

We know, Heat loss, Q

0.02826 W/mK

!d....h "

~ Result:

=

h A (Til' - Tao)

=

72.65 x 0.16 (75-

_

581.2 W

Heat Ioss, Q -

25)

L

= O. 8 m J

,I

~t,

II I'

2.110

<Example ,'---L! _ liJ_" Air flows over a flat plate of velo {"Yo!3 lind ambient comlltlons are pressure 760 mm tI! IlrIs te",perature is 15 'C. The plate is maintained at 85 'tHg an. lengtll of the plal£ is 100 em .Iong the flow 0' tl".· tr, '"'t/ .. 11 Ihe ',I h hea! lost by 50 em of the piette wlticlt is measured ~ , e

!

, ,

.

}ron, Ih

'

trailing edge. Plate width

I I

~

Heat and Mass Transfer

IS

'

50 em. /BlllIrc,tltidasan

e

Unlversit J.1 N-",',96/

__

----

__

Re

_.

8SoC

Length, L Width, W

=

1m

SO em

0.50

Local Nusselt Number

lJ N u~

Solution: T". + Too

2 85 + IS 2

Properties of air at 50°C: .

I

{from HMT data book, Page No. 33 (Sixth Edition)l

Density, p = =

17.95 x 10-6 m2/s

Prandtl Number, Pr

=

0.698

=

0.02876 W/mK

Thermal conductivity,

k

We know that, Reynolds Number, Re

UL V

Scanned by CamScanner

0,332 x (Re)05 (Pr)OJ33

0,332 x (\.67 x lQ5)05 (0.698)0333

I N\I.~ = Local Nusselt Number

=:.>

\ 20,36 \

l

hx L k

r Nux

hx x I 0,02826

\20.36 ~h_x Local heat} h transfer coetTlcient .t A verage heat \ transfer coefflcitnt I I,

3_.4_W_'n_~_K~1 3.4 W'm2K 2 x II.~

II 2 x 3.4 [F-:::-6-.S-W-'-11l-2K--']

Heat transfer ~

1.093 kg/m)

V

Kinematic viscosity,

-

=

[TZ= (

-

{From HMT data b 00",l. P age. No. t \2 (SIxth . Editionj]

=:.>[

.

Tf

.67 x \ 0'. < 5 x 105

For flat plate. laminar flow,

III

I. Heat lost by 50 em of the plate which is measured from the

Film temperature,

\

We know that,

100 em

To flnd :

trailing edge.

=

Since Re < ~ x \ 0\ flow is laminar.

Velocity, U = 3 m/s \ 760 mill of H.g = I bar Pressure ISoC Fluid temperature, Too

!II' ,=

2. J IJ

3x \ 17.95 x 1Q-6

Give" :

Plate temperature,

CO"\lecti\)e Heal Transfer

(For entire plate, Lc., L:= l m] Q2 11 A (1 ...- TaJ :: hxLxWx(TII,-Ta) ::: 6.S x \ x 0.5 x (85 - \ 5)

~ Similarly,

.

Heat transfer for ftrst half of the plate,

1.(1·,

V 0 SO

11\

.

I

,,

I

Convective Heal Transfer

I

I

!

2.112

I

Heal and Mass Transfer

Reynolds number. Re ::

UL v 3 x 0.5 17.95 x I()-6

I Re

-----

Q2 (entire plate) - QJ (for first half of the plate)

Q :::: 238 - 168.35 ~

I -.

::

/lesult : }-Ieattransfer from 50 em length from trailing edge

0.835 x lOs < 5 x 105 . L'ammar . flo For flat plate, laminar flow , W Local Nusselt } Number Nux = 0.332 x (Re)O.5 x (Pr)0.333

[]!Pnple

0_.3_3_2 x (0.835 x 105)0.5 x (0 69 85.1 8)0333

r:-:- __

I Nux

I

=

.

I

We know that, Nux Here

hxL k,

=

85.1

~

I hx -

=

hx x 0.50 0.02826 4.81 W/m2K

14] Air

(It

(I

Fluid temperature,

T

OJ m 1m

Length, L U

8 mls

Til'

78°C

Velocity, Plate temperature,

Average heat transfer coefficient h

of' 8 kNlm2 and

250°C

C1.)

Wide, W

I

pressure

= 69.65

te",perature of 250°C flows over (I flat plate 0.3 m wide and I long at a velocity of 8 m/s. If the plate is to be maintained a temperature of 78°C, estimate the rate of heat to be remov cOlltinuouslyfrom the plate. /Bharathiyar University, Apr. Given: Pressure, p 8 kN/m2 = 8 x' 103 N/m2

L = 0.50 m

~

2.1

Tofind : Heat transfer.

h Solution: Film temperature,

Tf =

Tw+T
78 + 250 2

Properties of air at 164°C: (At atmospheric pressure)

I

[From HMT data

book. Page No. 33 (Sixth

Editio

p :: 0.810 kg/m3

I

v :: .30.08 x 10-6 ro21s

I

k :: 0.03645 W/roK Pr :: 0.682

/

Scanned by CamScanner

Convective Heat Tramfer

Average heat transfer coefficient, h 2.114

Heal and Mass Transfer

r a pressures

p

=

V

=

va1m

X ~

Ie

0

Heat transfer,

h

x L x W (T 00 -

Tw)

x

I bar 1()3 N/~

10

)-Ieat transfer from both side of the plate o = 2 x 158.9

lOs N/m2

x

~~~[·~:~I~b~ar~-lxIOSNI m 3.76 x 10-4 m2/s

IQ

2

]

1

158.9 W I

Result:

Heat transfer,

=

317.85WI

0 = 317.85 W

We know that,

UL

Reynolds Number Re

2.9. FLOW OVER CYLINDERS AND SPHERES

V

The flow over a cylinder is shown in Fig.2J.

8xl

3.76 x

.

I Re

10-4 4

- 2.1 x 10 < 5 x 10

The flow field can be divided into two regions. They are: 5

I

Since Re < 5 x lOs, flow is laminar.

For flat plate, laminar flow, Local Nusselt} Number

[From

HMTdata

Nux

1.

Boundary layer region near the surface.

2.

An inviscid region away from the surface.

book, Page No. 112 (Sixth Edition))

0.332 (Re)05 (Pr)O.333 0._33:..:2~(.2.1 x 104)0.5 x (0.682)0.333 42.35/

r:-:-

I Nux We know, 42.35

=

hx x I 0.03645 Local heat} transfer coefficient hx = 1.54 W/m2K For flat plate, laminar flow,

Scanned by CamScanner

I

1r)

.

8 x I ()3 NI;;;i

=

3.08 W/m2K h x A (Too - T

3.08 x 1 x OJ x (250 - 78) 30.08 x I ~ 30.08 x I~

V

Ih

Pgiven

8 x

~~==~~~ [Kinematic viscosity,

2 x h, 2x 1.54

Note: Given pressure is not atmospheric presSure viscositywill vary with pressure. Pr, k; C are same fo II· So, kinernar

Kinematic viscosity,

2.115

Stagnation point

.

Fig. 2.3.

CI w over c)'lim/ers

no

.~

Convective Heat Tramlfer 2.116

u~

Heal and Mass Transfer

Th Pressure gradient along the surface of the c~ e . '. er and infaci this pressure gradient IS responsible"

'.

IS

'---;;prob'ems - Flow Over Cylind,,,. . -: soNe01 %.9.2~ Air at 15 OC, 30 IrmI1r flot4ls over a cylinder of

no

I~~

t

th:

development of a separated flow region 011 the back side of · der . The separation of flow affects the drag force on a cUrve
I I

l}!~ ", d,a J,o '" «: calculate

\ of 45

Given.

and 1500 mm height witll surface temperature I the heat oss. • Fluid temperature, T'"l \ SoC Velocity,

U

30 kmlh 30 x lQ3 m 3600 s

2.9.1. Formulae Used for Flow Over Cylinders and SPhere.

r, + Too l.

Film temperature,

TI

where

T 00 -

Fluid temperature

T", -

Plate surface temperature "C

2

where

3.

Nusselt Number,

v

-

mls

D -

Diameter,

m

v -

Kinematic viscosity.

Nu

e (Re y"

Tofind: Heat loss. I t 'on' . We know that, Sou' Film temperature,

Nusselt Number,

5.

Nu

Heat transfer, Q where,

A

1t

D

400 mm

T If

rr,- T "J

DL

For sphere :

ISOOmm 4SoC

=

1 +1",

T,

0.4m

7

U m

45+15 = -2-

Propertie

f air at 30°C:

)II

n (Si~th Edition)}

[From HMT data boo~, Pase o. . = I I 65kg/m3

Density. P . v viSCOSity, be Pr == Pr'andtl Num r, Therma\ con4uctivity. k Kinematic

. n...J. 2/ 16 \< Iv - m s 0.701 0.02675 W/n,K

We know,

Nusselt Number,

Nu =

0.37 (Re)O.6

Reynolds Number, Re

[From HMT data book, Page No. 119 (Sixth Edilion))

Heat transfer, where

=

(Pr)O.333

hD k hx A x

8.33 mts

-,T-I--30-oC~]

m2/s

[From HMT data book, Page No. 115 (Sixth Edil.ionll

4.

U

Length, L Plate surface temperature,

Velocity,

U

Diameter,

-c,

UD

2. Reynolds Number, Re

2.117

Q A

Scanned by CamScanner

v

~

\6)( 10-0

h A (Tit' - Too)

~

Convective Heat Transfer 2. J J 8

2.119

Heat and Mass Transfer Nusselt Number,

C(Reyl/(~

Nu

~

[From HMT data book. Page No. 115 (S' h •

105,

ReD value is 2.08 x

·IXI

correspondmg

.,

Editio

C value is 00266 n)] . ) and I1J

I.

fl01

temperature,

TJ 130 + 30 2

value is 0.805. Nu = 0.0266 x (2.08 x 105)0805 x (0.701

~

IT

)03])

~lEi-1I-=-4-S1-.3--'1 prope

p

I kglm3

V

21.09

PI"

0.692

hxO.4

451.3

I Heat

[From HM I data book, Page No. 33 (Sixth Edition))

hD k

NlI

~

80°C \

rties of air at 80°C:

We know that, NusseJt number,

=

f

0.02675

transfer coefficient,

h

Heat transfer,

Q

30.18 W/m2K

0.03047 W/mK

k

30.18 W/m2K

h

We knoW that,

1

h A (Til' - Too)

Reynolds

Number

UD v

Re

h x n x D x L x (Til' - T",)

0.2 x 0.070 21.09 x lo-tJ

[.: A = nDll 30.18 x n x 0.4 x 1.5 x (45 - is) 1

Q

1706.6 W

Heat loss, Q =

Result:

I Example

I Air

Given :

1706.6 W

(II

Fluid temperature,

TO") U

0.2 m/s

Heat energy,

0,

120W

D

70 mm

I. Heat transfer, 2.

We know that, for sphere, Nu Nusselt Number,

Power lost due to convection.

Scanned by CamScanner

. :: 0.37 (Re)o

6

N

119 (Sixth Editionl]

IFrom HMT data book, Page o.

0.37 (663.S2)06

[Bu :: Is.iD Nusselt Number, ~

Til'

Diameter, Tofind:

663.S2 ]

IRe

30°C

Velocity, Surface temperature,

= 663.S2

1

_W°C, 0.2 I1Ils flows across a now electric bulb at 130°C. Find heat transfer ami power lost due to convection if bulb diameter is 70 min. 2

10-6 1112/s

x

!!.Q k

Nu::

IS.25

::

h x 0.070 :.:...:..:-:-.: 0.03047

~ ~~ :: 7.94 W/m2K

0.070 m Heat transfer coe

~ fficient, h

Convective Heat Transfer 2. J 20

~air

Heal and Mass Transfer

We know Heat transfer,

[From HMT data book. Page 0.33 (Sixth Edition)1

h A (T, - Ten) hx47tr2[T

u

7.94x 4 x

7t

.-T]

["A-

'"

0.070) x ( -2-



-

41[ r2

2

Q2

0

x 1

100

12.22

120

1 kg/m'

v

21.09 x 10-6 m21s

Pr

x (130-30)

2

% of heat lost

p

0.692

J

~---------------------, I Heat transfer, Q 12.22 W I 2.

at 80°C:

prope Q2

2. 121

x 100

0.03047 W/mK

k

a . Tube is considered as square of side 6 em. 'IOl:t (I, . CI"'" L = 6 em = 0.06 m t.e., UL Reynolds Number Re v 30 x 0.06 21.09 x I(}-6

10.18%

[ Re

Result: I.

Heat transfer

2.

Percentage of heat lost

=

12.22 W

=

10.18%

I Example 3 I Air at 40 't" flows

over a tube with a velocity of 30 m/s. The tube surface temperature is J 20 't", Calculate tile heat transfer coefficient for the following cases. I.

Nusselt

Number

Velocity, U Tube surface temperature, Tw

30 m/s 1200e

Tofind: Heat transfer coefficient, Solution: We know that, Film temperature,

T,

~

Nu

~

I Nu

0.092

173.3] hL k

(h).

T",+T", 2 120 + 40 2

173.3 Heat transfer

==

h:..:..----x 0.06 0.03047

. coeffiCIent,

Case (ii) : Tube diameter,

h

==

88 W/rn2K 6 cm == 0.06

D

@ ReynoldS Number,

Scanned by CamScanner

I

[From HMT dala book. Page No. 118 (Sixth Edilion)) °.333 0.092 (0.853 x I OS)O.67S x (0.692)

Nu

We know that

lOs

0.675

e

Tube could be square with a side of 6 em.

2. Tube is circular cylinder of diameter 6 em. Given: Fluid temperature, T", 400e

x

Nu == C x (Re)" (Pr)o 3H n

For square

0.853

Re

v

In

~

•. 1.1

Heat

alld

Mass Transfer 30

x

21.09 0.853

:O~J

c (ReD)'"

Nussclt Number. Nu

of

[From HMT data book. PUg' ~t: N o. I rs- (S·

10' R e value is 085"' O.O~66 and 0 80-' .) X. " corresponding . :> respectively,

I

C and

_j_

,

r.l-i-~:_:_'l_t U::_~~2i -to _l_~. rr , -'f T :~ - -$-' - - .; - ~'Ldrt "

A"

1011)]

III

ill)lIlC'

u~

IXlh Edit

valu es are

Nu 0.0266 x (0.853 x )05)O.R05x I"N:-:-u-=--2-19-.3-1 (0.692)0333

i

as shown in Flg.2A,

MOl.

(Plf333

__SI\

A ~

\

.:41T-~-¢"

\ .

-

-

~

II 0 k

Nu 2)9.3

=

hxO.06 0.03047

Result: I. Heat transfer coefficient for square tube II =

2. Heat transfer coeff

.

icienr

88 W/m2K

for circular tube II =

I 11.3 W 1m2 K

j_

I~~~~ (b) 51aggered

(a) In-line

Fig. 2.4. rltbe Banks

The confIguration of banks of tubes is characterised by the tube diameter D, transverse pitch, S" and longitudinal pitch S, measured between tube centres. The diagonal pitch SD' between the centres of the tubes in the diagonal row is also sometimes used for the staggered arrangements. The Reynolds Number is based on the largest velocity of the fluid tlowing through the bank of tubes. D U",ox ~ ReD v S, U X U",ax

s=o ,

U

where

-

S, 2.10. FLOW OVER BANK OF TUBES

Heat transfer in tl nume rous industrial ow '. over a b an k or bundl or air conditio»: appIrcatlons such as t e of tubes has I ioning cooling coil. In thi seam generation in boiler s case , one tl UI id moves over

I 5,

\5D:$-'\--~-

-{\f-t--(\)-i-$

\~\-~~

I

We know,

2.12 J

fluid at . different t emperatures passes . "s~cond • 'he 'lube rows ot a bank mavJ be etitl ier staggered

. tl , lbcs Ihe It; I1 the tubes

10-(' x

Convective H eat r ramie,.

.

0.06 __________

.,

0 2.10.1. Formulae

Velocity of fluid, mIs, Transverse pitch, Ill,

- Diameter,

1\1.

used for Flo'll Over Bank of TU~S

,

UX-S:O I.

Max.imum velocity, UIIIlIX where

S, -

'

Transverse pitch,

til. I

.til"'"

Scanned by CamScanner

Convective Heat Transfer 12~./~24~~H~e~a~l~and~M~~=s~~~ra=n~sfi~e_r ~ .:.

_ Umax

2.

Reynolds Number,

Re

3.

Nusselt Number,

Nu

0

x

V

=

----

1.13 x (Pr)O.33 [C ReI!]

[From HMT data book, Page No.122 (Sixth Ed'r

v =

18.97 x I~ m2/s

Pr

0.696 0.02896 WImK

k

:=

nOW that, We k

lion))

. urn velocity,

MaxiOl

2.10.2. Solved Problem

I Example

staggered tubes while the air is passed ill cross flow over the tubes. TIle temperature and velocity 0/ air are 30°C and 8 nrls respectively. TIle longitudinal and transverse pitches are 22 mm and 20 mm respectively. TIle tube outside diameter is 18 mm and tube sur/ace temperature is 90 'C. Calculate the heat transfer

s,

Ulllax

=

U x S -D

Umax

=

0.020 8 x 0.020 - 0.018

[Uma:c

=

80 m/s]

1 lIn a sur/lice condenser, water flows through

,

Umo.T Reynolds

=

Re

Number,

2. J 25

X

D

v

coefficient. Given:

Fluid temperature,

T <0

Velocity, U Longitudinal pitch, S, Transverse

20 mm

=

0.020 m

Diameter, D

18 mm

=

0.Q18 m

Solution:

Til'

[l?e

8 mls 22 mm = 0.022 m

pitch, S,

Tube surface temperature, Tofind:

300e

90

~. D

e

0

~

I. Heat transfer coefficient.

Tf

o

Til' + T rn 2

:

[From HMT data book, Page No. 33 (Sixth Edition))

p

=

1.060 kg/m3

Scanned by CamScanner

Q:.Qll ==

==

1.22

Q.018

[3

90 + 30 2 Properties of air at 600e

l.ll

==

= \.I~ S,

We know that, Film temperature,

O.O~ 0.018

==

S, S, - 1 1\ O - . 'D 0.556 respectively.

==

e051Sand . C n values ar . \ 22 corresponding , s: .th Editionli .

,

i-

rFrom~

~ ~

MT data boO"

Page No. 122 (

L"

Convective Heat Transfer 1 1)6

Heat and Mass Transfer

Nusselt Number, Irroll1

Nu

1.13 (Pr)o

=>

IIMT

m [C (Re)"

1

data book. Page No. 122 (Sixth Ed' , 1(1011)1

Nu

r.n

[0.518 x (7.5 x 104)0 Nil

266.3

=

Nussclt Number.

Nu

~561

I liD

k

em .ient,

~kness of the boundary layer is limited to the pipe of the flow being within a confined passage . el. .The bet'luse radilis layerS from the pipe walls meet at the centre of the pipe sollodar)' I' re flow acquires the characteristics of a boundary layer. d th~ en I aO boundary layer thickness becomes equal to the radius of once the there will not be any further change in the velocity Ihe lube. This invariant velocity distribution is called fully . tribul Ion. .' dts ed velocity profile. I.e., Poiseulle flow. develoP ulae used for Flow through Cylinders 211,1. F or m , (Internal flow)

_66.3

Heat transfer

2./27

I,

I. Bulk mean temperature

RdUil:

Heal transfer coefficient.

"

428.6 W/m2K

where 2.11. FLOW THROUGH A CYLINDER -INTERNAL

FLOW

Similar I the flow ver a flat plate, a fluid funiform velocu, entering a tube is retarded near the walls and the boundary layer begin to develop as sh \ II in Fig.2.S b doned Iii es.

esiabiished flow

Inlet temperature °C,

T mo

-

Outlet temperature "C. UD

Re =

v

h 2300 flow is laminar. less tan, 2300 flow is . reater than , values IS g

number value

If Reynolds Fully developed

-

Num b er,

2. Reynolds If Reynolds

T m;

number

.

IS

turbulent. 3. Laminar

Flow:

Nusselt

Num

be

r,

Nu

=

3.66

123lSixth Editioo))

[From HMT data boOk. Page No.

I Equation) Flow (Genera _ 023 (Re)os (PrY' be Nu - O. Nusselt Num r, 4 _ Heating process n == O. == OJ - Cooling process .'

4. Turbulent

n [From

ng.

2.5. F/ow ""oug"

Scanned by CamScanner

u cylinder

1;.

HMT data boO .

Page No.12

5 (Sixth Edition))

2.128

I . I

Heal and Mass Transfer

This equation is valid for

~

. 0.6 < Re > L

D

>

PI' < /601

~I

'1

10000

60

';.-..:.._~~=-~C~o~n~ve=C~/i~ve~JI,~e~a'! ~Tr~a~n ~" Tube wall temperature °C, 1/11

-

I

Mean temperature 0C ,

T""

-

Inlet temperature °C,

I

J"1II0

Outlet temperature

-c

I

I

For turbulent flow, Nu

Mass flow rate

8.

::: 0.036 (Re)O 8 (Pr)033

p -

where

This equation is.valid for

i5

"

where

6.

4A ::: 4(LxW) P 2 (L -i W)

e

A

Area,

p -

Perimeter,

U -

where

Do

7.

111,

4' 02 ,m,2 1[

Problems Flow)

Velocity, m/s, - Flow through Cylinders

[ EXfIIlIple J Water flows inside a tube of 20 /11mdsam (111(13m long at a velocity of 0.03 m/s. The water gets heated -10"('to 120°C while passing through the tube. The tube w maintained at COIISlflll1 temperature of 160°C. Find Iitattrans Gil/ell:

Diameter of tube, 0 Length, L

DJ 1

4 x 4'

l D~ -

7r [

Do + D;

J nner

Area,

Velocity, U

1

diameter.

Inner temperature of water, Outer temperature

20 mm

=

0.020 m

3m 0.03 mls

Till;

of water, T

IIIO

Wall temperature, Tit' To find: Heat transfer (Q).

Heat transfer

Solution : We know that,

Q

h A (1~t'- Till) where A ::: 7r x D x L (or)

Q

Solved (Internal

p

Outer diameter,

D;

2.1 1..2

4A

7r

Density, kglm3,

I

1112,

L - Length, Ill, W - Width, m. Equivalent diameter, for hollow cylinder D,,(or) D" :::

kg/s

< 400, Re < 10,000

5.. Equivalent diameter for rectangular section, D (or)D

-

A

L

10 <

pxAxU

III

(tD)O.OSS

III

CJl

(T1110- l'

111/

Bulk mean temperature, Till 40 + 120 ~ 2

.)

TI/I

80°C

[

Scanned by CamScanner

Convective Heal Transfer 2. J 30

Heat and Mass Transfer

-----

Properties of water at 80°C: I

lFrom HMT data book. Page No. 21 (Sixth E ..

, .

dillon)]

p

974 kglm3

v

0.364 x 10-6 m2/s

When 0.6 kg of water per minute is passed ~I 2 cm diameter, it is found to be heatedfrom Ih,olllh a The heating is .achieved b~ condensingsteamon ZOIlC to 6 if the tube and subsequently the surfacetemperature e sur/ace ~ aintained at 90°C. Determine the length of the th be IS m of the "". dfior lully developedjlow. requIre . 0.6

;~c.

Mass,

m

=

Given:

0.6687 W/mK

k

~

I"be

2.22

Pr

Diameter, D.

UD

Inlet temperature, Tm;

=

outlet temperature, T mo

=

Re

=

v

0.03 x 0.020 0.364 x 1648.35

IRe

ToJi n . solution:

I

r

Heat transfer, Q

122.39 W/m2K

.

PropertIes

hA

(Til' - Tnr)

h x

1t

x D x L

X

122.37 x

IQ Heat transfer,

f water 'at 40°C:

Q

Scanned by CamScanner

1t

=

ltDL]

1845.29 W

I

boOk, Page No.

995 kglro3

Mass floW rate, in U

21s

. 0.657 x 10-6 ro

Pr ::::: 4.340 k ,0.628 W/roK :::: 4178J~g K Cp

x 0.02 x 3 (160 - 80) 1845.29 Watts

20+60 .=.:;.....2

(From HMT data

v

(Til' - Tm)

[.: A

Result:

0

p

I

+Tmo

40iJ

668.7 x 10-3

Ih

=>

0.02 m

2

=

hD k h x 0.02

3.66

60 kgls

_!!!!.---

Bulk mean temperature, 'r m

=. 3.66

Nu

=

2 em

[From HMT data book, Page No. 123 (Sixth Edition))

We know that,

=

Tube surface temperature, Tit' d : Length oftije tube, (L).

1"0-6

Since Re < 2300, flow is laminar For laminar flow, . Nusselt Number, Nu

0.6 kg/min 0.01 kg/s

Let us first determine the type of flow. Reynolds Number,

2.131

:::: pAU

i!pA

21 (Sixth Edition))

2}~.J~3~2~H~ea~l~m~l~d~M~a~s~s~~~ra~lI~sfi~e_,. __ ~~ .: 0.0 I

Convective Heat Trans'r, 'Jer 2/J3 114.9 x 7'C x 0.02 x Lx (90-40)

__ _________

I

[-L--4.-62-n--',

1t

995 x 4" (0.02)2

I Velocity.

U

=

0.031 I11ls

l10th of the tube, L . L eng

eSll It ~

I

Let us first determine the type of flow !

I

Re

Iv

.1 II'

0.031

Re =

x

0.02

Wuter

(It

50 °C enters 50 111m diam~ter and 4 m

'ent 111,1 t u« total

a CO"

...nerO

/tll'l'

Give" :

I

Inner

tel

nperatllre

0

f

water,

T

soae

ml

50 mm

Diameter, D

Since Re < 2300, now is laminar.

Velocity, =

Nu

3.66

Tube wall temperature,

[From HMT data book, Page No. 123 (Sixth Editioll)1

Nu

=

3.66

=

We know that

liD k II

[I =

=>

Heat transfer, Q

x 0.02 0.628

114.9

W/m

I

We know

that,

70 e Exit temperature of water, T",o t. Heat transfer coefficient, (II). Tofi"t/ : 2. Heat transfer, (Q). 0

Bulk

Tm;

mean temperature,

T",

+ T",o 2

50 + 70

::..----

11/

Cp dT

11/

Cp (T/IIO - T/II)

2

0.01 x 4178 x (60 - 20)

[Q

900e

IV

So/ul;oll : 2K

0.05 m

0.8 m/s

U

T

=

4m

Length, L For laminar flow,

Nusselt Number,

if exit water

of "eallralls/erred

(/111011111

CI

cotffi ture is 70°C.

0.657 x IO~ 943.6

4.62 m.

~"elocitv of 0.8 m/s. r"e lube wall if maintained be wlI I ·.r 90.0,,", D ' ...., elernllne tlrt heallransfer /u~gIII s/(ll,1 temperatllre oJ

UD

=

=



1671.2 W

I

60°C

Properties of water at 60°C: p

Q

v

hx

1t

x D x L x (T". _. 1'/11)

Pr k

Scanned by CamScanner

.

(From IIMl data

J

N 'I (Sixth Editionli boOk I'a~~ I 0..-

985 k~tnJ 0.478)( W61112/s 3.020 0.6513 WhnK

Convective Heat Transfer

2. J 34

----

Heat and Mass Transfer

Let us first detennine the type of flow:

UD _.

Re::

v

0.8

x 0.05

0.478 x ,10-:<>

eRe

8.36

Since Re > 2300, flow is turbulent. L ,4' 0.05::

80

o

80> 60,

Re

8.36 x 104> 10,000

Tube \ all temperature,

Pr

3.020 => 0.6 < Pr < 160

To find:

than 60. Re value is greater than 10 ,000 and

solution:

'

x (8.36 x 104)0.8 x (3.020)04

I Nu = 310 I

'

-,

~now

that,

' Nu 310

=

h

__

v 0.65 x O.O_Q! 0.657)( 10-6 ro '

~

= h x 0.05 2

t

4039.3 W 1m K

A (T 1\1 - T m )

I.

Since Re > 2300 , flow is turbulent. . h. _1-:: 375 o 0.008 10 <

h x ~ x 0 x L x (T w - T m )

h

4093.. 3 x

7t x

D ratio

76139,W

I

Scanned by CamScanner

un

Re

We know,

1\'.'

0.628 W/mK

'

0.6513 ,

.

.'

4.340

k

t

H eat tr ans fer coefficient h Heat transfer Q h' ' .

T;

0.657 x 10-6 m /s ,

Pr

..

[Inlet temperature 50·G Exit t . Ed "''')1 Process, So, n = 0.4] '. XI emperature 70·C => Heating

= 0.023

140°C

9.65 m/s

2

::

V

.[From HMT data book, Page No 12S'CSixth

Nu

40°C

Pr perties of water at 40°C. p 995 kglro3 ,

Nusselt Number, Nu :: 0.023 (Re)08 (pr)"

=>

3m

Heat transfer c:oeffieient, (h).

Pr value is in between 0.6 and 160.'So·,

\

0.8 em :: 0.008 m

L

Length,

Average temperature, T m Velocity, U

L

oL ratio is greater

5, at trmrsfer coefficient. ,e • Diameter of tube, 0

GIve" .

I'

o

2

4039.3 W/m K

. transfer Q :: 76139 W. Meat te 4 Water ' z.,_~ floWS through 0.8 em diameter 3 , m , t all average temperature of 40 "C. Tireflow velocityis ""gIllbt ",! aOIld [ube wal I temperature IS. UO'f:. C.Ic.I.tt tht ~~

a' !trag•t

.

n=

I.

~65

104]

x

~esll/I: transfer coefficient

0.,05 x 4 x (90 - 60)

2. J 35

.'

h .:::' 400 o

d 400 Re IS

in between

10 all

'

<::.

.

IOOOq,

SO"

Convective Heat Transfer 2.136

2./37

Heal and Mass Transf_er.

Nusselt Number,

Nu

D)O.O~

== 0.036 (Re )0.11 (Pr)O 33 (

L

'.

[From HMT data hook. Page No. 125 (S'IXl. h Edir

~

0.036 (7914.76)0.1( (4.340)0.33

Nu

~

=1

x(

o.~~)

lonll

rties of water at 40°C: prope

(From HMT data book. Page No. 21 (Sixth Edilion)1

O.O~5

v

N=u~===5'=- .4=4=J

We know that, Nusselt Number,

Nu 55.44

Heat transfer coefficient,

0.008 628 x 10-3

Cp

Result: Heat transfer coefficient,

I Example 5 I Wattr

rst determine Let uS fi

4352.3 W/m K

20 m/s flows

throug" a

ac

transferred and Ihe tube length.

.

of water,

T"" U

20 m/s

Diameter,

D

60 mm = 0.060 m 700C t:

of water,

Tit,

T",o

2. .Heat transferred, 3.

Tube length, (L).

Bulk mean temperature

Scanned by CamScanner

T III

(Q).

v

\.8

\O~

x

· Re > 2300 flow is turbulent. S tllce' \ uation is (Re > \0 000) . For turbulent flow, genera eq as (P )" Nu == 0.023 (Re) . r

...

Pa e No. 125{Sixth Edl~n)1 (From HMT data boO", g L.

. So n::: 0.4· 4 This is heatUlg process., 8 x \06)0.8 (4.340)0 Nu == 0.023 (\..

~

50°C

I. Heat transfer coefficient, (h).

Solution:

=

eRe

30°C

\ Velocity,

Tube surface temperature,

Tofind:

UD Re

20 x O.Q60 0.657 x \Q-6

straight tube of 60 mm diameter. TIre IIIbe surface is mailllained a1 70 and outlet temperatllre of water is 50°C. Find the "eat traIISfe.r cfHfficient from the tube surface to the water, "eat

Outlet temperature

the type of flow.

Jr = 4352.3 W/m2K

at 30°C,

Inlet temperature

0.628 W/mK 4178 j/kg K

k

2

h ==

4.340

Pr

"x

=

0.657 x I~ m2/s

=

hD k

Reyno\ds Number,

Giv6r:

995 kg/m3

p

We know that,

hD

Nu

k ~

4\77.7

0.628

4\77.7)(~ ~60

J

ConveClive Heal Transfer

2 J 36 I

:

2./37

Heal and Mass Transfor

Nussclt Number, Nu

0.036 (Re)O.R ~(pr)OJ3 (Q,L)0.055 [From HMT datil hook ..Page No. 125 (Si>;th ' '.

. s of water at 40°C:

propertle

EdlltOl\l1

=>

0.036 (79l4.76)0.t( (4.340)0.33 x (~)

Nu

=>

[From HMT data book. Page No. 21 (Sixth Edition)l

OOS~

= 995 kglm3

p

~I N-u--S-S .-44-:-11

We know that, hD k

Nusselt Number, Nu

h

=

4352.3

0.657 x lQ-6 m2/s

Pr

4.340 0.628 W/mK 4l781/kgK

k

Cp

h x 0.008 55.44 = 628 x lO-3

I Heat transfer coefficient,

v

f

Let us ir st

1

W/m2K

determine the type of flow.

Reynolds Number,

Result:

UO Re

v

20 x O.~60 0.657 x \0-0

Heat transfer coefficient, h = 4352.3 W/m2K

I Example

5

I Water

at

se-c.

20 nrls flows

throug"

II

straight tube of 60 mill diameter. The tube surface is nUlintained at 700 and outlet temperature of water is 50°C. Find the "elll transfer coefficient from the: tube surface to the water, heo: transferred and the tube length.

e

Given : Inlet temperature of water, T nil

20 m/s

Diameter, D Tube surface temperature, Til'

60 mm 700C

To find :

. R > 2300 flow is turbulent. Smce e, . . R > \0000) for turbulent flow, general equation is ( e. . Nu = 0.023 (Re)0.8 {PrY'

30°C

V~locity, U

Outlet temperature of water, T IIIU

\.8 x 106 \

{ Re

.

lFrom HMf data

= 0.060 m J--,

[Bu We know that,

4\771] hO

Bulk mean temperature , T

Scanned by CamScanner

",

T +T -l!!!__.2!!!! 2

0.060 ~62S O. 4\77.7x~

11)(

4\77:7

Solution :

.

T

Nu

2. .Heat transferred, (Q). 3. Tube length, (L).

..

. So n = OA. This is heatlng process. , x \06)0.8 (4.340) Nu 0.023 (\.~

50°C

I. Heat transfer coefficient, (11).

book. Page No. \25 (Six.thEd

=

'I :::: ~60

3

Convective Heat Transfer

d' Hea

2.138 Heal and Mass Transfer ~~~~~~~~=~4:37:2~6.:59~W:=/m~2:K-------Heat tranSl1r"ercoefficient , II

,i,

Mass flow rate,

=

1m

1t

Mean

'4

. 5

1

propertle

m Cp (1"'0 - T",I)

Q

56.2 x 4,178 (50 - 30)

43726.59 x

4.69 x 106

1t x

18.96 m

7t

of air at 30°C:

D x L x'(70 - 40) = 7t

.=

2.

Heat transfer, Q

3.

Length, L = 1,8.96 m.

. E uivalent diameter Hydrauhc or q

DL)

I ,h

= 43726.5

Velocity, U Imler diameter, DI

6 em 450C

'Tube wall temperature,

Scanned by CamScanner

Til'

=

(Do + OJ) (Do -1j2 (Do + OJ>

o

600C

=

'

-

U De v

35)( 0.02

35 m/s

Do

[Do + Od

o~

:::~

4 ern = 0.04 m

E~'it temperature of air, T mo

1t

0.06 m

~ .s turbulent. Since

se > 2300, now

1

j

==

Reynolds Number, Re

15°C

02]

[Do -

0o-0· ' ::: 0.06 - 0.04

at J 5 CC, 35 m/s, flows tilroul;II a 1r~lIow cylinder of 4 em inner diameter and 6 em outer diameter and leaves at 45 CC. Tube wall is maintained lit 60 cC Calculate the heat transfer coefficient between the air and tile inner tube. Inlet temperature of air, T mi'

2

x:1

[02 o _02]' --0 + O·

W/m2K.

4.69 x 106 W.

Out~r diameter,

1t

4

x 0.060 x Lx (70 - 40)

I Example 6 I Air

Given:

0.701 0.02675 W/mK

=

k

Result : 1. Heat transfer coefficient,

..

1.165 kglm3 16 x 10-6 m2/s

p v

[.,' Surface area, A 43726.59 x

30°C j

Pr

4.69 x 106 W I. II A (Til'':'' Till) .

Q

=.

2

[From HMT data book, Page No. 33 (Sixth EdItion)]

x (0.060)2 x 20

56.2 kg/s

IQ

IL

temperature, T m

LTm =

Q

4.69 x 106

T mi + T mo

5011l1iO" ,

xD2xU

995 x

We know that,

.

'

px A x U

px%

Heat transfer,

t transfer coefficient, (h).

fOP" . ,

43726.59 W Im2j(-] -

2. J 39

1 2 /40

Heal and Mass Transfer

____

[ De

0.023 (Re)0.8 (Pr)"

[From HMT data book. Page No. 125 (Sixth Ed' .

IIlon)1

This is heating process. So, 11 == 0.4. => Nu 0.023 x (43750)08

I Nu

we know

::;::J

0.436 m

that,

Reynolds

Re

Number,

(0.701)04

x

6 x 0.436 16 x JO-6

Wi9]

16.3

h De We know,

=> Result:

Nu

k

102.9

h x 0.02 26.75 x 10-3

Ih

137.7 W/m2K

Heat transfer coefficient,

I Example 7 I Air

h

=

Velocity,

Till

30°C

U

6 m/s

Area, A

ill a rectangular

A

Nusselt

length

per

Pr k

Number,

Nu

16x 10-6r02/s

h - 1809 W/m2K . . , 't temperature dIfference. Heat leakage per unit length per unl. . Heat transfer

Q

0.701 0.02675 W/mK

Equivalent diameter for 300 x 800 mm? cross sec tiIon IS . given . by D = 4 A = 4 x (OJ x 0.8) e P 2 (0.3 + 0.8)

==

294.96

unit

I.165 kg/m! =

294.96 ]

0.24 m2

Solution : Properties of air at 30°C: p

==

We know,

300 x 800 mm?

I. Heat leakage per metre temperature difference.

v

. g the pipe wall temperature to be higher than air Assumtn temperature. So, heating process => n = 0.4. 04 Nu 0.023 (16.3 x 104)0.8 (0.701) . [Nu

OJ x 0.8 m2 Tofind:

wi

[From HMT data book, Page No. 125 (Sixth Edition))

137.7 W/m2K

at 30°C, 6 m/s flows

Air temperature,

x

e > 2300 flow is turbulent. Since R ' nt flow general equation is (Re > 10000), le Fortur b u Nu == 0.023 (Re)08 (Pr)"

section of size 300 x 800 mm. Calculate tile heat leakage per metre length per unit temperature difference. Given:

2.141

P Perimeter = 2 (L + W) --------.1 .

where

is (Re > 10000).

For turbulent flow, general equation Nu =

~

Convective Heal Transfer

lQ

.

. coefficIent,

hP 18.09

x [

39.79

WJ

Result : Heat leakage,

2

x

(OJ + 0.8) ]

Q == 39.79 W.

~.~ ....". ""7 =Z;~"'\

Scanned by CamScanner

c;

2.142

Heal and Mass Transfer

Convective Heal""Iransjer .r.

I

Example i1ln condenser, water flows ~ hundred thin walled circular lubes having inner dia", 11110 / eter 20 and lengtlt 6 m. The mass flow rate of water is 160 k trr", water enters at 30°C and leaves at 50°C. Calculale Iii g/s. rhe Ie aVer heat transfer coefficient. Rge Inner diameter, 0 Given: 20 mm = 0.020 m

It"

Length, L Inlet water temperature,

T mi

Outlet water temperature,

Tmo

To find:

=

995 x 1txl)2 4

[u

160 kg/s 30°C

Heat transfer coefficient,

r-I

x

2.55 mls

I

Bulk mean temperature,

Tm

(0.020)2

U 0 = 2.55 x 0.020 v 0.657 x I~ R-e--7-7-62-5.-57--.1

For turbulent flow, general equation is (Re > 10000). Nu = 0.023 x (Re)0.8 (PrY'

TIII;+Tmo

2 30 + 50 2

{From HMT data book, Page No. 125 (Sixth Edition)1

This is heating process. So, n = 0.4 =>

Properties of water at 40°C:

Nu

0.023

1 Nu

v

= 0.657

Pr

4.340

k

0.628 W/mK

Cp

4178 J/kg K UD v

Reynolds Number, Re

m

Velocity, U

x 10-6 m2/s

=>

pAU m pA

Scanned by CamScanner

... (1)

(77625.57)0.&x (4.340)0.4

hD Ie

Nu

We know that,

995 kglm3

p

x

[.,' T mO > T."I]

337.8 I

[From HMT data book, Page No. 21 (Sixth Edition))

~

x

Since Re > 2300, flow is turbulent.

Solution:

We know that,

No. of tubes = 200]

Re _

(1) ::::)

(h).

1t

4

995

= 50°C

[ '.

160 200

6m

m

Mass flow rate,

160 200

337.8

=

h x 0.020 0.628

Heat transfer coefficient, h := 10606.9 W/m2K Result: Heat transfer coefficient, n= 10606.9 W/m2K b r ressure,flowthrough 12 Example 9 Air at 333K, 1.5 a P if the tube is ," e temperature 0 em diameter tube. The surJac te is 75 kg/hr.Calculalethe maintained at 400K and mass flow ra th 0/ the tuucheat transfer rate for 1.5 m I eng 600C ::: 333 K ::: Given: Air temperature, Tnr

I

I

&.~

Surfa

C

( !!!!..v('('/;Vt! Ilc~.

IJ

Dramcrcr. tcmpcrnurre.

I:!

T"

nil

_

.1001\ 7-J..g.

.

- '"'7 C rr

_

__

____ Tnfind:

. c;

11115 I.

Nil'. ~~

75b

I Nil

=

Nil

WC~O".

1k11 Iransfcr r.uc (0).

J.

0.021 '/ (Re)o.• x (PrY' . .

3(,00 ~

J . .) III

-

rom J J 1 J ,filla Oo.ll Pa., • . ~c N(l, J J

.

\I

11I.97xJ()-Ilm2Is

Pr

v

1.060 J

(1)

1I1",ugll 3(1 em dianln" IlIb~al

;.5 mainlu;n~tIal80 'r. If

increases from JOOC 10 JIJ(Cp",J ]0 em

"'

0:'0

rn

bO

1f

4 ' W.I-f

60 kg/min - 6U k ,I'

I)

I kg!

.MS Ill/s ] l'ip« xur la

I
(Jill let

Me:



l:

temperature.

LIe water.

Ill.

f]

(Si.\lh

tvmpvrauu

Til'

80"(,

'1 ".,

10"

c vI' water. Tm"

1'0 Jill":

I. Lt:II.!!lh oftlu: lube. L.

SOlllliolt:

W\.·

1..1I0\\'

that.

T ~

10000)

Scanned by CamScanner

301).82 W

lube.

IlIlel kill perature

SillLl'

==

Tile' tub« surfuc«

(~rwater

1.060 -

III

~_1(~·X2 ~

I ,,'tller flow»

mil' of MJ"l:llIIi".

It'll!:'"ofthe

(I

0.0 0

J I)

,h,. tempertuurc

'"

0.0

-1')III

II'

7~?~~!1l x 0.12>- l.5)y(127-(,oJ

I leal Iran fer rare. ()

[ EmiliI'll'

'" (I "If

r;llc.

hAn

[__!l_ Rr.m/I:

!.!_Q

I
liD k

h'

We lno\\' Ihal, M:I"'~ 11 \\

0

___

().O:!896 W/rnK

J{e~'lIoJds Nllllllwr.

Bulk mean Ecillinnil

I

II /. (11 ~ D x L) / (T - T

0.696

/(

(O.()%)()

7.94 W!m~K-

Heal Iran. fer rate.

.U60 kglmJ

J

).

(J0551.3\()~

J(

0.o1R9()

SII/lllion:

p

--

002 3_2.1}

~~

32.9

Since lit,· prc.,slIrc i~ 1101 Illllch I . h '. a )()ve aim p y~1 111pr pcrncs ( fair 111;1\ he taken ill atmo 'J .' OSPheric. ). ." . plenec IIdi,' t mpcJ1tCs (If air al (,(1' r ' . II IOn.

_

heilll np proce. s. S(I, n= 04

n.ozn _J..W.:.J

I

J.clI;!lh.

.

~

h:lOperalUrc.

T",

T 2

,,"

II~

_--------~~C=o=n~v~ec~t;~ve~H~e~a~tT~~.(.~r Iran.',er 2.147

I

2.146

~

Heat and Mass Transfer

~

r,

------

2

20°C

r Nu -\ Nu =

'I

we knoW that, .

Nu

~

39.50

Pr

h x 0.30 0.597

=

78.60 W/m2K

\h Heat transfer,

1.006 x 10-6 m2/s

hD k

1

[From HMT data book, Page No . 21 (Sixth . E .. p = 1000 kg/m! dillon)! =

0.597 W/mK 4178 J/kgK

Cp

1 x 4178 (30 - 10)

\Q

UD

Reynolds number, Re

... (1)

v

83.56 x

h x 1[ DL (T w - T m)

Mass flow rate,

=>

83.56 x 1O~

m

pAU

m

pX'4D2xU

~ IL

1[

Result:

1[

=> 1 kg/s

1000 x '4 (OJO}2 x U

ju

0.014 m/s UD

(1) => Re

I

v

0.014 x OJO 1.006 x.] 0-6. . j Re 4174 Since Re > 2 , 300 , fl ow IS . turbulent.

(lnternaljlow)

Nusselt number, Nu

=

I

> 2300

=>

Nu = 0.023 (4174)°·8 (7.020)" ng process. So, n = 0.4

Scanned by CamScanner

=

18.79

1t

x 0.30 x L x (80 - 20)

m \ =

18.79 m

I Example

11 \ Air at 2 bar pressure and 60'(' is heatedas it flows through a tube of diameter 25 mm at a velocityof 15mls.lf the wall temperature is maintained at 100'(', find tl,e heat transfer per unit length of tl,e tube. How much wouldbe the bulk temperature increase over one metre length of the tube. Given: Pressure, p = 2 bar 2 x lOs N/m2 0

Inlet temperature Diameter

of air, T m; of tube, D Velocity,

: 0.023 (Re)0.8 (Pr)"

78.60 x

Length of the tube required, L

Tube wall temperature,

60 e ;: 25 mm

U T". ;:

Length, L ;:

[From HMT d at a b ook, Page No. 125 (Sixth Editionll

This is heati

w\

)03

Q

We know that,

We know that,

For turbulentjlow

I

m Cp~T m Cp (Tmo - Tm;)

Q

7.020

k

39.50J

I

Propert;e.~of water at 20'(' :

v

002 . 3(4174)0.8(7.020),1,4

To find:

;:

0.025 m

15 m/s 1000e

1m . I th of the tube, Q. 1. Heat transfer per unit eng . T - T ). 2. Rise in bulk temperature of air, (,.0 1ft'

I

;

\

Convective /I al Transfer

2.148

Nu

Heat and Ma'IS Transfer

SollltilJII:

(From IIMT data book, Page No 33 (Sixth . Ed' . P == 1.060 kglmj Itlon)1 ¥

V

Note:

Given

pressure

....

IIlCI1HIIIC VISCOSity,

v an

ensuy.

. . lleatinc process. So, n = 0.4, IS Nu ~ == 0.023 (39.53 x I03)OM

,hiS

W/IIlK

atmospheric il

pre'

.

C are same for all pressures.

. 94.70

.

viscosity.

v

V,111I

x--

Ma - now

P!_:i\'Cll

I09.70=~i~2K]

Q!

/1[11111

Killcmalic

, (0.696)04

" x 0,025 0,02896

.SlIrc. So

p

,!

0, 125 (Sixth EdilionH

"0k

Nil

1 vary with pres ure I' ' . r, I.

WI

PJgc !

~

0.02896

p

bUllk.

S

0.696

is above

d densi



18.97 x '0-6 m2/

_;

Pr k ki

0.023 (Re)08(Pr)"

=

IFrom IIMT data

Properties of air at 60°C:

2./49

rate,

pAU

III

\

\

18.97

l','

Atmuspheric 18.97'

Density,

p

. 10-(, x 1 bar

2ba~

pressure

z-

I bart

1 10· 10-6 x --. _ x 10 We kllnW that.

u.

Ileat iran fer. Q

RT

I;'

o

r

r)

C" ("")

,,11

, (T - 60) 0' 5 '/. 10)0 1".1 , .' . C :; 1005 J/kgKJ [,.' ~or all fI ." (I)

Q We know that,

We k.now that. Heat transfer,

UD Reynolds number, Rc

Q

v

hA (Til' - T,,') . T) " ;
8.615{IOO-

:! Re > 2300,

For turbulent

now is turbulent.

internal

now, general equation

Scanned by CamScanner

i~ Rc

,.' (2

,~

T.,)

00 .,quatill!? I andt2),

Since

(100 - T",)

10.000).

15.075 (T".o -

6U) "" 8.615(IOO_T

.. )

~

1.749 (T mo - 60)

100

Tm

T 1.749 (T mo - 60) = 100 - (

~ ~

1. 749 T mo - 104.94 = 100- (

~

1.749 Tmo - 104.94 = 100-301.749Tmo

=>

Tmo

+2

~

2.249 Tmo

~

Tmo

I Outlet temperature

Tmo

2

Mean

77. 78°C

-

I

ity , v

=

Kinematic

:::

p

268.03 W

[v

I

1t

100'('

0.0298 W/mK;

p = 0.003 kg/hr-m

0.7;

P

=

(0035)2 x U

4

to

~ (1) ~

Re:::

UD

v 557 x 0.035

~

1.044 kg/m!

to« 97, Madras University/

Scanned by CamScanner

:::

3600 1.044 kglm3 7.98 x 10-7 m2/~

044x-x.

in to a helix of 0.6 m diameter. Calculate the value of air side heat transfer coefficient if the properties of air at 65°C are

= =

l! P

0.056 ::: 1.

30't' byflowing through a 3.5 em inner diameter pipe coil bent

k

... (I)

v

::: pAU Mass flow rate, m 1t {)2 x U 0.056 ::: 1.044 x 4 x

268.03 W

kg/hr of air are cooled from

UD

Q.:QQl kgls - m

2.11.3. Solved University Problems - Internal Flow

Pr

.

VISCOSI

I ~ T = 17.78°C I m C (Tmo - Tm;)

!

I Example I I 205

2

=

Ii .

I

T m; + T rno = 650C

Tm =

Solution: Reynolds Number, Re

0.015 x 1005 (I7.78°C)

Q

temperature,

Tmo ~ Tm i 77.78 - 60

Result : , 1.

0.056 kgls

t nsfer coefficient, (h). roJind: Heat ra

77.78°C

IQ =

= =

100°C erature of air, T mi let telllP . T - 30°C 10 ature of air, matelllper Outlet Diameter, D = 3.5 em = 0.035 m

2

174.94

=

205 kglhr 205 3600 k~s

=

\m

60 + Tmo)

Rise in bulk temperature of air, ~ T

Heat transfer, Q

m =

MaS;)

n., +T 2 mo )

= 100 - 30 + 104.94

of air, Tm0

floW rate,

~e" :

~2.IJ5~O~~R~ea~/~an~d~M~~~s~~~a~m~~:r~~~~~ ~

~

Com ective Heal Tran.ifer

~~~~~~~~----------2.152

2./5J

Heal and Mass Transfer

Since Re

>

2300. tlow is turbulent.

For turbulent now. general equation is (Re > 10000). Nu = 0.023 x (Re)08 x (Pr)« (From HMT data book. Page No. 125 (Sixth Edltlon)1

This is cooling process. So n = 0.3.

[.: T,I/(J<: T

.

[Nli We know that.

=

transfer coctlicient,

Result:

0.02634 W/mK

k

hO k

Nu

0.702

Pr

:!661.71

2661.7

I Heat

~

0.023 x (2.44 x 106)0.8 x (0.7)0.3

Nli

15.53 x 10-6 m2/s

v

1

I,

OW

that.

We"n . Equivalent HydrallhC or .

0.035 0.0298

diiameter

" x

h

= 2266.2 W/m2K

Heat transfer coefficient,

4A P

D"

(3.125 em ID and S em OD)

the air is healed by maintaining the tempera/lire of the outer surface 0/ inner til he at 5f) 'C. The air enters (II 16 'C utul leaves at 32 'C. Ill' flow rate is 30 III/so Estimate the heat transfer coefficient between air and the inner tube. Give" :

Inner diameter,

D;

[Apr. 20(J0, Madras University/ 3.125 em = 0.03125 m

Outer diameter,

Do

5 cm

Tube wall temperature,

T",

50

=

Outer temperature of air, T rna

sz-c

Flow rate, U

30 rn/s Toflnd : Heat transfer coefficient. (lJ). Solution : Tm;+ T",o

Scanned by CamScanner

Do-D, 0.05 - 0.03125 0.01875 m Reynold

Number,

Re

1

v 30 x 0.01875 15.53 x 10-6

rn

e

IGoe

~~..•• !.. "L__

D,I

0

Inner temperature of air, T mi

Mean temperature, TII/

0.05

rOo +

[Do + 0,1 (Do - 0,1 [Do + OJ

h = 2266.2 W/m2K

I Example 2 I III a long annulus

1t

..,

36.2)( 10D

[ Re

...00 fl ',s turbulent. Re : 2.> , ow . . e > 10000). Iequation IS {R For turbulent flow, g,t:nera Re)os (PrY' Nu == 0.023 { ') I til

. Since

p-.rOJH Thi

he.uinu

IIM['dJlabll~'"

PI' cess. S0

.

Nu

:::0

/I

0 4. .

. T l': "'"

.., 1

_ 0 0'23 {6.-

.

.·,bll,'

l'u~C: . u. 1- (

loJ)08 {.

c1"

r

Ill.

,q

--.

I

2.154

Heat and Mass Transfer

I Nu We know that,

Convective Heal Ttan.t[er

-

~300

88.591

~tlce

hDh Ie

Nu -

Ih

124.4 W/m2K 1 R~sul': Heat transfer coefficient, h = 124.4 W/m2K \ §Xamp/~ 3 , Engln~ oil flows 'hrough a SO mm ttl

=

O.SOm/s

[From HMT data book, Page No. 24 (Sixth Edition)1

v

=

Pr k

816 kg/m3 8 x 10-6 m2/s ...... 116 Q.133SW/mK

We know that,

Reynolds Number, Re

=

I Re

Scanned by CamScanner

UD

v 0.8 x 0.05 8 x 10-6 5000

I

<

400

(D)0.055 -

L

IFrom HMT datil book, Page No. 12S(Sixth F.ditionll

Glnele,

Length, L 2m Tofind: Average heat transfer coefficient, (h). Solution: Properties of engine oil at 147°C. p

0L

b lent flow, (Re < 10000) for tur u Nu == 0.036 (Re)O.8 (Pr)OJ3 Nusselt Num b er,

'ube at an av~rag~ 'emp~ra'ur~ of U7°C. The flow velocityb 80 cm/s. Calcula'~ the average heat transfer coefficient If Iht 'ube wall Is maintained at a temperature of 200°C and it Is 2 1ft Ion,. IOct. 2002,MU/ Given: Diameter. D SOmm = 0.050 m Average temperature. T m 147°C SOcmls 200°C

o

\0 <

=

Velocity, U Tube wall temperature, Til'

flow is turbulent. L 2 = 0.050 = 40

Re:>. •

88.59 ... h x 0.01875 26.34 x 10-3

2. J 5.5

.

(0.050)0.055

'Nu :::: 0.036 (5000)08 x (116)0.33 x -2-

Gu ::: 128.42J We knoW that,

Nu

=

hD k h x 0.050

~

\28.42

=

QJ

==

-o.m'8

343.65 W/m2g fti' t h == 34365 W/m2K coe tcten Heat tran fifom alf 1"let heati", waler fi or lure 0/ 40 I(' I""ol",s [Example 4] A0C system to all outlel tempera I , Thepip' lemperature of 20 5 ", diamelersteelp P . m passing tl.e waler '1"~U!:i:,!'i";d al 110°C by co"d:;:~"~~~~h' surface temperature IS floW ral' 0/0.5 kl ' F waltf ",ass on its surface. or a Oct 2002} lenolh ot tl.e tube desired. N " 97 MadrasU"I"., . 'J U I" 0. IBlwratllitlasall n ., T :; 200e erature. "" Given: inlet tem P :; 400e Outlet temperature. T "'~ :; 2.5 em := 0.025 m Diameter, :; IIOoe erature, Til' . Piper surface temP m :; 0.5 kv)l1l1n3 ~/S oW rate, :; 8 .33 )( 10- klY M ass fl ~ Result:

. sfer

I



L..;_~__''__-

&

I

2.156

Heal and Mass Transfer

Tofind:

~-We knOW

Length of the tube (L).

Convective Heal T.ransfer . hD .

Nu

that,

k

Solution : Bulk mean temperature,

TI/1

~tr~l1sfer

20+40

~

p

:

nlC(T·-T) p mo 8.33 x Heat transfer,

k

0.610 W/mK

Cp

4178 J/kg K

Reynolds Number,

Re

6%'r-0_5__

IL

::.:: U D ... (I)

We know that , pAU

10-3

x

P

8.33 x 10-3

Re

For laminar flow,

Nusseh Number

4"

02 1t.

4"

y

U

x (0.025)2 x U

·(foI7 m/s I

=

UD v 0.017 x 0.025 0.857 x J 0-(,

__

~Re 1

1t

x

997 x

[U ~ (1) ~

==

_i2?]

. . amllJar.

IS

Nu

== 3.66 (From HMT I ( ala hook. Pane N.). t: ,I ~3 (Sixlh Edilion)1

Scanned by CamScanner

Re.HIII:

I EXlImple

III

696.05 W h A (T_,- Tm)

hx

v

Mass flow rate,

Q

1111

1(,.3

IQ

5.5

, flow

m Cp' AT

Q

-._

0.857 x 10-6 m2/s

Pr

Since Re < 2300

89.3 W/m2K]

997 kg/m!

v

8.33

0.610

coefficient, h Heat transfer,

[L, ::-~ooe] Properties of water at 300e

h x 0.025

3.66

==

x 4178 (40 - 20)

I

D x L (T - Tm )

1t X

IV

8_9._3_x~J( x 0.025 x Lx (110-30) .t.24

I

III

Length of the tube, L == 1.24 m

5

I Lubricating

oil (II

(I

temperetsre

0/

60 l('

enters / em diameter tube wit" a velocity (1/ 3 m/s. The tube sur/ace is maintained at 40 (C Assuming that the oil has the following average properties, ealcil/llte tile tube length required to cool tile coil to 45 'C. p= 8M kglllr3; k = 0.140 WlmK;

<: 1.78kJIk:'t'

Assume laminar allll/IIII;V developedjlow. IBlllIratllitinsan V,,;versity, 97/ Given : Inlet temperature of} T lubricating oil ml Diameter, D Velocity, Tube surface temperature,

6GoC I em

U 3 m/s I, ·lI':= 40°C

Out let temperature of} T lubricating oil ",0

==

45°(

=:

0.01

III

1

_-----------------c~o='~I\~Je~ct~;v~e~/~le~>a~t~T.~/u~ru~ifI~e~r2.158

Heat and

Mass

p

865 kg/m3

k

0.140 W/mK 1.78 kJ/kgOC = 1.78

Cp

----

Transfer

~

I

1t

pX4"D2xU

tl,e wall

1t

0.204 kg/s

m Cp (Tmo m Cp (Tm;

For cooling process,

Q

5446.8 W

3.66

the

wall temperalllre illcrc!ll.5cover

In

i.., 10't'

above the

'Y'

J m lengtl! of the tube. IMtIIlrllJ Unb'ers;ty, 96/

2 bar'

2

x

105 Nlrn1

200°C

25.4 11\111 =- 0.025 m Diameter of tube. D 10 m/s Velocity, U 0 Wall temperature is 20 e above the air It:nJp~rature.

I

.



T

L~,

[ ': Nu

= h~ ]

Case (ii) :

h = 51.24 W/m2K I Average heat transfer coefficient, h 51.24 W/m2KJ We know that, Heat transfer, Q hA (T",- Tm)

==

200

==

I

2U:=

nODe

w

Length, L

To find :

III

Length. L :::: 3 m 1. Heat transfer per unit length of the lube. 2. Increase ill bull-. ternperalufC over a 3 01 length of the tube. C

=::)

hA (Tm- T",)

II

Case (i) : Pressure. p Air bulk temperature, 'I'm

3.66

Scanned by CamScanner

] ....

1111along tile tength of tire tube. flow much would

[From HMT data book, Page No. 123 (Sixth Edition)1

h x 0.01

270.69

=

Given : - Tmo)

= 3.66

--o.i4O =

T

- T mJ

For laminar, internal flow

h~

-

cOIutmrt/retll 1111x condition is maintained at

el

the bllik temperature

I

We know that, Nu

+T 2 1110

"'I

L

of 10 m/s. Calculate th« heut transfer per unit

if

and

temperllture

0.204 x 1.78 x 103 x (60 -:-45)

IQ

",m at a velocity letlgth of IIIbe

865 x 4" (0.0 1)2 x 3

Heat transfer, Q

iT I

J

pAU

1m

Lx

x

[}xtlmple 6 Air (It :! bar pressure and bulk temperature of ZOO'(";.'1 heated (IS it flows through a tube wit/r (I dil,meter of 25.4

Solution: We know that,

m

Length of the tube, L

Result:

1. Length of the tube, L.

Mass flow rate,

D

x

T -40 ]

Flow is laminar and fully developed. Tofind:

1t

60 + 4 51.24 x It x 0.0 I x L x [ 5446.8 '-L------:-.-l ? ~_. __ --2-70-.-69--m~ I

103 J/kgoC

x

h x

Solution:

. (i)· Properties {Ue

of air at _UOO( :



.

.

l[-ronl'

P v ==

11\11

hta

bOIl".

' 0.746 kglll1

6 . )/

34.85)(

I(}

N· J \ ( 'l\th Fdilillnll

P.lgc .

In-"

O.

.

'om' clive Heal Iran ifer 2.160

----

Heal and Mass Transfer 25.99 x 10"-6 Ns/rn?

1.1

Pr

0.680 0.03931

~I

Given

pressure

is above

kinematic viscosity, v and density, C are same for all pressures.

atm

p will

pheric

pres ure

ary \\ ith pre

p

Density,

p =

:=

k

h 0.Q25 0.03931.

41 ....8:=

1026 J/kgK Note:

170

Nu

W/mK

216/

"

64.90 W/m~K

:=

S

ure 'Pr . .k

hA (T .. - T III)

f.r

h

It

('1',., - T III)

DL

(220 - 200)

Ip Case

We know that, Reynolds number.

(ii) :

o

Re

lie.

I

iran fer

rh

I,

v

o

We kn

v,

-----~

!!_

Heal tr ncr,

p

[... m =pA

~ J..l

1.473 10

I Re Since Re> 2300, flow is turbulent.

T", _ 'I

For turbulent internal flow, general equari n is (Re Nu

=

0.023(Re)

~

Nu

[Nu

So,

11

I

Scanned by CamScanner

10,000).

I:

o. 12 - ( ixth EdIlIOn)]

= 0.4.

0.023 ( 14.17 41.28

41.20

I

(Pr)n

I From HMT data bo k. Pa

This is heating process.

~ (O.025i

2300

10')0

(0.680)04

Result __ I.

Q ;;;: T

1026

[T",I)-T""I

1./61

HIt(/1

----

"lid Mass Transfer

2.12. FREE CONVECTION If the fluid motion . .

is produced

due

.

resulting trom ICIIlJJCmlure gradients,

, said

10

the

. be free or natural convection,

'1 his 1110 Ic of hcilt transfer ivcn be Iow. exnmp Ics arc urvcn

in d

to change

1II0dl:

. cns""

Convective He(J1Transfer

and

Ine

4.

Thl', ~o ling of transmission

lines, electric

transforllls

of heat transfer is calculated convection equation given below. II A

Q where

-

Heat transfer in W,

A

-

Area in 1112,

T",

-

Pipe surface temperature

Thermal conductivity, G r ::;;

L Sf

t Ire general

5.

er", .- T co

Q

rex:> -

. using

k -

g x Px

W/m2K

W/mK.

J) x .1T

v2

(From HMT data hook, Page No. 134 (~'Ixlh f:.dilum)J

where,

rate

Length, m,

GrashofNumber} for vertical plate

The hca~ tran fer from the pipe carrying steam from the wall of turnaces, from the wall of air conditioninu e IIUuse [rom the condenser of some refrigeration units. '

The

L -

and

rcct If icrs.

3,

K

Heallransfer coefficient;

So

I. The hearing of rooms by use of radiators.

hI.

h -

where,

of heat tr'l I' I • n~ er i

very cummonly

=

J.

S

occurs

Nu

Number,

~c;e'1

-

Length of the plate, TII'- T"", m2/s.

v -

Kinematic viscosity,

p -

Coefficient of thermal expansion.

If Grl'r value is less than 109, now is laminar. If (JrPr value is greater than 109, now is turbulent. . i.e.,

Gr Pr < 109, -+ Laminar flow Gr Pr > f09, -+ Turbulent flow.

Fluid temperature

in DC,

6.

in "C.

For laminar Nusselt

now (Vcr1ical plate) :

Number,

This expression

2.12.1. Formulae Used for Free Convection

Nu :: 0.59 (Gr Pr)1)25 is valid for. 104 < GrPr
I.

Film temperature. where

2,

T

. b k 1':lI!f No. 135 (SI~11! [dilion)j [From JIM r data 00. ~

f

Til' -

Surface temperature

T
p =

in DC,

7.

in "C.

For turbulent Nussclt

flow (Vertical plate):

Number,

- 010 IGr Prj(.lm

Nu -

.

S' 'II! EdilionlJ k I' gc No 11.5(. IX

[From HMT tlala boll .. a

R.

Heat transfer (Vertical plate) : Q

Scanned by CamScanner

2.J6J

::

,.

T

'ddT" - "')

1

Heal and Mass' Transfer

liM

9.

l I

~sPhere, 15.

GrashofNumber for Horizontal Plate: gx

p x L~

Gr where

x .1T

v2

Lc -

Characteristic length

W -

Width of the plate.

:::-

W

2 ' 10.

Convective Heal

Nusselt Number,

\I'

Boundary layer thickness Ox

=

[3.93 x (Pr): 0.5(0.952 + Pr)025 x (Gr)-02S]

[From HMT data book, Page No. 134 (Sixth E

Nusselt

Maximum velocity,

17. Gr Pr < 8

x

106

(From HMT data book, Page No. 135 (Sixlh E .. dillon)] Number, Nu = O. 15 [Gr Pr]OJ3J

Umax

= 0.766 x v x

(O.952+Pr)-'12 x

[g p (:;

- Ta»]

112

Mass flow rate,

18.

This expression is valid for. 8 x 106 < Gr Pr < 10' I II.

(I)

A ::: 4 n ,2

where 16.

This expression is valid for 104 <

Nu ::: 2 + 0 .43 [G r Pr]025

[From HMT data book P , age No. 137 (Sixth E

Nusselt Number, Nu ::: 0.54 [Gr Pr]0.2S

x

Iransfer

Heat transfer, Q ::: h x A x (T - T

For horizontal plate, upper surface heated,

2

T"

"1

For horizontal plate, lower surface heated.

=

G ] 0.25 [ I.7 x P x v (Pr}2 (pr : 0.952)

Nusselt Number, Nu::: 0.27 [Gr Pr]02S 2.12.2. Solved Problems Convection

T~is expression is valid for 105 < Gr Pr < 10' I. 12.

Heat transfer (Horizontal plate)

Q where

·13.

(hu + hI) x A x

I Example J I A

vertical plate 01 O.75 m heigl" is at J and is exposed to air at a temperature 01 105'(' alld atmosphere. Calculate:

rr, - Tco)

-

Upper surface heated, heat transfer coefficient W/m2K,

hI -

Lower surface heated, heat transfer

hll

1. Mean heat transfer coefficient, 2.

coefficient, W/m2K. For horizontal cylinder,

Rate of heal transfer per unil widthollile plale.

Given:

Nusselt Number, Nu ::: C [Gr PrJ'" 14.

[From HMT data book, Page No. 137 (Sixth Edition))

T",

Fluid temperature, T

Tofind:

Heat transfer, Q

IX>

0.75 m 170 e 0

105°e

I. Heat transfer coefficient, (h).' 2. Heat transfer (Q) per unit width.

nOL

./

..

Scanned by CamScanner

Length, L Wall temperature,

For horizontal cylinder,

where, A

on Free Convection (or) N

2.166

l

Heal and Muss Transfer

Solution: Velocity convection type problem.

(U) is not given.

_-===:-::-:~====:::::~C::...:().:::"::Ve~Clive Heat T, ~ .: 8.35 x lOK] ran_ifi_e_,_

So this-:-:;-Utal

T".+ T'l. 2

Tj

Film temperature, I

,-I

Properties of air at

= 8.35 x 108 x 0.684

Gr Pr ~.~~

5.71

Since Gr Pr

<.

GrPrvalue

is in between IO",md 109 i.e., 1000
T-L.j__

137.5~;~

So. Nussel,

Number

Tj

137.5°C ~ 1400C

Nil I~

Density,

p

0.854 kg/m!

K incmatic viscosity,

V

27 .80

Prandil Number, Pr

1()9. flov is laminar.

-

[From IIMT datu book. Page No. 135 (Sixth Edilionll

0.59 (5.7 I

CHiC =

I ()-6 m2/s

x

91.2 I]

Ie

We know thai.

0.03489 W/mK

I) J.2

137.5 + 273

r-- -

2.4

x

-

----

------

=

10-3

II

JI Ira us fer,

()

~

'C

1).81:<2.4:.:103 (0.75) (n.RO 10

4.24 W/m2K

II

4.24 W/m2gj

"A

(1'., - Tel)

4.24 x 1 x 0.75 x (170- 105) [.,' W= J m]

o. 134 (Srxrh Erlilion)/

/(170 6)2

105)

Re.\ult : I.

I le
co ffiril'nl.

h

Heat transfer. Q

Scanned by CamScanner

Ii

hxWxLx(T.,-T'I))

g x {3 x LJ x ~T v2

,FrOIllIlMT dal;} hool;. I'a

ItxO.75 0.03489

We kn "

We know Ihal, Gr

hI. ~

I

.-

He at rail fer coefficient,

1 410.5

(if

Nil

f3

expansron

Grashof Number,

1011)0.25

x

0.684

N us: ell Number,

()fthefJ~lal}

109

0.59 (Gr Pr)02:;

'lIon)1

We know that, Coefficienl

J

IOS

170 + 105 2

[From 11"11' data book. Page No. 33 fSixlh Edi .

Thermal conductivity,

x

4.2.' Wlm K 206.H \\.

2.J 68

Heal and Mass Transfer

I Example

2

~

I A vertical plate

of 0.7 m wide (lml ~

. m he;

maintained at a temperature of 90't' ill a room. Calculate the convective hem Ion.

Height (or) Length,

If

l

__ ----------~~~C:nn~v~eC:'I~·v~e~H~eq~I~U~a~ns~~~r~3 b g x P x L3 x ~ T

GrashofNum

er, Gr

L

\...

[From HMT data book, ~age No. 134 (Sixth Edition»

1.2 m

Wall temperature,

T\II

90°C

Room temperature,

Too

30°C

v2

It

3() Qr,

0.7 m

Wide, W

Given:

(If

~

Ir'-1

9.81 x 3 x 10-3 x (1.2)3 x (90 30) (IS.97 x 1~)2 -r--S-.4-x-,-09-'1 G

Gr Pr S.4 x 109 x 0.696 G-r-P-r--5.9-X)Q9J

To fillll: Convective heat loss (Q). Solution: Velocity convection type problem.

(U) is not given.

So, this

IS

Since Gr Pr > 109, flow is turbulent. natural For turbulent flow, Nusselt Number,

We know that, Film temperature,

Nu

Tw + Too

Tj

=

0.10 (Or Pr)0.333

{From HMT data book, Page No. 135 (Sixth Edition)]

2 90 + 30 2

1

Nu

0.10 [5.9 x 109]0.333

Nu

179.3

Nu

hL k

I

We know that, Nusselt Number,

Properties of air at 60°C :

h x 1.2

[From HMT data book, Page No. 33 (Sixth Edition))

p

1.060 kg/m-

v =

18.97 x 10-6 m2/s

Pr k

0.696

179.3 Convective heat transfer coefficient

h

= 'Q.02896 =

Heat loss, Q

0.02896 W/mK

We know,

~

[p l

, .

60 + 273 3x

[Q =

= 3 x 10-3 K-I

'0-3 K-I

/

Scanned by CamScanner

h A (AT) h x W x Lx (T1I'- T.o) 4.32 x 0.7 x 1.2 x (90 - 30)

Coefficient of } 1 thermal expansion ~ = T inK j 1

4.32 W/m2K

Result:

218.16 ~ Q == 218.16 W Convective heat loss,

2./70

1

Heat and Mass Transfer

I £wllnple

____

----

I

.--------~C~Omnveclive 9 81 x

.

3 A vertical pipe of 12 em oute» diameler '''',g, at a surface temperamre (If 120't' is iN a room I h' 2.5 IJI I' ere ~ nil' is at 20't'. Calculate lite hem loss per melre leltC/110 lle

pipe.

If

Given :

Diameter,

D

12 em

Length,

L

2.5

Ihe

Ten

7.72 x 1010J

For turbulent

20°C

flow,

=

Nu

0.10 (Gr Pr)OJ33

Solutio« "

[From HMT data book, Page No. 135]

Film temperature,

TI

TII'+TIYj

Nu

2

I Nil

120 + 20 2

0.10 [7.72 x 10 °]0333 ' 422.3

I

We know that,

700C]

Nusselt

Number,

hL k

Nu

Properties of air at 70°C:

p

1.029 kg/lllJ

v

= 20.02 ;"

Pr

0.694

Ie ==

O.021)(j() W/ml<

[~Jleat

10-6 11J2/s

transfer

Heal loss per} metre length

Q

5.01 x1txO.12x

IQ

[f3 ==

== 2.9J

== ~2.c)1 x 10-.1

x JO-.1 K'

J

K·-t]

gxOxl)x.1T

r daril

Scanned by CamScanner

(Til' - T .,,) I x(120-20)

I

[ EX(lmple.J _.

if

800 /11/11 Ion". 70 111m ". I.• r 140 'C ill (I Itlrgr I{/II" OJ (It {/ temperatl I . firo/lllhr plate. . the 101(11 he(ll 015

!A

hortzouto! plate

(I

ITeof

"'/(Ie is maintained , iltll oJ water at 6(} 't'. Determ",e

v2 IFmmllM

Result: . -

X

188.8 Wlm -' Q= 1888 WIlli Heat loss per metre length ot pipe. .

J

+ 273

I

h A!!.T h x 1t X D x L

f3 = T inK J 70

5.01 Wlm2K

II

coefficient,

I

We know that,

h x 2.5 0.02966

422.3

[From '-IMJ data hook. 1';J~e No, .1] (Sixlh Etlilinn)1

Number, Gr

- 2Q1

Since Gr PI' > 109, flow is turbulent.

Toflnd : Heat loss (Q) per metre length of the pipe.

Grashof

x ( 120

1.11 x 10" x 0.694

[GrPr

III

2.91 x 1Q-3X(25)3 . (20 .0 2 x 1~)2

1.11 x 10"]

Gr Pr

0.12m

120°C

Surface temperature, Til'

Room temperature,

--____ [Gr

Heal t- ,/: ansJer 2.17/

honk. Page Nn. I.H (Sixlh EdilillU)f

L Gil'e",'

Horizontal

plate length,

800111111= O.S III

2. J 72

Heal and Mass Transfer Wide,

Tofind:

C onveclive Heal Transfer

____

W

70 rnm

Plate temperature,

Til'

140°C

Fluid temperature,

T

60°C


-- 0::----0 . 70 rn

(I):::>

Gr:=

= 0.297 x

Gr Pr

= 0.297

~-~

Solution: Film temperature,

Tw+T~ 2

Tj

IO-3X(0.035)3x(140 (0.293 >< I~)2

_.

I Gr

Total heat loss from the plate.

9.81 xO.76x

2./7

60

1

I09_]

x 109 x 1.740

0.518x 109J

Gr Pr value is in between 8 x 106 and lOll,

i.e., 8x J06
140 + 60 2

So, for horizontal Nusselt

plate, upper surface heated , Number, Nu = 0.15 (Gr Pr)0.333

[From HMT data book, Page No. 135 (Sixth Editionj]

Properties

of water at 100°C :

Nu

I Nu

[From HMT data book, Page No. 21 (Sixth Edition)1

p v

961 kg/rn-'

=

Nusselt

I

Nu

0.6804 W/mK

gx/3xL~ Gr

Number,

119.66 =

0.76 x 1O-3K-1

[From HMT data book, Page No. 29 (Sixth Editionj]

GrashofNumber,

109j0.333

We know that

1.740

/3 (water)

119.66

x

0.293 x 10-6 m2/s

Pr k

0.15 [0.5 I 8

=

hu x 0.Q35 0.6804

Heat transfer coefficient for} = 2326.19W/m2K upper surface heated, hu

xl\T v

... (I)

2

For horizontal

plate,

Lower surface heated, [From HMT data book, Page No. 134 (Sixth Editiom]

For horizontal

plate, Lc Lc

I Lc

[From HMT data book, Page No. 136(Sixth Edition))

Nusselt Number, Characteristic

length

W

2 [Nu

0.070

2

We know that,

O.oJ5 m O.oJ5 m

Scanned by CamScanner

Nu = 0.27 [Gr PrjU25 Nu = 0.27 [0.518 x 109j025

I

Nusselt Number,

Nu

40.73 ]

Convective Heal Transfer 1. / 74

Heal and Mass Transfer h,

40.73

0.035

0.6804

Heat transfer coefficient for} lower surface heated, h, "---

Total heat transfer,

J(

~ 791.79 W/m'K

I

----

(hll + hi) A ~T

Q

(hll + h,) x W x L x (T +T u-

Q

[2326.19 + 791.79] x [0.070 x 0.8] x [140-60

IQ

13,968.55

I Example 5 I Air

flow

I

= 13,968.55 W.

through

long

(I

30 recltlllgular

0

300 mm heigh: x 800 111mwidth air-conditioning duct mainla;!s the. outer duct sur/ace temperature at 20°C. If the duel ;1' un~nsulated anti exposed to air tit 4(J0C. Calculate the heal gamed by the duct. Assuming duct to he horizontal. Given:

L

Length (or) Height,

30e mm OJ

Width,

I Tf in K

We know

wi)

Total heat loss, Q

Result:

0.02675 W/mK

k "')

W

3J x 10-3 K-l

[ 13 Since the duct convection

from

+ 273 - 303

is laid horizontally,

the vertical

I

the heat gain is by free

and the horizontal top and bottom

sides. Free convection from the vertical sides:

111

gx!3xL3x~T Gr

800 mm

==

v2 [From HMT data book, Page No. 134 (Sixth Editionll

0.8

111

Surface temperature,

T",

20°C

Fluid temperature,

T ""

40°C

9.81 x3.3 x 10-3 x (OJ)3 x (40-2,Ql (16 x 10-6)2

[0 ==

To flnd : Heat gained per metre length (Q/L).

6.8 x 10~ 6.8 X 107 x 0.701 :: 4.7

7 X

10

Gr Pr Solutio" :

4.7 x

[Gr Pr Film temperature,

Tf

TII'+T""

Since

Gr Pr < 109 ,

is laminar. . 104 <: Gr Pr IQ4 and 109 i.e., Gr Pr values is in between 025 :: 0.59 (Gr Pr) . . So, Nusselt Number, Nu No 135 (Sixth

2

20 + 40 2

floW

..

[From

37

(",

Scanned by CamScanner

IQD

t.1MT data ~ok, Page r

.

<:

109. .

Edlllon)1

2.1 6

HCQt

and Mass Transfer Nu

=

Nu

,:I

48.85

:;;

11{,~"ttrans lcr from verticul side

I'

,I ;

'Nusselt Number,

I

I

:\

I

2

X

W

II

-

\:

l(),

-

Ileal transferfrom

Fur horizontal

20)

Upper

hll = 4.82 W/m2K surface heated: Nusselt Number,

41.76 W

I

41.76W

surface heated, heat transfer coefficient

1

Nu

0.27 [Gr PrJO.25 = 0.27 [1.13 x 108]0.25

I"-N-u-ill]

'" (I)

\i,

I

hu x 0.4 = 0.02675

h" = 4.82 W/m2K

lower

f -

k

II'

l

l lcat transfer from both side of vertical sides

h" Lc

72.17

4. 5 x 0.8 x 0') )' (40

J

72.17J

Nu

II x W x I. ('I' 00 - T w )

I~~- -20.88 I

0.15 (1.13 x 108]0331

We knoW that,

,,,

I

=

\ Nu

k

It t\ (T - T )

<

.

' x 0 < Gr Pr < Ie 0.15lGr Pr)OJ33

Nu

::?

4.35 W/1ll2K

-

!'

)

'Nussel' Number, Nu

lU)2675

I,

II' I',

-izontal plate, upper surface heated 8 1 6

1

" x OJ

"I: j .

7' I

for hor

hL

48.85

.I

/'

0.59 [4.7 x 107JO!;------'_

~u

We know that.

_------...::C:.:::'o~nVvteClive Heal ransfer 2

..------

We know that,

IlOrlzollllll.\·itlt!!I·"

Nusselt Number, Nu

plate.

hi x 0.4

Characteristic

length

I"c

,

W

0.8

2" = T =

0.4

5

,r-I,-c --0.4-1 Gr

9.81 x 3.3 x 10-3 x (OA}l x (40 -- 20) (16 x 10-6)2

I'- G.::...:r_

_.:...:1.:::._6..:.:_x iQ!]

Gr Pr

x 108 x

I Gr

Pr

1.6

1.13 x IOQ£]

L

Scanned by CamScanner

0.701

= Q.0267s

27.8

= \.85 W/m2K ]

Lower surface heated, heat transfer coefficient hi Heat transfer from I horizontal pate

\.85 W/m2K

f

QH =

(h II + hi)

A sr

= (hll + 11() x

W

L t,T x

x

_ 1 I 8

----------~--~(~·o~nv~e~c~/iI~,e~H~e~a~/~Tr~an~s2if1~er~~2 k - 0.02675 W/mK

Ilealalld Mass Transfer

[QH

(4.82 J2.~

:=

-'20) ". (2)

J Heat tran~fer 1 + f

from vertical sides

l

1 otal heat transfer

~

1.85) x 0.8 x O~

Heat {

transfer from hori.zontal side,

I l

We knoW that, coefficient of} thermal expansion

~ T, in K

f

Re!-;u/t: Heat transfer,

I E:mlllp/e tuined

tIl

(I

I

73.8 W

Q

:=

gx~xL3 Grashof

73.8 W

Number,

dimension

is

14

Determine

CIII,

heat

... ( 1')

where

LII

Irlllr,~fer

x

length

Lv

LH + Lv 6 em x 8 cm x 14 em

Plate size

0.06 rn x 0.08 m x 0.14

r,

Plate temperature, _Fluid temperature,

To"

0.0509 m

I

O°C

9.81

x

(h).

Tf

T,,,+T'.L)

2

=

60 + 0 2

I

Tf

3.3

Gr

(I) =>

10-3 y (0.0509)3 (16 x 10-6)2

Gr 1 x 106 1 Gr Pr I x 106 x 0.701 [ G-r-P-r --7-.0-1-x-1-'05:11

x

(60 - 0)

30°C

5

7.01 x 10

Since Gr Pr < 109, flow is laminar. 9

I

For laminar flow, 104 < Gr Pr < 10 , Nusselt Number Nu := 0.59 (Gr Pr)025 (From HMT data book. Page No. 135 (Sixth Edition)]

of air at JO°C :

0.59 x [7.01 x 105]025

[From HMT data book, Page No 33 (Sixth EditionJl p

1.165 kg/m!

v

16

Pr

x

I

Sotution : We know that, Film temperature,

0.08 x 0.14 0.08 + 0.14

111

60°C

1'0find : Heat transfer coefticient,

Properties

A~T

[From HMT data book, Page No. 1341

Characteristic

coefficient. Given :

c

Gr

I

6 A plate of 6 CIII X 8 em x 14 em site '''lIill_ temperature of 60'(' (Inti heat lost to lite air is at (J't.

Tire vertical

1 303

3.3 x 10-3 K-Ij

41.76 + 32.05

IQ

1 30 + 273

x

10-6 1112/s

~[N-t-I-=-1--7-::-:.07:1J We know that,

0.701 Nusselt

Scanned by CamScanner

Number,

Nu

2.180

Heal and Mass Transfer h x 0.0509 26.75)( 10-3

17.07

.---_--_.

Ih Result:

8.97 Wlrn2K

Heat transfer coefficient,

I Example 7 I A

horizontal

h

pipe

I

----

.~~~~~::C~on~v~e~C/~iV~e~lf,~ea~/~'l~ra~Il~'(,0:r~_2 (l ~ .~ 2.55 x 10-3 K-T] Grashof

37°C. Calculate the heat loss per metre length pipe is 0.92.

Ambient air temperature,

r,

200°C

Ton

37°C

E

0.92

Emissivity, Tofind:

(25.45 x 1()-{>)2

1/

2.12 x J01 x 0.686

Gr Pr

Nusselt

I

1 .45 x 107

[ Gr Pr For horizontal

cylinder,

Number,

Nu

=

C [Gr Pr]"

[From HMT data book, Page No. 137 (Sixth Editionj]

Gr Pr == 1.45 x 107, corresponding

Solution:

~ Tf

x ~T

0

I.Heat loss per metre length.

Film temperature,

p x D3

·-2-.1-2-x-lO-7-'1

~

Qt

15 em == 0.15 m

Diameter of pipe, D Wall temperature,

if emissivity

gx

=

[From HMT data book. Pace No . 134 IS' . h Edi . 1I \ ixt .d I!IOn 3 9.81 x 2.55 x 10- x (0.15)3 x (200 - 37)

of

o air

Gr

2 I, I

,,2

15 em dian 'eter '. maintained at wall temperature of 200°C and is exposed t . lJ

Given:

number.

8.97 W Im2K

=

').

II

200 + 37 __ -

In ==

0.333.

0.125(1.45xI07)OJJ3

Nu

Til' + Ton 2

C = 0.125, and

I Nli

30.31

We know that, hD

2

Nusselt

Number,

Nu

k

h x 0.15 30.31

Properties of air at 118.5°C ~ 120°C, [From HMT data book, Page No. 33 (Sixth Editionl]

p v Pr k We know,

25.45 x 10-6

m2/s

0.03338 W/mK

hA

sr

hx

1t

x Dx L

517.7 W/~

1 TJ in K

Scanned by CamScanner

W/m2KJ

X

(Til' - T"')

6.74xnxO.1Sx 1x(200-37) :l (I) ["L=lm]

0.686

1 118.5+273

o.oms

lIi].74

~

Heat tran. fer .by } Q convectiOn

0.898 kg/Ill]

=

Heat tn~ll'i.fcr } by radtaUOll 391.5

o.

E

x A x

.. '

4

<1

[T .. -

.

T4]

~~~~~~~~~--------2. J 82

tion thickness Insu \ a 1 diameter of) Actua . the p'pe, D

Heal and Mass Transfer

where

Emissivity A - Area, m2 E

-

o

temperature, surface be 111 Air temperature,

Fluid temperature, K Too

Til'

473 K

Qr

E

x

I 1t

0.92 x

1t

r

11'

T rL

CSJ

x 0.15 x 1 x 5.67 x 10-8 [(473)4-(310)4]

I

1003.4118 W 1m

'" (2)

Heat trans~er } + { Heat tr~n~fer } { by convection by radiation 517.7 + 1003.41

IQ

Til

KJ

1. Heat loss from 5 m length of the pipe,Q. 2. Overa\\ heat transfer coefficient, hI'

Tofind:

Total heat transfer per metre length Q

0.94

E

T4 - T4 ]

x

IQ

+ 2 x 0.030

37+273

I,---T_oo _310 x 0 x Lx o x [

1521.12 W/m

I

3. Heat transfer coefficient due to radiation,hr' Solution:

We know that.

Film temperature,

TJ

-

85 + \5 2

Result: Total heat transfer per metre length == 1521.12 W/m

I Example 8 I A

steam pipe 80 mm in diameter is covered with 30 mm thick layer of insulation which has a surface emissivity of 0.94. The insulation surface temperature is 850C and the pipe is placed ill atmospheric air lit 15 'C If the heat is lost both by radiation and free convection, find tile following: 1. The "eat lossfrom 5 m length of tirepipe. 2.

rClI1.~fer

mm ::: 0.Q30 rn

= 0.080

Emissivity,

TIl" - Surface temperature, K

200 + 273

30

0.\4 m

Stefen Boltzmann constant 5.67 x 10-8 W/m2K4

Too

Convective Heal T

The overall "eat transfer coefficient.

3. Heat transfer coefficient due to radiation. Given: Diameter of pipe 80 mm ==

(

Scanned by CamScanner

0.080 m

Propertiesof air

tit

s 'm Edition)\

50"C :

p No 33 ~ {From HMT data book, age .

p ==

.093 kg!m'

\

2/s 7 .95 )( \ 0-6 m

v ==

\

Pr

==

0.698

k

==

0.02826 W/mK

IX

__ 2. J 84

-----C-o...:.n:...::_vective

Heal and Mass Transfer

h x

Tf in K

[L-Q_c:..;:_on_v__

I 50 + 273 3.095 x

K-I]

fleat loS

E

Emissivity

gxf3xD3x.1T v2

A

Area- m2

(J

Stefen Boltzmann constant

[From HMT data book, Page No. 134 (Sixth Edition))

5.67

9.81 x 3.095 x 10-3 x (0.14)3 x (85 - 15) (17.95 x 10-{j)2 Ir-G-r--18-.1-0-x-,-06-', 18.10x'06xO.698

T II'

G

1.263 x 1071

[ Gr Pr

L!I_'~I'_----'_

For horizontal cylinder, Nusselt number, Nu = C [ Gr Pr

Jill

::>

Q rad == :=:

[From HMT data book. Page No. 137 (Sixth Edition))

o- ':,

[ Qrad

1.263 x 107, corresponding

C

= 0.125, and m = 0.333

E

x

We know that,

Nu

~

28.952

~

h

~ective

28.952

h x 0.14

0.02826 5.84 W/m2K

heat transfer coefficient, he == 5.84 W/n~

Heat lost by convection, Qconv ::: h A (.1 T)

10-8 W/m2K4

Surface temperature, K.

Too

Fluid temperature, K.

85+273

Tet):::

358 K ]

I T et) :::

x

-'J!]

(J

7t

DL x [T~

0.94 x 5.67 x 10-8 x

7t

15+273 288 K

I 4

x 0.14 x 5 x [3584_288]

1118.90 W ] Qconv

Total heat loss, Qt

+ Qrad

898.99+ 1118.90 ::=

1

hD k

Scanned by CamScanner

x

Tw

Nu = 0.125 [ 1.263 x 107 JO 333

l:HiC:::

(85 -15)

E(JA[~v-~]

Qrad

where, =

TaJ

5.84x1t xO.14x5x 8_9_8._99_W]

t by radiation,

10-3

We know that,

GrPr

eat Transfer

D x Lx (T

7t

w-

Coefficient of thermal } expansion, p

Grashof number, Gr

If,

Total heat transfer,

Qt

::= ::=

2017.89

2017.89 ~

Convective Heal Transfer

2. J 86

Heat and Mass Transfer 13.108 - 5.84

=

W/m7K]

e&_-;;':-_7.268

----

Result:

(ii)

By radiation,

2. Overall heat transfer 3.

Ol" Or

:=0

,.=

h,

coefficient,

:::

=

3 x 10~J0l g x p x 03 x IlT

W/m2K

I.

Heat transfer coefficient,

2.

Maximum current. Take resistance of wire is Zohm/m. Horizontal wire diameter, 0

3 mrn 3 x 10-3 m

Surface temperature,

Til'

Air temperature,

T'"

Resistance of the wire, R I.

Heat transfer coefficient,

2.

Maximum current, (I).

Gras 11

v2

Gr

9 81 x 3

Or =>

><

10-3

176.64

~==

Gr Pr ==

Cili_1!_ ==

><

JtiiJ

Nusselt Number, 7 ohm/Ill (h),

Nu = C [Gr Pr]"

(From HMT data book, Page

Gr Pr = 122.9, correspondins

d ..

N

o.

137 (Sixth E inon

.

C - 0 85 and m == 0.188.

Nu

0.85 [122.9]°·188

.-

I Nu

.

2.IJ

We know that, Nusselt Number,

Nu

[From HMT data book, Page No. 33 (Sixth Edition)]

~lsfer

coefficient,

Heat transfer,

Scanned by CamScanner

10-3)3 x (100 - 20)

176.64 x 0.696

2.1

~.

><

J

Properties of air at 60°C:

J

(3

(18.97 x 10--6)2

=='

Tf

1.060 kg/m!

..

ook Page No. 134 (Sixth Editiorn] [From 1-1 MT d a ta b ,

For horizontal cylinder,

100 + 20 2

p =

333

3 x 10-3 K-l

13.108 W /m2K

h , = 7.268

I

1 60 + 273

ofNumber,

Film temperature,

0.02896 W/mK 1 T in K f

:::

:::

horizontal wire of 3 mm diameter is maintained at J 00'(' and is exposed to air at 20 '('. Calcillate the following:

Solution :

~

1118.90 W

I Example 9 I A

Tofind:

0.696

898.99 W

Radiative heat transfer coefficient,

Given:

k

,

18.97 x 10--6m2/s

:::

Pr

we knoW,

1. Heat loss from 5111length of pipe (i) By convection,

v

I

2.187

h

Q = h A ~T

hO k h x 3 x 10-3 0.02896 20.27 W/t;:KJ

)]

_------C.:..o::n:..:v~ec~tl;ve HearT, 2,188

Heat and Mass Transfer h x 1t x 0 x L x (T - T rn )_______ II

IQ

20.27x1tx3 15.2 W/m

I

ransfer

of air at I 62.5°C ~ 160°C·

. 5

ertle

proP

x 10-3x I x(IOO -20)

=

0.815 kg/m3

v

=

30.09 x 10-6 m2/s 0.682

Pr We know that, Heat transfer,

k

Q

.

p

0.03640 W/mK

1 Tf in K

We knoW,

I '-1

OrashofNumber,

1.47 Amps] Heat transfer coefficient,

2.

Maximum current,

I EXtlmple

10

IA

h

=

I =

20.27 W/m2K ::::>

1.47 Amps

sphere of diameter 20 mm is at 300°C is

1

immersed in air at 25 't:'. Calculate tile convective heat loss. Given:

Diameter of sphere, 0 Surface temperature, Fluid temperature,

Gr

20 mm

TlI'

300°C

T

25°C

a)

0.020 m

=

1

Gr

9.81 x 2.29 x 10-3 x (0.020)3 x (300- 25) (30.09 x I~Y

Gr

54734.2

54734.2 x 0.682

Gr Pr

37328.7

[1 < Gr Pr < lOS] Nusselt Number, Nu = 2 + 0.43 [Or Pr]025 N

{From HMT data book, Page o.

Nu Tf

I Nu

Tw + Too 2

Nusselt Number, Nu

162.5°C 162.5°C

I

137 (Sixth Edition)]

2 + 0.43 [37328.7]025 7.97]

We know that,

300 + 25 2

Scanned by CamScanner

I

For sphere,

We know that, Film temperature,

I

Gr Pr

Tofind : Convective heat loss, (Q). Solution:

I

{From HMT data book, Page No. 134(Si>.1hEdition)!

Result: I.

I

162.5 + 273 435.5 f3---2.-29-x-I-0--3 -K-~I

ill ==

k

,,-----

_ --------------~(~·~o'~'v~e:c/~{V~c:H.~e~a/~~~r~an~~~e:r~l~. 80 + 22

""~

4",.1,

h

14: I ,4

( r..

T, ) O.~~O )

n

( 00 - 2 )

pro/",,.",;e~· . (II {Ii, lit J / cr' III JO '(' :

[ Q -~~_.01 W nveciivc

I £.m"'r/~

If' 60 ~

II

he3t I,)

I .-4 vertica!

(Ind if c..\:ptl.fNIIII IIi,

I.

Bound",)'

s,

[From HMT data book. Page No.3) (Sixth Edition)!

0

(I'

11°C. Calculate

1I~)'t" thickness tI"IIe

tailing tI

the fol/owing

wind tunnel

1111(1

:

G;'~" ..

Length,

L

40 em = 0.40

Plate temperature,

r,

80°

Fluid temperature,

T

22°C

air is

I 51 + 273

Ip Case

g Gr

at velocity

U

=

5 m/s (Forced

convection).

Gr Pr

I Gr

Cast' (iii) :

erage heat transfer coefficient tor natural convection,

: We know that,

10-3 x (0.4)3 x (80-22} (17.95 x 1~)2 x

for forced convection,

h.

h.

Pr

]

3.48 x 108 x 0.698 2.43 x

IOU

9

< 10

S·mce G r P r < 109• flow is laminar. . I mino' flow: For free convectIOn, 0 Boundary layer thickness,

b.T _ 05

025

'"'

x (0.952 + Pr)'

[3.93 x (Pr) 1.

Film temperature,

T..,+T 1, = 2

Scanned by CamScanner

I

[From HMT data book. Page:No. 134 (Sixth Edition)j

layer thickness (Natural convection).

(ii) Average heat transfer coefficient

10-3 K-I

v2

9.81 x3.086

layer thickness

x

p x L3 x L\T

3.48 x 108

(i) Boundary

Solutio"

x

=

.. Cast' (i) ..

i) Boundary

3.086

(i) : For free convection,

III

Case (ii):

(i) A

0.02826 W/mK I Tf in K

k

boundary

,-4 vemge ''''(1' transfer coefficient for natural (Inti forctd convection for th« above mentioned data.

m2/s

0.698

II,icb,~n·.

In),t"

Ttl find

17.95 x I~

Pr

edge of the pl(lle.

blo"'n over ;1 al a velocity of 5 m/s. Cnlclilme

J.

1.093 kg/m!

v =

plate of 40 em 1,,111: is mainlailltd

TI,t' sa",t' plait' is placed ill

2.

p

5.01 W

[From'

LIMT data boO...

Page No.

(Grt

0.25]

xX

x 134 (Si.xthEdilion»

Ox ==

=>

_ ----------------~~C~o~n~ve=c~fi~ve~H~ea~f~T~r~~m~s(l~e ~ hL . We knoW that. Nu k

Heal and Mass Transfer

2.192

lox

==

[3.93 x (0.698'-

0 5

x (0.952 + 0.698)0.25 x

(3048 x I 08)- 0.2~J . )( 0-4 l. x == L c- 040 . In)

m

0.0156

----

Reynolds number,

UL

x

I. I I

==

x

Nux

I O~

I Nux

'" (I )

0.332 ( 1.11 x JOS)05x (0.698)0333 ==

98.13

We know that,

105, flow is laminar.

layer thickness [From

or

<5 x

h, L k

°

IIx

x x ( Re )"

== 5 x

From thickness

98.13 Local heat tran~fer} h coeffiCient x

5 x 0.40 x (1.11 x 10)-05 [.:

I <5x

05

IIMT data book. Page No. 112 (Sixth Fditionj]

Ox

==

6.003

x

10-3

x

=

L = 0.40 m]

mi···

Case (iii): A verage heat transfer convection, I, :

coefficient

for

nat"ral

Nusselt number.

Nu

data book. Page No. 135 ( ixth Edilion))

0.59 (Gr Pr)O 2: 0.5'-) (2.43

I

~23.~

Scanned by CamScanner

106)<W

heat tran~fer} h coeffic lent II [II

II x x 0.4 0.02826 6.932 W/m2K

2 x 6.932 13.86 W/m2KJ

.. , (4)

. C) and (4) we know that heat transfer From equation) . "s much larger than that in free coefficient in forced convection I con ecti

For free convection, laminar flow, vertical plate : Hr"n

A veraae

(2)

equation (I) and (2), we know that, boundary layer in forced convection is less than that in free convection.

[From

... (3)

[From HMT data book. Page No. 112 (Sixth Editionj]

For forced convection, laminar flow: Boundary

I

for forced convection, laminar flow.fla: plate : Local Nusselt number, Nux = 0.332 (Re)05 (Pr)OJ33

v

5 x 0040 17.95xI0-6

Since Re < 5

1.645 W/m2K

A lIerage heat transfer coefficient for forced convection,h :

Re =

Re

0.02826

Ih



Case (ii) : For forced convection.

~

23.29

n,

Result: Case (i) :

I.

bs (

Case (ii):

I.

Ox

Case (iii):

1.

h (

2.

h

0.0156 m alu/lIl cOll~ec(loo)

(FOIc.ed c.()n~ewoo)

'&Iura!

(FOIU'd

OOIlVt\.··UOIl)

conveCtloo)

6.003 ).645

X

10-3 In

W/m2K

13.86 W/m2K

I I

]./94

Heal and Mass Transfer

-----------------~~~~~

11

Convective Heat Transfer

2.12.3.SolvedUniversity Problems - Free ConVectio;--GErample I ] A large vertical plate 5 In height is

f

I

I

",

. t 100'('

.

Given:

_

Height or length, L -

5

ersltyJ

m

SOIUlif1n:

6.68 x 1011 x 0.695 4.64 x 1011

[Gr Pr

for turbulent flow,

Teo

Nusselt number, h. ~ T,. + T", 2 100 + 30 2

T,

Nu = 0.10 [Gr PrJ0333 (From HMT data book, Page No. 135 (Sixth Edition))

We know that, Film temperature,

Nu

I Nu

-,'M

k,

p

=

1.~5

"

=

19A95

Pr

=

0.695

J.:

=

0.0_931 W/mK

Page No. 33 (Sixth Edition)!

kg m3 1 Q-6 m-/s

f3

=

I ~ K

I Heat Result:

=

hx5 0.02931

~

h = 4.49 W/m2K

transfer coefficient,

h = 4.49 W/m2K

I

= 4.49 W/m1K

I

2 A steam pipe 10 em olltSiIk diamdeT TUIIS horizontally in a room at 23 DC Tale the olllSiIk surface temperature of pipe as 165't: DettTmW the Ileal loss per metre Itngth of the pipe. {D«. 2004, Anna UnMniIy/ Diameter of the pipe D = 10 cm = O.J 0 m

Ambient air temperature, Ix

=

23'T

\\ all temperature, T...

=

165°C

f3 . Gr

k

Convective heat transfer coefficient, h

Given :

fa

hL

Nusselt number, Nu

I Emmple

of rhermal expansion,

I

767.27

We know that,

Propenies of air Q/ 65'(' :

Coe

0.10 [4.64 x 101lJ0333

767.77

[From H.\IT dam bo

I

Since Gr Pr > 109, flow is turbulent.

T...

Tofind: Convectiv e heat transfer coefficient,

To find: Solution:

Heat loss per metre length . We know that I ... + Tx

Film temperature, If

I II

Scanned by CamScanner

2.195

6.68 x 1011

Gr Pr

and exposed 10 air at 30ac. Calculate .f a n~~ htattransfer coefficient. {June 2006, Anna Unl» . e

Fluid temperature,

i

.

""lIa", d II'e co

Surface temperature,

I,

Ill'

Gr

2 =

94°C

i65 + 23 =

I

--2-

.

2.196

-----

Heal and Mass Tran:..fer

Properties of air 0194 DC R: 95 DC:

I From HMT data book l'agc No. 33 ( ..

P

__ 0 .959

v ==

Pr

IXth~..... ....llIon)l

22.615 / 10-6

m2/s

0.689

k

0.03169

W/mK

We know that, Coefficient of thermal 1 expansion J J3 ==

94 + 273 2.72

y

2.72 x Grashof number,

Gr

~

10-3

1O-iJ0]

Result:

=>

I Gr

Pr

For horizontal

322.08 W/m

10-3 x (0.10)3 x(165 (22.615 x 10-6)2

Heat loss per metre length, ~

23)

cylinder,

Nusselt number,

322.08 W/m

elise (i) :

Diameter of the pipe, D

I

==

room at 23 CC. Take outside temperature of pipe as J 65 cr'. Determine tile heat loss per unit length of the pipe. If pipe surface temperllture reduces to 80 cr' witlll.5 em insulation, what is tile reduction in heat loss? {Dec.2005, Anna University] Given:

5.09 x 106

I

[ExlImple 3 A steam pipe 10 em OD runs 1I0rizontallyin a

7.40 x 106 x 0.689

Gr Pr

x 0.10 x (165 - 23)

I

gxpxIYxLlT v2

7.40 x 106

Gr

1t

K-I

[From HMT data book. Page No. 134 (Sixth Edition)]

=> Gr == 9.81 x2.72x

7.22x

Ambient air temperature, T so Nu == C [ Gr Pr ]"

Surface temperature of the pipe, Til'

10 cm

==

0.10 m

23°C 165°C

[From HMT data book, Page No. 137 (Sixth Edition))

=>

C

5.09 x 106, corresponding

Gr Pr

r:N__ -:-u 0._48__:l:...,5.09 x 106

I Nu

22.79

]0.25

We know that, Nu

(

Scanned by CamScanner

1/1 ==

0.25

Case (ii) : Surface temperature of the pipe, T". Insulation thickness, t

I

Nusselt number,

== 0.48, and

hD k

BO°C \.Scm

Tojind: 1. Heat loss per unit length of the pipe, Q. 2. % of reduction in heat loss.

==

O.OISm

2.198 Heat and Mass Transfer Solution: Case (i): We know that, Tf

Film temperature,

Tw + Too 2

=

----

2

IT

94°C

f

----

~ r-I

Nu 0.48 [ 5.09 x 106 ]025 N-u--2-2.-79----,'

We know that,

+ 23

165

Convective Heat Transfer

Nusselt

number,

I 22.79

Properties of air at 94'[' 1:195'[' : (From HMT data book, Page No. 33 (Sixth Ed' .

~

Ilion)]

p

== 0.959

v

= 22.615 x 10--6 m2/s

Pr Coefficient ofthennal } expansion

kg/m''

Heat loss per} Q unit length L

x

h x 0.10 0.03169

h A ~T 7t

7.22 x

x 0 x L x (T .. - Tao) 7t x

322.08

0.10 x (165 - 23)

W/m

Case (ii) :

1

New diameter,

- 367

2.72 x 10-3 K-I

k

h~__:_7=.22=---.:.W:....:..:/m=2..::..;K~'

Q

L

W/mK

1 94 + 273

= g

L..'

hD

h x

Tf in K

Ci.:--=

..

Q

0.03169

P

Grashof number, Gr

Heat loss,

0.689

k

Nu

0+2

0,

r

0.10 + 2 (0.015)

1

0.13 m

p x D3 x L\ T v2

(From HMT deta book, Page No. 134 (Sixth Edition»)

Gr

==

9.8Ix2.72x1O-3x(0.10)3x(l65 (22.615 x 10--6)2

Gr

==

7.40 x 106

Gr Pr

==

7.40 x 106 x 0.689

[Gr Pr

==

5.09 x 106]

=>

23)

Surface temperature

For horiZOntal cylinder Nusselt number N ' , u == C [ Gr Pr ]m

G

Tf

=

a

80 C

T .. +Too

r Pr == 5.09 x 106,

Scanned by CamScanner

=

Film temperature,

[From HMT data book, Page No.137 (Sixth Edition»)

corresponding

of the pipe, T..

C = 0.48, and

111 ==

0.25

2

~ 2

I

2.199

----

1_}(){) Heal and Mass Transfer

Proputia of air at 5/.S 't:" .. so t

:

p =

=

y

Pr Coefficient

of the~al}

1.093 kg/m3 17.95 x I~

0.02826

f-l

I T/ in K

II x

~

W/mK

E

gxf-lxrY,

273

3.08 x 10-3

Q

perunit}Q, length L

K-i_]

IGr

1.17xl071

Gr Pr

1.17 x 107

X

[ Gr Pr

8.16 x 106

:I

/. x

(013)2 / (80 _ 2:> IO~)2 ~

=

8.16 x 106 , C = 0.48 and m

=

0.25

IFrom IIMT data book, Page No.1) 7 (Sixth Editionj]

Nu [ Nu

=

0.48[8.16x

Given:

Horizontal

106)0.25

25.65 ]

Nu 25.65

~

[h

=

To find:

h 0,

in heat loss

h x 0.13 0.02826

-

5.57 W/m2K

Scanned by CamScanner

=

80 em /ang and Il em wide horiZ/Jnlal

plate length. L Wide. W

80 em = 0.80 m 8 ern = 0.08 m

e

0

Plate temperature,

T If'

130

Fluid temperature.

T",

7Uoe

Rate of heat input into the plate. Q.

Solutlon :

Film t,!:npcrature,

T/

-2--

.!1_0 + 2

J

322.08 Wlm

59.74%

T .. +T",

Ie

=

=

pkue is maintained at a temperature of /30'(' in large lank full of water {II 70 'e Estimate Ihe rate of heal inpul into Ihe plale necessary 10 maintai« the temperature of lJO '(: IMIIY 2005, A VI

We know that,

Nusselt number,

L

-Q--X 100

Result :

I Exumple 4 I A thin

corresponding

129.66 W/m

59.74%

2. % of reduction

Nu = C [ Gr Pr )m Gr Pr

0.13 x L x (80- 23)

I. Heal loss per unit length of the pipe. ~

0.698

For honzomal cylinder, Nusselt number,

7t x

L 322.08 - 129.66 322.08 x 100

y2

9.81 x 3.08 x 10-3 --.(17.95

0, L x (T .. - T"')

Q

yL\T

r=-

7t

129.66 W/m

L

0.1' reduction} 111 heat 10 s

Percentage

2 2U I

II A L\T

m21s

I

[p -

QI

5.57 x

Ie

51.5

Gr

1(155.

0.698

expansion

Grahof number,

--

( 'onveclive Heal Transfer Ileat

70

2.202

Convective Heat Transfer

Heal and Mass Transfer

-------

Properties of water 01 100 'r' :

[From HMT data book, Page No 2 I (S' . Ixth Ed' . P = 961 kg/m! - IIlon)1

=

Y

Pr k

f3waler

,

::::;>

= 0.6804 W/mK =

0.76

1O-3K-1

x

=

f3 x L

J

g x

y2

x t1 T

Nusselt number, Nu

c

'" (I)

=

Characteristic length

L

=

0.08

Gr

Heat transfer coefficient} for upper surface heated hll

=

2113.49 W/m2K

W 2

=

2

0.04

=

I Nu

hi Lc k x 0.04 0.6804

42.06

x

1~)2

715.44 W/m2K

x 109

nook

(hom II.\1T d;;r.;,

. u

4i061

)09]

hi

Nu = (.15 ) (Gr PrfJ.JJJ .' .

='

m

Gr Pr = 0.333 x I ()9 x l.740 [Gr Pr - 0.580 % IO')] Gr Pr valve is in betw"'hn 8 I"" '. "'" / v-and 10". t.e., 8 / If)') <: Gr Pr <: 10" . face heated, . So, for honzontal plate, upper !J\:

0.27 [0.580 x

Nusselt number, Nu

(0.293

ussclt numL~r,

=

We know that,

= 9.81 >:0.76x 10-3(0.04)3>:(130 .....70~

Gr = 0.333

0.27 [Gr Pr ]0.25

=

[From HMT data book, Page No. 136 (Sixth Edition))

(From HMT data book, Page No. 134 (Sixth E '. plate: dUlon)j

c

(J)

hll X 0.04 0.6804

124.25

1.740

L,

L,

hll Lc k

Nusselt number, Nu

For horizontal plate, Lower surface heated:

Grashof number Gr

For horizontal

I

We know that,

0.293 x 1 ()-6 m2/s

[From HMT data book, Page No. 29 (S' h .. ixt Edlllon)j

We know that,

124.25

2.203

p. ' .g,e

., o. J 35 (S'Y.lh Edition»

= O. J 5 {O.580 / lO'lJO JJ3

Scanned by CamScanner

Heat transfer coefficient for lower surface heated Total heat transfer, Q

hi = 715.44 W/m2K

= (hll + hi) A t1 T

(hll + hi) .;.W

x

Lx (T .. - T,,,,)

(2113.49 + 7 J 5.44) x (0.08 x 0.8) x (130 - 70)

[0

J

0.86 '" 10J W

I

Result: Rate of heat input into the plate,

Q:o

10.86 x 10J W

·lO.J

Heat and Mass Transfer

Convective Heat Trun.ifer

I Example 5 I A hot plate /l5"C is exposed

10 I h e

. following: ,;1 !tftl\';mum velocity

1.2 m wide, (J.35 III I,(.;/:-;;;;--

. am btent

sti

'11'tur

(II

25 't: nile l lid at " ale tI'e

180 mm from lite lellding edo

III

in.

(VI

..) Rise

in temperature

of the air passing

through the

(VII

.1'

fteOJII'e

1'1

---------) Total mass flow through the boundary, (v .) Heat loss from the plate. Q.

2.205

plate.

(ii) The boundary layer thickness at J 80 mm fro", the le d' a edge of the plate.

'"g

boundary,

tl T.

Solution: We know that, T",+T."

TJ

Fluid temperature,

(iii) Local htat transfer coefficient at J 80 mm from lite leadillg edge of the plate.

2 115 + 25 2

(iv) Average heal transfer coefficient over lite surface of the

plate. (v) Total massflow through the boundary.

Properties of air al 70'(' :

(vi) Heat lossfrom the plate. (vii) Rise in temperature of the air passing t"roug" the boundary. Use approximate solution. {May 2004, AIII,a Universityj Given:

Wide,

W

1.2 m

Height or length,

L

0.35 m

T..

115°C

T

25°C

Plate surface temperature, Fluid temperature, Distance,

rf)

x

p

1.029 kg/mJ

v

20.02 x 10-6 m2/s

Pr k We know that, Coefficient ofthen~al} expanSIon

180 mm = 0.180

J3

(/I)

(Ill)

(III)

Maximum the plate,

0.694 0.02966 W/mK I

TJ in K I

In

I

70 + 273 = 343

Tilflnd : (i)

..

(From HMT data book, Page No. 33 (Sixth Edlllon))

velocity

2.91 x

at 180 mrn from the leading edge of

8. x

"",ax'

The boundary layer thickness edge of the plate, 0) ..

at 180 mill from the leading

Local heltt transfer coefficient lending edge of the plate,

at

Average

over the surface

".r'

heat transfer

coefficient

plutc, h.

Scanned by CamScanner

180 mill from

the

of the

Grashof llumber.

Gr

p)(

)O--J

K--I

Xl)( ~

T

2

v .. 4 (Sixlh EdltlOn)1 bo k Page No. 13

[From ','MT "qat ax ~~l x (0.18)3 (115 - 2~ 9 8 x 2. l n.-/,\2 . (20.02 x Iv-r

[9r ..

37.4 x 12£J

2.206

Heal and Mass Transfer

(i) Maximum velocity al180 mm from the leading edge, u

=

u

0.766 x v (0.952 + Prtl/2

[g

x

f3 (Til'

X

J

9.81 x 2.91 x 10-3 (115 - 251 (20.02 x 10-6)2 -_-=-_-0-.4-0-6 -ml-s--',

~I u-

GrL Pr value. is in between 104and 104.

1/2

i.e.,

x (O.18)IQ

(ii) The boundary layer thickness at 180 mm from the

edge of the plate, 0 :

104 < GrL Pr < 109 So, Nusselt number, Nu

t.

.

0.25

[From HMT data book. Page No . 134 (Sixth Ed'itlonll . x

i

I I

x 10-3

2 x 29.66 0.01229

! I

!

4.82 W/m2K (iv) Average heat transfer coefficient plate, I, : _ g

Grashofnumber} (for entire plate)

Gr L

_

p x L3 x ~ T v2

9.81 x 2.91 x JO-3 x (0.35)3 x (115 - 2~ (20.02 x 10-6)2

I Gr

L

Scanned by CamScanner

hL Ie

hL Ie

h x 0.35

().()'2%6

=

5~86 W/m2K

I

We know that,

27.5 x 107

I

m =

I

over the surface of the x

Edition»

(v) Total mass flow through the boundary (,;,):

x

[From HMT data book, Page No. 134 (Sixth Edition)]

I

69.26

Ih

2k

°

Nu

69 .26

:

x

0.59 (1.90 x 108)0.25

69.26

(iii) Local heat transfer coefficient at 180 mm from the leading

h

m (Sixth

Nu

Nusselt number, Nu

(0.952 + 0.694)0.25 x (37.4 x 106)-025 ~"--x -=-0.-0 1-22--'9-m--',

Local heat transfer} . coe ffi cient

0.59 (Gr Pr)025

We know that,

3.93 x 0.180 x (0.694)-0.5

edge of the plate, h x

=

(From HMT data book, Page No.

eadlng

Ox = 3.93 x x x Pr 0.5 (0.952 + Pr)0.25 (Gr):

I

1.90 x 1081

Since GrL Pr < 109, now is laminar.

max

i '

=

[ GrL Pr

)( .\"112

JO-6 [0.952 + 0.694J-112 x

[

~

____------------=~~~~C~on~v~ec~(/~·ve~~~e~a~/~~~a~m~~~ => GrL Pr = 27.5 x 107 x 0.694

1/2"'ox.

- ~]

v2

max

0.766 x 20.02

.

[m

GrL ] 0.25 1.7 x P x v [ (Pr)2 (Pr + 0.952) 27.5 x 107 »25 1.7 x 1.029 x 20.02 x l~x [ (0.694)2 (0.694 + 0.952)J 0.00478

kg/s

I

(vi) Heat loss from the piale, Q: Q h A (T",- T..,) For both sides, Q

2 x h x A (T," - T..,) 2 x 5.86 x (0.35 x 1.2) x (115 - 25)

[Q

443.01

WJ

n "

i~

,

2.208

Convective Heat Transfer

Heat and Mass Transfer

I:

-(viii Rise in temperature of the air passing---;;;;;;--

I

We know that,

II ,

I

g

I

boundary (J T)

[From HMl data hook, Page No. 33 (Sixth Editionl]

0.00478 x lOllS x 1\ T

=> 443.01 Result:

of air at 356°( ~ 350°C:

Iht

92.21 K

GT

I

(ii)

Dx

0.01229

(iii)

hx

4.82 \\ Im·'K

(iv)

h

5.86

(v)

m

0.00478

(VI)

Q

443.01

( vii)

~T

I Example 6 I A large

0.566 kg./mJ

= 55.46 ' 10-6 m2/s

0.04908 W/mK

=

p = _1_

Coefficient of } thermal expansion

III

Tf in K 1

W/Ill 'K

356 + 273 - 629

kg s \V

92.21 K vertical plate 4 m height is maintainel tit J 06

Wall .ernperarure,

Gr

=

9.81

Til'

606°C

T

106°e

W

10m

Heat transfer, t 0).

I Gr

T

f

2

2

x ~T

,,2

1.61 x 1011 x 0.676 I.08xI01i]

Sin c

rPr > 109. flow is turbulent. flow, ==

Nu

eh Number

Nu .

lI'r 606 + 106

g x (~x I)

1.6IxIO"]

I Gr Pr 1- r turbulent

T +T __ _1_"

io?J0J

1.58.

1.58 x 10-3 x (4)3 x (606-I06) (55.46 x 10-6)2

Gr

4m

L

Wide

III

Nu

~

Scanned by CamScanner

=

[From IIMT data book. Page No. 134 (Sixth Edition))

'C Calculate II.t I Oct. 2001, MUI

Gr Pr Air te nperature,

Film temperature,

Ip Grashof Number.

Given: Vertical plate length (or) Height,

Solution ,

v

k

0.406 mi.

umax

at 606'C (II1t1 exposed to atmospheric air heat transfer if the plate is 10 In wide.

• I

=

Pr -= 0.676

(i)

To find:

p

mCp~T

Heat lost, Q

=:>

----;;-erties

2.209

0.10 [Gr PrJO333

IIMT data

boO~,

P ag e

_ 01011.08 .

1(1

.

135 l ixth

10"J·

diti n)]

1

I

2.110

------

Heal and Mass Transfer

We know that, Nusselt Number,

hL

Nu

Ie hx4 0.04908

472.20

I

[ Heat transfer coefficient, Heat transfer,

h

S.78 W/m2K]

Q

hA~T

I!

____-----------~~~::c~o~~~~t'~·ve~H~e~a~t~~r~a~~~~er~22~.2~l v 0.264 x 1~ m2/s Pr 1.55 Ie 0.683 W/mK 0.8225 x 10-3K-I

P(for water)

[From HMT data book, Page No. 29 (Sixth Edition)!

h x W x L x (T w

-

T

GrashofNumber,



P x L3c

gx

Gr

x ~T '" (1)

I

Q Result:

x

(606-106

IIS.6

x

103

Q

IIS.6

x

103 W

100 em long and 10 em wide horiz.ontal

plllte is maintained at a uniform temperature of 150 CC in a large tIlnkfull of water at 75 'C. Estimate the rate of heat to be supplied to the plate to maintain constant plate temperature as heat is dissipaud from either side of plate. [Oct. 2000, MU/ Given: Length of horizontal

plate, L W

10cm

Plate temperature,

Tw

ISO°C

Fluid temperature,

Too

7SoC

Wide,

Tofind: Solution:

100 cm

F or horizontal

plate,

Characteristic

length, L"

)

WJ

IQ Heat transfer,

I Example 71 A thin

S.78 x 10 x 4 IIS600 W

= l rn = 0.10m

T/

0.10

2

I

1

Gr Pr

1.0853

Gr Pr

1.682 x 109

x

109 x 1.55 I

Gr Pr value is in between 8)( 106 and 1011. i.e., 8 x 106
1011.

For horizontal plale, uppersurface healed: Nusselt Number, Nu

0.15 (Gr Pr)0.333

=

[From HMT data book, Page No. 135 (Sixth Editiom]

Nu

= 150 + 75 2

=

2

0.05 m (1) ~ Gr 9.81 x 0.8225 x 10-3 x (0:05)3 x (150 -75) (0.264 x 1O-~)2 "-1 G-r--l-.0-8-53-x-l-09---.1

Heat loss (Q) from either side of plate. Film temperature,

W

=

[!\Ju =

~

0.15 [1.682 x 109)0.333

177.13]

We know that, hll t,

Properties of water at I 12.5°C :

Nusselt Number, Nu =

[From HMT data book, Page No. 21 (Sixth Edition))

p

=

9S1 kglm3

177.13

==

T h x 0.05 ~ 0.683

/

Scanned by CamScanner

j :. 2.2 J 2

Convective Heat Transfer

Heal and Mass TramJer

8

~{Imple Upper sun,face heated. ' heat transfer coefficient hu = 2419.7 W/m2K For horizontal plate, lower surface heated: Nusselt Number Nu

0.20m Wide, W

60cm

[From HMT data book, Page No. 136 (Sixth . Ed't' lion)!

I

,

I ~ hot ~/ate 20 em in /reig/" lind 60 em wide is

. osed to tile ambient a" at 30 't'. Assuming the temperature of eXP late IS. mainuunec ., I at 110CV"\". F'lnd the heat loss from bot" tire P -tace of the plate. Assume horizontal plttte. IApril2003, MU/ sur)' Given: Height (or) Length of the plate, L 20 cm

0.27 [Gr Pr]O 2:i

=

0.60 m

I

i

Nu

"

0.27 [1.682 x 1091°25

[NU

I

54.68

To find:

We know that,

2.2 J J

Fluid temperature,

T <'J'J

30°C

Plate surface temperature,

T",

110°C

Heat loss from both the surface of the plate (Q).

T", + Too Solutio" :

Nusselt Number, Nu

Tf

Film temperature,

=

--2-

110 + 30 hlx Lc 54.68

2

k

\r,

hi x 0.05 54.68

{From HMT data book, Page No. 33 (Sixth Edition)!

Q

=

p = 1.029 kg/m3

heat transfer coefficient

(h'l

= (h"

Pr

= 0.694

k

Coefficient of x

= 20.02 x 10-{' m2/s

We know,

+ h,) x A x ~T + hi)

v 746.94 W/m2K

hi = Total heat transfer,

of air at 70°C:

W/m2K

746.94 Lower surface heated,

Properties

0.683

W

x

L

X

(Tw - Too)

thermal expansion

l J ~

0.02966 W ImK I I T I in K == 70 + 273 \

= (2419.7 + 746.94)

UL Result:

==

23,749.8 W

Heat transfer,

Q

=

x 0.10 x (150 -75)

343 :::: 2.9 \ x 10--3 K--1

I 23,749.8

W We know,

Scanned by CamScanner

1,.~}~/4~~#~oa~/~a~nd~U~~~s~TI~ro~m~fi_er :-~~~ ~ g x 13 x L~ x.1T GrashofNul1lber. Gr = v2

_

__ ---------'" (I)

Convective Heat Transfer For horizontal plate, lower sUrface heated: Nusselt Number,

[From HMT data book, Page No. 134 (Sixth E ..

Characteristic

where

length ==

i

2.

Nu =

0.27 (Gr Pr)025

0.277 [1.06 x IOS]0.25 I'-N7"u--2-8-. 1

dlhon))

5-1

We know that,

~

= OJOm

I

0.30m (I)~

Nusselt Number,

9.81 x 2.91 x 1(}-3 x (0.30)3 x (I 10 _ 30 (20.02 x 1Q-6)2 :JQl I"-G-r--.l.-53-8-4-x-I-Os--'1 1.5384 x ]OS x 0.694

/ Gr Pr

1.0676

Gr Pr value is in between 8 i.e., 8x 106
x x

lOS

2.78 W/m2K Lower surface heated, heat transfer coefficient

I

106 and 1011.

hi Total heat transfer, Q

0.15 [1.0676 x IOSJ0.333

/Nu

=

70.72

Nusselt Number, Nu

=

hu Lc

I

We know that,

70.72

k hu x 0.30 0.02966 6.99 W/m2K

Upper surface heat d' h e, eat transfer coefficient -

hu ==

Scanned by CamScanner

Q

IQ

0.15 (Gr Pr)0.333

[From HMT data book, Page No. 135 (Sixth Edition)]

NI,J

2.78 W/m2K

(hu + hi) x W x Lx (T; - TaJ

For horizontal plate, Upper surface heated,

=

=

(hu + hi) A.1T

]0".

Nusselt Number, Nu

hi Lc k hi x 0.30 0.02966

28.15

Gr

Gr Pr

Nu ==

6.99 W/m2K

Result:

= =

(6.99 + 2.78) x 0.60 x 0.20 x (110-30) 93.82 W

I

Heat transfer from both surface of the plate == 93.82 W

I Example 9 I A

horizontal plate 1 m x 0.8 m is kept in a water tank with the top surface at 60°C providing heat to warm stagnant water at 20°C Determine the value of convection coefficient. IBharathiyar University, Nov. 96/ [Procedure

I Example

is same as Example 7J

I

10 A vertical pipe 80 mm diameter and 2 '" height is maintained at a constant temperature of 120'C. The pipe is surrounded by still atmospheric air at 30 'C. Find heat loss by natural convection. ' IManonmanium Sundaranar Univ~rsity,Nov. 97/

2.216

Heal and Mass Transfer

Given:

---

~turbulent

Vertical pipe diameter. ~80 . h D = RO rnm -0 -----2 rn - .080 m Herg t (or) Length. L Surface temperature.

.

Air temperature,

T II'

120

T a:

30 e

for

Convective II

flow, Nu

[From HMT data b 00k , Page No. 135 . == 0.IO(3.32x 1010]0333 (Sixth Editionll

e

ffiu.__

0

31:..:...:.8 . .:::___j8\

We knoW that,

Solution : We know that ,

hL k

Nusselt Number, Nu

Film temperature,

r, + T<:IJ

T/

2 120 + 30 2

[17-::=-75oe

~

3 \8.8

0.03006 h 4.79 W/m2K h x A x ~T h x 'It x D x L x (T

Heat transfe! coefficient, Heat loss, Q

I

I\' -

Properties of air at 75°e :

=

p

1.0145 kg/rn-'

v ._

20.55

Pr

Result:

0.693 0.03006 x 10-3 1 Tf in K

k

We know,

1

1(3 Gr

=

Q

10-6 m2/s

x

gx

W /mK

75 + 273

=

2.87

3 -IJ

x

2.87

1:::-__ Gr Gr Pr

x

10-3 K-I

Full plate. Next half of the plate. . 2 158 W; 3. 46.3W 1 (Ans: I. 111.79 W, . 25 mls. Tbe plate at 2. Air at 250C floWS past a flat plate. .' d at a uniform d i malotaUle measures 600 mrn x 300 mm an IS frolll the plate if the 5 temperature of 950C. Calculate the heat 1055 h this heat \05 be air flows . parallel to the 600 mm side. llltotel.· HoWIllhuc3noI11Ill side? 3.

__:___~(20.55 4.80 x LOIOI x

Gr Pr == 3.32 x 1010 Since Gr Pr > 109, fl'ow IS turbulent.-

J

Scanned by CamScanner

FOR PRACTICE

2.

9.81 x 2.87 x 10-3 x (2)3 x (120

1

216.7 W 216.7 W

transfer rate from I. First half of the plate.

10- K

1010

.

4.79 x 'It x 0.080 x 2 x (120 - 30)

pressure flowSat a velocity of2 m1s over a plate maintained at 100°C. The lengthandwidthof the plate are 800 rnrn and 400 mm respectively. Calculateheat

P x L3 x ~T

x

T co)

e and at atmospheric

v2

4.80

Heat loss, Q

2.13. PROBLEMS l. Air at 200

[From HMT data book, Page No. 134 (Sixth Edition))

=

2.2/7

0.10 (Gr Pr]Om

0

Tofind: Heat loss (Q).

eat Transfer

x 1~)2

0.693

3Q2

affected if the flow of air is made para e [AIlS: 100.5 W; l42 Wl

2.218

Heat and Mass Transfer

~RK

3. A thin plate of length 1 m is placed longitudinally i stream flow of water. Calculate the mean heat transfe n a free r coeffi . and the rate of heat flow from the plate, if it is kept at S00C. Clent [Ans:

~.14.



3 kW/m2K 23

' • X 103 W 4 Air at atmospheric pressure and at a temperatur f ] . e 0 3SoC flows over a heated cylinder of 50 mm diameter whose SUrf: . ° D . h I f h aCe IS maintained at 150 C. etermme t e oss 0 eat from the I' . .. cy IOder if the air velocity IS 50 mls. [Ans: 3260 W/ ] •

Ill

5. Water at 10°C with a free stream velocity of 1.524 IllIs flows across a cylinder of 2.54 ern diameter whose sUrface is kept at 65.6°C. Compute the average heat transfer coefficient. [Ans: 7275 W/m2K] 6. Air at 27°C flows across a heated 30 mrn diameter pipe at 77°C with a velocity of 1 m/s. Compute the heat transfer rate per unit length of pipe. [Ans: 84.5 W/m]

7. Find the convective heat loss from a radiator 0.5 m wide and I m high maintained at a temperature of 84°C in a room at 20°C. Consider the radiator as a vertical plate. [Ans: 110 W]

, ,

. I;

, I

I

8. A horizontal steam pipe of 0.1 m diameter is placed horizontally in a room at 20°C. The outside surface temperature is 80°C and the emissivity of the pipe material is 0.93. Estimate the total heat loss from the pipe per metre length due to free . an d ra diration, . [Ans' . 2617 W] convection . 20 em x 30 em IS . use d as a wa ter heater-. in a 9. A plate of size process plant. The temperature of water is 20°C, while the heater . the heatt plate is maintained at a temperature of 120°C. Determme ' " id f heat(fr is kW] kep transfer rate by free convection when 20 em Sl e 0 vertical.' [Ans : 20

Scanned by CamScanner

2.

QUESTION

Jf'hat

is dimensional analysis ?

. .

{Nov. 96, MUj

. sional analysis IS a mathematical h . Du:tletl d f . met od which mak of the stu y 0 the dimensions for I' es use bl ThiIS method can be ap so . eering pro ems. redVlng several ' engltl . d resistances, of f1UI . thermodynamics.

P I toall types heat flow problemsin fluidm han' ec ICS and

uckingham State B

1r theorem.

lAp,. 97, MUj

kingham 1t theorem states as follows: "If thereare n Suc ., II h . . bles in a dimensiona y omogeneous equationand if varIa ntain m fundamenta I d'unensions, . then th e variables . are these cO . . arrange d into (n - m) dimensionless terms. These . sl'onless terms are called 1t terms. dlmen

3. What are a II tire advantages of dimensionalanalysis? 1. It expres ses the functional relationship betweenthe variables in dimensional terms. . . · up a theoretical solutionin a simplified 2. It enables ge tt 109

red to a large . f tests can be app I 3 The results of one senes 0 ·th the help of . . ilar problems WI number of other Simi dimensionless

form.

dimensional

analysis.

.

4. What are all the limitatIOns

. alanalysis?

if dimension

0 , 'ded by dimensional hiIp ation IS. not proVI relations 1. The complete mlOrm th t there is some . dicates a analysis. It on IY 10 . f eters. echanlSOl 0 between the param t the internal01 . . iven abou 2. No informatlo~ IS g dingthe enon. . I h nom y clueregar h P ysica p e f.~ " t givean '~iS'-doesno , 3. Dimensional analy I selection of variables.

. e

2.220 5.

Convective

Heat and Mass Tran:-,fer

Deline Reynolds number (Re). './'

.'

IMay 2005, June ;----006

. ,All} It is defined as the ratio of inertra force to viscous fore e.

Re

==

Inertia force Viscous force

6. Define Prandtl number (Pr). {May 2005 A V, June 2006 A V, Oct. 98, Apr. 2002, MUI It is the ratio of the momentum

diffusivity

to the thermal

Pr ==

10. What is meant by Newtonian and non-newtonionfluids ? The fluids which obey the Newton's law of viscosity are called Newtonion fluids and those which do not obey are called nonnewton ion fluids. 11. What is meant J,ylaminar flow and turbulentflow ? Laminar flow: Laminar flow is sometimes called stream line flow. In this type of flow, the fluid moves in layers and each fluid particle follows a smooth continuous path. The fluid particles in each layer remain in an orderly sequence without

Momentum diffusivity Thermal diffusivity

Turbulent flow

~

7. Define Nusselt Number (Nu).

Laminar flow

IDec. 200J A U, Apr. ~,

r

MUI

process under an unit temperature gradient to the heat flow rate by conduction under an unit temperature gradient through a

.

;

97, 98,

It is defined as the ratio of the heat flow by convection

I

stational)' thickness (L) of metre. qconv

Nusselt Number (Nu) I

t

j

i I

\

I

, f

8. Defme Grashof number (Gr). It is defined as the ratio of product

qcolld

IOct.

97, 99,

MUI

of inertia force and

buoyancy force to the square of viscous force. Gr == Inertia force x Buoyancy force (Viscous forceY 9. Define Stanton number (SI).

IDee. 2005, /.U/

It is the ratio of Nusselt number to the Jlr~duct of Reynolds I

,I

2.221

mixing with each other.

diffusivity.

I

Heat Transfer

number and Prandtl number. Nu , Re x Pr

St == --

Scanned by CamScanner

Time

Turbulent flow: In addition to the laminar type of flow, .a distinct irregular flow is frequently observed in nature. This type of flow is called turbulent flow. The. path of any individual particle is zig-zag and irregular. FIg. shows the instantaneous velocity in laminar and turbulent flow. 12. Whl.' is lIydrodynamic boundary 'layer ? fl .d i I In hydrodynamic boundary layer, velocity of the UI IS ess than_990/0offree stream velocity. 13. Wha! is tllermal bountlary layer? . . I than l',lu.,cl.hem1albO.undary layer, temperat\lre ofthp- fluid IS ess lOci. 98, Mu,r,I 14. Define convectIOn. f that will occur between Convection is a process o.fheatd~:s :en they are at different a solid surface and,a fluid me IU . '~9% of free stream temperature. . I.

.

temperatures.



.

Heat transfer from the mov ing fluid to solid surface i

.........

.

u~eqUitlOO

Q

. s gIven by

Convective Heat Transfer "'hilt are the dimensionless convection 1

law of Cooling.

3.

Local heat transfer coetlicient Surface area in m2

in W Im2K

Surface (or) Wall temperature

in K

TGO

Temperature

of fluid in K

(May 2004, Dec. 2004, June 2006, May 2004 AU,

11.

Prandtl number (Pr).

,

thickness.

18. According to Newton's law of cooling the amount of heat transfer from a solid surface of area A at a temperature Tw to

IDec. 2005, Dec. 2004, June 2006, AU/

divided into two regions: • A thin region near the body called the boundary layer where the velocity and the temperature gradients are large. • The region outside the boundary layer where the veloci~ and the temperature gradients 'are very nearly equal to their free stream values. 23. An electrically heated plate dissipates heat by convection at a rate of 8000 Wlm2 into the ambient air at 25,\:'./fthe surface of the hot plate is at 125~, calculate the transfer

r:

coefficient for convection belween the plate and air_ , {May 2005, May 2006, AU/

_ (Nov. 1994, MUj

Ans : Q = hA (T w 19. What is the form

-

used to calculate

for flow through cylindrical pipes?

Nu n = n =

Surface temperature, T w

[Oct: 1999, MUj

:::

Tofind':' Heat"tl'flos-fer--coeffic'ielrt,

We know that, - hA(T Heat transfer, Q -

Solution:

0.4 for heating of fluids. 0.3 for cooling of fluids.

40

.

250C + 273 :::298 K l250C + 273 :::39~ K '

Ambient temperature, Ta:;

heat transfer

0.023 (Re)O.8 (PrY'

Scanned by CamScanner

8000 W/m2

Given: Heat dissipation, Q

Too)

of equation

{May 2004" AU/

In the boundary layer concept the flow field over a body is

convection.

T t10 is given by

MU/

22. Indicate the concept or significance of boundary layer.

MUJ

(May 2004, Dec. 2004,. June 2006 AU, Nov. 96, Apr. 98, MUJ If the fluid motion is artificially created by means of an external force like a blower or fan, that type of heat transfer is known as forced convection.

aJluid at a temperature

IOct.1999,

(Nu).

Define bOllndary layer

If the fluid motion is produced due to change in density resulting from temperature gradients, the mode of heat transfer is said to be free or natural convection. 17. What is forced

2.213

used in forced

The thickness of the boundary layer has been defined as the distance from the surface at which the local velocity or temperature reaches 99% of the external velocity or temperature.

16. Wiat is Iftealll by free or natural convection?

Nov. 96, Oct. 97,

parameters

1. . Reynolds number (Re).

2. Nusselt number

It A T... -

,0.

= h A (T; - T.J

This equation is referred to as Newton's wbere

----

___

(h

-Ta:;) IV

r ",.'

[ I

2.224

Heat and Mass Transfer

Convective Heat Transfer

h x 1(398 -298) 8000 :::)

=

h x 100

h = 80 W Im2K

Result: Heat transfer coefficient,

h

=

2.225

26. Define displacement thickness.

80 W Im2K

U. Write down the momentum

equation for a stead . ·bl [Y, two dimensional flow 0if an mcompressi e, constant pf', . Jl·d· operty newtonwn UI m th e rec tId· angu ar coor mate system mention the physical significance of each term. flIrd

Th~ displacement thickness is the distance, measured perpendicular to the boundary, by which the free stream is displaced on account off ormation of boundary layer.

27. Define momentum thickness. The momentum thickness is defined as the distance through which the total loss of momentum per second be equal to if it were passing a stationary plate.

{June 2006, Anna University} 28. Define energy thickness. Momentum equation, I

au

\

( . (au P u ax

The energy thickness can be defmed as the distance, measured perpendicular to the boundary of the solid body, by which the boundary should be displaced to compensate for the reduction in kinetic energy of the flowing fluid on account of boundary layer

au )

p u ax + V "By where,

au ]

Inertia forces.

+ V ay

formation. Body force.

ap

Pressure force.

ax

a- 2u + -a2u ox2 ay2

00

=

Viscous forces.

25. Sketch the boundary development of aflow.

!~ :: •

~:

!: :

~

I

I

~

I I I

I I I

~

I

~

'y

~U!

,

Laminar I Tranii- I boundary layar---71Ion"""__ Turbulent

boundary

layer

--I

l-U ~_~I-=~~

:

\~

~I

u;;'fJl '. 1

Scanned by CamScanner

,

, CHAPTER~III 3. PHASE CHANGE HEAT TRANSFER AND HEAT EXCHANGERS 3.1 Boiling and condensation 3.1.1 Introduction In the last chapter of convective heat transfer, we have considered the fluid as a homogeneous single phase system. But, in many situations, the fluid changes its phase during convective heat transfer process. Boiling and condensation are such convective heat transfer process that are associated with change in phase of liquid. 3.1..2 Boiliag The change of phase from liquid to vapour state is known as boiling 3.1.3 Condensation The change of phase from vapour to liquid state is known as condensation. 3.1.4 Applications Boiling and condensation process finds wide applications as mentioned below. 1. Thermal and Nuclear power plant. 2. Refrigerating systems. 3. Process of heating and cooling 4. Heating of metal in furnaces 5. Air conditioning systems.

Scanned by CamScanner

' ."

-----------------------------

~

----

J. 2 Heal and Mass Transfer

3.l.5 8oili~g beat tran~fer phenomena

Boiling is a convection process involving a change f O from liquid to vapourstate, This is possible only when the tem phase of the surface (Tw) exceeds the saturation temperature o~~tu~ {TsaV' . qUid

Boiling and Condensation. 13 c

S,g

~e

Nucleate boiling

c~

->

Filmbollin9

Ql

I

II

III

107

IV

V

VI

According to convection law, Q = hA (Tw- TsaV

Q=hA(~T) where ~T = (TwTsat> is known as excess temperature. If heat is added to a liquid from a submerged solid surface the boiling process is referred to as pool boiling. In this case th~ liquid above the hot surface is essentially stagnant and its motion near the surface is due to free convection and mixing induced by bubble growth and detachment. Fig. 3.1 shows the temperature distribution in saturated pool boiling with a liquid - vapour interface. .:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:y~~~.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:

..

.....................................................

.

~.~.~ ~

Vapour~_-

~'
--_

-

_- s .:_-__ -_ - -~.:-

_-_-§_-_- .r:0._- .D_- _-9..- _- _- _- _- _.0_-_- ----13.....: Liquid

~-~---------------~---bubbles -_-_-_-_-_-_-_-_0_-_-_-_ -<:_-:_-_-2- .z:': -_0_-____

-0

-0-

_-_-_-_ 0_

-

-

/;?;?~;;;;;?;;;;?;?;);;;;;;;;?;;?;;;

Solid surface

.

Fig 3.1 Pool Boiling I .

I '

The different regions of boiling. are indicated in figJ.2. This specific curve has been obtained from an electrically heated platinum wire submerged in a pool of water by varying its surface temperature and measuring the surfac,e heat flux. (q).

Scanned by CamScanner

10L_----~--------L-----~----~-100 50 10 1 Excess Temperature

150

6 T e = T w - T sal

- Free convection 11 - Bubbles condense in super heated liquid III

- Bubbles raise to surface

IV

- Unstable film

V

- Stable film

VI

- Radiation

coming into play

F;g~ s.: Pool Boiling Curve for Water 1. Interface evaporation

, . ocess with no bubble Interface evaporation i.e., evaporation pr . I. . the excess temperature formation exists in region l. In tms region "' .. . small (SoC). Here the liquid near the surface tS super ~ T IS very . h r id surfllce. heated slightly, and evaporation takes p'ace at t e iqu .

3.4 Heat and Mass Transfer

2. Nucleate Boiling

j

I

I

----

This type of boiling exists in regions II and III Th . . e nucle boiling begins at region II. As the excess temperature is f ate increased, bubbles are formed more rapidly and rapid eva un~et . d'icate d .10 region . III . N ucleate boilinPOtation takes place. This. .IS 10 . . g eXIsts upto L\T = 50OC. The maximum heat flux, known as critic I h . a eat flux, occurs at point A.

I~

. t I'

[From HMT dOlo book

Q =

neatflUX

a.

~I hfg \ g x (PI

l

A

page No. I 42(Sixlh edilion)]

-Pv)\o.s x \

Cp, x AT \~

lCsf

c

x

hfgP;l

. ".(3.\)

;

=

q = heat flux, Wlrn2

Film boiling exists in regions IV, V and VI. In region IV the vapour film is not stable and collapses and reforms rapidly. With further increase in L\T (excess temperature) the vapour film is stabilised as indicated in region V. ' The surface temperature required to maintain a stable film are high and under these conditions a sizeable amount of heat is lost by the surface due to radiation. This is indicated in VI. From fig.3.2 it is clear that high heat transfer rates are associated with small values of the excess temperature in nucleate boiling region.

I,

V

leate Pool Boiling

where

3. Film Boiling

I:

1.J-luc

11,- Dynamic viscosity of liquid,Ns/ml hfg - enthalpy of evaporation, l/kg

g _ Acceleration due to gravity,9.81 rn/s2 P, - Density of liquid, kglm3 Pv - Density of vapour, kglm3 o - Surface tension for \iquid vapour interface,N/m specific heat ofliquid, J/kg K

Cpl-

CsJ - Surface fluid constant 3.1.6 Flow Boiling Flow boiling or forced convection boiling may occur when a fluid is forced through a pipe or over a surface which is maintained at a temperature higher than the saturation temperature of the fluid. This type of boiling occurs in water tube boilers forced convection.

involving

3.l.7 Boiling Correlations It is obvious from the boiling curve that various physical mechanisms are involved in different regions and there will be correspondingly many types of correlations for the boiling procesS . . Some of them are given below.

Scanned by CamScanner

P r - Prandtl Number ~ T _ Excess temperature = T w - Tsat T _ Surface temperature, °C w

T

_ Saturation temperature, °C

sat d 1 7 for other fluids. n = \ for water an .

b. Critical heat Flux

9_= 0.\8 A

hfg Pv

\~O 25

~a)( g(P/- PvJ

l---P;-

•• ,

(3.2)

3.6 Heal and Mass Transfer

c. Excess temperature .1T = Tw - Tsat < 50°C for Nucleate

pool boiling

-----

,:::----------;here

cr - Stefan Boltzmann constant E -

d. Heat transfer, Q = m

x

hfg

... (3.3)

2. Film Pool boiling

=

5.67

x

10--8 W/m2K4

emissivity

Tw - Surface temperature, °C T sat

[From HMT data book page No. 142 (Sixth edition)J

_:B:o:il/~·ng~a~nd~C~o~n~~~m~a~t/~·M

-

Saturation temperature, °C

b. Excess temperature

a. Heat transfer co efficient h = hconv + 0.75 hrad

...

(3.4)

3.1.8 Solved Problems

III Water is 10 be boiled (II atmospheric pressure in a polished copper h

cony

=

0 62 [k~ .

x

Pv

x

(p,- p)x g ~IV

x

(hfg + 0.4 Cpv ~T)

pan by means of an electric healer. TI,e diameter of the pan is 0.38 m and is kept at I 15" C. Calculate the following

D.1T

I..

where

I. Power required

10 boil

2. Rate of evaporation 3. Critical heat flux.

Pv - Density of vapour, kglm3

Given:

P,- Density of liquid, kg/rn-'

Diameter, d = 0.38 m;

g - Acceleration

Surface temperature, T w

"Jg - Enthalpy

due to gravity, 9.81 m/s-' of evaporation

J/kg

Jlv - Dynamic viscosity of vapour,

pressure

Ns/m?

1. Power required, (P) 2. Rate of evaporation, (m) Q

111

6 T - Excess temperature

= 115 c.

Tofind:

Cpv - Specific heat of vapour at constant

D - Diameter,

the water

(3.5)

of vapour, W ImK

k, - Thermal conductivity

]025

3. Critical heat flux, (A) = 1'w - T sal

... (3.6)

Scanned by CamScanner

0

!

1 IlolI/nR and ('und,n.wIIQn

100'"

Specific volume of vapour v

1.673 mJ/kg

• R

Dcnsily of vapour,

I)"

.9

..L v il

_11.673

copper pan

Ii0RICl'

~T·

Excess tempermure • Tw -

16'1'.

Fig 3.3

15°

I

TSIII •

II sn - 100 • IS° C

50° . So this is Nucleate pool boiling process.

1. Power required to boil the water

We know that. saturation temperature of water is 100° C.

For Nucleate pool boiling

i.e·1 T sal

Heal flux,

=

100° C ,

t

= 111 x hfg

[g

x (~/-PV)]O~

Properties of water at 100° C.

[From HMT data book page No. I 42 (Sixth edition)]

[From IIMT data book page No.21. Sixth edition]

Density, P, = 961 kg/m! Kinematic viscosity, v = 0.293

x

Prandtl Number, P,

=

Specific heat, Cpl

4216 J/kg K

=

Dynamic viscosity, J.l,

I cr = 0.0588 N/m I

1.740

x

0.293

x

1~

[R.S. Khurmi Steam table page No.4}

n = 1 for water

"Jg = 2256.9

~"hfg, PI. PV' o, Cpb ~T, Csf hfg' nand Pr values in Equn (I)

Q

(1) ::::) -

= 281.57 x 10-6 x 2256.9 x 103 x

4216

kJ/kg x

hfg

Scanned by CamScanner

= 2256.9

x

103 J/kg

[From HMT data book page No. J4J]

Substitute

A

AI JOO°C

Enthalpy of evaporation,

[From HMf data book page No. 144]

For water - copper::::) Csf = surface fluid constant = 0.013

= 281.57 x 10-6 Ns/m2 From Steam Table

where c = surface lension for liquid vapour interface At JOO°c.

I O~ m2/s

= PI x v = 961

[ Cpl x ~T ]3 ... (I) Csfxhfg P;

[ 0.013

x

2256.9

x

[9.81x (961-0.597)] 0.5 0~~8

]3

15 x 103 x

(1.74)1

l3J,/~O~H~ea~t~a~n~d~U~as~s~~~a~n~~~e~r

-t

____

= 4.83

x

lOS W/ll12

Heat transfer, Q = 4.83

x

lOS x A

Heat flux,

= 4.83

x

lOS x

Q =54.7

x

103 W

Q

x 103

54.7

I Power = 54.7 x

= 0.18

~

.

0.0588

x 9,81 x (961 _ 0.597>]0,25

Critical Heal flux, q =

-t

= 1.52

x

106 W/m2

=P Result:

103 Wi

We know that, x

103 x 0.597

x

(0.597)2

(,;,)

Heat transferred, Q =';,

2256.9

2

I. P

2. Rate of evaporation,

x

x[

f-d f (0.38)2

=4,83

x 105 x

=

Boili"g and COfldemation J. II

=

54.7

x

103 W

2.

m = 0.024 kg/s

3.

_2. = q = A

Jrg

1.52 x 106 W/m2.

[l) Water is boiled at the rate 0/

Q

m=-

kg/h in a polished copper

].I

pan, 300mm in diameter, at atmospheric pressure. AsslUninl

hlg

nucleate boiling conditions, calculate th« temperature of the

54.7

103

x

2256.9

x

bottom sur/ace

0/ the pan.

103 Given:

~.024kglsl

Mass flow rate, ,;, = 24 kglh

3. Critical heat flux

_ 24 kg - 3600 s

For Nucleate pool boiling, critical heat flux,

A=

I,;.

:t'''') j

O.25

Q

0.18 hI"

P, a' g [

=

6.6

Diameter, d = 300mm

l'

c

10-3 kgls 0.3m

Toflnd: [From HMT data book page No /42}

Surface Temperature. Tit'

41

Scanned by CamScanner

I

I 3.12 Heal and Mass Transfer Boiling and Condensation 3.1J

Solution: For Nucleate boiling We know that, Heat flux, Saturation temperature of water is 100° C, i.e. Tsat

=

.2_=

100° C.

[gX(PI-PII)]0.5x

11 xh

A

I

'fg

[ Cp/x LiT]3 C h

0'

[From HMT data book page No. 142 (Sitth editiOlt)J

{From HMT dolo book page No. 21 (Sixth edition)}

Kinematic viscosity,

961 kg/m!

Heat transferred, Q =m

x

g_=~ A

A

Q

6.6

0.293 x 10--{)m2/s

\I

(I)

...

sf x ,/g Pr

Properties of water at 100° C.

Density, PI

.

II

=>

h_rg

Prandtl number, P, = 1.740 Specific heat, Cpl = 4216 J/kg K

A

x

10-]

x

2256.9

x

103

.!!.. d2 4

Dynamic viscosity, III

= PI x V

6.6 x 10-] x 2256.9 x 103

= 961 ~ 0.293

x

10-6

.!!.. (0.3)2 4

\ .~I

~

From Steam table

2~ 1.57

10-6 Nszm21

x

-t-

[R.S. Khurmi Steam table page No. 4J

= 210 x 10] W/m2 \

At 100°C Enthalpy of evaporation,

hfg

I }Jfg Specific volume of vapour, I

=

c

2256.9 kJ/kg

= 2256.9 x 103 J/kg

Vg = 1.673

m3/kg

I

I

At

=

Surface tension for liquid vapour interface

100° C

[From HMT data book page No.144J

10 == 0.0588 N/m For water - copper => Csi ,

\ ==

surface ~uid constant

=

0.013

\'

Density of vapour,

\Csi

Pv

<=

0.013 \

(From HMT dota book page No.143]

"g

I

n == I for water

1.673

b

Substitute == 0.597~

Scanned by CamScanner

Equation (I)

11/,

hfg> QI' Pv' 0, Cpl' hlg,

t,

nand Pr values in

~3.iI4~H~w~t~and~M~~~s~~~mu~ife~r ---------------(1)::::)

210 x 103

-=

x 2256.9 x 103

281.51 x I~

Tofind:

x {9.81 x (961-0.591)1°·5

l

Boiling and Condensation 115

____

Voltage, (V)

0.0588 Sollltion: 4216 x &T

,[

]3

We know that, saturation temperature of water is 100° C.

0.013 x 2256.9 x 103 x (1.14)

x

i.e., Tsat = 100° C

I

il·

Properties of water at 100° C.

4216 x 6T)3 = 0.825 ( 5105 l.l ::::) [0.0825 6T]3

=

0.825

V

0.0825 6T

=

0.931

Pr=1.740

(Sixth edition))

= 0.293 x 10-6 m2/~

Cpt

!6T=11.35°CI

= 4216 JlkgK

11,=P,xv=961

We know that, Excess temperature, 6 T

=

Tw

-

T sat

1l.35 = T w

-

100° C.

I Tw=

III.JSOC

I

Result : Surface temperature, T w = 111.35° C

o

{From HMT data book page No.21.

P, = 961 kg/m3

A nickel wire carrying electric current 0/1.5 mm diameter and 50 cm long, is submerged in a water bath w/rich is open to atmospheric pressure. Calculate the voltage at the burn out point, if at this point the wire carries a current 0/200A.

Given: d = 1.5 mm = 1.5 x 10-3 m; L = 50 cm = 0.50 m ; Current, I= 200 A

Scanned by CamScanner

X

0.293 x 10-6

11,= 281.57 x 10-6 Nslm2 From Steam Table At 100° C

{R. S. Khurmi

Steam table. page No.4]

hfg = 2256.9 kJlkg hfg = 2256.9

x

loJ Jlkg

"s =

1.673 m3lkg

Pv =

I Vi =

I

1.673 = 0.591 kglm3

o = Surface tension for liquid - vapour interface. At 100° C

Icr = 0.0588

N/m

I

{From HMT data book page No. 144]

"

J /6 Heat and Mass Transfer

Boiling and Condensation 3.17

For Nucietlle Pool Boiling Critical heatjlux

(At burn out)

Given: Diameter, D = 8 mm '" 8 )( 10-3 m ; ".

(I) .

[From HMT data book page No. 142]

Substitute hit:' PI> P o, values in Equation (I)

2...= 0.18)(

2256.9 )( 103 )( 0.597 025

[0.0588

x

= 0.92

Surface temperature, T w

=

260°C.

Power dissipation

A x

E

Tofind:

'

V

(I) =>

Emissivity,

9.81 (961 - 0.597) ] (0.597)2

Solution: We know that, saturation temperature of water is 100

I

i.e. Tsat

i

=

0

c.

1000Cl

Excess temperature, 11 T '" T w - T sat

i

I'lT=

Heat transferred, Q = V => => =>

I~T '"

x [

Q= Vx[ A A V x 200 1.52 )( 106 xdl, V x 200 1.52)( 106 It )( 1.5 )( 10-3

=>

IV

[7.9 Volts

260-100

I

1600 C > 500 C

So, this is Film pool boiling. [':A=1tdL1

Film temperature,

Tf

=

Tw +- Tsat 2

260 x

t

100

2

0.50

I Properties of water vapour at 1800 C. (Saturated Steam)

Result:

Voltage, V =

[From HUT data book page No. 39

17.9 Volts.

(Sixth edition))

I!l A Ileating element

c/added wit/I metal is 8 mm diameter and of

Py

emissivity is 0.92. The element is horizontally immersed in a

ky

waer bath. Tile susface temperature of the metal is 260"C under steady state boiling conditions. Calculate the power dissipation per unit length of the heater;

Scanned by CamScanner

= =

5.16 kglm3 0.03268 W/mK

Cpv = 2709 J/kg K Ily

=

15.10

x

10-6 Ns/m2

118 Heat and Mass Transfer .

Properlle5

0

f saturated water at 100· C.

.

[From HMT data book page No.21 (SIXth edition)]

I

BOiling and CorrcklUation

I

I

hrad= 20 W/m2K

1.19

• .. (3)

Substitute (2), (3) in (I)

3

PI '" 961 kglm

(I) => h

From steam table At /OO·c.

[R.S. Khurmi Steam table. page No.4]

Heat transferred, Q

103 JlkgJ

hA(T",-Tsat)

'1' g heat is transferred due to both convection and In film poo I b01 ID ,

h"

radiation.

436.02)( ••• (I)

Heat transfer co-efficienl, h '" hconv + 0.75 hrad

h

k3)( P )( (P/-P »( g)( [hlg +0.4 (CPv .1T»)

'" 0.62

v

v

v

[

COny

I'v

0 .1T

j

" [2256.9 )( 103 + (0.4)( 2709 )( 160)]

hconv '" 0.62

1

15.10)( 10-6" 8)(

10-3)(

[.: L'" 1m)

Power dissipation, P = 1753.34 W/m.

(B

Water is boiling on a horiz.ontal maintained

tube whose waU temperatllre

at J S·C above the saturation

temperature

Calculate the nue/eate boiling heat transfer c~ff1clertL

Is

of water. Assume the

water to be at a pressure of J 0 atm. And also jlnd the change in vallie

160

of heat transfer c~fficient

'" 421.02 W/m2K

8 )( 10-3)( 1 )( (260--100)

ResulJ :

4.10" 106 ]0.25 hconv '" 0.62 [-1.93 )( 10-5

I hconv

It "

(or) Power dissipation, P'" 1753.34 W/m

O.2S

(32.68" 10-3)3)( 5.16)( (961 - 5.16»( 9.81 0.25

)( L (T", - T sat>

It )( 0

1753.34 W/m

Q

page No. 142]

[FromHMfdatabook

I

+ 0.75(20)

Ih = 436.02 W/m2K I

"Jg'" 2256.9 kJlkg

I hlg '" 2256.9)(

= 421.02

I. The temperature

w"en

difference

is increased to 10· C at a presJllre

of lOatm.

I

1. The pressure is raised to 10 atm at ..:iT = 15"(,.

. . • (2) Given: [From HMf data book page No. 142]

hrad

= 5.67"

10..,11 )( 0.92

C·: Stefan

Wall temperature temperature.

is maintained

(260 + 273)4 - (100 + 273)4]

T", = 115°C.

[

P = 10 atm = 10 bar

x

(260 + 273) - (100 + 273)

boltzman constant, a

Scanned by CamScanner

=

5.67"

10-8 W/m2~]

[ .: Tsat

=

at 15°C above the saturation

100· C; Tw = 100 + 15 = 115°C)

\

3.20 Heat and Mass Transfer

t

Case (i)

Boiling and Condensation ),11 Case (ii)

~T=300C;p=

10atm= lObar

p = 20 bar; ~ T = 15° C Heat transfer co-efficient, h = 5.56 (~T)3 = 5.56 (15)3

Case (ii)

Ih=

P = 20 atm = 20 bar; ~T = 15° C Solution:

18765 W/m2K

Heat transfer co-efficient other than atmospheric pressure

We know that, for horizontal surface, heat transfer co-efficient h

h

P

= 5.56 (~T)3

h = 5.56 (Tw- Tsat P

=>

= 5.56 (115 -

Ih

= 62.19

lhp

hp=47.13

!8765:x

[FromHMTdatabook

page No. 143]

hp = 47.13

x

103 W/m2K

p= IObar;~T=.30"C [From HMt data book page 11'0.143] =

= 377

103 W/m2K

x

hp = 62.19 x 103 W/m2K

Case (i)

Heat transfer co-efficient, h

103 W/m2K

Case (ii)

dO]04

Heat transfel' ico-efficient,

x

Case (i) hp

=

I

Nucleate boiling heat transfer co-efficient

r

Heat transfer co-efficient other than atmospheric pressure hp = hpO.4

103 W/m2K

x

Result:

~.oW

= 18765 W/m2K

= h p04 = 18765 (20)0.4

[From HMT data book page 11'0.143 (Sixth edition)]

5.56 (~T)3 = 5.56 (30)3

I!J

A electric wire of 1.5 mm diameter and 100 mm long is laid /.orizontally and submerged In water at atmospheric prnsure. The wire has all applied '!oltage of I(J V and carries a current of 41 ampture». Determine heat flux and excess temperature. Tile followlng correlation for wster boiling on I,orizolftai submerged surface IIolds good. h

Given:

I

I

=

1.54 (g/14 A

= 5.58 (.!inJ

Heat transfer co-efficient other than atmospheric pressure

Diameter, D = 1.5 mm = 1.5

hp = h p04

Length, L = 200 nun

hp

= 150

x

10J ( (0)°.4

= 377

x

103 W/mlK

= 0.2

x

Wlm2K

10-3m;

m;

Voltage, V = 16 V; Current I = 42 amps;

I

Scanned by CamScanner

.h

= 1.54 (~)3/4

= 5.58 (~T)3

",S.

r' :J.:2:!2H~t~at~a~nd~u~au~~~a:·m~~~u ----------------

'fIF:;'tI-WdVW1.J'P·;TTiSf#,

___

BOiling and Condensation1.2J

3.1.9 Solved Anna Univenity Problems

To/flld:

o I. Heat flux. ( A)

IIIAn

aluminium pan of 15cm diameter is lUed to boil waler and

the water depth at the time of boiling is 2.5 em. The pan is placed on an electric stove and the heating element raises the temperature of the pan to 110-C. Calculate the power Input/or boiling and the rale of evaporation. Take Cs/= 0.0132.

2. Excess temperature, (~n SDbltlt'" : We know that, heat transfer O==V"I

{Dec.2005. Anna Univ]

==16" 42

Given:

[O==672W]

= 15 em = 0.15 m Distance, x = 2.5 em = 0.025 m Surface temperature, T w = 110° C.

Diameter, d

Surface Area, A = nOL

=n

)( 1.5

x

10'-3 )( 0.2

!A ~ 9.42 " 10-' m21

Csf= 0.0132 Tojind:

=> _g_ =' 672 - 713.3 )( 103 A 9.42)( 10-' Heat flux.

t=

I. Power input, (P) 2. Rate of evaporation,

713.3 )( 103 W/m2

Solution: We know that, h

=

1.54

(.2.r = 5.5S (~T)3

_____ L ~sat

(Given)

=

1000(

A

= 5.5S(~T)3

~ 1.54 (713.3 )( 103)3/4

= 6773.92

(~T)3

I~T

=

IExcess temperature,

~T

IS.')O C

=

IS. 9° C

I

I

Aluminium pan

~===~=:t--....

Electric stove

ReslIlJ:

.2..=

713.3)( 103 W/m2 A 2.~T= IS.C)OC I.

(m)

I I

l.•

Scanned by CamScanner

Fig 3.4

Boiling

3.24 Heal and Moss Transfer

We know that, 0 Saturaridn temperature of water is 100 C. . T'sat-~ 10000C i.e., Properties of water at 1000C.

Heat flux,.9.. A

\

I

j

2

x

n

10--0m /s

Cpl ==

4216 J/kg K

Dynamic viscosity, 11, == P, x v = 961 x 0.293 11,

= 281.57

i"

'I

)(

en'ep/)(

=

x

N/m

I

[From HMT data book page No. 144]

Vo" hfg> PI' .' values in Equn (I) , P... o, ep"I ~T Csf h'fg> n a~d P, Q " .. ' ,:

Specific volume of vapour,

Vg ==1.673

m3/kg

t

= 1.43 x 105 W/m2!

Heat transfer, Q

!p" '" 0.597 kg/m31

x

Q

I

I Power

_1

(961--0.597')1 0.5 ' 0.OS88 ] 3

103

x

1.740

'

= 1.43 x 105 x

= 1.43 x

'" IIOoe - lOooe

Scanned by CamScanner

2256.9

= 1.43 )(

~T =Excess temperature . ==T w - T sat

looe

x

r::::------

=_11.673

S0, thoIS IS , Nucleate pool boiling.

X'

4216 x 10 0.013

_!_ Vg

I ~T'"

2256.9 x. 103 x [9.81 . .

x [

g

.

editioni]

Substitute,

10-6 Nslm2

Enthalpy of evaporation, h/g == 2256.9 kJ/kg h/ == 2256.9 x 103 J/kg

~

.. (I)

I for water

(~)~ A '" 2,81.57. x I
=

r;

]3

10--0

AI JOO°C

Density of vapour, p"

~T

[From HMT dolo book page No.142(Sixth

I cr - 0.0588 x

[R.S Khurmi Steam table, page No.4)

From Steam Table

,1T== looe <50oe

0.5 [

cr

At 1000 C.

I

'j

(P/-P,,)]

cr = Surface tension for liquid vapour interface

Prandtl Number, P, == 1.740 Specific heat,

[g)(

= Vol x h 'fg

s/xlyg

Where

(Sixth edition)j

Kinematic viscosity. v = 0.293

1

1. Power iDput for boiliDg

.

Density. P, == 961 kg/m3

1.25

For Nucleate pool boiling

[From HMT data book page No.2 I

,

i\

and Condensation

105

A

2!. d2

x

105)(

4

f (0.15)2

= 2527 W = P

input for boiling, P

2527

wi

TransLl"ifij~er:_

u

3. 26 Heat and

MasS

-----_

:

Boiling and Condensation 3.27

-

Saturation I·

1. Rate of evaporation,

(';')

i.e. Tsat = 100° C

We know thaI, Heat transferre d, Q

::m)(

Properties of water at 100° C. [FromHMTdatabook

hr.g n

Q

=>

of water is 100° C.

temperature

page No.2/, (Sixth editioni]

Density, PI = 961 kglm3

,;,::hi

Kinematic viscosity, v = 0.293 x 10-6 m2/s 2527

:: 2256.9 )( 103

Prandtl Number, P,

=

1.740

Specific heat, Cpl = 4216 l/kg K

= P/)( V = 961 x 0.293 x 10-6 iii = 281.57 x 10--6 Ns/m2

Dynamic viscosity, iii Resllll: I. p:: 2527 W 2. 1.11 x 1(J3 kgls

m ::

t

. . d' b 'il' water at atmospheric pressure on a COppe, m/t is desire to 0 W . h' l ctrically heated. Estimate ti,e heatfluxfrom surface whlc IS e e '., . d • h ter. lifthe sur/ace IS malntalne at llO C the surface to I e w~ , . and also the peak hea.tfl~ [June. 2006, Anna Univ]

[R.S. Khurmi Steam table, page No.4]

From Steam Table At

ioo-c Enthalpy of evaporation,

hlg = 2256.9 kJ/kg hfg = 2256.9

Specific volume of vapour,

Given: Surface temperature,

Density of vapour, Pv

0

T w = 110 C.

Q

A

I

aT

2. Critical heat flux, ~'

1.673 m3/kg

_!_

Vg

=

Pv = 0.597 kg/m31

Excess temperature

=

T w - T sat

= II O°C- 1000

I aT=

Solution: aT

We know that,

42

Scanned by CamScanner

\03 l/kg

=_11.673

Tofmd: 1. Heat flux,

=

"s =

x

=

100e

e

I

100 e < 50° e. So, this is Nucleate pool boiling process.

-------------jt,22·~8~H~~~I~m~ld~A~,,~~.~~S~~~o='~~ifi~er - Nuclcare pool boiling For

Q

Heal flux, A

0.5

[8)(

xh = 111

___

'fg

(P/-PI')1

----

Boiling and Condensation 1. 29

x

a

- 0.18)( 2256.9 )( 103)( 0.597

[From HMT data book page No. 142 (Sixth edt«'on))

x [ 0.0588 )( 9.81 )( (961- 0.597») 0.25

(0.597)2

Where n = I for water

=

a = surface tension for liquid vapour interface

Critical heal flux,

At JOO°c.

@

0=

1.52 )( 106 W/m2

0.0588 N/m

I

[From HMT data book page No. 144)

For water - copper => Csf = surface fluid constant

Result: I. Heat flux,

= 0.013

t

*

= 1.52 )( 106

= 142.83 x 103 W/m2

2. Critical heat flux,

[From HMT data book page No. 143)

W1m2

t

=

1.52

x 106

W 1m2

Substitute, 11/, hfg> PI>PV' a, Cpb £\T, Csp hfg, nand P, values in Equation (I)

(\)~ -t I I

= 281.57 x I~

3

x 2256.9 x 10 x [

9.8Ix

(961-0.597)10.5 0.0588

4216 x 10 J3 x [ 0.013 x 2256.9 x 103 x 1.74

I I

Heat flux, ;

3.1.10 Condensation The change of phase from vapour to liquid state is known as condensation. 3.1.11 Modes of condensation There are two modes of condensation 1.Filmwise

= 142.83 x 103 W/m2

condensation"

2. Dropwise condensation. For Nucleate pool boiling Critical heat flux,

t

3.1.12 Filmwise condensation = 0.18

hfg x Pv [a x g x (P/_pv)]0.25 Pv2

The liquid condensate wets the solid surface, spreads out and forms a continuous film over the entire surface is known as filmwise condensation.

[From HMT data book page No. J 42 (Sixth edition)]

Film condensation

\. I'

L

Scanned by CamScanner

occurs when a vapour free from impurities.

I'I

Dropwise condensation

J.I.1 3



an

J-~"'''';(''' condensation, UIVP""'· .. '

Bofling and Condensation J J I the vapour condenses

into

sl11alll' . us sizes which fall down the surface in a rand IqUid f vano 0111 rash,' . d . sfer rates in dropwlse con ensatron may be as . Heat rran .' mUch as . h' h than in tilmwlse condensatIOn. 10 tnnes Ig er

droplets

0

x ... Distance along the surface. m

0"

... Saturate

Tw

Surface temperature. OC

...

temperature. OC

g ... Acceleration due to gravity. 9.81 mlsl

4 Nusselt's Tbeory for film condensation 3..1 1

hlg ... Enthalpy of evaporation, J/kg

e mathematical solution given by Nusselt is described OVerhere . . Th The following assumption are made for derivation. . I.

The plate is maintained at a uniform temperature TWIn "'h'Ichis less than the saturation temperature T sat' of the vapour

2.

Fluid properties are constant.

3.

The shear stress at the liquid vapour interface is negligible.

4.

The heat transfer across the condensate conduction and the temperature distribution

5.

Tsal

p ... Density of fluid, kglmJ b. Local heat transfer co-4ficient

(h~ for vertical Jllrfllce, laminar flow

h = !... x Ox c. Average heat transfer c~fflClt!IIt

...

(3.8)

(II)for vertical Jllrfau, laminar flow

layer is by pure is linear.

. •. (3.9)

The condensing vapour is entirely clean and free from gases, The factor 0.943 may be replaced by 1.13 for more accurate result

air and non condensing impurities.

as suggested by Mc adams.

3.1.1S Correlation

for filmwise condensing

process ••• (3.10)

[From HMT data book page No. 148 (Sixth edition)]

II.

s, =

,!

,i

r

d. Average heat transfer co-efflcient for Horizontal surface, laminar flow

Film thickn6s for laminar flow vertical surface,

[4 ~ k x (Tsat - T w) 1 0.25 g

x

hlg

x

... (3.7)

•.. (3.11)

p2

where

e. Average heat transfer co-efficient

!'

'1.

for bank o!tubes, laminar flow

Ox - Boundary layer thickness - m ... (3.12)

J.l - Dynamic viscosity of fluid, Ns/m2 I

k - Thermal conductivity

of the liquid, W/mK

Scanned by CamScanner

l

CL:WZ

&&ilME

ea&!S&4ZE&ZLW

.__

3.32 Heat and Mass Transfer

f. For La",lnar

--:---

flow, Re < 1800.

Where

g. For turblilant floW Re > 1800 h. Average heatlransfer

a, '"~PIl P - Perimeter

co-efflclent

for vertical sur/ace, turbula"t/l

k) p2 g h = 0.0077 (Re)o 4 [ -11-2 -

]0,)))

Boiling and Condensation 3.33

We know that, F'II m temperature, T = --...::.:::. Tw+Tsal J 2

0",

110 + 133.5 2

" • (3.13)

I TJ = 121.75 C I 0

Properties of saturated water at 121.75 C == 120 C 0

3.1.16 Solved Problems on Laminar flow, Vertical surfaces

o

0

[From HMf data book page No.2l p = 945 kglm3

Dry saturated stea", at a pressure of 3 bar, condenses

0/ a vertical atIlO"c'

on the s urfact

tube of heightl m. TI,e tube sur/ace temperature'

15 Ie tpt

(Sixth editions]

v = 0.247 x 10--6m2/s

k = 0.685 W/mK

Calculate thefol/owing J.I '" p x

1. Thickness o/the condensatefllm 2. Local heat transfer co-efflcient

at a distance 0/0.25 m: Assume Laminar flow

Given,' 0

Surface temperature, T w = 110 C =

I J.I = 2.33 x

= 945

x

0.247

x 10-6

10-"' Nslm21

For vertical surfaces,

Pressure, p = 3 bar

Distance, x

V

Thicknes, Ox=

[4 J.I k

1°·25

x x x (Tsal - T w) g x hfg x p2

0.25 m [From HMf data book page No.l48 (Sixth editiont]

Toftnd,' I. Ox

4 [

2. hx at x = 0.25 m Sollltiolf " Properties of steam at 3 bar From steam table,

I

[R.S. Khurmi steam table. page No.JO]

hfg = 2163.2 kJ/kg = 2163.2 x 103 J/kg

L1

I

t i

Scanned by CamScanner

x

2.33

x

10-"' x 0.685

9.81

x

2163.2

x

x

[133.5 - 110]

103 x (945)2

x

-1

rIT-h-i-Ckn-e-ss-,o-x-=-I.-I-8X-1-0-4m Local heat transfer coefficient , h x

0.25

-

1°.25

3.34

Heat and Mass Transfer 0.685 hx -1.I8x 10-4 [hx

Boiling and Condensation 3.35

= 5805.08

W/m2

KJ

We know that,

Result:

Ft'I m temperature, T = Tw +T sat f 2

Ox =).)8 x 10-4 m hx = 5805.08 W/m2 K r:;l

~

60+ 100

=

A vertical tube of 65 mm outside diameter and 1.5 .'" exposed'to steam at atmospheric pressure. The out

2

ITj

IO"g~

er SU'./IlCt of the tube is maintained at a temperature 0/ 600C by

circulating cold water through

el

0

= 80

Properties of saturated water at 800

e

[From HMF data book page No.2 J]

tire tube. Calemate tht

P = 974 kglm3

following: v = 0.364

1. The rate of heat transfer to the coolant. 2.

Diameter, D Length, L

Surface temperature, T

65 mm

1.5

=

0.065 rn;

m

60°C

\I'

10-{; m2/s .

k = 0.6687 W/mK

The rate of condensation of steam.

Given:

x

Il = P x v = 974 x 0.364 x 10-6

III

= 354.53 x 10-{;Nslm21

Assuming that the condensate film is laminar

Tofind:

For laminar flow, vertical surface heat transfer co-efficient

I. The rate of heat transfer to the coolant (0)

l-r

h=O.943

2. The rate of condensation of steam (/;1)

Solution:

{From HMT data book page No. 148 (Sixth edition)]

We know, saturation temperature of water is 100DC. i.e..

I Tsat

=

100°C

I

h ] 025 ~ . Il L (Tsat - T w) k3 P 2

The factor 0.943 may be replaced by 1.13 for more accurate result as suggested by Mc Adams

Properties of steam at IOODC 1.13 [(0.6687)3

=

[From R.S.Khurllli steam table. page 110. 4} Enthalpy of evaporation, hfg

= 2256.9 kJ/kg

=

Scanned by CamScanner

2256.9 x 103 J/kg

I

II = 4684 W/m~

1 J

x (974)2 x 9.81 x 2256.9 x 103

354.53 x 10-{; x 1.5 x (100 - 60)

0.25

J 36 Heal and Mass Transfer I. H_ "."sfer BOiling and Condensalion 3.37

Q

Rtsllh: Q= 57,389 W

m = 0.0254 4,684

jQ

57,389

1t x

x

0.065

x

1.5

(100 - 60)

x

Wi

[II

kgls

A vertical flal plale in Ihe /0':'"

0/ fill

is 500 """ ill "elg'" aIId is

exposed to steam al atmospheric pressllre.

If slIr/tlce 0/

tile pi tile is

maintained til 60· C, calcllltlle Ihe /ollowing ii) TIre rate of cOlldtlfSatiolf of steam (,;,)

I. The Jilm thickness tlllhe Irtlilinl edge

2. Overall hetlllrtlns/er co-ejfic;elft

We know that, Heat transfer, Q

=

4.

Q

m=

=>

3. Heat trtlllS/er rete

m hfg

Assllme laminar flow conditions and IInit width o/the pltlle..

~g

Given:

57,389

m=

The condenstlte mtlSs flow rate:

x

lIP

Height (or) Length, L = 500 mm

kgls

I

Surface temperature, Tw

2256.9

1m = 0.0254

Let us check the assumption of laminar film condensation

=

0.5 m

= 60° C

Toflnd : 1. Ox

We know that,

2. h

, II

Reynolds Number, Re = 4m PJl where

3.Q

4.m

I

P = Perimeter'" ltD => Re

=

= It x 0.065 4

x

= 0.204 m

.0254

Soilltion: We know that, saturation temperature of water is 100" C

0.204 x 354.53 x 10-6

i.e.,

I Tsat

=

100° C

I

[·'R-e-=-14-0-6~...L3 < 1800 Properties of steam at 100° C So OUrassumption (laminar flow) . IS

Scanned by CamScanner

correct.

[From R.S.Khurmi steam table, page No. 41

3. 38 Heat and Mass Transfer hfg = 2256.9 kJ/kg hfg

= 2256.9

Boiling and Condensation J. 39

x 103 J/kg

2. Average heat transfer co-efficient, (h) For vertical surface, Laminar flow

We know that, Film temperature,

=

Tf

Tw+Tsat 2

h = 0.943'

60 + 100

{From HMT data book page No.21}

10-ti m2/s

=

P

x

v

=

111 = 354.53 1. Film thickness

x

974

x

10-ti

10-ti Ns/m2

IQ

We know, For vertical plate, 4 u k x (T r-

[

g x

where

sat

- T )

"lg x p2

w

1

x = L = 0.5 m

Q (Sixth edition)}

4 x 354.53 x 10-6 x 0.6687 x 0.5 x (100-60) 9.81 x 2256.9 x 103 x (974)2

~

m

0.25

1

m 1m

I

-

Scanned by CamScanner

=

»:»

1,23,286 W

We know that,

'.

[

Lx

4. Condensate mass flow rate, (,;,) 0.25

{From HMT data book page No. 148

~ Ox =

h A (Tsat - Tw )

(Tsat-Tw)

-= 6164.3 x 0.5 x 1 x (100 - 60)

1

Film thickness, Ox =

=

= h »

(ox)

.

w)

1 0.25

J

I h = 6164.3 W/m2K·1 Heat transfer, Q

0.364

x

l~ x Lx (Tsat - T

'u

3. Heat transfer rate, (Q)

k = 0.6687 W/mK 11

p2 x g xh(v

x (974)2 x 9.81 x 2256.9 x _103J 0.25 h = 1.13 (06687)3 _:_. [ 354.53 x 10-6 x 0.5 x (100 - 60) .

0

x

x

as suggested by Mc Adams

Properties of saturated water at 80 C

v = 0.364

k3

The factor 0.943 may be replaced by 1.13 for more accurate result

2

p = 974 kglm3

r

. m x hJg Q hfg 1,23,286 2256.9 x 103 0.054 kg/s

I

I

f

III '/PII' i/I,d Mil" 'l1f11l4/JlI

"'11' Ii

W

~'J~1iIJ Vilit ~ ''J,).?') I)

/1',

II) IIYif,.

I

)'1/1

'{".I'I'

~1l>lJitlA'''';, 1/4IJi!Q>i/

¥IIIIWIII"I,

'I 1'11111 ",,,1))<'1

tIl'",;,

'I,

~¢/

'/.,:1/

Wi

17·

.'

'J h'i r" u)r ,fJ 94')

{IIi I IIJO

Z

I'~ "I~i4'i'I,J(J by

['I[ - 1l()"C] / rr()l11 \I ~

0.364

1,1 ~

x \I

354.53

I. FIt""lJic/"'I!.H

974

C

x

0.364

=[ 4

x

I

(974P / I()

I

I, I

x

425f).9 _. OJ / (100 (0)

0,5

g

x

We know that,

x (TS
Q

N IjJ [From /-IMT data book page 0 (Sixth editiM)} 354,53

x

10-6

x

0,6687 x 0,5 x (100-6Q2]

0,25

::::>

m m

9.81 x 2256.9 x 103 x (974)2

1m

1

Scanned by CamScanner

= 1,2),286 W

4. Condensate man flow role, (,;,)

[41lk

.

{'Jf " 'II '. a<

,),IjJ

/

i

= It A (Tsol - Tw )

~ 6164,)

IQ

= L = 0.5 m Ox

r
x

1

where

::::>

Q

10-6 NS/m2

< Ur =

J '11) j

10-6

x

We know, For vertical plate,

r

~III

J. Iteut tronsfer rate, (Q)

(oJ

F'It m t hick Ie' ness,

354053

Heat rransfer, x

/ I, ' (J

I'

IIM1' data baok p(lg~ N~,2IJ

k = 0,(,687 W/",K l' = P

'iI:

,l,r

ij/l)~

(O,fiIi~7)3

I

10 r, tn2/S

x

II

I ! Ji

JliOJJi

M~ AtJ"JI1,

11-1,11.

water nt WI" C

Pl'Op~rtles 01' saturated

1)'/-1'~

t ','II Ill",/i

m

x

l'Jg

Q hJg

1,23,286 2256,9

x

103

0,054 kg/s I

I

1 x (100 - 60)

j()lj -

<)2

.

r

b'J

3~1Y ~# ,,_<1~'

=':.1'.

y/

~~ 'v#

¢ ~

'fi'

.t~

<;:¢

I' ~"1"'"

'fO __

.(;

~

ill tfi~

~

/

!#,~,

-.

~"e

~ 1~ --4.,.:L UlJ-Jl_ #H 11IJv.'-~

~AI

,.

Sf; ~J!"~

~

I'/,PJ..,

j;yt;t

S'fi UftI~!'

If-

i

~iI!t#~iJf

Wi,

'"W

""'1If~

~ l6-_4MM ~JI«frr ~

~f_

tilt

*

·~~r1
Jl"t(e:!'iit!YI7(.f

• ~ If!tke,t4lfe..

~ .. -.,__

/f'N_ Hr-ri

tf£.vN//,k

VA/ '.-"1:/J

j;,.;;.t ,,~~1I!:iottI

~.

L e.

1iwI ~,,-ifd lMt11 __

t

Pfb(

ItIWJI H lite

P--IIlflOt$fU

w-qFurior11j

Ole

'**"

~.: Pr=~,"': 1}.1ia

a)

bar

M<2, A: '::O-cm / 50 em:

050 ' 0.'::0; a.25m)

Film thidlU1f We know, FIlf vertical surfaces

Serface temperamre, T... = 2ft C

Distance, x

= 25

em

= (US

m

Iix

4 I' k x (T sat - T...) 025 =

g""lg"p2 (From H,..rr data book page No. /48J

Tafoul: a) Ii.. c) h

0x =[4><82751'

9.81 x 2403.2

d) Q j) h at 3D·

Scanned by CamScanner

10--6>< O.612xO.25:<{41.53-20)

Iii..

= 1.46 x 1Q-4 m

I

>
025

F Boiling and Condensation J.43

3. 42 Heat and Mass Transfer

[Assuming Laminar q Ow]

b) Local heat transfer co-efficient (h::J h x

e) Tolal sleam condensalion

= !....

~

0.612 hx""

=nlxh/g

Q

Heal transfer,

Ox

rale (,;,)

g__

m

l'fg

1.46)( 10-4

[&=4,191 W/m2gJ c) Average heat transfer co-efficient (h)

E~~-o.o I

[Assuming Laminar flow]

k3)( p2)( g h ""0.943

x

hr.]

125 kgls

025

jg

[ 11x L x (T sat - T w)

f) /ft"e plate is inclined al ONlil" IlOri'l.onla: hinclined

hYl!rtical x (sin 0)\4

~

hinclined

hYertical ~ (sin 30)\4

~

hinclined

=

I hinclined

=

The factor 0.943 may be replaced by 1.13 for more accurate result as suggested by Mc Adams . [k3 p2 g hr. ]0.25 ~ h = 1.13 jg 11 L (T sat - T w) where L = 50 em

30,139.8 2403.2)( 10J

m

= 0.5

x

10-6 x .5

K]

4,708.6 W/m2

x

We know that.

(41.53 - 20)

Reynolds Number, R

e

Ih

=

5599.6 W/m2K·1

W ~

We know that,

=

Re

4

=

~io.~<

)

h x A x (Tsat - T w)

=

(5599.6)

x

0.25

x

x

0.0125 827.51 x 10-6

x

1800

So our assumption (laminar flow ).IS correct

(41.53 - 20)

I Q = 30,139.8 W I 43

Scanned by CamScanner

4~ WI1

width of the plate = 50 cm = 0.50 m

0.50

=

=

where

d) Heat transfer (Q)

Q = h A (T sat - T w

(Yl)\4

x

Let us check the assumption of laminar film condensation

m

h = 1.13 [(0.612)3 x (997)2 x 9.81 )(2403.2 x 103] 0.25

827.51

5599.6

$.44 Heal and Mass Transfer

-----

Result: a. 5.\" = 1.46

x

b. h.t =4191 c. h

10-4 m

Properties of steam at 1.7 bar [From R.S.Khurmi steam table, page No.9]

W/m2K

= 5599.6 W/m2K

hfg

d. Q = 30,139.8 W

=

2215.8 kJ/kg = 2215.8

](P

x

J/kg

We know that,

e. ,;, = .0125 kg/s

Film temperature,

f. hinclined = 4708.6

m

Boiling and Condensation 1.45

Solulion:

Tf =

Tw+Tsat _.:___:.:=-

2

W/m2K.

85+115.2 2

Tire outer surface of a cylindrical vertical drum huvlng 25c", diameter is exposed te saturated steam at 1.7 bar for condensation. The surface temperature of the drum is maintained at 85"C.Calculate tirefol/owing

Properties of saturated water at 100° C [From HMT data book page No.2/ p = 961 kglmJ

J

v = 0.293 x 10--6m2/s

I. Lengtlr of the drum k = 0.684 W/mK

2. ThicA"nessof condensate layer to condense 65 kg/h of steam. f.I

Givm:

I f.I Diameter, D = 25 em = 0.25 rn; Pressure, p

=

= p =

x V =

961

x

0.293

x

10--6

281.57 x 10--6Nslm21

1.7 bar For vertical surfaces, .

[Assuming Laminar flow]

Tw = 85° C

Surface temperature,

Average heat transfer coefficient •

Mass, m

=

65 kglh

65

=

3600 kg/s h = 0.943

1m

=

O.OI8(J

kg/sl

Tofuul : LL

Scanned by CamScanner

1

kJ p2 g x h.fJ 0.25 g [ f.I L (T sat - T ....)

[From HMJ data book page No. 148J

Using Mc Adam correlation, 0.943 is replaced by 1.13

J. 46 Heo: and Mass Transfer (0.6804)3)(

h-1.I3

I

[

(961)2)( 9.81 )( 2215.8)(

281.S7)(

h = 5900 L- 0.2S

10-6)( L)(

103] OH Boiling andCondefUation

(115.2 - 85)

I

0.%- [4

X

x 0.6804xO.18X(l15.2-S5)]O.2S 103)( (961)2

9.81 "2215.8)(

... (I) ~ ... =

Heat transfer, Q

X!Q-{>

281.57

1.20)( 1()-4 m

I

Let us check the assumption

~ Xhfg

1.47

of laminar flow

We know that,

0.0180 kg/s

2215.8

x

x

10J J/kg Reynolds number,

39.8

Q

x

39.8)(

R e

1031/5 103 W

I

= 4';'

PJI

where P = Perimeter = 1t0 = 1t )( 0.25

=

0.785

We know that, I,j

R = _ __:_4_x-=0..:..:.0...;_I..:..SO.;__~ e 0.785 x 2SI.57 x IQ-{>

Q

i

, ~i

103

h

»

1tDL)( (Tsat - T w )

39.8 x 103

h

x

1t x .25

39.8

x

x

L (115.2 - 85)

IR" = 325.71< So our assumption I. L = O.IS m

=>

39.8)( 103

2.0 x = 1.20

=>

0.278

(5900 L-0.25) )( 1t )( .25 )( L )((115.2 - 85)

=>

L

~fthe

drum,

O.ISm L = O.IS m

(laminar flow) is correct

Result:

Substitue h value

LO.7S x (115.8 - S5)

ISOO

!11 Saturated

x

10-4 m

steam at tsat = 1oo·e condenses on the outer JUrface of

1.4 m long, 2m outer diameter

temperature folloHling.

TK, = 60·C Assuming

film condensation,

find the

i) Local heat transfer co-efficient at the bottom of the tube. ii) Average heat transfer co-efficient over th« entire length of tile tube.

2. Film thickness

.t

1

4 " k x (T sat - T w ) 0.25

~=,.. [

g

IX=L=0.18m

x

"tg)(

p2

1

Scanned by CamScanner

Given: T sal = 100°C

Saturation temperature, Length, L = 1.4 m Outer diameter, 0 Surface temperature,

=

II

venice! tube maintained at allnl/orm

2m T K' = 60° C

~~~~~~~-------------------J -# Helll and Mass Transfer

Tojlltl: I. Local heat transfer co-c·fficient,

h;K

2. Average heat transfer co-efficient,

Boiling and ComkJUolion J.49

= [4)( 354.53 )( I~)(

0.6687)( 1.4)( (100

9.81 " 2256.9 )(

h

loJ

x

60>] 0.25

(974)2

[.: x=L= SoIlIlio" :

10.1'=2.24)(

of steam at I OO"C

Properties

[From R.S.Khurmi Enthalpy

l.4m)

l0-4ml

steam table. page NOA}

Local heat transfer co-efficient

of evaporation,

"tg

=

.1'

h

2256.9 x loJ Jlkg

=

.t

[From HMT data book

k

h =

= 2256.9 kJlkg

(hx)'

0.1' 0.6687 2.24)( 10-4

I h;K = 2985.26

We know that, Tw+ Tsat Tf = 2

Film temperature,

Average heat transfer co-efficient

60 + 100 h = 0.943

2

page No. 148]

k3)(

W/m2K

I

(h),

p2)( g )( h£. ] 0.25 JS

[ J.l)( L)( (Tsat-T > w

[From HMT data book page No.J48] Properties

of saturated

water at 80° C [From HMT data book page No.21

p = 974 kglm3

(Sixth edition)}

v = 0.364 )( 10-{i m2/s k

so

The factor 0.943 may be replaced

by 1.13 for more accurate result

as suggested by Me Adams =:>h=1.13

k3 [

p2 g h;

] 0.25

J8

J.l L (Tsat - T IV)

0.6687 WImK

Il = P)(

'II

= 974 )( 0.364 )( 10-6

Il = 354.53 )( I~

Film thickness

surfaces,

0.1' =

=

1.13 [(0.6687)3)(

film is laminar.

laminar flow, 4 Ilk x (T [

- T ) ]0.25 sat IV g x hfg x p2

[From HMT data book page No. 148 (Sixth edition)]

Scanned by CamScanner

(974)2 x 9.81 x 2256.9 )( 103] 0.25

354.53 x 1~

N~m2

Assuming that the condensate For vertical

h

I

x 1.4)(

h = 4765.58 W/m2K

Let us check the assumption

(100-60)

I

of laminar film condensation.

3. 50 Heat and Mass Transfer Boiling and Condensation J 51

We know that, Reynolds number,

4 IIi p;-

R.. '"

... (I)

[1)

A I'ertlcal plate 0.4 m heIgh and 0.3 m wide, at 40-C, Is expoud to saturated steam at atmospheric preuure. Find the following I) Film thldne.u

Heat transfer, Q - hA 6 T - II

It

DL

x

(TSIl1 2

IQ-1.67

at the bottom of the pln'~

II) Maximum velocity at the bottom of the ptate -

1.4

x

/II) Total heat fluX to the plate.

T",) (100 - 60)

)t

Given: Height or Length, L - 0,4 m

106wl

Wide, W - 0.3 m We know that, Surface temperature, T w

Q "" 1.67 x 106 =

';1 II'}.'g

m (2256.9"

~ 40°C

Toflnd: 103)

I. Film thickness,

1m = 0.739 kg/s I

...

(2)

s,

2, Maximum velocity, umax 3, Total heat flux, Q

= nD

Perimeter, P

Solution:

=nx2

IP

=

6.283 m

We know that, Saturation temperature of water is loooe

I

i.e.

..• (3)

TSBI =

100° C

Properties of water at 100° C Substitute P, ~, Jl values in equation ( I) (I) ~

R e

=

4 6.283

x x

0,739 354.53

x

[From R.SKhllrmi steam table, page No,4}

"Jg

10-6

=

2256.9 kJ/kg

= 2256.9

x

103 J/kg

We know that, So our assumption (laminar flow) is correct Film temperature,

Result: 1. Local heat transfer co-efficient,

hI' = 2985.26 W Im2K

2. Average heat transfer co-efficient,

Scanned by CamScanner

h

=

4765.58 Wlm2K

Tf

=

Til'

--2--

+

TSBI

40 + 100 2

~J~.5~2~R~e~.m~an~d~U~~~~~~~a~m~ife~r~~~::~--------. of saturated water at 70° C ~ Properlles [From HMT data book p . age No.(/ (SIXthedit' p = 979.5 kg/m3

Boiling and Condensation J.53

Average heat transfer co-efficient (h),

10")J

v = 0.421

x

10-0 m2/s

.

h = 0.943

kJ

[

Il )( L

k =0.66 W/mK

= 979.5 x

x

0.421

x

jg

.

(Tsat - T w)

x

as suggested by Mc Adams.

10-4 Nslm2

h = 1.13 [ (0.66)3

.,

.sx =

Film thickness,

I

[41l k x (Tsat - Tw)]

h

=

9.81

10-4 x

0.66

x

2256.9

x

x

103

0..4 x (100 - 40)] x

Q

No.ua

IQ

(975.9)2 =

L = O.4m)

pg (ox)2

fmax

= 0.407

x

9.81 (1.87

x

4.12

rnIs /

Scanned by CamScanner

x

2256.9

x

103]°.25

(100-40)

I

= hA (Tsa! - Tw)

=

5633.22

x

=

40, 559

wi

I.

c\. = 1.87 x

2.

umax = 0.407

:. Q

21l 2

0.4

x

5633.22 W/m2K

Result:

979.5

10-4

x

x

= h x (L x W) x (Tsa! - Tw)

0.25

[.: x

Maximum velocity , umax =

x

Total heat flux is given by

g x hfg x p2

(Sixthedition)] x

9.8 I

(979.5)2

0.25

[From HMT data book page

4.12

x

4.12

For laminar flow, vertical surface,

x

hr. ] 0.25

The factor 0.943 may be replaced by 1.13 for more accurate result

10-6

Assuming tha,t the condensate film is laminar.

= [4

X

[From HMT data book page No. 148]

u= pxv

Il = 4.12

p2 x g

x

x

x

10-4

10-4)2

=

10-4 m m/s

40, 559 W

(0.4

x

0.3)

x

(100 - 40)

3. 54 Heat and Mass Transfer

3.1.17 Solved problems on Laminar now, Horizontal sur;;---a ----------~--------------------

fl)

~~

Boiling and Condensation J jj

c~

for horizontal tubes, heat transfer co-efficient

A horizontal tube of outer diameter 2.2 em is exposed to dry stea",

kJ pl g

tit 100· C. Tile pipe surface is maintained at 62· C by CircUlating water through it. Calculate tile rate of formation Of condensate per metre length of the pipe.

h = 0.728 [

h = 0.728[ x 10-2

m

Dry steam temperature,

= 100°

C

Surface temperature,

Tsat

Tw

=

0.25

[From HMT data book page No. 148 (Sixth edition)/

g

Il 0 (TS81- Tw)

Given: Diameter, D = 2.2 cm = 2.2

".h ]

(0.6687)J

x

(974)2

x

9.81

x

2256.9

x

10J jO.25

354.53 x 10-6 x 2.2 x 10-2 x (100 - 62)

lr-h-=-8-78-3.-4 -W-'m-=-2K-',

62° C

Heat transfer, Q

= h

1'0find:

A (Tsat - T w )

h x nDL x (Tsat - T w)

m

8783.4 x

It

x 2.2 x 10-2 x I (100 - 62)

Solution:

[':L=lml

Properties

IQ = 23,068.5

of steam at 100° C {From R.S.Khurmi steam table page No.4}

hrg

I jg h

= 2256.9

kJ/kg

= 2256.9

x 10J J/kg /

W

I

We know that, Q=';' ~g =>

,;,=!L ~g

We know that, Film temperature,

Tf =

Tw + Tsal

m

62 + 100

I Ii,

2

2

Properties p )I

= =

0.364

x

23,068.5 2256.9 x 10J

= 0.010

kgls

0.010 kgls

I

Result:

o

of saturated water at 80° C

974 kg/rn!

=

{From HMT data book page No.21 (Sixth edition)]

I

10-6 m2/s

A steam condenser consisling of

II

square Ilrray of 900 I,orizolllil/

tubes each 6mm in diameter. The tubes are exposed to sllturaled steu", at a pressure of 0./8 bar and II,e tube surface temperalllre is maintained at 23· C, calculate

k = 0.6687 W/mK Il

I fJ

= P

x

I'

= 974

I

x 0.364 x 10-6

/. Heal transfer co-efficielll 2. The rate at whiclt steam is condensed

= 354.53

x

10-6 Ns/m2/

1 I

I

Scanned by CamScanner

_..-(

J56 Heal and Moss Transfer 1.57

Boiling and Condensation G/~n:

= 900 D = 6mm = 6

With 900 tubes, a 30 )( 30 tube of square array could be formed

Horizontal tubes Diameter,

3

)( 10- m N

i.e.

=

.j9Oo

=

30

Pressure, p = O. 18 bar Surface temperature, T w = 23° C Toflnd:

For horizontal bank of tubes, heat transfer co-efficient

I. Heat transfer co-efficient, (h)

{From HMT data book

2. The rate at which steam-is condensed, (m)

page No.J48]

Sol"t;on: (0.628)3

Properties of steam at, p = O. 18 bar {From R.SKhurmi

steam table, page No.8]

h = 0.728 [ 653.7

T sal = 57.83° C

"Jg = 2363.9

I

hfg =

x

x

(995)2

10-ti x 30

x

9.8 I x 2363.9 x loJ

x

6

x

1

0'2.S

10-3 x (57.83 - 23)

I h = 4443 W/m2K I

kJlkg

I

2363.9 )( 103 J/kg

Heat transfer,

Q

=

h A (T sat - T w

)

We know that, Film temperature, Tf

Tw+ Tsal

4443

= ----=.::::....

IQ

2 =

40.41° C 1== 40° C

Properties of saturated water at 40° C p

=

995 kglm3

(From HMT data book page No. 21]

11 = 111-

pxV

=

=

2916.9 W

We know that, Q

= ,;, x hfg

~~=_g_ h

fg

. v = 0.657)( 10-ti ~2/s k = 0.628 W/mK

1t

x

m = _2_9_1_6._9_

2363.9 x 103

, J,'

995 x 0.657 x 10;-6

653.7 x lo-tiNslm21 .:

Scanned by CamScanner

6x 10-3

x

1(57.83 - 23) [':L= 1m]

23 + 57.83

I Tf

x

2

I,n

=

1.23 x 10-3 kgls

I

I

-

.

('

3.58 Heat and Mass Transfer for complete array, the rate of condensation

is Boiling and Condensation J. 59

Solution:

10-3

,;, = 900 x 1.23 x

Properties of steam at 0.12 bar

,;, =

II 07 x 10-3 kgls

[From R.S.Khurmi steam table page No. 7J

Tsat = 49.45° C ,;, = I. I kg/s

I

Irg IIrg

Result: h = 4443 W/m2K

=

=

2384.3 kJ/kg 2384.3

x

103 J/kg

I

We know that, Film temperature, T = Tw+Tsat _ f 2

"' = 1.1 kg/s

II) A condlmser Is to be Ilesiglled to condense

30 + 49.45

600 kgn, of dry saturated

2

steam lit a pressure of 0./1 bar. A square array of 400 tubes, each 01 8 nrm diameter Is to be used. The lube surface Is mointained at

ITf=

I

30· C. Calculate the I,eat transfer co-efficient and the lellgf/, 01

39.72°C 1=40°C

Properties of saturated water at 40° C P = 995 kg/m3

each tube.

[From HMT data book page No. III

v = 0.657 x 10-6 m2/s

Given ,;, = 600 kg/h = ~ 3600 m-' =-0-.1-66-k-gJ-s

I~

kg/s = 0.166 kg/s

I

k

=

)l

=

l)l

Pressure, p = 0.12 bar

0.628 W/mK P

x

v

= 995

x

10-6

= 653.7 x 10-6 Ns/m21

No. of tubes = 400,

With 400 tubes, a 20

Diameter, D = 8mm = 8 )( 10-3 m

i.e.

Surface temperature,

0.657

x

N=

x

.j4Oo

20 tube of square array could be formed

= 20

IN = 201

T w = 30° C

Toftnd:

For horizontal bank of tubes, heat transfer co-ellicient I. h h = 0.728 [

2. L

44

Scanned by CamScanner

)l

k3 2 h ] 0.25 P g 'fg [From HMT date N D (Tsat - T w) book page No. 148

J. 61

/Ju111nKlind ('fJndenHol/on

=""""'-=="=-"~'~~--

. 'I

. "

0.728

(1),628)3 / (99~)2 I. 9.81 'I 2384,3 ,. .I.OJ --_._} 65),7" 10 (j r 20 ~ IJ Yo 10~3)( (<19.45

.jO)

[

j

(12

We know that,

::::> Q '" 400'

IQ

~

on

,fur/flU

lemperature

I" !ltpl fll J/7'C. £."Ima'e II,e 11,lckneu

condenftllefl

.

0/

II"

{ May 2005, Anna Untv]

1m

Given:

Pressure, p ,. 2.45 bar Distance or height, .r '" 1m Surface temperature,

No. of tubes '" 400

=:

__....

==~~--==-==----,h.

Heat transfer, Q. h A (T sat - Til')

::) Q

>_

3.1..8 Annll UnlvU8lty Solved p,,)blem~ -----=====~== .. fD Dry,.,.ru,e;} " ..... t « p"".re 0/1.41 bur c•• J..... ,fur/tlCe 0/ a verllco/lube o/lle/K/Il lm. The lube

5304.75 Wlm2K

h.

.'

400

h

x 11

Yo

5304.75

Yo

D Yo

y

11

L Yo

x (T sat - Til')

8

Yo

10-3

Til' '"' 117° C

roflnd:

Thickness of the condensate Yo

L

Yo

film,

ox'

(49.45 - 30) Solulion:

=:

1.05

106

x

Yo

LJ

... ( I )

Properties of steam at 2.45 bar. {From R.s.Khllrmi steam table. page No.fO]

We know that,

Q=

~ =

;" x

hlg

0.166

IQ '" 0.3957

x

x

hlg = 2183 kJlkg 23843

x

103 ... (2)

106 W 1

We know that, Film temperature,

TI

=

Equating (I) and (2) ~ 0.3957 x 106

=

117 1.05

x x 106

::)IL = 0.37 m I Result: h

= 5304.75

T \I'

W/m2K

L= 0.37 m

Scanned by CamScanner

-t

2 -!

T sal 127

2

L

I TI =

]220

C

I

Properties of saturated water at 122° C '" 120°C {From HMT data book page No.2/ (Sixth edition)] p = 945 kg/m! \I

=

0.247

x

10-{' m2/s

k = 0.6850 W/mK

_13~.6~]~H~e(.~1f~a~nd~~~a~·~~f!1;~a~n~.if.~e~r --------------

~ Boiling and Condensation

IJ - P" v '- 945"

1" -

0.247 )( 10-6

Saturated steam temperature, Tsal = 100° C Tube surface temperature, T w = 92° C

2JJ )( 10-4 Ns/m2 )

Tojlnd:

For vcr,.icnl surlirccs, (Assuming condensate 'I I' k ~. ( 'I'.,. sill

.5 _ ,I

[

Y )( hIll

-

II'

)]

film is laminur)

U,2$

p2

><

10 I

co-efficient. h

2. Rate of condensation,

m

Properties of steam at 100° C [From R.S.Khurmi

/1M"/, data book page No, 148

(.5'lxlhedlllon)} '2,3

I. Average heatlransfer

So/ul/on: /FI'OIII

0.61l50)(

I )( (127-

117)

hfg

2256.9

Tw'" Tsal 2

Tf =

.. [6. 84" IO-Jlo.2~

92'" 100

1.912)( 10'3

2

I

Properties of saturated water at 96° C p ~ 965 kg/mJ

Rel'ull: Thickness of the condensate

film 0x

-

1.35

x

10-4 m

v = 0.310 x 10-6 m2/s k

IIJ

I oj J/kg

X

We know rha •• Film temperature,

1.35 )( 10-4111

steam table, page No.4}

2256.9 kJ/kg

a

"Jg -

l·2$

!1.I1I " 21113 " 10·) x (945)2

IOx •

J. 63

A lube a/2m lellglll u/l(l 25 mm outer diameter is If}be condense saturated steam 01 I ()o'e willie the lube surface is malnlalned al 92'C Estimate the average heat transfer co-efflclent and II,e fale

0/ condensation 0/ steam If Ille lube if condenses on the outside of the lube,

,,=

I"

0.677 W/mK

= 2.99 x 1Q-4 Nslm2

J

For horizontal

= 25

mm

= 0.025

Scanned by CamScanner

m

tubes, heat transfer co-efficient

[June 2006, Anna Univ) k3

p2

g h

] 0.25

'fg [

Tube length, L = 2m

10-6

pxv=965xO.310x

II = 0.728

Given: Diameter, D

kept korizontal. Tiresteam

=

"D (Tsal- Tw) [From HMT data book page No. 148 (Sixth editionl]

1

J

Hi,]' an.1.",us Tr,m,~f~'r

[{0.677),) )( (965)2 )(9.81

---~-

2256.~] 2.99 x 10-" x 0.025 x (100 -92)'

It - O. 28

rh =

1

I .166.08 W/m K

x

Boilmg and Condensation J. 65

°11 3.1.19 Problems (or practice

I

I.

A wire of I mm diameter and 150 II1Ill length is submerged

horizontally

in water at 7 bar, The wire carries a current of I J 1.5 A with an applied voltage of 2. I 5 V. If the surface of the wire is mainrained

Heal transfer. hx

1t

IQ

(i) The heat flux and (ii) The boiling hear transfer coefficient. [Ans : (i) 0.6 MWln,1, (#) 199]0 W/",J'q

x D x L x (Tsar - TIl')

13,166.08 x

We knov

16544.98 W

1t

I

2,

x 0.025 x 2 x (100 - 92)

(i) The heat flux, and (ii) The excess

J,

=Q.

=:>11/

165-R9S ~_'-6 9 '( 10·;

A metal lad healing element is of8 nun diameter and emissivity 0,95. The element is horizontally immersed in a water bath. Ihe surface temperature ofrhe metal is 260 C under steady state boiling conditions. alculate the power dissipation per unit length for the healer if water is exposed to atmospheric pressure and is at uniform temperature. {Am' : I. 75 K WI"'I

4,

11/

A heated brass plate at 150 C is submerged horizontally in water at a pressure corresponding to a saturation temperature of 1250 • Whal is the heat transfer per unit area? Calculate also the heat transfer coefficient in boiling. 0

[Ans : 1.15

x

1(J6WI",l, 900 KWlmlKI

A heated pol.ished copper plate j.; umncrsed in a pool of water boiling at atll10S~heflc pressure. If the 5l1. ;':1ce temperature or the copper plate I' maintainer] at tempcrauvc of 113, <)0 C. determine the urtace heal flux and the evaporanon rate per unit .rea of the plate.

" = 13,166.08 W1m2 K ==

7.33 x 10-J kg/s

I .,I/U': 6,

Water at atmospheric

IIJ KWlml, 49.9] Itg/mlll

p"e~-;lIrc is bodo:d ill a .dle lIlade ofcopper.

bottom or kettle i5 Ilat, 30

I

CIIl

ill diauictcr

and is IlIa:lllaillCd

The at a

temperature 01'118° " '"kulatc the rate ofhcat required to boil water, Also estimate the rate uf evaporaliull of water from the kettle. II",,:

Scanned by CamScanner

a

0

II

11/

temperature

[Ans : 0.679 MW/mJ, (ii) 18.5]"

= ,;, x !JIg

Q

A electric wire vi' 1.5 rnm diameter and 200 mm long is laid horizontally and submerged in water at atmospheric pressure. The wire has an applied voltage of 16 V and carries a current of 40 amperes, Calculate

111al,

11/

ar 180° C,

calculate

17.1 K'II. 17.41 Itlll"f

'.

fr'

_j~.~6~6~f~/~oo~t~al~I(:/~A~~a~~~1}~·(~"'~~fi~o~r

__

~~==~---------~ ~

3.2 Heat Exchnngers

Heat Exchangers

3.2. t Introduction

t

A heat exchanger is defined as an equipment the hellt from

II

hot fluid to

11

'l

------------0- - - -

_

-_ =- =- =- =- =_p=- =- =- =- ='0=-

3.2.2 Types of Heat Exchanger There nre silvern I types of heat exchangers

which

Illay

3.67

gas

-_I --_-_---__-_--"----L

which trnllSfe

cold fluid.

Non condensable

-

HOI water

be

classified on the basis of I. Nature of heat exchange

11. Relative direction

process

III. Design and constructional

=- -- =- =_p=- =- =- =- =- =b-- =---~ -----_ ----.-:.:

Steum-·

of fluid motion

I

features

i

Cold water

IV. Physical state of fluids, Fig 1. of Direct

I. Nature of hC1l1 exchange On the basis of the exchangers II.

nrc classified

Direct contact

process nature

h. Indirect

of heat exchange

process, helll

as heat exchangers

b. Indirect contact

or Open heat exchangers

heat exchangers.

II. Direct contact "eat exclumgcrs

In direct contact heat exchanger,

or Ope" "cal e:~:cll(I"gers the heal exchange

takes place is usually

by mass transfer.

Examples: Cooling

towers, Direct contact

CX(:/IIIIIKcr

c.\'c1I1111gcr.\·

In this type of heat exchangers. the transfer of heat between two fluids could be carried out by transmission through u wall which separates the two fluids. It may be classi tied as

i. Regenerators

by direct mixing of hot and cold fluids. This heat transfer accompanied

(,I}tIIIICI/WIII

COIIIIU'I//{!III

ii. Rccuperators

(or) Surface hem exchangers

i. RegcllerlllllfJ In the type of heat exchangers, through the slime space. Examples : IC engine

feed heaters

II. Rccuperutors

hot and cold fluids now alternately

. gas turbines.

(or) Surface

This is the most common

Ileal exchungers

type of heat exchanger

and cold fluid do nOI come into direct contact separated by a tube wall or a surface. I

Scanned by CamScanner

in which the hot

with each other but are

(

•••

~

~:

• .,..,

3.68 Heal and Mass Transji!r. .~ les Automobile radiators. Air pre heaters, Economlsers . ttc. a",p C.I. .

-';

~~

...

c

•••

~

J 69

Heal Exchangers

1:"_ r;..l

••

b. Counter flow h~u' ~xchang~r

Af/vtl"'tlg~.f I. Easy construction

In this type, hot and cold fluids move in parallel but opposite: directions.

2. More economical

Cold fluid

). More surface area for heat transfer DI.Jn(lvu"'tlg~.,

-

I, Less heat transfer co·eflicient 2. Less generating capacity

II. Relative direction

Hot fluid

of nuid motion

..

-

This typo of heat exchangers arc classified as follows D,

1

Parallel flow heat exchanger

b. .ourucr flow heat exchanger e.

II, "lIrllllel III

'rU88

flllw

Fig. J. 7 Counter flow "eal excltanger

flow heat exchanger

111.1111 flxcllllltllcr

c. Cros» flow keut exchanger

I.hl~type, hot uud cold fluldtl move In the

UUllle

dircctlon.

In Ihlo type, the hot and cold fluids move at right angles other, old l1uld

1101

~l

j

C

j

a

-~

~

I?

'.

thlld

. 1

II

II(Jr, IlLlld

1 '~Il'

,(j 1'1""II,,/lI1W

11(/111~ dulltller 1111/, ). fJ

Scanned by CamScanner

'ft/IIM//ow /111111 e. dla",,,

10

each



.....

J. 0 "'qot and Mass TrollSfer Heat Exchangers

III. Design and constructional features On the basis of design and constructional

features. the heat c"changers

are clas itied a follows. tubes

than one time. This type of exchanger manufacture,

b. Shell and lube c. Multiple

shell and tube passes

d. Compact

heat exchangers

COlfulft,lc

In thi type, two concentric used as a heat exchanger.

one of the fluids are

of flow may be parallel or counter.

exchangers.

They are generally employed when convective

co.efficient

associated

associated

heat transfer

with one of the fluids is much smaller than that

with the other fluid.

IV. Physical state of fluids heat exchanger,

bundle of tubes enclosed

one of the fluids move through a

by a shell. The other fluid is forced through the

Tubes

are classified

state of fluids inside the exchanger,

heat

as

a. Condensers

Hot lluid (001) Ba"'e plate

Based on the physical exchangers

shell and it moves over the outside surface of the tubes.

SIleII

and easy to repair.

There are many special purpose heat exchangers called compact heat

pipes, each carrying

The direction

more

is preferred due to its low cost of

d. Compact h~at ~xcl'QnguJ

tubes

b. S"~II lind tube In this type of

J/It/l and tub~ paSl~J

In order to increase the over all heat transfer. multiple shell and rube passes arc used. In this type. the two fluids traverse the exchanger

a. Concentric

II.

c. Multlplt

J 71

b. Evaporators.

t

a. COnlJl!nsers In a condenser. Ihroughoullhe

the condensing

fluid remains at constant temperature

exchanger while the temperature of the colder fluid gradually

increased from inlet to outlet. It is shown in fig 3.10. In other words, the hot fluid loses latent heat which is accepted by the cold fluid.

<).-

HoI tIuid (In)

b. Evaporators In a evaporator, the temperature

shown in fig 3.11.

Fig J. 9 S/.~II and tube I.tat txChlllfgt,

Scanned by CamScanner

the cold fluid remains at constant temperature while

of hot fluid gradually decreases from inlet to outlet.

11 is

J

1 HUll and MmJ TTamfeT

~~

~

'~.cn

~

c5fruma, ~ r.ruJ heza ~A:" ~

ttc.:pa"::1Il'

~

IBCXI

is tx 0t.2I.e7~

D

~as

~-------------------l 3.1_" ..us..ptiom ~

zn dcm-e oq:n:srioo far

unD

(-or \'IIrious

~pes

0( bc3I

...~~.-e~

o.~~~ I. .Bo!' is.

.~

5l~'

2.

Tbe p\-=u1 bar t:ransfer ~fficicm

3.

l'be ~ilX

~.

Tbe r:nots5 flo ...· l'1IR of bod! fluids are

$.

A.oo rondu~:rioo along ~

is ctIOSWJI

bats ofbodl fluids are c:oomm..

~

C'OIISQD(

is negligible.

The change in kinetic, and potential ~~

of the fluids are

negligihle..

j .,

"1

3.1.5

~l'=t..:

,~------------_L--L

A single pass p3l'1I)JeI now heat e.xcbangtt'5 is sbo"''1l in fi&. 3.12.

L Scanned by CamScanner

Logaridlmic Men Temperahl~ Dirre~." for Parallel Flo,,'

1. 74

/,!.W(

and

Transfer

M(ISS

_,

....

-. -. -.-. -.-.

-. --.. --. -.-. -. -.-.

Cold fluid lIot fluid Cold Iluid

from (3. I~). dQ

e

'pedt

III"

dO

dt ..

III,

fig 3.12 Flow

e" c

Ilrrtlllgelllcllt

~

Let

r',' C,"""'u

"'II - Mass now rate of hot fluid

Specific heat of hot fluid

Cpll -

. Cpc

-

dO

c;;- - c,

.. -dO

[...!_.., ...!_] C"

Specific heat of cold fluid

-

T I - Entry temperature of hot fluid T2

-dO

dT-dt..

"'e - Mass flow rate of cold fluid

de - - eo

Exit temperature of hot fluid

C,

[...!_ + ...!_] C" c,

r ·,'de .. dT-cit]

t2 - Exit temperature of cold fluid

(3.IS)~

C

"

Let us consider an elemental area dA of the heat exchanger. The heat flow rate is given by

[','9- T-tJ

~

'" (3.14)

We know that,

.!!!L = e·.,

_ UdA [

I I]

Ch +

C

,

= -mh Cph

dT

~

dQ

= -mh (ph

dT

~

dT

= me Cpe

dt

.. , (3.15)

cI

Integrating

'~ide I '9

=~

= -

[I

C

h

+

I]

U IdA

C

c

mhCph

. '2

~

L_5]

[ I.

I]

[In B] = - U + I _ CII Cc

. ,,(3.16)

45

Scanned by CamScanner

(J.I B)

[_'_+ ~]c,

de - -UdA(T-t)

U - Overall heat transfer co-efficient.

dQ

...

Substituting dQ value from Equn. (3.14) in Equn. (3.IS)

tl - Entry temperature of cold fluid

dQ = UdA (T-I)

... 13.17)

" C,JCI

A

1/;,01 };xcltO",lIrt J

7

I

I

'" (J.I~

w. know ,h.,. 0-

nt"

'ph

Cr, - T1)'"

"'e C/~

(12-I,)

I ••• (3.20))

fJ

, ':11

e

I I ···(l.21 From equn (3.20).

(Qr)

Q- C, (It -I,)

o ..

~II..It-'I) Cc

VA (M)",

where (An", - 'o~rirhmjc

••• (J.21l

Q

I

(AT)",

..

UTI

~n

..

T,-T2

-UA

_•

It-t'l

3.2.6

-I'])J

-I,) - (T1

In [~:

92) In ( 8,

lempt.nlure d,trermu

= ::1

Loga,.itllmic mn. temper.tue tor co•• ter n01t'

00.

cmd fl.uid

=

-

A

iT, - T1 ~

"J

Scanned by CamScanner

-

It -

1

dirrereue

,

'I

~~r:

~ :..... _.,.

J 78 Heal and Mass Transfer

. ...

.

':.

I

Heal Exchangers

Lei /II Ir _

Mass flow rate of hot flu id

//I

Mass flow rete of cold fluid

J 79

... (3.27) _

e

(.,'c, = me

• Cpcl

Cph - Specific heal of hot flui~

Cpc _ Specific heal of cold fluid T 1 - Entry lemperalure o~ hoi fluid T 2 - Exillemperalure ,i "

of hot fluid

t1 - Entry temperature of cold fluid ...

t2 - Exit temperature of cold fluid U _ Overall heat transfer co-efficient.

Substituting dQ value from Equn(3.24).

Let us consider an elemental area dA of the heat exchanger. (3.28)~

The heat flow rate is given by dQ = UdA (T-t)

d6

= - UdA (T _ t)

in Equn (3.28)

[J_- _!_] c, C/

• " (3,24)

[':6

We know that, dQ

=

-nih Cph (dT)

= -me

Cpe (dt)

• " (3.25)

..!!! =

_ UdA

6

[

1

1]

Ce

C" -

Integrating

jI2da --0 ~

,r

[.: C"

From Equn. (3.2S). dQ -

-"'e CfX'

dt.~

Scanned by CamScanner

= -

[11] CI, -

C

e

j

U dA

• •• (3.26)

[___§J 'I'.

(3.28)

[','d6 = dT -dt]

dt

="'''

x Cplrl

[In

all2

= _ UA [ 1

CI,-

1] Cc

=

T-t]

Heal Exchangers .•. (3.29)

UA (TI

-12) -

(Tr

J. 8/

II)]

Q= We know !bat,

Q= ~Q=

T2)= m,Cpc (12-1,)

mhCph(Tl-

C, (12-1,)

C/.(TI-T2)=

... (3.30) [.: C = m

~Q=

x

C~I

[':92=T2-11 9,=TI-12J

Ch(T,-T2)

~IIc, =TI-T'I

...

(3.31)

I

Q

from equn (3.30)

Q= CC

(12-11)

I~t =¥I Substitute

-ci

h

and

.•. (3.33)

Q=UA(~n",

...

(3.32)

f

where (~T)m

- logarithmic

mean temperature

difference

values in Equn (3.29)

c

3.2.7 Fouling Factors We know, the surfaces of a heal exchangers after it has been in use for some time. The surfaces

do nOI remain clean become

fouled with

scaling or deposits. The effect of these deposits affecting the value of overall heat transfer co-efficient (U). This effect is taken care of by introducing additional thermal resistance given by as follows.

Scanned by CamScanner

called the fouling resistance

an

(R) which is

[' Ilttll

- - ----~----"Iltl/iitl JlIIi¥

.--,;;;,

ttl _-hliffglffl J If) _-.-~

1'01 ('1/1111'" flOHI

).~.8Il:tfll(\II"4lIl"~.

lIy 11_1111 NUlllhlol"

otTl'jUl~r"J'rJuJ11i (NTI))

A hQnl oS hlln~ol' 01111hi) clo~I",110d hy tho l,olllll'ltIJmlc

(t.MTI») when Inlet and olltl~t cj)lIclhloll~

Tallil't\I'IlIUI'~ I)IIlQI\'nu til'''

Me"1J where

~Iledni.id, I1l1t when Ihu prohlel1l INto dUlcnnlne Ihe Inlot or e_1t

h.\Il1IWI'tlllIl'e of helll es.chllnl:!lll'. effccllvelle~s The hem oxchnnger

ef(ecllvellLlsN

Is deflned

Maximum possible heat transfer

P,nlry h:mperll,"re

I. _ En.ry temperature of cold fluid PC '2 - Exl. temperature of cold fluid "C

..!.L

«:

2.

Ileullo.fl by 11111 fluid"

ber o·j'·r'rails f'er U'"lilts (N rU) = --UA N 11111

=

3.2.9 Problems on Parallel now lind

';'11 - Mass flow rate of hot fluid, kg/s

used

';'C - Mass flow rate of cold fluid,

I From IiMT

data book page no. I 51 (Sixth edition)]

l.Heat tmnsfer Q = VA (LJT)nr

"f

U - Over~1I heat transfer co-efficient,

m

kg/s

Cp" - Specific heat of hot fluid, J/kg K I

Cpc - Specific heatof cold fluid, J/kg K

where,

~n'

m"Cp,,(TI-T2)"mCCpc(~-tl)

where

Counter now heat exchangers

,A

/leul gullied by cold fluid

O,,"Oc

c.,

F(}rmulfle

or hoI nuld "C orJlIJ' iJuld "C

'1'2 - r.xh temperature

ns rho mIlo of

actunl hem transfor to the maximum possible hen I unnsfer. Actual hC1l1 transfer

Effecilvcncss •

or I -

method IH usod,

W/m2 K

- Area, m2 -

L

" , . ogariihmic Mean Temperature

Scanned by CamScanner

3. Surface urea of lube A

. Difference '(LMTD)

=

n DI L

where DI - Inner diameter

3.84 Heat and Mass Transfer I

4. Q=,;, x hlg

!I

I'

Heat Exchanger!

where hfg - Enthalpy of evaporation,

Jlkg K

Specific heat of water, Cpc

= 4180

1,85

J/kg K

,

S. Mass flow rate

Overall heat transfer co-efficient. U = 280 W/m2K

,~=pAC

III

Toflnd: Heat exchanger area, (A)

I.

In a counter flow do"ble pipe I,eal exchanger; oil Is COoledfiro", 8S-C 10 SS·C by water entering al 2S· C. TI,e IIIass flow rat« 0,/ all ls 9,800 kgll' and specific I,eal of oil is 2000 Jlkg K. TI'e "'113 flow rate of water is 8,000 kgll' alld specific Ileal of waler ; 4180 Jlkg K. Determine II,e heat exchanger area alld "eallranSltr rate for all overall I,eallrallsfer co-ejJlcielll of 280 WI",lK.

2. Heallransfer rate, (Q) Solulloll : We know that, Heat lost by oil (Hot tluid)

=

Heat gained by water (cold fluid)

Q"

=

Qe

Give" : Hot fluid - oil, (TI' T2)

Cold tluid - water (tl' t2)

Water

= 55° C

Entry temperature of water, tl

= 9,800 =

111111 Cpll = 2000

Fig.l.U

C

= 25°

Mass flow rate of oil (Hot fluid), ';'11

Specific heat of oil,

=

2.22 x 4180 x [t2 - 25)

:::)

163.2 x 103

=

9279.6 t2 - (231.9 x 103)

:::)

t2

x

9,800 kg/s 3600

= 2.72 kgls

Exit temperature of water, t2 = 42.5° C

Heal transfer, Q = ';'C Cpc (t2 - tl) (or) :::)

I

Q = 2.22 Q = 162

mh Cpl.

(T 1- T 2)

x 4180 x (42.5 - 25)

x 103 W

We know that,

';'c = 8,000

kg/h

= 8,000 kg/s 3600

I me

= 42.5° C

kg/h

J/kg K

Mass flow rate of water (cqld-fluid),

Scanned by CamScanner

2000 [85 - 55)

2.72

:::)

Oil

Entry temperature of oil, T I = 85° C Exit temperature of oil, T 2

,;,}, Cpl. (T I - T 2) = ,i'e Cpe (t2 -II)

:::)

Water

= 2.22 kgls

I

Heat transfer,

Q = UA (~T)III

... (I)

[From HMT data book page No. 151 (Sixth editionl]

where (~T)m - Logarithmic Mean Temperature Difference. (LMTD)

3.86 Heal and Moss Transfer For Counter flow,

Heal Exchanger« J.87 Given: Hot fluid - oil,

Cold fluid - water

(TI, T2)

(II' t2)

';'C

Mass now rate of water (cold fluid),

65

(85 - 42.5) - (55 - 25)

=

85 -42.5] In [ 55 - 25 [(6T)m

=

Imc Entry temperature

35.8° C

(I)

(6 T)m ' U andQ values in Equn (I)

of 'water,

162 x 103

= 1.08 kg/s

I

Ii = 500 C

Specific heat of oil (Hot fluid), Cph

=

1.780 kJ/kg K

= 1.780 x 103 J/kg K

Q

~

60 kg/s

of water, t2' = 75° C

Exit temperature Substitute

= 65 kg/min

280

x

A

x

Entry lemperature

35.8

Exit temperature 16.16 m21

of oil, T I = 115° C of oil, T 2 = 70· C

Overall heat transfer co-efficient,U

=

340 W/m2K

toflnd:

Resull: I. Heat exchanger area, A = 16.16 m2 2. Heat transfer,

Q=

162 x 103 W

I. Heat exchanger

area: (A)

2. Heat transfer rate, (Q)

Solution:

o

We know that,

Water flows 01 the rate of 65 kg/min through a double pi . counter flow Ileal exchanger: Water is heated from 50'C 10 7 by an oil flowing tllrougll tile lube. Tire specific Ireal of tl,e oU 1.780 kJlkg K. Tire oil enters at 115°C and leaves 11170"(. TI,eovt hea: transfer co-efficient is 340 WI",1 K. Calcuulte II,e following I. Heat exchanger area 2. Role of lIeallransfer

Scanned by CamScanner

Heat transfer,

Q = ';'e Cpe (t2 - tl)

~Q=

l/~eCpe(t2-tl)

~Q=

1.08x4186x(75-50)

I'

(or)';'h

Cph (Tt - T2)

[.: Specific heat of water, Cpc

Q-=-11-3 x-I-03-w~1

=

4186 J/kg K]

Scanned by CamScanner

.• "'r'

3. 90 Ileal and Mass Transfer (380-210),(6T)m'1:'

"In

,'I

(300-25)

[380-210]

'I

Heal ExchQng",~ J. 91

) , We know that,

300 - 25 •

I (6T)nr

=

I

\

'2'1~:~O~

,"

.;

,\



Heat transfer,

I

Heat transfer, IV

(

.I \,

~ 184' 103

=

..

'I'

,,,,

A' '=

A =

1.27 m2

I

Percentage of increase in area = 1.27 - 1,12 1.12

I. 1'2m2

.,

= 13.3'% '

Resull:

For Parallel flow,

r :

"

= 1.27 m2 Area required for counter flqw = 1.12 m2 Percentage of increase in area = 13.3 %

,

"

I. Area required for parallel tlow

,,1,

2. f.:

7S0·A'>«193.1)

Case (iii)

Case (il)

.

~

I

750. 'l' A,'I,.[:Z18.3)

Area for counter flo~

~ U • A (i.\!)",

IArea for parallel tlow

(6 T)(li

QUA

~

184'103

=>

\ ,', We know that,

Q

(6T)", .

J,

It)

/11 a counter flow single pass I,eal exchanger

»,

Is used 10 cool Ihe

engille oil from J 50"C 10 55"C will, water; available at 23" C

as Ihe

cooling medium. The specific Ileal of 011/s 2125 Jlkg K. The flow

(380 - 25) - (300'- 210) (6T)nr , (, (.1 .,/~

I (6T)ni

-

rete 0: coollllg water I("ougl, the hiller lube of 0.4m diameter is

. [ 380 ~ 25 ]

I

~93.lo)C

2.2 kgls. Tile flow rate of all througt: II,e outer lube of 0.75 m

300-2LO

dlameler

f

co-efficient 10 meet

is 2.4 kgls. /f II,e value of

tts coollllg

requlremenl?

Givell :

=

IQ

Hot tluid - oil. (TI• T2)

, I x 2300 x [380 - 3001

Cold tluid - water (11.12)

Entry temperature of oil. T I

wl

=

ISO· C

Exit temperature of oil. T 2 = 55° C

184xI03

Entry temperature of water. t I - 23' C

46

Scanned by CamScanner

the overall Ileal transfer

is 140 Wlml K, how 10llg must II,e Ileal exchanger be

J. 92 Heal and Mass Transfer Specific heat of oil (hot fluid). Cph

2125 Jlkg K

=

Heat Exchangers J.93

Inner diameter. 01 = 0.4 m Flow rate of water (cooling fluid).

We know that.

mc = 2.2 kgls

'Heal transfer ,Q = U A (~T)m

... (1)

Outer diameter. O2 = 0.75 m

= 2.4

Flow rate of oil (Hot fluid). ;,,,

where

[From HMT data book page Na.151J

kgls (.1 T)m - Logarithmic Mean Temperature Difference. (LMTD)

Overall heat transfer co-efficient. U = 240 W/m2K

For Counter flow. Toflnd: (.1T)m

Length of the heal exchanger. L SO/lit/Oil

[(TI - t2) - (T2 - tl)J

B

:

In [~~ ~ :~

1

We know that. Heat lost by oil (HOI fluid)

=

Heal gained by water (Cold

::)

=

Qc

=

2.2 x 4186x(t2-23)

(.1T)m _ (ISO -75.6)

fl4

- (55 - 23)

In [ISO - 75.6]

Q"

55 - 23

= =

2.4x2125(150-55)

[.: Specific heal of water. Cpc

=

484.5x 103

=

9209.2t2-(211

Substitute (.1T)m ' U and Q values in equn (1) =

4186J

(I) ::)

::)

x 103)

484.4

::)

=

I Exit temperature of water. t2

=

75.6° C

I

I

Qz484.4

Scanned by CamScanner

x 103

wi

240

X

A x 50.2

IA = 40.20 m21

Area. A = It

::) Q = 2.2 x 4186 x (75.6 - 23)

a

We know that,

40.20 = It

::)

103

x

x

DI
x

0.4

x

L

IL=31.9ml

Result .' Length of the heat exchanger, L = 31.9 m.

3. 94 Heal and Mass Transfer

!II

Salllraled sleam .,/16- C b condmsing on Ihe OilIer'''be 0" • single p.ss heal exchanger. Tire hea, txc/r" 'J ""It, 1050 kgllr 01 ttI.,er Irom 10"C '0 95- C. The OVerallIre., ctH/flciml is 1690 W/,.JK, C.lcul.'e Ihelol/ottlbt,

Heat Exchangers J 95 We know that,

91

2 R.1t 01 cOlltitludOlf 01steam. rde"/r

Q '" ';'h x hlg

Heat transfer,

I. Area 01"tIIl exd.lller

I

= 1115 Ulkg

x

1()3= nIh

x

2185

Rate of condensation of steam,

x

1()3

n;h=

O.0416kg1s

I

We know that,

Gha:

Hot fluid - steam

Cold fluid - water

(TI'

(11,12)

T2

= U A (~T)",

.... (I)

fFronrHA"dolohool.

Saturated steam temperature, T I = T. Mass tlow rate oh"3ler,"

Heat transfer, Q

pDg1!No.151J

where

= 126"C

Logarithmic Mean Temperature Difference. (LMTD)

(~T)", -

'" 10:0 kg h 1050 kg 3600 S

For Parallel

now

[ (T,-t,) - (Tl-IV] (~T)",= ......._-[-T-I---II-]--~

Ew..~ ~ofwlter

.. I, =:!O"'C

E.l",c~of"aler.

(~'" 95~C

()\ &"""l':'

ha.llr3:ll3:-er co-efficiem, '''~~h

In -TZ -12 (126 - 20) - (126 - 95)

'" 1800 W m2K In [ 126- 20 126 - 95

"'_ISjUkg '" _IS5

I~

Jk"

r-,

(~-n-",-=-6-1.

C--'I

r•.foM : ..Ala oflxa1 a~.

(A)

Substitute (.~T)", Q, U values in equn (I)

2.. Rz:t of mMensatioo of sseam,

tit

(I)

s..tm..: Hcz tn::l5!a:. Q'"

mc Cpr:

Q'" 0.19

f

- I,)

4186" (95 - 20)

(.: Specjjj beal of water Cpc .Q=91"

loJ W

Scanned by CamScanner

Q=U

:::::> :::::>

91

:::::>

1Area,

x

I
Itesab: = ~ 186 J

~

I. A '" 0.828

I

2.

A (dT)",

m2

mh = 0.0416 kgls

A

mll

x

61

.

I.'

J.96 1111(11 anti Moss 7rcm.lfer In An ,II co,le, of tl" fom

W

,,,,.p,,.,u,,

of tubula, htal txchungt, cools 011t: . "10,,, 0190"(' 10 _'j-t by a largt pool 01 Slain 0", '" I

.$$"",,11111 "o"s'a""tmptrtl'llft """ dI,,_lt,

H,al ExchanglTs

of 21- C. TIlt IlIbt It"IIh Is j"f'

Is 11 ",m. Tilt sptdf'" htal and Sptclflc gravity

Mass flow rate of oil.mh

2",

.. Po)( A )( C

'f

O"'.

011." 1.45 /(Jlkl K and 0.8 rtsptCllvtly. Tilt vtloclty o/Ihtoll&f 61 cmls. Ca/clIl.'t Iht ove'fllI httll I"mslt,

'" 800)(

~

(02»(

800 )(t(O.028)2

(TI'

Cold fluid - water

T2)

0.305 legis

)(0.62

!

(11.12)

Heat transfer, Q

Entry temperature of oil, T, :: 90· C Exit temperature of oil,

T2

Tube length, L

=

0.305)(

= t2 = 28·

32 m

" We know that,

= 2.45

kJ/kg K

Cph = 2.45 x loJ J/kg K

Specific gravity of oil Velocity of oil. C

= 62 cm/s = 0.62

mls

U A (.1nm

(.1T>~,- Logarithmic

Mean Temperature Difference, (LMTO).

[(TI - tl> - (T2 - '2) J

\

(90 - 28) - (35 - 28)

Specific gravity of oil

=

Density of oil Density of water

In [~=~: ] jr(-.1-T)-m-C'-= -2-s.-2"-c-'1

_& Pw ' 0.8

=~ 1000

[Density of oil. Po = 800 kglmJ

Scanned by CamScanner

' ~ •• '(1)'

[Fro';' HMT data book page No, HI]

where

Overall heat transfer co-efficient U Solution:

(90 - 35) .

\L Q'::

In[~::::]

Tofmd:

x

41x103W

For Parallel flow.

= 0.8

103

.r

Heat transfer; .

Cph

2.45)(

!

/Q

C

Diameter, D = 28 mm = 0.028 m Specific heat of oil.

';'h)( Cph (TI -T2)

35· C

=

Entry and Exit temperature of water, t,

~

0.62

c~fflcltnL

GIvrtJf: Hot fluid - oil

J 97

Substitule (.1T)", Q. values in equn (I)

3. 98 Heal anti Meiss Transfer =>

(I)

Q

U A (6T)m

41 • 103

u " 11 0

Lx (6T)nr

U )( 11

0.028

x

x

32

x

StlbilkM! . Wtknowtflat,

25.2

~

Overall heat transfer co-efficient,

U

=

!Z)ln

II

'Ir{c C~ (c, - tl)(or) mh Cp" (11 - T1)

m .Cpc(I:2-.lr) mc C~ (80 - 30) mc C~ (50) Co

577.9 W/m2 K

Resllh: U = 577.9W/m2

Q ..

Heat transfer,

57.7.9

U

pIIrllll~1flow dOllb/e pipe helll exchanger waler flows III .

Ihe Inner pipe and is healed from JO"C

exchllllger. /)dermi"e

"'"Y be

10

10

80"C. OflflOwing t

IOO"C. II is desired

lJ:e ",ini","",

- mh Cph (220 -100) -

ni" Cph (120)

__ --

K

tile IInnlllllS is cooled fro", 220"C

~ MACp,,(Tr-·Tl)

_"';'cC~

120

nih Cph

50

';'cCpe

.

.

---2.4 ';'h Cpli

10 COOl

Let't' is"the lowest temPerature 10 wbich the oil is cooled.

terrrperlltll.re 10 whldl Ii,

So,

cooled.

GIwn:

"

.

~

';'cC~

(1- 30) - "'h Cph (220 -t) I'

Hot fluid - oil,

Cold fluid -: water

..

';'cC~

~

(TI, T2)

-.--)(

,

I

(t -30) -(220 -t)

o/II~CpIr

Entry temperature of water, tl = 30· C

~

2.4 x (t - 30).- (22Q r: t)

Exit temperature of water, t2 = 80· C

~

2.4 x 1-.72

Entry temperature of oil, T I = 220· C

~

Exit temperature of oil, T2

~ ~

z(~O:-t)

I

I

\

2.4 t + t ~ 220 + 72 n.

=

100· C

Tuflnd:

~

t (2.4 +1)

..

""

= 292

3.4t - 292

Ii -

85.:88·C

I

Minimum temperature to which the oil is cooled, (t) RDIIlt: Mioirnum

' .. _JIII!lp'.......

" ....._--

Scanned by CamScanner

lempermln

to wilich

ibe oil may be coOled

is IS:"O C

!)

I•• ,.,.1Id

4" C

fl-..ItHI txjM,~r,ItOl_I~r

6, ~

is coo/~d I~

~"'~riIt, ., 10" C. n~"'.ss flo .. ""~

_trr

I

Htlll £.xchangers 1.101

0 ~ III

_trr is 1.1 j,1s ."d IIt~IfHISS flo.' ,." 01 cold..tI/~ris O.S t IfA., Irusf~r co-~fJ1ci~,,'s on bOl" :Sidlit If rs I,

IIt~ i.di"id .. 1 h., 680

w,.,z K. fllld

tlI~ ana of tIt~ IIHI urhtuf,~r.

~

r

Q=0.S.4186·(36-20)

IQ

I

... (I)

Heat transfer, Q = U A (.:\n",

... (2)

GiwII:

= 33,488 W

We know that,

Hot water (T I' T2), Entry temperature of hot warrer, T 1 = 80· C Exit temperature of hot watrer. T2 = 40· C Entry temperature of cold water, tl = 20· C

(.:\T)", - Logarithmic Mean Temperature Difference. (LMTD)

Mass flow rate of hot water,';'" = 0.2 kgls Mass flow rate of cold water,

{From HMT data book page No. lSI (Sixlh edition))

Where

For parallel flow,

me =.O.S kgls

(.:\T)", - [(TI

Heat transfer co-efficients on both sides = hi = ho = 600 W/m2)( Toflnd:

-II)

-

(T2

-12>]

In [~~ ~ :~]

Heat exchanger area, A (80 - 20) - (40 - 36) (.:\1)", - -------

Sol,,'lon: We know thai, Heat

1051

Q/. mIl Cpl. (TI - T2> 0.2'

In [80 - 20] 40- ]6

by hot water = Heal gained by cold water

~

(11-20)

[.: Specific heat of water, Cp 33,488 12

~ 2093 12- 41.860 -

I

me Cpc (12 - tl)

- O.S' 4186.

4186(80-40)

-~

~ Qc

)6· C

2.708

(.:\T)", - 20.67· C

We know that, 4186 J/kg 1<1

Overall heal Iransfer co-efficient I U

s

!.+.!.. hi

!. _ ho+ 1~llemp"'lure

of cold WIler. 12~ 36· C

Scanned by CamScanner

I

U

hi

ho

"I

"0

... (3)

Heal Exchangers

u=ho+

Inside diameter of the tube, d, = 0,06 m

hj

Outside diameter of the tube, do = 0.08 m 600

x

600

Heal transferred, Q = 1.6

600 + 600

[u (2)

= 300 W/m2 K

I

~

33,488

~

= 300

x

A

x

Q = 44, 444.4 W Toflnd:

Length of the tube, L So/ulio" :

20.67

We know that,

IA = 5.40 m21

Heal transfer, Q

=

... (I)

U A (LH)m

{From HMT data book page No. 151

ResIIIf :

(Sixth edition)]

Heal exchanger area, A = 5.40 m2

I!l /"

JOS KJIhr

3600

.•• (4)

Q=UA(~T)m

~

x

= 1.6 x lOS x loJ lIs

Substitute, Q, U and (~nmvalue in equation (2)

0

mltn

where /rot liquid

JHlroll~1flow ~Ol uc"onf~r,

l~tflIeSal15fYC. Coldfluld 190 Wfm1K rapectfp~1y.

~/"trS III 4fWC

(~T)/II - Logarithmic Mean Temperature Difference. (LMTD)

.

IIIS(J"C lind leav~.f lit I/(/'f,

I"sld~ lind outsld~ htOI tl'flsnsfer cDtffici~nlS Tht'lhsldt

IIr~ 110 WIm21

lind outsidt

tulH ort 0.06m lind 0.08 m rtsp~cti",Iy.IfI"t hour Is 1.6 x IOSk), find tht Itngt" oflht

,

For Parallel flow

dillmdtfSll/

[(Tt-tt)

htat transfmS tub« rtqulrtd.

In [~~

- (T2-tV]

~:J

GiPtn: (400 - 50) - (250 ~ 110)' ,,

Entry temperature of hot fluid, T 1 = 400" C

I [400-50] n 250- 110

'

Exillemperature of hot fluid, T2 ',:"250 C 0

I

Entry lemperature of cold fluid, 11;" 50" C

210 0.916

Exit temperature of cold fluid, 12 = I 10· C I

I

I

1,101

hjhO

Inside heal transfer co-efficient, hi = 120 W/m2K Outside heat transfer co.efficient, ho = '190 W/m2K

L ..n,.

_

Scanned by CamScanner

I (M)m

= 229,25· C

I

...

(2)

('

We know that, Glvtn:

Overall heat transfer co-efficient I

Hoi fluid - oil (TI, T2),

I I -+-

ro -U r;

h;

Entry temperalure of oil, T I - 200" C

hO

Exit lemperalure of oil, T2 - 120" C _~. 0.03

_1_+_1120 190

Enlry temperature ofwaler, II - 25· C Exillemperalure of waler,

_ 0.0111 + 5.26 • 10-3

.1. -

Specific heal of oil, CPh - I.S kJlkg K - I.S • 103 J/kg-K

0.0163

U

I U -61.35

Mass flow rate of oil, ';'h - 0.8 kg/s

KI

W/m2

Overall heat transfer co-efflcienr, U - 400 W/m2K

Substitute, Q, (AT) .. , U values in equn (I) (I)

Q=U •

~

Toflnd: I. Rare of heallrlnsfer,

Q=U A(6nm

~

II •

44,444.4 = 61.35 •

~

IL=

do • L • (AT)m II

x

Q

2. Mass flow rate of water, 0.08 • L • 229.25

12.57ml

3. Area of heal exchanger, A We know that. Heat transfer, Q =

mh CpIJ (TI - T2)

1) Mas flow ralt J) Ana

0/ Ittal

0/ wal~r

excllangt,

~:__--

Scanned by CamScanner

0.8'

=

Length of the tube, L = 12.57 m

[!!lIn a cOllnl~rflow dOllb/~ plp~ heal exchanger Is IIs~d 10 cool lite /ro1ll 20frC to 12frC wilh waUr ava;lab/~ al 15"C as tht c ~dllllfL TIlt exh I~mp~ratllr~ 0/ waUr Is 70~ Th~ sptclflc hm ollis 1.5 tJllg K and Iht ",assflow ret« 0/011 Is 0.8 /igls.1f ol'Uall hea, lrans/t, c~fflcitnl Is 400 WI",zK,find Iht /ollow

me

Solllllon:

Raid, :

I) Ratt 0/ .tat trans/tr

70" C

12 -

I

1.5' 103

Q = 96,000 lIs



(200- 120)

I

We know Ihat, Heal lost by oil (hot fluid)

= Heal gained by water (cold fluid)

~

=

~

mhCph(TI-T2)

0.8'

1.5

x

103

x

(200-120)

';'eCpc(12-11) =

me

x

4186 • (70 - 25)

[.: Specific heat of water Cpc = 4186 J/kg KJ

EM

M

1. 106 Hem and

MUll

{rumltr Ilwl t,u:It{j"y"'~

I

Man

now rile

o( willer, me

O,S(ifj kgl,

rm

1

In /III (III t(lt/lt'I"' III

For Counter now

fIre by

utili/( u CIJIIIIIIIIIII/llt' Ill'w III ]1"(: 111f~"""'I /hiw

(1/1111 I, 'JIJ(J 1If1111 lind Ille mil" //(1'" 'lilt

[OI-tV (I''' ,",

GiveY(ill' chotc«

- (T1-11)]

I"[~I

fl" II plI'lIl1el/III'"II'

[From IIMT dato bOtit,

(i/

'"k

Wille, I. ?IHI 1If/1I,

Wlllllt' fluw helll e~hllnKlu,

wilit ",atO/U', If II,e (Ive'lIl1Iteal "alll/" Jln" lite ore« ul II", Itelll a.t:lIIIII/(".

T2 -II

J_t,,:_

I,J/em, (1111. t(lq4:d /",m ?lre

II 'ub,kIlIWII

tfI·el/lcleII,l.

]11 WI",J K.

Talle ,pecl/Ie I'wa/

,,111,

1 kJllI'(C

(luge M.I j I (Shih edlllo,,)} HOI Huia - oil ('1'" '121.

(2()() - 7(1) - (12() - 25)

I" [ 200 -70

1

'-,nlry ltmpc:rawre

120 - 25

(IiTI", - 111.112' C

(I,. Iz)

of oil. '1'1 - 7(1) C

Exit temperarure of oil. '1'2 .. 40" C Emr)' temperature

I

Cold Huid - ....ater

:n

'1 he rmm flow rate of oil.

I

C

01' water, II .. 2$°

h ..

90() kglh

9()O

.. --

k~;'

3600

We koow that,

- 0.25 kg/s The mass 1101'1rate of water,

';'c" 701) kg/h

Substnute, 0, U, and (6'1')"1 values. ;:,

96,000 - 400

I

<

701) .. - 3600

A " 111.82

kg1s

.. 0.194 kg/s

A - 2,146 rn2 Overall heat transfer co-etflcient,

Rtfllll:

Specific

heat of oil, Cph"

I, 0 - %,000 J/s

2. ';'C - 0.509 kg/s

2 kJlkgo C n 2 x 10J J/kgo C

rQ/llld: I. Choice of heat exchanger

3.A-2.146I11l

2. Area of heat exchanger.

47

Scanned by CamScanner

U = 20 W/m2K

(Whether

parallel flow or counter now)

SlIiIIIiM :

Heal £TchangC'Ts 3.109

w~know

\\~ blow thai, H~

Heat transfer. 0

klst b)' oil (Hot fluid : Heat gained by water (Cold

Q;.

:::>

that.

Qe

0

:::::-

=

n~1 , CpnI (TI -

=

IIi"~Cph

T,)_ or me • CP" (t 2 -

(TI - T!)

= 0.25 x :2 • 103

(70 - -10)

10 = 15.000 J/s I [.: Specific heat of water ~:

[Exit temperature

15,000

.=

12

=

812.08t1-

... (3)

Substitute. O. U. and (6T)m values in equation (I).

41 86 Jik&~

20.302.10 15.000 = 20 • A

43.47" C

of water, t2 = 43.47"

tl )

IA

Cl > T2

= 37.02

x

(20.26)

m21

Result:

Since 12 > T 2, counter flow arrangement should be used. I. Choice of heat exchanger - counter flow arrangement We know that,

Heat transfer,

Q

2. Surface area, A =

... (1)

U A (6 T)m

=

37.02 ml

3.2.10 Problems on cross now heat exchangers

For Counter flow

(or)

Shcllandtubeheatexchangers Formulae used {From HMT data book I. Q = F U A (LJT)

page No. } 5} (Sixth edit;

where F - Correction

(70~43.47) - (40 -25)

page No. 151 (Sixth editiont]

m [counter flow]

factor - (From data book) W1m2 K

U - Overall heat transfer co-efficient,

In [ 70 - 43.47]

(6T)",- Logarithmic

mean temperature

difference.

40 - 25 For Counter flow 11.53

(6T)",

0.569

I

(6T)m = 20.26° C

Scanned by CamScanner

I

[(T I - (2) - (T 2 - tl) In [~~ ~ :~

... (2)

1

1

J

m,d MII,u 'l'ril/l.I!m'

1/(/ /lila/

where

T, ~ 1'.,11' y

or hlit IllIllI,

llilliplinlh,r~

"C

Tl - Exit tVIIII'~rlltllf' (,floul 1111111, "C I, - Elllry IClllrCl'lllurC uf collllluld,

"C (A'I)",

Ex II IClilpCfhlUrc uf' cold Iluhl, ,.C

12·

LUIIlH'ltlllolc

'"V,II]

IC'"11crUlurcdlllere'ltt

1'01' eout1lcrll,.w,

For 'ounrcr llow, ],

/lilil/lo.f/

by "01 PIIIII • /lillIl/lIIIIWII Q/,



"'I, Cpl,(T,

- 1'2)

n

e

b)' 1:11111 Jill III

Qr "tc

/)('(12 -I,)

!I1 III UcrossJIIII~ I"!III I'.H'I"IIIKers, hoi" fli,lll.f II

u","/xell,

(380-210)

11111flllid 1111/.

In 80 - 2 10 JOO - 25

Calli flulds enters III 15' C und teuves at 110' C. Cult'lllllfe th, requircil SIIr/II"1! areu

II/ heat

t!xcllanger, Take aVl!rtllll'l'lIllr""J/fl

co-t!J!1cil!lIl is 750 WI",} K, MIISI flow rail'

0/ hot flllill

- (300-25)

[2

IpeclJl.: IWII 0/1JOO Jlkg K tillers ut JIIO' C 1lIIlllell,'eJ at JOO'C,

2 I 8 J. C

is I kg!.!,

1

I

Given :

Specific heat of hot fluid,

Cph ~

Heat transfer, Q ~ "'" C"" (T I -. T2)

2300 J/kg K

~

Entry temperature of hot fluid. T I~ 380· C

I Q ~ 184 •

Exit temperature of hot fluid, T2 ~ 300· C Entry temperature of cold fluid, t, ~ 25· C Tofind

Exit temperature of cold fluid, t2 ~ 210· C

= 1

I 03 W

I

correction factnr F. refer IIMT data bookpag.

110

16 I (Sixt/, edition}

{Single pass cross flow heal e.rchanger - Both fluids unmixed]

Overall heat transfer co-efficient, U ~ 750 W/m2K Mass flow rate of hot fluid, IIi"

Q = I • 2300 (380 - 300)

From

graph.

kg/so

12-11

X.xis value P = -TI-

Tolilld: Heat exchanger area (A)

T I - T,

Curve value R ~ ----

Solution :

210-25

= ---

II

12 - tl

380 - 25

~ 0.52

380 - 300 ~ -::-- __ 210 _ 25 ~ 0.432

This is cross flow, both fluids unmixed type heat exchanger. For cross flow heat exchanger, Q ~ F U A (6,.)

m [counter flow J

... (1)

{From HMT cia/a book page No. 151 (Sixth dition)

Scanned by CamScanner

X.XIS value is 0.52, curve value is 0.432 corresponding value is 0.97, 'IX"

i.e.

IF

= 0.971

Y

.

,I 11-: II,' II ,,,,,I ""L~,'

~--.-----------------

tr'"L'J""

G/lltlII

:

1101 l1uid

water

Cold fluid - brine SOlulion

(TI' '1'2) O,()

Enlry temperature of water, T I - 20" C

0.8 0.7

r

(II' (2)

Exil temperature

of Wilier, 1'2 - 7° C

Entry temperature

of brine solution,

Exil temperature

II •

_2° C

of brine solution, t2 • 3° C

Heat load, Q - 5500 W

0.6

Overall hcut transfer co-efficient, 0.5

U - 800 W/m2K

Ttl fillll : Area required (A) 0

P - 0.52

So/uliml:

Shell and lube heal exchanger

FlK' ,US

- One shell pass and

two

lube passes

For shell and tube heal exchanger (or) cross now heat exchanger. Q

Substitute Q, F, (6 T)", and U value in Equn (I) Q -

(I)

III

where

F U A (6T)", A"

Correct ion factor

m21

For

Counter

Logarithmic mean temperature dilTerence for counter now. now,

R~.full : (ATJ",

Surface area, A • 1.15 1112

iII

wilier if ('lIoled

IfI""

lit II rtlr/KulIl/IIK

pllltll

.fIIllIl/OIII:tller/IIK

111-1" C 1I11111elll,IIII(III"" C 1111! tle.fll(lI Itellll'llld

Is 55(JO W 111111 lite Ilveflllllll!lI( WIIII( arc« re"u/rl1ll

trunsfer

1"" C III 7" C by IIr/lI~

"II-IIU'c1elll

when ".J/III( II ,f/wllllll,lluhe

wilit lite wilier milk/III(

Scanned by CamScanner

(20

I.~ROO W/",1 K,

I"

3)

(7

[1.Q__l] 7 2 I

heat excl"II/Ktif

one ,Jllell/ ,I(IU ,,,,,111,,: IIr/1I1! ",11111111( IW(I

Illhe IJlI,f:fI!,~,

.• , (I)

218.3

(6'1')", A - 1.15

[counter tlow]

{From /-1M,/,data book page No.151 } F

184 x 10) - 0.97 x 750"

F U A x (AT)

[(AT)",

e

12.S2:iJ

I

2)

"'I

11.1111.,,;11

Mill'

1I"II\llil

' mil

1111, 111111 1III /111 I',III /I"

III/lilil,

/ltllil l'II/IIIIIW"t ,1"/11 IIIIuA /111,i Ilfl /lll

/11111' 11111/1 /iini 11II11111'fl11I111J

1'1'"' UIIII'Ii,

'",,_ I'"hl ,

I' •

I"

¥hlll~,II -

I'll

I I'

J

IAI JI/I

"I I 1\

III'

1I'liI, .1,1, II ',II

I

111'111lit h!llil "Xi h~I1I!"I,

,I\I?

I~ I I

11

~ , 1,

I.!J

J

111/

II- fI,~.11I1i/

,\'11111'11111(1 fill1l11l1,,, /111' (_' II (IImlllllllflll,'" ",I'('IUlllfler,

n,e (Jiml/"fI wnter

Xft"i

value Iii 0,22, curve

(II) counte« flow

Is 0,94.

(II) 1"""l/ul/lIlIY

fluid - steam

"01

(I" '2)

0.94

Saturated

0,9

Entry temperature

steam temperature,

Ex it temperature

F

(t) Cflllf JlIIW.

Cold (Iuld - water

(T,. T2)

R = 2.6

0.7

(' "",1 II"",_'

IIIltl""""P"lIluflllll//'''IIflll!

GII'c" :

l.e.!I~;;~~J

0.8

d,"11 111111 IlIh, ,"",

,1"'lIf. 1/," 1111"III J ,.

", lUI" C. ClIlI'lIlf1ll1ll1i! '''1/1'''1111111,· III tI '''''IIIflelllelll I~' 1'111111)

1\ • ') ~7

HjI~1I111

II ~: 'I, 'Il

i "II

I' , ' •

"i ~(I(I ,

01

II

II

111/ 1IIIIIp (~, Jill' (), '/ ~III' " tt~'IIF III ,,",,1111 (')

/IIINliJ1/

II

II.

I1/'

of water, of water,

T, ~ T 2 ~ 120° C tl = 25° C t2 = 80° C

Tojitlll : (tlT)III for paraliel flow, counter flow and cross flow. Solution :

0.6

Case (i) 0.5

[FromHMTdatabook

For Parallel flow, (t1T)", 0

P

= 0.22

Fig.. U6

Scanned by CamScanner

=

page No. 151]

3.116 Heal and Mass Transfer

Heal Exchangers JI17

(120 - 25) - (120 - 80) In [

XaxlS va Iue P=~

120 - 25 ]

120-80

I

= 80-25

TI-tt

120-25

P = 0.5781

· ., (I)

0

(~T)m for parallel flow = 63.5 C

Tt

Curve value R Case (ii)

= ---

T2

-

t2-tl

120 - 120

= ---

80-25

I R=O I

For Counter flow, >:axis value is 0.578, curve value is 0,

So corresponding

Yaxis value is I Factor

F = I

(3)~(~nm=Fx63.5°C=

I

~

[correction

I

(120 - 80) - (120 - 25) In [

120-80]

""i"2O-2s

I

(~T)m

x

63.5

for cross flow = 63.5° C

I

... (4)

· .. (2)

0

(~T)mfor counter flow = 63.5 C

From (I), (2) and (4) we came to know when one of the fluids in a heat exchanger changes phase. the logarithmic mean temperature difference

Case (iii)

and rate of heat transfer will remain same for parallel flow, counter flow

For cross flow (~T)m = F

I (~T)",

for counter flow

x (~T)m

0

= F x 63.5

I

· .. (3)

and cross flow.

3.2.11 Anna

III

where

University

Solved Problems

In a double pipe counter flow I.eal exchanger, 10,000 IIg1hr of an oil huving a specific "eal of 1095 J/lIg-K Is cooled from 80'C

Fe correction factor

(Refer flMT data book l'oge No. 160) [Correction factor for sillRle pass cross flow heal exchangerone fluid mixed, other unmixed]

50'C by 8000 kglhr of water enlering al 25'C Deurmine

exchanger JOO WlmlK.

area lor all overall heal trensfe» co-efflclent

of

Take Cpfor waler as 4180 Jlkg-K. IDee-ZOU4.

Scanned by CamScanner

10

Ihe heal

Anna Unlv]

3. 118 Heal (111<1Mew '/'rIl1l.'1~cr:_

.__

-------

_----------

!.fI'.!!!wl/ £'rchan/(lfr., J 11'1 Ilent trnnster. 0 ..

GII'I.'n :

';'1 C ,

Cold lluid - water (t I' t2) UI 111 I' 2 . '. 10 000 kg/hI' The mass flow rate (If oil (Hot fluid), "''' ' 10,000 kg 1

1,ot

fl'd

'1 ('1' '1')

• 3600s

We know Ihal,

:-2 :27 kgl~

Hcallrallsfcr,

G", Specific heat of oil,

=-

'd)

e

Q. 2.22 • 418() , (43.85 _ 25) Q

iOl3

17492.

Q - UA (~T)",

(~T)I/I- Logarithmic

, ,"'e-

- 8000 kglh = .~

.•. (1) page No. 151 (.')/xlh ed/l/olI) /

Mean Temperature Diff , erence. (LMTD)

For Counter flow,

kg/s

3600

Gne = 2.22 kglS] Entry temperature of water, II = 25· C 2 Overall heat transfer co-e ffici icient, u -- 300 W/m K

(SO - 43.85) - (SO- 25) In [ 80 - 43.85]

Specific heal of water, Cpc = 41S0 J/kg-K

50 - 25

Toflnd: Heal exchanger area, A

I (~T)m

~~:

I Heat lost by oil (Hot fluid) Qit

=

=

Substitute

Heal gained by water (Cold f1u~ql.I

Qc

2.777

x

2095 (SO- 50)

=

2.22

x

41S0

103

=

9.27

x

103t2-

t2

=

43.SSo C

174.53'

z-

x (t

30.23· C

231.99

I

U and Q value in equn (I)

(~T)m'

Q= UA(~T)m 174.92

x

103 = 300

x A x

30.23

A = 19.287 m2

25) x

I Heat exchanger

103

area, A = 19.287 m21

Result:

I

l Scanned by CamScanner

=

(I) =>

I

=> =>

'I)

Where,

of oil, T 2 = 50· C

Mass flow rate of water, (Cold flui

lIlt

'1') .--~. 1 - 2 or ,;," l)" (12

[From flMT dau, hook

Cph = 2095 J/kg-K

'1 T 1-- SO· C Entry temperature 0 f 01,

Exitlemperature

I

('I'

Heat exchanger area, A

=

19.2S7 m2

3.120 Heat and Mass Transfer

III In a counter flow

double pipe heat txcl,anger, water Is heated /ro",

Heat Exchangerl 1.12/

25"(' to 6S'C by an 011 with a specific I,eat of /.45 KJ/Kg K Gild ... (1)

If tl,e overall heat tronsfer co-elJicient is ,120 WI",2 ·C, calcu~

[From HMT data book .

the following.

(Sf)m- Loganthmic

Tire rate of heat transfer

J)

Q = UA (.1T)",

Heattransfc:r,

mass flow rate is 0.9 Kgls. The ollis cooled from 230·C to 160· C.

I

3) The surface area of tIre heat txchanger

I

(6.1)", = [(TI-t2)-

In

=

= 65

0

C

Mass flow rate of oil,

1(6.1)", = 1·49.4~ C I

Jlkg

Substitute

mh = 0.9 kgls

(I)

Entry temperature of oil, T I = 2300 C Exit temperature of oil, T 2

=

(6.1) '" Q and U val'ues

=> =>

U = 420 W/m2

0

ID

. (I) equation

Q=U A (.1T)m 91.35 x 1()3= 420" A )c 149.49

1600 C

Overall heat transfer co-efficient,

rTI - t2l

lT2

In [230 -65] _;_____.._:___160 - 25

.-:- __

1.45 kJlkg

= 1.45 x 103

(T2-tl)]

(230 - 65) - (160 - 25)

0

of water, tl = 25 C

Specific heat of oil. Cph

(lMTD)

-tl

Cold fluid - water (tl'~)

Exit temperature of water, t2

ereuce

For Counter flow,

[May-2004, Anna Un~J

Entry temperature

•emperature Difti

I

Given: Hot fluid - oil (T I' T 2)

page No./S/ (Sixth edition)]

Mean ...

.

2) TI,e mass flow rate of water

.

IA ~ 1.455 m21

C

We know that, For cold fluid,

Toflnd:

Q = mc Cpc (t2 - tl)

I. The rate of heat transfer, Q 2. Mass flow rate of water,

me

3. Surface area of the heat exchanger, A

[.,' Specific heat of water, Cpc

Solution: Heat transfer,

Q = =

IQ

mh \ph (T I ....:T 2) 0.9

x

1.45

x

103)( (230- 160)

= 91.35 x 103wI

I mc

= 0.545 kgls

I

= 4 r~JA&

.

Result; 1. Heat transfer, Q = 91.35 )( 103 W 2. Mass flow rate of water,

me = 0.545 kgls

3. Surface area of the heat exchanger, /Ii. = ··1;45.fm2

Scanned by CamScanner

I()

-lin \]

-

Heal and Mass Trallsfer

)( 2130.(160-60)

,4 ('o,mterflow cOllcelltric tube IIeat excllallger is used 10 cool engille 25.(' as tl,e coolillg mediuIII. Tl,eflow rate of cooling water tllrougl,

tl,e i""er tube 0/0.5111 is 2kgls wllile tl,eflow rate of oil tllroug/, tl't

42.6

= 0.7

Ollter diameter

", is also 2 kg/so If U is 250 Wlm1 K, "ow long must tile IIeat t.'(cilallger be 10 meet its cooling requirement?

Heat transfer , Q ==

(tl,t2)

~ "

= 2130 J/kg K

Entry temperature of oil, 1 I = 160° C Exit temperature of oil. 12

Inner diameter. DI

C

mc = 2 kg/s

0

ni c cpc (trtl)'

I Q -'425.96)( ~~~-:--_.:..._

Q ,;; 'u A S

'.

"

,,','.

I

.

(or.).ni"cph (T 1- T2)

__

'103

Wr

--'

(,1T) , m I

I'

','

For Counter flow, =2

75.88 C

==

•••

(I)

f,From H MJ. daf(1 b qDf"ol- pfJgB,no., [1$11 '

(,1T)m-Logarith~'ii;M~an'Te;':;pl ,

Outer diameter. D2 = 0.7 m Flow rate of oil (Hot fluid). ,nh

t:

Where,

= 0.5 m

Flow rate of water (Cooling fluid).

.

t2 - 209.3 x 10J

~

Q = 2)( 4186 x·(15.88 -2'5)

Heat transfer

= 25°

'

We know that,

= 60° C

Entry temperature of water. tl

8'37

-

Exit temperature ofwarer • t2-- 75.:8~oC

Cold fluid - water

Specific heat of oil (Hot fluid). Cph

104 t2

(May-200S, Anna Univj

(11.12)

x

I • ~.

Give" : Hot fluid - oil

..

[ .. S 2, '; pecitic hear of water Cpc -- 4/86 l/kg KJ : 42.6 x 104 == 8372 ,,: . .' (rr 25)

oil (C == 2130 Jlkg K) frolll 160· C to 60· C willi waler available at

outer a"nulus,

_ . , 2·X4186)( (r. -25)

"'.

.,'

"f

erature Difference. (LMrD)



'

\' .

t ..

kg/s

Overall heat transfer co-efficient, U = 250 W/m2 K "

Tofind :

Length of the heat exchanzer to , L

(,1 T)m

Solutio" :

= (160 '- 75,88) - (60 - 25) In [160 ~ 75.88]

We know that,

,

Heat lost by oil (Hot flUI.d) -- Heat gamed . by water (Cold fluid) =>

Q/r

60 - 25 ,

49.12

0.8768

Qc

, ,

48

Scanned by CamScanner

'

r

3.124 Heal and Mass Transfer Substitute (~T)m' U and Q values in equation (I)

Q'

Heat Exchangers 3.125

Given:

= 4.2 kg/min

Mass flow rate or hot liquid'';'h (1)

Q =U A(~T)m

=> =>

425.96

x

=>

I

UP = 250 x A x 56.02°C ~

=

Specific heat of hot liquid,

30.415 m~

Cph

= 0.07 kg/s

D, . L

30.415 =

1t

x 0.5 x L

Specific heat of water,

'0 de.ermint

Overall heat transfer co-efficient, U =

is used

th« inlet or exil

.empera.ure

'0 cool 4.2 kglmin

Of 1101

kJlkg K is used for cooling purpose a••

of IS·C. Tire mass flow rate of cooling water is

I. Outlet temperature of liquid, (T 2)

3. Effectiveness of heat exchanger, (e) Solution:

Capacity rate of hot liquid, C = mh)( =

of liquid

2. Outlet temperature of water 3. Effec.iveness of heat exchanger Take Overall heat transfer co-efficient is HOO Wlm2K. Heat exchanger area is 0.30

m2

Scanned by CamScanner

I

1100 w/m2K

= 0.30 m2

17 kglmin. calculate .he following. I. Ou.let ttmpera.urt

kg/s

2. Outlet temperature of water, (t2)

liquid of specifiC hea' 3.S kJlkg K a. 130' C. A cooling wa.er of' specific heat 4.18

= 0.28

Tofind:

,empera'ures of heat exc/ranger

III A parallel flOH/:hea. exchanger

loJ·Jlleg K!

= 15°C

Imc Area, A

x,

mc = 17 kg/min

ResuU:

3.2.12 Solved problems on NTU [Number Transfer Units) method

I

Cpc = 4.18 lUIkg K

Mass flow rate of cooling water,

Length of the heat exchanger, L = 19.36 m

loJ Jlleg K

= 1300C .

Inlet temperature of cooling water, tl

Length of the heat exchanger, (Single pass), L = 19.36 m

INote) NTU me.hod is ustd

x

ICpc - 4.18

L=19.36m

I

= 3.5 IUllegK

Inlet temperature of hot liquid, T, 1t.

=>

mh

[CPh = 3.S

We know that, Area, A =

=,

0.07

Cph x 3.S x

IC=24SWIK! Capacity rate of water,

C· = me

IC

x

103 ... (1)

Cpe

=

0.28 x 4.18 x 103

=

1170.4 WIK

! ... (2)

7

J~.~/l~6~H!,a~,~a~n~d~A~la~s~s~~~a~m~~~fr~ ----------------

__

-

From (I) and (2). Cl1Ii~= 245 W/K CmIX;

0.209 .

CmiR = ~= C'ma.~ 1170.4

CmiR

64%

1170.4 W/K

=

Effecliveness E

.•• (3)

0.209

CmIX UA

=_ CmiR

NTU

Number of transfer units.

NTU=

[NTU

Tofind effectiveness

E,

1100

x

Maximumpossible

0.30

245

.. ' Qmax . •• (4)

= Ij~r

refer HMT data book page no 161 (Parallel flow heat exchanger)

.'

."

I

Qmax

",,' Cmin'(T, -I,) . -

245 ( 130 - 15) \ '.

= 28,175 W

=

1.34

•! .

=

I

Actual heallransfe! rate Q

C· Curve -+ ~ Cmax

'I~''.

'.

0.209

"

EX

Qmax

0.64 ~ 28,175 18,032

'w

I

We know thai, Heal transfer,

Corresponding Yaxis value is 64% i.e.,

hellf Iransf~r

\

From graph. Xaxis -+ NTU

1.34

NTU

[From HMT data book page no. 151}'

IE =0.64

1

.'

.

Q

;',; C;(12 -I,)

18,032

0.28' x4.18 x 103 (12 - 15)

18,032

.11 70.4

12 -

17556

30.40° C Outlel lemperalure of cold waler,

Scanned by CamScanner

12 =

30.40· C

J. 128 Heat and Mass Transfer We know that,

=>

Mass flow rate of oil,

Q

Heat transfer

18,032

=

T2

IOutlet temperature

'"

0.07 x 3.5 x 103 (130 - T2)

18,032

=>

mit .. 520 kglh

mh Cph (T, - T2)

mit '" 0.144

31850 - 245 T2 Inlet temperature of oil,

= 56.4° C

of hot

rIqUl,'d

T2 - 56 .4° C

I

k gts

kgts

T, .. 95" C U'"' 1000 W/m2 K

Overall heat transfer co-efficient, Heat exchanger area, A '" 1m2

Resllil : I. T2" 56.4°C

Toftnd: I. Total heat transfer, (Q)

2. t2 '" 30.40° C

2. Outlet temperature of water, (t )

3. e= 0.64

2

Ill/"• COll"'~rflo"" "tal

t.t:cllangtr, water all0" Cflowing .llltt I'GIt 01/100 k,l1I. It is "taltd by oil 01Sptcific "tat 1100 Jilt, K/10""u., .1 '''t rtlI~01510 kglll al inltl I~"",~ralUrt 0195" C Dtlt""I,,~ lit, lollo""i",

3. Outlet temperature of oil, (T

2

Capacity rate of hot oil, C ,.

,;,,,,, C plt

..

J. Dulin tt"'l'trtlhlrt qf oil

Capacity nile of

water,



t!.\·C".",u.MJ is Iwfl.

[C

GI\wt:

... (I)

0.33"4116 1381.3 W/~

(SfHcijic

Iluid - oil

302.4 W~ ';'e" Cpt.

,.

OI~rtllI"Ht ''''"sltrr CtNffiritlfl if 1000 H~:A'.

HOI

0.144"2100

[c ,.

1. Olld~ It'fffptrtlhlrt 01",.,,,

ol..! Iluid - "'liter

)

Sollilian :

I. Tot.llu., lTa"sltr

HH'

520

3600

... (2) 1/86

Ir"at o/""Qttrr Cp.,. -

Jlt, IV

From Equn (I) and (2)

em In -

30•. 4 WII( 1381.3 WI"

o JJ l'1

~ s

e~I(IOJ~1\

-0:.1.4 UIU

.. 0,

O••dl

I'

...( l

-

Scanned by CamScanner

---------

Number of transfer units,

, ,{Fi;om. HMr

'NTU"'~'

t/QtQ

book page no lSI}

Cmin 1000.)( 1

.' i

302.4

[BTl)'''' : T(I),fi;,d.ejf~ctiv~n~s

}1l '.

~j':te/P'

'II

I

: .....,.

,(4)

HMf: t!.qIa· bOok Page' no 163

.~



I

.

."

(COU.n,{~"jlpw, 'h~at,~C#J(;lnger) f'rOIll graph, Xaxis -+ NTU

\

I:;

: .

I ~, .

!.

Corresppnding YlI?'isvab,ae is 0•.95 i.e.,

,[ e

= 0:.95J

\ ',"

,I.

'.

.:

"

Cmax

:I

0.218

."

() ~.

.l'~-:'pc.'rffllM,Jlkg KJ IJB}'.38;.~""','J.7,6'1f/4~

=

===- =3=S.S='C~)~ ,

1~~~~~eOf~~rit2' ___.;. =

"",'

-: .,,1

'CI·" .../',

='; 35.5

0

I

,



'I

\

1

We know that,

H~at tl;~fer,

Q

95% . : : ?;I~~,~~~~,(~~-

21,5~

21,5~",

IT2

EtfecQ~eness

I o"tlot .... _ofoil.

e Res"lt:

\ . :'{ L .:

I.

3.>

('

,.'

. Qmax;"

..

'

Q = 21.546

2. T2 = 23.751)C 3. ~ = 35S"C

~~in ("(1,;;-11)

302.4 (95 -,20)

I Qmax

. 22,680

:W, I,

Scanned by CamScanner

',I'

W'

;:

!

I

I ~

23.75o

t ". ,:

. ,'.; .' 1,

I,'

cl

T, ~ ~1S"C

:'

~2)\

,~,,2;~,?:2,8:-:-,.Wi1T~.,. =

;.: ~ _ t ,',.' ! :..

Maximum possible peat transfer~

~

0.31 ~ 4~'86..{~':'~Q.")

i-

~='



Cmin

'.' NTU

Jl

.. ';'cCpc{~-tl)

=> .:' 2I"S46 r::::=--=>-----:-""":':,~I(

Curve-+ __..:..;...=··Q;~':l8

r

.

'

I" I

1 ; t;

,'.'\

2J,5~

Cmin

CmIX

: -.'

Heat trapsfer, Q

",q

= 3.3

....

\\\'\

We knQW, m.t,

i,

1.

'I·

I ," ":."" ';1

I

to';

.

/ I'

, J

I •I

'/

I

,

1 I •~ :".

j.,

(,

.;

(,

,I

',

1

-

ll32

Heat and Mass Transfer cross flow both fluids unmLted heat exchanger, water at 6' C flowing .tthe rate 0//.15 legis.It Is used to cool 1.1kgls 0/ air that Is initially at a temperature 0/50' C. Calculate the /ollowing

ill 111 •

Heat Exchangers 3.111 Capcity rate of air C = mh x Cph

= 1.2 x 1010

0/ air 2. £Xii temperature 0/ water I. Exit temperature

IC=1212WIK!

Assume overaU heattrans/er co-efficient Is 130 Wlm1 K and area Is

... (2)

From Equn ( I) and (2), We know that,

23m2.

Cmin = 1212 W/K

Givell :

Cmax

Hot' fluid - air

Cold fluid - water

Cmin _ 1212 C - 5232.5 max

Inlet temperature of water, tl = 6° C Mass flow rate of water, Mass flow rate of air,

me'=

= 5232.5 WIK

1.25 kgls

= 0.23

Cmin = 0.23 Cmax

mh = 1.2 kg/s

.• : (3)

Initial temperature of air, T I = 50° C Overall heat transfer co-efficient, U = 130 W/m2 K

Number of transfer units, NTU = VA Cmin

Surface area, A = 23 m2

= 130 x 23

Tojlnd:

[From HMJ'data book page no.151J

1212

I. Exit temperature of air, (T2)

I

INTU=2.46

2. Exit temperature of water, (t2)

Tofind effectiveness

E•

... (4)

reier HMT UIdata b 00k page no 165J './,

SollItion

(Cross flow. both fluids unmixed)

We know that,

From graph,

Specific heat of water, Cpc = 4186 J/kg K Specific heat of air, Cph = 10 I0 J/kg K (constant)

x

Curve -+ ~

= 5232.5

'"' 0.23

Cmax

Cpc

Corresponding

= 1.25 x 4186

IC

= 2.46



we know Capacity rate of water C =mc

Xaxis -+ NTU

W/K!

Scanned by CamScanner

Ya.xis value is 0.85 i.e.,

... (1)

Ie"

0.85

I

r 3. 13.4-

Heal exchangers 3.11.5

·H.«r a"d M(JssTransftr

-- We knoW Ihat.

Maximum heat transfer _ Cmin (T, - tl) Q

Heal Iransfer,

Q • I,

mex

45,328

• 1212(SO-6). [ Qmax ... S3,328

45.328

w] '\

'

,

1.2)( 1010(50-T2) = 60,600,-

T2

12.6°

=

12.\2,T2

c I

Cm'ln -.

0.23

emlX

8S%

Outlellcmperalure

I

of air, T 2 '" 12.6° C

Result: I. T2

==

12.6° C

2., t2 =, !~.6° C Effectiveness

.

:'

o /n a counter flow heat exchanger; "'aler Is Ileatedfrom 20·C

e

an oil

by

HlI~/, a

10

BO-C

specific Ileat of 2. 5 kJ/kg-K and nlass flow rate of

0.5 kg/so Tile oil is cooled from 1/o·C 10 40"C. If IIIeoverall Ileal Iransfer co-efflc/~nt is UfIO wl':"2 K,flhd thefollowing by using NTU '2.46

",_

"

method

,

I. Mass flo Actual heat transfer . -rate , • I .

"

. ,

,

Q,'i'j



e>
\'

.,

3. Surface area

>< 51,3~8 .

Given : Hot fluid

IL.:Q:.____45_,3_28_W ....... 1

Heat transfer, Q

rate of water

2. Effectiveness, of he,lltexcllt~ng~r

\= 0.85 ..v:

HI

"

,'I,'; ,

me Cpc (t2 - tl) •

.

I

i

'I',

r:

oil ,

I

Cold fluid - water

(T(, T2)

(t(, t2)

Inlet temperature of water, t( = 20° C



45,328

"1.25 x 4186 (t2 - 6)

Outlet temperature of water,

45,328.

'5232.5 ~'-,31·,195

Specific heat of oil, Cph

.~

."

==

ti == 80° C

2.5 kJ/kg - K

I

= 2.5 '.';

Outlet temperature of water, t2 = 14.6° C

',\"

')

"j'

,

x

103 J/kg - K

I

Mass flow rate of oil,

mh = 0.5

kg/s

Inlet temperature of oil, T (= 110° C

Scanned by CamScanner

, I

I

-....,\ ,

1 J 36 Heat and Mass Transfer Outlet temperature of oil. T 2 = 40° C

From equation (I) and (2).

2

Overall heat transfer co-efficient, U = 1400 W/m K Toji"d: I. Mass flow rate of water,

Cmin'"

1250 W/K

Cmax = 1456.73 W/K

me

Cmin

2. Effectiveness of heat exchanger, e

max

3. Surface area, A

-"""i456J3

Cmin

=

Cmax

Solll 1;0" :

1250

_

C

=

0.858

0.858

'" (3)

We know that, Heat lost by the oil

=

=

We know that, .

o,

Qh mh Cph (T I - T 2)

Heat gained by the water

T1-T2 T, _

Effectiveness.

t··· . mllc",. -- Cmin1

t,

E = _-

me Cpc (t2 - tl)

[From HMfd ata boak, page

110-40 0.5x2.5x

103(110-40)

4186

= mcx

x

(80-20)

[ .: Specific heat of water Cpe me

0.348 kg/s

Mass flow rate of water, me

0.348 kgls

Capacity rate of oil (Hot fluid), C

=

0.5

x

2.5

=

=

Ie =

Scanned by CamScanner

= 0.71\

From graph, Yaxis -+ x

103

x

E

= 0.77



Curve -+ ~

Cmax

••• (1)

= 0.858

Corresponding X axiS . value is 3 •4 , .'..e , NTU

~c Cpe

0.348

IE

[To find NTU, refer H ut data book page no 163J I'«:ower fl ow)

Ie = 1250 W/K I Capacity rate of water (Cold fluid), C

.

110-20

4186 llkg

= mh Cph =

1S 1J

110

We know that, 4186

1456.73 WIK \ •.. (2)

NTU = UA

Cmin 3.4

=

1400 x A 1250

=

3 .4

(FromJlMT data book, page no.l51 J

3.138 Heat and Mass Transfer Inlet temperature of water t _ 2 , ,- O°C

0.858

0.77

Heat ExchangerJ

Mass flow rate of Water. ';'c '" 10 kg/s Overall heat transfer co-efficie I Un , - 600 W 1m2 K Heat exchanger area. A '" 6 m2 Effectiveness, Toflnd:

E

I. Exit lemperature of oil, (T 2) 2. Exit temperature

';'c = 0.348

2.

E =

kgls.

ph

IC = 6300 apcit

It is desired to use double pipe counter flow heat exchunger to cool J kg/s of oil (Cp = 2.1 kllkg K)from 120 e. Cooling water at 10'( enters the heat exchanger at a rate of /0 kg/so The overall Iteat transfer co-efficient of the heat exchanger is 600 WI",} K and tht heat transfer area is 6",1. Calculate the exit temperatures of oil and water. [JlIl1e-2006. Anna niv]

W IK

=

';'c x Cpc

=

10

x

... (2)

(._. Specific heal of water, C{X; Fr m Equn (I) and (2), Cmlll

Given :

= 6300 W/K

max =

water u.j t-)

Mass flow rate of oil, Specific heal of oil

HOltluid-oil

,i,,, = 3 k

C/)IJ =

41860 W/K

T"T2 =

s

6300

41,860

2.1 kJ/kgK

=2.1 Inlet temperature

'" (I)

4186

C=4186~

D

c

I

rate of water, C

3.2.13 Anna University Solved Problems

Cold fluid

x C

=3x2.lxIOJ

0.77

3. A = 3.03 1112

Q]

=,;,,,

C

I.

(1 ) 2

Solution: Capacity rate of hOI oil.

3.4

NTU

Result :

of water,

of oil, T,

=

=>

10 J gK

max

120°C

49

Scanned by CamScanner

Cl11m

=

0.150

···c

= 4186 J/k

.,

----~:-----IF~;h~~--[From HMT data

3~.~14~O~H~ea~t~a~n~d~M~~~s~v~rwu~g.~e~r __ UA NTU= -Cmin Number of transfer units,

600

x

b00 k page no 15/]

___ ------~-----:--------------~H~e~a~t£r~c~h~an~g~e~n~J~.~/4~/~ Actual heat transfer rate Q

6

=6300

U

[NTU =0.57

0.42

10

..• (4) [Tofind effectiveness

E,

0

Heat transfer, 2,64,600

From graph, X axis --+ Curve --+

C =

63

104

x

2,64,600 W

mc Cpc

10

= 0.571

Cmin

x

I

We know that,

refer HMT data book page no J6J} (Counter flow)

NTIl

x Oma.x

E

x

(t2 - II)

4186 (12 -20)

26.32° C [Exit temperature

0.150

ofwaler,

t2

= 26.32°

C

I

max We know'that, Corresponding

Yaxis value is 42% i.e.,

I

E =

0.42

Heat transfer, Q

I

;"" Cph (TI - T2) 3

x

2.1

x

103 (120 - T 2)

78°C

Effectiveness E

1

Ex it temperature

of oil, T 2

78° C

I

Result: I. T2 = 78° C 2. t2

= 26.32°

III A parallel 0.571 NTU

C

flow heat exchanger lias IlOt and cold water stream

running through u.theflow rates are 10 and 1S kg/min respectillel),. are 7S·C and 15"(' on hot and cold sides. rhe

IIIlettemperatures Maximum possible heat transfer, Omax

Cmin (TI - tl) 6300,(120.-

lOmax

exit temperature

=

63 x 104

20)

WI

Scanned by CamScanner

"i "0 =

E -

on tile hot side sllould not exceed SO-C.. usume

= 600 Wlm1K. Calculate tile area of heat exchanger using

NTU approach.

{Dec-Z005. Anna Univ]

GOlf''' .k~ "ill ~ k~/s 0,166 "'SIs 6(l

MtlSS l10w rol( of Iml WI\I~·r. "'II

M:lSS 11,1\\1111113 of

cold water.

I \)

,i"." ~ k ' 111111

• 60 k~/s ')

We know Ihnl.

• 0.·116 kg/s

E 111,)\;1 j Vlln~lSS.

In!cllemj)¢t1IIUI\l of hOI water, T I • 75" Inllll h.'IIIj)crnlure of c,)ld W[lIe,"',II •

I',' ';'/', ph .. Crnln ) /Fm", IIM1' ItII/a hoo4, flaRO

.5'

I'}xil ICIIIJlllnlIUI\l of hoI water, T2• 50"

• 75 - 50 75 - 25

Overall hcnllrnnster l'l)·ctl1cicnl, "0 • ", • 600 W1m2 K III fi"il : Helll Ilxch:lIIgcr area, A

(1'()find N7V. refer N MT d. paJ.:() no 161 (Par /I. From

graph. - 0.5

-';'11 x Cph -0.166

x

C,

Curve -~ C ~

4186

• 0.399

fIIllJI

[£394,87

... (I)

W/K!

t: Specific heal of water.

Cp = 4 J 86 J/Kg

Corresponding

X,nxis value rs . 0.84 , "' e "

KI 0,5

Capcity rate of cold fluid,

c- ,;,c x Cpc

··1

= 0.416 x 4186

EoorrwlK]

... (2)

Effectiveness, E

From Equn (I) and (2) Cmin

ata book

a el flow heat exchanger/

Solulill/' Capacily rate of'ho: fluid. C

110, I J/

(Sixth iJdltlOll)J

= 694.87

W/K

Cmu = 1741.37W/K NTU

Scanned by CamScanner

0.84

N'ru '" 0,84

.r. 3144 Heat and Mass Trans,er

Heal Exchangers 1.145

UA

We know that, NTU (Number

---------------

-

0f

trans

fer units)

== -

•.. (4)

Cmin

{From

3.2.14 Problems for Practice I.

HMT data book page no /5/ J

The specific heats of exhaust gases and water may be taken as 1.13

~ _efficient, Overall heat tranSler co I

..!....+..!....

U

h,

I

and 4.19 kllkgOe efficient

respectively.

'"

area required for the following cases, when the cooling water flow is

ho

0.5 kg/s; (i) parallel flow (ii) counter flow.

[Ans : (i) 4.84 m2 (ii) 4./5 ",1/

_.;;..---

h;ho

U-

2.

16.67 kg/s of the product at 700° C (Cp = 3.6 kJlkg "C) in a chemical plant, are to be used to heat 20 kg/s of the incoming fluid from

600 + --600

100° C (Cp

600"

1 k W 1m2 "C and the installed heat transfer surface is 42 m2, calculate

600

= 4.2

kl/kg "C), If the overall heat transfer coefficient is

the fluid outlet temperatures

Eow/m2K] . and U values Substitute NTU , e mill

=>

(4)

and the overall heat transfer co-

from gases to water is 140 W/m2 "C. Calculate the surface

ho+ h;

U 1

Exhaust gases flowing through a tubular heat exchanger at a rate of 0.4 kg/s are cooled from 450° C to 150° C by water initially at 150C.

NTU"'-

[A =

arrangements. in equation

[Ans : th]

(4) 3.

= 438.4

·c, te] = 186.8 6C, 17M' CJ

8000 kg/h of air at 105° C is cooled by passing it through a counter flow heat exchanger.

emin

at 150 C and flows at a rate of 7500 kg/h. The heat exchanger has heat transfer

A

694.87

coefficient

2 area, A = 1 .945 m

Find the exit temperature of air if water enters

area equal to 20 m2 and the overall heat transfer

corresponding

to this area is 145 W/m2 °C.

Take Cp (air) = IkJlkg 6C and Cp(water)

\.945 m~

Result: Heat exchanger

and parallel flow

UA

300"

0.84 '"

for the counter-flow

==

4.18 kJlkg DC [Ans : 76.1

4.

A shell-and-tube

-C/

type of heat exchanger is designed to cool 1.51~

kg/s of oil (Cp == 2093 J/kg K) from 65.56· C to 42.220 C by using 1.008 kg/s of water at a inlet temperature of26.67 "C. Assuming an overall heat transfer coefficient of681.6

W/m2K and a single-shell.

2 tube pass type of heat exchanger determine the required heal transfer area. use the effectiveness

method.

IAns: 7.9m2/

Scanned by CamScanner

3. 146 Heat and Mass Transfer

(C 1000 ~ . han er hot exhaust gases p g ~~ In a cross flow heat exc g. 1000 C are used to heat Water . 3000 C and leavmg at , entenng at 1250 C The overall heat 0 35 C to' " flowing at I kg/s rom . face area has been found to be . . the oas side sur , coefficient based on '" h d estimate the required gas 100 W Im2K. Using the NTU met 0 ,

5.

WI,al is meant by Filmwise condensation?

6.

transr""l

fi

{April 2000. Oct 2000 MUj . . The liquid condensate

Si~1

3.2.15 Two mark 1.

r .d to

Define boiling

of phase

vapour state is known as boil"

In dropwise droplets

to liquid

from vapour

state

boiling and cOlldensatioll. ".

Boiling and condensation.

proc ess finds wide applications as menu





.1"

In dropwise directly

below

4.

1.

Thermal and nuclear power plant

2.

Refrigerating

3.

Process of heating and cooling

4.

Air conditioning

9.

systems

exposed

vapour.

The heat transfer

rate in dropwise

is 10 times higher than in film condensation.

Write tIll!force balance equation on a I'D/umeelementfor fllmwise on a vertical plane surface.

systems [May-2004.

Where,

AnnaUn·.

and mixing

induce!

by bubble

growth

Bx - Body force in x direction Op - Pressure gradient

ax /0.

Draw different regtous 0/ bollill/l alld wtuu ts Nucleate boil/nil'! [Apri//99Y

detachment.

WlllIt are tlu: modes

10

{April 1999 MUj a large portion of the area of the plate is

condensation

"'"at is meant by pool boiling?

due to free convection

sizes which fall down the surface in a random

condensation,

condensation

. a dd e d to a liquid from a submerzed solid surface, the boll If heat IS I e . ~ d to as pool boiling In this case process IS re.erre, . . the liquid above hot surface is essentially stagnant and its monon near the surface

5.

condensation,

of various

Give the merits of drop wise condensation.

8.

Give tile appllClltlOnoJ

{Dec2004 . 2005 & June 2006 A UJ the vapour condenses into small liquid

fashion.

is known.

condensation. 3.

is known as film wise

[April 2000 , Oct 2000 MUJ

"'IIat is meant by condensation? "' The change

surface

What is meant by Dropwise condensation?

7.

The change of phase from rqui

2.

[Dec 2004 . 2005 & June 2006 A Uj wets the solid surface, spreads out and forms a

continuous film over the entire condensation.

surface area.

. and Answers QuestIOns

Heal EJchangers 3.147

MU. April 200] MUj

Nucleate boiling exists in regions II and III. The nucleate boiling begins tlf

condensation?

III

There arc two modes of condensation I. Filmwise condensation

Scanned by CamScanner

region II. As the excess temperature

is further increased. bubbles

arc formed more rapidly and rapid evaporation 2. Dropwise

condensation

indicaled

takes place. This is

in region III. Nucleate boiling exists upto 6T - 50· C.

~~~----3.148 Heal and Mass Transfer

Heat Exchangers 3.149

c:: 0 u ';::

5. Counter flow heat exchangers

CI)

~... ~ 0

-

!:! c. r:: '";.

Nucleate boiling

6. Cross flow heat exchangers

Filmboiling -

IU

II

7. Shell and tube heat exchangers

v

VI

8. Compact heat exchangers

7

10

/3.

B 10

In direct contact heat exchanger, the heat exchange takes place by direct mixing of hot and cold fluids.

6

10

U.

5

E

Whal is meant by lndirec: c,?ntaciheal exchanger? In'this type ofheatexchangers,

,.... M

W/tal is meant by Direct heal exchanger (or) open heat exchanger?

~fh;at between two fluids

could be carried out by transmission through a wall which separates

104

the two fluids.

~ '-' ~ 103

15. J!,~a~is!!Iea'!.lby Regeneralors?, In th is type of heat exchangers, hot and cold fluids flow alternately through the same space.

(;

10

the t~;fer

2

-

...

t

Examples : IC engin~:...gas turbines. 10

100 50 10 Excess Temperature ~ Te = Ts - Tsat

150

I - Free convection II - Bubbles condense in super heated liquid IV - Unstable film III - Bubbles raise to surface VI - Radiation coming into play V - Stable film l l,

What are the types of helll exchangers? The types of heat exchangers are as follows I. Direct contact heat exchangers 2. Indirect contact heat exchangers 3. Surface heat exchangers

4. Parallel flow heat exchangers

Scanned by CamScanner

[Dec 2005,AU]

Whal is meant byJltCUperalOTf;(or) Surface Ileal excuangen» ..... - .. This is the most common type of heat exchangers in which the hot and cold fluid do not come into direct contact with each other but are separated by a tube wall or a surface.

-

Examples:

/7.

Whut is heat exchanger? A heat exchanger is defined as an equipment which transfers the heat from a hot fluid to a cold fluid.

/2.

/6.

Automobile radiators, Air preheaters, Economisers etc.

What is meant by parallel flow Ileal exchanger? [May-05, AU) In this type of heat exchanger, hot and cold fluidUDoye in the same direction.

/B. Wluu is meant by counter flow Ileal exclla~ger? {May-05. AU} In this type of heat exchanger, hot and Gold fluids move i'!.E_arallelbut opposite directions. /"" 19.

Wluu is meant by cross flow heal exchanger?

In thi~ type of heat-exchanger, hot and coJd floids move at right angles to each other. \ ,.

3.150 Heat and Mass Tralls[e' 20. Wlrat is meant by SI,ell alld tube I,eat exchanger?

------:~~==~~-:=------------U'''at is meant by Effectiveness r

]~.

In this type of heat exchanger, one onhe fluids move through a

Heat Exchangers J 151

The heat exchanger effectivene ss ISdefined . as th . transfer to the maximum possibl e heat transfer. e ratio of actual he·at

of tubes enclosed by a shell. The other fluid is forced through the and it moves over the outside surface of the tubes.

Effectiveness

E =

21. Wlrat is ",eant by compactl,eat e..'(c"angers? There are many special purpose heat exchangers called compact

Q

s.;

exchangers They are generally employed when convective heat co-efficient associated with one of the fluids is much smaller than associated with the other fluid.

Actual heat transfer Maximum possible heat transftr

25. Sketc" tI,e temperature variatio ns In . parallel flo d "eat exchangers. "' an counter flo"' (Dec-O". AU]

22. WI,at is meant by LMTD'! We know that the temperature difference between the hot and fluids in the heat exchanger varies from point to point. In various modes of heat transfer are involved. Therefore based on

}fOt

..

alJicj

II

of appropriate mean temperature difference, also called mean temperature difference, the total heat transfer rate in the

a

C! II

c.

Ih2

92

9)

IC2

E

exchanger is expressed as Q~UA(~T)m where U _ Overall heat transfer co-efficient, W/m2K

~

Cold fluid Ie)

Area Temperature distribution - rara n l",ei flo"'

A - Area, m2 (~T)m - Logarithmic mean temperature difference. 21.

What is meant by Fouling factor? [ Nov.96 We know, the surfaces ofa heat exchangers do not rem' .' ~ ~c~ I It has been In use for some time. The surfaces become fouled scaling or deposits. The effect of these deposits affecting the overall heat transfer co-efficient. This effe C t iIS ta k en care of . . introducing an additional thermal resistance called th r. resistance. e rou

Scanned by CamScanner

Area Temperature distribution - r...ounter flo"'

9) = Ih

92=lh

I 2

-I -I

CI c2

CHAPTER-IV

4. RADIATION 4.1. INTRODUCTION

The heat is transferred from one body to another without any transmitting medium is known as radiation. It is an electromagnetic wave phenomenon. All types of electromagnetic waves are classified in terms of wavelength and are propagated at the speed of light, i.c., 3 x 10M m/s. 4.2. EMISSION PROPERTIES

The rate of emission of radiation by a body depends upon the following f"etors. I.

The wavelength or frequency of radiation.

2.

The temperature of surface.

J.

The nature of the surface.

4.3. EMISSIVE

POWER [EtJ

The emissive power is defined as the total amount of radiation emitted by a body per unit time and unit area. ._ It is expressed

Scanned by CamScanner

in

YiJJJ12.

4.2

Heal and Mass Transfer

4.4. MONOCHROMATIC The energy time

EMISSIVE POWER (EbJ

emitted

by the surface

per unit area in all directions

emissive

is known

length erp as monochr Olllat~ un'

When

the radiant

energy

A part is reflected

surface, and (he remainder

AND TRANSMISSION

falling

I

at a given

power.

4.5. ABSORPTION, REFLECTION

happen.

Radiation

on a body,

back, a part is transmitted

three

=

4.3

a+p+'[

where p and t are known as absorptivity .. . . a, . IVI ,re fl ecnvity and transmissIVity of the surface. i.e., Absorptivity,

a

Radiation absorbed Incident radiation

Reflectivity,

p

Radiation reflected Incident radiation

Transmissivity,

t

Radiation transmitted Incident radiation

thin I

throUgh t~

is absorbed. Q

4.6. CONCEPT OF BLACK BODY Black body is an ideal surface having the following properties.

Fig. 4.1.

If the incident Fig.4.I,

energy

Qa is absorbed,

Q is falling on a body as shown in

Qr is reflected

energy balance yields,

Dividing

and Q, is transmitted,

then

).

A black body absorbs all incident radiation, regardless of wave length and direction.

2.

For a prescribed temperature and wave length, no surface can emit more energy than black body.

A black body is regarded as a perfect absorber of incident radiation. A black body condition can be approached in practice by forming a cavity in a material as shown in Fig.4.2. Radiation passing through the hole into the cavity is repeatedly absorbed and reflected at the cavity walls until it all absorbed.

the above equation

by Q

Q Q

Scanned by CamScanner

Fig. 4.2.

A black body is a perfect emitter. This is a fact which can be proved as follows. Consider a black body at a uniform temperature, placed inside an arbitrarily shaped, perfectly insulated enclosure composed of another black body whose temperature is also

4.4

r

Heal and Mas.' ),a",}"

-ii&'~'

uniform but different from that of the former. The bla~ the enclosure will reach a common equilibrium temperature Y.and' . d .. alter' peno ot time due to heat transfer. a,

Radiation AnlfLt

Enclosure at uniform temperature

T

-

IFrom

I Amax

4.5

28981lmK HMT data book, Page No. 81(Sixth Edition)1

2.9 x 10-3 m~_]

T

... (4,2)

[':p=IO-om1 4.9. STEFAN-BOLTZMANN Fig. 4.3.

The emissive

LAW

power of a black body is proportional to the

fourth power of absolute temperature.

4.7. PLANCK'S DISTRIBUTION LAW

The relationship between the monochromatic emissive power of a black body and wave length of a radiation at a -particular temperature is given by the following expression, by Planck c1 1.-5

J~~ ]_

[l-rom IIMl data "link. !'agl' No. KI(Sixth Editiun)! , .. (4.3)

where

... (4.1)

E " a

I

where

EbA

Stefan-Boltzmann

constant

5.67 x 10 x W/1I12 K4

r

[From IIl'vlT data book. Page No. 81(Sixth EditionJl

Monochromatic

Emissive power - W/m2

Temperature

-.

K

emissive power W/m2

Wavelength - m

4.10. MAXIMUM EMISSIVE POWER, (EllA)max

0.374 x 10-15 W-m2

A combination of Planck's law and Wicns dispiacelllcill law yields the condition for the maximum monochromatic emissive

14.4 x 10-3 mK I

power

1'01'

a black body. (4

4.8. WIEN'S DISPLACEMENT LAW

The Wien's law gives the relationship between temperat~re maxi and wavelength corresponding. to t hee maximum spec t·ra I e miSSive power of the black body at that temperature.

\\ here

T5

1.307 >. I () ~

II,-adial ion ('oll,lant

1.307 x 10 ' I ;

I

bLCLl1

Scanned by CamScanner

I

. (-I ~)

2~

4.6

Heat and Mass Transfer

4.11. EMISSIVITY

h

It is defined as the ability of the surface of a body to rad'

I . late ea. t IS also defined as the ratio of the emissive power of body to the emissive power of a black body of equal temperatu any reo t

Emissivity,

E

=

It states that the total emissive

. any directi . surface rn IrectlOn IS directl POWerEb . froma radIating pi . . y proportIonal ane angle of emission. tothecosineof the

E Eb

[Eb

C(

cos~ '" (4.6)

4.12. GRAY BODY 4.16. FORMULAE

If a body absorbs a definite percentage of incident radiation irrespective of their wave length, the body is known as gray body. The emissive power of a gray body is always less than that of the black body. 4.13.

KIRCHOFF'S

USED [From HMT data b~ok, P

J.

Emissive Power (or) Total Emissive Power:

E,

LAW OF RADIATION

where

This law states that the ratio of total emissive power to the absorptivity is constant for all surfaces which are in thermal equilibrium with the surroundings. This can be written as

IT

0

=

T4

W/m2

StefanBoltzmannconstant 5.67 x 10-8 W/m2 K4

2.

Wien's Law: T =

Amax

3. It also states that the emissivity of the body is always equal to

2898,.LlnK = 2.9 x Woo) mK

Monochromatic Emissive Power (or) Spectral Emissive Power:

its absorptivity when the body remains in thermal equilibrium with its surroundings. u, 4.14.

INTENSITY

=

E,;

OF RADIATION

u2

= E2

and so on.

C2

It is defined as the rate of energy leaving a surface in a given

In

=

Scanned by CamScanner

0.374 x 10-15 W-m2

where

(Ib>

direction per unit solid angle per unit area of the emitting surface normal to the mean direction in space. ... (4.5)

age No. 8 I(Sixth Edition))

4.

Maximum

14.4 x 10-3 mK

Emissive Power (Eb;)1II/lX :

where

c4

4.8

5.

Hear andM ass Transfer Intensity

of Radiation (/ t) :

--------------------2. According to Stefan-Bolt

zman law Emissive power, Eb :: a T4

Eb 7t

6.

Absorptivity,

a

Radiation absorbed Incident radiation

p

Radiation reflected Incident radiation

[From HMT dal~ book P . age No 81(Sixlh Ed' .

E

_

"b -

{ .:

Reflectivity,

Transmissivity,

I

A

Wave length

=

0.5 Jl

==

0.5 x

body emiUillg u; calcukue its

10-6 III [ '.: I

~l

= 10-6 m]

To find : I. Surface temperature, 2.

Surface temperature,

llillmple

to Wien's displacement

[From

0.5 x 10-6 x T

I Surface temperature,

5800 K

=

2.9 x 10-3 rnK

=

Page 1\(\. X I (~i.\lh

=_ 5~0Q_ []

T

5800 K

Scanned by CamScanner

black body at 3000 K emits radiation. (It 1 pm

wave lengtll,

3.

Maximum

4. 5.

Tottll emissive I'llwer, Calculate the tot(ll emissive of tI,e [umace if it is assumed (IS u 1'('(11surface huving emissivity equal to (1.85. IMtlClras Ulliversity, April 96/

Editiollli

\.

Surface temperature,

T

3000 K

==

l\1onochlOmatic emissive power A

-c. \

EbA

at

P .~ \ x \ 0 -(, J1l.

2,

Maximum

wave length, (A max ).

-,

Maximum

emls~)VC

).

\

emissive power.

To find :

2.9 x 10-3

T

JA

Wave length at .~'lricllel"issio" is mtu:imilm.

Given :

law,

HMT data book.

2

64.1 x 106 W/m2

2.

Emissive power.

Amax T

T

Calculate tile following: 1. MOlloc/rromatic emissive power

Solution : 1. According

x 10-8 W/m2 K4)

64.1 x 106 W/m21

Emissive power, Eb

~xamp_le 1 Assuming SUII to be black radiation with maximum intensity at A. = 0.5 surface temperature and emissive power.

Stefan-Bohzman constant

Re,.",lt: I.

Given:

=

=_5.67

\t,

4.17. SOLVED PROBLEMS _I

a

r-

Radiation transmitted Incident radiation

t

IIlon)1

5.67xl(}&"(5800)4

.'

Po\\ 'eI'" (F··) '1".

1111 /\

.'

4.10

Heat and Mass Transfer 4.

e;

Total emissive power,

J. Maximum

emissive power

Radialion

(E

.1

IINnta.t

5.

Emissive

power of real surface at

E

= 0.85.

Maximum

emissive power

Solution:

\.307 x 10--5 TS

1. Monochronuuie Emissive Power:

1.307 x 10-5 x (3000)5

From Planck's

3.17 x 1012 W/m2]

distribution

law. we know that, ci A-5

4. Total emissive power (E,) :

From Stefan-Bohzmann Eb

law, we know that OT4

=

[From HMT data book, Page no. 811

0.374 x

where

Cz

10-15

W

m2

14.4)( 10-3 ] [ I )( 10-6 x 3000

'1 II. max

I s,

10-6]-5

- I

(5.67 x 10-8) x (3000)4 4.59 x 106 W/m2\

em;ssivJ!.P0wer of a real surface / 5. Total I'

2

3.10 x 1012 W/m

Maximum wave length, (A.max)

From Wien's

Stefan-Boltzman constant

a

Eb

[Given]

0.374 x 10-15 [I x

2.

where

5.67 x 10-8 W/m2 K4

1 xl~m

I EhI.

{From HMT data book. Page no. 811

14.4 x 10-3 mK

e

where

E

Emissivity

-

2.9 x 10-3 mK 2.9 x JO-3

A max

I Amax

3.90

Scanned by CamScanner

0.85

x

1()6 W/m2]

Result: 1.

EH

=::

3.10 x 1012 W/m2

2.

A max

=::

0.966 x I~

3000 0.966 x 10-6 m

=

0.85 x 5.67 x 10-8 x (3000)4

:

law, we know that, T

41/

:

m

4.12

Heat and Mass Transfer

3.

--------------------From Wien's displacement la

3.17 x 1012 W/m2

4.

4.59x

5.

3.90

I Example

106 W/m2 X

Amax

2.9 x 10-3

emissive I.

2.

power.

(Eh),

Emissivity

)1II0X

2.4xl~m

[_A_max--,-__

of the body (s).

Wave length corresponding intensity of radiation (A ilia)'

to

maximum

Emissivity of the body,

E

0.48 2.41l

I

1.

Total rate of energy emission.

2.

Intensity

3.

of normal radiation.

Wavelength

of

maximum

monochromatic emi

power.

4. power,

[.: I Il = I~

[ Example 4 A black body of 1200 cml emits radiatio 1000 K. Calculate tile following:

Solution : We know that, emissive

~IlJI

Maximum wave length , Amar

2.

1.4 x 1010 W/m2

2._4

Result: I.

T 1173 K

Maximum

2.9 x 10--3 mK

I

Given : Surface temperature,

To find:

T

106 W/m2

3 A gT(~Vsill/ace is maintained at (I temperature of 90(1't' IIlId maximum emissive power at tlmt tempermure is IA x 1010 "'/",1. Calculate the emissivity of the body and ti'e wavelength corresponding to the maximum intensity olmdialion.

Maximum

Rudiulioll

w, We know that

(Eh)IIIGX

of radiation along a direction at 60° to

normal.

,

1.307 x 10-5 W[m2 K5

where

Intensity

== c4 T)

Give" :

Area, A

1200 x 10-4 m2

1.307 x"-IO-5 x (I) 73)5

Surface temperature, T

2.90 x 1010 W/m2

1200 cm2

1000 K

To flnd : ).4 x 1010 W/m2

So,

/'

Emissivity,

f.

Scanned by CamScanner

==

1.4 x 1010 2.90 x 1010

rGiven]

1. Total rate of energy emission, Eb· 2.

Intensity of normal radiation, In'

4. !-I

Heat and Mass Transfer

3.

Wave length power, A maX"

4.

Intensity

of maximum

monochromatic

4.

of radiation

415

at 60°, Ie.

Solution:

::: 18,048 W 1m2

From Stefan-Boltzmann

law,

1.

Eb

Energy emission,

Result : =

c T4

[From HMT data book, Page no. 811 Eb 5.67 x 10-8 x (1000)4

Here ~

\ e,

56.7 x 103 W/m2

Area

1200 x 10-4 m2,

I Eb =

,.--

.7t

x 103 7t

T

A max A max

Maximum wave length, A. max

4.

Intensity of radiation at 60°, Ie

I

6804 W 18,048 W/m2

2.9 ~ ==

==

18,048 W/m2

1.

Total energy emitted by the sun.

2.

The emission received per m2 just outside the earth's

3.

atmosphere. The total energy received by the eartl. if no radiationis blocked by the earth's atmosphere.

t:

The energy received by a 2 x 2 m solar collector normal is inclined at 45 to the sun. The energy_~ss . 50% d the diffuse radiatIOn through the atmosphere IS 0 an is 20% of direct radiation. Surface temperature, T

Distance between earth and sun, R Diameter of the sun, DI

2.9 x 10-6 m [.:

In

[ Example 5 Assuming sun to be black bo.dy emitting radiatiolt at 6000 K at a mean distance of 12 x 1010 m from the earth. 'tu« diameter of the sun if1.5 x'lOl) m and th~tofthe'earth is 13.2 x 1(J6m. Calculate thefollowing.

Given:

2.9 x 10-3 1000

I

==

0

2.9 x 10-3 mK

2.9 Il

Scanned by CamScanner

3.

4.

3. From Wien's law, we know that Amax

Intensity of normal radiation, In

W/m2

18,048 W/m2

b

2.

Eb 56.7

\ In

'

I

6804 W

2. Intensity of normal radiation In

I

56.7 x 103 x 1200 x 10-4

Eb

Energy emission E

1.

== 6000 K

12 x 1010 m 1.5

x

109m

13.2 x 106 m 1 Il = 10-6 m]

Diameter of the earth, D2

" 16

Solution : I. Total ellcrJ:Y emitted : Energy emitted by sun, E b ==

-1/7

5.67 x 10-8 x (6,000)4 [.: o

2855.S W/m2

Stefen-Boltzman constant 5.67

x

3.

10-8 W/m2 K4]

Energy received

by

the earth:

Earth area

=

~ (D

IrE-b-----73-.4--x-10-6-W--/m-2~1 Area of sun, AI

1t

4 47t x (

1.5 x 109) 2

7 x 1018 m2

2

I Earth area

I

2855.5 x 1.36 x 1014 3.88 x 1017 W

I

Tile emission received per ml just atmosphere :

4.

outside

tile earth's

The energy received

=

50%

0.50

Energy received by the earth

41t R2

0.50 x 2855.5

4 x 7t x (12 x 1010)2 1.80 x 1023 m2

a 2 x 2 m solar col/ector:

100-50

12 x 1010 m

Area, A

by

Energy loss through the atmosphere is 50%. So ener reaching the earth

The distance between earth and sun R

I

Energy received by the earth

73.4 x 106 x 7 x 1018 5. 14 x 1026 W

x [13.2 x 106]2

1.36 x 1014 m2

=> Energy emitted by the sun

2.

)2

2

I

=> The radiation received outside the earth atmosphere per m

1427.7 W/m2 2

.,. (

Diffuse radiation is 20%.

Eb

=>

A

I Diffuse

0.20 x 1427.7

radiation

285.5 W/m2 285.5

w!ffi2]

.,. (2

51

eUIMP.!&IIiJiiC

Scanned by CamScanner

-1./8

---

Heat and Mass Transfer

Total radiation reaching the collection 1427.7 + 285.5

Plate area

A 2

x

2.82

2

x

400 W/m2

Tofind:

1713.2

Solution:

4831.2 W

Result: I. 2.

'.,

-'.

4.

1.

I

1.

Absorptivity, a.

2.

Reflectivity, p.

3.

Transmissivity,

We know that, Absorptivity,

2855.5

Total energy received} by the earth

300

3.88x =

Wlm2

IOJ7W

la 2.

Reflectivity,

p

4831.2 W

3.

Transmissivity

Scanned by CamScanner

I

Radiation reflected Incident radiation 100

Ie 3.

Transmissivity,

t

Ahsorptivity Reflectivity

0.375

800

I

2.

Radiation absorbed Incident radiation

a

800

The radiation received} outside the earth's atmosphere

Example 6 800 Wlml of radiant energy is incident upon a surface, out 'of which 300 Wlm2 is absorbed, 100 Wlml is reflected and the remainder is transmitted through tile surface: Calculate thefollowing: 1.

t.

5.14 x 1026 W

Energy emitted by the sun, Eb

Energy received by the} solar collector

800 - (300 + 100)

cos 45°

Jl12

x

100 Wlm2

Transmitted energy

Energy received by the collector 2.82

300 W/m2

Reflected energy

cos El

x

800 W/m2

Absorbed energy

W/1112

1713.2

Radiation

Incident radiation

Given:

0.125/ Radiation transmitted Incident radiation 400

800

It

0.5)

4./9

4.20

Heat and Mass Transfer

____-------~~~----------------~R~a~~~a/~io~n--i4.~21

Result:

Eb

\.

Absorptivity,

a

0.375

2.

Reflectivity,

p

0.125

Transmissivity,

t

0.5

3.

A.z T) c 1'4

(0 -

0.6195

(From HMT data book, Page no. 82J

E,

black body is kept at a temperature

Eb (0-11.11

(0- L T) '''2

/\.

I ExamplklA

... (2)

o T4

Of

9491:('. Estimate the fraction of thermal radiation emitted hy the

0.6195 - 0.0025

surface in the wave length band lu and 4J.L

0.617

Given:

Surface temperature,

T :::>

1222 K

IT

To find: Solution:

1222 K

Initial wave length,

A.)

I ~l

Final wave length,

A.2

4~

Radiation emitted by the surface [E b

I

:::>

0.617

E b (A)

0.617 x c x T4

A2 T)

0.617 x 5.67 x 10-8 x (1222)4 :::> (A.) T - ~ T) ].

I Eb(A)

Result:

A

T- 2T)

78 x

Energy emitted E b (A)

I EXlImple 8 I A surface

I x 1222 ~K

3000 K. Calculate

1222 ~K A) T

E b (/") T - 1..2T) o T4 T -

T)

o T4

103

T_

A2

W/m21

= 78 x

T)

10J

W1m2

emits radiation as a black body at

the emission from

the surface in the

wavelength interval Zum L l L 5 pm:

= 1222 ilK, corresponding fractional emission,

Given:

3000 K

Initial wave length, AI

... (1)

= . 0.0025

Surface temperature, T

Final wave length, A2 [From HMT data book, Page no. 82 (Sixth edition)J

4 Il

x 1222 K

4888 ilK A2

l,,-

T = 4888 ilK, corresponding fractional emission

Scanned by CamScanner

Tofind: Solution:

I. Emission from the surface E b (I. I T -1..2 2

x

3000 ilK

6000 ilK ]

T) .

4.22



Heal and Mass Transfer

A IT

6000 ilK, corresponding

fractional emission 1. Emissive power. 2.

The wave length A. b I .,. J e Ow W!riclt 20 emiSSIOn IS cOlleen/rated d percent 0,/ th an tlte W e which 20 percent of the em! . aile length A.} abo lie

3.

The maximum

5 x 3000 JlK

4.

Spectral emissive POWer.

I

5.

The irradiation incident.

0.7378

'" (I)

[From HMT data book, Page no. 82) }.2

T

15,000 JlK }.2

T

=

15,000 JlK, corresponding

lSSIOn IS conce

Given:

fractional emission

walle length.

ntrated

Surface temperature, T

3000K

Solution:

0.9699

'" (2)

1.

Emissive power, Eb 5.67

[From HMT data book, Page no. 82J

E b (0 - A2 T) c T4

E b (0 - AI T) c T4

0.9699 - 0.7378

[Eb

0.2321

1.(

,

AIT

==>

Energyemitted

em perature

9

IA

Eb(AI

1.06 x 106 W/m2

T-A2 T)

large enclosure

of 3000 K. Calculate

is maintained

the following:

Scanned by CamScanner

at a uniform

2666 ilK [From HMT data book, Page no. 821

0.2321

1.06 x 106 W/m2

I Example

0.20, corresponding

AIT

o x T4 x 0.2321

Result:

4.59 x 106 W/m2]

T)

o T4

X

10-8 x (3000)4

2. The wave length 1.( corresponds to the Upper I'un It, . containing 20% of emitted radiation. Eb (0 -

5.67 x 10-8 x (3000)4

-

x

==>

I

2666 ilK

AI

2666 3000

AI

0.88 Il

I

T he wave length 1.2 corresponds to t he Iower limit,containing 20% of emitted radiation

4.24

Heat and Mass Transfer

(1-0.20)

where

ci c2

0.80, corresponding Eb}.

@374 x 10-15) x (0.96 x 1()-6

6888 JlK

[(e 096 "",0-' ) ] to 10-6 3000 _ I x

[From HMT data book, Page no. 82)

6888 JlK

3.1

x

1012 W/m2

So,

law,

4.18. SOLVED UNIVERSITY PROBLEMS

AIIIOX T

2.9

x

10-3 mK 10-3

A max

2.9 x 3000

9.6 x 10-7 rn

I

Amox

I Example 1 I Ti,e

emits maximum radiation' at A. = 0.52 J..L Assuming tire sun to be a black body, calculatethe surface temperature of tire sun. Also calculate th« monochromatic emissive power o/tlre sun's surface. SUIl

/April 98, MUj

0.96 x 10-6 m A lIIax --

Given:

4. Spectral Emissive Power: distribution

EbA

The irradiation incident on a small ob' t I '. [ec paced wlthm the enclosure m~ be treated as equal to emissionfrom a black body at the enclosure surface temperature.

3. Maximum wave tength (A.ma.J :

From Planck's

=>

x

5. Irradiation:

6888 3000

From Wien's

5

Tofind:

= 0.52

x 10-{) m

1. Surface temperature, T. 2.

law, we know that,

0.S2j.l

Monochromatic emissive power,

Eb)"

Solution: 1. From Wien's law, A T max

[From HMT data book. Page no. 811

Scanned by CamScanner

=

2.9 x 10-3 mK

[From HMT data book, Page no.

81 (Sixth edition)]

4.26

Heat and Mass Transfer

=

T

IT

----~~-;::==~=-:---~--=

2.9 x 10-3 0.52 x 10--6

=

5576 K

Given: Temperature,

Solulion:

I

/. Monochromatic

2. Monochromatic emissive power (Eb;) :

emissive pOHler (Eu) :

From Planck's distribution law, we know that

law,

From Planck's

c1 A-5

_ Eb}. -

[J:~)- J

[From HMT data book, Page no. 81]

[From HMT data book, Page no. 81

0.374 x 10-15 W m2

where

where

14.4.x 10-3 mK 0.52 x 10--6 m T

0.374

x 10-15

[0.52

1.

T

2.

I

J

=>

I

14.4 x 10-3 mK

A

1 urn

lEbA

=

Scanned by CamScanner

[Given]

[I x I~I-5

4".-3)

J4 1 x 10--6 x 2000

_

]

1

2.79 x 1011 W/m2/

W/m2

A,nax T

=

2.9 x 10-3

I

Tora! emissivepower.

m

From Wi en 's law, we know that,

1013

Monochromatic radiant flux length.

10-15

0.374 x

=

1 x I~

2. Maximum WaveLength (AmaJ :

density at J pm wave

2. Wave lenglll at which emission is maximum and tne corresponding emissive power. J.

c2

e

Example 2 A furnace wall emits radiation at 2000 K. Treatingit as btack hody radiation, calculate 1.

0.374 x 10-15 Wm2

[(

5576K 6.9 x

c,

EbA

x 10--61-5

[.(052': ;0"J~-:576)6.9 x 1013 W/m2

Result:

[Given]

5576K

=>

~R~a~$~m~iO l um = I x lQ-6

2000 K ; A

T

IApril98,

MU/

(From HMT data book, Page no. 811

Amax

2.9 x 10-3 T 2.9 x 102000 1.45 Il

1

3

1.45 x IQ-6 m

4.28

Heat and Mass Transfer

Corresponding

emissive power

--

The wavelength of maxi",u", . power.

JA :T)_1

Given:

0.374 x 10-15 x [1.45 x 10-6]-5

Tojind:

m

[ e( =

4.09

x

144 x JO-3) 1.45 x JO-6 x 2000

] -

1

A

0.25 m2

T

650 + 273 2. In;

1.

1011 W/m2

I s, Here,

o -

=>

o T4 Stefan-Boltzmann

l s,

Eb

I s,

constant

5.67 x 10-8 W/m2 K4 Eb

Area

5.67 x 10-8 x (2000)4 907.2

Eb}.

2.79 x 1011 W/m2

2. (i)

A max

1.4511

(ij)

Eb}.

4.09 x 1011 W/m2

Eb

907.2 x 103 W/m2

3.

I Example 3 I Tile temperature of a black surface 0.25 ml of area is 650't: Calculate, 1. Tile total rate of energy emission. 2. The intensity of normal radiation.

Scanned by CamScanner

-

923 K

3. A max

.

5.67 x 10-8 (923)4 41151.8 W/m2] 0.25 m2 41151.8 W/m2 10.28

X

7t

I In

3274.7 W

I

3. From Wien's law, Amax

T

A max

2.9 x 10-3 mK 2.9 x 10-3 923 3.13

x

lQ-6m 1

Result: I.

Eb

10.28 x 103 W

2.

In

3274.7 W

3.

A max

3.13

X

X

IQ3 Watts

10.28 x 103

x 103 W/m2/

Result: 1.

==

Intensity, In

2.

429

noc'''O",atic emissive /'0 I· ct. 96 EEE, MUj

Emissive power, Eb

From Stefan-Boltzmann law, we know that,

where

I

Solution:

3. Total emissive power (E J) :

s,

Radiation

"'0

3

10-6 m

0.25 m2

I

4.30

Heal and Mo." Transfer

_______

[&amele ., 1 Assuming

sun 10 be black body enritr;n, radiaJi()n with maximum intensity at .A. = 0.5 J1, calculate the temperature of the surface of the sun and the heat flux at its Surface. /ApriI97, MU, EEE} Given:

"-max I.

10~ m

X

Surface temperature,

T. Radiation and reflection process are assumed to be diffuse.

2. Heat flux, q.

The absorptivity of a surface is taken equal to its emissivity and independent of temperature of the source of the incident radiation.

Solution : 1. From Wien's Jaw, we know that,

"-max T T

IT

2.

q

Heat flux,

q /q Result:

4.3/

0.5 11

0.5 Tofind :

Radiation

2.9

x

10-3 mK

2.9

X

10-3

RADIATION EXCHANGE BETWEEN TWO BLACK 4.20. SURFACES SEPARATED BY A NON-ABSORBING MEDIUM

"-max 2.9

X

10-3

0.5

X

10~

I

5800 K

Q =

Eb

5.67

10-8 (5800)4

A

64.16

X

x

T

5800 K

q

64.16

=

IT

T4

106 W/m2

.

Let us consl ider two black bodies separated by a non-absorbing . . . medIUm. T h e pro blem is to determine the net radiation heat h between them. exc Consider ange area e Iemen t s dA 1 and dA 2 on the two surfaces. The . r and the angles , the normals to the two . between t Ilem IS distance k with the line joining them are 91 and 92, area elements rna e

I

Normal to dA2

Normal 10 dA1 X

106 W/m2

co rig. 4.4. Rat/ilttion-lte(lt

Scanned by CamScanner

bla£'ksurfaces exclw/lg e. betweell two

4.32

Heal and Mass Transfer

Radiation

FigAA shows the projection of d A I normal to the line between the centres. The projected area is ciA I cos

dQ2_1

eI .

'" cos 9, cos 8, dA, dA,

Energy leaving d A I in direction 9 I I dAI cos 91

'''1 -

where

... (4.11)

The net rate of heat transfer between d A I an d A2 is

Intensity of radiation at surface AI

dOl2

=

We know that,

dQI_2

- dQ2_1

'''1 cos 01 cos 02 ciA I dA2

Intensity of radiation,

1"1

=

,2

Eol 1[

Radiation arriving at any area normal to solid angle subtended by it. Let dw I be subtended dAz by dAI. So,

I

,2

'" (4.7)

"I

4.33

dQlz

will depend on the

= (1"1 -1"2)

[

cos 01 cos 92 "AI dAz ] ,2

We know

at d A I by d Az and d(J)z subtended

al

I"

dAz cos (:)z ,.z

dWI dwz

r

=

dAI cos

°

1

,.2

... (4.8)

From Stefan-Boltzmann

.. , (4.9)

s,

The rate of radiant energy leaving dAI and striking on dA2 is given by

0'

law, we know

T4 , 4

(0'

IQ 12

(. 'r4I

Co

rI

4

[cos 91 cos 0z dAI clAz ]

- 0' T 2 )

- 'r4) 2

0' [

1[

,.2

cos 9( cos 92 dAI clA2 1[

]

,.2

... (4.12) ." (4.10) The rate of energy radiated by ciA 2 and absorbed . given by

by dAI is

IS

The rate of total net heat transfer for the total areas A( and A2 given by

QI'c

52

Scanned by CamScanner

==

j'

IQ 12

(i

)J2

4.34

Heat and Mass Transfer

II

(

4 TI -

Radiation

4 T2 )

[creosol

cos 02 dAI dA2]

QI-2 QI

1t r2

II

I

AI

AI A2

cos 91 cos 92 dAI dA2 1t r2

4.35

... (4.16)

AI A2 QI-2 QI where

FI2

FI2 -

... (4.17)

Shape factor (or) configuration factor

From equation (4.10) (or) View factor

n,

I cos 91 cos 92 dAI dA2

° °

cos 1cos 2dAI dA2

Shape factor is defined as "The fraction of radiative energy that is diffused from one surface and strikes the other surface directly with no intervening reflections."

r2

E:I QI-2

JJ ff

° °

::::)I QI-2

cos 1cos 2dAI dA2

a[.T:J

Similarly,

°

cos 91 cos 2dAI dA2

... (4.19)

r2

... (4.14)

The total energy radiated by A2 is given by

Total energy radiated by AI is given by

QI = AI o

... (4.18)

r2

Q2

Ti

... (4.15)

Q2-1 Q2

° °

cos 1cos 2 dAI dA2

4

A2 c T2 1 A2

1t r2

AI A2

1t r2

Q2-1 Q2 where

Scanned by CamScanner

If

cos 91 cos 92 dAI dA2

F21 -

F2_1 Shape factor of A2 with respect to AI·

4.36

Heat and Mass Transfer Q2

F2_

-I

~

I Q2-1

Radiation 4.23. HEAT EXCHANGE BETWEEN TWO NON BLA

Q2

I

=

PARALLEL PLANES

... (4.20)

F2_1 A2aT~

=

. CK (GRAY)

Consider two very large parallel gray surf f . rraces 0 areas A I and A2 , at a small distance apart 'raand exchangl'ng diratiIon as sh own In . Fig.4.5.

From equation (4.18), (4.20), we know that, AIFI_2

.'

4.37

A2F2-1

This is known as reciprocity theorem. Thus the net rate of heat transfer between two surfaces AI and A2

is given by -,Q-12-=-A-

-F-

I

12

-a-[ T-4-=-1 -_-TA;I]

I

'"

(4.21)

This equation is applicable to black surfaces only. If surface having emissivity, Q-12-- - -I- -12- -[ T-4----T-~-]-I gA F a '" (4.22) 1

I~

E -

Emissivity of surface

4.21. SHAPE FACTOR

Shape factor is defined as "The fraction of radiative energy that is diffused from one surface and strikes the other surface directly with no intervening reflections." 4.22.

Fig. 4.5.

Let T I' (XI and E I be the temperature, absorptivity and emissivity of the surface I.

SHAPE FACTOR ALGEBRA (OR) VIEW FACTOR ALGEBRA

Similarly T2, (X2 and E2 be the temperature, absorptivity and emissivity of the surface 2.

In order to compute the shape factor for certain geometric arrangements for which shape factors charts or equations are not available, the concept of shape factor as a fraction of intercepted energy and the reciprocity theorem can be used.

The following assumptions are made for the analysis. I.

2. There is no absorbing medium in between the surfaces.

The shape factors for these geometries can be derived in termS of known shape factors of other geometries. The interrelation between various factors is called shape factor algebra.

3. The emissive and reflective properties are constant for over all surfaces.

",

Scanned by CamScanner

The configuration factor of either surface is unity.

__ ~H~ea~/~a~nd~M~a~ss~~~r~an~~~e~r __ ---------------------~4~.3~8

--

-.......

The surface 1: emits radiant energy E( which falls on the surface 2. Out of this, a part of a2 E( is absorbed by the surface 2 and the remainder (I - (2) E( is reflected back to surface I.

Radiation

E( [I

Q(

" (I - ,,)

E,[I-[l-:-~, 1

The rate of radiant energy leaving surface 1 is given by =

E( - a( (I -

(2)

(I -

(2)3 E( + ...... ]

E( [1 + (I - a()(1 -

(2)

E( - a.<1 - (2) Edl + P + p2 + ...... ] ... (4.23)

Q(

El t2

= £(

where P (1 - al) (J - (2) Since (l( and a2 are less than unity, P will be less than unity. As P < 1, the series 1 + Y + p2 + when extended to . fini In imty

Q(

The rate of radiant energy leaving surface 2 is given by

Q

1

2

El - a1 (1 - (2) EI x 1 _ p El .'

... (4.24)

+ t2 - tl t2

Similarly,

gives 1 _1 P .

(4.23) ~

E2 tl = £1

... (4.25)

+ £2 -

£1 £2

The net radiative heat exchange from surface I to 2 is given by

al (1- (2) El I-P

Q(2

= \Q1 -Q2 E1 £2 £(

From Kirchoffs law, we know that, absorptivity of a surfaces are equal.

emissivity

and

I

+ £2 -

~

£1 £2

E1 £2-~

E1

+ £2

- E1 E2

£1

£1

EI

+ £2 -

E1 ~

From Stefan-Boltzmann law, we know that,

Scanned by CamScanner

(1-<,) ]

EI t2 ·t( + t2 -tl t2

+

(1 - a()2 (1 - (2)2 + ...... ] Q(

+',"]-',

~-t(+t(t2]

[1

E,[' -1+" +.,-', "-', +" "J 1 - 1 + t2 + t( - tl t2

E('_[a((l-a2)E(+al(l-a()(l-a2)2E(+ a( (1 - a()2

(1-,,) ]

1 -(1- t()(1 -~)

continuing.

Q(

]

- 1-(I-t()(I-t2)

E,[1-(1-.,)(1-,,)_.,

On reaching surface 1, a part a( (1 - (2) E! is absorbe~ and the remainder (1 .- a() (1 - (2) E( is reflected. This process will go on

439

.,. (4.26)

4,40

Heal and Mass Transfer o

Radiation

r-

Heat exchange (considering Area).

,4

cr 1 ,

0'2

=>

between two para'lle'l surface is given by

E o A [T~ - T;]

4

E2

£2

4

. £2 - £2

cr r,

£, £2 £,

cr

r42

£,

+ £2 -

cr

[ri - r; ]

+ £2

... (4.28)

[From equation (4.27)]

cr r 2 where

Substitute E, and E2 values in equation (4.26), £,

=

4.41

E

£,

£, £2

4.24. HEAT EXCHANGE BETWEEN TWO LARGE CONCENTRIC CYLINDERS OR SPHERES

- £, £2

Consider two large concentric cylinders of areas A( and A2 exchanging radiation as shown in FigA.6 .

... (4.2n -

where,

£

-

Fig. 4.6.

£'

Let

rl,

(11

and

£1

be the temperature,

absorptivity

and

emissivity of the Inner cylinder. £

=

Similarly

T 2'

(12

and

£2

be the ,temperature, absQrpti,vity and

emissivity of the outer cylinder. We can use the technique £

=

Scanned by CamScanner

except

as we have used in parallel plates

4.42

Heat and Mass Transfer

--....._/

:'0

Radiation

I

4.43

'" (4.29)

Considering the energy emitted by the inner cylinder, 1. Inner cylinder emits the energy = El 2. Outer cylinder absorbs energy = u2 E. E2

3. Outer cylinder reflects energy 4. Inner cylinder absorbs energy

r. <X2== ~

s,

El (1 - E2) El (1 - E2) F2l <Xl Al El (I - E2) A2 EI

[.: F" ~ ~~ • al,"Ell

... (4.30)

E, (I - E,) [ 1 - E, ~; ]

6. Energy absorbed by the inner cylinder on the second reflection E, (1- E,>, E, ~; [ 1 - ~;..

~

]

This absorption and reflection go on indefinitely. So we ~ find the net energy lost by the inner. cylinder, considering infiniteI times absorption and reflections. Heat lost by the inner cylinder per unit area is given by AI

01

= EI - EI (I - £2) EI

A 2

Edl

-£2)2

£1

AI 'AI] [ I - A2 2

A

Scanned by CamScanner

£1

+ "..... .. ,'

... (4.31)

The net radiation heat transfer between the inner and outer concentric cylinders is given by QI2 = QI - Q2 AI ~

£1 A2

4.44

---

Heal and Mass Transfer

Considering

area

and

AI

A2

445

'" (4.33)

where

For cylinders, For sphere, AI EI E2 _ AI E2 EI

=>

QI2

=

AI -A

+

EI

A

E2 _

2

EI E2

2

From Stefan-Boltzmann

law, we know that,

Eb

a T4

E

EI

ElaTI

=>

E2

E2 a

EI

and

E2 values

a

AI EI

Ti

EI

2

A [ ~:

I

a EI EJ

Eo

T; in the equation (4.32),

E2 _ AI E2 a

AI

A

+ E2

4.25. RADIATION SHIELD Radiation shields constructed from I . .I I . ow emissivity (h' reflective) materia s. t IS used to reduce th e net radiat, . igh between two surfaces. on transfer Let us consider two parallel planes I and 2 d Ts resnecti each of area A t temperatures T I an T 2 respectively. A radiatl'on S hiie ld ISi placed'a between them as shown in Fig.4.7. In

4

=>

Substituting

... (4.32)

AI

AI E2 _- A

T;

EJ

EI E2

2

[Ti _ T; ]

(t, -

I) ]

+

2

E,

Radiation shield

Fig. 4. 7. Radiation shield

The net heat exchange radiatio 11 S I' . lie Id IS. given by

between parallel plates without

A a

QI2 =

(Ti _ Ti)

... (4.34)

1 +l_1 EI

·E2

[From equationno. (4.28)J

Scanned by CamScanner

4.46

Heal and Mass Transfer

where A _ Area in m2, a

s I'

£2

T1, Tz

_ Stefan Boltzmann constant _

=

5.67 x 10-8 W/m2

1(4

Emissivities of surface I and 2 respectively.

_ Temperature of surface 1 and 2 respectively. Under equilibrium condition

Heat exchange between 1 and 3 is A a (T~ _ T;)

QIJ

=

I 1 -+-_ £1

Heat exchange

'" (4.35)

£3

(~3+ 1) +( t +~ -

=> QJ3 [

I)

£~ _

J

= A

c (T~ - Ti)

between 3 and 2 .is QI3

=

... (4.37)

... (4.36)

Dividing the equation (4.37) by equation (4.34), From equation (4.35), QI3 QI2

(1+1_1) (1+1_1)+(1+1_1) EI

£3

If

£1

QI3 QI2

Substitute T; value in equation (4.36)

=>

£2

=

EI

E3

£3

I 2 I

I

QI3

£2

E2

= 2"

QI2

(or)

Q32 =

2"

012

.. . b tw parallel surfaces,the Thus by msertmg one shield etween 0 direct radiation heat transfer between them is halved.

4.36) =:> Q32

Scanned by CamScanner

4.48

Heat and Mass Transfer

FORMULAE

1. Helll

USED 4.26. SOLVED PROBLEMS

e.'(challge between two large parallel plate is given by

4 4 E O'A(TJ -T2)

QJ2 -

Where emissivity,

I ----

E

I I - +--1

EJ

2.

E)

EJ

-

Emissivity of surface 1

Emissivity of cold plane,

E2

E2

-

Emissivity of surface 2

TJ -

Temperature of surface 1 - K

T2 -

Temperature of surface 2 - K

-

E AI

-

-+-AI

3.

Area, A

4

A2

-

where

E

(I- ) E2-

I

1

~

Ti ]

J

I

+ 0.7 - I

a.649 x o x A x [(900)4 - (400)4] Stefan-Boltzmann constant 5.67 x 10-8W/m2 K4 0.649 x 5.67 x 10-8 x A [(90W-(400)4] 0'

Q

Q

Emissivity of shield.

[~ Result:

-

23.20 x 103 W/m2

A

Number of shields.

Scanned by CamScanner

T~

Q

where

AO' [T; I 211 - + - + - - (n + I) E, E2 Es

Es -

0.7

0.6491 :::)

47t r2

-

0.9

[From equation no.(4.28)]

1

E

I

II

j

TI •

T J - T2 ]

Heat transfer willi n shield is given by

where

:::: 900K :::: 400 K

Q = E o A [T: -

27t r L

Area, A

2

is given by

I

I

E

4

0' [

T

,

Tofind: Net radiant heat exchange per . square meter. Solution: The heat exchange between tw I o arge parallel plate

two large concentric cylinder (or)

EJ

For sphere,

, T)

Emissivity of hot plane,

QJ2

For cylinder,

Given: Hot plane temperature

Cold plane temperature

Heat exchange between sphere is given by

where

E2

Stefan-Boltzmann constant 5.67 x 10-8 W/m2 K4

0'

~

I

[§xample 1 Calculate the n . et radiant . ",. for two large planes at a temo Interchanoe sq· ."erature of 9 II per esnectively. Assume tflat tile enziss;v'," 00 K and 400 K ~ r . l·oT of hOI l that 0/ cold plane IS O.7. _. Pane is 0.9 and

23.201 kW/m2]

Heat exchange,

Q A

:::

23.20 kW/'l12

4.50

Heat and Mass Transfer

I Example square

I Estimate

2

meter from

the net radiant

heat eXcllm~

a very large plate at a temperature

and 320°C. Assume

0/

that emissivity

hot plate is 0.8 and

plate is 0.6. Given:

T,

550 + 273

T2

320 + 273

c\

0.8

Solution:

t

cOld

823 K 593 K

3] Two large parallel Radial" Ion 4.5 of 900 K and 500 plclleslITeIII' . 2 K res' a",tQfnedat area 0/6 m . ,Compare II,e net heal pectlvely. Eac" plate has a for the following cases: exchange hetweenth an e plllles 1. Both plats are hlack. [Example

temperature

2.

Plates have an emissivity

Given:

0.6

c2 To find

= =

Pel'

of 550

: Heat exchange

T,

Tl = 900 K

900 K

T2=SOOK

500 K

per square meter, (Q/A).

Heat exchange

{~, .1'

oJ 0.5.

A

between two large parallel plate is

given by

E

Q

(J

A [T~ - T; ] [From equation no.( 4.28)]

where

To find:

Heat exchange for

1.

Both plates are black.

2.

Plates have an emissivity 0[0.5.

Fig. 4.8.

Solution: This is heat transfer between two large parallel plates problem. I

I

Heat transfer, Q12

0.8 + 0.6 - 1

IE Q

Q A

I~ Result:

E

a A (Ti - T~)

... (I)

Case 1: For black surface,

0.521 0.52 x 5.67 x 10-8 x A [ (823)4 - (593)4] [.:

=>

::

(J

=

Emissivity,

E Q 12

5.67 x 10-8 W/m2 K4]

4

5.67

9880.6 W/m2

4

a A (T, - T 2 ) x

10-8

9.88 kW/m21 ~

=

Scanned by CamScanner

6

x [

lli~:__- 201.9 x 10 W I 3

Heat exchange,

x

Case 2:

9.88 kW/m2

Emissivity,

EI

(900)4 - (500)4]

4.52

Heal and Mass Transfer Radiation

In equation ( 1).

E

Tofind:

4.53

Heat exchange. (Q).

Heat exchange between two large concentric Solution: cylinder is given by 1 1 0.5 + 0.5 -1

... (I)

[From equation no.(4.33)] 0.331 0.33 x 5.67 x 10-8 x 6 x [(900)4 - (500~1

-

where

E

1. + AI EJ

66.6 x 103 W ]

(1. _I) ~

1

Result: 1. Case 1:

Q'2

2. Case 2:

I Example

Q'2 4

=

201.9 x 103 W

=

66.6 x 103 W

I Calculate

the heat

rJ

0.6

exchange

IE QI2

Result:

x

5.67 x 10-8x1txO.12x

130° C + 273

E2

403 0.6

T2

30°C + 273

~

0.5

=

Heat exchange, QI2

1 x [(403)4-(303)4]

176.47 W

=

I

176.47 W

I Example 5 I A

0.12 m

£1

1)

0.46 x 5.67 x 10-8 x 1t x 0, x L ~ [(403)4 - (303)4]

12

TI

(_1 O.S-

0.461

IQ

120mm

O.S-

1)

(I) ~

0.46

60 mm

1t 02 ~

_10.6 + 0.12 0.24

by radiation

0.060 m r2

[.: A=1tOL]

1t 0, L, ( -1 -1 +---

between the surfaces 0/ two long cylinders having radii 120 mIll and 60 mm respectively. Tile axis 0/ the cylinders are petrallelto each other. The inner cylinder is maintained at a temperature of 130'C and emissivity 0/0.6. Outer cylinder is maintained at II temperature of 30'C and emissivity 0/0.5. Given:

A2

liquid oxygen is stored in double walled spherical vessel. Inner wall temperature is - 160'C and outer watt temperature is 30 'C. Inner diameter of sphere is 20 em and outer diameter is 32 em. Calculate the fol/owing :

if emissivity of spherical surface is 0.05. 2. Rale of evaporation of liquid oxygen if its rate of 1. Heallrans/er

303 K

Scanned by CamScanner

Fig. 4.9.

vapourizalion of latent heat is 200 kJ/kg.

4.54

Heat and Mass Transfer _______ ------------------------~R~a~d~ia~lio~n--~4.~jj

Given: Inner wall temperature,

Heat transfer,

- 160°C + 273

TI

Q12

o

E

AI

[T~ - Ti

1

... (1)

[From equation no.(4.33)1 113 K where

-E

2

1 41t' -+-0.05

I

41t ,2 2

[.:

[I -I 0.05-

j

Area A = 41t,2;

E,

I _1_ + 41t (0.10)2 [_1_ 0.05 41t (0.16)2 0.05 - I

Fig. 4.10.

Latent heat

To jbld :

[( 113)4 - (303)41

[Q

=

= =

200 kJ / kg

=

200 x 103 J / kg

This is heat exchange

2.

Scanned by CamScanner

I

Rate of evaporation

Heat transfer Latent heat

2.12 W 200 x 103 J/kg

2.12 Jls 200· x 103 J/kg

.

here

between large concentnv sp

problem.

W

E2

I. Heat transfer, Q12·

Sotution :

-2.12

[-ve sign indicates heat is transferred from outer surface to inner surface 1

= 0.16 m 0.05

0.036 x 5.67 x 10-& x 41t'~ x [ (113)4 - (303)41

2. Rate of evaporation. 1.

Q12

\

. 0.036 x 5.67 x 10-& x 4 x 1t x (0.10)2 x

32 cm = 0.32 m

Outer diameter, D2

£1

(I) =>

0.20 m 0.10 m

Inner radius, 'I

Emissivity,

0.036

303 K 20cm

Inner diameter, DI

r2

J

30°C + 273

Outer wall temperature, T 2

Outer radius,

= E2 = 0.051

= \x

\0-5 kg/s

4.56

Heat and Mass Transfer

Result: l.

Heat transfer,

2.

Rate of evaporation

I Example

Q12

=

2.12W

=

1 x 10-5 kg/s

Tofind:

6 \ Two concentric spheres 30 em and 40 CIII '

Rate of evaporation.

Solution: This is heat exchange betw sphere problem. een largeconcentric

diameter witt. , the space between them evacuate d are Usedto Sl 'II tameter wu liquid air at - 130"C in a room at 25 "C. The surfaces Of ;;e spheres are flushed with aluminium of emissivity E == Calculate the rate of evaporation of liquid air if the latent heat0' vapourisation of liquid air is 220 kJ/kg. if Given: Inner diameter, DI 30 em 0.30 m

0,0;

Inner radius, Outer diameter, Outer radius,

rl

0.15 m

D2

40 em

r2

TI

0.40 m 0.20m - 130°C + 273

143 K 25°C + 273

298 K E

Latent heat of vapourisation

0.05 220 kJ/kg 220 x 103 J/kg

41tr~ [(143)L(298tl

0.032 x 5.67 x 10-8 x 41t x (0.15)2 x [(143)4- (298t

I Q12

=

-3.83 W]

[- ve sign indicates heat inner surface] Fig. 4./1.

Scanned by CamScanner

1

. IS

f ed from outer surface to trans err

4.58

Heat and Mass Transfer

Heat transfer Latent heat

Rate of evaporation

3.83 220 x 103 I.74 Result:

rofind:

kg/s

pipe of outside diameter JO em hav;"

Heat exchange per metre length.

2.

Convective "eat transfer coefficient when surrounding Of duct is 280 K.

2. Convective heat t Teo ::::: 280 K ransfer coefficient

Heat exchange, QI2

emissivity 0.6 and at a temperature of 600 K runs centrally ill : brick duct of 40 em side square section having emissivity 0.8 a/fd at a temperature of JOOK. Calculate the foilowing : I.

I. Heat exchange, (Q).

where,

30cm

DI

1t

DI L

1t

x 0.30 x 1

0.942 m2

4"l~ Fig. 4./1.

Surface area, A2

-

T42]

." (I)

I

1

0.942

Ir-£'--0-.5---'5 I 0.55

(I0.8-1 )

! Heat exchange.

=

0.40 m

5.67 x 10-8

QI2 = 3569.2 W/m

Case (ii) : Heat transfer by convection, Q

x

0.942

x

I

".

Q12

hx A

QI2

h x I x (300 - 280)

IQ

I2

20h

3569.2

20h

Heat transfer coefficient,

= 1m; No. of sides::: 4 J

h

x

(T 2 - T..,)

I

178.46 W/m2 K

Result:

I A2

1.6 m2/

I.

Heat exchange, QI2

E2

0.8

2.

Heat transfer coefficient. h

T2

300 K

Scanned by CamScanner

(2)

hA(T(J)-T..,)

Equating (2) and (3).

(0.4 x I) x 4 [length L

x

[ (600)4 - (300)4]

600 K 40 cm

[T41

AI

£'

[.: L = 1m]

0.6

Brick duct side

cx

(I) ~

0.30 m Surface area, AI

x

E

0.6 + ~

Given: Pipe diameter,

When

(h)

Solution: Case I: We know that

1.74 x 10-5 kg/s

Rate of evaporation

I Example 7 I A

x 10-5

--

3569.2 W/m 178.46 W/mlK

... (3)

I

4.60

Heal and Mass Transfer

4.27 SOLVED PROBLEMS ON RADIATION SHIED

I Example 1 I Emisslvities

------

-

0/

Given:

TI

~I

-+ OJ OJ-I 0.230 1 0.230 x o x A [T4 _ T4 ] I

2

0.230 x 5.67 x 100a x A x [(1073)4 _ (573)4]

Radiation shield

800°C + 273

1

E

where,

two large paral/el pl Qles maintained at 800 'r and 300 'r are 0.3 and 0.5 respectivel" ",. v- r'''d net radiant heat exchange per square metre/or these plate,.. ",. ". r'''d the percentage reduction in heat transfer when a polish aluminium radiation shield 0/ emissivity 0.06 is placed hettv ed tell them. Also find the temperature 0/ the shield.

15,880.7 W/m2

1073 K

= 15.88 kW/m2

Heat transfer per square metre without radiation shield

300°C + 273

[_QAI2

573 K 0.3

Shield emissivity,

0.06

Plate 2

T,

where,

E

3.

in heat transfer

Temperature

of the shield (T3).

1

EI

1::3

cr x A [Ti - T~ ] 1 1

... (A)

- +--1 1::1

due to radiation

1::3

Heatexchange between radiation shield 3 and plate 2 is given by Q32

Solution: Heat exchange between two large parallel plates without radiation shield is given by Ql2

1

- +--1

1. Net radiant heat exchange per square metre. (Q/A) reduction

... (1)

-

Tofind:

Percentage shield.

.

by

Fig. 4.13.

2.

15.88 kW/m2!

Heat exchange between plate 1 and radiation shield 3 is given

Plale 1

E)

=

=

E c A [Ti -

T1 ] [From equation no.( 4.28)J

where,

e o A [T; - Ti ] 1

1 +1_1 E3

1::2

cr A (T; - T~ ]

1 +1_1 E3

Scanned by CamScanner

E2

... (B)

4,62

H!!CI/and Mass Transfer We know that,

013

=

Radia/ion

032

~ransfe~_with (j

'"

A I T; - T~] I I - +--1 E3

[T; - T; ]

I I OJ + 0.06 - I

I I 0.06 + 0.5 - I

(1073)4 - (T3)4

T; - (573)4

19

17.6

4 T3

Owithout shield

(1.926)(T3)4 (T)4

I Radiation Substituting

shield temperature,

I. Heat exchange per square metre without radiation shield 012 = 15.88 kW/m2

2. Percentage reduction in heat transfer 3. Temperature of radiation shield T3

=

I

I

r2

900 K

E,

0.4

E2

0.7

E3

0.05

T3 value in equation (A) (or) equation (8),

Heat transfer with radiation shield 5.67 x 10-8 x A x [(1073)4 - (911.5)4] I I OJ + 0.06 - I

013 A

911.5 K

I

1012

911.5 K

= 88%

=

[Example 2 Two large parallel plates are maintained at a temperature of 600 K and 900 K and emissivities of 0.4 and 0.7 respectively. Determine heat transfer by radiation and also calculate percentage of reduction in heat transfer and shield temperature when another plate of emissivity 0.05 introduced in betweenthem. Radialion shield Given: TI 600 K

6.90 x lOll

T3

012 - 013 012

-

Result:

1.33 x 1012

911.5K

shield

0.88 = 88 %

0.926 x (1073)4 - 0.926 x (T3)4 + (573)4 x

'" (2)

15.88 - 1.89 15.88

0.926 [ (1073)4 - (T3)4 ] + (573)4

1.33

1.89 kW/m']

_. Owith shield

Owithoul

17.6 [(1073)4 - (T3)4] 19 +(573)4

(T3)4 + 0.926 (T3)4

[()~J ~

Reduction in heat transfer due to radiation shield

E2

[T~ - T;]

4,63

radiation shield

Plalel-

Tofind: I. Heat transfer

T,

2. % of reduction in heat transfer

1895.76 W/m2

3. Shield temperature

..

Scanned by CamScanner

Plale2

(1'3)

Fig. 4.14.

WT

4.64

Heat and Mass Transfer



Solutio" : Heat transfer between two large parallel plat without radiation shield is given by . es

E

o A [T~ -

-e

where,

Ti ]

=

1

1

1

+ 0.7 -I

I

0.341 =>

Q12

0.341 x 5.67 x 10-8 x A x [ (600)4 - (900)4 ]

I

.

~

Heat transfer without} radiation shield

Q12

_



A

-

-10,179.6W/m

2

I 1 - +--1

£3

£3

1

£1

£3

- +--1 [ (600)4 - (T3)4 ] 1 1 0.4 + 0.05 - 1 (600)4 - Tj

£,

=

I I - +--1 £,

=

£2

T; -(900)4 1 1 0.05 + 0.7 -I

Tj -(900)4 2Q.42

0.949 [ (600)4- Tj ] + (900)4 7.79 x 1011 .. , (A)

(1.949) T;

£3

:::).

I T3

7.79 x lOll 795.1 K

[ Shield temperature, T 3

E c A [Tj - T~ ] 54

Scanned by CamScanner

£3

20.42 21.5 [(600)4 - Tj ] + (900)4

Heat transfer between radiation shield 3 and plate 2 is given by Q32

1

£3

cr A [T~ - Tj] Q13

1

21.5

I I 1 - +--1

£

(T; - T~) - +--1

E c A [Ti - Tj ]

=>

£2

... (I)

Heat transfer between plate I and radiation shield 3 is given by

where,

_!_+_!_-1

1

". (8)

Q32 cr A (Tj - T~)

(T~ - T;)

0.341 x o x A x (Ti - T~ )

- 10,179.6 W/m2

QI3

-+1 £3 £2-1

a A (T~ - T;) £1

~

\. QA12

c A (Tj _ T4 ) ~

We know that,

OA

...~

I

795.1 KJ

FFtCZ'M"f'? ..

4.66

Heal and Mass Transfer

Substituting T3 value in equation (A) or Equation (B),~ A

(J

Heat transfer wit h } radiation shield

0

r T~

013 A II-leattransferwith I radiation shield



What would be the I •

OSS 0/

which ts enclosed

_!_ + _!_ - 1

13

EI

013

- T43 ]

==

in

Given :

E3

Case J :

5.67 x 10-8 x A x ( (600)4 - (795.!tJ 1 1 0.4 +0.05 - 1

467 .

Radiation

heat d

ue to radialion 01' th . m ~"'meter hrick 0 '. 'J e pipe if enllsSll1ity 0.91 ?

30 em = 0.30 m

J

Surface temperature

}013

=

Air temperature

,

T1

,

T2

300°C + 273

'" (2)

~,

Emissivity of the pipe ,

_J

==

012-013

Case 2 :

Emissivity, + 712.13

Toflnd :

Solution :

93%

Case J :

in heat transfer

Shield temperature,

T3

Reduction in heat loss. 25'C

~

0

- 10,179.6 W/m2

£1

o A [Ti - T;

£1

xo xn

1

D L [Ti - T;

1

[.: A

93%

o

795.1 K

J

0.8 x 5.67 x 10-8 x n x 0.30 x

= nDLl '

L x [ (573)4 - (298)4 1

I Example 3 I A pipe of diameter 30 em, carrying steamrulll in a large room ami is exposed to air at a temperature of 25,:1 Tile surface temperature of tile pipe is 300 'C. CalcuMe ti,e ~ of heat to surrounding per meter length of pipe due to ther I radiation. Tile emissivity of tile pipe surface isJ).8.

L

Scanned by CamScanner

0.91

£2

W

Heat transfer,

Result:

55 em = 0.55 m

I. Loss of heat per metre length, (Q/L). 2.

0.93

0.8

£1

Outer diameter , D2

012

Heat transfer without } 012 radiation shield A

25°C + 273

298 K

-712.13W/m2

-10.179.6

3.

ti.

Diameter of pipe, D

W/m2

-10,179.6

2. % of reduction

55 c

573 K

-712.13

Reduction in heat tranSfer} due to radiation shield

1.

(I

lOlL

4271.3 W/m I

Heat loss per metre length

= 4271.3

W/m

ASPEiM- ,

.M·"'·

.n

Radialion 4.68

4.69

Heal and Mass Transfer

Case 2: When the 30 cm diameter pipe is enclosed ~ diameter

~

pipe, heat exchange between two large concentrjlll

c

cylinder is given by

. ivity E value in equation

stituting emlssl sub Q:::: 0.76 x 5.67 x 10-8 x
(I),

7t x

x



Q

0.76 x 5.67 x 10-8 x

7t

DI x L,

l (573)4

- (298)4 ]

x 0.30

L x [

[~

(573)4 - (298)4 ]

4057.8 W/m \

Reduction in heat loss 4271.3 - 4057.8

Fig. 4.15.

213.4 '" (I)

where

-E =

[From equation no. 4.331

Result: I. Heat loss per metre length

4271.3

2. Reduction in heat loss

213.4 W 1m

W/m

I Example 4 I Tire outlet

1

L (1-

7t 01 -+-0.8 7t 02 L

1

-+-01 0.8 D2

0.91-

(10.911)

1

)

header of a higl. pressure steam superheater consists of pipe (e = 0.8) of diameter 27.5 em. Its surfacetemperature is 500 CC. Calculate tire loss of heat per unit lengthby radiation if it is placed in an enclosure at 30 CC. If the header is now enveloped in II steel screen of diameter 32.5 em and emissivity of 0.7 and the temperature of the screen is 340 "(:,/ind the reduction in heat by radiation due to provision of thisscreen. Given:

_1 + 0.30 (_1_ 0.8 0.55 0.91-

/E =

0.76/

Scanned by CamScanner

I)

Case 1:

Emissivity,

£1

0.8

Diameter,

0,

27.5 em = 0.275 m

T,

500°C + 273 = 7 3 K

T2

30°C + 273 = 303 K

-.I. 70

Heal and Mass Transfer

Case 2: 32.5

Screen diameter, D2 Emissivity,

0.325

In

0.7

£2

340°C + 273

Screen temperature, Ts Tofind:

em =

613 K

=

I. Loss of heat per unit length. 2. Reduction in heat loss.

@

So/ulilln:

Fig. 4.16.

30'C

C

Cast! J: We know that,

E

1 ~ +

Heat transfer, Q

Q

£(

x o x 1t

DL

x

[T4 (

-

1t 1t

D( L D2 L

T4]2

(1 ) £2 -

1

1

[.: A = 7t D LI 0.8 x 5.67 x 10-8 x

1t

x 0.275 x

L x [ (773)4 - (303)41 ~

13661.41 W/m

=

I~ -

1;~6kW/m

I

Case 2: Heat exchange between two large concentric cylinder is given by Q = Here ~ where,

T2 =

Q = E

£' o A [T~ - T~ ] T s = Screen temperature. £' a A [T~ - T~] I

=

I £1

AI ( I

+ A2

£2

Scanned by CamScanner

-I)

Substituting

E value in equati.

Q

0.62xcrxAx[T~

-T~]

0.62 x 5.67 x \0-8 x

1t

x D( x Lx [T~ - T~ ]

0.62 x 5.67 x 10-3 x

1t

x 0.275 x L.x

(I) ~

=

lIi

(1),

{ (773)4-(613)4]

." (I)

4.72

Radiation

Heal and Mass Transfer Reduction in heat transfer due to screen

Temperature,

13.66-~

7.11 kW/m

Emissivity,

Result:

roJind: 1.

Heat loss per metre length,

~

13.7 kW/m

T2 £2

).

Heat lost by radiation.

2.

Reduction in heat loss.

4.73

50°C + 273 323 K 0.9

solution: 2.

Reduction in heat} transfer due to screen

I Example

5

I Calculate

=

7.1 kW 1m

the heat lost by radiation per "'elre

length of 8 em diameter pipe at 400 'C and emissivity of 0.7, whell E, = 0.7

(a) It is located in a large room with a red brick walls maintained at a temperature of 35 DC. (b) It is enclosed in a 20 em diameter of red brick pipe maintained at a temperature of 50 DCand emissivity oJ 0.9.

Fig. 4.17.

Case 1 : Heat exchange

Q1

£1

o A [T~ - Ti ]

0.7 x 5.67 x 10-8 x

Also find reduction in heat loss. Given: Case 1:

Length, L Diameter of pipe, DI

0.7 x 5.67 x

1m 8 ern

= 0.08

TI

m

Temperature,

T2

is given by

0.7 35°C

+ 273

308K Case 2:

Diameter,

D2

20cm 0.20m Fig. 4.18.

Scanned by CamScanner

10-8

7t x 0.08 x 1 x [ (673)4 - (308)4] ... (1)

x

Case 2 : Heat exchange between two large concentric cylinder 673 K

Emissivity, EI

x Dl x L x

[(673)4"": (308)4]

1956.5 W \ Temperature,

7t

4.74

r

Heat and Mass Transfer

--------------~ E

crAdTI

4

4

...........

-T2]

-[Example

". (2)

6

I Emissivitles

Of tw

Radialion

large paraUel plata ",aintained at T, K and T2 K are 06 . and 0 6 respe,. I ,Fer is reduced 75 tl . C Ive!y. Heat trans,. 'mes When a I' h adia/ion shields of emissivity 0 04 I po IS ed aiulflilliwn r . are P aced ill 6etw . h Calculate the number of shields required. eell t em.

E

Given:

EI = 0.6 E2

Heat transfer reduced

= 0.6

=

75 times

Emissivity of radiation shield

_I 0.7

+ 0.08 0.2

E = E '

J

(_1 I)

3 -

~_~

Q2

004 .

Radiation

0.9-

shields

= 0.04

£3

(2) =>

4.75

0

-

where

,0.67 \ =

0.67x5.67xlO-8xltxD1xLx [ (673)4 - (323)41

=

0.67 x 5.67 x 10-8 x

It

x 0.08 x Ix Fig. 4.19.

[(673)4 - (323t1

IQ

\854.7 W

2 - =

Reduction

in heat loss,

Q1 - Q2

I

To find:

...(3)

Solution:

A o (T~ - T~] '" (I)

101.8 W

Result:

2.

Heat loss,

Reduction

Q1 = Q2

in heat loss

Scanned by CamScanner

Heat transfer with n shield is given by

1956.5 - 1854.7

= I.

Number of shields required.

=

Heat transfer without shield, i.e., n = O.

1956.5 W 1854.7 W 101.8 W

Acr(TI

\

(I) => \

Q12

=

4

-T2 4

I

I

EI

£2

- +- - I

1

... (:

,f,7(1

Ileal and Mass Transfer Radiation

Heat transfer is reduced 75 times, Qwithout shield

, Qwilh

~",Z7lle 71 Two large parallel plates with e = 0.5 each, ~ intained at different temperatures and are exchanging are trIaI by radiation. Two equally large radiation shields with "eat on ~"'issivity 0.05 are introduced in parallel to the plates. sur/ache percentage of reduction in net radiative heat transfer. find t e . . n : Emissitivlty of plate 1, EI = O.S G,ve . Emissivity of plate 2, E2 O.S

75

sh.eld

QI2

o.,

75

A cr [T~ - T~]

1

1

EI

E2

- +--1

o (1) =>

4,77

Emissivity of shield,

7S

Es

Number of shields, n

2 Plate. 2

Plate. 1

7S

I

I

0.6 + 0.6

+

2n

Q04 -

(n

+

7S

I 1 0.6 + 0.6 - 1

171.67

49n-l'

n

75

Solution: Case 1 : Heat transfer without radiation shield: between

radiation shield is given by

172.~7 ,=

In Result:

Fig. 4.20.

Heat exchange

171.67

49 n

3.52 ~ 4 4

I

Number of shields required, n

Scanned by CamScanner

shields

Tofind: Percentage of reduction in net radiative heat transfer.

3.33 + 50 n - n - 1 2.33 50n-n-l

Radiation

1)

= 4 nos.

where,

-E

two large parallel plates without

478

Heal and Mass Transfer ~ED

1

o.s \E

1 + O.S - I

0.333 \

Q",ithout shield

Case 2 : Heal transfer

0.333

(J

A [T4I

-

T41 2

0.333

(J

A [T4I

-

T42

with radiation

UNIVERSITY

•. 28. ~ Colculate the net r d' ~ alanthet , ea for IWO large parallel plates at te a exchange per "r ar . I mperature of 4270C 7 respecl"'e 'Yo &(ho, pia',) = 0.9 anll e _ a"d 0C 1 I' aluminium shield is placed b ::'~" platt) - 0.6. If a o ,s ti t. wee" them fi ",age of rel/u('lion in II.e heat transl'e • ",d the P perce ')1 r. £(.11;",,) :; 0.4. /May 2004, A""a Uni\lf!rSity/

"e

1

". (I)

s"ield :

Given:

427°C + 273

TI

We know that,

3

700 K

Heat transfer with

11

shield

27°( A

Qwi1h shield

[T~ - T~ 1

(J

4.79

PROBLEMS

Plate. 1

+ 273

Plcite.2

[I

T,

300 K

=

2

0.9 A I

(J

0.6

(T~ - T~ 1

1

0.4

2 x 2

0.5 + 0.5 + 0.05 - (2 + I) A

(J

fig. 4.21.

[T~ - T~ 1

Tofind:

I.

et

81 0.0123 A

QWilh shield

radiant heat exchange.per

Percentage (J

... (2)

(T~ - T~)

of reduction

m'! area.

in the heat transfer.

Solution : Case 1 : Heat transfer without radiation shield: Heat ex hange between 1\ 0 large parallel

We know that, Reduction in heat transfer l due to radiation shield J

Qwithoul

shield - Qwith Qwithout

shield

radiation shield i given by,

hield

QI_

0.333 (J A (T~ - T~] - 0.0123 A (J [T~ - T~ 1 0.333 0.333 -0.0123 .....,.., 0.

=

(J

A {T~ - T~ 1

096 . 3

where

'£ (JA[T~ -T~l I



96.3%

..)..)..)

Remit: Percentage of reduction in l net radiative heat transfer J

Scanned by CamScanner

=

96 ... .J

plates without

I

0.9

I

0.6 - I

[Fromequationno.t4.281

·y.,oitr=!

WE ~5

4.80

Heat and Mass Transfer

\E

Radiation

= 0.5625 \

_______

0.5625 x 5.67 x lO-8 x A x [(7

00)4- (31\1\

cr A [T~ - T~ )

-z»

V\I~l

Heat tran~f~r Without} radiation shield

Q12 A

- +--1

1

1

E,

E3

E2

E)

3

7.39 x 10 W/m2

"'(\1

Case 2 : Heat transfer with radiation shield: Heat exchange

between

[T~ - T~ 1

14 _ 14

I

I

I

1

EI

E)

£)

£2

plate 1 and radiation shield 3' IS gIVen . by

where,

- +--1 T~ - (300)4

1 1 0.9 + 0.4 - 1

1 \ 0.4 + 0.6 - \

[T~ - Tj ]

T;

T~ - (300)4 3.166

2.611 => 7.60

-t

X

io'

2.611 T~ - 2.11

- 3.166 T~ 7.81

x

'" (2)

t1

Heat exchange

Radiation shield temperature,

T) =

606.55 K

Substitute T) value in equation (2) or (3),

t3

between radiation shield 3 and plate 2 is given by

Heat transfer with \. => radiation shield J Q\3

_ -

4 cr A lT I

5.67 s Q\3

cr A [Tj - T~] 1 1 - +--1 t3

£2

3

10-8

E3

A [(70W - (606.55)j \ I 0.9 +0.4 - 1 x

2.27 x 103 W/m2

A

.. , (3)

Reduction in heat loss \. due to radiation shield J

We know that, 55

Scanned by CamScanner

x

T4) -

l. + _!__ 1 EI

where,

\010

1.353 x lO'l

)

1 1 - +--1

x

5.77 T~

1011 T4

cr A [T~ - Tj]

2

(700)4 - T;

(700)4 -

EoA

Q13

3

- +--1

_

-

cr A tT~ - 1~ 1

l.+_!__1

= 7.39 x 103 W/m2

4,81

Qwithout shield - Qwith shield Qwithout shield

..

4.82

Heal and Mass Transfer QI2 - QI3

Radiation

Q12 7.39 x 103 7.39

Solution .' x

2.27 x 103 103 -

Case J .' Heat transfer without radiation shield : Heat exchange between two parallel plates without radiation

= 69.2% I. Net radiant heat exchange} QI2 0.692

Result:

(without 2.

shield)

shield is given by

= 7.39

A

103

012

II·

I'I'I~

Percentage of reduction in !lIe} heat transfer due to hield = 69.2

£

A [T~ - T~]

a

[From equation no.(4.28)]

-

where.

I::

I

1'-E-.\-'1I-'-I1P-le-2---', Two large parallel planes {It BOOK and 6ft

-+ 0.5

have emissivities of 0.5 (1/1(1O.B respectively. A rat/illtionSA~ havillg (111 emissivity of 0.1 011 one side 0/1(/ (III emiSS;";tyo/tf 011 the other side hi placed between the plates. C(tlell/me tht 6e transfer rate hy radiation per square meter radiation shield. Comment 011 the results.

IDec.2005, Given :

TI

800 K

T2

600 K

EI

0.5

E2

0.8

EJa

0.1

E3b

0.05

3a Plane.

with and

lVil~

VnivtrJi

3b Plaro;l

1

£2 E3a

::::>

E3b

::::>

0.444

012

0.444 x 5.67 x 10-8 x A

A

=

103

7.048

Heat transfer without} radiation shield

I

-0.8

I

1£ 012

AIIIUI

£,

T,

4.83

QI2

=

r(800)4 - (600)4]

W/Il12

7.048

x

103 Whn2

A

... (I)

Case 2 : Heat transfer with radiation shield "

T2

Heat exchange between plate I and radiation shield 3a is given by

T3 where, Radiation

E

shield

Fig. 4.22.

Tojilld:

I.

2.

witlt Heat transfer rate per square metre radiation shield. ~~ Heat transfer rate per square metre radiation shield.

_, J.

Comment

on the re LIlt

Scanned by CamScanner

a A (T~ - T;] I EI

I

+- E a

... (2

4.84

Heat and Mass Transfer

stitllte T 3 value in equation (2) Or (3),

II -......... shield 3b an d pate I 2 IS' .---given b

Heat exchang e b etween_ radiation

Q 3b, 2 = where,

E

o A [T~ - T~ 1

)

5 -;:::l

}-leattransfer with} radiation shield

QI,3a

:::

-£1 +l.. £ -\ 30

~[(800'j4

_ r,u

l..~ '" (3)

1 1 -+-_

Q 1,3a

}-leattransfer With} radiation shield

Q3b,2

cr A [Tj _ T~)

cr A [T~ _ Tj) 1

-+-El

509.74 W/m2

E2

We know that,

1

E3a

1 -+

1 -_

E3b

E2

3

1

1

El

E3a

1

o.os

o.s+0.1-1

2

shield

]a

20.25 [(800)4 - Tj ) == 4 8.29 x 1.012 - 20.25 T 3

:::> x

:::>

Comment:

1012

transfer rate significantly. Result: 1. Heat transfer without l radiation shield 1 A

gg =

11 [T~ - (600)4] 11 T~ _1.42x

T

12

2.

10

significantly. 3.1072 x lOll 3 ==

3

7.048 x \0 W/m2

Heat transfer with l~ = 509.74 W/m2 radiation shield J A

The presence of radiation shield reduces tbe beat transfer

3

::::>

The presence of radiation shieldreducesihe h

31.25 Tj

T4 shield temperature,

92.7%

1 + 0.8 - 1

2025

11

Scanned by CamScanner

shield - Q\I;1h shield Qwilhout

0.927

Tj - (600)4

(800)4 - T~

Radiation

Qwilhout

Qu

Tj - (600)4

1

9.71

509.74 W/m2

7.048 x \OL 509.74 7.048 x IQ3

(800)4 - T~

:::>

A

QI2-QI

-+--

:::>

QI, 3a

Reduction in heat transfer} due to radiation shield

T4 _ T4

1

'h ...

OJ - \

0.5

cr A [Tj _ Ti] E3b

4.85

a A lTi - 141 ~

1

E

R adialion

b

746.60 K

4.86

Heat and Mass Transfer

I

[ Example 3 Two very large parallel plates with em' '. ISSIIII(' 0.5 exchange IIeat. Determine tile percentage reduction' le, "eat transfer rate if a polished aluminium radiation shiel/: Iht Ife~ 0.04 is placed in between t lte p Ia tes.

Given:

Emissivity

[June 2006, Anna Unille . rSI~J of plate 1, El = O.S

Emissivity

of plate 2,

Emissivity

of radiation

shield,

E2 E)

= O.S

G

= Es

==

Q12

==

Qwithoul shield

=

::::>

'

J-T--+ OJ -

0.5

::::>

= 0.04

I

==

I

~ 0.333

(j

A [T~ - T; 1

0.333

(j

A [T~ - T;

1

... (1)

Case 2 : Heat transfer with radiation shield:

We know that, Heat transfer with n shield, Qwith shield

where, Radiation shield

Es

=

Emissivityof radiationshield.

-

n -

Numberof radiationshield. A (j [T~ - T; 1

Fig. 4.23. Qwi1h shield

To find: radiation

Percentage

of reduction

radiation

exchange

0.04

A cr [T~ - T;]

between

two

shield is given by,

where,

_i_+li!1_(I+I)

0.5 + 0.5

shield.

Solution : Case 1 .. Heat transfer without radiation shield: Heat

_1

in heat transfer due to

large parallel

plates witho~

52 Qwi1h shield

=

We know that, Reduction in heat tran~fer } due to radiation shield

=

Scanned by CamScanner

0.0192 A o [T~ - T;]

Q without

,shield

Qwithout

QWIith shield shield

". (2)

4.88

~

Heal and Mass Transfer

.>

0.333 A (J [Ti - Ti] - 0.0192 A (J [Ti - ~ 0.333 A

4

(J

[T ( -

4 T2 ]

Radiation

[

~

maintained

4

15.8 x 103 W/m2

A

94.2%

=

Percentage of reduction in heat transfer rate

I Example

- (573)41

15.8 x 1Q3 W/m2]

Q ]lesu1t:

Result:

I Emissivities

of

two

large

parallel

= 94.2% planes

at 800 '(' and 300'(' are 0.3 and 0.5 respectively. Find

the net radiant heat exchange per square metre for these plates.

~

lite relative heat Iransl'.er b 'J' etween two 1000 K ancl500 K wit en lit

Find

~

nes at temperature large p Ia 1. 2.

ey are

Black bodies. Grey bodies with emissivities of eaclt surface is 0.7.

[Oct. 2001, MUI

800

1'(

Given:

e

+ 273

0

300°

[May 2002, MUI Given:

T,t t T,

1073 K

e + 273

573 K 1>,

0.3

£2

0.5

where

=

£

=

g

(J

A (T1 - T;)

[From equation no.(4.28))

T2

500 K

£,

0.7

E2

0.7

~T'

£,

Heat transfer

for black bodies.

2.

Heat transfer

for grey bodies.

Solution: Case

1: Heat 'exchange

0.23 x a x A (T~ - T~ )

Scanned by CamScanner

between

two large parallel plate is

given by

Q 1 1 OJ + 0.5 - 1

£2

1.

I

0.23

Q

1000 K

Fig. 4.25. To find :

Solution : The heat exchange between two large parallel plate is given by

Q

T,

Fig. 4.24.

Heat exchange per square metre.

To find:

48CJ

2

0.333 - 0.0192 0.333 0.942

0.23 x 5.67 x 10-8 x l(1073)4

QA:::::

For black bodies ,

E

A a (T 4I

-

T4) 2

= Q = A a (T~ - Ti )

E

Q A

5.67 x \0-8 [(IOOW-(SOO)41

4.90

:: 53.15

£"

Q

Case 1:

-f.

where

A

x

(J

10 W/Il12

(T~ - T~ )

1::2

I

=

O.os

~

Inner temperature,

TI :::

Outer temperature,

T2

- 183°C + 273 '" 90 K

E

293 K

I 0.7

I 0.7

-+ --

0.538

I~

x

Latent heat of oxygen

210 kJ/kg 210

IE Q

20°C + 273

0.5381 A

28.6 x 103

x

5.67

x

J03 J/kg

x

Toflnd : Rate of evaporation 10-8

x [

(1000)4 - (500)41

Solution:

w/m'l

Result: I. 2.

I

Q

A

(Black surface)

53.15 x 103 W/m2

AQ

28.6 x 103 W/m2

(Grey body)

I

Example 6 The inner sphere of liquid oxygell container is 40 em diameter and outer sphere is 50 em diameter. Both have emissivities 0.05. Determine the rate at which lite liquid oxygen would evaporate at - 183'C wizen lite outer sphere at 201(. Latent heat of oxygen is 210 kJlkg. {April 99, MUI Given: Inner diameter, Inner radius, Outer diameter, Outer radius,

D( r(

40 cm

=

50 ern

r2

0.25 m

Scanned by CamScanner

This is heat exchange between two large concentric spheres problem. Heat transfer,

where =

0.50 m

QJ2

-E

0'

Al [T 4I

-

T4]2

... (I)

[From equation no.(4.33)]

0.40 m

0.20 m

D2

Fig. 4.26.

E

4.92

Heat and Mass Transfer

\

47t"1

0.05 +

47t

(\

r;

)

300°C + 273 _ - 573 K

0.05 - \

OJ

O.~5 + :\

(O.~5 - I )

Radiation shield emissivity"

I

(I0.05 o.osI + (0.20)2 (0.25)2 IE (\) =>

- I

Radiation shield E:! :: 0 05 Plate 1

0.031 x 5.67 x 10-8 x 4 x

QI2

.05

)

I

-_ 0.031

- 0

"3 -

7t

Plate 2

x (0.20)2)(

[ (90)4 - (293~1

- 6.45 W [ - ve sign indicates inner surface.]

heat is transferred

from outer surface to

2 lOx

Tofilld:

6.45 W \ 03 1 I kg

I. Net radiant heat exchange per square metre

6.45 lis

2.

210 x 103 l/kg 3.07 x 10-5 kgls

, Rate of evaporation Rate of evaporation

=

I Example 7 I Emissivities

0/

maintained at 800'(' the net radiant heat polished aluminium Find the percentage Given:

TI

=

= BOO'C Fig. 4.27.

Heat transfer Latent heat

Rate of evaporation

Result:

T1

I

3.07 x 10-5 kg/s

(~2).

Percentage of reduction in heat transfer due to radiationshield. Solution: Case 1 : Heat transfer without radiation shield:

Heat exchange

between two large parallel plates without

radiation shield is given by two large parallel plaltl and 300'(' are 0.3 and 0.5 respectively.Fin' exchange per square metre 0/ the plates.If' where E = shield (E = 0.05) is placed between the1l'o 0/ reduction ill heat transfer. [Oct. 99, MW

e

8000

+ 273 = 1073 K

Scanned by CamScanner

4.94

Heat and Mass Transfer 1 1 OJ + 0.5 - 1

=>

(J

I

0.230

Q12

0.230 x 5.67 x 10-8 x A x [(1073)4-(57)

EI

E3

~

3

~I

-+1

A

'" (I)

-

4

E crA[T,

-T3]

(l073)4 => =>

4

... (~

-EcrA[T - 4 T4] 2 3 _!_+_!_-1

x

1012

43.3 Tj I

r3::: 913.8K

1

T 3 value in equation (2) or (3),

Heat transfer With} Q _ 5.67 x 10-8 x A x [(1073)4 (913.8)4] radiation shield 13 1 I -OJ +0.05 - 1

~J

1594.6 :::

w/m'l

... (4)

Qwilhout shield - Owilh shield Qwithout shield

012 - Ti]

_!_+_!_-l

Scanned by CamScanner

I

012 -013

E2

cr A [Tj

We know that,

=>

OJ -

22.3 Tj -2.4

3.02 x 1013

% of reduction in heat transfer} due to radiation shield

1

E3

I

-

T~ - (573) 21

3

3

I

Heat exchange between radiation shield 3 and plate 2 is givenby

~

2.78 x 1013 - 21 r4

Substitute

E3

- r:

Shield temperature

E

E

2

-+ 0.05

22.3

=>

1

-

E

T; - (573)4

1 I 0.3 + 0.05 - I

=

Q12

E2

495

(1073)4 - r4

Heat exchange between plate 1 and radiation shield 3 is givenby

where

I +--1

Radiation

o A [ T4 3 - T4] £3

Case 2: Heat transfer wit" radiation shield :

where

1

-

\E

Heat transfer Without} radiation shield

A [T~ - Tj]

I

... (~ I

15.8 x 103 - 1594.6 15.8 x 103 0.899

==

89.9%

I

il

II

~

Heat and Mass Transfer

4.96

Result: --- roJind: 1.

2.

Heat exchange without} QI2 radiation shield A

15.8 x 103 W/rn2

Heat transfer,

= 89.9%

% of reduction in heat transfer

I Example

Solution:

I

250

0"

8 Tile amount of radiant energy falling 50 em x 50 em horizontal thin metal plate insulated to the bolto II is 3600 kJlm2 hr. If the emissivity of the plate surface is 0.8 the ambient air temperature is 30 'C, find the equilibriuIPJ temperature of tile plate. /April97, MUJ

250 41 _ (303)4 T

Q"~

Given:

Area,

A

50 em x 50 em 0.5 m x 0.5 m 0.25

Q

Radiant energy,

ffi2]

3600 kl1m2 hr 3600 x 103 1 3600 m2 s 103 lis x m2 m

Here,

Area

0.25

IQ

m2

W

1000 x 2 x 0.25 m2

Q

rn

2S0W

I TI Result:

I

E

c A [T~ _ T; ]

0.8 x 5.67 x 1.13x1Q--8[T4 2.2 x 1010

.

10-8

)( O.2Sx [T4 1-(03)4] I - (03)4 ]

417.89

Plate temperature,

TI ::: 417.8K

~u~_.

I

[Example 9 A pipe carrying st ' ea", havm diameter of 20 em runs in a large room d ' g an Outside 30 "C. Tire pipe surface temperature is 400Clr> toQlrat . .....Calcu/ateth l of heat to surroundings per metre length of ' e oss thermal radiation. Emissivity of the pipe s ."the~,pe,dueto . "rlace u 0,8, What would be the loss of heat if tire pipe is encl d' .. ose m a 40 Clft diameter brick conduit of e= 0.9 ? /MU A ' •

, p,,12001/

{The procedure of this problem is sameas problemno.3 _ (Solved problems 011 radiation shield - Section4.27) J

I Example

1000 ~

Q

I The surface

of douhlewalledsphericalvessel used for storing liquid oxygen are coveredwitha layerofsilver lining having an emissivity of 0.03. The temperatureof outer surface of the inlier wall is - 153't' and tl,etemperature ofthe inner surface of the outer wall is 27't'. Thesphereare21 em and 30 em diameter with tire space betwee» them evacuated. Calculate the salt of evaporation of liquid oxygenduetoradiant l leat transfer. Latent heat of vapoumatlon • • °ifl' Iqui'd ot}'oen '. is 220 kJlkg. . as problemno.6 {The procedure of this problem IS same (Solved university problems - Section 4.28)J 10

&

Emissivity,

E

Ambient air temperature,

0.8 T2 303 K

56

Scanned by CamScanner

,

4.98

Heat and Mass Transfer

I

( Example 11 Two large parallel I ' oifO 3 dO' . panes hav' . an .5 are maintained at a t 'Ilg e",· K' emperature »r« ISsi~' respectively. A radiation shield havi 'J 00 /( q~ b h laVing an en . Q"d ot sides is placed between two pia C IlSSivity 0'0 4~ hi .. nes. alculat la 'J .OS oif .s IIeld, (u) ratio of heat transfer rate . e te"'Per ~ shield.• Without sh,' e I d I 1Il~. "1

Radiation

~

,I,

1M

0",.

[The procedure of this problem is U, April 20'" /S I d . . same as pr b ~I I' 0 ve umverSI roblems - Section 4.28)J 0 Ie", I!o.~ Exam Ie 12 Liquid nitrogen boil' . '. Ing at - 1960C . In a 15 litres spherical container ot 32 . IS Sto,~ tai . 'J em d,am con atner IS surrounded by a concentric spheri eler. 1~ . erlcal shell d iameter whose inside temperature is mai t . Of 40 ~ In alned at jOt' annular space between the two is evacuated. Tl. . 1'1rt l faci te surfaces 'f sp teres acing each other is silvered and hav . oJI~ 35 ", ki e an emlSsivit., . . ~a Ing the latent heat of vapourisauan fi h :' ~ or t e "qllij oxygen as 200 kI/kg, find the rate at which it evaporat IV, the thermal resistance offered by the inner surface .~St·he?lta , II' JI OJ e Iftlltr sne and by the thickness of the same.

Emissivities

diameter of 20 em runs In a I~rge room and is exposed to air at temperature of 30~. TI,e pipe surface temperature is 400~. Calculate the loss of heat to the surroundings per metre length of pipe due to thermal radiation. TI,e emissivity of the pipe surface

. [Bltarathidasan University, Nov. 9~ [The procedure of this problem is same as problem no.! r-;,,;;.:...~roblems- Section 4. 28)J of a double

walled spherkl

vessel used for storing liquid oxygen are covered with a layer~ silver having

an emissivity

of O.03. The temperature

of tile oulll

surface

of the inner wall is - 153 CC and the temperature of innll

surface

of the outer

30 em in diameter. Calculate

wall is 27CC. The spheres are 21 cm anI With the space

the radiation

heat transfer

vessel and the rate of evaporation vapourisution

is 220 kJlkg.

[The procedure

Scanned by CamScanner

them evacuated. the walls intoIhl

of liquid oxygen

if the ratt~

University, Apr. 91) 0 is same as problem 710.

[Bharathiyar

of this problem

(Solved university problems

between through

- Section 4.28)J

parallel plates

. t ,'ned at 800 ~ and 300 c:c are 0.3 and 0.5 respectively. Find ",a,n a net radiant heat exchange per square metre between the the [Nov. 97, MKU/ plates. [The procedure of this problem is same as problem no.4 d university problems - Section 4.28)J (SO Ive a-x-a-m-p-Ie-l-S"IA pi~e carrying steam having an outside

o

The surface

of .two large

4.99

is 0.8. What would be the loss of heat due to radiation if the pipe is enclosed in a 40 em diameter brick conduct of emissivity 0.91.

IBllUratlriyar University, Nov. 96/

[The procedure of this problem is same as problem no. 3 (Solved problems on radiation shield - Section 4.27)J

I Example

16 \ Consider two large parallel plates one at TI

10000[( with emissivity emissivity

62

6]

= 0.8 and the other at T2 = 500"1( wit

= 0.4. An aluminium

emissivity (botl: sides)

63 =

radiation

shield

with

0.2 is placed between the plate

Calculate the percentage reduction in tile heat transfer rate as result of the radiation shield. [Bhorathidasan

University, Nov.

[The procedure of this problem is same as problem n (Solved university problems - Section 4.28)J

4. J 00

Radiation

Heal and Mass Transfer

I

[Example 17 Two very large parallel pi • • Q~ Illsnvities 0.3 ami 0.8 exchange heat by radiatio . "'i1h n, F'''d P eTCentage reductio II ill heat transfer when a POlis/,ed., . 'hI Ta.uiation shield of emissivity = 0.04 is placed betweell the",. '14", ~

(I

~ we n

.

Absorptiv1t)'

+ Reflectivity

, pr.98/

An alternate approach for analysing thermal radiation between gray or black surfaces is called electrical network analogy. This approach is more direct, more general and much simpler. The two terms often used in the electrical analogy approach are irradiation and radiosity.

(,-a)G+£Eh a == £ (1-£)G+£Eb ". (4.39)

[Radiosiry. J -

f.

Eb

It is defined

unit time per unit area. It is expressed

incident

upon a surface per

in W/m2.

". (4.40)

" 'a surface The net energy 1 eav ing radiosil)' (J) and irradiat i n (G).

A as the total radiation

(I - c) G

G ==

Irradiation,

QI-2

Irradiation (G)

is the difference

J-G

J

_ (J-£Eb) I _£

J(I-c)-(J-cEb) (I - c)

Radiosity (J) J-Jc-J

It is used to indicate

the total ra~iation

unit time per unit area. It is expressed

111

~eaving a surface per

W/m-.

So,

I.

Reflected

2.

Emitted

of two parts.

by the surface

J

==

E

pG +

Scanned by CamScanner

E

Eb I -

pG

by the surface

Eb

Eb

.. ' (4.38)

cEb 1-

E

The rad iosiry (J) consists

t=O]

(4.38) ::::> We knoW that,

4.29. ELECTRICAL NETWORK ANALOGY FOR THERMAL RADIATION SYSTEMS BY USING RADIOSITY AND IRRADIATION

[.:

a+p , -[p--'-_-a--"lj

[Bharathidasan University ....

IIo.j

= I

+ Transmissivity

a+p+t

"n",,·

[The procedure of this problem is same as bl pro ell, (Solved University problems - Section 4. 28)J

4.101

t;

.J r;

c

between its

4.102

Heat and Mass Transfer

=

Q'-2

=

QI-2

A£(E'-J~

I-E

Radiation

Eb-J

--;his

l-E AE

figA.29.

I I

again can be represented by an electric circuit as shownin 0

". (4~

J,

in the form of electric I . a CltcUQI

This can be represented shown in Fig.

1 -E .

J

Fig. 4.28. E

0

J2

1 . kn . here --F- IS own.as space resistance. AI

12

If two surface resistance of the two bodies and space resistance them is considered, then, the net heat flow can be e sented by an electric circuit as shown in Fig.4.30. repre

l-E A

1

Fig. 4.19.

w

where

\10M

A, F'2

oo----~~~----~o

__

b tween

is known as surface resistance of the body.

If two bodies which are radiating heat with each other~' I the radiating heat of one b0 dy per unit'. area IS not fallingon~

Eb2

other and part of it has gone elsewhere, then, it is takenit account by a factor which is known as shape factor or view fa~ The heat radiated by the first body } and received by the second body Heat radiated from second} and received by first

Fig. 4.30. Ebl - Eb2

JIA1FI_2 __

J2

A2

4.103

F2_1

So, net heat lost by the first body,

QI

_2

=

J,

=

AI

AI

F, _ 2 - J2

FI_2

(11

-h)

A2

F2 _ I

[.: AI

F'2=A2F1J .. , (4.43)

J, -J2 1·

A, F,'2

I

,,' (4.J

where,

0'

-

B 0ltzmann constant 5.67 x JO-8 W/m2 K4

c. Stefan

-

Scanned by CamScanner

4.104

Heat and Mass Transfer

TI T2

A2 FI2 -

Temperature of surface I, K Temperature of surface 2, K Emissivity of surface I Emissivity of surface 2 Area of surface I, m2 Area of surface 2, m2

Radiation

AI FIJ J2 -JJ

_L__ A2 F2J

Shape factor.

For black surface,

The values of 012, 013, 02J are determined from the values of the radiosities (J I' J2 and )3)' Kirchoffs law which states that the

(4.43) ~

sum of the current entering a node is zero, is used to find the radiosity.

4.30. RADIATION OF HEAT EXCHANGE FOR THREE GRAy

SURFACES

The network for three gray surfaces is shown in Fig.4.31.. this case each of the bodies exchanges heat with the other two.Tt heat expressions are as follows:

4.31. SOLVED PROBLEMS

I Example configuralions

I

1 Calculate shown in Fig.

the

shape

factors

for

I. A black body inside a black enclosure.

2. A tube with cross section of an equilateral triangle.

Ebl

1-

4./05

11 - IJ I

JI

£1

J2 AI FI2

AI £1

Fig. 4.31.

Q/2

=

J1 -J2 1

A, F'2

Scanned by CamScanner

1-

£2

A2 £2

3. Hemispherical sur/ace and 1I plane surface.

the

4./06

Hear and Mass Transfer

Solution: Case J:

F'_2

[All radiation emitted from the black surface 2 . IS abs the enclosing surface I.] oriled~

-

(2) ~

. [F,_2

.

-

p_,-.l

(Since symmetry rriangle1

O·D

f!,-.l

Now considering radial ion fro

We know that,

4107

Radlollon

r.::-

- 0.5J

....

m su"ace 2,

F2-,

=

FI _ 1+ FI -2

I

0]

2_2

F2 -I + F2-J

-2

=

!F

FI_2

F,

+ F2_J

"'(ij

By reciprocity theorem, AI

+ F2-2

!F2_J

~

= -

I-F2_

]

1

... (3)

By reciprocity theorem, we know

(1) :::)

FI -I

l F,_,

=

=

(3) ~

~:I

I-F2_1

c·: F

1- FI_2

2_1

C': F,_2=0.5]

1-0.5 0.5/

Result: Case 2: F/_I

Result:

FI _ I =

We know

+ FI-2+FI-3

that, =

=

Scanned by CamScanner

I

=

0,

FI _2

0.5,

FI -J

0.5

Case 3: We know that,

For flat surface, shape factor FI _ I = O.

I FI - 2 + FI - 3

F1_

.J

FI_I +FI_2

F2_1

= FI_2

F2-2

=

F2-J

= F,_2]

0 0.5

= 0.5

4.108

Heal and Mass Transfer

By reciprocity theorem, A1FI_2 =>

[F'_2

=

0

A2F2-1

t, F,_,

I

'" (4)

Since all radiation ermttmg from the black surface 2 are absorbed by the enclosing surface 1, F2-1 (4) ~

FI_2

1t ,.2 21t ,.2

We know that, FI_I +FI_2 FI_I +0.5

I Example 2 I Find

[':F2_1==1]

AI

I FI_2

Result :

A2

FI_2

=

0.5

-

2

Fig. 4.32.

= 0.5

I

From Fig., we know that, As

==

AI + A3

A6

=

Az + A4

= =

1

I FI_I

0.5

FI_I

0.5

FI_2 F2_1

0.5

I

We know that, AsFs-6

==

AIFI_6+A3F3_6 [.: As=AI

=

Al FI_4+AI

the shape factor FI_2 for the figure

+A);

FS-6=FI-6+F3_6]

FI_2+A3F3_6 [.: FI_6=FI_4+FI-z]

shown below. In the Fig., the areas AI and A2 (Ireperpendicular but do not share the common edge.

As Fs -4 - A3 F3-4 + AI FI_2 + A3 F3-6 [.:

AI=As-A3;

FI_4=Fs_4-F3-4]

AIFI_2

=

As F5_6-As

AtFI_2

=

As [F5_6-FS_4]+AdF3-4-FJ-6] A5 [F

AI

S-6-

FS_4+A3F3-4-A/J-6

F

5-4

J+

AJ [F -FJ-61 A 3-4

.. ·(I)

I

94 (Sixth edition)]

[Refer HMT data book, Page no.

.

21A'*-

Scanned by CamScanner

S""pe }ilClor fior Me area A and --~~~~~~~~~---------------------.1 4.110

I

Heat and Mass Transfer ~

5

B

1

T 1 L2

L2

.

T

=2m

~I/(JII

A4 :

B = 2 m ...... 1

A4

Ll =4

~'---':::'

Fig. 4.33.

Fig. 4.35.

Shape factor for the area A 5 and A6 :

L2

Z

B =

~

2

2

=1

S = 42 =2

Y

B

IF

0.116431

5-4

[From tables]

Shapefactor for the area A 3 and A4 :

Fig. 4.34.

=

Y =

L2 4 -=-=2 B 2 L( 4 ----2 B-2 -

Fig. 4.36.

Z =

Z value is 2, Y value is 2. From that, we can find corresponding shape factor value is 0.14930 (From tables, Page No. 94).

I F5-6

Y = 0.14930 1

!F

3_ 4

Scanned by CamScanner

4".

-l~

L.-.-----'-.

"""'Ll

Z

~

=

L2 2 =2=1 B .., Ll =2=1 B

J

0.20004

4.112 H ---.:.:_eal and Mass Transfer

SIIapefi ac tor for the area A and A . 3

I.

"'

2

x

2

==

4 012

1000°C + 273 1273 K

As

L2::: 4 m

L1::: 2 m

=

TI

.1

B::: 2 m

T l~

Given: Area, A

6'

T2 == ,500~C +273 773 K

==

--=::::.,

L'-- __

Distance

0.5

III

Fig. 4.37.

L2

z

B

4

=

Fig.4.1B.

2"

=

2

Tofind: Solution:

y

0.23285

(I)~

I

Heat transfer

F s _ 6' F 5 _ 4' F3 _ 4 and F3 _ 6 values in equation (I),

Substitute

As

FI_2

AI

=

Heat transfer, (Q).

[0.14930-0.11643]+

A

A3 AI

QI2

=

[0.20004-0.23285]

I Example

3

1

l-~

AI EI

Al F12

A2E2

i

c =

I

FI _

1

E2 =

2x2

0.03293

Shape factor,

1 -EI

For black body

= 2 [0.03287] - I [0.03281]

Result:

I

Ti I

I

2 x 2 [0.03287] - 2 x 2 [0.03281]

FI -2 =

[Ti -

[From equationnO.(4.43)]

AS [0.03287] - A [0.03281]

4x2

I

o

--+-+-

A3

I

by radiation general equation is

[Ti - T; ] x AI FI2

5.67

x

10-8 [ (1273)4 - (773)4] x 4 x FI2

5.14xlOSFlz 2

I Two black

== 0.03293

where

square plates of size 2 by 2m are

olaced parallel to each other at a distance of 0.5 m. One plate is maintained at a temperature of 1000 CCand the other at 500

oc.

-

... (1)

Shape factor for square plates

ln order to find shape factor F 12' refer HMT data book, Page no. 90 (Sixth Edition) .

Find the heat exchange between the plates.

X axis 57

Scanned by CamScanner

F 12

!

=:

Smaller side _ Distance between planes

I ·1

I!

j3 4.114

Heat and Mass Transfer 2 0.5

I X axis Curve

~ ~

2

[Since given is squar

X axis value is 4, curve is 2. So, corresponding

TI ::: 750°C + 273 ::: 1023K

e Plates]

Y axis VI.

T2 ::: 350°C + 273 :::

a Ue,s

0.62.

i.e.,

£1

I FI2

623 K

OJ

0.621

Distance between discs

= 0.2 m.

0.62

Tofind:

Heat exchange between discs, (Q ).

F12

Solution: Heat transfer by radiation general equation is

4

Fig. 4.39.

[T~ - T;] 1 - e2 + __ I + __

(J

(I) ~

5.14 x 105 x 0.62

012 1012

Result:

Heat transfer,

I

012 =

1__

I

3.18 x 105 W

AI £1

3.18x

IOsW.

I

T

0.3 m

°1 °2

=

AI = A2

=

0.3 m

§

T,075OC El =0.3

l_§

T2:: 350'C E2:: 0.6

1t

4'

(0.3)2

Scanned by CamScanner

A2 £2

5.35 x 104 42.85 + 0.070

where

F 12

-

... (I) FI2

Shape factor for disc

In order to find shape factor F 12' refer HMT data book,Page no. 90 (Sixth edition).

O.2m

! 02 4

AI FI2

[Fromequationno.(4.33)]

5.67 x IO-S [ (l023t - (623)4) 1 - 0.3 1 1- 06 + +' 0.070 x 0.3 0.070 FI2 0.070 x 0.6

Example" Two circular discs of diameter 0.3 m eachart placed parallel to each other at a distance of 0.2 m: One disc is maintained at a temperature of 750 't' and the other at 350er and their corresponding emissivities are 0.3 and 0.6. Calculate heat exchange between the discs. Given:

£1

Fig. 4.40.

X axis

=

Diameter Distance between discs

OJ 0.2

j2 4.116

Heat and Mass Transfer

I X axis

=

1.5 Diameter of disc 2, ~

Curve

-)- I

X axis value is 1.5, curve is I. So, corresponding is 0.28.

y

. aXIS valUe

4.

Temperature

0.62 m Distance of disc I, TI ::: 125 crn _

Temperature

of disc 2, T·2

10jind:

0.28

=>

Radiation

62 crn :::

[Since given is disc]

iJ7

1150 K - 1.25 m

:::

620 K

Heat flow by radiation.

1 . When no other, surfaces . : are present 2.' When the discs rare connected b. . . Y non-conducting surface, Solulion: Area,'

~ TV

T,=1150K

AI

'r~ '.v

1.5

= '. ~

Fig. 4.41.

5.35

(I) =>

x

104

42.85 + 0.070

Result:

I

Heat transfer,

Example 5

I Two

x

030

~Fig. 4.41.

We know that

QJ2

Heat/transfer

black

569.9 W

discs of diameter

by.radrauo.

the following cases. When

2.

When the discs

are

connected

by IIoll-colltlucting

of disc I, D,

Scanned by CamScanner

62 em

0.62

III

4 .:. ~ 2

I-E,

I

A,E,

A,FI2

y'

1-&2

--+--+-I

E2 = )

£,

cr [

r~ - r;) I

surface.

r

a [T4 ,

Emissivity,

other surfaces are present.

Diameter

:al e411aill.)l1l~

For black surface,

1.

Given:

t;....

62 em are

arranged directly opposite to each other and separated by a distance of 125 em. Tile temperature of tile discs are 1150 K and 620 K. Calculate the heat flow by radiation between tile discsfor

110

T2~620K

in2'/.

0.28

569.9 W / =

;;< (0.62)2 ,

A, F'2

A2~

iFrom 'equation no.(4.33))

4. / /8

Heat and Mass Transfer .

5.67 x 10-8 x 0.30 x

=

27.2 x 103

F12

.

[(1150)4_ .. (620~

F121

I ••. (1)

where

Radiation

X axis value is 0.496, curve is S S . . . 0, correspo d' ' n Ing Y axis value .IS 034 . •

Shape factor for disc.

F12

4

Case 2 : The dISCS are connected b ' ·1/9 Y non-COndu . So, choose curve 5. ctlng,surfaces.

0.34J

In order to find shape factor F 12' refer HMT data book, p no. 90 (Sixth edition)..

.

age

Diameter Distance between discs

X axis

0.62 1.25

I X axis

0.496

I

0.496

Case 1: When no other radiation. So, choose curve 1.

surfaces

are present

I Q12

i.e., direct Result: Q 12

Y axis value is 0.05.

I F12

=

0.05

27.2 x

Q12

(1) ::::)

X axis value is 0.496, curve is 1. So, corresponding

Fig. 4.44.

,

I

9248 W

:::

. QI2 (planes connected

1()3

x 0.34

I

(Direct radiation)

by non-conducting

=

surfll:CS) =

1360 W

9248

I

Example 6 Two parallel rectangul~ surfaces 1 m x 2m are opposite to each other at a distance of 4 m..1he surfacesare black and at 300 ~ and 200~. Calculate the heat exchangeby radiation between two surfaces.

r,

Given:

Area, A

Distance TI 0.496

lx2=2m2 = 4m

300°C+273 S73K

Fig. 4.43.

(I) =>

Q12 [Q12

::: :::

27.2

x

103 x 0.05

1360 W

I

-1--V

i7. 1m

4m

2m

L

T2 1m

T 2 = 200°C + 273 = 473 K

Fig. 4,45.

..

Scanned by CamScanner

4.120

Heat and Mass Transfer

Tofind:

Heat exchange

(012), . From graph, we know that,

Solution:

Heat transfer by radiation

general equation is ,

(J

QI2

r T~ -

+ --

AI EI

T~]

I

EI .

J -

--

,

.

(I):::::>

J - E

+ ---.l

AI FI2

Result:

=>

012

where

FI2

4'

(J [

-

4

T I - T 2 ] x AI FI2

... (1)

Shape factor for parallel rectangles

In order to find shape factor, refer HMT data book Page nO.91 and 92 (Sixth Edition).

X

=

Longer side Distanc.e

2 .4

---..--~

1

0.5 '

D__,___=(

y

B D

-

4.

012

S.67x 10-8[(573),,_(

012

261.9 W

Heat exchange,

012 = 261.9 W

I

&2

EI

o~

=

473)4 ~x 2 x 0.04

A2 E2

For Black surface,

L D

I FI2

,

[Example 7 Two parallel plates of s;ze3 2 m x m areplaced arallel to each other at a distance or I 0 P . 'J III. lie plate is maintained at a temperature of 550 C(' and the otheral 250't the emissit'ilies are 0.35 and 0.55 resnect;ve!u Th land I, l' :.t. e p ales are located in a large room whose walls are al 35't: If the plales excllange Ileal with eac!, other and ",;th tht room,calculale 1.

Heal lost by the plates,

2.

Heat received by the room.

B=1m

m_t!J

0.25

B=1m

Fig. 4.46.

Size of the plates Distance between plates TI

550°C + 273

Second plate temperature,

T2

250°C + 273 = 523 K

Emissivity

of first plate, EI

0.35

of second plate, E2

0.55

Room temperature, TOfind, : 0.5. X = lID

Fig. 4.'47.

Scanned by CamScanner

1m

First plate temperature,

Emissivity BID = 0.25

3 m x 2m

T3

=

823 K

350C + 273 = 308 K

I.

Heat lost by the plates.

2.

Heat received by the room.

4.122

Heat and Mass Transfer

Solution: In this problem, heat exchange take Pla~ two plates and the room. So, this is three surface problem and the corresponding radiation network is given below. Eb3

Fig. 4.49.

To find shape factor F 92 (Sixth edition).

'2-

refer HMT data book, p age no.91 &:

Fig. 4.48. Electrical network

Area,

A,

3x2

07

6 m2

=

D=1m

I A,

=:>

A2 = 6

Since the room is large,

AJ

=

m2

I

I

. ,,''J

__j___"

A

,

B=2m 00

Fig.4.50.

From electrical network diagram, I-E,

I - E2 E2 A2

1 -EJ EJ AJ

Apply

1 - EJ

EJ AJ

= 0,

=

1-0.35 0.35 x 6

=

1-0.55 0.55 x 6

=

0

1 - EI = 0.309,

EI AI

ctrical network diagram,

L 3 x = 5=1=3

0.309

=

0.136

y

B 2 = 5=1=2

X value is 3, curve value is 2. From that, we can find corresponding shape factor value is 0.47, ie., F12= 0.47. [From graph]

[.: A3 =CX)j [F12

IE.

---=-.2 E2 A2

=

0.47J

We know that , = 0.136

values JII

Fll+FI2+F13 But,

FII

=

=

0

!&li!1®5~

Scanned by CamScanner

Eb2

::

::

I - 0.47

Q);

=

I

0.531

Similarly,

F21

=

... (5)

o T4

J

+ F22 + F23 5.67x 10-8 [308J4

0

We know that,

F22

=>

F23

=>

F23

=

1- FI2

F23

=

1-0.47

network

=

1-

=

J3

::

510.25 W/m2]

... (6)

J I and J2 can be calculated by using Kirchotrs

law. => The sum of current entering the node J1 is zero. AI Node

AI FI3

6 x 0.53

A2F23

6

x

x

0.53

0.47

0.314

... (1)

= 0.314

... (2)

r.,

[From diagram] =

0.354

26.0IxIOJ-JI 0.309

... (3)

J2-J1 + 0.354

, J1 => 84.17 x IOJ - 0.309

law, =

EbJ

[From diagram] The radiosities

0.53 )

6

Eb

I

F21

diagram,

From Stefan-Boltzmann

510.25 W/m2-

Eb3

I F23 From electrical

4.24x~

Eb2 EbJ

5.67 x 10-8 [523J4

crT4

=>

+

510.25-J1 0.314

=

J2 J1 + 0.354 - 0.354 + 1625 -

-9.24J1+2.82J2

0

J1

0Ji4 :; 0

= -85.79xloJ

... (7)

AI Node Jz:

5.67

x

10-8 [823

J4

... (4)

+

Eb3-J2 I A2F23

br

Scanned by CamScanner

EbJ-J2 + 0~36

o

I

-------:------!.Radintioll = 4.24 x 103 - 4.73 x )OJ ~

J

_1__

0.354.

J2

0354

_2_

510.25 .

+Q3j4 -0.314 2.82 J1

13.3 J2

-

6 x 0.55

4.24 x 103 __2__ + 0.136 - 0.136 - 0 =

-32.8

x 103

IQ

2

. ". (8)

Tota I

heat lost by the plates Q

Solving equation (7) and (8), - 9.24 J1 + 2.82 J2 2.82 J1

-

13.3 J2

=

_ 85.79 x 103

". (7)

=

- 32.8 x 103

'" (8)

- 3.59 x 103 ~

=

IQ

= Q1 +Q2 =

49.36 x 103 - 3.59 x 1()3

=

45.76 x 100W] '" (9)

Heat received by the room

By solving,

:::)

J2 =

4.73 x 103 W/m2

:::)

J1 =

10.73 x 103 W/m2

11 - 1) Q

I

=

10.73 x 103 - 510.25 + 4.73 x )(}J-510.25 0.314 , 0.314

Heat lost by plate I is given by Ebl

Q,

01

~

=

(:,-;:

-J1

J

[.: Eb3=J]=512.9]

[Q

26.01 x 103 - 10.73 x 103 1-0.35 0.35

I 01

12- 1) +~

x

6

49.36 x 103 W

I

Heat lost by plate 2 is given by

45.9 x 10)

wi

... (10)

From equation (9), (10), we came to know heat lost by the plates is equal to heat received by the room. [Example

8]

T"e water tank of size

2 m x 1 m x l m and

radiates heat from each side. The surface emissivityof tank is 0.8 andthe Surface temperature of tank is 32OC. Calculate the following: 1. Hear lost by radiation 2. Reduction

if ambient temperatureis 4t:

in heat loss

if

the tank is coated with an

tlluminium paint of emissivity 0.6.

Scanned by CamScanner

4.128

Heal and Mass Transfer

~~~~~~~~T-al-lk~sl'-ze----~ Given: Emissivity of tank,

€I

0.8

Surface temperature,

T1

32°e + 273

=:

Ambient temperature,

T2

4°e + 273

=:

Reduction in heat loss 305 K

Result:

277 K

I.

Heat loss by radiation Q _ ,

2.

Reduction in heat loss

I

1.003 kW

-

_

- O,250kW

Emissivity of aluminium,

0.6

€2

4.32. UNIVERSITY SOLVED PROBLEMS To find :

I. Heat loss by radiation (Q).

I

rexample 1 Determine the view faclor (F lfi 2.

L.;

Reduction in heat loss.

Shown

I.

Solutio" : 1. From Stefan-Boltzmann

law, we know that

1(1 Or the figure

IDee. 2004 & May 2005 Anna u,'

below.

1m

I

.1 1m

E b (or) Q == o T4

. . ity (c)c.' and Area (A) are given. SO, E ITIISSIVI Heat transfer, Q



x A x o T4

1':1 x

A x o [T~ - T; ]

Solution: 0.8 x 8 x 5.67 x 10-8

[.: Area

==

2 x 1x 4

==

(30S)L (27m

8 m2 (4 sides)1

I

1003.83 W

[Q

[

(or)

IQ

1.003 kW

2. Emissivity of aluminium,

I

£2 ==

0.6. Fig. 4.5/.

£1 - £2

Reduction in heat loss

==

x Q

£1

SA

Scanned by CamScanner

.

",verslty)

~1~,/~j~O~H~e~a~/a~n~d~~~~~s~s~~~o~~~fu~ --------------~

From Fig., we know that,

Shapt factor for the area A J and A, :

As ...

AI

A6 '"

A3 + A.

+

A2

~Bz1m-l

T

Ae

L2 = 2 m

-tJ~

Further. AsFs-6

==

AIFI_6+A2F2-6 [.: As

=

==

AI + A2; FS-6 = FI_6 + F2_ ] 6 Flg.4.SJ.

A I F I _ 3 + A I F I - 4 + A2 F2 - 6

t: FI-6=Ft-3+Fl-(] As FS-3 - A2 F2-3 + AI FI_4 + A2 F2_6

A~ FS-6

[·:AI=As-A2; ==

FI-3=Fs_3-Fd

AsFs_6-A~F~-3+A2F2-3-A2F2-6

L2

2

z

B= T

y

B

i.,

=2

2 =

T

=2

Z value IS 2, Y value is 2. From that, we can find corresponding shape factor value is 0.14930. [From tables] F 5 - 6 = 0.14930

~

I

J

Shape factor for tile area A J and A J : ~ B= 1 m ~

T

(Refer HMT data book, Page nO.94 (Sixth EditiOliI

L2:: 1 m

A3

-ll~

L,

=2m

~

~'''----

Fig. 4.54.

Fig. 4.52.

Scanned by CamScanner

Z =

L2 ) B - --) ) -

Y

=

L, 2 - -- --2 ) B

[FS_3

=

0.116431

[From tables]

·132

Hear and Mass Transfer

Shape factor for tIre area A 2 ami A j II

L2

=

B

1

1m

:

A5

.1

A;

- 0.11643] +

= 1m

A3

A2

-1J~

AI [0.200IlA A -l. \J
Fig. 4.55. L2

Z

=>

[0.03287] _

!

U

I

1 [0.03281]

O.0329

View factor, FI -4 -- 003 . 293 [Example 2 Determine the . . VIew factor F Illefigure shown below. I'D / - 2 alld F2 fi ec. 2005 <] Or --...J 'Alilia Ulliversity} Result:

!::.L B

-

0.20004

F2-3

T

,.--____ FI-4

-

-

B

Y

[0.14930

I

Shape factor for tire area A 2 and A6 : I_

B= 1 m

.1

T1 ..

2

L2.

L1

= 1m

Fig. 4.57.

~~---..::::..

Solution:

I.

Fig. 4.56. L2

2

z

B=T

y

s_

Substitute FS-6'

FS-3'

= 2

5m

T

_

B-1

-

0.23285

I

F2-3 and F2-6 values in equation (I), Fig. 4.58.

Scanned by CamScanner

____.-----

4.136 HeatandMa!sTra/lsf~------Result: View factors FI_, ~ 0.0978

F2 _ I ==

Radiation

~

0.0489

D

[ Example Two pilfallel plates of size J m x J "'lit spaced 0.5 0' IIp'''' are lacaWI in a very large room, the ""'''. ' whiclt are maintained at a lemperatllre of 27 OC. One P alt' of maiolainetl III a temperalure of 900"C lind tne other ., 46 • Tlreir emissivilies are 0.2 111111 0.5 respeclively. If the p1artJ 6t excltange heat belween tlte",selve!i a/l(l sllrr(Jllfltiillgs,find Ihe n • . . Consider (J1111 Y I~II hea! ITilnsfer 10 eilell plale anti to lite room. venlt}1 pltlle .wrft,cesfac",g eac/r olher. {May 2004, Anna Uni ,

,!

"'2 £2

Fig. 4.62. Electrlcul IItlwor' dl IIgrum

Area, AI SOllllion: Size of the plates

==

I J11

Distance between plates

==

0.5

==

27

Room temperatur'!,

TJ

X

0 '

Second plate temperature,

T I ==

900

T2

=

400

-I-

27 ., 300 K

CI

;::

0.2

, e·2

==

0.5

0 '

IA

Since the

III

0

foirst plate temperature,

_/

I 111

-I

27

.. 1173 K

27

.. 673 K

I

..

1)( I • 1m2

-

"2

room is large, A)·

From electrical network

-

I

Emissivity of second plate

diagram, 1-0.2 --4 I )( 0.2

(;Q.'5 •

==

1'0/1/1(1:

I.

I

r:/)

1- O.S

Emissivity of first plate,

2

m

I

o

Net heat transfer to each plaLc.

2. Net heat transfer to room. s Salution : In thi pro bl em, heat exchange take place bet\l'~ om. S 0, this., IS three surface problem and tlt .wo ,. Iares and the roor orrcsponding radiation network is given below.

Scanned by CamScanner

I-I:

Apply __

JI

AI

(;1

nctwo r'k (I'iagram.

I-e I, -:;:; A3 (;3

0 values in e"':l:trical

4. 138

Neal and Mass Transfer

--------

But, ::::> ::::>

J2

Eb2

Fig. 4.63. Electricat network diagram To find shape factor FI2 ' refer HMT data book Page nO.91& 92 (Sixth Edition).

Similarly, We know that,

F22

o

::::>

F23

I-F 21

1-0.41525 0.5847J From electrical network diagram, 8=1m

Fig.4.M. X

=

L 0

= 0.5 = 2

y

=

B 0

= 0.5 = 2

FI2

=

==

1.7102

I x 0.5847

==

1.7102

I x 0.41525

==

2.408

I

I

I

X value is 2, Y value is 2. From that, we can find correspon· ding shape factor value is 0.41525. [From table} i.e.,

I x 0.5847

AI FI2 From Stefan-Boltzmann

law ,

0.41525 4

We know that,

o TI

5.67 x 10-8 [II 73J4 107.34 x I 03 W/m~

Scanned by CamScanner

4.140

Heat and Mass Transfer

5.67 x 10-8 [673]4

I Eb2

11.63 x 103

W/~

4

o T3

Eb3 = Eb3 =

5.67 x 10-8 [300]4

459.27 W/m2

From electrical network diagram, we know that,

I The radiosities

Eb3

=

13

=

11 and 12 can be calculated

459.27

W/m~

by using Kirchoff's

Jaw.

0.415 J1

1.4997 J2

==

- 1.2497 J1 + 0.415 J2 0.415JI-1.4997J2

==

-

- 6.08 x 103

'"

(2)

Solving equation (1) and (2), => The sum of current entering the node J 1 is zero.

AINodeJ/

:

Ebl -1)

By solving,

o

4

11.06 x J03 W/m2

J1 [From electrical network diagram] 107.34 x 103-11 4

26835 -

'4

12-\11 459.27-1) + 2.408 + 1.7102

=

1)

+ 2.408 - 2.408

~6835-0.2511

25.35 x 103 Ebl

W/m2

-J1

0

1) + 268.54 - 1.7102

+0.41512-0.41511}

=

0

::::

0

107.34 x IOL 25.35x J03 1-0.2 1 x 0.2

+ 268.54 - 0.5847 1) -1.2497

Heat lost by plate ( I), Q1

=

[From electricalnetwork diagram]

lz

11

==

-27.lOx 103 -6.08 x 103

J1 + 0.41512

-27.IOxIOJ

... (1)

b

Scanned by CamScanner

4./42

Heat and Mass Tramjer

Heat lost by plate (2), Q2

~

Eb2- J2

=

1- E2 A2 E2

11.63 x 103 - 11.06 .___ x 103 1-0.5

=

I Q2

-I x 0.5

=

570 W

Total heat lost by the} Q = plates (1) and (2)

I

+

x

1m

IQ

=

O.4m

1

T2 = 400°C + 273

I

673 K

12 7" 13

T2 = 4OO'C

I

Fig. 4.65.

A2F23

Tofind: Solulion:

Heat exchange, (Q). Heat transfer by radiation generalequationis

Q12 = = J) = 459.27

W/m2j

I

20.752 x 103 W

~Tl=900'C

= 1173 K

103 - 459.27 11.06 x 103 - 459.27 1.7102 + 1.7102 [.,' Eb3

a [Ii - I;] 1- E, 1 --+-+-2 A, E, A, F'2

[Nole: Heat lost by the plates is equal to heat received by the

room.] I. Net heat lost by each plates Q,

= 20.49

Q2

=

x

=

£,

For black body, :::::)

20.752 x 103 W

IQ

I2

where

=

QI2 =

103 W

570 W

Scanned by CamScanner

A2 £2

[From equationno.(4.43)]

,I

2. Net heat transfer to the room Q

l-~-

I I

Result:

lOCI. 99, MUj

Distance = 0.4 m

x 103 + 570

1, -13

Area A ::: I x I ::: 1 m2

T, = 900°C + 273

A, F'3

25.35

Given:

I

21.06 x 103 W

=

Total heat received or} Q = absorbed by the room

=

fl'

Q, +Q2

= 20.49

IQ

[lxomple" , Two hI" It Rd' C 'qll("e U lOlto" " 143 '(lettI p{/Tllllelto eaclt olh, pInt, 0' i . P" .' al a di 'J sUI b "'{Iinlflined tu a lempert/lure " 'Slnlleeof 0.4 ~ I", are oJ 900't: f1I. Olle pl . r:/'nd the net heal exclutnoe 0' and lire 01" ate u T" It 'J tllergy d. er at 400 "C. lie to 'adintio L_ • t'ltt IHIOplates. II oelwetll

F'2

£2

=I

a[Ti

-I~] A, FI2

=

5.67 x IO-S[ (I 173)4- (673)41F'2

=

95.7 x 103 FI21

-

Shape factor for squareplates

... (I)

, 4. J 44

Heal and Mass Transfer

In order to find shape factor F,2, refer HMT data book, Page

2Qcm ::: O.2m

no.90 (Sixth edition).

0.2m Smaller side Distance between planes

X axis

=

1 0.4

I X axis

2.5

I

2 [since given is square plate] E,

X axis value is 2.5, curve is 2. So, corresponding Y axis value is 0.42. i.e.,

0.42

I

1073 K 3000e + 273

T2 =

Curve ~

8000e + 273

=

T,

573 K 0.3 Fig. 4.67.

E2 =

Tofind:

0.5

Heat exchange, (0).

Solution: 1t

= 4

(0.2)2

A,

=

0.031 m2

A2

=

0.031 m1

=

0.031 m2

2.5 Fig. 4.66.

I0 Result:

I Example

Heat transfer by radiation generation equation is

95.7 x 103 x 0.42

(I) => ,2

Heat exchange,

40 x 10J W

0,2

I

(J

[r: ...r; J

= 40 x JOJ W

I

5 Two circular discs of diameter 20 em each ore placed 2 m apart. Calculate the radiant heat exchong« for these discs if there are maintained at 800 't:' 0/1(1300't:' respectively and the corresponding ennssivities are 0.3 and 0.5. IApr. 2000, MOl

+

Scanned by CamScanner

_5.67 x 1O-8((107Jt-(573tl 1 - 0.3 I I - 0.5 0.031 x 0.3 + 0.31 x F'2 . O.OJI x 0.5

4.146

Heal and Mass Transfor

69 x

J()l

J 07.45 + 0.03 J

where F'2

-

~ [!xample 6 I TlVo black d' Radian • ISc., Of d.' 011 4147 directly opposite at U di.ft(tnce " IQ"'eler 0 5 ' oJ", Th . "'artpl fOOD K and 500 K respectivel . t discs are . aced discs. lV· Calculate the h "'m"t"i"td al t.."e tat /lOti! bettl!te" J, WI,ell no other surfaces areprese 2. Whell the discs are nt. ~on"ected bv , surface. J non-conducting

'" (lJ

F'2

Shape factor for disc.

In order to find shape factor, FJ2, (Refer HMTdata book, Page no.90 (Sixth Ed"

Diameter

"axis =

,Ilionl)

Distance between disc

to« 97, MUI

I X axis = Curve

0.1

-+ 1 (since givel1 is djs~)

.

Temperature, of disc,

is 0.01. FJ2

=

0.5m

T~

Distance = ) m

X axis value is 0.1, curve is 1. So, corresponding Y axis value

I

0.5 m

Diameter of disc, 2

I \

~

Diameter of disc, )

Givell:

0.2 2

Temperature

J

-

1m

JOOOK

of disc, 2

5001(

T,=l000K

l~

0.01 Solutio" :

Fig. 4.69. 1t

4'

'-.(r.f

" Fig.

I,

1-68. .

Heat transfer by radiation general equation is c [T~ - T~] 012 = 1- t ,\' I )-&2

.. 69 xJl~; (l)~

'tel , 1.1 107.45 + 0~031,x 0.01

rQ~~"~

,:-':2([7

W~":l

Result: Heat exchange, Q = 20.7 Watts

(0.5)2

I

1

For black surface, Emissivity, £1 = .J

~

,i'

t'

012 =

+-

____l AI 61'

Al FI2

I'

62 .'

o AI FI2

~

= ::'4'

r TI

,I

-

+ -:-

Ai

&2

,

4

T2

]

= 5.67 x 1O-8xO.196xFI2x

[(1000)4 -

(soW]

Scanned by CamScanner

,

--;:xiS value is 0.5, curve is 5. S ' .'1ad mio" ~ 149 ~4~./~4~8~~H~e~a/~(~/II~d~A~U~/~~J~T~"~~II~lv~e~,.~==~-------------o cprr .spo t' . 0 J4. " n(!Og y axi~ value

, 10'fl2J

@;~~4

where,

FI1

~

,s .

Shape factor for disc.

-

In order to find shape factor f12,

I



(Refer J·IMT dalft book, Page no. 90 (Sixlh Edilir.~

Diameter Distance between discs

X axis

Q2 I

[x axis

0.5 ]

other surfaces are present i.e., directQ Case: J Wh en no .' .' S I curve I. X axis value IS 0.5, curve IS I, radiatIon. 0, C ioose corresponding Y axis value is 0.05. [F12

==

0.05 ]

JO.4x IOJxO,1'

QI2

:::::>

(I)

0.3'1 )

FI2

3536 W ,

[ 012 Resull: I.

012

(DireCI radialion)

2.

012

(Planes connected by non-condU(linpurflcc)

= 520.9 W

[!:xalllple 7 I A long cylintlricallrealer 30 mm in diameleris mainlabretl til 700°C II has surface emissivilyof 0.8. The healer is localed in (/ large room whose wall are 351('. Fimlll,e radianl Ileallrans/er. Find the percentage of reduclionin Ireallransfer if the heater is complelely covered by radialiollshieltl (s= 0.05) and diameler 40 mm: IApril99, MU/ Give":

30 mm = 0.030 m

Diameter of cylinder, DI

700°C + 273 = 973 K

Temperature, TI

0.8

Emissivity, E, Room temperature, Tz

(I)

=>

=

35°C + 273

Room

0.5 Fig.

= 3536 W

1.70. • T 2 [2

10.4 x 103 x 0.05

CaJe 2: The discs are connected

. surft.1 by non-conductJOB

:0, choose curve 5.

Scanned by CamScanner

Fig. 4.71.

=

308 K

4. 150

Heat and Mass Transfer

Radiation S"ield :

----------------Since room is large ~

Emissivity, E3

=

0.05

Diameter, D3

=

40 mm == 0.040 rn

Rod iQlion

~

4.15/

Shapefactor Small body enclosed by largebod F 12

Radiation shield

==

Y~FI2'=l [Refer HMT data (1) ~

Q

book,p

5.67 x lo-a [ (973 1 - 0.8

age 110.83(Sixth edition)]

t ~(30S)4_J

12

0.094 x O.S + 0.094 x 1 + 0 [Since A '=

ex)

1- ~

'A

2

Heat transfer without shield

I QI2

=

3783.2 W

J

Heat transfer between heater (1) and ra dilatlon shield . . b (3) is given y

Fig. 4.72.

Toflnd : I. Heat transfer.

l-EI __

2. % of reduction in heat transfer. where

I A3

Case 1 : Heat transfer wit/rout shietd :

=

1-

EI

--+-+AI EI

where,

I

DL

Al

1t

Al

0.094

Al FI2

=

1t

m21

Scanned by CamScanner

D3 L ==

0.125

1t

A3 &3

x 0.040 x 1

m21

[Refer HMT data book, Page no.83 (Sixth edition» ... (11

5.67 x 10-8[(973)" - Tj I 1 - 0.8 + 1 I - 0.05 0.094 x 0.8 0.094 x I + 0.125 x 0.05

E2

A2 E2

x 0.030 x 1

==

AI FI3

1-& 3 + __

Shape factor for concentric long cylinder F13 = 1

Heat transfer by radiation general equation is

QI2

1t

I

+

AI EI

Solutio" :

c [Ti - T~] I I-

=O}

'" (2)

Case 2: Heat transfer with shield: Diameter 03 = 0.040 m

2~

=

0.094 m ==

3.43 x 10-10 [(973)4 - T~]

I

.., (3)

Hear and Mass Transfer

... I:JL.

Heat exchange between radiation shield (3) and

D

[\OOrn (

2),

given by a [Tj - T;]

Reduction in heat loss due to radiation shield

1

.

==

Radia/io"

Q.

Q .

Without shield -

Q.

"I~

Without shield

QIl-Qn QI2 Since room is large,

A2

=

3783.2 -154.6 3783.2

1-£2

o

A2 £2

I. Heat transfer without radiation shield

Shape factor for small body enclosed by large body

F32

QIl

I

2. % of reduction in heat transfer

[Refer HMT data book,Page noll\ 5.67 x 10-8 [ T; - (308)4 ]

=>

95.9%

==

Result:

1 - 0.05 1 0.125 x 0.05 + 0.125 x 1 3.54 x 10-10 [T;

- (308)4]

+0

I

'" (4)

==

3783.2 W

=

95.9%

I

[Example 8 A disc oj 10 em diameter at 4000C is situated 2m below tile centre oj another disc of I.S m diameter which is maintained at 200 'C. Find the net radiant energy excl.ange between tile surfaces if tile emisslvities of smaller and larger discs are 0.8 and 0.6 respectively. /Manonmaniunr

Sundaranar Unil1ersity,NOI1. 96/

[The procedure of this problem is same as problem no.5J We know 013

=>

032

3.43 x 10-10 1(973)4 - T;] 307.4 - 3.43

x

3.54 x 10-10 [Tj -(308~1

10-10 T;

3.54

x

10-IOT; -3.18

6.97 x 10-10 Tj

310.58

=>

817 K

I

Substitute T3 value in (3) or (4). Heat transfer with radiation shield 013

==

3.43 x 10-10

L§lL

=

154.6 W

Scanned by CamScanner

I

[

(973)4 - (817)4 ]

4.33. RADIATION FROM GASES AND VAPOURS- EMISSION AND ABSORPTION

Many gases such as N2, 02' H2, dry air etc., do not emit or absorb any appreciable amount of thermal radiation. These gases may be considered as transparent to thermal radiation. On the other hand, some gases and vapours such as CO2, CO, H20, S02' NH3, etc., emit and absorb significant amount of radiant energy. As illustration we shall take up radiation from CO2 and H20, which are the most common absorbing gases present in atmosphere industrial furnace, etc.

4./54

Heal and Mass Transfer

4.33.1. Radiation from Gases Differs From Solids

~

The radiation from gases differs from solids in the fOllow'

lilt

ways:

• The radiation from solids is at all wavelengths, whe gases radiate over specific wavelength ranges or b I'eas within the thermal spectrum. iIItds • The intensity of radiation as it passes through an absorb' gas decreases with the length of passage through the Illg volume. This is unlike solids wherein the absorption gas radiation takes place Wit. hiIn a sma II d'istancs from thtof surface.

4155

I

r£xantple 1 A gas is en l I...!:: c oSed in '''7CC TIle mean bea", leng/~ a bOdy III N • I Of the a temper t es~ure of water vapOur is 02 gas body is J a lire of ' ' pll . at". "'- The . lit' Calculate the emissivity 01" and tire total partIal a • 'J ",aler Vapo preSSureis 2 Ur. Temperature T _ Given: , - 727°C + Mean.beam length L _ 273 == 1000 K ,

", -

3m

Partial pressure of water vapou' p I,

Tojinll: I

H

20

==

0.2 atm.

Total preSSure p ::: . . . '2atm E rmssrvity of water vapo

ur, (£H 0). 2

4.34. MEAN BEAM LENGTH

Solution:

PH 0 x

2

Hottel and Egbert evaluated the emissivities of a number of gases at various temperature and pressures are presented the results in the form of graphs. Their results are strictly valid for hemispherical gas volum~sof radius L, radiating to an elemental surface at the centre of the base as shown in Fig.

GH~W

L",

0.2 x 3 0.6mat~

From HMT data book, Page no. I 07 we C f d '" H 0. ' an In emissIvity of 2

Fig. 4.73.

However, calculated by

for other

shapes,

mean

beam

length

lO00K

can be

Fig. 4.74.

From graph, i; where

=

3.6

x

AV

V

Volume of gas

A

Surface area of gas

Scanned by CamScanner

Emissivity

of H20

=

OJ ... (1)

4. 156

Heat and Mass Transfer

To fintl correction/actor/or

H]O:

-

0.2 + 2 2 :::: 1.1

2

Partial pressure of CO p 2,

CO

2

Partial pressure of HOp 2 , Ht' '" IOOIe '" 0 10

=

2

Given:

PH

1.1,

2

0

.

L

m '" 0.6

From HMT data book, Page nO.l08 (Sixth editio ) n, find correction factor for H20.

Wt

aIm

Total pressure, p '" 2 abn Temperature, T .. 92""

rC + 273

~

'" 1200 K

Mean beam length, l. '"OJ m Tofind:

Emissivity of mixture,

(t.-a).

So/lilian: TafindemissivityofCo~

P¥+P __

=1.1

P~

xL.

I P~

xL.

0.2)( OJ

==

0.06

m-atuiJ

From HMT databook, Page no. I05, we can find emissivityofC~.

2

Fig. 4.75.

From graph, Correction

factor for H20

IC

=

H20

So,

Emissivity of H20,

I Result:

Emissivity of H20,

I Example 2 I A

1.36 1.36

I

... (.

(H 0 2

OJ x 1.36

EH20

0.408

E

0.408

0 H2

I

gas mixture contains 20% COl and J~ H P by volume. TIle total pressure is 2 atm. The temperattPt the gas is 927'\:". The mean beam length IS. 0• 3 m. Calculatl emissivity

0/ the

mixture.

Scanned by CamScanner

1200K

Fig. 4.76.

From graph,

Emissivity 0(002

I~

==

0.09 ==

O.l19J

u 4.158

Heat and Mass Transfer

To find correction factor for CO2

:

~

Total pressure, P = P C02 Lm =

2 atm 0.06 m-atrn.

From HMT data book, Page no. 106, we can find factor for CO2, co~

Fig. 4.71.

From graph,

Emissivity of H20

Tofind correction factor for Hp: PH20 + P P=2atm

2

From graph, correction factor for CO2 is ,i .25. 1.,25

I

x Cco2

EC02'

x CC02

=

,',

I

2 pH 'L0, 2

From HMT data book",Pag~

III,

0:09 x 1.25 .,,(

0.'11251

'J>H20 x Lm

,-

0.1 x OJ =

0.03

m-atrnJ ' . i... ity d

From HMT data book, Page n~.107, we can find emlss

, P"zO + P ,1,05 2

F(g.'.4.7fJl " ,',

H20.

Scanned by CamScanner

2

= 1.05

1.05,

,

0.03 m-ann

no. 108 (Sixth edition), we can

find correction factor for H20.

Tofind emissivity of H20 :

I 'PH20,L~

0.1 +2

PH20 + p

Fig. 4.77.

EC0 2

0.048

r

4.158

Heal and Mass Transfer

Tofind correction factor for CO2

:

Total pressure, P =

=

PC02 L",

2 atm 0.06 m-atm.

From HMT data book,' Page no. 106, we can find COrr...., "~Q~ factor for CO2,

.'

,

Fig. 4.78.

From graph,

Emissivity of H20 = 0.048 0.048 J

Tofind correction/actor/or Hp:. PH20 +p "

I



I

.'

Fig. 4.77. I

From graph, correction factor for CO2 is ,j .25. =

1.25,/

x CC~

=

0:09 x 1.25

EC02,' x CC~

=

Oh'12S

=

0.1 x OJ

EC~

I

,

"

,

! I',

.!

2 ,

'"

J ~.

..,(I)

'\ ,

F

I

i

' '. , '. . 'ty of rom HMT data book, Page no.107, we can find emisSIVI

H20.

' ,

Scanned by CamScanner

. ' t,

PHl 0 '.' L", = 0.03 m-ann

"

',',

'.'

.'

)'~..

'I

From HMT data book, page. no. 108 '(Sixth edition), we can find correction factor for H2O', '

I

,'PH20 :L';' ~". 0.03rn-a~.J

1.05,'

=

,

To find emissivity of H:P :

J>H20 'x L",

= 1.05

PH20 + p

I

I,Ci~

0.1 +2

= ~

'2

P=2atm

, PHzO+ P

--,,',05 2

Ffg.'·-#. 7.'/1 '

4.160

Heal and Mass Transfer

From graph,

Tota I

Correction factor for H20

,...C-

-

1.39 --1.-39-',

Emtx

Ec~

H 20

x

CH20

I EH20 x

CH20

EH20

emissivity of gaseous mixtllr

=

r+=

0.048 x 1.39

I EmU =

0.0661

6/'

~.,

Ceo + E

2 1i20 CH 0 0.1125 + 0 066 2 - l\E . - 0.002 ~[Fromequal' 0.176U IOn(I),(2)and(3)]

cr

;'td 01 a temperature of 925 OV~r;t . vollI"'eis ~. s ~nl"t valli I rtS!iUre of the combustion gases is J The lola .~e of water vapour hi O.J atm and that 01" ~O"" .the PII"illl .

",0111'01

=

~/

Emissivity of gaseous mixture Jl es ull: .] , E"'I: ::: 0.1765 [f!a",e1e 3 A furnace of 25 nrl or~a and J2",J .

Correction factor for mu1ure of CO] and H]O:

PH20

ROd"",.

e

0.1 0.1 +0.2

pres!;U

"'e.

.~ . .

'J

~olate II.t emunVity of tile gaseous mixture . Given: Area, A = 25 m2 Volume V 12 m)

:lIS 0.]5 IIIIft.

I

=

0.333

Temperature

2

x

L", + PH20

x

0.09 ,

L",

Tofind:

r·1200K

Solution:

P~L",+PHzOL", 0.002

Emis iviry of mixture

TOfind emissivity

PC(

From CO2,

Fig. 4.80. ..' (3)

60

Scanned by CamScanner

cOz

0.25 atm.

(Emu)'

1.72

m

0.25

x

I

of CO] :

1.72

0.43 rn-atm.

:00.333

I

0.1 atm.

We know, Mean beam length for gaseous mixture. V 12 Lit, 3.6 x A = 3.6 x 25

I Lltt

0.002

0 2

Partial pressure of CO2, P

From HMT data book, Page no. 109 (Sixth edition), we can find correction factor for mixture of CO2 and H20.

From graph,

,

1198 K Total pres ure, P 3 atrn Partial pres ure of water vapour, PH

0.06 + 0.03

, Peo

T - 925 + 273

liMT data bo

I

105, we can find emissiviry of

4. 162

Heat and Mass Transfer

From graph. we find Cc~

::: 1.2

I Cc~ ..

I

I~

Cc~

te~

x

te02

x CC02

0.15 x 1.2 ::::

O.I~ '" (I)

=

T

1198 K

Tofind emissivity of HzO : PH20 xL",

Fig. 4.81.

IP

From graph,

H20 x

Em issivity of CO2

I

0.15 0.15

EC0 2

To find correction factor for COl: Total pressure, Peo2 From

P

t.,

=

t,

::::

0.1

::::

O.I72J

x

1.72

From HMT data book, Page no. 107 we can find e ... ' mlsslvlly of H2 O .

3 atm. 0.43 m-atm.

HMT data book, Page no. 106, we can find correcta

factor for CO2,

T

= 1198 K

Fig. 4.13.

From graph, Emissivity of H20 =

I P = 3 atm Fig. 4.81.

Scanned by CamScanner

EH20

=

0.15 0.15

J

4./64

Heal and Mass Transfer

Tofind correction factor for H20 : PH20 + P PH20

0.1 + 3

=

2

~

=

2

1.55

+P

2 From HMT data book, Page no. 108 (Sixth edition) find correction factor for H20. '

'We can

From HMT data book, Page no I . . c. c . 09 (SIxth di nd correctIOn ractor lor mixture of CO e Ilion), We c fi 2andHO an 2 .

0.602

PH 0

__2

PH 0 __1_

+P _

-1.55

=0.285

P,,
2

Fig. 4.85.

Fig. 4.84.

From graph, we find

CH20

From graph, we find

1.58

~E

I ~E

C-H- --1.-58-,

r-I

= 0.045. =

0.045\

... (3)

20

=>

EH20 x

L!_EH_:2:_O_x

CH20 _C_H-=.20

0.15

x

0_.2_3_7__J1

°

0.1 0.1 + 0.25

of the gaseous mixture is

.,. (2) EmU'

Correction Factor for mixture of CO2 and H20 : PH 2

Total emissivity

= 0.237

1.58

0.18 + 0.237 - 0.045 [From equation (I), (2) and (3)1

=

0.285

I E""x Result ; Total emissivity

0.285

Scanned by CamScanner

0.372

1

of gaseous mixture,

En/u =

0.372.

~=-----------___ ---.........

__ /~/~Cl~ll~tI~n~d~U~a~~~7r~a=,u~~=~ __ -44~./~6~6

4.36. PROBLEMS FOR PRACTICE

<,

I. 1,wo equ al discs of diameter 200 mill each are arranged' InfII. nes 400 m apart. The temperature of first d' 0 para IIe I pla IS(: ~ and that of second disc is 200°e. Determine the radia heat flux between them, I·t" t Ilese are -

seo-c

(i) Black (ii) Grey with emissivities

OJ and 0.5 respectively. [Ans,' 30 W, 4.5 W)

2.

A steam main (E = 0.79) having an outside diameter of 80 mill runs in a large room in which the air temperature is 27°C. Tht surface temperature of the stearn main is 300°e. Calculate tht loss of heat to surroundings per metre length of pipe due10 radiation. Calculate also the reduction in heat loss if the above pipeis enclosed in a brick conduit (at 27°C) of emissivity 0.93. [Ans,'

3.

4.

1151.3 7 W 1m, 29.075 W/m)

Two large parallel planes of emissivity 0.8 and 0.6 are maintained at temperature of 560°C and 300°C respectively. Compute the radiant heat exchange per square metre between them. [Ans,' 11.28 kW/ml) A double-walled spherical vessel used for storing liquid oxygen consists of an inner sphere of 30 cm diameter and an outer sphere of 36 cm diameter. Both the surfaces are covered with a paint of emissivity 0.5. The temperature of liquid oxygen stored is - 183°C whereas the temperature of the outer sphere is 20°e. Calculate the radiation heat transfer throu~ the walls into the vessel and the rate of evaporation of liqUId oxygen if its latent heat of vapourisation is 2 13.54 kJlkg. [Ails:

Scanned by CamScanner

3.6 W, 0.0607 kg!llJ

Two parallel plates 0.5 by I Radiation 4./67 0 5. plate is maintained at 10000C' m are spaced 0.5 a ,, and th part. One emissivltJes of plates are 0.2 d e other at SOO°C Th . an 0.5 res' . e are located In a very large pectlvely,The plates room, maintame. d at 27°C . The plates ex has the w II which are c ange he t ' and with the room, but only the I a with each other be consi p ate surfaces f . other are to e consIdered in the a I . aCingeach na YSISFind th transfer to each plate and to the room. . e net heat [Ans: 14.425kW 2595 kW ' . ,17.02 kW] Two very large parallel planes with emis ... 6. ", SIVltlesOJ and 0 8 exchange heat by radiation. Fmd the percenta .: . ge reductIon In heat transfer when a polished aluminium radI'at' h' I . .' Ion s Ie d of emisSIVIty = 0.04 IS placed between them. [Ans: 93.6%] 7. Two parallel plates 2 m x I m are placed I m apart facingeach other. Their temperature and emissivity values are 500°C and 0.8, and 300°C and 0.5 respectively. Estimate the net radiant heat transfer between the two plates,

If another identical plate (E = 0.6) is introduced between the two plates equi-distant from each, find its temperature and the heat gained by the colder plate due to its presence. [Ans: 335°C, 4.163 kW]

8. Two parallel plates 3 m x 2m, placed I m apart, are maintained at 500°C and 200°C ; their respective emissivities lbeingOJ and 0.5. If the temperature of the room in which these plates are located at 40°C, estimate the heat lost by the hotter plate. Consider radiation only. [Ans: 6.629 kW] 9. Two parallel plates each of emissivity 0.8 are maintainedat temperatures of 400 K an 600 K in an evacuated space. A screen of emissivity 0.05 is now introduced between these plates. Determine the temperature of the screen and also the heat flux per unit area of the screen. [Ans: 727 K, 146 W/m2]

-I. 168

Heat and Hass Transfer

10. A chamber is filled with a gas mixture at a pressur and 1000°C. The gas mixture is transparent to radi t~ of 2 ~ CO2 whose partial pressure is 0.3 atm. Assuming a ~~n e~~ length of 1.2 m, estimate

4.37.

the emissivity

TWO MARK QUESTIONS

of the gas

V

I

an"

o Ul'lle.

[Ails: 0• I 7fi1

AND ANSWERS

'1

from one body to another with

d'

.

k

transrmttmg meorum IS nown electromagnetic wave phenomenon.

as

.

radiation.

OUI~

It is : iI

2. Define emissive power {Ebl. {Dec.2005, Anna University, Oct. 97, MU, Oct. 2000,Ml~ The emissive power is defined as the total amount of radiali emitted by a body per unit time and unit area. It is expressed~

W/m2. Define monochromatic emissive power. {E b;'/' The energy emitted by the surface at a given length per UM time per unit area in all directions is known as monochromalK emissive power.

4.

.5.

Incident~ {APril ·....tation . DeC.200S 97, April 99, MU Black body IS an ideal sf:' lillie 2006 ' Dec.2004, ur aee h' ,Alllla U • tn g I. A black body absorbs all . a.... the followin nrve1'J~J wave length and di . InCIdent Ild" g propertIes. Ireclion. laban, regard I 2. For a prescribed tempe ess of

. rature and can emit more energy th b wa...e lenm'" an lack bod I!>"', no surface

8. State Planck's distribution'

Absorptivity

is defined as the ratio between radiation absor~

and incident

radiation. a

=

Radiation absorbed Incident radiation

What is meant by reflectivity? Reflectivity incident

is defined

reflected lotht

radiation. Reflectivity,

p

E hi,. = ;:::--:,....1_-

where

[Jrt) - J

EbA A = ci

Monochromatic emissive powerW1m2 Wavelength - m 0.374 x 10-15 W m2

c2

14.4 x 10-3 mk

{Dec.2004, June 2006, Anna University} The Wien's law gives the relationship, between temperature and wave length corresponding to the maximum spectral ernissi ve power of the black body at that temperature. Amax

Rad iation retlected Incident radiation

where

~:

T

c3 All/ax

Scanned by CamScanner

y.

9. State Wien's displacemem to«

{Dec.2004, Alma Un;vers~!

as the ratio of radiation

,alii.

to« 97, April 2000 The relationship between the ,MY, May 2004, AU7 monOChromat' . of a black body and wave length of . I~ emissive power . . . a radiationat . temperature IS given by the folio . . a partIcular wmg expressIOn, by Planck. c ).-5

Wltat is meant by absorptivity? {Dec.2004, Anna Un;vers~1

Absorptivity,

. 'Y trails



The heat is transferred

3.

'.

Transmissivity is d "'lss#Vlljl r " etiOed to the mCldent radial' as the '. IOn ratIO of .' radiation T ransmlssivity ~. . transmitted , t "" ~tran._:_ .

7. What is hlack hody ,

,_f. Define Radiation. . .

6. What is "',-ant h

T

cJ

2.9 x 10-3 2.9

X

[Radiationconstant]

10-3 mk

&aiCfS2&J!!~

4.170

Heal and Mass Transfer

l;':state Stefan-Boltzmann 10". IApr.2002, MU ~ • , Qy 200 The emissive power of a black body is p ~~ ropOrtional ' ~ fourth power of absolute temperature. 10 ~ ec T4 where

s, s,

(J

Eb

Emissive

T4

ell == EI;

power,

W/m2

lYDejine

T

2000, April 2002, MlJ D , ec.llJ04 and May 2005, Anna Univel1' It is defined as the ability of the surface of a body to rad(' heat. It is also defined as the ratio of emissive POWerof ate body to the emissive power of'a black body of tern pera tu re.

eq:

Emissivity,

E

=

E Eb

15. State Lambert's cosine law. It states that the total emissive power Eb from a rad' ti ia Ingplane surfac.e i~ any direction proportional to the cosine of the angle of emISSion.

[Apr. 99, Oct. 99, Apr. 2001, MU, May 2004,AUj Radiation shields constructed from low emissivity (high reflective) materials. It is used to reduce the net radiation transfer between two surfaces. 17. Define irradiation

(G).

[Nov. 96, MU/

It is defined

as the total radiation incident upon a surfaceper unit time per unit area. It is expressed in W/m2.

[Aprit 2001, MD, Dec.2004, JUlie 20(16, Anna Univtn/IyJ This law states that the ratio of total emissive power to ~ absorptivity is constant for all surfaces which are in lhennal equilibrium with the surroundings. This can be written as

u.

E3

A:

Scanned by CamScanner

ex cos 0

16. Wlrat is tire purpose of radiation sllield?

law of radiation.

E2

and Soon.

direction per urnt so I angle per unit a given area of the '. surface normal to the mean direction in spa emitting ceo Eb In = 7t

MD, Dec.2004, Dec.2005, June 2006 AU]

If a body absorbs a definite percentage of incident radiatiOll irrespective of their wave length, the body is known as gray body. The emissive power of a gray body is always less than that of the black body.

£(

4 17/

intensity of radiation (I,j.

Eb

J 2. What is meant by gray body? IApri12000,

10"

IS

INov. 96, Ocl. 98 9 It is defined as the rate of energy leavin .' 9, MUI . I'd g a space In .

to«

11. Define Emissivity.

(X2 = E2

Radial"

.

alwaySI'n I alns In the -..,ua to rntaleqUilibrium

I . with its surroundings.

Stefan-Boltzmann constant 5.67 x 10-8 W/m2 K4 Temperature, K

(J

13. SUIte Kirchoff's

'. It also states th a t th e emIssIvity of th 'ts absorptivity when the body rem .e ~y

Whal is radiosity (J). IDec.2005, Anna University, April 2001,MU/ It IS. used to indicate the total ra diianon Ieaving a surfaceper unit time per unit area. It is expressed in W/m2.

4.172

Heat and Mass Transfer

What are the assumptions made to calcuJ~ 19. exchange between the surfaces

r

I.

All surfaces are considered to be either black or Ilh.. QO"l

2. Radiation and reflection process a~ assumed to be dl 3.

The absorptivity of a surface IS taken equaJ ~. emissivity and i~d~pendent of temperature of the so~ ~ the incident radIatIOn. q

o

What is meant by shape factor and mention its Ph . 2 . signifICance. . {May 2005, Anna Un.!n~ OcL 1997, Apr. 98, Oct. 20~' The shape factor is defined as "The fraction of the rad~ energy that is diffused fro.m one ~urface e!ement an~ strikes~ other surface directly WIth no mterve~m~ reflections". II U represented by F if • Other names for radiation shape factor an view factor, angle factor and ~onfigurat~o~ factor. The s~ factor is used in the analysis of radiative heat exchan~ between two surfaces. 21. The heat transfer by radiation takes place by ntellllS ~

{MU, EEE, Nov. 1994j Ans : Electromagnetic waves.

22. A perfect black body is one which

_

{MU, EEE, April95J Ans: Absorb heat radiation of all wavelength falling on it. 23. Two plates spaced 150 mm apart are maintained at lOOOf and 70't: The hetu transfer will take place mainly~

{MU, EEE, Oct 1996/ Ans : Radiation. 24. According to Stefan-Boltzmann law, ideal radiatorstmf radiant energy at a rate proportional to • {MY. EEE, Oct 199~ Ans : Fourth power of absolute temperature.

Scanned by CamScanner

I

~ J5.



Raditllio

","en II,e."eal ~ Iransferredfrol1l hot bo "4.17 J aiol,t tine without aJfectino the t dy to cold60"" . str " e e Interveni -r, In a reI''''erredto as heat transfer hy . ng ItIedi"",',. ..., I l$ Ans : Radiation.

IMU,EEE, Apr.1997/

J6. fhe amount of radiation mainly dependson ,4ns:

Nature of body, temperature of body an-d--

ofbo d y.

.

type of surface

17. fhe heal transfer equation Q = aAT' is knownas

_

{MU, EEE, Apr. 1997} Ans: Stefan-Boltzmann equation. carbon d' 'do 18• DiscusS the radiation characteristics or 'J lOX' e and watervapour. {Dec.lOBS, Anna University} Ans : The CO2 and H20 both absorb and emit radiation ov

. certain wavelength regions called absorption bands.

er

The radiation in these gases is a volume phenomenon. The emissivity of C?2 and the emissivity of H20 at a particular temperature Increases with partial pressure and mean beam length. DO

CHAPTER-V 5~TRANSFER ~UCTION ~11I""'-

.

..

f

In a system consisting 0 two or more components whose ntrationsval)' from point to point, there is a natural tendency cOnce~ies (particles) to be transferred from a region of higher for Sy·. Sl'd)e to a region . of lower ntration Slide (hiig her density , conce• . • tionside (lower density side). ntra conce This process of transfer of mass as a result of the species concentration difference in a mixture is known as mass transfer. Someexamples of mass transfer are I.Humidification of air in cooling tower. 2. Evaporation of petrol in the carburetter of an

Ie engine.

3. The transfer of water vapour into dry air. 4. Dissolution of sugar added to a cup of coffee.

5.2MODES OF MASS TRANSFER There are basically two modes of mass transfer given below that are similar to the conduction transfer.

and convection

I. Diffusion mass transfer 2. Convective mass transfer SJ DIFFUSION MASS TRANSFER

It may be c I assified . into two types. I. Molecular diffusion 2. Eddy diffusion.

Scanned by CamScanner

modes of heat

~~~-------.....I·

I

I

5.4

The r:ra;lSpol1 of water on a microscopic

.

.

- hi h

PoQell~ J\ Weigh . .. t of Co (iii) Mass/raction ItlPootnlA.

. . IOf ig er concentranon to a region of 10\\

diffusion from a region of

concentration diffusion.

P \ - Density of corn

level as a re.sul

1\" '\ - Molecular

in a mixture of liquids or gases is know n as mOlecUI:

The mass fraction

is defi . llled as th .n1"Cies to the total mass density of the . e IllaSs~.

S.S EDDY DIFFUSION When one of the diffusion fluids is in turbulent mOlion, edd diffusion takes place. Mass transfer is more rapid by eddy diffusio Y than by molecular diffusion. n

)r- .

Mass fraction

.

5.7 CONCENTRATIONS or Mass density

The mass concentration is defined as the mass of a component per unit volume of the mixture It is expressed in kg/m '. =.

Mass of a component . Unit volume of mixture

The molar concentration is defined as the number of molecules of a component per unit volume of the mixture. It is expressed in kg-rnole/m-.

=

The mass concentration by the expression

Number of molecules

.

of component

.

Unit volume of mixture and molar concentration

''''IC~I_

.

~.tlon

concentration TOtal of as rnass den' SII)'

55

(If

P

(il') Mole fraction The mole concentration is d fi . f . . e tned 8S th concentratIOn 0 . a species to the total rn I e ratio of o ar concenll1. Mole liOn. Mole fract ion ~n of a srwo.-;•• Totalmolbr,.n~ Its o ar concentration

are related

Consider a system shown in Fig.S.1. A partition separates the two gases,a and b. When the partition is removed, the two gases diffuses throughone other until the equilibrium IS established throughout the system. . The diffusion rate is given by theFlck'sl hi n aw, w ich states that molar uxof:lnel . di . emel1l per un It area is Ctly D:cd proportional to concentration

~. rem

Scanned by CamScanner

fe.

S.8 FJCK'S LAW OF DIFFUSION

(ii) Moltl~ Concentration or Molar density

. Molar concentration

Illl:':tu .

rni\==-

Convective mass transfer is a process of mass transfer that will occur between a surface and a fluid medium when they are at different concentrations.

. Mass concentration

=

Ma PA

5.6 CONVECTfVE MASS TRANSFER

(i) Mass concentration

.

a

Fig.S.1

b

III 0

I e

5.4 Heat and Mass Transfer dCa

rna

-oc-A dx rna .

A =-Dab

:::)

Ca = C IX + C

2

Apply boundary condition

dCa dx

At.

x =0

At,

x

••• (5.1)

where

=L

Ca2=Cll+C2

N a = rna A _ Molar flux - Unit is kg - mole _

Co2 = Cil + Cal

s - m2

(or)

- Co2 -Cal C 1i,

Mass flux - Unit - ~ s- m2 Dab - Diffusion co-efficient of species a and

dCa -- Concentration gradient dx

Substituting

C I, C2 values in equation (5.2)

b-.!!t s

(5.2) :::)

C = [C alai

a2 -

c, I1x+C

From Fick's law, we know that,

5.9 STEADY STATE DIFFUSION THROUGH A PLANE MEMBRANE

rna

A

Molar flux,

= -Dab

dC dx

Q

Consider a plane membrane of thickness L, containingfl~ 'a'. The concentrations of the fluid at the opposite wall face51J! Cal and Ca2 respectively. Considering the diffusion is along X axis, then the controll~ equation is d2C a = 0 __ x dx2 Integrating above equation dCa dx = CI Again integrating,

TL 1

Membrane

=

Dab

-lC L a2 -

C a I]

I

Where, -

Fig. 5.2

rtlits

Scanned by CamScanner

Mo Iar fl ux -rna ., A

rna A

- Molar flux -

kg-mole -=--s-m2

••• (5.3)

5.6 Heal and Mass Transfer Dab -

Diffusion co-efficient -

Cal -

. at inner . 'd _kg-rnol~ ConcentratIOn Sl e - ~

~~

Given :

-

ransfer 5.7

PartIal pressure of 0

m3 Ca2

Mass 11

. 2,

Concentration at outer side - ~ m3

x \. \

pressure

bar

::::0.21 )( \.\)( Partial pressure of N

10, N/m2 .19)( iotal

::::0.79

L = r2 - r, Temperature,

21tL(r2 - r,)

--=----'-"-

T

= =

~

n... _ 0 2, 1"1'12 -

For cylinders,

=

iota\

::::0.2\

L - Thickness - m

A

Po 2 ::::0 .,)( "\

x \.\

pressure

bar

=: 0.79)( \.\)( I05N/m2 2O"C + 273

293 K

Tofind:

For sphere,

I. Molar concentrations

L=r2-r, A

=

41t r, r2

where,

P02' PN

3. Mass fractions,

m~, m

2'

C

N2

2 N2

Xo , XN 2 2

Solution: We know that,

r2 - Outer radius - m

Molar concentration,

L- Length - m

o

Co

2. Mass densities,

4. Molar fractions,

r, -Inner radius - m

S.lO SOLVED PROBLEMS

,

C = _!_

GT

ON CONCENTRATIONS

A vessel contains a binary mixture of O2 and 'N2 with JHIIIi' pressures in the ratio 0.21 and 0.79 at 20"e. If the lOll pressure of the mixture is 1.1 bar, calculate tl,efollowillX: i) Molar concentrations

0.2\

x

1.\ )( \05

83\4 x 293

(.: Universal gas constant, G =: 83\4 J/kg-mole

ii) Mass densities iii) Mass fractions iv) Molar fractions of each species

Scanned by CamScanner

C~

= 9.48

x

\0-3 kg - mole 1m

5. 8 Heat and Mass Transfer

Mass fractions: =

IC

N2

0.79 x 1.1 x 105 8314 x 293

= 35.67

x

10-3

mo

kg - mole

1m3]

Molar concentration, C

I

Im02 = 0.2~ N2

...e_

=

P02 =~ P 1.302 I

m

We know that,

=

,

PN2 _ 0.9987 P -

1:302

"

M

p=C __

= 2

x

M

,I

We know that,

=

9.48 x 10-3 x 32

Total concentration, C = C + C °2

= [C =

[.: Molecular weight of02 is 32] I P02

= 0.303 kglm31

9.48 x 10-3+35.67 x 10-3

0.045]

Mole fractions: =_2

=

35.67

x

10-3

x

[': Molecular weight ofN2 is 21]

I PN2 = 0.9987 Overall density, P = Po

2

= 0.303 I

+

IX02 =

9.48 x 10--3 0.045 0.210

I

kglm31

o..

I"N2

CN

xN =_2

2

C

35.67 x 10--3 0.045

+ 0.9987

P = 1.302 kglm31

Scanned by CamScanner

=

28

I:

C

2

[XN2 =

0.7921

I

I'

. Co

Xo

N2

5.10 Heal and Mass Transfer

Result:

...---: foft"d:

I. COz = 9.48 x 10-3 kg - mole 1m3

C

Nz

= 35.67 x

I . Molar concentrations

10-3 kg - mole 1m3 3

3. Mass fractions, ,;,oz'

PN = 0.9987 kg/m'

4.

moz = 0.233

o

= 0.210

xNZ

= 0.792

N2

2

mN

2

Solution: We know that,

= 0.767

xO

z

2'

4. Average molecular weight, M

z

';'NZ

Co C

,

2. Mass densities, Poz' PN

. 2. POz = 0.303 kg/m

3.

Mass Transfer 5. J J

.

Molar concentration, C = -

P

GT

C0-2

Po . 2

GT

= 0.21

x I x lOS 8314 x 298

A mixture of O2 and N2 with their partial pressures intht ratio 0.21 to 0.79 is in a container at 25 C CalculatetAt molar concentration, the mass density, and the IIUlSsjractifJ" of each species for a total pressure of 1bar: What Hlould lit the average molecular weight of the mixture? D

[.: Universal gas constant, G = 8314 Jlkg-mole-KJ

jC

O2 =

[Dec-2004 & 2005, Anna Univ]

8.476 x 10-3 kg - mole Im3/

Given: Partial pressure of 0z, POz

= 0.21 = 0.21 =

Partial pressure of Nz,

Temperature,

PNZ

x

Total pressure

x

I bar

0.21 x I x 105 Nlm2

= 0.79 x Total pressure = 0.79 x I bar = 0.79 x I x 105 N/m2

T = 25°C + 273

= 298 K

Scanned by CamScanner

=

I

CNZ

0.79 x 1 x lOs 8314 x 298

= 31.88

x

1(r3 kg - mole 1m3

We know that, Molar concentration, C = ~ p=C x M

I

1

&

1

~ == 8.476x

10-3 x

32

A"~Jr#O

Molecular weight M~ M :: p~ ""'2 +p~~ 0.2]

M

==

28.84

CO2

==

8.476 x 10-3 kg - molelmJ

~2

==

31.88 x 10-l kg - mole/mJ

==

0.27] kglm3

==

0.893 kg/m!

==

0.233

==

0.767

==

28.84

21\ J);

~02

::

32 + 0.79)( 28

==

[.: Molecular weight of 0 . 0.271 k.g/m3

x

1

JleSu/J: I.

==

I Overall density, p::

2.

PN2 ==

P02

0.893 kglmJI P 2

0.893

1.164 kglm31

Mas fraction

p~ PN2

[.: Molecular weight ofN2 iJlt;

... 0.271

IP -

31.88 x 10-3 x 28

.

4.

M

111 The molHular

weights of the two COmpoMIIlI A IIIfd B f1/

a gay mixture are U and 48 re.pective/y. TU MOIecu/4r weight of a gas mixture ;, found to be JO. If tlu IffIIII c()ncentration of the mixture U 1.1 kglmJ, detmrrbr.t tit foll() wing:

O.R93 111

2

1.164

(i)

Density of component A and B

(II)

Molar fractions

(Iii)

Mas« fractions

(Iv)

1'0101

pressure if the temperatureof tht mixlllft;,

290 K.

[Muy-2004, Anno Univ)

Given: Molecular weight of component A, MA ~ 24 Molecular weight of component B, Ma

Scanned by CamScanner

==

48

5. J 4 Heat and Mass Transfer Molecular weig.ht of gas mixture, M ::: 30 Mass concentration,

P

=

1.2 kg/m3 We know that,

Temperature, T = 290 K Tofind:

~

I .Density of component A and B, pA, PB 2. Molar fractions, x A' and xB

124CA+48CB==~)''1..

'3. Mass fractions, m~, and m~

~

4. Total pressure, p Solution: Molar concentration of the mixture, C

=

CA

=

0.03 kg mole/m3

CB

=

0.01 kg mole/m3

PA

=

24 CA

(i) Density

Density,

_£_

M

=

1.2 30

IC=

0.04

24 x 0.Q3

IPA = 0.72 kglm3\

I

Density,

PB

We know that,

= 48

CA

= 48

x 0.01

I PB I

' •. (2)

Solving equation (1) and (2)

=

0.48 kglm3

\

,..[I) ii) Mole fractions

CA + CB = 0.041

CA xA=-=C

We know that,

x ;:::CB B C

0.03 =075 0.04 .

;::: 0.01 =

0.04

0 25 .

iii) Mass fractions [,:

Scanned by CamScanner

·1 ~lB'

11

rnA;:::

PA ;::: 0.72 P 1.2

= 06 .

5.16 Heat and Mass Transfer

Mass SOLVED PROBLEMS ON l\1El\1B 1 5.1 . Elts iv) Total pressure at 290 K

rt1

rIelium diffuses thTOUgha plane ..d

pi

L!.J At tile tnner

Gas law, pV = mRT p= m RT V

IIIenrbran

st e the conce . e oil "''''tho 3 ntratlO" lelc. 0025 kg mole/m . At the Outers." Of "efill", . . . k Ille the co" ts 'elium IS 0.007 g mole/mJ. 'WI,li. . ce"tratioll .f ,I .., IS tI,e difJi . oJ helium through tile membrane. ASSumedi I. IISlo" flllX Of ifhelium with respect to plastic is 1 )(/'!!IlSIQ" cO-e/Jicklll o

=pRT

r,.allsfer 5.17

1/

9 ",1Is.

Given: ThlC. kess n , L = 2mm = 0.002 m concentration at inner side,

=

12 .

x

8314 30

x

C

290

[ .: Universal gas constant,

G

= 83 14 J/kg-mol~Kl

Ip

0.025 kg-mole m3

C

a2

= 96442 N/rn2

= 0.007

Result:

m3

=

0.72 kg/m!

PB = 0.48 kglrn3

2. x A

=

0.75

rnA

Molar flux,

rna Dab A = L

A

= 0.6

P = 96.442 kN/rn2

Resll/t:

[Fromequationno.5.3]

[Cal - Ca2]

1 x 10-9 [0.025 _ 0.007] 0.002

m ::;:9 x 10-9 --"-__ kg-mole _a A 5-m2 D·fti . . I us Ion flux of helium,

Scanned by CamScanner

-l

-fm

We know that, for plane membrane

niB = 0.4 4.

L

Solution:

xB= 0.25 3.

Dab::;: 1 x 10-9 m2/s

ToJind: Diffusion flux,

1. PA

Ca2

kg-mole

Diffusion co-efficient, = 96.442 kN/rn2\

Cal

Concentration at outer side, •

p

= al

rna A

=

mole 9 x 10-9 kgS _ m2

5.J 8 Heat and Mass Transfer r:;")

~

Gaseous hydrogen

is stored in a rectangular

cO"lQ;

walls of the container area of steel having 25 IIInr ~. ~ At the inner surface of the cOntainer tJ,~la. .1 • 'It "ire' " concentration of '11'Yurogen In t e steel is 1.2 Ie while at the outer surface of the cOn/ainer t ~ concentration is zero. Calculate the molar diff . lire , T 'J USIO" Jl hydrogen through tile steet.l ~'ake diffusion Co-.Il !itA

hydrogen in steel

effie;,.

--, is 0.24 xl 0-11 "r/s.

at inner side,

Cal

==

i) Molar concentration 01'/1d 'J Y rogenon 60th .,.1 '~I1101 l fl Slues II~ mo ar ux of hydrogen

1.2~

mJ Molar concentration Ca2

at outer side,

=0

Inside pressure,

10-12m2/s

=0.24x

Tofind: Molar diffusion flux,

Hydrogen

Sleeiplate

Dill

Ina

A

Thickness, L

=

3 bar Outsid ' e pressure, P2 = 1 bar 0.25 mm = 0.25 x 10-3 m PI =

Diffusion co-efficient, Dab = 9.1 x 10-8 m2/s Solubility of hydrogen 2.1

. Solution:

x 10-3

Temperature, T == 20°C

rna

A

Dab

=

T

Ca2J

[Cal -

A

1.15 x io-

I. Molar concentration on both sides Cal and Ca2 2. Molar flux

12

0.24 X 10- [I 2 - OJ 0.025 . II

kg-mole m3_ bar

Tofind :

We know that, for plane membrane Molar flux,

iii) Mass flux of hydrogen Given:

cl1

Diffusion co-efficient, Dab

Hydrogen gases at 3 s Ma 71 membrane Ita . ar and I 6ar ss ransfer 5. J 9 Vllrgthick"e areseparated6 . co-efficient 01' Itlld .ss0,25 mm."", . ~ aplastiC 'J J roge" I" h I lie6mary dl(r. • Tile solubility 01' h'e pla.flieis 9 J '.J,USlon :J Ydroge' ,)( J~ ",21s 2. J x J 0-1 kg-molel",1 b "In tile "'e"'6 .' ' . ar; A, erane IS con d Ilion of 200 is assu- d. n uni/or", tem •..e mperature Calculale II,efollowing

= 0.025 m

Given: Thickness, L = 25 mm Molar concentration

lilA

111

kg - mole 2 s-m

3. Mass flux Solution: I. Molar concentration

on inner side,

Result:

Cal ==

Solubility

m kg- mole Molar diffusion flux, AU = 1.15 x 10-11 S _ m2

Cal

2.1 x 10-3 x 3

==

Cal ==

6.3

x

x

Inner pressure

10-3 kg-mole m3

.-

Scanned by CamScanner

&_

,. 5.20

Heat and Mass Transfer

Molar concentration on outer side,

'01,\'ED UNIVERSITY

Ca2

=

Solubility x Outer pressure

C a2

=

2.1 x 10-3 x 1

IC

a2

= 2.1 x 10-3

(1]

2) We know that, Dab

lila

Molar flux,

A

T[Cal-Ca2] 9.1 x 10-8 [6.3 X 10-3 - 2.1 x 10-3 0.25 X 10-3 ~ 1.52 x 10-6 kg - mole

A

s-m2

Mass flux

3)

Molar flux

Molecular weight kg- mole 1.52 x 10-6 s-m 2 x 2/mole X

[.: Molecular weight of H2 is21 Mass flux

3.04 x 10-6

.

__3_ s-m2

I

. bber pipe of inside dlllmeler 25 floHilngthro rll " 111111 and Ugh Q of 0 l Hlal/ thick" ] .,smm- Tlte 1diffuSlvily 2 1 'rough ell 9 . O.]1 x 10- m Is and tile soluhilil Yo/ O· rUbber 's 2 tn rubbe . 3 kg-mole . r 'S 3.12 x 103 b . Fmd lite loss % b . m - ar 2 Y diffusion per [AI')"'2000 & 11,elre Iengtt! of pipe. . Apr' 1998 - Mill

=.

Give" : Temperature,

T == 25°C

Inside pressure,

p, == 2 bar

Inner diameter,

d, == 25 mm

Inner radius, r, == 12.5 Thickness,

mm == 0.0125 m

~

t == 2.5 mm == 0.0025 m

Outer radius, r2

=

Inner radius + Thickness

== 0.0125

+ 0.0025

I r2 == 0.015 ml

Result: 1.

SON

.....-- Oxygen at 25°~ fI~d pr~ssure of 2 hur is

I

kg-mole m3

PROBLEM Mass Transfer 5.21

S.lZ SPLANE MEMBRANE

kg- mole 10-3 m3

Cal

=

6.3

Ca2

=

2.1 x 10-3

=

kg-mole 1.52 x 10-6 S _ m2

X

kg-mole m3

Diffusion co-efficient, Solubility,

Dab ==

== 3.12 x 10-3

0.21 x 10-91112/5

kg-mole m3 - bar

TOfind:

2. Molar flux

Loss of 02 by diffusion per metre length SO/Ulioll :

3.

Mass flux

= 3.04

x 10-6

kg s- m2

I. M~Iar concentration Cal ==

Scanned by CamScanner

SolUbili~y

on inner side, x

Inner pressure

5.22 Heal and Mass Transfer = 3.12 x 10-3 x 2 Cal Cal

= 6.24 x

10-3

------------~

rna =4.51

x 10-11 ~

s

kg-mole m3

ItSP":

_

LOSS of oxygen - 4.51 x 10-11 ~

, tration on outer side, Molar concen x Outer pressure C =Sou I b'I'ty II

s

'LIvdrogen gas at 2 atm and 250(' . r11 P.' ISflottJ' ~ tpe o/ID = 25 111111and OD :::: 50 IIrg throllgh a h PIt,vJrogen t/lroug/I tI,e ruhher .III0nr. The difJll.fi;;tyher

a2

C

=3.12x 10-3 x 0

C

=0

a2

,

IS

J

a. the partial. pressur e of 02 on the outer surface of the [Assummg tube is zero 1

Oluhility

Molar flux,

mJ - hQr '. III Hydrogen hy diffusion per metre lenalh .~ . OJ

G

[The procedure

A

F: d

-;--.:..:.:

J

[Apr . '97 - MUJ prevIOUs problem]

of this. problem is same as

'" (I)

Consider

Dab [Cal - Ca2l (1) z» 21r L

In(

!!!-rno.!!.}

s EQUIMOLARCOlINTERDIFFUSION

L 5.13 STEADY

tire loss Of

Pipe.

{Ans : 4.46 x Ut·' For cylinders,

of

".l/h. The

of hydrogen == 0.053 kg-IIIole

S

We know, ma

.7)( J fH

STATE

two large chambers a and b connected by a passage

as shown in Fig.5.3.

(r2 -r,)

(r2 -r,)

Na and Nb are the steady components a and b respectively.

;,2) 2 1r L . Dab rCa' - Ca2l

Chamber

..... /

--'

a

X

0.2 J

10-9 (6.24 0.015 ) In ( 0.0125 x

X

10-3

-

[.: Length

OJ

---_--J

,--------./

b Pb, C

b

Fig.5.3

= I m]

Equimolar diffusion is defined as each molecules of 'a' is replaced by each molecule of 'b' and vice versa. The tot~1pressure p:::Pa + Pb is uniform throughout the system. p

Scanned by CamScanner

Chamber

+--Nb

In( ;;) 2 X 1r X I

state molar diffusion rates of

=

Pa + Pb

(~ i

1i nsfer Heal and Mass ra· 5.24 ith respect to x . .n g WI DifTerentlaU

I

\

I

__...

d

dp dPa + _!!_!!.... dx ;;; --- dx press S·Inee the total . steady state co

-----~__:_-----~M~a.~~s..!.Ti~ran5!.sfi~er:..:5~. 2~5 d A Po So, Na = -D GT dx

of the system remains Co

ure

nSlanI

nditJons,

dp

7h ==

d dpb 'P{/ + _ == 0 -;;; dx Integrating,

dpi,

2

N a

te conditions, the total molar flux isl!.. Under steady sta ~ Na + Nb == 0

Na

Nb A dp., _ D ~ dPb -Dab GT dr - ba GT dx == -

A

Molar flux, No = mAO= _Q_ Ipa, - Pa2\ GT x2-x, j

...

(5.6)

"·Ii)

Molar flux, Nb = mb = _Q_ \ Pb' - Pb2 \ A GT x2-x, 1

••• (5.7)

where,

dPa

Na == -Dab GT -dX

Nb == -Dba

!

rna = _ _Q_ dpo A GT , dx

Similarly,

From Fick's law, [

=

A

dPb

GT

{IX

rna kg- mole - Molar flux A s- m2

J

----=:;---

D - Diffusion co-efficient - m2/s

We know,

[F rom equation dx

dx

A - Area - m2

Substitute in equation (5.5) A

(5.5) ~ z>

-Dab

IDab= Dba

=

dPa _GT dx

Pal -

Partial pressure of constituent at I in N/m2

Pa2 -

Partial pressure of constituent at 2 In N/rn

A

dPa

GT -;t; = -

G - Universal gas constant - 8314 ----kg-mole - K

Db

01

Scanned by CamScanner

T - Temperature - K

.

.

2

\

\i

I

I

.~

.26 Heal and Mass Transfer .14 SOLVED PROBLEMS ON EQUIMOLAR COUNTER DIFFUSION

III Ammonia

and air are in equimolar counter diffusion ill a cylindrical lube of 2.5 mm diameter and 15 m lengtlt. rhe total pressure is J atmosphere and the temperature is 25 C. One end of the tube is connected to a large reservoir Of ammonia and the other end of 'the tube is open to atmosphere. If the mass diffusivity for the mixture is 0.28 x J(J-I ",2/s. Calcalate the following 0

For equirnolar COunter djA:... ,

Molar tlux, - rna A

a) Mass rate of ammonia in kg/II h) Mass rate of air in

kg/ll

Length, (x2 - XI)

=

x

G-

10-3 m

=

2SoC + 273

Diffusion co-efficient,

Dab =

=

x

10-4 m2/s

Atmospheric

Air

I A:::: rna

(I)~ r----

.

_

8314 x 298 .

15-

-

-3 k ,rna - .74 x IO-U g-mole

Masstransfer rate . M of ammonia == Ol~ transf~r rate o ammoma

,

p

= p al

+ p a2

oe-K

0.28 x 10-4 [I x ._:_OI3 x 105-0)

2. Mass rate of air ill kg/h

Total pressure

J

10-3/

We know

that ,

rOil)

eqUation

~II)I

4

I. Mass rate of ammonia in kg/h

We know

[F

4.90 x 10-6m~

490 x 10-6 -

_

So/ution :

.tI

I

nt - 8314

Molartransfer rate of ammonia TOfind:.

GT ~ x2 -

Universal gas consta

::::f- (2.Sx

298 K

0.28

Ammonia

D ( Pal - P -..!!!..

00.(5.6)J '" (1

A-Area::::!Id2

ISm

Total pressure, P.= I atm = 1.0 I3 bar Temperature, T

==

where,

Given: Diameter, d = 2.S mm = 2.S

IIUSIOn

x

Molecularweight ofammonia

::::3.74 x IQ-lJ x 17.03

[Molecula

. h r welg t of ammonia = 17.03, refer HMTdata, page no. 182 (Sixth edilion)]

Scanned by CamScanner

r

5.28 Heal and Mass Transfer =

I

6.36 x I 0-12 kg/~

= 6.36

x 10-12

~

!

~

I~/3~600h Mass transfer rate of ammonia

=

2.29 x 10-8 kg/h

Mass Transfer 5.29

~ransferrateofCOl

2.

Mass transfer rate of air

I

Given:

Diameter,

We know, Molar transfer rate of air, mb

= -3.74

Mass transfer rate . of air

=

Molar transfer rate of air -3.74

x

10-13

=-1.08

x

10-11 kg/s

=

=

S

Molecul . ar Weigh of air. I

x

x

d ::: 60 mm

J..,ength , (X2 -XI)::: Total pressure, p

x IO-I3~

[Due to equimolar diffusion, rna = -mb]

and

Temperature, T

= 0.060

1.2 m

=

=

=

I atm

Partial pressure of CO2 at one end

rate of air :::- 3.88

x

Pal = 0.263 bar

I Pa I = 0.263

x

10-8 kg/h

I

Pa2 = 90 mm of Hg => =>

I. Mass transfer rate of ammonia = 2.29

[II

=-

3.88

x

x

lOs N/m2

=

I [.:

90 760 bar

Pa2 = O.118 bar

I Pa2

=

0.118 x lOs N/m2

I

10-8 kg/h

10-8 kg/h

1

CO2 and air experience equimolar counter diffusioninQ cO2 d=60mm circular tube whose length and diameter are 1.2 m and60mm -__ -.JI Xrx 1= 1.2 respectively. TI,e system is at (I total pressure of 1atm andQ temperature of273 K. Tile ends of the tube are connected to TOfind: large ell ambers. Partial press lire of CO2 at one endis 1. Mass transfer rate of CO 200 mm of Hg while at tile other end ls 90 mm of Hg· 2 M 2 . ass transfer rate of air Calculate tile following

Scanned by CamScanner

[.: I bar

Partial pressure of CO2 at other end

Result:

2. Mass transfer rate of air

200 760 bar

=

Pal = 200 mm of Hg

29

-1.08 x 10-11 _k_,;g::___

(

I bar

273 K

1/3600 h

I Mass transfer

m

I Air

ml '-----_--....J

=

760 mm ofHg]

I bar

=

lOs Nlm2]

5.30

y

Heat and Mass 7}ans/er

Solution:

Mass Tran.ifer 5.31

.

We know that, for equimolar COullter d'ff Molar flux,

Ill"

=

A

Dnb GT

[~.a2

.

I] uSIOIl

We knOW, . t of air Molar transfer ra c ,

x2-xl

where, DRh - Diffusion

The diffusion

co-efficient

[From HMT data book page no. 180

I

Molar transfer

=-1.785

x 10-10 x 29

/(101,

:

Mass transfer rate of air = -5.176

= :

(0.060)2

WsOLVED

1t

x

= 11.89 8314

10-3 m2 x 10-6 x

x

ill rlo.263

x J05-0.118xW'

1.2.

rate of COl> ma = 1.785

x

10- 10 kg - mole

x

gb Molecular wei t

We know, Mass transfer rate· = Molar of CO2

= 1.785 [Molecular

transfer x

10-10

x

44.01

HMTdIil weight of CO2 :::; 44.01, ref~r hediti~l page no.182 (Slxt

Scanned by CamScanner

2. Mass transfer rate of air UNIVERSITY

EQUlMOLAR

I

273

Molecular weight of air

x

of air

= -

4

x

1112/1

(S'X/hec/.

I

Molar transfer

Result: I. Mass transfer rate of CO2,

I A = 2.82 I =:> rna () 2.82 x 10-3

.

==

gas constant - 8314 ~ kg - mole - K d2

G - Universal A - Area

MasS transfer . rate

rr COlllb' II 89 111alio . )( IO"{) n b

2

Dab = 11.89 x 10-6 rn2/s

1.785

- 1112/s

for CO - A'

co-efficient

mb = -

>

x

9 :::; 7.85 x

-5.176

/

10- kg s

x

PROBLEMS

COUNTER

9

10- kg Is

10-9 kg Is ON

DIFFUSION

Two large tanks, maintained at the same temperature and pressure are connected by a circular 0.15m diameter direct, which is 3 m in length. One tank contains a uniform mixture of 60 mole % ammonia and 40 mole % air and the other tank contains a uniform mixture of 20 mole % ammonia and 80 mole % air. The system is at 273 K and 1.013 x .'05 pa. Determine the rate of ammonia transfer betweenthe two tanks. Assuming a steady state ~ass transfer.

[Manonmanium Sundaranar Univ - Nov '96, MU - Nov '96J Given Data: Diameter, d

=

0.15 m

Length, (x2 - xl) = 3 m

5.32 Ileal and Mass Transfer

_ .!!.. )( (0.15)

2

- 4 Pa I =

I~OO = 0.6 bar

Pbl =

40 100

Pal

~

)

~ ·ff .Ion co-efficient ;: 21.6 x ) Q-6 m2/s _01 uS .. Dab monia with air of am HMT data book page no. 180 (Sixth edition] [From

= 0.2 bar = 0.2 x 105 N/m::!

T=

273 K

=

1.013

P

lOs N/m2

x

= 0.4 bar = 0.4 x 105 N/m2

~go = ~go=

=

Pb2

= 0.6

0.8 bar = 0.8

x

105 N/m2

x

105N/m2

Tank I

Tank 2

Ammonia +Air

Ammonia + Air

Pal

Pal

Pbl

Pb2

(I) z»

.

Molartransfer rate of ammoma,

Masstransfer rate of ammonia

'a' - Ammonia

;: Molar transfe.r of ammonia

=2.15

'b' -Air

rna ;:

x

10-9

x

2.15

x

10-9 kg-mole S

rate

x Molecular

weight of ammonia

17.03

[Refer HMJ data book, page no. 182 ]

Tofind : Rate of ammonia

transfer

Mass transfer

Solution:

rate of ammonia

= 3.66 x 10-8 kg Is

Result:

We know that, for equimolar

counter

diffusion,

1. Rate of ammonia 'M oar I fl ux -rna 'A

GT

where, G - Universal

transfer

= 3.66 x

10-8 kg Is

= -Dab [ Pal - Pa2] x2-xl

[I CO2 and

air experience equimolar counter diffusion in a circular tube whose length ami diameter are lm and 50mm respectively. Tire system is at a total pressure of 1atm and a temperature of 25°C. Tire ends of the tube tire connected til large clrambers in whicl: the species concentrations are maintained at fixed values. Tire partial pressure of C01 at

... (I) gas constant

J = 8314 ----=---

kg - mole - K

A - Area = ~ d2 4

63

Scanned by CamScanner

I

I'

Mass Transfer 5.35 5.34 Heat and Mass Transfer

'ffusion, we can find wof d I

one end is 190 mm of Hg while the other end is 95 Estimate the mass transfer rate of CO2 and air th "'Itt Ii.. rO"lIh ". tube. [Bharathidasan Univ-Apr '98, MU-Apr '98 0 'he

frolfl

, c"200 [This problem is same as problem No.2 - Solved Pr hi 2 ]

o elll) [Ans: 1. Mass transfer rate of CO2 = 5.17 )( 19-9 s kgls 2. Mass transfer rate of air = - 3.40 x 19-9 kglsi 5.16 ISOTHERMAL EVAPORATION OF WATER INTO AIR

Consider the isothermal evaporation of water from a waler

surface and its diffusion through the stagnant air layer over'

II

shown in Fig.S.4. The free surface of the water is eXposedto ..

\Pal Pa

In -

Dab ~

~ ~ -aT

(Xl - X I)

Molar flU'" A (or)

Dab

~~ err flu",

Molar

rna _ Molar flux -

---A

as

1

l

In p- pwl P-Pwl

~ (Xl-XI)

/'"

.

J

••• (5.9)

kg - mole s _ ml

Di if USI'on co-efficient - mlls __

'versal gas constant - 83 \4 G- Uru

Water vapour

(5 8)

I

Dab _. Air==

...

A

\\'here,

air In

the tank.

fick's la

~J

_

kg _ mole - K

T _ Temperature - K p _ Total pressure in bar Water

Pw\.

Tank

_ Partial pressure of water vapour corresponding saturation temperature a t I' III N/m2

Pw2

Fig. 5.4

to

_ Partial pressure of dry air at 2 in N/m2

For the analysis of this type of mass diffusion, following 5.17SOLVED PROBLEMS ON ISOTHERMAL assumptions are made, EVAPORATION OF WATER INTO AIR 1. The system is isothermal and total pressure remains Determine tile diffusion rate of water from the bottom of a constant. test tube of25 mm diameter llml35 mm long into dry air at 2. System is in steady state condition.

ill

3. [here

is slight air movement over the top of the tankto

remove the water vapour which diffuses to that point. 4.

we.

0.28 x

Take diffusion m2 Is.

co-efficient

of water

lQ-4

Given:

Both the air and water vapour behave as ideal gases. Diameter,d::. 25 rnrn ::. 0.025 m

Length, (x2 - xl)::' 35 mrn

Scanned by CamScanner

=

0.035

111

in air is

Mass Transfer 5.37 ssure at the top of the test tube. Here, air 5.36 Heal and Mass Transfer ' rtial pre . _ "::":":=-":'T~e:':m:':'pe~ra:':'tu':"'r':"'e,_;_T-=-2-5""::OC~+-2-7-3-=-2-9-8-K---~_________ '\ .... pa d there IS no water vapour. So, Pw2 - O. is drY an Diffusion co-efficient. Dah = 0.28 x 10-4 m2/s \ I

~~

Dry saturated air

r

A===

Area,

t

i

=== (0.025)2

\ water

10-4 m

~.90)(

\\

Tofind: Diffusion rate of water

2

d

rna

2 \

0.28 )( 10-4 83\4

(\)==' ~

x

298

r 11 L1.013 rna

Molar flux, mAa =

Dab

GT

(

p ) In \ p - Pw2 \ x2-x\ lp-pw\)

'"

p - Total pressure

=

__ kg- mole- K .::__J __

At 25° C

~

Pwl

\ Pwl

bar [From R.S. Khurmi steam table. page no.2J 2

0.03166 x IOsN/m

-

Scanned by CamScanner

= 5.09

x

\0-\0

\

~ x

kg-

105

J

mole s

Molar rate of water vapour

x

Molecular weight of water vapour

10-10

x

\8.0\6

5.09

I:

x

Molecular weight of steam = 18.016. refer HMT data book. page 110.183

Masstransfer rate of water vapour

=

9. I 70

, 1ts"lt:

= 0.03166

=

watervapour

I atm = 1.0 \ 3 ?~r = 1.013 x \ 05 N/m2

Pw I = Partial pressure at the bottom of the test tube corresponding to saturation temperature 25° C

~

\.0 \3 x 10L 0 x 10S_0.03166

Weknow that,

Mass rate of

G - Universal gas constant = 8314

05

(I)

(From equation no.5.91

where,

x \

0.035

I x

Solution: We know that, for isothermal evaporation,

\.0 \3

x

lYff I

us ion rate of water ==

9.170

x

10-9kgls

x

10-9 kgls

I

5.38

Heat and Mass Transfer

Mass Transfer 5.39

Estimate the rate of diffusion of water vapour fro water at tire bottom of a well which is 62 _ l ", (IPOol . .., (eep (I Of diameter 10 dry ambient air over lire lop of tire lid 2.2", entire svstem may be assumed at 30°C and Oil lVell. 'l'h • e (It", e pressure. Tile diffusion co-efficient is 0.24)( 1()-4 oSPh ert

where,

",2Is.

Given: Diameter, Deep,

== 8314

kg - mole - K

d == 2.2 m Partla. I pre ssure at the bottom of the well pwl - correspon ding to saturation temperature 30° C I

== 6.2 m

(x2 -XI)

T == 30°C + 273 == 303 K

Temperature, Total pressure, Diffusion

J

. I gas constant G - Unlversa

p

=

1 atm

co-efficient,

=

1.013 bar

Dab =

0.24

x

=

1.013 x 105 N/rn2 :::>

10-4 m2/s

:::>

Dry saturated

d

air

TQ)

_

Pw2

---------

_l__

- - - - - - -

(l)~

(j)

water

bar

G-pw-I ==-0-.0-4-24-2----:1-=-0~5 N~/m~2;!1 X

. pressure _ Partial :::>

x2-xl

Pwl ==0.04242

[From steam table, page 110.21

at the top of the well.which

is zero.

IPw2 == 0 I rna == 0.24 x 10-4 8314 x 303 3.80

x

1.013 x 105 6.2 1 013

x

I OL 0

x In [ 1.013 x ; 05 _ 0.04242

ToJind:

rna

Diffusion

2.53

x

10-8

kg-

---"'----

Molar rate of water

.

We know that, for isothermal -rna

flux,

A

D ab

==

mole S

Solution:

Molar

==

rate of water

] x 105

GT

Area,

(X2-XI)

ln

[~l ... (l)

10-8

kg- mole

---=----

P-Pwl

We know that, Mass rate of Watervapour

Molar rate of water vapour

x

Molecular weight of stearn

2.53 x 10-8

x

1:::.016

4.55

Scanned by CamScanner

x

S

evaporation, p

2.53

x

10-7 kg/s

Mass Transfer 5.41

5.40 Heal and Mass Transfer

O

Result: _ 7 ~ Diffusion rate of water - 4.55 x 10- kg/s an 210 mm in diameter and 75 nun ~ An open P weep co" at 25 fie and is exposed to dry attnos h '.l.I~ water P eric r_' 'ate the diffusion co-efficient of Water in a' Q;'. ,--rucu., tr, 'l'll/{ rate of diffusion of water vapour is 8.52 x 16-4 kglh. e

'~t

Diameter, d

Given:

Deep, (x2

-XI)

Temperature, T Diffusion rate (or) mass rate

Mass rate of water vapour

= 210

knoW' that, MaSs rate of water vapour

mrn = 0.210 .... ,.,

= 75 rnrn

e

0.075

= 25°C + 273 =

8.52 x 10-4 kg/h

=

8.52 x 10-4~ 3600

= 2.36

x 10-7 kg/s

= 2.36

x 10-7 kg/s

Molar

K

rate of

Dab x ~

x

p (x2-xl)

1--------1--------I-------:~

x In [P-PW2 P-PWIJ

4

=~

4

S

(0.210)2

I A = 0.0346

2

m \

= 8314 ---

p - Total pressure

K

= 1 atm = 1.013 bar

=

- - - - - - - - r-- Water

J __

kg-mole-

®

(j)

Ix 18.016\

A= ~ d2

x2 - x1

d

weight

of steam

••• ( 1)

G - Universal gas constant

I _I

Molecular

where, Area,

Dry atmospheric air

x

water vapour

2.3 6)()0-7=0

III

::::298

=

we

Pwl - Partial pressure

corresponding

1.013

x

10sN/m2

at the bottom of the pan to saturation

temperature

25° C

At 25° C

I;;.-=.-=.-=.-=.-=.-=.-=.-=.

=::)

Pw: == 0.03166 bar

=::)

Pw: ::::0.03166 x lOS N/m2

Toflnd: Diffusion co-efficient,

(Dab)

Solution: We know that, molar rate of water vapour, ma A

-

::::

Dab GT

-

p(X2-xl)

Scanned by CamScanner

X

In

(P -PW2) P-Pwl

[From (R..s. Khurrni) steam table. page

no. 2]

Pw2 - Partial pressure at the top of the pan, which is zero. ==>

~W2::::

~

5.42 Heal and Mass Transfer (I)=>

2.36

x

Mass Transfer 5.43

DabXO.~

10-7::

~

8314 x 298

xln(~

5

1.013 x 10

[nab

=:

G - Unlvers

.1 gas constant ==8314

0.03166 x 105)(

18'()16

p - Total pre

2.18 x I 0-5 m2/~

kg - mole - K

= 1.013 bar

ssure == 1 atm -

-----

= 1.013 x lOs N/m2

- Partla. I pressure at the bottom of the pan o pwl eorres ponding to saturation temperature 30 C

Rf!Sull:

Diffusion co-efficient, Dab == 2.18 x 10-5 m2/s :::>

A pan of 40 mm deep, isfilled with water to a I I . e.:'Cposed and t« to dry air at 30°C. Calculate th eVe ti 0/20 "'''' e 'lne req . for all the water to evaporate. Take, mass diff . ~"ed 0.25 x 1()-4 mlls. ':JUS'VlIy is

Pwl

:::>

Pw2

Given:

==0.04242 bar

[From steam table page no.2J

~w -1-==-0. -0-42-4-2-X-I O--:5-:-N-/~m-=2-'\

_ Partla. I pressure at the top of the pan, which is zero.

~ (PW2

==0 \

Deep, (x2 - xl) == 40 - 20 == 20 rnrn == 0.020 m Temperature,

T == 300e + 273

Diffusion co-efficient,

=:

rna _

303 K (Il=>

Dab == 0.25

x 10-4

m2/s

A

0.25 x 10-4 8314 x 303

1.013

x

x

105

0.020

I

I 1.013 x 1 OS_ 0 x n 1.013 x 105 - 0.04242 x 105

L

Dry atmospheric air

1(1)

Tofind :

~==2.15

x

10-6

J

kg-mole s

A

Time required for all the water to evaporate, 1.

1

For unit Area, A ::::1m? Molar rate of water

water

Solution: We know that, for isothermal evaporation Molar flux ~ 'A

==

Dab p GT (x2-xl)

l

L

Scanned by CamScanner

m :::: 2.15 ,

10-6 kg - mole sm2

x

a

We knowthat,

PW2]

x In [p p- Pwl

...

(I)

Mass rate of WatervapOur

Molar rate of water vapour

x

Molecular weight of steam

Mass Transfer 5.45 5.44 Heal and Mass Transfer

::: 8.54 x 10--4 kg 3600 s

=2.15XIO-6~ [Molar rate of water vapour

3.87 x 10-5 ~

== 2.37

x

10--7 kgls

The total amount of water to be evaporated per m2 area

Dry atmospheric air

(0.020 x l ) x 1000

=

= 20 kglm2 Area fO

Time required,

I

=~

DiffuSI

'on co-efficient,

516.79

=

x

We knoW that,

103 sJ

I ==

SOLVED UNIVERSITY PROBLEMS ON EVAPORATION OF WATER INTO AIR An open pan

20 em in diameter

water at 25°C and is exposed rate

of diffusion

estimate

Molar rate of water vapour

of

the diffusion

water

and

ISOTH'ERMAl

8 em deep Contailll

to dry atmospheric vapour

co-efficient

Diameter, Length,

(X2 -xI)

Temperature, Diffusion

d

T

air.lftht

is 8.54 x /0'-4 kglh,

:::>

rna:::

Dab GT

p

Dab x A x P GT (x2-x,)

I \p - Pw2\ n

P-Pw'

= 20 ern = 0.20 m =-=

8 em = 0.08 m

=

25°C + 273

=

Mass rate of water vapour

x In \p - Pw2\

p-Pw,J

Molar rate of water vapour

2.37 x 10-7 = _D_u_b_x_A_ x p GT (x2-x,)

x

Molecular weight of steam

A = .2!_ d2 4 =

= 8.54 x 10- 4 kg/h

x In \p - Pw2

P-Pwl]

Ix 18.016 \ ... (1)

where, Area,

298 K

J

We know that,

*

(0.20i

\ A = 0.0314 m

Scanned by CamScanner

x

(x2-X,)

of water in air.

rate (or)

Mass rate of water vapour

A-

516.79)( 103 S

[May '05 -Anna Univj , Given:

========= -L CD water

soilltion:

rna -

Time required for all the water to evaporate,

o

Dab

vapour

Result:

5.18

t-a>

Mass rate of Water~ 20 3.87 x 10-S

11

find:

2

\

Mass Transfer 5.47 5.46 Heat and Mass Transfer G - Universal gas constant

-;-----L_----...

=

8314

=

1.013 bar

kg - mole - K p _ Total pressure

=

I atm

v

Partial pressure at the bottom of the t corresponding

Pwl =

to saturation

0.03166 bar

I Pw2 -

ure

table

I

) == 1 5 em

(.%2-X1

. n CO-e r ,

2SoC

= O. 15m

+ 273

fticient, Dab

= 0255

x '10~ rolls

DIi'"

Dry saturated ~ir

25° C

IIr • page n02J

Partial pressure at the top of the pan. He '. . re, air and there IS no water vapour. So, Pw2 ::: O.

. = 298 K

·d.'S10

[From (R S Kh '" Urmi) Slea

Pwl = 0.03166 x 105 N/m2

OiaJ11 '

re(l1P

est tube

temperat

=::::lOmm==o.OlOm

ter e d

l)logtb, T == erature,

::: 1.013 x 105N/m2 Pwl -

: t.jI"tI

IS

d

ry

T~

d'

10ft'·· . n rate of water Difi'uS10 -.

solution:

We knoW that, for .....al evaporation,

--------

isothe,,,.

(1) => 2.37 x 10-7

=

Dab x 0.0314 x 1.013 x lOS 8314 x 298 0.08 5

1

xI [ 1.013 x 10 - 0 n 1.013 x 105-0.03166 x 105 x18.016 2.58 x 10-5 m2/s

where, Area, A

I

= ~ d2 = ~

(0.010)2

Result: Diffusion co-efficient,

II]

\A

Dab = 2.58 x 10-5 m2/s

Estimate the diffusion rate of water from tile bottom oja test tube 10mm in diameter (I/l(1 15cm 100Ig into dry atmosphere air at 25°C. Diffusion co-efficient of water into air is 0.255 x 10-4 mt/s. [Nov '96· MUl

=

5

7.85 x 10- m

G - Universal gas constant

\

=

J

8314

kg-mole-

K

P - total ores sure = 1 atm = 1 .013 bar

= Pwl - Partial pressure

correspoIiding

Scanned by CamScanner

2

1.0i.3

x

105 N/m2

at the bottom of the test tube to ·saturation temperature 250 C

Mass Transfer 5.48

Heal and Mass Transfer

1.5 cm 15 cm

Pwl

=

0.03 166 bar {Fro", SI

~ P

w

2-

/PWI .

=0.03166

x

IOSN/m2]

~

IPw2

=

,W

hi lch'

01

= 0.15

m

0.256 cm2/s = 0.256 x 10-4 m2/s

II I 0.(

Dry air IS~

to 0.255 x 1D-4 x

(I)~

Page

Partial pressure at the top of the test tube

0.015 m

250C + 273 = 298 K falll/ubi

_

=

5.49

7.85 x 10-5

8314

x

1.013 x 105

298

Molar rate of water vapour

0.15-

= 1.73

ma

Molar flux,

A

Dab

p

GT

(X2 -xI)

In(P-PW2) P =P«,

... (1)

We know that, Mass rate of water vapour

=

Molar rate of water vapour 1.73 x 10-11

x

Molecular weight of steam

x

18.016

Mass rate of water vapour

= 3.11 x 10-10

Area, A

!!..d2 4

~ (0.015)2

[.: Molecular weight of steam:: 18.0J6 refer HMf data book, page no.J8J]

I

where,

kglsJ

A G- Universal.gas constant

1.76 x 10-4 m2 8314

Result: Diffusion rate of water

=

3.11

x

p - Total pressure

10-10 kg/s

kg-

J

mole - K

= 1.013 bar

1 atm

1.013 x 105 N/m2 I

Estimate the diffusion rate of water vapourfrom tile bonollli of a test tube 1.5 em diameter and l Scm long into dry air •. 25°C Take D = 0.256 cml/s. I [Apr '2001 - MU, Bharathidasan

Univ- Nov'901 I

h

Scanned by CamScanner

Partial the

pressure

test

saturation

tube

at the bottom corresponding

temperature

25°C.

Mass Transfer 5.51

5.50 Heal and Mass Transfer

Pwl

0.03166 bar [From steam 0.03166

IPwl Pw2 -

b

105 N/m2]

Atmospheric

(1) => 1.76 x 10-5

x

In[

I"-----------

Molar rate of water vapour ~-----------We know that, Mass rate of water vapour

x

raJi"d:nOration . rate of water per hour.

1.013 x 105 0.151.013 x 105_0

~6\

_:_:__."..J

==3.899 x 1 0-11

)( lOS J

[From HMT data book, page no. 180J

~

D ab = 25.83 x 10-6 m2/s

:s

We knoW that , for isothermal evaporation, {~~l:~:~e vapour

} x

J ~~:;~~ \

l

steam J

ma

Result: Diffusion rate of water

P

Dab

A

= GT

Area, A

~d2 4

Molar flux, where,

rate of water vapour

in grams

pvllr-

3.899 x 10-11 x 18.016

I Mass

air 50% RH

ge tJo,21

I

0.256 x 10-4 8314 x 298

50%

Relative humidity

ta le, Po

Partial pressure at the top of the test tube who . , lch IS Pw2 = 0 l.ero,

I

==>

X

25°C + 273 = 298 K

~rature,T

~

I

(X2 - XI)

n

(p - Pw2 '\ \.P - Pw\)

... (1)

7.02 x 10-10 kg/s 1 = 7.02 x 10-10 kg/s

An open pan of 150 mm diameter and 75 mm deepcontains \A==0.0176m2\

water at 25°C and is exposed to atmosphere air at 25°C and 50% R.B. Calculate the evaporation rate of water in [Apr '2002-MU] grams per hour.

G - Universal gas constant

P - Total pressure

Given: Diameter, d Deep, (x2

-

xl)

150 mm == 0.150 m 75 mm == 0.075 m

Pw\

-

Partial

pressure

corresponding

Scanned by CamScanner

= 8314 kg _ mole _ K

=

1 atm

=

=

1.013

x lOS

1.013 bar

at the bottom

N/m2 of the test tube

to saturation temperature

25°C

Mass Transfer 5.53 Heal and Mass Transfer

5.52

water diameter a nd 8 em deep contains ., pan 20 em d. tmospheric air: Determine ,4" ope nd is exposed to ry ~ vapour in glhr. Take 01]5" C aof diffusion of wa er [Del '99 _ MV]

At 25° C

lt

Pwl = 0.03166 bar

=> =>

IL.Pwl~ = 0.03166

{From Slea x 10 N/m2 5

. P ., - Partial pressure at the top of the pan corres wz . Iiurm idi POndln g to 25°C and 50% re Iative ity.

bar

:::>

Pw2 = 0.03166

:::>

R.H.= 50 % = 0.50 Pw2 = 0.03166

:::>

I Pw2

x

= 0.03166

lOs

lOs N/m2

x

0-4

/It role

I1J 1Qb{

Page 110.2]e,

1

-...J

m2/s.

~,;:;0.259 x 1 ter vapour = 0.855 g/hr rateofwa ,4"s: MOSS • if water from the bottom of a . te tlte diffUSIOn~ate 0 nd 20 em long into dry r11 tSII/1l0be10 mm in dlOmeter ~ = 0.26 x 10--4 m2/s. ~ test ta . t 30°e. Assume almosplterealf a [Apr '99 - MUJ - 321 s : Diffusion rate of water - .

x 0.50

[]-r:

. "ate oif water from tile hottom of a tlte diffusIOn" 10 mm in diameter and 15 em long into dry iest lub. . t 25°e. Diffusion co-efficient of water almosplterlc atr a 2 . . 0255 x ](;--4 m '/s. inloaIT IS •

N/m21

= 1583

25.83 x 10-6 0.0176

x

1.013 x 105

8314 x 298

0.075

x In [

1.013 x 105_1S83 1.013 x 105_0.03166~

[Nov '96 - Mano'!manium Sundaranar Univ 1 ]

Ans :

Diffusion rate of water

=

[Theprocedure of above problems Molar rate of water vapour, ma

lil

Mass rate of water vapour

Molar rate of water vapour

=

7. 13

Mass rate of water

x

I 0-8

vapour

Molecular weight of steam

x

= 3.96 x 10-9 = 7.13 x 10-8

x

5.17,

diffusionof water vapour is 8.54 x 10-4 kg/It. estimate tile diffusionco-efficient of water in air.

18.016

1000 g 1/3600 h 0.256 g/h

Result: rate of water = 0.256 glh

Scanned by CamScanner

are same as, Section

An openpan 20 em in diameter and 8cm deep contains water (1125" C and is exposed to dry atmospheric air. If the rate of

kgls

=

3.12 x 10-/0 kg/so

Problem no. IJ

= 3.96

We know that,

Evaporation

10-/0 kg/so

An .

(I):::>

I

x

Ans:

Dab

=

[The procedure Problem no. I ]

[Apr '97 - Manonrnaniu-n Sundaranar Univ & Apr '98 - Bharathidasan UnivJ 2.58 x 10-5 m2/s of this problems

. IS

same

as, Section

5.18,

Mass Transfer 5.55

5.54 Heat and Mass Transfer ~x_Distance-m

5.19 CONVECTIVE MASS TRANSFER Convective mass transfer is a process of mass t . . ransfu will occur between a surface and a fluid medium when tl r thai different concentrations. ley are al

v - Kinematic viscosity - m2/s For flat plate,

S.20 TYPES OF CONVECTIVE MASS TRANSFER I. Free convective mass transfer

If Re < 5

x

lOs, flow is laminar

If Re > 5

x

lOs, flow is turbulent

·/t Number (Sc) 2.SChttlit

2. Forced convective mass transfer

.

I is defined as the ratio of the molecular : m to the molecular diffusivity of mass.

S.21 FREE CONVECTIVE MASS TRANSFER If the fluid motion is produced due to change' I d n ellS'1 resulting from concentration gradients, the mode of mass t Iy . . ransfer' said to be free or natural convective mass transfer. IS

diffusivity

of

mornen u

SC ==

Molecular

diffusivity of momentum

Molecular diffusivity of mass

Example: Evaporation of alcohol Sc= - v (or)Sc=-Dab

5.22 FORCED CONVECTIVE MASS TRANSFER ~fthe fluid motion is artificially created by means of an exte~al force like a blower or fan, that type of mass transfer is known as forced convective mass trasfer.

where, v - kinematic Dab-

Example: The evaporation of water from an ocean whenair

viscosity -

1U2/s

Diffusion co-efficient - m2/s

3. scnerwood Number (Sir)

blows over it.

5.23

11 pDab

SIGNIFICANCE

OF DIMENSIONLESS

GROUPS

It is defined as the ratio of concentration boundary.

gradients at the

1. Reynolds Number (Re) It is defined

as the ratio of the inertia force to the viscous

force. where, Re ==

Re=

Inertia force Viscous force

-

Mass transfer co-efficient - m/s

Dab- Diffusion co-efficient - m2/s

Ux v

x - Length - m

where, U - velocity -

hm

mls

Scanned by CamScanner

Mass Transfer 5·.57 5.56 Heat and Mass Transfer 5.24 FORMULAE

USED FOR FLAT PLATE P

Reynolds Number,

Re

~ ROBLEM

U.x

=

~c tnbi;ed Laminar - Turbulent flow ./(ii) Cotllu .... SherWoodNumber; Sh = (0.031 ReO.8- 81l1Sc S

v

0.333

Sh = h"r

where,

Dab

U - velocity - mls

~ROBLEMS ON FLAT PLATE 5.ZSS0 1 Air at 10llC witll a velocity of 3 m/s flows over a ]lat plate. GJ 1/ the plate is 0.3 m long, calculate the mass transfer co.efJicient•

x - Distance - m

v - Kinematic viscosity '- m2/s IfRe < 5

x

lOs, flow is laminar

(

If Re > 5 x lOs, flow is turbulent

Given:

Fluid temperature, Too= lODe

For Laminar Flow [From HMI data book, page no .]75 IS'IXt h edilio)) L . \' ocal Sherwood Number, Sh, = 0.332 (Re.x)o.s(Sc)0.333 n Average Sherwood Number, Sh

=

Velocity, U = 3 mls Length, x = 0.3 m

0.664 (Re)O.S(Sc)0.331

Tofind:

where,

Mass transfer co-efficient, (hm) Sc

Schmidt Number

=

solution:

= _v_

e

D

Properties of air at 10

Dab v -

Kinematic viscosity,

kinematic viscosity

V

Weknow that,

Dab- Diffusion co-efficient

Reynolds Number, Re Scherwood

Number hm

For Turbulent

,

-

=

[From HMf data book, page no.33] 14.16 x \0-6 m2/s

= Ux V

Sh = hrnX

3 x OJ 14.\6 x \0-6

Dab

Mass transfer co-efficient - m/s

Re = 0.63

Flow

[From HMT data book, page no.17o

x

105-< 5

x

lOs

Since, Re < 5 x \ 05, flow is laminar

j

(i) Fully turbulent from leading edge. Sherwood

Number,

\,

Scanned by CamScanner

Sh

=

0.0296 (Ke)O.8 (Sc)OJ33

ForL ammar . flow, flat plate, Sherwood Number (Sh) = 0.664 (Re)u.5 (Sc)o.m

..• (I)

[From HMTdaca book, page no. 175]

Mass Transfer 5.59

5.58

Heal and Mass Transfer

~55nl/s ~e1ocitY, u -._ 'lie :x:::::: 600 mm

where, Sc - Schmidt Number

==

V

..• (2)

D~b

Dab- Diffusion co-efficient (water + Air) at lOa c = 20.58 X 10-6 m2/s [From HMT data book pag ...--_--[Dab

(2) => Sc =

I

Sc

=

__

= 20.58

--,

10-6 m2/s

x



I

,

80

(. r'MasS tran sfer co-efficient, 1

C

m

e 1I0./80J

(hm)

0

[From HMT data book. page no. 33]

50lplion: . s of air at 30°C propertle . Vise - osity , v = 16 x IQ-6 m2/s . .....atlc

Kille".

14.16 x 10-6 20.58 x 10-6

We knOw that,

Ux

ids Number, Re = Reyna

v 55 x 0.6 16 x 10-6

0.6881

Substitute Sc, Re values in equation (I) (I) => Sh

= 0.6

J..,ellgth,

= 0.664 (0.63

x

105)05 (0.688)0

Re = 2.06 x 106> 5 x 105 3JJ

Since, Re > 5

ISh= 147.151

x

lOs, flow is turbulant

[Flow is lami~ar upto Re = 5

x

105, after that flow is turbulant

1

We know that, Sherwood Number, Sh

hmx

For combined Laminar - Turbulant flow.flat

=

plate,

Dab

147.15

h

x

m = _....;.;_--

Sherwood Number (Sh)

0.3

20.58 x 10-6

Mass transfer co-efficient,

hm

==

0.0 I m/s

hm = 0.0 I rn/s

Dry air at30 e and one atmospheric pressure flows over a flat plate of 600 mm long at a velocity of 55 mls. Calculate the mass transfer co-efficient at the end of tile plate. I Given: Too = JO°C

Scanned by CamScanner

=

Dab- Diffusion co-efficient

D

Fluid temperature,

(1)

where, Sc - Schmidt Number

Mass transfer co-efficient,

••.

[From HMTdata book. page no. 176]

Result:

[I]

= [0.037 (Re)O.8 - 871 ]ScO.333

==

~

25.83

x

v Dab

.•. (2)

(water + Air) at 30° C :::::260C

10-6 m2/s

[From HMJ data book. page no. 180] -::;:-=-2S=-.-83-x-I-0--6- -2/m s

I

~~~~~-------~ 5.60

Heat and Mass Transfer 16>< 10-6 Sc = 25.83 x 10-6

(2) ~

.,,:

111//0

~

S/I

rtieS 0

(

8°C = 30°C k ge no.33] fair at 2 HMTdata boo, pa

[From

prope

.

v

===

Re

===

16 x 10-6 m2/s

. ViSCOSIty,

ttC

[ Sc = 0.619 ]

. (lla I(,oe

Substitute Sc, Re values in equation (I)

Sit = [0.037 (2.06

(I) ~ I

Sh

x

106)08 - 871] (0.619)0333

that,

ow

we kO

= 2805.131

Ids

ReynO

~

....lumber,

v

J'"

2.5 x 15

We know that,

16 x 10-6

Sherwood Number, Sh =>

2805.13

=

=

h,nX -D ab

Re-_ 2 .34

hm x 0.6 25.83 x 10-6

Mass transfer co-efficient,

hnr

=

05 flow is turbulant R /' 5 x 1 , . Since, e = 5 x lOs, after that flow IS turbulent [floW is laminar upto Re 0.121 m/s

. _ Turbulantfiow,fillt mar

eo b 'netl Lam for ", , (SI ) = [0 037 (Re)0.8 h rWood Number 1 .

Result: Mass transfer co-efficient,

Q]

hili = 0.121 m/s

TIre water in II 6m x J 5 m outdoor swimming pool is maintained at a temperature of 28°C. Assuming a wind speed of 2.5 m/s in tIre direction of the long side of the pool. Calculate tile mass transfer co-efficient.

Size

= 6m

x

Sc - Schmidt Number

= 25.83 x Too = 28°e rl

Speed, U

= 2.5 m/s

Wind speed in the direction

of the long side of pool.

So, x = IS m

(hm)

(\)

v

=

... (2)

Dab

(water + Air) at 28° C :::;26°C

10-6 m2/s

(From HMT data book, page no. 180] O-ab-=-2-5-.8-3-x-1 0---6 2-/

(2)~ Sc

-m- s-'l

=

16 x 10-6 25.83 x 10-6

SUbstitute SR.

c, e values

Scanned by CamScanner

•••

book, page no. 176]

EO.619]

;A

Mass transfer co-efficient,

- 871 )ScO.333

1

where,

15 m

Fluid temperature,

plate,

{From HMIdata

5e

Dab- Diffusion co-efficient

Given:

Tofind:

x 106 > 5 x lOS

In

equation (1)

Mass Transfer 5.63 5 62 Heat and Mass Transfer

We know that, Sherwood Number, Sh

hnrX

=

15+25

Dab

3185.90

= __ h m

x

25.83

2

15

_ x 10-6

Mass transfer co-efficient, hm

. s of air at 20°C

= prO

Result:

Mass transfer co-efficient, hm

= 5.486

PerUe

uc viscosity, I(inema I x 10-3 m/s

Air dr2SOCyrows over a tray full 0/ water wit" a vel . 2.8 Tile tray measures ~ .10 em along tile flow dirOCItyO/. • eClion and 40 em wide. Tile partial pressure 0/ water present' h In I e air is 0.007 bar: Calculate tile evaporation rate 01" Wat . 'J er if the temperature on tile water sur/ace is J 5°C. Take diffusion co-efficient is 4.2 x Ifr5 m}/s.

V

=

Reynolds Number, Re

=

[From HMT data book, page no.33J 15.06 x 10-6 m2/s

'lie knoWthat,

"

Ux v

mls.

Given:

Fluid temperature, Too Speed, U

=

25°C

= 2.8 mls

Flow direction is 30 cm side. So, x Area,

A

= 30

ern

ern

x 40

Partial pressure of water,

!

= 30

ern

m2

= 0.30 x 0.40

Pw2

= 0.007

= 0.30 m

2.8 x 0.30 15.06 x 10-6 Re= Since, Re < 5

Water surface temperature,

flow:

Sherwood Number

( 'h)

Diffusion co-efficient,

=

Dab = 4.2

x 10-5

N/m2

x

10

[0.664

(Re )0.5 (Sc) 0.3 3\ ... (

[From IIMT data book, page no. 17 Sc - Schmidt Number

=

V

Dab

15.06 4.2x

6

10-.

EOJ58] Substitut S e

Scanned by CamScanner

=

bar

15°C

5

where,

N/m21 Tw

x 105

105, flow is laminar.

x

Forflat plate, Laminar

Sc::: Pw2 = 0.007 x 105

0.557

C

Re value

In

equati

n (I)

Mass Transfer 5.65 5.64

Heat and Mass Transfer

----uNIVERSITY

SOLVED PROBLEMS

/,,~t\ u~ (I) ~

Sh

[0.664 (0.557

I Sh

x

105)0.5(0.358)0.~

5.Z6 Ofll fLt\T~P::L:.:A:.:.T.:....E

I

111.37

~t 20"C /p = 1.2 kg/m3, v = l5 x /0-6 ml/s. . air 01 Dry )( J(r5 ml/sl flows over aflat plate oj length JO em l!J D:::4.~ overed wit" a thin layer oj water at a velocity of h'ch ,s c 11" Estimate the local mass transfer co-efficient of a /",Is. « tncm from tile leading edge anti the ave";ge .I' lance 0, . S ul iter co-efficient. [June 20()~-A"'1Q Univ] ",asstrans,.

~

rJ1

We know that, hmx

Sherwood Number, Sh

Dab

~

111.37

Mass transfer co-efficient, Mass transfer co-efficient

hm

hm

X

0.30

4.2

X

10-5

based on pressure difference

I'S

=

Density, p

.

given

1.2 kg/m)

Kinematic viscosity, hmp

_~

_

0.0155

- R Til'

-

287 x 288

Length, L

1

Pil'I

= =

0.017 bar

(RS 5

0.017 x 10 N/m

2

= hmp x A

=

= 50 em = 0.50

m

4.2

x

10-5

m2/s

0.10 m

Tofilld:

{From steam table Khumi) page no I)

I. Local mass transfer co-efficient,

h.t at a distance of 0.10 m.

2. Average mass tran fer co-efficient,

I

hm for entire length.

Solution: Case(i) : Local mass transfer

[Pwl - Pw2]

co-efficient

at x

=

0.10

We know that ,

1.88 x 10-7 x (0.30 x 0.40) x (0.017 x IOLO.007x

'I

=

= I m/s Distance, x = 10 em =

The evaporation rate of water is given by, mil'

Dab

2

m /s

Velocity, U

= 1.88 x 10-7 mls I

Saturation pressure of water at 15°C Pwl

= 287 JlkgKj

x I O~

v = 15

Diffusion co-effie ient,

[.,' Til' = 15°C + 273 = 288 K, R

hmp

= 200C

Give" : Fluid temperature, 1

0.0155 mls

by,

1

--

Re = Ux

Reynolds number,

IOSI

v

l-n-II'--=--2.-2-5-x--IO--~5~k-W~s'l ==

Result: Evaporation rate of water, mit'

= 2.25 x 10-5 kg/s

l Re == 6666.67 < 5

.

Since Re < 5 )( . 05 I

i

6E

I

1

Scanned by CamScanner

I x 0.1 ISxIO-6

.Tlow is laminar

x

lOS 1

DI

5.66 Heat and Mass Transfer For Laminar Flow,jlat plate Local Sherwood Number, Sh

= 0.332

(Re)o.s (S )0

C .333

[From HMJ'data book where, .Sc = Schmidt Number Sc

=

"'(1) Page ~O.17S1

Since Re < 5

Re - 3 3 ----::::---:. - . 3)( 104 5 x 10 , flow is 1 .

amlnar.

For flat plate laminar flow

= -2_ Dab

Sherwood Number, Sh

15 x 10-6 4.2 x 10-5

«

0

Substitute Re and Sc VI'

.664 (Re)O 5 (SC)0.333

a Ues.

'" (2)

Sh == 0.664 (3.33 x 104 )0.5 (0.357)0333

\ Sc = 0.357 \ [Sh == S5.99\ Substitute Sc, Re values in equation (1) We know that, (1) ~

Sh = 0.332 (6666.67 )0.5 (0.357)0.333' \ Sh

- hmL SI1-Dab

= 19.24\ 85.~9 ==

We know that, hxx

Sherwood Number, Sh =

::::>

Dab

19.24= =:>

hx x 0.1

\ hx = S.OS·x 10-J m/s.\ at x

1. hx == 8.08 x 10-3 m/s,

=

0.1 m is 8.08 x 10-3mil.

We know that, number,

Re = =

UL v

1

x

0.50

15 x 10-6

Scanned by CamScanner

co-efficient

~d:

Case (ii): Average mass transfer co-efficient h m' for entirelen~h

Reynolds

hm == 0.007 m/s.

Average mass transfer

---4.2.x 10-5

Local mass transfer co-efficient

hm x 0.50 4.2 x 10-5

2. hm == 0.007 rn/s.

f

.

or entIre length'

IS

0.007 mJ

5.68

Hem U"" .'_

5.17 FORMULAE USED FOR INTERNAL FLOW (CYLINDERS or PIPES) PROBLEMS

~

UD 1. Reynolds number, Re ==

C\'t,~ ~'t<\ \ MGt's r1l Air at 30· C tlltr,~'ll~ .. · T'CDujer 5,69 t;J Gild l'Lo 12 mm diameter t I4bQ'IIIo 'p~. W e t 2.5 m/s. rile ;11 . Of I 'rl • Side p"" deposit of naphth SUr/Itt' ""tl~U~f flow! in ",ass transfer co-effie' ,r. ale",. ',,01I~, ""h Q ""ocitu : UtI '11" -, OJ

v

where,

""'r

Velocity - mls

U-

SOLVEDpQ"" Vnlt (pIPES AND t.t~

D - Diameter - m

Dab == 0.62 x

v _ Kinematic viscosity - m2/s

GIlle

If Re < 2000, flow is laminar

Dab -

1'1t~_t'IIIi"f e con'ain.

elil

~

a a"erage co-efficien,

'he

IlIlioll

'

=

'

<J:)-

12 mm

»

0 .0 \2m

Length, x == 1 m

D

_m_

Diffusion co-efficient , D ab -- 0 .62 x

\ I.)-~

Tofind :

Dab

where, -

Ie",.



Diameter, 0

Sherwood Number, Sh == 3.66

hm

IS.



For laminarflow: h

1

fluid temperature T _ 3Ooe Velocity, U = 2.5 mls

If Re > 2000, flow is turbulent

Sherwood Number, Sh ==

na2

J(j-S

. n .

Mass transer co-efficient - mls Diffusion co-efficient - m2/s

ll\11~

Average mass transfer co-eff IClent, . h

.

11\

SoI uuon

:

Properties of air at 30°C

For turbulentflow:

.' Kinematic

Sherwood Number, Sh == 0.023 (Re)O.83(Sc)O.44 [From HMT data book, page no. J 76 (Sixth edition))

viscosity

,

[From HMT data boo v == 16 X In...J. k, page no v m2/s v

We know that , Reynolds number,

where,

Re == UD v

Sc == Schmidt Number == _v_ Dab

==

2.5 x 0.0\2

16 x 10"-6 Sh = hm D Dab

.

Re

=

1875 < 2000

Since Re <2000 , fl ow IS . laminar. or/ami nar Internaljlow:

F,

Sherwood Number, Sh = 3.66

Scanned by CamScanner

5.70 Heat and Mass Transfer We know that,

hmD Sh=Dab

3.66

::::' 4

hmxO.012

Since Re > 2000, flow'

3.66=

0.62

x

turbU\

For turbulent, Internal flow

10-5

where, Mass transfer co-efficient,

o

0%

tnt

Sherwood Number (Sh):::

Result :

~5.71

,624.1 ~ 2 IS

0.012

x

a"., r~Qltlfe

)( IlK

R e ::::10

=

hm

~

~

0.023 (R

[From

\1\

I:r·&3 ~

HI".

Sc - Schmidt Number::: -!_

hm = 1.89 x 10-3 mls.

St)O.44

'''ll data book

...

,Page 110.1761

Dab

Sc = 15.06 x 10-6 0.75 x 10-5

Air at 20° C and atmospheric pressure, containin quantities of iodine flows witb a velocity of 4 m/: ? s~ .' • s mSldeQ 4cm inner diameter tube. Determine the mass transfrr co-efficient. Assume Dab = 0.75 x 10-5 m2/s.

I

Sc = 2.0081

Substitute Sc, Re values in equation . (1)

Given: Fluid temperature, T CXl = 20°C

(1) => Sh

Velocity, U = 4 mls Diameter, D = 4 em

=

0.023 (10,624)0.83 (2.008)0.44

ISh = 68.661

= 0.04

m

Diffusion co-efficient, Dab = 0.75 x 10-5 m2/s

We know that , Sherwood Number, Sh = hmD

Toflnd :

Dab

Mass transfer co-efficient,

hm

~

[From HMf data book, page no.Jl] viscosity, v = 15.06 x 10-6 m2/s

We know that, Reynolds

number,

Scanned by CamScanner

x

0.04 10-5

x

Mass transfer co-efficient, hm = 0.0128 m1s

of air at 20°C

Kinematic

hm

0.75

Solution: Properties

68.66 =

Re = UD v

0)

ReSUlt:

Mass transfer co-efficient, hm = 0.0128 mls

where,

5.72 Heat and Moss Transfer

\

SC -

5.29 UNIVERSITY SOLVED PROBLEMS IIIA' I tm and 25"C containing small quantities of iOdill I..!J ir at a 2 _/.' '../ 35 di e '/h a velocity of 6. TW S msiae a mm lameter tuh floww! . fi 'd' t. Calculate mass transfer co-efficient or 10 me. The therltl{j

Sc

Schmidt

NUtn\.Ul:r::::

15.5 x 1(}-{l 0.82 x lQ=s

=

"

1)ill

physical properties of air are v::: 15,5 x 1(J-fI m1/s

D::: 0.82

x

substitute

{May 2004 - Anna Un;v]

10-5 m1/s

( 1)

-;::J

Given: Pressure, p ::: 1 atm= 1.013 bar Fluid temperature,

Sc, Re values in

\

I '\

\ .&9()~.44

\

84.07 \

Sherwood

Vel~city, U ::: 6.2 mls

Number, Sh:: ~ Dab

Diameter, D::: 35 mrn ::: 0.035 m Kinematic viscosity, v= 15.5

x

1~

84.07

m2/s

0.82 x 10-5 m2/s

Dab:::

t\)

We know that,

Too::: 25°C

Diffusion co-efficient,

.

t<\uatl()1\

Sh ::: 0.023 (14,000)0.&3 1\ @h:::

=

hm x 0.035 0.82 x \()-5

Mass transfer co-efficient, hm:: O.()\I}(:, mls

Tofind: Mass transfer co-efficient,

hm

Result :

Solution:

Mass transfer co-efficient, hm = 0.0\96 mls

We know that,

Reyno Ids num b er, Re=

\1] Dry

and 1 aIm flows OVfr II IIIf' jla. platt SO CIII long and velocity of 50 mls. Calcullllt 'ht mass "wltr C~

UD V

IRe:::

[Ocl'99· Madras Univ }

14,000 I > 2000 Ans:

Since Re > 2000, flow is turbulent. For turbulent, Internal flow Sherwood Number (Sh)

air at 27·C

efficient of water vapour in air aI 'he end of .ht platt. Talt D = 0.26 x 1()-4 m2/s.

6.2 x 0.035 15.5 x 10-6

=

0.023 (Rep·g3

(Sc)

0.44

•• ,

(1)

{From HMf data book, page no.176}

Scanned by CamScanner

hm

=

1

! '

0.11 mls

[The procedure of this problems is same as, Section- 5.25 Problem no.2)

5. 74 Heal and Mass Transfer

o

. "c and atmospheric pressure flows wit/I a ~ A" at ~5. JO mm diameter tube of J m length. The' Iy 0/ 3 m/s inside a . . I"S;d, .r the tube con tams a deposit of naphthal e surface 0, .r.' e"e . the average mass transfer co-effiCient. Talc . Determtne . D = 0. 62 x J(i-5 m1/s. e /0, Naphtllalene air, . {Apr' 2000 - Madras 1 T

.

I.



VIl/\! }



S A n·

h

= 2.27

",

x J(i-3

m/s.

[The procedure· of this problems Problem no. 1]

is same as, Section - 5.28

r7l Air at 20DCflows part a tray full of water with a veloc;". L:J .'J of 2.5 mls. Calculate the evaporatto» rate of water if th D temperature on the water surface is 15 C. The tray measur e

25 em along the flow direction and its width is 40 em;

pressure of water associated with it is 0.0075 bar. The physical properties of air are Density = 1.205 kg/m', kinematic Viscosity 15.06 x 1~ m2/s and diffusivity = 0.15 m2/llr. ' [Oct' 98 - Madras Univ}

=

1.846

[The procedure Problem no.4J

x

1 atm flows over a wet flat plate 50 cm long at a velocity of 50 mls. Calculate the mass transfer co-efflceint of water vapour in air at the end of the plate, D = 0.26 cm2/s. [Oct' 2001 - Madras UnivJ

=

0.11 mls.

[The procedure Problem no.2J

of this problems

l

Scanned by CamScanner

..\1(1,I.'j, ""-tft, j

[Ans . (i) 0003 (ii) 76.5 x 1fH kgll ~ 75ando.OlSk nro e!s-tn1j 153 x 1 g trloitlntl gas is maintained at ()-I kgls-nr2/

2.

Hydrogen ite sid pressuresof3 the OpposIte Sl. e of a 0 .3 rnm thiIek rubbe bar and \ bar on entire system IS at 25°C. What' th r membraneand the h IS e molard'~ hydrogen .t . rough the membrane? Take0 _ I usion flux of and solubility of H2 in rubber = 1.5 x 1f\...)AB - 8.7 x \0-3 m21s v kmoVm)bar, fAns: 1.75 x Ifr6 kgls-nrZ/

is same as, Section - 5.25

[IJ Dry air at 27DCand

Ans: h",

....11(:£

. 5 rn .75 of2.5 bar m thic~h . and I bash diffusIon co-effieie aronits Ydrogen 8.5 >< J()-8m2/sandthe~: ~~ hYdr:PPosiless:lllaintaif\ed 2b Ublll",0 gen· !'lbe bi kg mo Ie Imar. Underth .'1 fhYdr In the lnary eUnlforrn ~enlll_ Plastic is COnd' ""Ibranc . (i) The molar concentrations IhonsOf2St ISO.0015 of the membrane, and of hYdrogen ,Calculate atthe0 PPositefaces (ii) The molar and mass diffu ' Sianflu membrane. x ofhYdr agenthrough the

lrrs kg/so

of this problems

P~f'ot,.,

at pressures

es

The moving air has a total pressure of 1. 01 bar and the partial

Ans : mw

A plastIC membrane 0 2

is same as, Section-

5.25

3. Estimate

the diffusion rate of wate fr th . r om e bottom f tube 10mm In diameter and IS em 100 . t dry 0 a test °C T k h '. g 10 0 atmosphericair t 25 a . 1 a e t e diffuSIon co-effieieot of bra " 0.255 x 10-4 m2 Is. watert ughau- IS fAns: 1.13 x l~ kglll/

4. Air at 3.5°C and I atm flows over a wet flatplate50emlongwith a velocity of 30 mls. Calculate the mass transfereo-efficeintof water vapour in air at the end of the plate. fAns: 0.075 mis/

_ME

5. 76 Heal and Mass Transfer Compute the rate of evaporation of~ter vapour. from~ 5. ofa flat pan filled with water at 150C mtoa~ air SI:reaJn .~ with a velocity of3m1s parallel to water s~rface. The tern~ of air is 200C and the length of the pan LD the flow diftcti 'IIrt 30 ern while its width is 50 cm. Take the total pressllrt of ~~ .' I f lIr}' 1.013 x lOs N/m2 and the partia pressure 0 water vapoUr~~ as 800 N/m2. q [Ans ; 0.096.

""I 5.31 TWO MARK QUESTIONS

AND ANSWERS

-------

1. What is mass transfer?

The process of transfer of mass as a result of the spec" concentration difference in a mixture is known as mass

transter.

2. Give the examples of mass transfer.

~

"",al is Eddy diffll.s'

~~~ When one of the diffi . • USIOn t1 diffuSion takes place uids i . •

• ~

o-

",haIlS

convective '" .

Urbulent

CI.t.s t'Q"~1".

.

7

. mOtion, eddy

•... It"



7. Slate

,

ru« "S law of diffus;oll.

en they are at

{J"~t·06 ~ .'

.

{Oct'97: 99,~~S &. Dtc'04 A VI

The diffusion rate ISgiven by th' 0 &. Ap,'98 MVI e FICk's I molar fl ux 0 f an element per un't . aw, which state th I area IS d' S at concentration gradient. lrectly proponional to ma =-0 dea A ab d;"

fMU-Nov'96,Oct'''1

where,

of air in cooling tower

ma k - Molar flux _ g - mole A s-m2

2. Evaporation of petrol in the carburertor of an IC engine 3. The transfer of water vapour into dry air 3. Wlia!are the modes of mass transfer?

lilt

5 7

Convective mass lransfe . . II ""t.20 06,A VI occur between a surfacer IS a pr<>tessof and a t1 . mass tra different concentrations • Uld med' nsfer that w'II IUm wh I

Some examples of mass transfer are I. Humidification

S

~ asl "'r~fer

fJune - 2006,AUj

There are basically two modes of mass transfer,

Dab -

Diffusion co-efficient of species a and b

dCa dx

- Concentration gradient, kgtm3

2/

.m s

1. Diffusion mass transfer 2. Convective mass transfer

Lt('Wllat is molecular

diffusion?

8. Whal is free [June - 2006,A~1

The transport of water on a microscopic level as a result of diffusion from a region of higher concentration to a regiOll of lower concentration in a mixture of liquids or gases is known IS molecular diffusion.

L

Scanned by CamScanner

convective mlUs transftr'!

IOe,'97. MU/

If the fluid m o tiIon ISpr . od uce d due to change ID'. density resulting from concentration gradients, the mode of mass transfer is said to be free or natural convective mass transfer. Example:

Evaporation

of alcohol.

J

5. 78 Heat and Mass Transfer 9. Defineforced convective mass transfer.

{Apr'97

If'th fluid motion is artificially created by means of .....(;/ e an e)(te... . force like a blower or fan, that type of mass transfer is kno -"Qj convective mass transfer. \\'n~ Example: The evaporation blows over it.

of water from an ocean wh

en a~

10. Define Schmidt Number.

{Apr'97, Oct'97 - Mll/

It is defined as the ratio of the molecular diffusivity of rno ., f lllenluJn to the molecular diffusivity 0 mass.

(iii) . (IV)

Mass fr

. action

Mole fra .

ctlon (i) Mass concelilra .

no" 0, At

Mass of a CQrn lIss Ii Pon ttr!il)l expressed in kg; lent Pet UIl' rn . It vOlu me Of Ih

Mass concentrati

on ""

(ii) Molar Concent,,... ""0/1

Sc =

Molecular diffusivity of momentum Molecular diffusivity of mass

11. Define Scherwood Number. /Apr'97& 2001- MU It is defined as the ratio of concentration Sh=

Diffusion co-efficient,

{May -2004 -AU,

&-rnoleJml Volultle of 'NUtnber 0 . f tnoles of Dnit volu COmponent tne of mixture

mls

The mass fraction is d fi . e Ined concentration of species to the t as the ratio f otal mass den' 0 mass Slty ofthe mixture Mass fraction = ~Mass concentrationof . 'I' a species lotal mass density

m2/s

(iii). Mole fraction

/ May -2004 -AUf of alcohol

The mole fraction is defined as the . concentration of a species to the t tal raho of mol o molar concentration. Mole concentration

of water from an ocean when air blows overit.

IJI.'Dejine thefotlowing.

~'ure

(iii) Mass fraction

12. Give two examples of convective mass transfer:

2. Evaporation

e Of min..

gradients at the boundary,

x- Length, m

1. Evaporation

Or At,

oi"'d N urn b er of molecul tl!$il)l . es of a the mixture. It is exp tOtnPolle tesSed in k lit Pet Unit

Molar concentration""

h",x Dab

hIn - Mass transfer co-efficient, Dab -

I

\. e mixture I ' IYJasS ' t IS D' Of a Corn nit vOlum Ilelll

I Dec

= Mole concentrationofa species

Total molar concentration

-04 & 05 -AUf

(i) Mass Concentration (ii) Molar Concentration

-

Scanned by CamScanner


Related Documents


More Documents from "Zeus Olympus"