Temporizadores

  • Uploaded by: antonio_acevedo_2
  • 0
  • 0
  • February 2021
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Temporizadores as PDF for free.

More details

  • Words: 3,575
  • Pages: 15
Loading documents preview...
INSTITUTO TECNOLOGICO DE CIUDAD JUAREZ

CONTROL DE MAQUINAS ELECTRICAS. CLASE 7-8 PM.

ING. ALBERTO RUIZ DE LA PENA

TAREA #4

ALUMNO: ANTONIO ACEVEDO OCHOA

CD. JUAREZ CHIH A 10 DE MAYO DEL 2012.

Temporizador, relevadores y electroválvulas. Temporizador. Un temporizador o minutero es un dispositivo, con frecuencia programable, que permite medir el tiempo. La primera generación fueron los relojes de arena, que fueron sustituidos por relojes convencionales y más tarde por un dispositivo íntegramente electrónico. Cuando trascurre el tiempo configurado se hace saltar una alarma o alguna otra función a modo de advertencia. El circuito electrónico que más se utiliza tanto en la industria como en circuitería comercial, es el circuito temporizador o de retardo, dentro de la categoría de temporizadores, cabe destacar el más económico y también menos preciso consistente en una resistencia y un condensador, a partir de aquí se puede contar con un sinfín de opciones y posibilidades. Cuando necesitamos un temporizador, lo primero que debemos considerar es la necesidad de precisión en el tiempo, base muy importante para determinar los elementos que vamos a utilizar en su concepción y diseño. Un temporizador básicamente consiste en un elemento que se activa o desactiva después de un tiempo más o menos preestablecido. De esta manera podemos determinar el parámetro relacionado con el tiempo que ha de transcurrir para que el circuito susceptible de temporizarse, se detenga o empiece a funcionar o simplemente cierre un contacto o lo abra. 

Ejemplo:

Un ejemplo simple, es el siguiente: Se necesita un retardo en una máquina cizalla de corte, la cual conlleva cierto riesgo de accidentar al operario que la maneja. Necesitamos un sistema de seguridad para que sólo cuando el operario esté fuera de peligro, la cuchilla pueda bajar. Otro sistema de seguridad, consiste en producir un retardo y al mismo tiempo un sonido o luz intermitente de aviso. El primer caso, se puede lograr con la combinación de unos fines de carrera y un par de pulsadores, localizados fuera del recorrido de la cuchilla y sus alrededores. Para el segundo punto, podemos optar por un diodo rectificador D1, una resistencia R1 y un capacitor C1. El montaje sumamente sencillo se muestra en la figura 1.

Fig. 1 El diodo D1 se encarga de rectificar la corriente proporcionada por un secundario de un transformador o simplemente de la red a la que se conectará el equipo al que se ha de controlar, para lo cual deberá observarse las precauciones básicas y elementales a la hora de seleccionar los diferentes elementos mencionados, respetando un margen de seguridad en la tensión a la que se someterán en el montaje. A continuación se intercala la resistencia R1 que será la responsable directa del tiempo de carga del condensador, es decir, a mayor valor óhmico le corresponde un mayor tiempo de carga del capacitor. El siguiente elemento, el capacitor, debe escogerse de una considerable capacidad cosa muy determinante, pero sin perder de vista la tensión a la que se verá sometido, para evitar que se perfore y quede definitivamente inservible. A la hora de elegir el condensador, es conveniente considerar su tamaño y siempre que sea posible debería optarse por un modelo electrolítico (de ahí el uso del diodo), como digo electrolítico debido esencialmente a la mayor capacidad y menor tamaño, cosa que en algunos casos no es posible, utilizando en tal caso uno de los no polarizados industriales de unos 8 a 12 µf y por seguridad 400V, los que suelen utilizar en los motores de las lavadoras o frigoríficos. Bien, veamos que ocurre cuando se aplica una tensión a la figura 1 a, la corriente al atravesar el diodo D1, se rectifica a media onda, esto la reduce aproximadamente a la mitad, esta tensión se enfrenta al paso de la resistencia R1, que le restringe su paso a un valor previsto por el diseñador. A la salida de R1, la tensión se precipita para cargar el capacitor C1, que es el camino que menor resistencia le ofrece y, ese tiempo de carga, justamente es el tiempo que se pretende controlar, ya que durante ese tiempo de carga, la corriente no fluirá más allá del capacitor. Hay que tener en cuenta que el tiempo de carga, no representa más que dos tercios (2/3) de la capacidad total de C, rebasada la cual, la corriente empezará a fluir hacia el siguiente elemento conductor que encuentre, terminando así el retardo.

En el ejemplo anteriores percibe que el control no es tal, ya que la carga del capacitor se ve influenciada por muchos imponderables, además de poco fiable. Se necesita un mayor control y rango de tiempos. La solución puede estar en los transistores que permiten un mayor control de los diferentes parámetros. Debido al control de ganancia y paso de corriente que nos permite el transistor y mediante un montaje adecuado, podemos lograr una mejora en los tiempos y por lo tanto más fiabilidad, al utilizar condensadores más pequeños. Véase en la figura 2, la báscula formada por T1 y T2 a los que se ha añadido un tercer transistor para mejorar la carga del relé a su salida. El funcionamiento de la báscula determina mediante el ajuste de los potenciómetros P1 y P2 los tiempos de basculamiento obteniendo un mejor control de amplitud del tiempo de retardo. No obstante y a pesar de lograr una considerable reducción en la capacidad de los condensadores, lo que conlleva una mayor seguridad y control, no es bastante fiable en algunos casos y la industria necesitaba algo más compacto que le dotara de tiempos mas largos y fiables. Esto se lograría mediante el circuito integrado temporizador.

Un buen ejemplo de circuito integrador temporizador es el siguiente: EL TEMPORIZADOR LM555

En la industria se viene utilizando desde los años 70, uno muy popular que además de sencillo es muy eficaz y versátil a la hora de producir temporizaciones, estoy hablando del socorrido µA555PC, que nos permite construir un temporizador mediante unos pocos componentes de bajo coste. Su estabilidad con la temperatura es de 0'005 % por grado centígrado. Aquí, se describen de forma simple algunos aspectos de este CI. Veamos el esquema teórico en la figura 3 en la versión como monoestable y en la figura 4, con el modo astable .

Fig. 3

Fig. 4

Aplicando una señal de disparo, el ciclo de temporización se inicia y una báscula interna le inmuniza frente a futuras señales de disparo. Al aplicar una señal de reposición (rest), el ciclo de retardo se interrumpe dándose por finalizada la temporización. Entre sus características más importantes, hay que destacar el amplio margen de control de tiempo desde microsegundos a horas.

Funcionando como astable o monoestable, el ciclo de trabajo es capaz de proporcionar 200 mA de corriente en su salida. Funcionamiento monoestable En el apartado anterior vimos cómo producir un retardo o temporización, la referida figura 3 esta aquí, el esquema que se presenta es bastante sencillo y corresponde a un montaje monoestable, el cual se caracteriza por el modo de conexión de la patilla 2, Disparo, la cual debe permanecer en nivel alto, hasta el momento de empezar la temporización, hemos de hacer notar que esta patilla, debe ser repuesta a su nivel alto, antes de terminar la temporización, si se quiere ampliar el retardo, para evitar disparos fortuitos que variarían el tiempo previsto. La salida es capaz de entregar una corriente de 200 mA máximo, en caso de necesitar mas corriente, utilizar un relé con contactos que soporten una mayor corriente. Mientras la patilla de disparo esté a nivel alto, la salida patilla 3, permanecerá a nivel bajo, esto debe tenerse en cuenta, para un mejor aprovechamiento del dispositivo. Mediante este principio de esquema, podemos trazar un temporizador que encienda o apague una luz con un retraso de tiempo que vendrá calculado mediante la siguiente formula: T = 1.1*Ra*C

Fig. 5 En la figura 5, se presenta el esquema que cumple con las exigencias descritas, con un retraso en el enciendo o apagado, de un diodo led. El circuito como se menciona, puede utilizarse tanto para el encendido como para el apagado de un diodo led o una lámpara, así mismo mediante un relé, se puede poner en marcha o parar un motor. En las figuras, se pueden cambiar el diodo led, por un relé para dotar si es necesaria de mayor potencia a la salida.

En el caso de necesitar encender el led durante un tiempo previsto, dicho led se conectará entre la salida, patilla 3 y la masa o negativo, permaneciendo encendido hasta transcurrido el tiempo establecido desde el impulso de disparo, figura 6, un pulso de puesta a cero (PAC) en el reset reiniciará el retardo. Una posible aplicación de seguridad, emitir una señal de alarma durante un período de tiempo desde que se da la señal corte, hasta que baja la cuchilla de la cizalla, evitando así accidentes laborales.

Fig. 6 En el segundo caso, o sea, necesitamos que el led, permanezca apagado durante un tiempo desde que se aprieta un pulsador y permanezca apagado hasta que vuelva a pulsarse. En este caso se conectará el led entre el Vcc de la alimentación y la patilla 3 de salida, ver figura 7. Una aplicación sería que no se abra la puerta del garaje hasta que se le de la señal y pasado ese tiempo se cierre de nuevo hasta la siguiente señal de apertura.

Fig. 7 Estos son dos ejemplos bastante corrientes y que pueden ponerse en práctica en cualquier momento por parte del alumno o del profesional en las labores habituales con total seguridad. Como se verá, la resistencia Ra, es conveniente ponerla del tipo ajustable para que sea más práctico el montaje. En la figura 8, se muestran las señales de disparo flanco de subida, t el tiempo de retardo y de salida del esquema monoestable.

Fig. 8

Relevador. El relé o relevador es un dispositivo electromecánico. Funciona como un interruptor controlado por un circuito eléctrico en el que, por medio de una bobina y un electroimán, se acciona un juego de uno o varios contactos que permiten abrir o cerrar otros circuitos eléctricos independientes. Fue inventado por Joseph Henry en 1835. Dado que el relé es capaz de controlar un circuito de salida de mayor potencia que el de entrada, puede considerarse, en un amplio sentido, como un amplificador eléctrico. Como tal se emplearon en telegrafía, haciendo la función de repetidores que generaban una nueva señal con corriente procedente de pilas locales a partir de la señal débil recibida por la línea. Se les llamaba "relevadores". De ahí "relé".

Figura 1. Partes del Relé



Funcionamiento del relé.

En la Figura 2 se representa, de forma esquemática, la disposición de los distintos elementos que forman un relé de un único contacto de trabajo o circuito. En la Figura 2 se puede ver su funcionamiento y cómo conmuta al activarse y desactivarse su bobina.

Figura 2. Funcionamiento del relevador

Si el electroimán está activo jala el brazo (armadura) y conecta los puntos C y D (Ver, fig. 3). Si el electroimán se desactiva, conecta los puntos D y E.

Figura 3. De esta manera se puede conectar algo, cuando el electroimán está activo, y otra cosa conectada, cuando está inactivo. Es importante saber cuál es la resistencia del bobinado del electroimán (lo que está entre los terminales A y B) que activa el relé y con cuanto voltaje este se activa. Este voltaje y esta resistencia nos informan que magnitud debe de tener la señal que activará el relé y cuanta corriente se debe suministrar a éste.

La corriente se obtiene con ayuda de la Ley de Ohm: I = V / R. dónde: I es la corriente necesaria para activar el relé V es el voltaje para activar el relé R es la resistencia del bobinado del relé 

Tipos de relés.

Existen multitud de tipos distintos de relés, dependiendo del número de contactos, de la intensidad admisible por los mismos, tipo de corriente de accionamiento, tiempo de activación y desactivación, etc. Cuando controlan grandes potencias se les llama contactores en lugar de relés. Relés electromecánicos: Relés de tipo armadura: pese a ser los más antiguos siguen siendo los más utilizados en multitud de aplicaciones. Un electroimán provoca la basculación de una armadura al ser excitado, cerrando o abriendo los contactos dependiendo de si es NA o NC. Relés de núcleo móvil: a diferencia del anterior modelo estos están formados por un émbolo en lugar de una armadura. Debido su mayor fuerza de atracción, se utiliza un solenoide para cerrar sus contactos. Es muy utilizado cuando hay que controlar altas corrientes. Relé tipo red o de lengüeta: están constituidos por una ampolla de vidrio, con contactos en su interior, montados sobre delgadas láminas de metal. Estos contactos conmutan por la excitación de una bobina, que se encuentra alrededor de la mencionada ampolla. Relés polarizados o biestables: se componen de una pequeña armadura, solidaria a un imán permanente. El extremo inferior gira dentro de los polos de un electroimán, mientras que el otro lleva una cabeza de contacto. Al excitar el electroimán, se mueve la armadura y provoca el cierre de los contactos. Si se polariza al revés, el giro será en sentido contrario, abriendo los contactos ó cerrando otro circuito. Relé de estado sólido: Se llama relé de estado sólido a un circuito híbrido, normalmente compuesto por un opto -acoplador que aísla la entrada, un circuito de disparo, que detecta el paso por cero de la corriente de línea y un triac o dispositivo similar que actúa de interruptor de potencia. Su nombre se debe a la similitud que presenta con un relé electromecánico; este dispositivo es usado generalmente para aplicaciones donde se presenta un uso continuo de los contactos del relé que en comparación con un relé convencional generaría un serio desgaste mecánico, además de poder conmutar altos amperajes que en el caso del relé electromecánico destruirían en poco tiempo los contactos. Estos relés permiten una velocidad de conmutación muy superior a la de los relés electromecánicos.

Figura 4. Relés de estado solido

Relé de corriente alterna: Cuando se excita la bobina de un relé con corriente alterna, el flujo magnético en el circuito magnético, también es alterno, produciendo una fuerza pulsante, con frecuencia doble, sobre los contactos. Es decir, los contactos de un relé conectado a la red, en algunos lugares, como varios países de Europa y Latinoamérica oscilarán a 50 Hz y en otros, como en Estados Unidos lo harán a 60 Hz. Este hecho se aprovecha en algunos timbres y zumbadores, como un activador a distancia. En un relé de corriente alterna se modifica la resonancia de los contactos para que no oscilen. Relé de láminas: Este tipo de relé se utilizaba para discriminar distintas frecuencias. Consiste en un electroimán excitado con la corriente alterna de entrada que atrae varias varillas sintonizadas para resonar a sendas frecuencias de interés. La varilla que resuena acciona su contacto; las demás, no. Los relés de láminas se utilizaron en aeromodelismo y otros sistemas de telecontrol.



Ventajas del uso de relés

La gran ventaja de los relés electromagnéticos es la completa separación eléctrica entre la corriente de accionamiento, la que circula por la bobina del electroimán, y los circuitos controlados por los contactos, lo que hace que se puedan manejar altos voltajes o elevadas potencias con pequeñas tensiones de control. También ofrecen la posibilidad de control de un dispositivo a distancia mediante el uso de pequeñas señales de control.

Figura 5. Símbolo eléctrico de un relé En el caso presentado podemos ver un grupo de relés en bases interface que son controlado por módulos digitales programables que permiten crear funciones de temporización y contador como si de un mini-PLC se tratase. Con estos modernos sistemas los relés pueden actuar de forma programada e independiente lo que supone grandes ventajas en su aplicación aumentando su uso en aplicaciones sin necesidad de utilizar controles como PLC's u otros medios para comandarlos. (Ver fig. 6).

Figura 6.Relequick, relés interface con módulo programable

Electroválvulas. Una electroválvula es una válvula electromecánica, diseñada para controlar el flujo de un fluido a través de un conducto como puede ser una tubería. La válvula está controlada por una corriente eléctrica a través de una bobina solenoidal. No se debe confundir la electroválvula con válvulas motorizadas, que son aquellas en las que un motor acciona el cuerpo de la válvula. •

Clases de electroválvulas y funcionamiento.

Una electroválvula tiene dos partes fundamentales: el solenoide y la válvula. El solenoide convierte energía eléctrica en energía mecánica para actuar la válvula. Existen varios tipos de electroválvulas. En algunas electroválvulas el solenoide actúa directamente sobre la válvula proporcionando toda la energía necesaria para su movimiento. Es corriente que la válvula se mantenga cerrada por la acción de un muelle y que el solenoide la abra venciendo la fuerza del muelle. Esto quiere decir que el solenoide debe estar activado y consumiendo energía mientras la válvula deba estar abierta. También es posible construir electroválvulas biestables que usan un solenoide para abrir la válvula y otro para cerrar o bien un solo solenoide que abre con un pulso y cierra con el siguiente. Las electroválvulas pueden ser cerradas en reposo o normalmente cerradas lo cual quiere decir que cuando falla la alimentación eléctrica quedan cerradas o bien pueden ser del tipo abiertas en reposo o normalmente abiertas que quedan abiertas cuando no hay alimentación. Hay electroválvulas que en lugar de abrir y cerrar lo que hacen es conmutar la entrada entre dos salidas. Este tipo de electroválvulas a menudo se usan en los sistemas de calefacción por zonas lo que permite calentar varias zonas de forma independiente utilizando una sola bomba de circulación. En otro tipo de electroválvula el solenoide no controla la válvula directamente sino que el solenoide controla una válvula piloto secundaria y la energía para la actuación de la válvula principal la suministra la presión del propio fluido. El gráfico adjunto muestra el funcionamiento de este tipo de válvula. En la parte superior vemos la válvula cerrada. El agua bajo presión entra por A. B es un diafragma elástico y tiene encima un muelle que le empuja hacia abajo con fuerza débil. La función de este muelle no nos interesa por ahora y lo ignoramos ya que la válvula no depende de él para mantenerse cerrada. El diafragma tiene un diminuto orificio en el centro que permite el paso de un pequeño flujo de agua. Esto hace que el agua llene la cavidad C y que la presión sea igual en ambos lados del diafragma. Mientras que la presión es igual a ambos lados, vemos que actúa en más superficie por el lado de arriba que por el de abajo por lo

que presiona hacia abajo sellando la entrada. Cuanto mayor sea la presión de entrada, mayor será la fuerza con que cierra la válvula.

Ahora estudiamos el conducto D. Hasta ahora estaba bloqueado por el núcleo del solenoide E al que un muelle empuja hacia abajo. Si se activa el solenoide, el núcleo sube y permite pasar el agua desde la cavidad C hacia la salida con lo cual disminuye la presión en C y el diafragma se levanta permitiendo el paso directo de agua desde la entrada A la salida F de la válvula. Esta es la situación representada en la parte inferior de la figura. Si se vuelve a desactivar el solenoide se vuelve a bloquear el conducto D y el muelle situado sobre el diafragma necesita muy poca fuerza para que vuelva a bajar ya que la fuerza principal la hace el propio fluido en la cavidad C.

De esta explicación se deduce que este tipo de válvula depende para su funcionamiento de que haya mayor presión a la entrada que a la salida y que si se invierte esta situación entonces la válvula abre sin que el solenoide pueda controlarla. Este tipo de válvulas se utilizan muy comúnmente en lavadoras, lavaplatos, riegos y otros usos similares. Un caso especialmente interesante del uso de estas válvulas es en los calentadores de agua de depósito. En los calentadores de agua de demanda, el agua se calienta según va pasando por el calentador en el momento del consumo y es la propia presión del agua la que abre la válvula del gas pero en los calentadores de depósito esto no es posible ya que el agua se calienta mientras está almacenada en un depósito y no hay circulación. Para evitar la necesidad de suministrar energía eléctrica la válvula del gas es una válvula de este tipo con la válvula piloto controlada por un diminuto solenoide al que suministra energía un termopar bimetálico que saca energía del calor del agua. Las electroválvulas también se usan mucho en la industria para controlar el flujo de todo tipo de fluidos. Una electroválvula tiene dos partes fundamentales: el solenoide y la válvula. El solenoide convierte la energía eléctrica suministrada en energía magnética y esta a su vez la transforma en mecánica para actuar la válvula. Existen varios tipos de electroválvulas. En algunas electroválvulas el solenoide actúa directamente sobre la válvula proporcionando toda la energía necesaria para su movimiento. Es corriente que la válvula se mantenga cerrada por la acción de un muelle y que el solenoide la abra venciendo la fuerza del muelle. Esto quiere decir que el solenoide debe estar activado y consumiendo energía mientras la válvula deba estar abierta.

Related Documents