Inflow Performance Reservoir Ipr

  • Uploaded by: Carlos Ulises Leonidas
  • 0
  • 0
  • February 2021
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Inflow Performance Reservoir Ipr as PDF for free.

More details

  • Words: 2,432
  • Pages: 53
Loading documents preview...
PDVSA

Exploración y Producción

Inflow Performance

PDVSA

Exploración y Producción

Instructional Objectives

• Calculate the IPR for oil wells • Calculate the IPR for gas wells

2 WV 12/12/2018

PDVSA

Exploración y Producción

Reservoir Capabilities Single phase liquid flow

• Darcy’s Law – Liquid flow in Laminar Flow through a permeable medium is described by Darcy’s Law

7.08 X 10 k h  pr  pwf  3

q

3 WV 12/12/2018

  o Bo  ln 

  re     0.75  s  a ' q   r  w 

PDVSA

Exploración y Producción

Required Data • • • • • • • • • 4 WV 12/12/2018

Permeability (k) Thickness of producing zone (h) Average reservoir pressure (P) Average viscosity (u) - PVT Average oil formation volume factor (Bo)-PVT Radius of drainage (re) Radius if the drilled hole (rw) Total skin (S) Turbulent flow (aq)

PDVSA

Exploración y Producción

Reservoir Capabilities • s = Skin Factor (dimensionless)

 k   ra  s    1 ln    ka   rw 

16 WV 12/12/2018

PDVSA

Exploración y Producción

Productivity Index • A common indicator of liquid reservoir behavior is PI or productivity index – Referred to as “J” in SPE nomenclature

q STB/ D / psi J p  p wf 17 WV 12/12/2018

PDVSA

Exploración y Producción

Productivity Index in Terms of Darcy’s Law 3

7.08 X 10 k h J   re  o Bo  ln    0.75    rw  18 WV 12/12/2018

 s  

PDVSA

Exploración y Producción

Calculating Flowrate • Using PI, we can calculate flowrate, q, quickly and easily from

q  J (p  p wf ) 19 WV 12/12/2018

PDVSA

Exploración y Producción

Exercise 1 • Given reservoir parameters: k = 30 md h = 40 ft o = 0.5 cp Bo = 1.2 RB/STB hole size = 8 ½ inches s =0

20 WV 12/12/2018

PDVSA

Exploración y Producción

Exercise 1 • Calculate: – J for re = 1,000 ft – q for a drawdown ( p  p wf ) of 750 psi – q for a drawdown of 1,000 psi – With p = 3,000 psia, calculate q for a complete drawdown (absolute open flow potential).

21 WV 12/12/2018

PDVSA

Exploración y Producción

Two-phase flow in the reservoir • Bubblepoint pressure (pb) – Pressure at which first bubble of gas is released from reservoir oils

22 WV 12/12/2018

PDVSA

Exploración y Producción

Multiphase Flow • Vogel’s Behavior – IPR Curve - Vogel plotted the data using the following dimensionless variables

p wf p 23 WV 12/12/2018

and

q qmax

PDVSA

Exploración y Producción

Multiphase Flow • Mathematical model for Vogel’s curve

 q    pwf    1  0.2   qmax    p

24 WV 12/12/2018

  pwf   0.8    p

2

    

PDVSA

Vogel Curve

Exploración y Producción

1

0.8

pwf/pr

0.6

0.4

0.2

0 0 25 WV 12/12/2018

0.2

0.4

0.6

q/qmax

0.8

1

PDVSA

Exploración y Producción

Exercise 2 Given Data: • Pr = 2400 psi • qo=100 b/d

• Pwf=1800 psi Calculate:

• qo max • Construct IPR curve 26 WV 12/12/2018

PDVSA

Exploración y Producción

Combination single phase liquid and two phase flow q STB / D / psi  J p  pwf +

 q    pwf    1  0.2   qmax    p 27 WV 12/12/2018

  pwf   0.8    p

2

    

PDVSA

Exploración y Producción

Multiphase Flow • Combination Darcy/Vogel p

Pressure

pb

pwf

J pb

qb O 28 WV 12/12/2018

qmax

1.8 O

Rate

q

PDVSA

Exploración y Producción

Multiphase Flow • Mathematical relationship between Vogel (qmax) and Darcy (AOF)

qmax

29 WV 12/12/2018

J  Pb  qb  1.8

PDVSA

Exploración y Producción

Multiphase Flow • How to find qmax: for q  qb , Darcy's law applies : q  Jp  p wf    2     p p for q  qb then : q  qb  qmax  qb  1  0.2 wf  0.8  wf   pb   pb    

J pb qmax  qb  1.8 30 WV 12/12/2018

PDVSA

Exploración y Producción

Exercise 3 • Pr =3000 psia • Pb = 2000 psia (bubble point) • K = 30 md

• h = 60 ft • Bo = 1.2 • uo = 0.68 cp

• re = 2000 ft • rw = 0.4 ft • S=0

31 WV 12/12/2018

PDVSA

Exploración y Producción

Exercise 3 Calculate: • q(bubble point)

• qo max if it follows Vogel´s relationship below Pb • qo for flowing pressure of (a) 2500 psia

(b) 1000 psia

32 WV 12/12/2018

PDVSA

Exploración y Producción

Procedure for flow efficiency not Equal to 1.0

Pr  P´wf FE  Pr  Pwf Where: P´wf = Pwf = Pr = 33 WV 12/12/2018

The equivalent undamaged flowing pressure actual flowing pressure static reservoir pressure

PDVSA

Exploración y Producción

Pwf´

34 WV 12/12/2018

PDVSA

Exploración y Producción

35 WV 12/12/2018

PDVSA

Exploración y Producción

Exercise 4 Given Data • Pr=2600 psi
• (2) qomax for FE =0.6 • (3) Find qo for Pwf=1300 psia for FE=0.6, 1.0 and 1.3 36 WV 12/12/2018

PDVSA

Exploración y Producción

Three or Four points tests • Fetcovich proposed that flow after flow or isochronal test as used on gas wells could also be used on oil wells

q  J ' o(Pr  Pwf ) 2

2 n

q  C (Pr  Pwf ) 2

2 n

• These equations are straight lines on log log with J’o and C representing the intercept on the q axis (where Pr2-Pwf2=1 and n = 1/slope)

37 WV 12/12/2018

PDVSA

Exploración y Producción

Exercise 5 • Given Data: four point oil well test: Pr = 2500 psia

38 WV 12/12/2018

Pb=3000 psia

Test

qo

Pwf

1

880

2000

2

1320

1500

3

1595

1000

4

1752

500

PDVSA

Exploración y Producción

Exercise 5 Calculate: (1) value of exponent n (2) value of J’o

(3) Absolute open flow potential (AOFP) or qmax (4) qo for Pwf=2200 psia

39 WV 12/12/2018

PDVSA

Exploración y Producción

Three or Four points tests • Jones, Blount, and Glaze suggest that radial flow for both oil and gas could be represented to show wether near wellbore restriction exist

7.08 X 10 k h  p  pwf  3

q

40 WV 12/12/2018

  o Bo  ln 

  re     0.75  s  a ' q   r  w 

PDVSA

Exploración y Producción

  (ln re / rw  3 / 4  S   9.08 10 13 Bo   2  q q  Pr  Pwf   3 2   4  h r   p w   7.08 10  kh 

b

a

Pr  Pwf   (ln re / rw  3 / 4  S   9.08 10 13 Bo     q 3 2   q 4h p rw     7.08 10  kh

41 WV 12/12/2018

PDVSA

Exploración y Producción

 9.08 10 13 Bo    a 2   4  h r p w     (ln re / rw  3 / 4  S   b 3   7.08 10  kh

Pr  Pwf  aq  b q

b'  b  aq max 42 WV 12/12/2018

PDVSA

Exploración y Producción

43 WV 12/12/2018

PDVSA

Exploración y Producción

Conclusions based on the plot (1) if b is low -less than 0.05- no formation damage occurs in the well. The degree of damage will increase with increasing values of b (2) If the value of b’/b is low -less than 2-litlle or not turbulence is occurring in the well formation system (3) If the value of b and b’/b are low, the well has a good completion (4) If the value of b is low and b’/b is high, stimulation is not recommended. The low productivity is caused by insufficient open perforated area. Additional perforations would be recommended (5) if the value of b is high and b’/b is low, stimulation is recommended 44 WV 12/12/2018

PDVSA

Exploración y Producción

Exercise 6 • Given Data: well test: • Reservoir pressure= 4453 psi Test qo(b/d) Pwf (psi) 1 545 4427 2 672 4418 3 746 4412 4 822 4405 Calculate: (1) Plot (Pr-Pwf)/qo (2) Recommend ways to improve the productivity of the well 45 WV 12/12/2018

PDVSA

Exploración y Producción

Future IPR • Future production rate • determine when a well is to be placed on artificial lift

• Rate acceleration projects and comparing artificial lift methods

46 WV 12/12/2018

PDVSA

Exploración y Producción

47 WV 12/12/2018

PDVSA

Exploración y Producción

Future IPR • Fetcovich procedure



 Pr2  2  Pr2  Pwf 2 qo  J ' o1  Pr1 



n

From a three or four point flow test it is posible

to predict IPR curves at other static reservoir pressures 48 WV 12/12/2018

PDVSA

Exploración y Producción

Exercise 7 • Given Data (from exercise 5) • The equation describing this test was:  (2500) 2  Pwf 2   qo  3.906 1000  

0.70192

Calculate:

• (1) qo max when Pr lowers to 1800 psia • (2) qo for Pwf=800 psia when Pr=1800 psia 49 WV 12/12/2018

PDVSA

Exploración y Producción

Gas Reservoirs • Pseudosteady State – The behavior of gas flowing in laminar flow through a porous medium (Darcy’s Law)





7.03X10 4 k h p 2  p2wf q   re     0.75  s  g T z  ln    rw   50 WV 12/12/2018

PDVSA

Exploración y Producción

Calculation of IPR Curve 4000

pwfs, psia

3000

2000

1000

0 0

2000

4000

6000

q, Mscf/day 51 WV 12/12/2018

8000

10000

12000

PDVSA

Exploración y Producción

Using the Real Gas Pseudopressure (pp (p))





7.03 x 10 4 kh pp p   pp p wf  q   re   T  ln    0.75  s    rw  

and p

p pp p   2  dp p z o

52 WV 12/12/2018

PDVSA

Exploración y Producción

Exercise 8 Plot the IPR Curve

Given the following data and using the pressure squared relationship: k

53 WV 12/12/2018

= 100 md

ug = 0.02 cp

h = 20 ft

T = 610R

re = 1,500 ft

Z = 0.9

rw = 0.33 ft

P = 4,000 psig

s

= 0

g = 0.65

PDVSA

Exploración y Producción

IPR in Gas Reservoirs • Jones’ Gas IPR – Problem • Darcy’s law valid for laminar flow only

• High permeability gas wells turbulent flow near the wellbore

2

2 2 p  pwf  aq  bq 54 WV 12/12/2018

produce

in

PDVSA

Exploración y Producción

Definitions    re  3 1.424x10 g z T  ln    0.75     rw  a   kh      3.16 x1012   g T z b   hp2 rw  55 WV 12/12/2018

 s  

PDVSA

Exploración y Producción

Exercise 9 • Given data: four point gas well test: • Pr=4750 psia Pwf (psia) Gas flow rate MMScf/d 4213 9.45 3806 12.37 3243 15.21 2763 16.98 Recommended a way to improve the productivity of this well 56 WV 12/12/2018

PDVSA

Exploración y Producción

Transient IPR Curves • Assumptions – Darcy’s and Jones’ laws assume that the average pressure P is constant – Drainage radius, re, is constant and that

• These assumptions are true in pseudosteady state only, i.e. when all of the outer boundaries of the reservoir are reached.

57 WV 12/12/2018

PDVSA

Exploración y Producción

Transient IPR Curves  The time to reach pseudo-steady state (pss), tstab, can be calculated with the following equation

948   c t re t stab  k 58 WV 12/12/2018

2

PDVSA

Exploración y Producción

Exercise 10 Oil Well Stabilization Time

• Find tstab with the following data – – – –

f = 0.1 o = 0.5 cp ct = 2 X 10-5 psi-1 re = 1,500 ft

For the following values of k: 0.1 md, 1.0 md, 10 md, and 100 md 59 WV 12/12/2018

PDVSA

Exploración y Producción

Exercise 11 Gas Well Stabilization Time

• Find tstab with the following data – – – –

f = 0.1 g = 0.02 cp ct = 2 X 10-4 psi-1 re = 1,500 ft

For the following values of k: 0.1 md, 1.0 md, 10 md, and 100 md 60 WV 12/12/2018

PDVSA

Exploración y Producción

Transient Flow pwf

p

tstab > t3 > t2 > t1 t1 t2 tsta b

t3

q 61 WV 12/12/2018

PDVSA

Exploración y Producción

Transient IPR Curves • Transient Flow Equation – for oil wells

k h p  p wf  qo      k t    3.23  0.87s  162.6o Bo log     c r2    o t w   

– for gas wells (low pressure only)



62 WV 12/12/2018



k h p 2  p2wf qg      k t   3.23  0.87s  1638g T z  log      c r2  g t w   

PDVSA

Exploración y Producción

Summary • Purpose---> to show the various procedures used in the construction of IPR curves for oil and gas • if reservoirs models are readily available, they may be used in place of a less rigorous procedure • IPR curves for gas condensate reser voirs and many wells producing from secondary and tertiary recovery projects are good examples where more sophisticated techniques are needed 63 WV 12/12/2018

PDVSA

Exploración y Producción

References

64 WV 12/12/2018

Related Documents


More Documents from "Hitesh Gowda B"