Real Analysis

  • Uploaded by: Fabio Arevalo
  • 0
  • 0
  • February 2021
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Real Analysis as PDF for free.

More details

  • Words: 890
  • Pages: 15
Loading documents preview...
Teaching Innovations in Real Analysis:

David Bressoud Macalester College, St. Paul, MN New Orleans, January 7, 2007

A Radical Approach to Lebesgue’s Theory of Integration To appear December, 2007

Series, continuity, differentiation

Integration, structure of the real numbers

1800–1850

1850–1910

Cauchy, Cours d’analyse, 1821

“…explanations drawn from algebraic technique … cannot be considered, in my opinion, except as heuristics that will sometimes suggest the truth, but which accord little with the accuracy that is so praised in the mathematical sciences.”

1  1  x  x  x2  x2  x3 



 



 1  x   x  x 2  x 2  x 3   1  x   x 1  x   x 2 1  x  



 1  x  1  x  x 2  1  1  x  x2  1 x



1  1  x  x  x2  x2  x3 



 



 1  x   x  x 2  x 2  x 3   1  x   x 1  x   x 2 1  x  



 1  x  1  x  x 2 



1  1  x  x2  1 x

1 1   1  2  22  1 2

1  1  x  x  x2  x2  x3 



 

 xN  xN







 1  x   x  x 2  x 2  x 3 

 x N 1  x N  x N

 1  x   x 1  x   x 2 1  x  

 x N 1 1  x   x N



 1  x  1  x  x 2  1  1  x  x2  1 x



 x N 1  x N

N x  x N 1  1 x

Niels Henrik Abel (1826):

“Cauchy is crazy, and there is no way of getting along with him, even though right now he is the only one who knows how mathematics should be done. What he is doing is excellent, but very confusing.”

Cauchy, Cours d’analyse, 1821, p. 120 Theorem 1. When the terms of a series are functions of a single variable x and are continuous with respect to this variable in the neighborhood of a particular value where the series converges, the sum S(x) of the series is also, in the neighborhood of this particular value, a continuous function of x. 

S x    fk x , k 1

fk continuous  S continuous

n

Sn x    fk x , Rn x   S x   Sn x  k 1

Convergence  can make Rn x  as small as we wish by taking n sufficiently large. Sn is continuous for n  .

n

Sn x    fk x , Rn x   S x   Sn x  k 1

Convergence  can make Rn x  as small as we wish by taking n sufficiently large. Sn is continuous for n  .

S continuous at a if can force S(x) - S(a) as small as we wish by restricting x  a .

n

Sn x    fk x , Rn x   S x   Sn x  k 1

Convergence  can make Rn x  as small as we wish by taking n sufficiently large. Sn is continuous for n  .

S continuous at a if can force S(x) - S(a) as small as we wish by restricting x  a . S x   S a   Sn x   Rn x   Sn a   Rn a   Sn x   Sn a   Rn x   Rn a 

Abel, 1826:

“It appears to me that this theorem suffers exceptions.” 1 1 1 sin x  sin 2x  sin 3x  sin 4x  L 2 3 4

n

Sn x    fk x , Rn x   S x   Sn x  k 1

Convergence  can make Rn x  as small as we wish by taking n sufficiently large. Sn is continuous for n  .

S continuous at a if can force S(x) - S(a) as small as we wish by restricting x  a . S x   S a   Sn x   Rn x   Sn a   Rn a   Sn x   Sn a   Rn x   Rn a  x depends on n

n depends on x

“If even Cauchy can make a mistake like this, how am I supposed to know what is correct?”

This PowerPoint presentation is available at www.macalester.edu/~bressoud/talks A draft of A Radical Approach to Lebesgue’s Theory of Integration is available at www.macalester.edu/~bressoud/books

Related Documents


More Documents from "Credit Builder"