Maths Concept Map_x Cbse

  • Uploaded by: Nilesh Gupta
  • 0
  • 0
  • February 2021
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Maths Concept Map_x Cbse as PDF for free.

More details

  • Words: 3,642
  • Pages: 16
Loading documents preview...
Concept Maps Class X Real Numbers Polynomials Linear equations in two variables Quadratic equation Airthmetic Progression Similar Triangles Height & Distance Tengent Coordinate Geometry Trignometry Construction Area related to circle Surface area & volume Probability Statistics

Real Numbers Real Numbers

p,

1,1/2,–7/5...

2

Irrational Numbers

Rational Numbers

89

Integers Non-Integers

Terminating

.... ...............

Non-Terminating

....

-3

-2

-1

0

1

2

3

.... Application H.C.F

3 22 ! 5

L.C.M

10 3

Euclid's division lemma

Definition

(p ! q ! r ) ! H.C.F(p, q, r ) H.C.F.(p, q) ! H.C.F.(q, r ) ! H.C.F(p, r ) H.C.F. (p,q,r) =

(p ! q ! r ) ! L.C.M.(p, q, r ) L.C.M.(p, q) ! L.C.M.(q, r ) ! L.C.M.(p, r )

Polynomials Polynomials 2

F(x) = ax + bx + c F(x) = ax3 + bx2 + cx + d Remainder theorem

Value of polynomial

Degree of polynomial

Factor theorem

Replace 'x' with 'k' ® P(k)

Highest power of x in polynomial

If P(k) = 0 Dividend = divisor ´ quotient + remainder

Then 'k' is a root or zero of the polynomial.

Geometrical interpretation of roots of zeroes of polynomial.

" coefficien t of x n"1

b a

coefficien t of xn cons tan t term coefficien t of x n

Y

Y

1 root

2 roots

Y

1 root

0

X

Y

No roots

0

X

Y

3 roots

0 X'

0

Y'

X

X'

0

Y'

X

X'

Y'

X'

Y'

X'

X

Y'

d a

Linear equations in two variables Linear equation in two variables a1x + b1y + c1 = 0 a2x + b2y + c2 = 0

..(1) ..(2)

Equation of a straight line

Equations reducible to a pair of linear equations

) a2 + b 2 * 0 ## ax + by + c = 0 ® ( a * 0,b * 0 # a, b, c are real nos. '#

Methods to solve

& # # % # # $

2 3 5 4 + , 13, " , "2 x y x y

Let

y = 2x – 4

Y

2p + 3q = 13 5p – 4q = –2

1 1 , p, , q x y

Solution (x,y) ® point lying on straight line. Algebric method

Graphical method a1 b1 * a2 b2

Intersecting (intersect at 1 point)

2 X'

0

X

-4

one solution (consistent)

a1 b1 c1 , , - Infinite a 2 b2 c 2

Coincident (Coincide)

solution

Y' a1 b1 c1 , * - No solution a2 b2 c 2

Parallel (No intersection)

Substitution method " c1 " b1y x, {Substitute in ( 2)} a1 " a2c1 " a2b1y + a1b 2 y , " c 2a1

x,

b1c 2 " b2c1 a1b2 " a2b1

y,

a2c1 " a1c 2 a1b2 " a2b1

Elimination method Multiply b2 in (1) & b1 in (2) a1b2x + b1b2y + c1 b2 = 0 ..(3) b1 a2x + b2b1y + c2b1 = 0 ..(4) (3) -(4) .... (a1b2-b1a2)x + (c1b2-c2b1) = 0 x,

b1c 2 " b2c1 a1b2 " a2b1

y,

a2c1 " a1c 2 a1b2 " a2b1

(inconsistent)

Cross multiplication method y x 1 b1 a1 c1

b1

b2

b2

a2

c2

x y 1 , , b1c 2 " b2c1 c1a2 " a1c 2 a1b2 " a2b1 x,

b1c 2 " b2c1 a1b2 " a2b1

y,

a2c1 " a1c 2 a1b2 " a2b1

Quadratic equation Methods to solve

Quadratic Formula

Completing the square

Factorization

Convert to (x+a)2-b2 = 0

e.g. x2 – 3x – 4 = 0 2 Þ x + (–4 + 1)x + (–4´1) = 0 Þ (x – 4) (x + 1) = 0 Product of roots = –4 Sum of roots = 3

e.g. x2 + 4x = 0 Þ x2 + 4x + 4 – 4 = 0 Þ (x + 2)2 – 22 = 0

. ,

" b + (b2 " 4ac ) 2a

/,

" b " (b2 " 4ac ) 2a

Y

Roots Standard form

X'

0

X

(b2– 4ac ³ 0 ® real roots)

Y' Y

2

ax + bx + c = 0 ; 2

ax +bx + c = 0 ; a ¹ 0 p(x) = 0 "where p(x) is polynomial of degree 2" e.g. (x + 2)3 = x3 – 4 Þ x2 + 4x + 2 = 0 (after simplification)

If a and b are the roots of the above equation then : aa2 + ba + c = 0 ab2 + bb + c = 0

X'

0

X

(b2– 4ac = 0 ® equal roots)

Y'

"b

Y

\a+ b = c a ab = a

X'

APPLICATIONS 1. Speed =

OF QUADRATIC EQUATIONS

Dis tan ce Time

2. Area of figures 3. Flow rate ´ time = volume of water 4. Number or ages

0

: Y'

X

(b2– 4ac < 0 ® Complex roots)

Airthmetic Progression Note : Taken 3 terms in A.P. : (a – d), a, (a + d)

Terms Properties

Numbers in the series are called Terms.

Common difference

Taken 5 terms in A.P. : (a – 2d), (a – d), a, (a + d), (a + 2d)

Common difference 'd' can be zero, positive, negative. a2 – a1 = a3 – a2 = a4 – a3 = a5 – a4 = an-an-1 = d. 5 – 2 = 8 – 5 = 11 – 8 = 14 – 11 = 17 – 14 = 3.

a1 ® a1 = 2 ® 1st Term a2 ® a1 + d = 5 ® 2nd Term nth Term

Arithmetic Progressions

Tn = a + (n–1) d.

a3 ® a1 + 2d = 5 ® 3rd Term . . an ® a1 + (n–1)d = 74 ® 25th Term

Sum of n Terms

st

Sum of 1 n terms of an A.P. ® Sn Sn= a1 + a2 + a3 + .... + an- 1 + an. n(n + 1) Sn = 2

Sum of n natural nos.

RESULTS

2

(n – m + 1)th term

mth term from end

th

Find A.P. whose n term is given ? a1, a2, a3,..... an-1, an. form an A.P.

n

e.g. Sum of first 7! 8 , 28 7 natural nos. Þ

Find Tn when Sn is given

e.g. 2, 5, 8, 11, ..... up to 25 terms.

e.g. Tn = 3n + 5 put n = 1,2,3...... T1 = 8, T2 = 11, T3 = 14......

Tn = Sn – Sn-1 e.g. Sn = n2 + 2n \ Tn = 2n + 1

Condition of an A.P. If a, b, c are 3 terms of an A.P. then : a + c = 2b.

n

Sn= 2 [2a + (n-1)d] = 2 [a1 + an]. e.g. 25 S25 = 2 [2(2) + (25-1)3] = 950

Similar Triangles Similar Triangles

Means 'Same shape' e.g. All circles are similar. All squares are similar.

Criteria

If Ds are similar

Q

P

Then :

A

Area theorem

R

Pythagoras theorem

C

B

Q AA criterion : If ÐA = ÐP and ÐB = ÐQ then DABC ~ DPQR.

P

B

R C

B

A

If DABC ~ DPQR : 2

2

2

Area( 6 ABC) 5 AB 2 5 AC 2 5 BC 2 ,3 0 ,3 0 ,3 0 Area( 6 PQR ) 4 PQ 1 4 PR 1 4 QR 1

SSS criterion : AB

AC

BC

If PQ , PR , QR then DABC ~ DPQR

D

AB AC BC , , PQ PR QR

C

DABC is right angled D (ÐB = 90°) DABC ~ DBDC ~ DADB : BD2 = AD ´ BC. BC2 = CD ´ AC. AB2 = CA ´ AD. AB2 + BC2 = AC2 ® P.Th.

AB

BC

ÐB = ÐQ then DABC ~ DPQR

and

Proved by Basic Proportionality theorem (THALES THEOREM) A

SAS criterion :

C

ÐA = ÐP ÐB = ÐQ ÐC = ÐR

E

D

If P Q , Q R and

R

P

B

A

A

Q

If DE | | BC then, C

B

AD AE , DB EC

NOTE : DABC ~ DPQR doesn't mean DABC ~ DQPR.

Converse of B.P.T. : If

AD AE , DB EC

DE | | BC.

then

Height & Distance

Heights & Distance C

A

Elevation Horizontal A

q

B

Height of tower BC = AB ´ tan q (given AB & q)

Horizontal

Height of tower AB = tan q ´ BC (given a & BC)

Applications

Depression a C B a = Angle of Depression

q = Angle of elevation @ Navigation @ Land surveys @ Buildings @ Optics @ Statics @ Crystallography

Definition : Angle formed by the line of sight with the horizontal when the point is above the horizontal.

Definition : Angle formed by the line of sight with the horizontal when the point is below the horizontal.

e.g.

e.g. Height of tower AB =

b a

CD ! tan . ! tan / (tan / " tan . )

PD =

(given CD, a, b) a

b

AB ! tan / (tan . " tan / )

(given AB, a, b) b

e.g. Height of tower BD =

(tan / " tan . ) ! AB tan .

(given AB, a, b) a b

Height of tower

a

Tengent

QT= 1/2 QR

NO TANGENT

ONE TANGENT

P

Q

P

O

P

R

of tangents from an external point to a circle are equal . * Length

In DOQP & ORP = OQ = OR (radii), OP = OP \ DOQP 7 DORP Þ PQ = PR AND

TANGENT

In DPQR PQ=PR, hence ÐPQR = ÐPRQ = 1/2 (180 – q) Since ÐOQR = 90º, ÐOQR = ÐOQP – ÐPQR ÐOQR = 90º – (90 – 1/2q) =1/2q Þ2 ÐOQR = ÐQPR.

&ÐQPR + ÐQOR = 180º ÐQPO = ÐRPO ÐQOP = ÐROP

P Tangent

B

Coordinate Geometry

Distance formula

Area of Triangle

Section formula

Q (x2,y2)

y

y P (x1,y1)

A (x1,y1)

R (x1,O)

S (x2,O)

x

RS = (x2–x1) = PT SQ = y2 ; ST = y1 ; QT = (y2 – y1) Applying Pythagoras in DPTQ PQ2 = PT2 + QT2 = (x2 – x1)2 + (y2 – y1)2

C

S

R

O

( x 2 " x1)2 + ( y 2 " y1)2

(x2,y2) B

Q

T

x

O

Q

P

R

A(x1y1) B(x2,y2) C(x3,y3)

(m : n Internally)

{ m mx ++ mm x 1 2

1

2 1

2

, m1y 2 + m2 y1 m1 + m2

{

Area = 1/2 ´ base ´ Altitude

{

m1x 2 " m2 x1 , m1y 2 " m2 y1 m1 " m2 m1 " m2

Area = 1/2 [x1(y2 –y3) + x2(y3 –y1) +x3(y1-y2)]

{

If Area = 0,

(Distance formula)

Application of distance formula Verifying collinearity A(x1,y1), B(x2,y2), C(x3,y3) ® Find AB,BC,CA using distance formula ® If AB + BC = CA or BC + CA = AB or AB + CA = BC ® Then 3 pointare collinear

x

Coordinates of P(x–xy) =

(m : n externally) PQ =

A (x,y) C(x3,y3)

(x,y)

O

y

B (x2,y2)

T (x2,y1)

Verifying collinearity A(x1,y1), B(x2,y2), C(x3,y3), D(x4,y4) ® Find AB,BC,CD,DA using distance formula ® Find diagonals CA & BD ® Check with different properties of quadrilaterals

then points are collinear Verifying triangle formations A(x1,y1), B(x2,y2), C(x3,y3) ® Find AB,BC,CA using distance formula Check if AB + BC > CA BC + CA > AB AB + CA > BC ® If yes, it is triangle, check for right D using pythagoras therom ® If no, it is not a D

Complimentry Angles

Graphs

T-ratios sinA =

AB

cosecA = BC = P

B

AB

cosA = AC

H

AC

cosA = AC = H

tanA =

H

AC

BC P = AC H

secA = AB = B

BC P = AB B

cotA =

secA =

cos(90-A) =

AB B = BC P

sinA =

BC AC

BC AC

tanA =

AC

AB BC

cot(90-A) =

y

AC cosec(90-A)= AB

AB tan(90-A)= BC

AB sin(90-A) = AC

secA = AB BC AB

sec(90-A) =

BC AB

AC BC

x'

" 38 2

"8

8 2

"8 0 2

8

38 2

AC BC

cosecA =

x

TAN

y'

y C ÐA of DABC = ÐA of DAMP P BC MP sin A = = AC AP A Note ; M B The values of the trignometric ratios of an angle do not vary with the lengths of the sides of the triangle, if the angle remains the same.

Interrelationship between T-ratios

sinA = T R I G O N O M E TRY

1 cos ecA

cosA =

1 sec A

tanA =

1 cot A

C

90° B

A

2

Divide both sides by Identities

AC2 AB

BC2 AC2

2

BC2 1+

+

+ 1,

BC2 AB2

0.5 0

8 2

0.5

8

38 2

28

2

,

2

2

, 1 =sin A + cos A = 1

AC

2

BC2 AC2 AB2

2

2

=cot A+1 = cosec A

AC2

BC

2

2

= 1+tan2A = sec2A

AB

2



30°

45°

60°

90°

sin

0 0

1 4

2 4

3 4

4 4

cos

4 4

3 4

2 4

1 4

0 4

tan

0 4

1 3

2 2

3 1

9

cosec

9

4 1

4 2

4 3

4 4

sec

4 4

4 3

4 2

4 1

9

cot

9

3 1

2 2

1 3

0 4

Simplified trigonometric values

x

-1

SIN

y'

AB + BC = AC

AB2

1

y 1 0.5 0

8 2

0.5

8

38 2

28

x

-1 y'

COS

Construction

Triangle Scaling

Division of a line segment in m:n(3:2)ratio

Constructing Tangents

SCALING A

B2

B3 B

4

A' A C'

B1

B5 x

B

A

B

C B1

Q

B5C'||B3C C'A'||CA

B

B

A

1. Scaling up 5/3

P

O2

B4

X

B5 x

2. Scaling down 3/4

B1

B2

B3 B

C

B

4

x

Alternate-Method

3. 2 circles intersect at Q & R

A' C B2

X

AC 3 AA 3 = = A 3 A 5 CB 2

2. O2 as centre & O1O2 as radius , draw a circle

A

B1

Join A3C such that A3C is parallel to A5B

DAA3C ~ DAA5B hence 1. Join PO1 and bisect it (at O2)

C

B

R

B3

5 BC' BB 5 = = 3 BC BB 3

B

2 C

C B2

AB AC BC = = A' B A ' C' BC'

B3C'||B4C C'A'||CA

3

O1

DABC ~ A'BC'

A

A

B3

B4

DABC ~ A'BC' A ' B A ' C' BC' 3 = = = AC BC 4 AB

B

A

4. Join PQ & PR (Tangents) , Y

B2

x

Y

A

B Join A3B2

A1 A2

A3

B2

B1 A

3

B

A1 A2

X DAA3C ~ DBB2C AA 3 AC 3 = = BB2 BC 2

B1

2

A3

X

Area related to circle

Sector of a circle

Major sector

Area of combination of plane figures

Q

e.g. q = 60° r = 3m

e.g.

2 units

A

B

2

Area = pR r

q

r Generally sector implies minor sector

B

A

C

Sol.

P Length of sector AB =

r

r + r + r + r = length of square Þ 4r = ; r = 1/2 Area of shaded reg. = Area of square – Area of 4 circles 2 = (2´2) – 4 ´ 8 ( 1 )

Area of sector : AOBP = ´ pR2 360

: ´ 2pR 360

e.g.

e.g.

60 ´ p ´ 32 360 38 Þ m 2

: ´ 2p ´ 3 360 Þ pm

D

4

AOBP =

AB =

=4–p

Note: For rotating wheel 2pRn = speed ´ Time = Distance covered n = number of rotations

e.g.

2 units

A

B

I

Area of segment (APB) = Area of sector (AOB) – Area of DAOB

IV

II III

e.g. A

C 2 units

Sol.

B

I IV

II III

C

D

Sol. Area I + III = A(ABCD) – Area of semicircle with AD & BC as diameter =4–p

D

Area of shaded reg. = Area of square ABCD –Area of (1+2+3+4) = 4 – 2(4 – p) = 2p – 4

Surface area & volume

Cuboid

Frustum Cylinder

Cube Cone

Hemisphere Sphere

l1-l r2

h

r a

b

h

h

1. T.S.A ® 2[lb +bh + hl] 2. C.S.A ® 2[bh +hl] 3. Volume ® l ´ b ´ h 4. Diagonal ® 2 + b2 + h2

a 2 1. T.S.A ® 6a 2 2. C.S.A ® 4a 3 3. Volume ® a 4. Diagonal ® 3a

NOTE : 1. C.S.A.® Curved surface area 2. T.S.A.® Total surface area 3. l ® Length 4. b ® Breadth 5. h ® Height 6. l ® Slant height 7. r ® Radius 8. a ® Side of cube

h

l

r1

r

l

a

h1

r

r r

r

2

1. T.S.A ® pr(l + r) 2. C.S.A ® prl 3. Volume ® 1 8 r 2h 3

1. T.S.A ® 2pr(r+h) 2. C.S.A ® 2prh 2 3. Volume ® pr h

Volume = Volume of cylinder – Volume of hemisphere

1. C.S.A = T.S.A. = 4pr2 2. Volume = 4/3pr3

1. C.S.A = 2pr 3 2. T.S.A. = 3pr 3. Volume = 2/3pr3

1. C.S.A = p1r1l1 – pr2(l1–l) 2 2 2. T.S.A. = pl(r1+r2) + p(r1 + r2 ) 2 2 3. Volume = 1/3ph(r1 + r2 + r1r2) 4. Slant height = h2 + (r1 " r2 )2

Total surface area = C.S.A. of 2 hemispheres + C.S.A of cylinder

Probability PROBABILITY Elementary event (E) : Only one outcome sum of the probabilities of all elementary events is 1.

Applications Gambling, insurance & statistics control theory.

0 £ P(E) £ 1

Complimentary Events(E) Not E = E, P(E) = 1 – P (E) ln case 1 :

No. of outcomes favourable to E P(E) = No. of all possible outcomes

EVENT(E) 1 P(1) = ; P(1) = 1 – 1 = 5 6 6 6 P(1) = not getting 1 ; = getting 2,3,4, 5 and 6

In case 1 P(E) > 4 =P(5) + P(6) =

2 1 = 6 3

P(E) = 4 = P(1) + P(2) + P(3) + P(4) =

4 2 = 6 3

In case 2 In case 3 Sum = 8 for (2,6) (3,5) (4,4) (5,3) (6,2) 5 P(sum 8) = 36

Probability of picking up black P(B) = 2 9

Certain event P(E) = 1 Impossible event P(E) = 0 In case 2 : P(sum 13) is impossible. hence, P (sum 13) = 0

1

2

36 posibilities 3

4

5

6

1

1,1

1,2

1,3

1,4

1,5

1,6

2

2,1

2,2

2,3

2,4

2,5

2,6

3

3,1

3,2

3,3

3,4

3,5

3,6

4

4,1

4,2

4,3

4,4

4,5

4,6

5

3,1

5,2

5,3

5,4

5,5

5,6

Examples Case -1) One dice is rolled: P(1) = Probability of getting 1. Similarly P(2),P(3), P(4), P(5) & P(6) P(1) =

1 1 , 1,2,3,4,5,6 6

P(E) > 4 ® Probability of getting 5 & 6.

Case -2) Two dice are rolled: P(sum = 8) = Probability of getting two numbers whose sum is 8.

Case -3) Box with balls : A box contains 2 black, 4 green and 4 red balls.

Red

Red

Red

Black

Black

Red

Green

Green

Green

Statistics

Grouped Class of Intervals NO. of Students

Ungrouped 10-25

25-40

40-55

55-70

70-85

85-100

2

3

7

6

6

6

MODE

MEAN

The value of the observation having the max. frequency

; fx x= ;f

i i i

MODE

MEDIAN Intervals

No. of students

C.f.

n-C.f.

10-25

2

2

28

25-40

3

5

25

40-55

7

12

18

55-70

6

18

12

70-85

6

24

6

85-100

6

30

0

Class size (h) = 15 Max. frequency f1 = 7 Modal class = 40-55 Lower limit of modal class = 40 f0 = 3 (Previous class f value) f2 = 6 (next class f value)

n / 2 " c.f . ! h = 62.5 Median = l + f

x1, x2, ........ xn ® observations f1, f2, ........ fn ® frequencies th

5n 2 Average of 3 + 10 42 1

5 f1 " f0 2 Mode = l + 33 2f " f " f 00! h 4 1 0 21

Step deviation

x =

; fx ;f

i i

Assumed mean method

x = a + hu = 62

5 x = a + h 33 4

i

Class Intervel

fi

xi

10-25

2

25-40

3

40-55

; f d 20 = 62 ; f 01

i i i

di = x i – a

17.5

35

-30

32.5

97.5

-15

7

47.5

332.5

55-70

6

62.5

70-85

6

85-100

6 30

x = a + d 5 x = a + 3 3 4

; f x 20 =62 ; f 01

fi x i

xi " a h

i i i

fi ui

fi di

-2

-4

-60

-1

-3

-45

0

0

0

0

375

15

1

6

90

77.5

465

30

2

12

180

92.5

555

45

3

18

1860

ui =

n is even

th

3 Methods

Direct Method

th

5n 2 & 3 0 observation. 42 1 5 n + 12 3 0 observation. 4 2 1

Mode = 40 + 4/5 ´15 = 52 MEAN

n = 30 ; n/2 = 15 55-70 is median class lower limit of the median class (l) = 55 c.f. = cum frequency of median preceeding class

MEDIAN

;

f iu i = 29

270

;

fi di

= 435

n is odd

Related Documents


More Documents from "Nilesh Gupta"