Thyrofort

  • Uploaded by: anupthatta
  • 0
  • 0
  • February 2021
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Thyrofort as PDF for free.

More details

  • Words: 22,082
  • Pages: 80
Loading documents preview...
EDELSTAHL WITTEN-KREFELD GMBH

THYROFORT THYROFORT

Special engineering steels

THYROFORT THYROFORT THYROFORT THYROFORT

Heat-treatable steels

Contents Page 4 – 5

General

Page 6 – 7

Special features

Page 8 – 9

Steel portraits

Page 10 – 13

Application examples

Page 14 – 15

Steel production

Page 16 – 17

Steel processing

Technical information Page 18 – 20

Overview of grades and chemical composition

Page 21 – 22

Minimum yield points and tensile strength ranges

Material data Page 24 – 65

Material data sheets

Technical information Page 66 – 68

Thyrofort – The basics

Page 69 – 70

Heat treatment – Schematic representation

Page 71

Sampling according to DIN EN 10083

Page 72 – 73

Ruling heat treatment diameter

Page 74

Comparison of international standards

Page 75

Hardness comparison table

Page 76

Forms supplied

Page 77

Temperature Comparison

Page 78

List of photos 3

THYROFORT

A tough type through and Thyrofort,

Wherever machines and their

Heat-treatable steels acquire

components have to withstand

their high yield point, tensile

high dynamic stresses, the use of

strength and fatigue strength

special, high-performance steel

(combined with great toughness!)

grades is essential. If a compo-

by being hardened and tempered

nent breaks, the machine grinds to

at above 450 °C but below the

a halt, the entire installation has to

microstructural transformation

be stopped! Choosing the opti-

temperature. The great strength of

mum steel for the respective com-

our Thyrofort steels is their opti-

ponent is of decisive importance

mum adaptation to the respective

for productivity, cost-efficiency

application.

and, above all, for safety. Thyrofort

Optimum full quenching and tem-

is our brand name for high-

pering is guaranteed by choosing

strength heat-treatable steels.

the suitable steel as a function of

Compared to case-hardening

the workpiece cross-section.

steels, these grades have a higher

The extraordinary purity and the

carbon content in the region of

homogeneity of the microstructure

about 0.20 to 0.60%. While case-

ensure consistent mechanical

hardened steels have a hard case

properties, even with large cross-

and a tough core, heat-treated

sections.

steels are characterized by high

Edelstahl Witten-Krefeld is in a

strength all the way from the case

position to supply round billets of

to the core.

up to 750 mm diameter and ma-

These two types of steel are a

chined material of up to 400 mm

perfect match in large gearboxes:

diameter. In this context, the

the gearwheels are made of case-

strength and toughness can be

hardened steel, while heat-treated

specifically adjusted and combined

steel is used for the shafts.

to meet the demands on the respective component.

4

General

through if you have big things in mind Thyrofort heat-treatable steels offer excellent hot formability. Cold formability and machinability are dependent on the carbon content and the crystalline structure. Appropriate alloying and heat treatment permit adjustment of the microstructure for optimum machinability. The top quality of Thyrofort steels is achieved through high process reliability and modern installations for melting, highly developed secondary metallurgy, vertical continuous casting, remelting, hot forming and modern test facilities. Edelstahl Witten-Krefeld is in a position to offer you a tailor-made heat-treatable steel for every application and every component. Ask our material specialists for advice.

Thyrofort – extraordinary

designed for

stresses 5

Spot-on analysis The strength and toughness of the base material are determined

Thyrofort – accura to precise

by its chemical composition and the heat treatment it undergoes. Consequently, the required prop-

steels and nickel-chromium-

erties are already specifically

molybdenum heat-treatable

aimed for when melting the steel.

steels.

The facilities in Witten and Krefeld enable us to achieve a

Maximum purity

spot-on, reliably reproducible

Extremely high purity is achieved

chemical composition.

by secondary metallurgical treatment, vertical continuous casting,

Specific hardenability

or by remelting. Undesirable non-

By selecting the right alloying ele-

metallic inclusions are virtually

ments, we can specifically adapt

ruled out.

the hardenability of the material to the geometry of the respective

Highly reliable fine grain

component.

The fine grain of our Thyrofort

The most important alloying ele-

grades is achieved in a highly reli-

ments for heat-treatable steels

able and controllable manner by

are chromium, nickel, molyb-

targeted adjustment of the alu-

denum and vanadium. In addition

minium and nitrogen contents.

High fatigue strength

to unalloyed heat-treatable steels,

No other manufacturer of special

In heat-treatable steels, the differ-

we also offer the following alloyed

steel can beat the high degree of

ent service properties required for

versions: chromium-alloyed heat-

macroscopic and microscopic

the individual components, such

treatable steels, chromium-

purity and the homogeneity of the

as high strength under static and

molybdenum heat-treatable

microstructure of our Thyrofort

dynamic stress, toughness and

steels, chromium-nickel-molybde-

steels.

hardness, are set by way of the

num heat-treatable steels,

chemical composition and a se-

chromium-vanadium heat-treatable

quence of heat treatment opera-

6

Special features

tely adapted requirements The machinability of heat-treated steels is influenced by the microstructure, the strength and the non-metallic inclusions (sulphides, oxides). Further optimisation of the machinability can be achieved through increasing the level of sulphidic inclusions, by calcium treatment and by heat treatment, i.e. by specifically adjusting the microstructure.

Customised heat treatment Depending on the envisaged application and processing, we can supply you with Thyrofort steel tions. Additional surface harden-

Good machinability

grades in a wide variety of treated

ing by inductive heating increases

The larger the quantity of compo-

conditions, e.g. with reduced

the wear resistance.

nents to be manufactured, the

hardness or within a given

more important it is for the materi-

strength range.

al to have good machinability. This

Detailed technical information on

means the cost-effectiveness of

as-delivered conditions and pro-

series production is already partly

cessing can be found starting on

determined when ordering a spe-

Page 66.

cific steel grade.

7

Unalloyed • THYROFORT C22E Unalloyed carbon steel for low-stress automotive and mechanical engineering parts offering good weldability

• THYROFORT C35E • THYROFORT C35R Unalloyed carbon steel for low-stress automotive and mechanical engineering parts

We’ve got far more than just the average

Unalloyed or alloyed

Unalloyed or alloyed heat-

treatable steels – the choice of material is determined by the nature of the load, the component geometry and the processing method. The unalloyed Thyrofort grades contain not only manganese, but also carbon as the main alloying element. The tensile strength and yield point rise with increasing carbon content. The alloyed steels are characterized by greater hardenability and better resistance to tempering. Compared to the unalloyed grades, they offer better through-

Our partners in the steel trade

Make use of our extensive capa-

hardening, enhanced toughness

offer a wide selection of Thyrofort

bilities and let us act as your

and a higher ratio of yield stress

grades in all standard sizes.

“extended workbench”.

to tensile strength.

Talk to our specialists about the

Unmachined or machined

individual, tailor-made solution

Rolled or forged

Our strength are steel grades not

you require.

Edelstahl Witten-Krefeld supplies

only in a variety of hot-formed

a wide variety of rolled and forged

products, but also in various pro-

products, from bar steel, universal

cessing stages. Our processing

plate/flat dimensions and semis,

operations range from rough-

all the way to open-die forgings in

machining to bright surfaces with

different heat-treated conditions.

close tolerances, all the way to ready-to-install components.

8

Steel portraits • THYROFORT Cf35

Alloyed

Unalloyed carbon steel for low-stress automotive and mechanical engineering parts, also suitable for surface hardening

• THYROFORT C45E • THYROFORT C45R

• THYROFORT 46 Cr 2 • THYROFORT 46 CrS 2

• THYROFORT 34 CrMo 4 • THYROFORT 34 CrMoS 4 CrMo-alloyed heat-treatable steel with high

Cr-alloyed heat-treatable steel for low-stress

toughness, for mechanical engineering and

automotive and mechanical engineering

automotive parts, e.g. axle shafts, tyres,

parts, as well as for fastening elements

steering stubs, gas cylinders

• THYROFORT 34 Cr 4 • THYROFORT 34 CrS 4

• THYROFORT 42 CrMo 4 • THYROFORT 42 CrMoS 4

Cr-alloyed heat-treatable steel for automotive

CrMo-alloyed heat-treatable steel with high

and mechanical engineering parts, e.g. drive,

toughness, for mechanical engineering and

axle and steering components

automotive parts, e.g. spars, connecting

Unalloyed carbon steel for low-stress automotive and mechanical engineering parts, also suitable for surface hardening

• THYROFORT Cf45 Unalloyed carbon steel for low-stress automotive and mechanical engineering parts,

rods, gears, pinions and tyres, as well as for

also suitable for surface hardening

components for low-temperature applications

in stock

• THYROFORT 50 CrMo 4 CrMo-alloyed heat-treatable steel with high toughness, for automotive parts, e.g. rings, tyres, liners, shafts, axles, steering components

• THYROFORT 30 CrMoV 9 CrMoV-alloyed heat-treatable steel with high yield point and toughness, for highlystressed parts in general mechanical engineering and for fastening elements, such as bolt turnbuckles

• THYROFORT 36 CrNiMo 4 CrNiMo-alloyed heat-treatable steel for very highly-stressed parts in general mechanical engineering, with good toughness and high strength, e.g. fastening elements, accessories for oil and gas drilling

• THYROFORT 34 CrNiMo 6 CrNiMo-alloyed heat-treatable steel for highly-stressed parts in general mechanical engineering with large cross-sections and high toughness requirements in the low-temperature range, e.g. axles, drive components, fastening elements, shafts

• THYROFORT Cf53 Unalloyed carbon steel for low-stress auto-

• THYROFORT 37 Cr 4 • THYROFORT 37 CrS 4

• THYROFORT 30 CrNiMo 8

motive and mechanical engineering parts,

Cr-alloyed heat-treatable steel for automotive

CrNiMo-alloyed heat-treatable steel for

also suitable for surface hardening

and mechanical engineering parts, e.g. drive,

highly-stressed parts in general mechanical

axle and steering components

engineering with large cross-sections and

• THYROFORT C55E • THYROFORT C55R

uniform toughness requirements over the cross-section, e.g. pinion and turbine shafts

Unalloyed carbon steel for low-stress auto-

• THYROFORT 41 Cr 4 • THYROFORT 41 CrS 4

motive and mechanical engineering parts,

Cr-alloyed heat-treatable steel for automotive

• THYROFORT 36 NiCrMo 16

also suitable for surface hardening

and mechanical engineering parts, e.g. drive,

NiCrMo-alloyed heat-treatable steel for very

axle and steering components

highly-stressed parts in general mechanical

• THYROFORT C60E • THYROFORT C60R

• THYROFORT 51 CrV 4

strength, suitable for air and oil hardening ,

Unalloyed carbon steel for low-stress auto-

CrV-alloyed heat-treatable steel for fairly

e.g. demolition tools, components for oil and

motive and mechanical engineering parts,

large, highly wear-resistant parts

gas extraction

engineering with high tensile and impact

for strengths in the region of 700 N/mm2

• THYROFORT 28 Mn 6

• THYROFORT 25 CrMo 4 • THYROFORT 25 CrMoS 4

Mn-alloyed heat-treatable steel for low-stress

CrMo-alloyed heat-treatable steel with high

automotive and mechanical engineering

toughness and good welding properties, for

parts with adequate weldability

mechanical engineering and automotive parts, e.g. axle shafts, steering stubs, turbine parts, rotor disks

9

Thyrofort – whenever you to make comp Nothing can take the place of

crankshafts in shipbuilding, for

safety. That’s why it’s advisable

injection systems in marine diesel

to use Thyrofort steel grades to

engines, for shafts in locomotive

manufacture components that are

and wagon construction, for

subject to high demands on safe-

crankshafts, connecting rods,

ty – and also on production relia-

axles, steering stubs, steering

bility. Crankshafts, for example,

components and wheel hubs in

are exposed to high dynamic

truck construction, for landing-

stresses. If the crankshaft of a

gear and control elements in avia-

Formula 1 engine breaks, that’s

tion, for safety couplings and

unfortunate and the race is lost. If

mast suspension units for aerial

the shaft of a ship’s diesel engine

ropeways, for tools in oil and gas

breaks, that’s a disaster and the

exploration, e.g. drive subs, for

ship is incapable of manoeuvring.

turbine shafts in power stations.

Be it extreme short-term loads or

It’s also a job for Thyrofort when-

high, constant loads – our high-

ever high precision and absolute,

strength Thyrofort steel grades

permanent freedom from distor-

can be exactly adapted to the

tion are required, e.g. in the re-

stresses involved by way of tar-

circulating ball screws and linear

geted alloying, hardening and

guides of machine tools. And the

tempering.

Thyrofort “safety experts” are also the ones who guarantee reli-

In other words, the “safety ex-

able functioning in the high-tech

perts” from Witten-Krefeld are the

field: the turbopumps of the

right choice whenever you can’t

Ariane are made of Thyrofort.

afford to make compromises: for

10

Application examples

THYROFORT

can’t afford romises …

11

THYROFORT Thyrofort is also the right choice when things get rough and tough in the building industry, too. On the one hand, the chisels of demolition hammers, or the teeth of excavators and rippers, need to have the right strength in order not to break. On the other hand, they need to be given long-term wear resistance by way of appropriate hardening. The high resistance to pressure also makes Thyrofort steel grades ideally safe materials, e.g. for the manufacture of steel cylinders for industrial gases and oxygen, as well as for pipeline construction.

12

Thyrofort – the

“safety experts”

from Witten and Krefeld

13

We make our own steel, recipes

Our own steel production in our

melting (VAR) furnaces is avail-

modern steelworks in Witten is

able in Krefeld for the production

the basis for the purity and homo-

of heat treatable steels involving

geneity of our heat-treatable

particularly stringent demands in

steels. Precisely defined proper-

terms of homogeneity of their

ties are achieved by means of

microstructure and their purity.

Remelting facilities

exact alloying and process speci-

ESR

fications for melting, forming

Electroslag remelting process

and heat treatment. The steels

In the electroslag remelting

are melted in a 130 t electric arc

process (ESR), which works with

furnace.

alternating current, a cast or

The metallurgical precision work

forged, self-consuming electrode

is performed in a downstream

is immersed in a bath of molten

ladle furnace of the same size.

slag, which serves as an electrical

Depending on the steel grade and

resistor.

the dimensions of the end prod-

The material to be remelted drips

uct, the steel melted in this way is

from the end of the electrode

cast in ingots or continuous cast

through the slag and forms the

blooms. Over 50 different mould

new ingot in a water-cooled

formats are available for ingot

mould below. The heat dissipa-

casting, ranging from 600 kg to

tion leads to directional solidifica-

160 t.

tion in the direction of the longi-

tion, and acting as an anti-oxidant

The continuous cast blooms are

tudinal ingot axis.

for the melting bath of the new

manufactured in two strands on a

The remelting slag fulfils several

ingot. In addition, the slag has a

vertical continuous casting ma-

functions in this process. On the

high capacity for absorbing non-

chine in a 475 x 340 mm format.

one hand, it develops the neces-

metallic inclusions, which means

A remelting steelworks with two

sary process heat, while at the

that the remelted material is free

electroslag remelting (ESR) fur-

same time supporting chemical

of coarse inclusions. The im-

naces and two vacuum arc re-

reactions, such as desulphurisa-

provement in the microscopic

14

VAR

Ladle furnace

Scrap

130 t electric arc furnace

Ladle tank degasser (VD / VOD)

Main production routes EDELSTAHL WITTEN-KREFELD GMBH THYSSEN KRUPP STAHL AG

Steel production

using reliable and the best ingredients Blooming-slabbing mill

got casting

Products Machining

Long forging machines

Finishing departments, forging shops

LSX 55 33 MN press

Heat treatment facilities

• Open-die forgings as-forged or machined • Forged semis

As-forged Peeling machines Finishing departments, rolling mills

LSX 25

• As-cast ingots / As-continuously-cast bloom material

• Forged round billets for tubemaking as-forged or machined • Forged bar steel as-forged or machined • Machined tool steel forged or rolled

As-rolled • Rolled semis • Rolled tube rounds as-rolled or peeled

uous bloom caster 5 x 340 mm, 2 strands

Untreated

• Rolled bar steel as-rolled or machined • Universal plate and flats

Blooming/billet/large-size bar rolling mill

• Special products

purity is attributable to desulphurisation and the resultant high degree of sulphidic purity, and also to a reduction in the size and

Thyrofort –

consistent

quantity of oxidic inclusions.

top quality through

process reliability 15

Thyrofort – made your “extended workbench” Vacuum arc remelting process

lowest possible sulphur content

The vacuum arc remelting (VAR)

has to be set prior to remelting, in

process works with cast or

order also to meet the most strin-

forged, self-consuming elec-

gent demands on the degree of

trodes in a vacuum.

sulphidic purity. Moreover, this

Using an electric arc in a vacuum,

process guarantees the lowest

a melting bath is generated in a

possible quantities of dissolved

copper crucible, which acts as

gases in the steel and a homo-

the opposite pole to the remelting

geneous microstructure free of

electrode and is connected to a

segregation.

DC voltage source via current contacts.

Hot forming and finishing

A new ingot is formed from the

The blooming mill in Witten pro-

liquefied electrode material drop

duces semi-finished products,

by drop in a continuous process.

steel bars and universal plate/flat

In the VAR process, refinement of

dimensions. Two modern finishing

the steel is brought about by the

lines for checking the inner and

reaction of the oxygen dissolved

outer surface condition, as well

in the steel with the carbon in the

as the dimensions and identity,

molten material under the effect

are available for rolled and forged

of the vacuum. This results in the

products and steel bars. The

best possible degree of micro-

forge is equipped with a 33 MN

scopic oxidic purity and freedom

press, a GFM LSX 55 horizontal

from macroscopic inclusions. As

long forging machine and a GFM

no desulphurisation takes place

LSX 25 long forging machine.

during this remelting process, the

16

Steel processing

-to-measure work from parts. We put extensive consulting know-how and modern machining facilities at the disposal of our customers. After straightening, rolled or forged bar steel and round billets up to 300 mm diameter for tubemaking can be peeled, pressure polished and chamfered in Krefeld and Witten. Rotationally symmetrical parts with a piece weight of up to 20 tonnes are manufactured in Krefeld on conventional and modern CNC lathes and grinding machines. The key production fields are shafts, cylinders and rolls for continuous casting.

Machining Edelstahl Witten-Krefeld offers not only an optimum material in

Our

facilities

various forms, but also premachined and ready-to-install

pay off for you

17

Overview of grades and chemical compositions Unalloyed steels

Depending on the type and quan-

Boron-alloyed steels

Apart from carbon, unalloyed

tity of the alloying element added,

The development of cheaper

steels contain manganese as the

certain specific properties can be

steels by saving on expensive

main alloying element.

attained. Chromium improves

alloying elements has led to

The steels listed in Tables 1 and 2

hardenability and through-

increasing use of heat-treatable

are given in the order of increas-

hardening by reducing the critical

boron-alloyed steels. The use of

ing carbon content and comply

cooling rate needed for the

these steels for fastening ele-

with European Standard DIN EN

formation of martensite. Nickel

ments is already state-of-the-art

10083, Part 1 – “Heat-Treatable

also improves through-hardening

today.

Steels” (1996 edition) or DIN

and, at the same time, increases

Boron-alloyed steels are already

17212 – “Steels for Flame and

the absorbed energy per cross-

being used as standard materials

Induction Hardening” (August

sectional area at low tempera-

for special solid, heat-treated

1972 edition).

tures. Molybdenum is used in

parts, like excavator teeth, axle

conjunction with other alloying

parts, rotors, etc. Efforts are

Alloyed steels

elements to increase the 0.2 %

being made nationally and inter-

Apart from carbon and manga-

proof stress and tensile strength

nationally to standardize these

nese, alloyed steels contain other

while decreasing the tendency to

heat-treatable steels for general

alloying elements. The most

tempering brittleness.

application. These steels can be

important of these are chromium,

A vanadium content of approx.

supplied on request, provided

nickel, molybdenum and vana-

0.10% improves tempering resis-

that certain minimum order quan-

dium.

tance and reduces sensitivity to

tities are observed.

The steels given in Tables 1 and

overheating during hardening.

Table 1 shows an overview of the

3, in the order of their alloy com-

grades of heat-treatable steels

position, Cr, Cr–V, Cr– Mo,

dealt with in this catalogue, while

Cr– Mo –V, Cr– Ni – Mo, Ni-Cr-Mo,

Tables 2 and 3 provide an over-

correspond to European Standard

view of the chemical composi-

DIN EN 10083, Part 1, or DIN

tions.

17201 - “Forgings and Forged Bars of Heat-Treatable Steels”.

18

Technical information

Overview of grades, Table 1 Grades

Material No.

Code name acc. to EN 10083

Standardized in

Page 24 – 25

Thyrofort C 22 E

1.1151

C22E

DIN EN 10083 / DIN E 17201

Page 26 – 27

Thyrofort C 35 E

1.1181

C35E

DIN EN 10083 / DIN E 17201

1.1180

C35R

DIN EN 10083

Thyrofort Cf 35

1.1183



DIN 17212 DIN EN 10083 / DIN E 17201

Thyrofort C 45 E

1.1191

C45E

Thyrofort C 45 R

1.1201

C45R

DIN EN 10083

Thyrofort Cf 45

1.1193



DIN 17212

Page 30 – 31

Thyrofort Cf 53

1.1213



DIN 17212

Page 32 – 33

Thyrofort C 55 E

1.1203

C55E

DIN EN 10083 / DIN E 17201

Thyrofort C 55 R

1.1209

C55R

DIN EN 10083 / DIN E 17201

Thyrofort C 60 E

1.1221

C60E

DIN EN 10083 / DIN E 17201

Thyrofort C 60 R

1.1223

C60R

DIN EN 10083

Page 36 – 37

Thyrofort 28 Mn 6

1.1170

28Mn6

DIN EN 10083 / DIN E 17201

Page 38 – 39

Thyrofort 46 Cr 2

1.7006

46Cr2

DIN EN 10083

Thyrofort 46 CrS 2

1.7025

46CrS2

DIN EN 10083

Page 34 – 35

Page 40 – 41 Page 42 – 43

1.7033

34Cr4

DIN EN 10083

1.7037

34CrS4

DIN EN 10083

Thyrofort 37 Cr 4

1.7034

37Cr4

DIN EN 10083

Thyrofort 37 CrS 4

1.7038

37CrS4

DIN EN 10083

Thyrofort 41 Cr 4

1.7035

41Cr4

DIN EN 10083

Thyrofort 41 CrS 4

1.7039

41CrS4

DIN EN 10083

Page 46 – 47

Thyrofort 51 CrV 4

1.8159

51CrV4

DIN EN 10083

Page 48 – 49

Thyrofort 25 CrMo 4

1.7218

25CrMo4

DIN EN 10083 / DIN E 17201

Thyrofort 25 CrMoS 4

1.7213

25CrMoS4

DIN EN 10083

Thyrofort 34 CrMo 4

1.7220

34CrMo4

DIN EN 10083 / DIN E 17201

Thyrofort 34 CrMoS 4

1.7226

34CrMoS4

DIN EN 10083

Thyrofort 42 CrMo 4

1.7225

42CrMo4

DIN EN 10083 / DIN E 17201

Thyrofort 42 CrMoS 4

1.7227

42CrMoS4

DIN EN 10083

Page 54 – 55

Thyrofort 50 CrMo 4

1.7228

50CrMo4

DIN EN 10083 / DIN E 17201

Page 56 – 57

Thyrofort 30 CrMoV 9

1.7707



DIN E 17201

Page 58 – 59

Thyrofort 36 CrNiMo 4

1.6511

36CrNiMo4

DIN EN 10083

Page 60 – 61

Thyrofort 34 CrNiMo 6

1.6582

34CrNiMo6

DIN EN 10083 / DIN E 17201

Page 62 – 63

Thyrofort 30 CrNiMo 8

1.6580

30CrNiMo8

DIN EN 10083 / DIN E 17201

Page 64 – 65

Thyrofort 36 NiCrMo 16

1.6773

36NiCrMo16

DIN EN 10083

Page 50 – 51 Page 52 – 53

Alloyed steels

Page 44 – 45

Thyrofort 34 Cr 4 Thyrofort 34 CrS 4

Unalloyed steels

Page 28 – 29

Thyrofort C 35 R

19

Table 2: Unalloyed steels - Steel grades and chemical composition (ladle analysis) Steel grade Code name

1

To DIN 17212

Chemical composition to DIN EN 10083, except1 (% by weight) DIN EN 10083

Material No.

C

Si

Mn

P max.

S

Thyrofort C 22 E

C22E

1.1151

0.17– 0.24

max. 0.40

0.40–0.70

0.035

max. 0.035

Thyrofort C 35 E

C35E

1.1181

Thyrofort C 35 R

C35R

1.1180 1.1183

Thyrofort Cf 351 Thyrofort C 45 E

C45E

1.1191

Thyrofort C 45 R

C45R

1.1201

0.32 – 0.39

max. 0.40

0.50–0.80

0.035

0.33 – 0.39

0.15 – 0.35

0.50 – 0.80

0.025

0.42– 0.50

max. 0.40

0.50 – 0.80

0.035

max. 0.035 0.020 – 0.040 max. 0.035 max. 0.035 0.020 – 0.040

Cr

Mo

Ni

Cr+Mo+ Ni max.

max. 0.40 max. 0.10 max. 0.40

0.63

max. 0.40 max. 0.10 max. 0.40

0.63









max. 0.40 max. 0.10 max. 0.40

0.63

Thyrofort Cf 451

1.1193

0.43 – 0.49

0.15 – 0.35

0.50 – 0.80

0.025

max. 0.035









Thyrofort Cf 531

1.1213

0.50 – 0.57

0.15 – 0.35

0.40 – 0.70

0.025

max. 0.035









Thyrofort C 55 E

C55E

1.1203

Thyrofort C 55 R

C55R

1.1209

Thyrofort C 60 E

C60E

1.1221

Thyrofort C 60 R

C60R

1.1223

Thyrofort 28 Mn 6

28Mn6

1.1170

0.52– 0.60

0.40

0.60 – 0.90

0.035

0.57– 0.65

0.40

0.60 – 0.90

0.035

0.25 – 0.32

0.40

1.30 –1.65

0.035

max. 0.035 0.020 – 0.040 max. 0.035 0.020 – 0.040 max. 0.035

max. 0.40 max. 0.10 max. 0.40

0.63

max. 0.40 max. 0.10 max. 0.40

0.63

max. 0.40 max. 0.10 max. 0.40

0.63

Table 3: Alloyed steels - Steel grades and chemical composition (ladle analysis) Steel grade

1

To DIN E 17201

Chemical composition to DIN EN 10083, except1 (% by weight)

Code name

DIN EN 10083

Material no.

Thyrofort 46 Cr 2

46Cr2

1.7006

Thyrofort 46 CrS 2

46CrS2

1.7025

Thyrofort 34 Cr 4

34Cr4

1.7033

Thyrofort 34 CrS 4

34CrS4

1.7037

Thyrofort 37 Cr 4

37Cr4

1.7034

Thyrofort 37 CrS 4

37CrS4

1.7038

Thyrofort 41 Cr 4

41Cr4

1.7035

Thyrofort 41 CrS 4

41CrS4

1.7039

Thyrofort 51 CrV 4

C

Si

Mn

P max.

0.42 – 0.50

0.40 0.50 – 0.80 0.035

0.30 – 0.37

0.40 0.60 – 0.90 0.035

0.34– 0.41

0.40 0.60 – 0.90 0.035

0.38 – 0.45

0.40 0.60 – 0.90 0.035

51CrV4

1.8159 0.47– 0.55

0.40 0.70 – 1.10 0.035

Thyrofort 25 CrMo 4

25CrMo4

1.7218

Thyrofort 25 CrMoS 4

25CrMoS4

1.7213

Thyrofort 34 CrMo 4

34CrMo4

1.7220

Thyrofort 34 CrMoS 4

34CrMoS4

1.7226

Thyrofort 42 CrMo 4

42CrMo4

1.7225

Thyrofort 42 CrMoS 4 Thyrofort 50 CrMo 4

0.22– 0.29

0.40 0.60 – 0.90 0.035

0.30 – 0.37

0.40 0.60 – 0.90 0.035

42CrMoS4

1.7227

0.38 – 0.45

0.40 0.60 – 0.90 0.035

50CrMo4

1.7228 0.46 – 0.54

0.40 0.50 – 0.80 0.035

S

Cr

Mo

Ni

V

0.40 – 0.60







0.90 – 1.20







0.90 – 1.20







0.90 – 1.20







max. 0.035 0.90 – 1.20







0.90 – 1.20 0.15 – 0.30





0.90 – 1.20 0.15 – 0.30





0.90 – 1.20 0.15 – 0.30





max. 0.035 0.90 – 1.20 0.15 – 0.30





< 0.60

0.10 – 0.20

max. 0.035 0.020 – 0.040 max. 0.035 0.020 – 0.040 max. 0.035 0.020 – 0.040 max. 0.035 0.020 – 0.040 max. 0.035 0.020 – 0.040 max. 0.035 0.020 – 0.040 max. 0.035 0.020 – 0.040

2.30 – 2.70 0.15 – 0.25

1.7707 0.26 – 0.34

0.40 0.40 – 0.70 0.035

Thyrofort 36 CrNiMo 4

36CrNiMo4

1.6511 0.32– 0.40

0.40 0.50 – 0.80 0.035

max. 0.035 0.90 – 1.20 0.15 – 0.30 0.90 – 1.20



Thyrofort 34 CrNiMo 6

34CrNiMo6

1.6582 0.30 – 0.38

0.40 0.50 – 0.80 0.035

max. 0.035 1.30 – 1.70 0.15 – 0.30 1.30 – 1.70



Thyrofort 30 CrNiMo 8

30CrNiMo8

1.6580 0.26 – 0.34

0.40 0.30– 0.60 0.035

max. 0.035 1.80 – 2.20 0.30 – 0.50 1.80 – 2.20



1.6773 0.32– 0.39

0.40 0.30– 0.60 0.030

max. 0.025 1.60 – 2.00 0.25 – 0.45 3.60 – 4.10



Thyrofort 30 CrMoV 9

1

Thyrofort 36 CrNiMo16 36CrNiMo16

20

0.035

Technical information

600 400

30CrNiMo8

34CrNiMo6

36 NiCrMo 16

For a ruling heat treatment diameter of d ≤16 mm

42CrMo4; 50CrMo4 51CrV4; 36CrNiMo4

tempered condition for the heat

41Cr4; 34CrMo4

strength ranges in hardened and

37Cr4

0

46Cr2

200 34Cr4; 25CrMo4

stress values and the tensile

800

28Mn6

shows the minimum 0.2% proof

1000

C60

The following overview (Figs. 1a-h)

1200

C55E

point or tensile strength.

1400

C45E

by the required minimum yield

1600

C35E

treatable steel is often determined

N/mm2

C22E

The choice of a suitable heat-

Minimum 0.2% proof stress and tensile strenth range

Overview of minimum 0.2 % proof stresses and tensile strength ranges

a)

1600 1400 1200 1000 800 600 400 200

N/mm2 1600 1400 1200 1000 800 600 400

30CrMoV9; 30CrNiMo8

36NiCrMo16

34CrNiMo6

42CrMo4

41Cr4

36NiCrMo4; 51CrV4; 50CrMo4

For a ruling heat treatment diameter of 40 mm < d ≤ 100 mm

34CrMo4

37Cr4

34CrMo4

C60E

25CrMo4

28Mn6

C55E

46Cr2

C45E

0

C35E

200 C22E

Minimum 0.2% proof stress and tensile strenth range

30CrMoV9

b)

For a ruling heat treatment diameter of 16 mm < d ≤ 40 mm

Figs. 1a - h : Overview of minimum 0.2% proof stress and tensile strength ranges of EWK heattreatable steels in quenched and tempered condition for various diameter ranges

30CrNiMo8

34CrNiMo6

36NiCrMo16

36CrNiMo4

50CrMo4

42CrMo4

41Cr4

34CrMo4

37Cr4

25CrMo4

34Cr4

46Cr2

C60E

C55E

28Mn6

0 C45E

described in Fig. 10 (page 71).

N/mm2

C35E

are valid for the sample positions

C22E

in DIN EN 10083. These figures

Minimum 0.2% proof stress and tensile strenth range

treatment diameters standardized

c)

21

22

Minimum 0.2% proof stress and tensile strenth range

0

For a ruling heat treatment diameter of 250 mm < d ≤ 500 mm

30CrMoV9

N/mm2

1600

1400

1200

1000

800

600

400

200

Minimum 0.2% proof stress and tensile strenth

1200

1000

800

600

400

200

d)

e)

400

f) 0

30CrNiMo8

34CrNiMo6

50CrMo4

42CrMo4

0

30CrNiMo8

1400

Minimum 0.2% proof stress and tensile strenth

30CrMoV9; 36NiCrMo16; 30CrNiMo8

34CrNiMo6

50CrMo4; 51CrV4

36CrNiMo4

42CrMo4

34CrMo4

25CrMo4

C60E

C55E

28Mn6

C45E

C35E

C22E

1600

34CrNiMo6

36NiCrMo16

30CrMoV9; 30CrNiMo8

51CrV4; 34CrNiMo6

50CrMo4

For a ruling heat treatment diameter of 100 mm < d ≤ 160 mm

30CrNiMo8

42CrMo4

34CrMo4

25CrMo4

C60E

28Mn6

C55E

C45E

36CrNiMo4

For a ruling heat treatment diameter of 160 mm < d ≤ 250 mm

34CrNiMo6; 50CrMo4

42CrMo4

34CrMo4

25CrMo4

C60E

28Mn6

C55E

C45E

C35E

C22E

0

C35E

Minimum 0.2% proof stress and tensile strenth range

0

C22E

Minimum 0.2% proof stress and tensile strenth range N/mm2

N/mm2 1600

1400

1200

1000 800

600

400

200

For a ruling heat treatment diameter of 500 mm < d ≤ 750 mm

For a ruling heat treatment diameter of 750 mm < d ≤ 1000 mm

N/mm2

1600

1400

1200

1000

800

600

200

Minimum 0.2% proof stress Mindeststreckgrenze

Tensile strength range Zugfestigkeitsbereich

g)

N/mm2 1600

1400

1200

1000

800

600

400

200

h)

THYROFORT THYROFORT

THYROFORT THYROFORT THYROFORT THYROFORT

EdelstahlWitten-Krefeld Witten-Krefeld Edelstahl – – heat-treatable steel,the the heat-treatable steel, wayyou youneed needit.it. way Whereveryou youmay maybe. be. Wherever

23

THYROFORT® C 22 E Material No. Code

Material No.

Code

1.1151

C22E

Chemical composition Typical analysis in %

C

Si

Mn

P

S

Cr

Mo

Ni

Cr+Mo+Ni

0.17 – 0.24

≤ 0.40

0.40 – 0.70

≤ 0.035

≤ 0.035

≤ 0.40

≤ 0.10

≤ 0.40

≤ 0.63

Mechanical properties in different treatment conditions

To DIN E 17201

Normalised N

Quenched and tempered Q + T

Heat treatment diameter in mm Ø

0.2% proof stress (Rp 0.2) min. N/mm2

Tensile strength in N/mm2 Rm min.

Elongation at fracture in % A min.

0.2% proof stress (Rp 0.2) min. N/mm2

Tensile strength in N/mm2 Rm min.

Elongation at fracture in % A min.

Reduction of area at fracture in % Z min.

Notch impact energy (ISO-V) in J KV min.

≤ 16 > 16 ≤ 40 > 40 ≤ 100

240 210 210

430 410 410

24 25 25

340 290 –

500 – 650 470 – 620 –

20 22 –

50 50 –

50 50 –

> 40 ≤ 100 >100 ≤ 160 >160 ≤ 250 >250 ≤ 500 >500 ≤ 1000

– 230 220 210 200

– – – – –

– 27 26 25 24

260 220 220 210 –

450 410 410 410

24 26 26 25 –

– – – – –

45 40 40 35 –

410 410 410 410

530 530 530 530

– – – – –

600 540 540 540

Heat treatment

Temperatures in °C

24

Normalising

Hardening

Quenching medium

Tempering

880 – 920

860 – 900

Water

550 – 660

Typical values for 30 mm diameter

m

1000 100

800 80

600 Rm 60

400 Z 40

200 Rp 0,2

A 20

0 450 550 650 o Anlasstemperatur Tempering temperatureCin °C 0

Bruchdehnung und Brucheinschnürung Elongation at Afracture A and reduction Zofin % area at fracture Z in %

p 0,2

2 0.2%Streckgrenze proof stress RRp0.2und andZugfestigkeit tensile strength m in 2N/mm R inRN/mm

THYROFORT® C 22 E

Tempering diagram 1400

1200

25

THYROFORT® C 35 E / C 35 R / Cf 35 Material No. Code

Material No.

Code

Material No.

Code

Material No.

Code

1.1181

C35E

1.1180

C35R

1.1183

Cf35*

*To DIN 17212

Chemical composition Typical analysis in %

To DIN 17212

C35E C35R Cf35

C

Si

Mn

P

S

Cr

Mo

Ni

Cr+Mo+Ni

0.32 – 0.39 0.32 – 0.39

≤0.40 ≤0.40

0.50 – 0.80 0.50 – 0.80

≤0.035 ≤0.035

≤0.035 0.020–0.040

≤0.40 ≤0.40

≤0.10 ≤0.10

≤0.40 ≤0.40

≤0.63 ≤0.63

0.33 – 0.39 0.15 – 0.35 0.50 – 0.80

≤0.025

≤0.035









Mechanical properties in different treatment conditions

To DIN E 17201 (Ck35)

Normalised N

Quenched and tempered Q + T

Heat treatment diameter in mm Ø

0.2% proof stress (Rp 0.2) min. N/mm2

Tensile strength in N/mm2 Rm min.

Elongation at fracture in % A min.

0.2% proof stress (Rp 0.2) min. N/mm2

Tensile strength in N/mm2 Rm min.

Elongation at fracture in % A min.

Reduction of area at fracture in % Z min.

Notch impact energy (ISO-V) in J KV min.

≤ 16 > 16 ≤ 40 > 40 ≤ 100 >100 ≤ 160 >160 ≤ 250

300 270 270 245 245

550 520 520 500 500

18 19 19 19 19

430 380 320 – –

630 – 780 600 – 750 550 – 700 – –

17 19 20 – –

40 45 50 – –

35 35 35 – –

>100 ≤ 160 >160 ≤ 250 >250 ≤ 500 >500 ≤ 1000

– – – 240

– – – 490 – 610

– – – 20

290 290 270 –

490 – 640 490 – 640 490 – 640 –

22 22 21 –

– – – –

31 31 25 –

Heat treatment Quenching temperature in the end-quench test

Normalising

Hardening

Quenching medium

Tempering

870

860 – 900

840 – 880

Water or oil

550 – 660

Temperatures in °C

Hardenability in the end-quench test

Distance from quenched end in mm

Hardness in HRC

max. min.

26

1

2

3

4

5

6

7

8

9

10

11

13

15

20

25

58 48

57 40

55 33

53 24

49 22

41 20

34 –

31 –

28 –

27 –

26 –

25 –

24 –

23 –

20 –

THYROFORT® C 35 E / C 35 R / Cf 35 1400

1200

100

1000

800

80

Rm

600

60

Z

400

40 Rp 0,2

200

20 A

0 450 550 650 o Anlasstemperatur Tempering temperatureCin °C

Hardenability diagram

0

Bruchdehnung A und Brucheinschnürung Z in % Elongation at fracture A and reduction of area at fracture Z in %

Typical values for 60 mm diameter

2 0.2% proof stress RRp0.2 und and Zugfestigkeit tensile strength in N/mm 2 Streckgrenze Rm inRm N/mm p 0,2

Tempering diagram

70 65 60 55

Hardness HärteininHRC HRC

50 45 40 35 30 25 20 0

5

10

15

20

25

30

35

40

45

50

55

Distance from quenched end ininmm Abstand von der abgeschreckten Stirnfläche mm

Time-temperaturetransformation diagram for continuous cooling

1200 1100 1000

oC Temperature Temperaturinin°C

900 800

AC3

700

F 40

600 A

3

15 30 40 60 5 8 6070 60 60 35

45

50 45 55 55 P 50

AC1

500 400

B

MS

30 40 45 30 20

300 M 200 100

322

Härtewerte Hardness

HV 10 0

100 Zeit Timeinins s

267 236

294

205 294

101

196

236

253

201

236

102 100 Zeit Timeininmin min.

103 101

104 102 100 Zeit Timeininhh

105

106

103 101

104 102

27

THYROFORT® C 45 E / C 45 R / Cf 45 Material No. Code

Material No.

Code

Material No.

Code

Material No.

Code

1.1191

C45E

1.1201

C45R

1.1193

Cf45*

*To DIN 17212

Chemical composition Typical analysis in %

To DIN 17212

C45E C45R Cf45

C

Si

Mn

P

S

Cr

Mo

Ni

Cr+Mo+Ni

0.42 – 0.50 0.42 – 0.50

≤0.40 ≤0.40

0.50 – 0.80 0.50 – 0.80

≤0.035 ≤0.035

≤0.035 0.020–0.040

≤0.40 ≤0.40

≤0.10 ≤0.10

≤0.40 ≤0.40

≤0.63 ≤0.63

0.43 – 0.49 0.15 – 0.35 0.50 – 0.80

≤0.025

≤0.035

≤0.40







Mechanical properties in different treatment conditions

To DIN E 17201 (Ck45)

Hardness in different treatment conditions

Normalised N

Quenched and tempered Q + T

Heat treatment diameter in mm Ø

0.2% proof stress (Rp 0.2) min. N/mm2

Tensile strength in N/mm2 Rm min.

Elongation at fracture in % A min.

0.2% proof stress (Rp 0.2) min. N/mm2

Tensile strength in N/mm2 Rm min.

Elongation at fracture in % A min.

Reduction of area at fracture in % Z min.

Notch impact energy (ISO-V) in J KV min.

≤ 16 > 16 ≤ 40 > 40 ≤ 100 >100 ≤ 160 >160 ≤ 250

340 305 305 275 275

620 580 580 560 560

14 16 16 16 16

490 430 370 – –

700 – 850 650 – 800 630 – 780 – –

14 16 17 – –

35 40 45 – –

25 25 25 – –

>100 ≤ 160 >160 ≤ 250 >250 ≤ 500 >500 ≤ 1000

– – 300 290

– – 590 – 720 590 – 720

– – 15 15

340 340 320 –

590 – 740 590 – 740 590 – 740 –

18 18 17 –

– – – –

22 22 20 –

Treated for shearing S HB

Soft annealed A HB

max. 255

max. 207

Heat treatment

Temperatures in °C

Quenching temperature in the end-quench test

Normalising

Hardening

Quenching medium

Tempering

850

840 – 880

820 – 860

Water or oil

550 – 660

Hardenability in the end-quench test

Distance from quenched end in mm

Hardness in HRC

max. min.

28

1.5

3

5

7

9

11

13

15

20

25

30

35

40

45

50

62 55

61 37

57 28

44 26

34 24

32 22

31 21

30 20

29 –

28 –

27 –

– –

– –

– –

– –

THYROFORT® C 45 E / C 45 R / Cf 45 1400

1200

100

1000 R

80

800

600

60

Rp 0,2

400

40 Z

200

20 A

0

0

450 550 650 oC Anlasstemperatur Tempering temperature in °C

Hardenability diagram

Bruchdehnung A und Brucheinschnürung Z in % Elongation at fracture A and reduction of area at fracture Z in %

Typical values for 60 mm diameter

2 0.2% proof stress RRp0.2 und and Zugfestigkeit tensile strength Rm in N/mm 2 Streckgrenze Rm in N/mm p 0,2

Tempering diagram

70 65 60 55

Härte HRC Hardness in in HRC

50 45 40 35 30 25 20 0

5

10

15

20

25

30

35

40

45

50

55

Abstand von der abgeschreckten Stirnfläche mm Distance from quenched end ininmm

Time-temperaturetransformation diagram for continuous cooling

1200 1100 1000

Temperature in in °CoC Temperatur

900 800

AC3

700 A

5

15

F

45

600

35

30 75

70

65

40 60

AC1

45 55

P

500

60 80

400 B

MS

300

30 5

M

200 100

Härtewerte Hardness

HV 0 100 Zeit ininss Time

254

101

220 216

244 135 223

102

100 Zeit in min Time in min.

210

103

101

104

102 100 Zeit in h Time in h

105

106

103 101

104 102

29

THYROFORT® Cf 53 Material No. Code

Material No.

Code

1.1213

Cf53* *To DIN 17212

Chemical composition

C

Typical analysis in %

Si

Mn

0.50 – 0.57 0.15 – 0.35 0.40 – 0.70

Mechanical properties in different treatment conditions

P

S

≤0.025

≤0.035

Normalised N

Quenched and tempered Q + T

Heat treatment diameter in mm Ø

0.2% proof stress (Rp 0.2) min. N/mm2

Tensile strength in N/mm2 Rm min.

Elongation at fracture in % A min.

0.2% proof stress (Rp 0.2) min. N/mm2

Tensile strength in N/mm2 Rm min.

Elongation at fracture in % A min.

Reduction of area at fracture in % Z min.

Notch impact energy (ISO-V) in J KV min.

≤ 16 > 16 ≤ 40 > 40 ≤ 100

– 340 340

– 610 – 760 610 – 760

– 16 16

510 430 400

740 – 880 690 – 830 640 – 780

12 14 15

25 35 40

– – –

Heat treatment

Temperatures in °C

30

Normalising

Hardening

Quenching medium

Tempering

830 – 860

805 – 845

Water or oil

550 – 660

THYROFORT® Cf 53 Time-temperaturetransformation diagram for continuous cooling

1200 1100 1000

Temperature in in °CoC Temperatur

900 AC3

800 10

700 600

3

500 400

96 95 90

2

1 3

20

25

30

35

35

30

F

5

4

A 1

15

95

80

70

75

65

65

70

AC1

P

97 98

1

MS

300 M

200 100 0

Hardness Härtewerte 772 772 322 264 245 236 228 213 206 193 HV 10

100 Zeit Timeinins s

101

102

100 Zeit ininmin Time min.

187 187 176

103

101

170

104

102 100 Zeit ininhh Time

105

106

103 101

104 102

31

THYROFORT® C 55 E / C 55 R Material No. Code

Material No.

Code

Material No.

Code

1.1203

C55E

1.1209

C55R

Chemical composition Typical analysis in %

C55E C55R

C

Si

Mn

P

S

Cr

Mo

Ni

Cr+Mo+Ni

0.52 – 0.60 0.52 – 0.60

≤0.40 ≤0.40

0.60 – 0.90 0.60 – 0.90

≤0.035 ≤0.035

≤0.035 0.020–0.040

≤0.40 ≤0.40

≤0.10 ≤0.10

≤0.40 ≤0.40

≤0.63 ≤0.63

Mechanical properties in different treatment conditions

To DIN E 17201 (Ck53)

Hardness in different treatment conditions

Normalised N

Quenched and tempered Q + T

Heat treatment diameter in mm Ø

0.2% proof stress (Rp 0.2) min. N/mm2

Tensile strength in N/mm2 Rm min.

Elongation at fracture in % A min.

0.2% proof stress (Rp 0.2) min. N/mm2

Tensile strength in N/mm2 Rm min.

Elongation at fracture in % A min.

Reduction of area at fracture in % Z min.

Notch impact energy (ISO-V) in J KV min.

≤ 16 > 16 ≤ 40 > 40 ≤ 100 >100 ≤ 160 >160 ≤ 250

370 330 330 300 300

680 640 640 620 620

11 12 12 12 12

550 490 420 – –

800 – 950 750 – 900 700 – 850 – –

12 14 15 – –

30 35 40 – –

– – – – –

>100 ≤ 160 >160 ≤ 250 >250 ≤ 500 >500 ≤ 1000

– – 320 300

– – 640 – 800 640 – 800

– – 15 14

390 360 330 –

660 – 810 630 – 780 630 – 780 –

16 17 16 –

– – – –

– – – –

Treated for shearing S HB

Soft annealed A HB

max. 255

max. 229

Quenching temperature in the end-quench test

Normalising

Hardening

Quenching medium

Tempering

830

825 – 865

805 – 845

Oil or water

550 – 660

Heat treatment

Temperatures in °C

Hardenability in the end-quench test

Distance from quenched end in mm

Hardness in HRC

max. min.

32

1.5

3

5

7

9

11

13

15

20

25

30

65 58

64 55

60 33

52 31

37 29

35 27

34 26

33 25

32 24

30 22

29 20

THYROFORT® C 55 E / C 55 R Tempering diagram

1200

100

1000 Rm

80

800

600

60

Rp 0,2

400

40

Z

200

20 A

0

0

450 550 650 oC Anlasstemperatur Tempering temperature in °C

Hardenability diagram

Bruchdehnung und Brucheinschnürung Elongation at A fracture A and reduction Zofin % area at fracture Z in %

Typical values for 60 mm diameter

2 0.2% proof stress Rp0.2 and tensile strength Rm in N/mm Streckgrenze Rp 0,2 und Zugfestigkeit Rm in N/mm2

1400

70 65 60 55

Hardness in in HRC Härte HRC

50 45 40 35 30 25 20 0

5

10

15

20

25

30

35

40

45

50

55

Abstand von der abgeschreckten Stirnfläche mm Distance from quenched end ininmm

Time-temperaturetransformation diagram for continuous cooling

1200 1100 1000

oC Temperatur in in °C Temperature

900 800 700

3

A

600 500 400

1 3

1

2

4 5 97

10

90 96 95

25

20

15 85

80

30 75

70

35

35

30

AC1

65P

65

70

AC3

F

98

1

MS

300 M

200 100 0

Hardness Härtewerte

HV 10

100 Zeit in in s s Time

772 772 322 264

101

245 236 228 213 206 193

102 100 Zeit in min Time in min.

187 187 176

103 101

170

104 102 100 Zeit in h Time in h

105

106

103 101

104 102

33

THYROFORT® C 60 E / C 60 R Material No. Code

Material No.

Code

Material No.

Code

1.1221

C60E

1.1223

C60R

Chemical composition Typical analysis in %

C60E C60R

C

Si

Mn

P

S

Cr

Mo

Ni

Cr+Mo+Ni

0.57 – 0.65 0.57 – 0.65

≤0.40 ≤0.40

0.60 – 0.90 0.60 – 0.90

≤0.035 ≤0.035

≤0.035 0.020–0.040

≤0.40 ≤0.40

≤0.10 ≤0.10

≤0.40 ≤0.40

≤0.63 ≤0.63

Mechanical properties in different treatment conditions

To DIN E 17201

Hardness in different treatment conditions

Normalised N

Quenched and tempered Q + T

Heat treatment diameter in mm Ø

0.2% proof stress (Rp 0.2) min. N/mm2

Tensile strength in N/mm2 Rm min.

Elongation at fracture in % A min.

0.2% proof stress (Rp 0.2) min. N/mm2

Tensile strength in N/mm2 Rm min.

Elongation at fracture in % A min.

Reduction of area at fracture in % Z min.

Notch impact energy (ISO-V) in J KV min.

≤ 16 > 16 ≤ 40 > 40 ≤ 100 >100 ≤ 160 >160 ≤ 250

380 340 340 310 310

710 670 670 650 650

10 11 11 11 11

580 520 450 – –

850 – 1000 800 – 950 750 – 900 – –

11 13 14 – –

25 30 35 – –

– – – – –

>100 ≤ 160 >160 ≤ 250 >250 ≤ 500 >500 ≤ 1000

– – 340 330

– – 680 – 860 680 – 860

– – 13 12

390 390 350 –

690 – 840 690 – 840 690 – 840 –

15 15 14 –

– – – –

– – – –

Treated for shearing S HB

Soft annealed A HB

max. 255

max. 241

Quenching temperature in the end-quench test

Normalising

Hardening

Quenching medium

Tempering

830

820 – 860

800 – 840

Oil or water

550 – 660

Heat treatment

Temperatures in °C

Hardenability in the end-quench test

Distance from quenched end in mm

Hardness in HRC

max. min.

34

1.5

3

5

7

9

11

13

15

20

25

30

67 60

65 50

62 35

54 32

39 30

36 28

35 27

34 26

33 25

31 23

30 21

THYROFORT® C 60 E / C 60 R 1400

1200

1000

100

Rm

80

800 Rp 0,2

600

60

400

40 Z

200

20 A

0

0

450 550 650 oC Anlasstemperatur Tempering temperature in °C

Hardenability diagram

Bruchdehnung A und Brucheinschnürung Z in % Elongation at fracture A and reduction of area at fracture Z in %

Typical values for 60 mm diameter

2 0.2% proof stress Rp0.2 and tensile strength Rm in N/mm Streckgrenze Rp 0,2 und Zugfestigkeit Rm in N/mm2

Tempering diagram

70 65 60 55

Härte HRC Hardness in in HRC

50 45 40 35 30 25 20 0

5

10

15

20

25

30

35

40

45

50

55

Abstand von der abgeschreckten Stirnfläche mm Distance from quenched end ininmm

Time-temperaturetransformation diagram for continuous cooling

1200 1100 1000

o Temperatur TemperatureininC°C

900 800

AC3

F 700

A

5

600 P

500

AC1

75

90

88

85

20

B

400 MS 300

93

95

25

15

7 10 12

5

M

200

Hardness Härtewerte

100

HV 10

227

242 528

269

247

229

187

787

0

100 Zeit Timeinins s

101

102 100 Zeit in min Time in min.

103

104

101

102 100 Time in h

105

106

103 101

104 102

35

THYROFORT® 28 Mn 6 Material No. Code

Material No.

Code

1.1170

28Mn6

Chemical composition Typical analysis in %

C

Si

Mn

P

S

Cr

Mo

Ni

Cr+Mo+Ni

0.25 – 0.32

≤0.40

1.30 – 1.65

≤0.035

≤0.035

≤0.40

≤0.10

≤0.40

≤0.63

Mechanical properties in different treatment conditions

To DIN E 17201

Hardness in different treatment conditions

Heat treatment

Normalised N Heat treatment diameter in mm Ø

0.2% proof stress (Rp 0.2) min. N/mm2

Tensile strength in N/mm2 Rm min.

Elongation at fracture in % A min.

0.2% proof stress (Rp 0.2) min. N/mm2

Tensile strength in N/mm2 Rm min.

Elongation at fracture in % A min.

Reduction of area at fracture in % Z min.

Notch impact energy (ISO-V) in J KV min.

≤ 16 > 16 ≤ 40 > 40 ≤ 100

345 310 290

630 680 590

17 18 18

590 490 440

800 – 950 700 – 850 650 – 800

13 15 16

40 45 50

35 40 40

>100 ≤ 160 >160 ≤ 250 >250 ≤ 500

– – –

– – –

– – –

390 390 340

590 – 740 590 – 740 540 – 690

18 18 19

– – –

– – –

Treated for shearing S HB

Soft annealed A HB

max. 255

max. 223

Quenching temperature in the end-quench test

Normalising

Hardening

Quenching medium

Tempering

850

850 – 890

830 – 870

Water or oil

540 – 680

Temperatures in °C

Hardenability in the end-quench test

Distance from quenched end in mm 1.5

3

5

7

9

11

13

15

20

25

30

35

40

45

50

H max. min.

54 45

53 42

51 37

48 27

44 21

41 –

38 –

35 –

31 –

29 –

27 –

26 –

25 –

25 –

24 –

HH max. min.

54 48

53 46

51 42

48 34

44 30

41 27

38 24

35 21

31 –

29 –

27 –

26 –

25 –

25 –

24 –

HL max. min.

51 45

49 42

46 37

41 27

35 21

32 –

29 –

26 –

22 –

20 –

– –

– –

– –

– –

– –

Hardness in HRC

36

Quenched and tempered Q + T

THYROFORT® 28 Mn 6 Hardenability diagram 70 65 HH-Sorte HH grade Überschneidung Overlap of HH+HL-Sorte HH + HL grade

60

HL-Sorte HL grade

55

Hardness in in HRC Härte HRC

50 45 40 35 30 25 20 0

5

10

15

20

25

30

35

40

45

50

55

Abstand von Distance der abgeschreckten Stirnfläche in mm from quenched end in

Time-temperaturetransformation diagram for continuous cooling

1200 1100 1000

oC Temperature Temperaturinin°C

900 800

AC3

700

45

55

55

2

600

45

45

F P

55

55 45

AC1

55 45

55

45 45

45

A

20

500

10

B

400 MS

15 68

300

10

70

M

200

514

100

Hardness Härtewerte

0

HV 10

100

488

101

464

274 221

187

180

102

176

170 176

103

165

156

104

105

106

Zeit Timeinins s 100 Zeit in in min. min Time

101

102 100 Zeit ininhh Time

103 101

104 102

37

THYROFORT® 46 Cr 2 / 46 CrS 2 Material No. Code

Material No.

Code

Material No.

Code

1.7006

46Cr2

1.7025

46CrS2

Chemical composition Typical analysis in %

C 46Cr2 0.42 – 0.50 46CrS2 0.42 – 0.50

Mechanical properties in different treatment conditions

Hardness in different treatment conditions

Si

Mn

P

S

≤0.40 ≤0.40

0.50 – 0.80 0.50 – 0.80

≤0.035 ≤0.035

Cr

Mo

Ni

– –

– –

≤0.035 0.40 – 0.60 0.020–0.040 0.40 – 0.60

Quenched and tempered Q + T Heat treatment diameter in mm Ø

0.2% proof stress (Rp 0.2) min. N/mm2

Tensile strength in N/mm2 Rm min.

Elongation at fracture in % A min.

Reduction of area at fracture in % Z min.

Notch impact energy (ISO-V) in J KV min.

≤ 16 > 16 ≤ 40 > 40 ≤ 100

650 550 400

900 – 1100 800 – 950 650 – 800

12 14 15

35 40 45

30 35 35

Treated for shearing S HB

Soft annealed A HB

max. 255

max. 223

Quenching temperature in the end-quench test

Normalising

Hardening

Quenching medium

Tempering

850

840 – 880

820 – 860

Oil or water

540 – 680

Heat treatment

Temperatures in °C

Hardenability in the end-quench test

Distance from quenched end in mm 1.5

3

5

7

9

11

13

15

20

25

30

35

40

45

50

H max. min.

63 54

61 49

59 40

57 32

53 28

47 25

42 23

39 22

36 20

33 –

32 –

31 –

30 –

29 –

29 –

HH max. min.

63 57

61 53

59 46

57 40

53 36

47 32

42 29

39 28

36 25

33 22

32 21

31 20

30 –

29 –

29 –

HL max. min.

60 54

57 49

53 40

49 32

45 28

40 25

36 23

32 22

31 20

28 –

27 –

26 –

25 –

25 –

24 –

Hardness in HRC

38

1800

90 Rm

1600

80

1400

70

1200

60

Rp 0,2

1000

50

800

40

600

30

400

20 Z

200

Bruchdehnung A und Brucheinschnürung Z in %

Typical values for 60 mm diameter

100

2000

Elongation at fracture A and reduction of area at fracture Z in %

Tempering diagram

0.2% proof stress R and tensile strength Rm in2 N/mm2 Streckgrenze Rp0.2 p 0,2 und Zugfestigkeit Rm in N/mm

THYROFORT® 46 Cr 2 / 46 CrS 2

10 A

0

0

100

200

300 400 500 Anlasstemperatur in oC

600

0

700

Tempering temperature in °C

Hardenability diagram 70 65 HH grade HH-Sorte Überschneidung Overlap of HH+HL-Sorte HH + HL grade

60

HL-Sorte HL grade 55

HärteininHRC HRC Hardness

50 45 40 35 30 25 20 0

5

10

15

20

25

30

35

40

45

50

55

Abstand von der abgeschreckten Stirnfläche mm Distance from quenched end ininmm

Time-temperaturetransformation diagram for continuous cooling

1200 1100 1000

Temperature Temperaturinin°CoC

900 AC3

800 35

700 1

500

5

3

MS

3

87

P 5

80

F

35

35

30

20 1

600

400

10

3

A

35

70

AC1

65 65

65

65

10

B 15

300

45

64 7

3

M

200 100 0

595 Härtewerte Hardness

HV 10

100 Zeit Timeinins s

592 488 393 347 303 232 221

101

102 100 101 ZeitTime in min in min.

206

183

178 176

103

172

104 102 100 Zeit Timeininhh

105

106

103 101

104 102

39

THYROFORT® 34 Cr 4 / 34 CrS 4 Material No. Code

Material No.

Code

Material No.

Code

1.7033

34Cr4

1.7037

34CrS4

Chemical composition Typical analysis in %

C 34Cr4 0.30 – 0.37 34CrS4 0.30 – 0.37

Si

Mn

P

≤0.40 ≤0.40

0.60 – 0.90 0.60 – 0.90

≤0.035 ≤0.035

Mechanical properties in different treatment conditions

Hardness in different treatment conditions

S

Cr

Mo

Ni

– –

– –

≤0.035 0.90 – 1.20 0.020–0.040 0.90 – 1.20

Quenched and tempered Q + T Heat treatment diameter in mm Ø

0.2% proof stress (Rp 0.2) min. N/mm2

Tensile strength in N/mm2 Rm min.

Elongation at fracture in % A min.

Reduction of area at fracture in % Z min.

Notch impact energy (ISO-V) in J KV min.

≤ 16 > 16 ≤ 40 > 40 ≤ 100

700 590 460

900 – 1100 800 – 950 700 – 850

12 14 15

35 40 45

35 40 40

Treated for shearing S HB

Soft annealed A HB

max. 255

max. 223

Quenching temperature in the end-quench test

Normalising

Hardening

Quenching medium

Tempering

850

850 – 890

830 – 870

Water or oil

540 – 680

Heat treatment

Temperatures in °C

Hardenability in the end-quench test

Distance from quenched end in mm 1.5

3

5

7

9

11

13

15

20

25

30

35

40

45

50

H max. min.

57 49

57 48

56 45

54 41

52 35

49 32

46 29

44 27

39 23

37 21

35 20

34 –

33 –

32 –

31 –

HH max. min.

57 52

57 51

56 49

54 45

52 41

49 38

46 35

44 33

39 28

37 26

35 25

34 24

33 23

32 22

31 21

HL max. min.

54 49

54 48

52 45

50 41

46 35

43 32

40 29

38 27

34 23

32 21

30 20

29 –

28 –

27 –

26 –

Hardness in HRC

40

THYROFORT® 34 Cr 4 / 34 CrS 4 100

2000 1800 1600

80

Rp 0,2 1400

70

1200

60

1000

50 Z

800

40

600

30

400

20 A

200 0

10

0

100

200

300 400 500 Anlasstemperatur in oC

600

0

700

Bruchdehnung A und Brucheinschnürung Z in %

90 Rm

Elongation at fracture A and reduction of area at fracture Z in %

Streckgrenze Rp 0,2 und Zugfestigkeit Rm in N/mm

Typical values for 30 mm diameter

0.2% proof stress Rp0.2 and tensile strength Rm in2 N/mm2

Tempering diagram

Tempering temperature in °C

Hardenability diagram

70 65 HH grade HH-Sorte Überschneidung Overlap of HH+HL-Sorte HH + HL grade

60

HL-Sorte HL grade 55

HärteininHRC HRC Hardness

50 45 40 35 30 25 20 0

5

10

15

20

25

30

35

40

45

50

55

Abstand von der abgeschreckten Stirnfläche mm Distance from quenched end ininmm

Time-temperaturetransformation diagram for continuous cooling

1200 1100 1000

oC Temperaturinin°C Temperature

900 AC3

800 700 600

A

F3

3

3

5

P

25 75

20 80

15 85

5

3

30 70

30 70

35 65

AC1

8

500 B

MS

400

20

90 92

300

94

M

87 92

200 100 0

Hardness Härtewerte

550

HV 10

100 Zeit Timeinins s

101

498

366 334 297 291 253 219 212 294

102 100 Zeit in in min Time min.

206

189 196

103 101

104 102 100 Zeit ininhh Time

105

106

103 101

104 102

41

THYROFORT® 37 Cr 4 / 37 CrS 4 Material No. Code

Material No.

Code

Material No.

Code

1.7034

37Cr4

1.7038

37CrS4

Chemical composition Typical analysis in %

C 37Cr4 0.34 – 0.41 37CrS4 0.34 – 0.41

Si

Mn

P

≤0.40 ≤0.40

0.60 – 0.90 0.60 – 0.90

≤0.035 ≤0.035

Mechanical properties in different treatment conditions

Hardness in different treatment conditions

S

Cr

Mo

Ni

– –

– –

≤0.035 0.90 – 1.20 0.020–0.040 0.90 – 1.20

Quenched and tempered Q + T Heat treatment diameter in mm Ø

0.2% proof stress (Rp 0.2) min. N/mm2

Tensile strength in N/mm2 Rm min.

Elongation at fracture in % A min.

Reduction of area at fracture in % Z min.

Notch impact energy (ISO-V) in J KV min.

≤ 16 > 16 ≤ 40 > 40 ≤ 100

750 630 510

950 – 1150 850 – 1000 750 – 900

11 13 14

35 40 40

30 35 35

Treated for shearing S HB

Soft annealed A HB

max. 255

max. 235

Quenching temperature in the end-quench test

Normalising

Hardening

Quenching medium

Tempering

850

845 – 885

825 – 865

Oil or water

540 – 680

Heat treatment

Temperatures in °C

Hardenability in the end-quench test

Distance from quenched end in mm

Hardness in HRC

42

1.5

3

5

7

9

11

13

15

20

25

30

35

40

45

50

H max. min.

59 51

59 50

58 48

57 44

55 39

52 36

50 33

48 31

42 26

39 24

37 22

36 20

35 –

34 –

33 –

HH max. min.

59 54

59 53

58 51

57 48

55 44

52 41

50 39

48 37

42 31

39 29

37 27

36 25

35 24

34 23

33 22

HL max. min.

56 51

56 50

55 48

53 44

50 39

47 36

44 33

42 31

37 26

34 24

32 22

31 20

30 –

29 –

29 –

100

1800

90

1600

80

Rp 0,2

1400

70

1200

60 Z

1000

50

Rm

800

40

600

30

400

20 A

200 0

10

0

100

200

300 400 500 Anlasstemperatur in oC

600

0

700

Bruchdehnung A und Brucheinschnürung Z in %

Typical values for 30 mm diameter

2000

Elongation at fracture A and reduction of area at fracture Z in %

Tempering diagram

0.2% proof stress R and tensile strength Rm in2 N/mm2 Streckgrenze Rp0.2 p 0,2 und Zugfestigkeit Rm in N/mm

THYROFORT® 37 Cr 4 / 37 CrS 4

Tempering temperature in °C

Hardenability diagram

70 65 HH grade HH-Sorte Überschneidung Overlap of HH+HL-Sorte HH + HL grade

60

HL-Sorte HL grade 55

HärteininHRC HRC Hardness

50 45 40 35 30 25 20 0

5

10

15

20

25

30

35

40

45

50

55

Distance from quenched end ininmm Abstand von der abgeschreckten Stirnfläche mm

Time-temperaturetransformation diagram for continuous cooling

1200 1100 1000

Temperature inin°CoC Temperatur

900 AC3

800 25

700

15 10

A

F

600 500 400

85 75

30 70

AC1

70

30

B MS

P

30

3 15 70

300

95

57

M 200 100

Härtewerte Hardness 627

HV 10 0

100 Zeit in s Time in s

101

613

554

390 360 330 245

102 100 Zeit in min Time in min.

103 101

232

221 210

104 102 100 Zeit in h Time in h

105

106

103 101

104 102

43

THYROFORT® 41 Cr 4 / 41 CrS 4 Material No. Code

Material No.

Code

Material No.

Code

1.7035

41Cr4

1.7039

41CrS4

Chemical composition Typical analysis in %

C 41Cr4 0.38 – 0.45 41CrS4 0.38 – 0.45

Si

Mn

P

≤0.40 ≤0.40

0.60 – 0.90 0.60 – 0.90

≤0.035 ≤0.035

Mechanical properties in different treatment conditions

Hardness in different treatment conditions

S

Cr

Mo

Ni

– –

– –

≤0.035 0.90 – 1.20 0.020–0.040 0.90 – 1.20

Quenched and tempered Q + T Heat treatment diameter in mm Ø

0.2% proof stress (Rp 0.2) min. N/mm2

Tensile strength in N/mm2 Rm min.

Elongation at fracture in % A min.

Reduction of area at fracture in % Z min.

Notch impact energy (ISO-V) in J KV min.

≤ 16 > 16 ≤ 40 > 40 ≤ 100

800 660 560

1000 – 1200 1900 – 1100 1800 – 1950

11 12 14

30 35 40

30 35 35

Treated for shearing S HB

Soft annealed A HB

max. 255

max. 241

Quenching temperature in the end-quench test

Normalising

Hardening

Quenching medium

Tempering

850

840 – 880

820 – 860

Oil or water

540 – 680

Heat treatment

Temperatures in °C

Hardenability in the end-quench test

Distance from quenched end in mm

Hardness in HRC

44

1.5

3

5

7

9

11

13

15

20

25

30

35

40

45

50

H max. min.

61 53

61 52

60 50

59 47

58 41

56 37

54 34

52 32

46 29

42 26

40 23

38 21

37 –

36 –

35 –

HH max. min.

61 56

61 55

60 53

59 51

58 47

56 43

54 41

52 39

46 35

42 31

40 29

38 27

37 26

36 25

35 24

HL max. min.

58 53

58 52

57 50

55 47

52 41

50 37

47 34

45 32

40 29

37 26

34 23

32 21

31 –

30 –

29 –

Rm

1800

90

Rp 0,2 1600

80

1400

70

1200

60

1000

50 Z

800

40

600

30

400

20 A

200 0

Bruchdehnung A und Brucheinschnürung Z in %

Typical values for 30 mm diameter

100

2000

Elongation at fracture A and reduction of area at fracture Z in %

Tempering diagram

0.2% proof stress R and tensile strength Rm in2 N/mm2 Streckgrenze Rp0.2 p 0,2 und Zugfestigkeit Rm in N/mm

THYROFORT® 41 Cr 4 / 41 CrS 4

10

0

100

200

300 400 500 Anlasstemperatur in oC

600

0

700

Tempering temperature in °C

Hardenability diagram

70 65 HH grade HH-Sorte Überschneidung Overlap of HH+HL-Sorte HH + HL grade

60

HL-Sorte HL grade 55

HärteininHRC HRC Hardness

50 45 40 35 30 25 20 0

5

10

15

20

25

30

35

40

45

50

55

Distance from quenched end ininmm Abstand von der abgeschreckten Stirnfläche mm

Time-temperaturetransformation diagram for continuous cooling

1200 1100 1000 900 AC3

oC Temperaturinin°C Temperature

800 700 5

600

3

A

10

F

15 90 85

20 20 80 80

20 80

AC1

P 5

500 400

MS 10 30

300 M

B 75

92 90

200 100

Härtewerte Hardness

629

579 510 428 312 293 263 236

215 210 206

HV 10 0

100 Zeit in Time in ss

101

102 100 Zeit ininmin Time min.

103 101

104 102 100 Zeit ininhh Time

106

105 103 101

104 102

45

THYROFORT® 51 CrV 4 Material No. Code

Material No.

Code

1.8159

51CrV4

Chemical composition Typical analysis in %

C

Si

Mn

P

S

Cr

Mo

Ni

V

0.47 – 0.55

≤0.40

0.70 – 1.10

≤0.035

≤0.035

0.90 – 1.20





0.10 – 0.25

Mechanical properties in different treatment conditions

Hardness in different treatment conditions

Quenched and tempered Q + T Heat treatment diameter in mm Ø

0.2% proof stress (Rp 0.2) min. N/mm2

Tensile strength in N/mm2 Rm min.

Elongation at fracture in % A min.

Reduction of area at fracture in % Z min.

Notch impact energy (ISO-V) in J KV min.

≤ 16 > 16 ≤ 40 > 40 ≤ 100 >100 ≤ 160 >160 ≤ 250

900 800 700 650 600

1100 – 1300 1000 – 1200 1900 – 1100 1850 – 1000 1800 – 1950

9 10 12 13 13

40 45 50 50 50

30 30 30 30 30

Treated for shearing S HB

Soft annealed A HB



max. 248

Heat treatment

Temperatures in °C

Quenching temperature in the end-quench test

Normalising

Hardening

Quenching medium

Tempering

850

840 – 880

820 – 860

Oil

540 – 680

Hardenability in the end-quench test

Distance from quenched end in mm 1.5

3

5

7

9

11

13

15

20

25

30

35

40

45

50

H max. min.

65 57

65 56

64 56

64 55

63 53

63 52

63 50

62 48

62 44

62 41

61 37

60 35

60 34

59 33

58 32

HH max. min.

65 60

65 59

64 59

64 58

63 56

63 56

63 54

62 53

62 50

62 48

61 45

60 43

60 43

59 42

58 41

HL max. min.

62 57

62 56

61 56

61 55

60 53

59 52

59 50

57 48

56 44

55 41

53 37

52 35

51 34

50 33

49 32

Hardness in HRC

46

1800

90 Rm

1600

80

Rp 0,2 1400

70

1200

60

1000

50

Z

800

40

600

30

400

20 A

200 0

Bruchdehnung A und Brucheinschnürung Z in %

Typical values for 30 mm diameter

100

2000

Elongation at fracture A and reduction of area at fracture Z in %

Tempering diagram

0.2% proof stress Rp0.2 and tensile strength Rm in2 N/mm2 Streckgrenze Rp 0,2 und Zugfestigkeit Rm in N/mm

THYROFORT® 51 CrV 4

10

0

100

200

300 400 500 Anlasstemperatur in oC

600

0

700

Tempering temperature in °C

Hardenability diagram

70 65 60 55

Hardness HärteininHRC HRC

50 45 40 35 HH grade HH-Sorte Überschneidung Overlap of HH+HL-Sorte HH + HL grade

30

HL-Sorte HL grade 25 20 0

5

10

15

20

25

30

35

40

45

50

55

Abstand von der abgeschreckten Stirnfläche mm Distance from quenched end ininmm

Time-temperaturetransformation diagram for continuous cooling

1200 1100 1000 900 AC3

Temperatur Temperature in in °CoC

800 700

3

3 3

600

3

AC1

F

P3

A 500 400

Zw Ms 3

300

8

M

20 90

95

90

200 100

Härtewerte Hardness

606 613 637 576 387 356 336

0

100 Zeit in s Time in s

273 249 309

HV 10 101

102 100 Zeitininmin. min Time

233 244

103 101

104 102 100 Zeit Timeininh h

106

105 103 101

104 102

47

THYROFORT® 25 CrMo 4 / 25 CrMoS 4 Material No. Code

Material No.

Code

Material No.

Code

1.7218

25CrMo4

1.7213

25CrMoS4

Chemical composition Typical analysis in %

C 25CrMo4 0.22 – 0.29 25CrMoS4 0.22 – 0.29

Mechanical properties in different treatment conditions

To DIN E 17201

Hardness in different treatment conditions

Si

Mn

P

S

≤0.40 ≤0.40

0.60 – 0.90 0.60 – 0.90

≤0.035 ≤0.035

Cr

Mo

Ni

≤0.035 0.90 – 1.20 0.15 – 0.30 0.020–0.040 0.90 – 1.20 0.15 – 0.30

– –

Quenched and tempered Q + T Heat treatment diameter in mm Ø

0.2% proof stress (Rp 0.2) min. N/mm2

Tensile strength in N/mm2 Rm min.

Elongation at fracture in % A min.

Reduction of area at fracture in % Z min.

Notch impact energy (ISO-V) in J KV min.

≤ 16 > 16 ≤ 40 > 40 ≤ 100 >100 ≤ 160

700 600 450 400

900 – 1100 800 – 1950 700 – 1850 650 – 1800

12 14 15 16

50 55 60 60

45 50 50 45

>160 ≤ 250 >250 ≤ 500

400 380

650 – 1800 600 – 1750

17 18

– –

45 38

Treated for shearing S HB

Soft annealed A HB

max. 255

max. 212

Quenching temperature in the end-quench test

Normalising

Hardening

Quenching medium

Tempering

850

860 – 900

840 – 880

Oil or water

540 – 680

Heat treatment

Temperatures in °C

Hardenability in the end-quench test

Distance from quenched end in mm 1.5

3

5

7

9

11

13

15

20

25

30

35

40

45

50

H max. min.

52 44

52 43

51 40

50 37

48 34

46 32

43 29

41 27

37 23

35 21

33 20

32 –

31 –

31 –

31 –

HH max. min.

52 47

52 46

51 44

50 41

48 39

46 37

43 34

41 32

37 28

35 26

33 24

32 23

31 22

31 22

31 22

HL max. min.

49 44

49 43

47 40

46 37

43 34

41 32

38 29

36 27

32 23

30 21

29 20

28 –

27 –

27 –

27 –

Hardness in HRC

48

1800

90

Rm

1600

80

1400

70

Rp 0,2

1200

60

1000

50

Z

800

40

600

30

400

20

200

Bruchdehnung A und Brucheinschnürung Z in %

Typical values for 30 mm diameter

100

2000

Elongation at fracture A and reduction of area at fracture Z in %

Tempering diagram

0.2% proof stress Rp0.2 and tensile strength Rm in2 N/mm2 Streckgrenze Rp 0,2 und Zugfestigkeit Rm in N/mm

THYROFORT® 25 CrMo 4 / 25 CrMoS 4

10 A

0

0

100

200

300 400 500 Anlasstemperatur in oC

600

0

700

Tempering temperature in °C

Hardenability diagram

70 65 HH grade HH-Sorte Überschneidung Overlap of HH+HL-Sorte HH + HL grade

60

HL-Sorte HL grade 55

HärteininHRC HRC Hardness

50 45 40 35 30 25 20 0

5

10

15

20

25

30

35

40

45

50

55

Distance from quenched end ininmm Abstand von der abgeschreckten Stirnfläche mm

Time-temperaturetransformation diagram for continuous cooling

1200 1100 1000 900 AC3

Temperature in in °CoC Temperatur

800 700

F

10 5 10

3

600

30

20

10

M P 15

A 500

50

45

45 30

55

55

55

55

AC1

45

45

35

B

MS

85

400

100 87 95 90

87

70

300

55 40 15

M 200 100

Härtewerte Hardness

464

HV 10 0 100 Zeit ininss Time

101

366 332

297

273 257 229 233 217

102 100 Zeit Timeininmin min.

171

170 160

163

188

103 101

104 102 100 Zeit ininhh Time

105

106

103 101

104 102

49

THYROFORT® 34 CrMo 4 / 34 CrMoS 4 Material No. Code

Material No.

Code

Material No.

Code

1.7220

34CrMo4

1.7226

34CrMoS4

Chemical composition Typical analysis in %

C 34CrMo4 0.30 – 0.37 34CrMoS4 0.30 – 0.37

Si

Mn

P

≤0.40 ≤0.40

0.60 – 0.90 0.60 – 0.90

≤0.035 ≤0.035

Mechanical properties in different treatment conditions

To DIN E 17201

Hardness in different treatment conditions

S

Cr

Mo

Ni

≤0.035 0.90 – 1.20 0.15 – 0.30 0.020–0.040 0.90 – 1.20 0.15 – 0.30

– –

Quenched and tempered Q + T Heat treatment diameter in mm Ø

0.2% proof stress (Rp 0.2) min. N/mm2

Tensile strength in N/mm2 Rm min.

Elongation at fracture in % A min.

Reduction of area at fracture in % Z min.

Notch impact energy (ISO-V) in J KV min.

≤ 16 > 16 ≤ 40 > 40 ≤ 100 >100 ≤ 160 >160 ≤ 250

800 650 550 500 450

1000 – 1200 1900 – 1100 1800 – 1950 1750 – 1900 1700 – 1850

11 12 14 15 15

45 50 55 55 60

35 40 45 45 40

>250 ≤ 500

410

650 – 1800

16



33

Treated for shearing S HB

Soft annealed A HB

max. 255

max. 223

Quenching temperature in the end-quench test

Normalising

Hardening

Quenching medium

Tempering

850

850 – 890

830 – 870

Oil or water

540 – 680

Heat treatment

Temperatures in °C

Hardenability in the end-quench test

Distance from quenched end in mm 1.5

3

5

7

9

11

13

15

20

25

30

35

40

45

50

H max. min.

57 49

57 49

57 48

56 45

55 42

54 39

53 36

52 34

48 30

45 28

43 27

41 26

40 25

40 24

39 24

HH max. min.

57 52

57 52

57 51

56 49

55 46

54 44

53 42

52 40

48 36

45 34

43 32

41 31

40 30

40 29

39 29

HL max. min.

54 49

54 49

54 48

52 45

51 42

49 39

47 36

46 34

42 30

39 28

38 27

36 26

35 25

35 24

34 24

Hardness in HRC

50

1800 1600

80

Rp 0,2

1400

70

1200

60 Z

50

800

40

600

30

p

0,2

1000

400

20 A

200 0

10

0

100

200

300 400 500 Anlasstemperatur in oC

600

0

700

Bruchdehnung A und Brucheinschnürung Z in %

90 Rm

m

Typical values for 30 mm diameter

100

2000

Elongation at fracture A and reduction of area at fracture Z in %

Tempering diagram

2 0.2% proof stress R andZugfestigkeit tensile strength m in2 N/mm R in R N/mm Streckgrenze Rp0.2 und

THYROFORT® 34 CrMo 4 / 34 CrMoS 4

Tempering temperature in °C

Hardenability diagram

70 65 HH grade HH-Sorte Überschneidung Overlap of HH+HL-Sorte HH + HL grade

60

HL-Sorte HL grade 55

HärteininHRC HRC Hardness

50 45 40 35 30 25 20 0

5

10

15

20

25

30

35

40

45

50

55

Distance from quenched end ininmm Abstand von der abgeschreckten Stirnfläche mm

Time-temperaturetransformation diagram for continuous cooling

1200 1100 1000 900 AC3 Temperature in in °CoC Temperatur

800 700

8

F 3

600

30 40 45

P 5

A

45

45 55

55

AC1 55

3 55

500 B

MS 3

400

70 85

300

90

92

90

89

M 200 Härtewerte 100 Hardness HV 10 0 100 Zeit in s Time in s

15 5

597

101

574 435 353 321 295 283 281 231 231 200 187 193

102 100 Zeit in min Time in min.

103 101

104 102 100 Zeit ininhh Time

105

106 104

10 101

102

51

THYROFORT® 42 CrMo 4 / 42 CrMoS 4 Material No. Code

Material No.

Code

Material No.

Code

1.7225

42CrMo4

1.7227

42CrMoS4

Chemical composition Typical analysis in %

C 42CrMo4 0.38 – 0.45 42CrMoS4 0.38 – 0.45

Si

Mn

P

≤0.40 ≤0.40

0.60 – 0.90 0.60 – 0.90

≤0.035 ≤0.035

Mechanical properties in different treatment conditions

To DIN E 17201

Hardness in different treatment conditions

Heat treatment

Temperatures in °C

Cr

Mo

Ni

≤0.035 0.90 – 1.20 0.15 – 0.30 0.020–0.040 0.90 – 1.20 0.15 – 0.30

– –

Quenched and tempered Q + T Heat treatment diameter in mm Ø

0.2% proof stress (Rp 0.2) min. N/mm2

Tensile strength in N/mm2 Rm min.

Elongation at fracture in % A min.

Reduction of area at fracture in % Z min.

Notch impact energy (ISO-V) in J KV min.

≤ 16 > 16 ≤ 40 > 40 ≤ 100 >100 ≤ 160 >160 ≤ 250

900 750 650 550 500

1100 – 1300 1000 – 1200 1900 – 1100 1800 – 1950 1750 – 1900

10 11 12 13 14

40 45 50 50 55

30 35 35 35 35

>250 ≤ 500 >500 ≤ 750

460 390

1700 – 1850 1600 – 1750

15 16

– –

27 22

Treated for shearing S HB

Soft annealed A HB

max. 255

max. 241

Quenching temperature in the end-quench test

Normalising

Hardening

Quenching medium

Tempering

850

840 – 880

820 – 860

Oil or water

540 – 680

Hardenability in the end-quench test

Distance from quenched end in mm 1.5

3

5

7

9

11

13

15

20

25

30

35

40

45

50

H max. min.

61 53

61 53

61 52

60 51

60 49

59 43

59 40

58 37

56 34

53 32

51 31

48 30

47 30

46 29

45 29

HH max. min.

61 56

61 56

61 55

60 54

60 52

59 48

59 46

58 44

56 41

53 39

51 38

48 36

47 36

46 35

45 34

HL max. min.

58 53

58 53

58 52

57 51

56 49

54 43

53 40

51 37

49 34

46 32

44 31

42 30

41 30

40 29

40 29

Hardness in HRC

52

S

THYROFORT® 42 CrMo 4 / 42 CrMoS 4 100

2000 Rm

1800

80

Rp 0,2

1400

70

1200

60

1000

50

800

40

600

30

p

0,2

Z

400

20 A

200 0

10

0

100

200

300 400 500 Anlasstemperatur in oC

600

0

700

Elongation at fracture A and reduction of area at fracture Z in %

1600

Bruchdehnung A und Brucheinschnürung Z in %

90

m

Typical values for 30 mm diameter

2 0.2% proof stress R andZugfestigkeit tensile strength m in2 N/mm R in R Streckgrenze Rp0.2 und N/mm

Tempering diagram

Tempering temperature in °C

Hardenability diagram

70 65 HH grade HH-Sorte Überschneidung Overlap of HH+HL-Sorte HH + HL grade

60

HL-Sorte HL grade 55

HärteininHRC HRC Hardness

50 45 40 35 30 25 20 0

5

10

15

20

25

30

35

40

45

50

55

Abstand von der abgeschreckten Stirnfläche mm Distance from quenched end ininmm

Time-temperaturetransformation diagram for continuous cooling

1200 1100 1000

Temperature in in °CoC Temperatur

900 AC3

800 700

15 25 30 85 75 70

3 10

F 600

400

AC1

P

1

5 20

A 500

35 65

B MS

5

10 15

75

300

90

95

99

M

92 70

200 100

Härtewerte Hardness

566 599 496 446 342 311 314 293 286 239 213 206 197

HV 10 0 100 Zeit in s Time in s

101

102 100 Zeit Timeininmin min.

103 101

104 102 100 Zeit in Time in hh

105

106

103 101

104 102

53

THYROFORT® 50 CrMo 4 Material No. Code

Material No.

Code

1.7228

50CrMo4

Chemical composition Typical analysis in %

C

Si

Mn

P

S

0.46 – 0.54

≤0.40

0.50 – 0.80

≤0.035

≤0.035

Mechanical properties in different treatment conditions

To DIN E 17201

Hardness in different treatment conditions

Cr

Mo

Ni

0.90 – 1.20 0.15 – 0.30



Quenched and tempered Q + T Heat treatment diameter in mm Ø

0.2% proof stress (Rp 0.2) min. N/mm2

Tensile strength in N/mm2 Rm min.

Elongation at fracture in % A min.

Reduction of area at fracture in % Z min.

Notch impact energy (ISO-V) in J KV min.

≤ 16 > 16 ≤ 40 > 40 ≤ 100 >100 ≤ 160 >160 ≤ 250

900 780 700 650 550

1100 – 1300 1000 – 1200 1900 – 1100 1850 – 1000 1800 – 1950

9 10 12 13 13

40 45 50 50 50

30 30 30 30 30

>250 ≤ 500 >500 ≤ 750

540 490

1750 – 1900 1700 – 1850

14 15

– –

20 15

Treated for shearing S HB

Soft annealed A HB

See condition A

max. 248

Quenching temperature in the end-quench test

Normalising

Hardening

Quenching medium

Tempering

850

840 – 880

820 – 860

Oil

540 – 680

Heat treatment

Temperatures in °C

Hardenability in the end-quench test

Distance from quenched end in mm 1.5

3

5

7

9

11

13

15

20

25

30

35

40

45

50

H max. min.

65 58

65 58

64 57

64 55

63 54

63 53

63 51

62 48

61 45

60 41

58 39

57 38

55 37

54 36

54 36

HH max. min.

65 60

65 60

64 59

64 58

63 57

63 56

63 55

62 53

61 50

60 47

58 45

57 44

55 43

54 42

54 42

HL max. min.

63 58

63 58

62 57

61 55

60 54

60 53

59 51

57 48

56 45

54 41

52 39

51 38

49 37

48 36

48 36

Hardness in HRC

54

90

Rm

Rp 0,2

1600

80 70

1200

60

1000

50

0,2

1400

Z

40

p

800 600

30

400

20 A

200 0

Hardenability diagram

Bruchdehnung A und Brucheinschnürung Z in %

1800

m

Typical values for 30 mm diameter

100

2000

Elongation at fracture A and reduction of area at fracture Z in %

Tempering diagram

0.2% proof stress R and tensile strength Rm in2 N/mm2 Streckgrenze R p0.2 und Zugfestigkeit R in N/mm

THYROFORT® 50 CrMo 4

10

0

100

200

300 400 500 600 Anlasstemperatur in oC in °C Tempering temperature

0

700

70 65 60 55

Härte HRC Hardness in in HRC

50 45 40 35 HH grade HH-Sorte Überschneidung Overlap of HH+HL-Sorte HH + HL grade

30

HL-Sorte HL grade 25 20 0

5

10

15

20

25

30

35

40

45

50

55

Abstand von der abgeschreckten Stirnfläche mm Distance from quenched end ininmm

Time-temperaturetransformation diagram for continuous cooling

1200 1100 1000 900 AC3

Temperature Temperaturinin°CoC

800 700

F

A

3

1

600

3

10 10 10 90 90 90

8 82

5

P

AC1

87

500 B 400

MS

3

300

5

10

M

30

80

200 100

90

92

95

15 5

Härtewerte Hardness 599 635 568 505 404 366 339

HV 10 0 100 Zeit in s Time in s

325 329

101

102 100 Zeit in min Time in min.

227 255 243 285

103 101

104 102 100 Zeit ininhh Time

105

106

103 101

104 102

55

THYROFORT® 30 CrMoV 9 Material No. Code

Material No.

Code

1.7707

30CrMoV9* *To DIN E 17201

Chemical composition Typical analysis in %

C 30CrMoV9 0.26 – 0.34

Si

Mn

P

S

≤0.40

0.40 – 0.70

≤0.035

≤0.035

Mechanical properties in different treatment conditions To DIN E 17201

Heat treatment

2.30 – 2.70 0.15 – 0.25

0.2% proof stress (Rp 0.2) min. N/mm2

Tensile strength in N/mm2 Rm min.

Elongation at fracture in % A min.

Reduction of area at fracture in % Z min.

Notch impact energy (ISO-V) in J KV min.

1050 1020 1900 1800 1700 1590

1250 – 1450 1200 – 1450 1100 – 1300 1000 – 1200 1900 – 1100 1800 – 1950

9 9 10 11 12 14

35 35 40 45 50 –

25 25 30 35 35 35

16 40 100 160 250 500

Ni

V

≤0.60

0.10 –0.20

Treated for shearing S HB

Soft annealed A HB

See condition A

max. 248

Quenching temperature in the end-quench test

Normalising

Hardening

Quenching medium

Tempering

850

860 – 900

840 – 880

Oil or water

540 – 650

Temperatures in °C

Hardenability in the end-quench test

Distance from quenched end in mm

Hardness in HRC

56

Mo

Quenched and tempered Q + T Heat treatment diameter in mm Ø

≤ > 16 ≤ > 40 ≤ >100 ≤ >160 ≤ >250 ≤

Hardness in different treatment conditions

Cr

1.5

3

5

7

9

11

13

15

20

25

30

35

40

45

50

H max. min.

56 48

56 48

56 47

56 47

56 46

56 46

55 45

55 44

54 41

53 39

52 38

51 37

50 36

49 35

48 34

HH max. min.

56 51

56 51

56 50

56 50

56 50

56 49

55 48

55 48

54 45

53 43

52 42

51 41

50 40

49 39

48 38

HL max. min.

54 48

54 48

54 47

53 47

53 46

52 46

52 45

52 44

51 41

49 39

48 38

47 37

46 36

45 35

44 34

THYROFORT® 30 CrMoV 9 100

2000 1800

80

Rp 0,2

1400

70

1200

60

Z

50

800

40

600

30

p

0,2

1000

400

20

A

200 0

Hardenability diagram

Elongation at fracture A and reduction of area at fracture Z in %

1600

Bruchdehnung A und Brucheinschnürung Z in %

90 Rm

m

Typical values for 30 mm diameter

2 0.2% proof stress RRp0.2 and tensile strength m in2 N/mm und Zugfestigkeit R in R N/mm Streckgrenze

Tempering diagram

10

0

100

200

300 400 500 Anlasstemperatur in oCin °C Tempering temperature

600

0

700

70 65 HH grade HH-Sorte Überschneidung Overlap of HH+HL-Sorte HH + HL grade

60

HL-Sorte HL grade 55

HärteininHRC HRC Hardness

50 45 40 35 30 25 20 0

5

10

15

20

25

30

35

40

45

50

55

Abstand von der abgeschreckten Stirnfläche mm Distance from quenched end ininmm

Time-temperaturetransformation diagram for continuous cooling

1200 1100 1000

Temperature in in °CoC Temperatur

900 AC3

800 700

F

40

3

70 70 70 70 30 30 30 30

AC1

P

600 A 500 400

B MS

60

300 M

60

100 100 100 100

100

97 60

200 100

172

Härtewerte Hardness 496

HV 10 0

100 Zeit ininss Time

101

478 481 493 428 404 390 351 374 351

102 100 Zeit in min Time in min.

264 186 177 170

103 101

104 102 100 Zeit ininhh Time

105

106

103 101

104 102

57

THYROFORT® 36 CrNiMo 4 Material No. Code

Material No.

Code

1.6511

36CrNiMo4

Chemical composition Typical analysis in %

C

Si

Mn

P

S

0.32– 0.40

≤0.40

0.50 – 0.80

≤0.035

≤0.035

Mechanical properties in different treatment conditions

Hardness in different treatment conditions

Cr

Mo

Ni

0.90 – 1.20 0.15 – 0.30 0.90–1.20

Quenched and tempered Q + T Heat treatment diameter in mm Ø

0.2% proof stress (Rp 0.2) min. N/mm2

Tensile strength in N/mm2 Rm min.

Elongation at fracture in % A min.

Reduction of area at fracture in % Z min.

Notch impact energy (ISO-V) in J KV min.

≤ 16 > 16 ≤ 40 > 40 ≤ 100 >100 ≤ 160 >160 ≤ 250

900 800 700 600 550

1100 – 1300 1000 – 1200 1900 – 1100 1800 – 1950 1750 – 1900

10 11 12 13 14

45 50 55 60 60

35 40 45 45 45

Treated for shearing S HB

Soft annealed A HB

See condition A

max. 248

Quenching temperature in the end-quench test

Normalising

Hardening

Quenching medium

Tempering

850

840 – 870

820 – 850

Oil or water

540 – 680

Heat treatment

Temperatures in °C

Hardenability in the end-quench test

Distance from quenched end in mm 1.5

3

5

7

9

11

13

15

20

25

30

35

40

45

50

H max. min.

59 51

59 50

58 49

58 49

57 48

57 47

57 46

56 45

55 43

54 41

53 39

52 38

51 36

50 34

49 33

HH max. min.

59 54

59 53

58 52

58 52

57 51

57 50

57 50

56 49

55 47

54 45

53 44

52 43

51 41

50 39

49 38

HL max. min.

56 51

56 50

55 49

55 49

54 48

54 47

53 46

52 45

51 43

50 41

48 39

47 38

46 36

45 34

44 33

Hardness in HRC

58

90

Rm

1600

80

Rp 0,2

1400

70

1200

60

Z

1000

50

800

40

600

30

400

20 A

200 0

10

0

100

200

300 400 500 Anlasstemperatur in oC

600

0

700

Bruchdehnung A und Brucheinschnürung Z in %

1800

Elongation at fracture A and reduction of area at fracture Z in %

Typical values for 60 mm diameter

100

2000

Streckgrenze Rp 0,2 und Zugfestigkeit Rm in N/mm

Tempering diagram

0.2% proof stress Rp0.2 and tensile strength Rm in2 N/mm2

THYROFORT® 36 CrNiMo 4

Tempering temperature in °C

Hardenability diagram

70 65 HH grade HH-Sorte Überschneidung Overlap of HH+HL-Sorte HH + HL grade

60

HL-Sorte HL grade 55

Hardness in in HRC Härte HRC

50 45 40 35 30 25 20 0

5

10

15

20

25

30

35

40

45

50

55

Abstand von der abgeschreckten Stirnfläche mm Distance from quenched end ininmm

Time-temperaturetransformation diagram for continuous cooling

1200 1100 1000 900 AC3

Temperature Temperatur in in °C °C

800 700 3F

600

3

AC1

25 10 20 3 10P 75

A 500 400 MS

10 60 80 90

300

B 90

91

M 200 100 0

100

97 97 87 70

286 532 558 517 542 510 438 345 319 304 297 274 229

Härtewerte Hardness

HV 10 100 Zeit in s Time in s

101

102 100 Zeit in min Time in min.

103 101

104 102 100 Zeit ininhh Time

105

106

103 101

104 102

59

THYROFORT® 34 CrNiMo 6 Material No. Code

Material No.

Code

1.6582

34CrNiMo6

Chemical composition Typical analysis in %

C

Si

Mn

P

S

0.30– 0.38

≤0.40

0.50 – 0.80

≤0.035

≤0.035

Mechanical properties in different treatment conditions

To DIN E 17201

Hardness in different treatment conditions

Cr

Mo

Ni

1.30 – 1.70 0.15 – 0.30 1.30–1.70

Quenched and tempered Q + T Heat treatment diameter in mm Ø

0.2% proof stress (Rp 0.2) min. N/mm2

Tensile strength in N/mm2 Rm min.

Elongation at fracture in % A min.

Reduction of area at fracture in % Z min.

Notch impact energy (ISO-V) in J KV min.

≤ 16 > 16 ≤ 40 > 40 ≤ 100 >100 ≤ 160 >160 ≤ 250

1000 1900 1800 1700 1600

1200 – 1400 1100 – 1300 1000 – 1200 1900 – 1100 1800 – 1950

9 10 11 12 13

40 45 50 55 55

35 45 45 45 45

>250 ≤ 500 >500 ≤ 1000

1540 1490

750 – 1900 700 – 1850

14 15

– –

45 40

Treated for shearing S HB

Soft annealed A HB

See condition A

max. 248

Quenching temperature in the end-quench test

Normalising

Hardening

Quenching medium

Tempering

850

850 – 880

830 – 860

Oil

540 – 660

Heat treatment

Temperatures in °C

Hardenability in the end-quench test

Distance from quenched end in mm 1.5

3

5

7

9

11

13

15

20

25

30

35

40

45

50

H max. min.

58 50

58 50

58 50

58 50

57 49

57 48

57 48

57 48

57 48

57 47

57 47

57 47

57 46

57 45

57 44

HH max. min.

58 53

58 53

58 53

58 53

57 52

57 51

57 51

57 51

57 51

57 50

57 50

57 50

57 50

57 49

57 48

HL max. min.

55 50

55 50

55 50

55 50

54 49

54 48

54 48

54 48

54 48

54 47

54 47

54 47

53 46

53 45

53 44

Hardness in HRC

60

1800 1600

80

Rp 0,2

1400

70

1200

60 Z

50

800

40

600

30

p

0,2

1000

400

20

A

200 0

Bruchdehnung A und Brucheinschnürung Z in %

90 Rm

m

Typical values for 60 mm diameter

100

2000

Elongation at fracture A and reduction of area at fracture Z in %

Tempering diagram

0.2% proof stress R and tensile strength Rm in2 N/mm2 Streckgrenze Rp0.2 und Zugfestigkeit R in N/mm

THYROFORT® 34 CrNiMo 6

10

0

100

200

300 400 500 Anlasstemperatur in oC

600

0

700

Tempering temperature in °C

Hardenability diagram

70 65 60 55

Härte HRC Hardness in in HRC

50 45 40 35 HH grade HH-Sorte Überschneidung Overlap of HH+HL-Sorte HH + HL grade

30

HL-Sorte HL grade 25 20 0

5

10

15

20

25

30

35

40

45

50

55

Abstand von der abgeschreckten Stirnfläche mm Distance from quenched end ininmm

Time-temperaturetransformation diagram for continuous cooling

1200 1100 1000

Temperature in in °CoC Temperatur

900 AC3

800 700 F

600 500 400

100

8

32

65

65

B

MS

15 20 30

40

70

80

85

M Härtewerte Hardness

90

92 87 82 3

528 510 505 529 527 483 433 383 349

100 Zeit in s Time in s

239 202

328 324

302

HV 10 0

AC1

35

P

A

300 200

15 3

101

102 100 Zeit in in min Time min.

103 101

104 102 100 Zeit ininhh Time

105

106

103 101

104 102

61

THYROFORT® 30 CrNiMo 8 Material No. Code

Material No.

Code

1.6580

30CrNiMo8

Chemical composition Typical analysis in %

C

Si

Mn

P

S

0.26– 0.34

≤0.40

0.30 – 0.60

≤0.035

≤0.035

Mechanical properties in different treatment conditions

To DIN E 17201

Hardness in different treatment conditions

Cr

Mo

Ni

1.80 – 2.20 0.30 – 0.50 1.80–2.20

Quenched and tempered Q + T Heat treatment diameter in mm Ø

0.2% proof stress (Rp 0.2) min. N/mm2

Tensile strength in N/mm2 Rm min.

Elongation at fracture in % A min.

Reduction of area at fracture in % Z min.

Notch impact energy (ISO-V) in J KV min.

≤ 16 > 16 ≤ 40 > 40 ≤ 100 >100 ≤ 160 >160 ≤ 250

1050 1050 1900 1800 1700

1250 – 1450 1250 – 1450 1100 – 1300 1000 – 1200 1900 – 1100

9 9 10 11 12

40 40 45 50 50

30 30 35 45 45

>250 ≤ 500 >500 ≤ 1000

1630 1590

1850 – 1000 1800 – 1950

12 12

– –

45 40

Treated for shearing S HB

Soft annealed A HB

See condition A

max. 248

Quenching temperature in the end-quench test

Normalising

Hardening

Quenching medium

Tempering

850

850 – 880

830 – 860

Oil

540 – 660

Heat treatment

Temperatures in °C

Hardenability in the end-quench test

Distance from quenched end in mm

Hardness in HRC

62

1.5

3

5

7

9

11

13

15

20

25

30

35

40

45

50

H max. min.

56 48

56 48

56 48

56 48

55 47

55 47

55 47

55 46

55 46

54 45

54 45

54 44

54 44

54 43

54 43

HH max. min.

56 51

56 51

56 51

56 51

55 50

55 50

55 50

55 49

55 49

54 48

54 48

54 47

54 47

54 47

54 47

HL max. min.

53 48

53 48

53 48

53 48

52 47

52 47

52 47

52 46

52 46

51 45

51 45

51 44

51 44

50 43

50 43

THYROFORT® 30 CrNiMo 8 Tempering diagram Rm 1200

1000

Rp 0,2

800

80

600

60 Z

400

40

200

20 A

0

Bruchdehnung A und Brucheinschnürung Z in % Elongation at fracture A and reduction of area at fracture Z in %

Typical values for 60 mm diameter

2 0.2% proof stress RRp0.2 and tensile strength R N/mm in N/mm 2 Streckgrenze p 0,2 und Zugfestigkeit Rm inm

1400

450 550 650 oC Anlasstemperatur Tempering temperature in °C

Hardenability diagram

70 65 60 55

HärteininHRC HRC Hardness

50 45 40 35 HH grade HH-Sorte Überschneidung Overlap of HH+HL-Sorte HH + HL grade

30

HL-Sorte HL grade 25 20 0

5

10

15

20

25

30

35

40

45

50

55

Abstand von der abgeschreckten Stirnfläche mm Distance from quenched end ininmm

Time-temperaturetransformation diagram for continuous cooling

1200 1100 1000

Temperature Temperaturinin°CoC

900 800

AC3

700

AC1

600 A 500 400

MS

B

300

10

20

M 200 100

Härtewerte Hardness

574 552 530

60

85 90

95

534 560 480 476 433 397

HV 10 0

100 Zeit in s Time in s

101

102 100 Zeit in min Time in min.

103 101

104 102 100 Zeit ininhh Time

105

106

103 101

104 102

63

THYROFORT® 36 NiCrMo 16 Material No. Code

Material No.

Code

1.6773

36NiCrMo16

Chemical composition Typical analysis in %

C

Si

Mn

P

S

0.32– 0.39

≤0.40

0.30 – 0.60

≤0.030

≤0.025

Mechanical properties in different treatment conditions

Hardness in different treatment conditions

Cr

Mo

Ni

1.60 – 2.00 0.25 – 0.45 3.60–4.10

Quenched and tempered Q + T Heat treatment diameter in mm Ø

0.2% proof stress (Rp 0.2) min. N/mm2

Tensile strength in N/mm2 Rm min.

Elongation at fracture in % A min.

Reduction of area at fracture in % Z min.

Notch impact energy (ISO-V) in J KV min.

≤ 16 > 16 ≤ 40 > 40 ≤ 100 >100 ≤ 160 >160 ≤ 250

1050 1050 1900 1800 1800

1250 – 1450 1250 – 1450 1100 – 1300 1000 – 1200 1000 – 1200

19 19 10 11 11

40 40 45 50 50

30 30 35 45 45

Treated for shearing S HB

Soft annealed A HB

See condition A

max. 269

Quenching temperature in the end-quench test

Normalising

Hardening

Quenching medium

Tempering

850

885 – 905

865 – 885

Air or oil

550 – 650

Heat treatment

Temperatures in °C

Hardenability in the end-quench test

Distance from quenched end in mm 1.5

3

5

7

9

11

13

15

20

25

30

35

40

45

50

H max. min.

57 50

56 49

56 48

56 48

56 48

56 48

55 47

55 47

55 47

55 47

55 47

55 47

55 47

55 47

55 47

HH max. min.

57 52

56 51

56 51

56 51

56 51

56 51

55 51

55 50

55 50

55 50

55 50

55 50

55 50

55 50

55 50

HL max. min.

55 50

54 49

53 48

53 48

53 48

53 48

52 47

52 47

52 47

52 47

52 47

52 47

52 47

52 47

52 47

Hardness in HRC

64

1800

90

Rm

1600

80

Rp 0,2

1400

70

Z

1200

60

1000

50

800

40

600

30

400

20 A

200 0

Bruchdehnung A und Brucheinschnürung Z in %

Typical values for 120 mm diameter

100

2000

Elongation at fracture A and reduction of area at fracture Z in %

Tempering diagram

0.2% proof stress R and tensile strength Rm in2 N/mm2 Streckgrenze Rp0.2 p 0,2 und Zugfestigkeit Rm in N/mm

THYROFORT® 36 NiCrMo 16

10

0

100

200

300 400 500 Anlasstemperatur in oC

600

0

700

Tempering temperature in °C

Hardenability diagram

70 65 60 55

HärteininHRC HRC Hardness

50 45 40 35 HH grade HH-Sorte Overlap of Überschneidung HH + HL grade HH+HL-Sorte

30

HL-Sorte HL grade 25 20 0

5

10

15

20

25

30

35

40

45

50

55

Distance from quenched end ininmm Abstand von der abgeschreckten Stirnfläche mm

Time-temperaturetransformation diagram for continuous cooling

1200 1100 1000

Temperature in in °CoC Temperatur

900 800 Ac1e

700

Ac1b

600 A+K 500 400 MS 300 B 200 100

Härtewerte Hardness

M

RA 528

518

518

515 470

462

HV 10 0

100 Zeit in s Time in s

101

102 100 Zeit in min Time in min.

103 101

104 102 100 Zeit in h Time in h

105

106

103 101

104 102

65

Thyrofort – The basics Heat-treatable steels are steels

and the cooling rate on hardening

Effect of microstructure

whose chemical composition

(i.e. the quenching medium).

The strength and toughness of a

makes them suitable for harden-

These parameters determine the

heat-treatable steel depend on

ing. In the quenched and tem-

capacity of a steel to attain

the hardening structure and the

pered condition, they exhibit a

roughly the same mechanical-

tempering temperature.

certain toughness at a given ten-

technological properties over a

80

sile strength.

certain cross-section of the com-

70

700 oC

Steel 42 CrMo 4

Heat-treatable steels, as stan-

ponent after hardening and tem-

dardized in DIN EN 10083, for

pering. For small sections, this is

example, can be mild carbon

possible with unalloyed or Mn-,

steels or steels alloyed with man-

Cr- and B-alloyed steels. Larger

ganese, chromium, molybdenum,

Reduction of Area in %

600 oC Tempering Temperature 60

500 oC 450 oC 350 oC

50 Brittle Fracture

100% M

40 Transition 30

50% B 50% M

Ductile Fracture 55% F + P 45% M

20 600

sections demand fairly large

1000

1500

2000

Tensile Strength in N/mm2 Acc. to H.-F. Klärner and E. Hougardy

nickel, vanadium and boron, hav-

quantities of the alloying elements

ing approximately 0.20 to 0.60 %

Cr, Ni, Mo and V in order to ensure

carbon, whose mechanical-tech-

through-hardening. Fig. 2 shows

nological properties can be

an example of the effect of alloy-

As shown in Fig. 3, using steel

designed to fulfill the given

ing elements on hardenability in

grade 42 CrMo 4 as an example,

requirements by the appropriate

the end-quench test on heat-

the most favourable combination

heat treatment – hardening fol-

treatable steels with approximate-

of tensile strength and toughness,

lowed by tempering at tempera-

ly 0.35% carbon.

illustrated here by the reduction

Fig. 3: Effect of the microstructure on reduction of area and toughness

tures usually over 550 °C.

of area, is reached after 60

tempering a 100 % martensitic

Effect of the alloying eleThe choice of a suitable steel for a component demanding a certain minimum yield point or ulti-

Hardness in HRC

ments on hardenability

50

bainite and martensite or 40 34 CrMo 4 30

the steel, the hardening section

66

ferrite-pearlite and martensite give less favourable results.

34 Cr 4

20 C 35E

mate strength and toughness depends on the hardenability of

structure. Mixed structures of

36 CrNiMo 4

10 0

10

20

Distance from end-face in mm

30

40

50

60

Fig. 2: Effect of alloying elements on hardenability in the end-quench test

The effect of the structure diminishes with increasing tempering temperature. Due to their superior hardening structure, better strength/toughness combinations can be ob-

Minimum Absorbed Energy (DVM Sample) in J

Technical information

tained with higher-alloyed steels

Effect of the carbon

Dimensional Range 40-100 mm

content

60

Improvements in the fatigue

CrNiMo steels 50 1% Cr steels

strength and/or wear resist-

40 1% CrMo steels

ance of heat-treatable

30

steels are often achieved by

unalloyed steels 20 300

400

500

600

700

800

900

1000

case hardening. Depending

Minimum Yield Point in N/mm 2

than with unalloyed or low-alloy grades (Fig. 4).

on the desired surface hardness,

Fig. 4: Effect of chemical composition on the minimum 0.2% proof stress and toughness of heat-treatable steels

these steels require a minimum carbon content that must be fully

Temper embrittlement

dissolved on hardening (Fig. 5).

Apart from these effects, the loss

The use of fine-grained steels is

of toughness due to embrittle-

recommended for flame or induc-

ment that occurs on tempering

tion hardening, to ensure lower

around 300 °C (300 °C embrittle-

sensitivity to cracking.

ment) and 500 °C (temper brittleness) should be mentioned to

Fig. 5: Hardness as a function of carbon content for structures with various martensite contents (acc. to Gerber and Wyss).

complete the picture. 80

Accompanying elements, such as

C-Steels Ni-Steels

phosphorus, arsenic, antimony

% Martensite 99.9% 95.0% 90.0%

70

and tin, increase the degree of 60

molybdenum or more rapid cooling after tempering reduce it. In order to avoid such brittleness effects, it is therefore advisable not to temper in the temperature

Hardness in HRC

temper embrittlement, while

80.0% 50.0% 50

Mn-Si-Steels Cr-Si-Steels Cr-Ni-Mo-Steels Cr-Ni-Steels Mo-Steels

40 Cr-Mo-Steels Cr-Steels

30 Greatest hardness acc. to Burns, Moore and Archer 20

Hardness with various martensite contents, acc. to Hodge and Orehoski

range from 250 °C to 530 °C. 10 0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Content of carbon dissolved in austenite in %

67

The heat-treatable steels dis-

Forming and machining

In order to improve machinability,

cussed in this publication are

Heat-treatable steels exhibit good

heat-treatable steels are usually

special engineering steels which

hot forming properties. Their cold

supplied with a controlled sul-

exhibit a higher degree of purity

workability depends on the car-

phur content of 0.020 – 0.040 %.

compared to high-grade steels,

bon content, the quantities of

Steels whose machinability has

particularly with regard to non-

alloying elements and the crys-

been improved by special metal-

metallic inclusions, and react uni-

talline structure. Heat-treatable

lurgical treatment can be sup-

formly to heat treatment. Careful

steels intended to be processed

plied on request.

balancing of the chemical compo-

by cold upsetting or cold extru-

sition and special manufacturing

sion are usually supplied in the

and testing conditions allow the

ASC-annealed condition.

most varied machining and ser-

Machinability is mostly influenced

vice properties to be achieved,

by the strength, the micro-

e.g. high or very specific strength

structure and the non-metallic

or hardenability in conjunction

inclusions.

with high demands on toughness,

In general, it can be said that

ductility, etc.

machinability deteriorates with increasing strength and tough-

Heat-treatable steels are predom-

ness. This is why ferritic-pearlitic

inantly used for mechanically

structures, for example, can be

highly stressed components, e.g.

more easily machined than

in automotive and general me-

bainitic or martensitic structures.

chanical engineering.

In cases involving extensive machining of components made of high-strength steels (approx. 2

>1000 N/mm ), it can thus be appropriate not to carry out hardening and tempering until the part has been pre-machined.

68

Technical information

Heat treatment Schematic representation Heat treatment

= Start of transformation

A Austenite range

B

Bainite range

The prerequisite for understanding

= End of transformation

F Ferrite range

M

Martensite range

P Pearlite range

the individual heat treatment processes of heat-treatable steels

1000

(continous)

900

and the resulting structures is a knowledge of the time-temperature-transformation (TTT) diagrams or the cooling-time-temperaturetransformation (CTT) diagrams of

A

600

F

P

6

3

B

MS

AC 1 Stress relieving

5

2

500

300

Tempering

AC 1

700

400

AC 3

AC 3

800

4 M

1

200 100

the individual steel grades.

0

Time (log.) Fig. 6 TTT-Diagram continous

Time in h (linear) Fig. 7 Time-temperature diagram

The important heat treatment processes for heat-treatable steels

Fig. 6: TTT diagram, continous

(acc. to DIN 17014) are shown

Fig. 7: Time-temperature diagram with linear abscissa

schematically in the isothermal and continuous TTT diagrams (Figs. 6

Heat treatment processes,

Quenching and tempering (Q + T,

and 8) or in the temperature-time

illustrated in a TTT diagram

Curves 1 and 3)

profile with linear time axis (Figs. 7

for continuous cooling

Hardening with subsequent tem-

and 9).

Hardening (Q, Curve 1)

pering, usually above 550 °C, in

Heat treatment consisting of

order to achieve the required com-

austenitising and cooling under

bination of mechanical properties.

conditions leading to an increase

It is particularly the aim to improve

in hardness due to more or less

the toughness in comparison with

complete transformation of the

the hardened state.

austenite into martensite and

Normalising (N, Curve 2)

possibly bainite.

Heat treatment consisting of austenitising at temperatures about 50 °C above AC3 and subsequent cooling in still air.

69

Heat treatment processes,

Heat treatment processes,

Stress relief annealing (Curve 4)

illustrated in a TTT diagram

illustrated in a temperature/

Annealing with the aim of reducing

with isothermal treatment

time profile with linear time

residual stresses without appre-

Isothermal transformation in the

axis

ciably changing the structure or

pearlite or bainite stage

Tempering (T, Curve 3)

mechanical properties.

(Curves 5 and 6)

Single or multiple heating of a

Soft annealing (A, Curve 7)

Heat treatment consisting of

hardened workpiece to a given

Heat treatment for reducing the

austenitising, followed by cooling

temperature AC1, holding at this

hardness of a workpiece to values

to an appropriate temperature and

temperature and subsequent ap-

below a given limit.

holding at this temperature until

propriate cooling.

N.B.: Soft annealing should not be

the desired degree of transforma-

Annealing to spherical carbides

confused with annealing to spheri-

tion has been achieved. Further

(AC, Curves 8 and 9)

cal carbides.

cooling to room temperature can

Annealing with the aim of spheroid-

Special case: Annealing for

be carried out as desired. Depend-

ising the carbides. It usually com-

particular shearing (S) and sawing

ing on the transformation tempera-

prises extended holding at a tem-

properties.

ture involved, a distinction is made

perature near AC1, possibly fluctu-

between pearlitising (Curve 6) and

ating around this value.

bainitising (Curve 5). 1000 900

AC1

F A

AC1

P

8

500

B 6

400 5 300

Temperature

Temperature in oC

700 600

AC3

AC3

800

ASC-annealing 7 Soft annealing 9

200 100 0 Time (log.) A Austenite range

B

= End of transformation

F Ferrite range

M Martensite range

Fig. 8: TTT diagram, isothermal

70

t

= Start of transformation

range of intermediate structure

Time

Fig. 9: Schematic representation of the temperature/time profile for annealing to spherical cementite (ASC) and soft annealing

Technical information

Sampling according to DIN EN 10083 Sampling of bar steel and wire rod

Round sections d up to 25 mm 1)

Fig. 10

Square and rectangular sections a over 25 mm a up to 25 mm 1) b≥a b≥a

d over 25 mm

b b

a

12

.5

d

12.5

a

12.5

12.5

d b 2)

b

3)

3)

a

.5

12.5

a

12

d d

12.5

Tensile specimen

12,5

notched bar impact specimen

1) For

thin products (d or b ≤ 25 mm) the specimen should, as far as possible, consist of an unmachined part of the bar.

2) With

products having a round section, the longitudinal axle of the notch should be generally in the direction of a diameter.

3)

With products having rectangular sections, the longitudinal axle of the notch must be at right angles to the wider roll surface.

The values given for the mechani-

tempered” or “normalised” heat-

cal properties in Figs. 1a-h and in

treated condition, taken in accor-

the material data sheets apply to

dance with Fig. 10.

samples in the “quenched and

71

Ruling heat treatment diameter Determination of the ruling heat treatment diameter acc. to DIN EN 17201 Name

Sketch of Product section

Round section

(bar)

Square section

(bar)

Oblong section

(bar)

Equation for determining the appropriate heat treatment diameter

d = 1.1 · a

a

d = 1.05 ·

d=

h

h

one-end

= Inner diameter

ruling heat treatment section of a

a,b = edge length

Di

= Height

h · Da 2-Di

Da -Di 2

Fd = Flange and shaft or roll diameter Fb = Flange and shaft or roll width

ment section is always expressed in the form of a diameter. This diameter corresponds to the diame-

This is a steel bar which, when

d = 2.5 · W W

cooled from the austenitisation Fd

D

d=

temperature, has the same cooling

Fb2 · D2

rate at the location of the crossFd

D

d = Fd

section envisaged for sampling as

Fb Fd

(Fd-4 D

D

d=

D

d = Fd

the ruling section of the product in

+D)2 +Fb2

question at the point envisaged for

Fb Schaft, roll

Fd

sampling.

Fb (bar)

Sw

(bar)

d = 1.03 · Sw

d = 0.7 · a a

If two equations are available, both are used to calculate d. The lower value of d is then used.

Fig. 11: Conversion formulas for determining the ruling heat treatment diameter d for various geometries

72

mension for the ruling heat treat-

ter of an “equivalent steel bar”.

Centre flange

Dreieck

are defined.

dimensions of the product, the dih

Fb

Triangle

which the mechanical properties

Sw = Hexagon width

W

double-end closed hollow body

Shaft end

product is the cross-section for

Regardless of the actual shape and

D

Di ≤ 80 mm d=2 ·W 80 < Di ≤ 200 mm d = 1.75 · W 200 < Di d = 1.5 · W

or

End flange

Di

W = wall thickness

h · Da 2-Di

d = 1.5 ·

Da Tube



d = 1.05 ·

Di

W

According to DIN EN 10083, the

d = 1.5 · h

Da Ring

b

d = 1.5 · h d=

Di



d = 1.5 · b

h

D

Disc with hole

= Diameter

Da = Outer diameter a

b

Disc

D

d=D

D

Fig. 11

In Fig. 6 equations are quoted for the determination of the appropriate heat treatment diameter d.

Technical information

Permissible deviations between check analysis and ladle analysis

Table 4 ± means that, for a given melt, either the upper or the lower limit of the range given for the ladle analysis in Tables 2 and 3 may be exceeded, but not both at once.

1

Element

Maximum permissible content in the ladle analysis % by weight

Deviation from limit1 % by weight

< 0.55

± 0.02

< 0.65

± 0.03

< 0.40

± 0.03

< 1.00

± 0.04

< 1.65

± 0.05

P

< 0.035

± 0.005

S

< 0.040

± 0.0052

< 2.00

± 0.05

< 2.20

± 0.10

< 0.30

± 0.03

< 0.50

± 0.04

< 2.00

± 0.05

< 4.10

± 0.07

< 0.25

± 0.02

C > 0.55 Si Mn > 1.00

2 For steels with a range of 0.020 to 0.040% sulphur according to the ladle analysis, the deviation from the limit is ± 0.005%.

For check analysis, chips must be taken uniformly over the whole cross-section of the test piece.

Cr > 2.00 Mo > 0.30 Ni > 2.00 V

73

Comparison of international standards Comparison of the heat-treatable steels according to DIN EN 10083 or DIN E 17201 and DIN 17212 with international designations and standards Grade

Mat. No.

Code name according to EN 10083-1

Thyrofort C 22 E

1.1151

C22E

Thyrofort C 35 E

1.1181

C35E

Thyrofort C 35 R Thyrofort Cf 35 Thyrofort C 45 E

1.1180 1.1183 1.1191

C35R – C45E

Thyrofort Thyrofort Thyrofort Thyrofort Thyrofort Thyrofort

1.1201 1.1193 1.1213 1.1203 1.1209 1.1221

C45R – – C55E C55R C60E

Thyrofort C 60 R Thyrofort 28 Mn 6

1.1223 1.1170

C60R 28Mn6

Thyrofort Thyrofort Thyrofort Thyrofort Thyrofort Thyrofort Thyrofort

Cr 2 CrS 2 Cr 4 CrS 4 Cr 4 CrS 4 Cr 4

1.7006 1.7025 1.7033 1.7037 1.7034 1.7038 1.7035

46Cr2 46CrS2 34Cr2 34CrS4 37Cr4 37CrS4 41Cr4

Thyrofort 41 CrS 4 Thyrofort 51 CrV 4

1.7039 1.8159

41CrS4 51CrV4

Thyrofort 25 CrMo 4

1.7218

25CrMo4

Thyrofort 25 CrMoS 4 Thyrofort 34 CrMo 4

1.7213 1.7220

25CrMoS4 34CrMo4

Thyrofort 34 CrMoS 4 Thyrofort 42 CrMo 4

1.7226 1.7225

34CrMoS4 42CrMo4

Thyrofort 42 CrMoS 4 Thyrofort 50 CrMo 4

1.7227 1.7228

42CrMoS4 50CrMo4

Thyrofort 30 CrMoV 9

1.7707



Thyrofort 36 CrNiMo 4 Thyrofort 34 CrNiMo 6

1.6511 1.6582

36CrNiMo4 34CrNiMo6

Thyrofort 30 CrNiMo 8

1.6580

30CrNiMo8

Thyrofort 36 NiCrMo 16

1.6773

36NiCrMo16

74

C 45 R Cf 45 Cf 53 C 55 E C 55 R C 60 E

46 46 34 34 37 37 41

Other German standards DIN E 17201 / DIN 17204 / DIN 1652 T4 / SEW 550 DIN E 17201 / DIN 17204 / DIN E 17240/ DIN 1652 T4 / SEW 550 DIN 17204 / DIN 1652 T4 DIN 17212 DIN E 17201 / DIN 17204 / DIN 1652 T4 / SEW 550 DIN 17204 / DIN 1652 T4 DIN 17212 DIN 17212 DIN 17204 / DIN 17222 DIN 17204 / DIN 17222 DIN E 17201 / DIN 17204 / DIN E 17222 / DIN 1652 T4 / SEW 550 DIN 17204 / DIN 1652 T4 DIN E 17201 / DIN 17204 / DIN 1652 T4 / SEW 550 DIN 1652 T4 / DIN 1654 T4 DIN 1652 T4 DIN 1652 T4 / DIN 1654 T4 DIN 1652 T4 DIN 1652 T4 / DIN 1654 T4 DIN 1652 T4 DIN 17204 / DIN 1652 T4 / DIN 1654 T4 DIN 1652 T4 DIN 17211 / DIN 17222 / DIN 1652 T4 DIN E 17201 / DIN 17204 / DIN 17176 / DIN 1652 T4 / DIN 1654 T4 DIN 1652 T4 DIN E 17201 / DIN 17204 / DIN 1652 T4 / DIN 1654 T4 / SEW 550 DIN 1652 T4 DIN E 17201 / DIN 17204 / DIN 1652 T4 / DIN 1654 T4 / SEW 550 DIN 1652 T4 DIN E 17201 / DIN 1652 T4 / SEW 550 DIN E 17201 / DIN 17204 / DIN 1652 T4 DIN 17204 / DIN 1652 T4 DIN E 17201 / DIN 17204 / DIN 1652 T4 / DIN 1654 T4 / SEW 550 DIN E 17201 / DIN 17204 / DIN 1652 T4 / DIN 1654 T4 / SEW 550 –

Table 5

USA

Japan

AISI / SAE /ASTM 1020/1023 JIS S20C / S20CK / S22C AISI / SAE /ASTM 1035/1038 JIS S35C AISI / SAE /ASTM 1035 AISI / SAE /ASTM 1035 AISI / SAE /ASTM 1045

– JIS S35C JIS S45C / S45C

AISI / SAE /ASTM AISI / SAE /ASTM AISI / SAE /ASTM AISI / SAE /ASTM AISI / SAE /ASTM AISI / SAE /ASTM

JIS JIS JIS JIS – JIS

1049 1045 1050/1055 1055 1055 1060/1064

– AISI / SAE /ASTM 1330 AISI / SAE /ASTM – AISI / SAE /ASTM – AISI / SAE /ASTM – AISI / SAE /ASTM

S50C S45C S50C S55C S58C

– JIS SCMn1

5045 / 5046 – – 5132 JIS SCr430(H) – 5135 JIS SCr435(H) – 5140 JIS SCr440(H)

– – AISI / SAE /ASTM 6145 / 6150 JIS SUP10 AISI / SAE /ASTM 4130

JIS SCM420 / SCM430 / SCCRM1

– – AISI / SAE /ASTM 4135 /4137 JIS SCM432 / SCM435(H)/SCCRM3 – – AISI / SAE /ASTM 4140 /4142 JIS SCM440(H)/SNB7 – AISI / SAE /ASTM 4150

– JIS SCM445(H)





SEW 550 AISI / SAE /ASTM 4340 / 9840 – AISI / SAE /ASTM 4337 / 4340 JIS SNCM447 –

JIS SNCM431





Technical information

Hardness comparison table Tensile strength, Brinell, Vickers and Rockwell hardness Tensile strength Rm N/mm2 255 270 285 305 320 335 350 370 385 400 415 430 450 465 480 495 510 530 545 560 575 595 610 625 640 660 675 690 705 720 740 755 770 785 800 820 835 850 865 880 900 915 930 950 965 995 1030 1060 1095 1125 1155 1190 1220 1255 1290 1320 1350 1385 1420 1455 1485 1520 1555 1595 1630 1665 1700 1740 1775 1810 1845 1880 1920 1955 1995

Brinell hardness Ball indentation mm d HB 6.63 6.45 6.30 6.16 6.01 5.90 5.75 5.65 5.54 5.43 5.33 5.26 5.16 5.08 4.99 4.93 4.85 4.79 4.71 4.66 4.59 4.53 4.47 4.43 4.37 4.32 4.27 4.22 4.18 4.13 4.08 4.05 4.01 3.97 3.92 3.89 3.86 3.82 3.78 3.75 3.72 3.69 3.66 3.63 3.60 3.54 3.49 3.43 3.39 3.34 3.29 3.25 3.21 3.17 3.13 3.09 3.06 3.02 2.99 2.95 2.92 2.89 2.86 2.83 2.81 2.78 2.75 2.73 2.70 2.68 2.66 2.63 2.60 2.59 2.57

76.0 80.7 85.5 90.2 95.0 99.8 105 109 114 119 124 128 133 138 143 147 152 156 162 166 171 176 181 185 190 195 199 204 209 214 219 223 228 233 238 242 247 252 257 261 266 271 276 280 285 295 304 314 323 333 342 352 361 371 380 390 399 409 418 428 437 447 (456) (466) (475) (485) (494) (504) (513) (523) (532) (542) (551) (561) (570)

Rockwell hardness

Vickers hardness HV 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150 155 160 165 170 175 180 185 190 195 200 205 210 215 220 225 230 235 240 245 250 255 260 265 270 275 280 285 290 295 300 310 320 330 340 350 360 370 380 390 400 410 420 430 440 450 460 470 480 490 500 510 520 530 540 550 560 570 580 590 600

HRB – 41.0 48.0 52.0 56.2 – 62.3 – 66.7 – 71.2 – 75.0 – 78.7 – 81.7 – 85.0 – 87.1 – 89.5 – 91.5 92.5 93.5 94.0 95.0 96.0 96.7 – 98.1 – 99.5 – (101) – (102) – (104) – (105) – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –

HRC

HR 30 N

– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – 20.3 21.3 22.2 23.1 24.0 24.8 25.6 26.4 27.1 27.8 28.5 29.2 29.8 31.0 32.2 33.3 34.4 35.5 36.6 37.7 38.8 39.8 40.8 41.8 42.7 43.6 44.5 45.3 46.1 46.9 47.7 48.4 49.1 49.8 50.5 51.1 51.7 52.3 53.0 53.6 54.1 54.7 55.2

– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – 41.7 42.5 43.4 44.2 45.0 45.7 46.4 47.2 47.8 48.4 49.0 49.7 50.2 51.3 52.3 53.6 54.4 55.4 56.4 57.4 58.4 59.3 60.2 61.1 61.9 62.7 63.5 64.3 64.9 65.7 66.4 67.1 67.7 68.3 69.0 69.5 70.0 70.5 71.2 71.7 72.1 72.7 73.2

Tensile strength Rm N/mm2

Brinell hardness Ball indentation mm d HB

2030 2070 2105 2145 2180 – – – – – – – – – – – – – – – – –

2.54 2.52 2.51 2.49 2.47 – – – – – – – – – – – – – – – – –

Rockwell hardness

Vickers hardness

(580) (589) (599) (608) (618) – – – – – – – – – – – – – – – – –

HV

HRB

HRC

HR 30 N

610 620 630 640 650 660 670 680 690 700 720 740 760 780 800 820 840 860 880 900 920 940

– – – – – – – – – – – – – – – – – – – – – –

55.7 56.3 56.8 57.3 57.8 58.3 58.8 59.2 59.7 60.1 61.0 61.8 62.5 63.3 64.0 64.7 65.3 65.9 66.4 67.0 67.5 68.0

73.7 74.2 74.6 75.1 75.5 75.9 76.4 76.8 77.2 77.6 78.4 79.1 79.7 80.4 81.1 81.7 82.2 82.7 83.1 83.6 84.0 84.4

Conversions of hardness values using this conversion table are only approximate. See DIN 50 150, December 1976.

Tensile strength

N/mm2

Rm

Brinell hardness1) 1) Calculated from: HB = 0.95 · HV

Diameter of the ball indentation in mm

d

(0.102 F/D2 = 30) D = 10

Hardness value =

Vickers hardness

Diamond pyramid Test forces ≥ 50 N

HV

Rockwell hardness

Ball 1.588 mm (1/16“) Total test force = 98 N

HRB

Diamond cone Total test force = 1471 N

HRC

0.102 · 2 F π D (D – √D2 – d2)

Diamond cone Total test force = 294 N

HB

HR 30 N

75

Forms supplied Product

Bar steel and round billets for tubemaking rolled

Dimensions

55 – 250 mm dia.

Tolerances Dia. or edge length

Lengths

Straightness

DIN 1013

Subject to purchase order

≤ 80 mm: 4.0 mm/m

> 200 mm dia. standard incompany tolerance, closer tolerance on request Sharp-edged 50 – 103 mm square

DIN 1014

Flat: Width: 80 – 510 mm Thickness: 25 – 160 mm Width/thickness ratio 10:1 max

DIN 1017 up to 150 mm width and 60 mm thickness; over 150 mm width standard in-company tolerance

Sheet bars rolled with bulbous narrow face

Width: 25 – 160 mm

Tolerance on request

Semis rolled

50 – 320 mm square, rising in 1 mm increments

Special:*) ≤ +100/-0

> 80 mm: 2.5 mm/m

Lengths/ weights

4.0 – 10 m, Hot-sawn other lengths or hot abrasion request ve-cut

Special:*) ≤ 100 mm +/- 1% of edge length

As-supplied condition

Surface finish

Untreated

Rough-peeled finish available for 52 Cold-sheara240 mm ble Max. permissible Special:*) Cold-sawable surface defect depCold-sawn, ths: cold abrasive- Normalized cut Round: 1% max. of Treated to dia. + 0.05 mm ferrite-pearlite Square: 1% max. of structure edge length Treated to Flat: 1.5% max. of hardness width, 2.0% max. of range thickness Soft-annealed Special:*) Spheroidize- Smaller surface defect depth on annealed request Stress-relieved

< 1000 mm2: 4.0 mm/m > 1000 mm2: 2.5 mm/m Special:*) Specially straightened

Thickness: 80 – 550 mm < 210 mm +/- 2% > 210 mm +/- 3% of edge length

End condition

≤ 210 mm square: hot-sawn or hot abrasive-cut

Standard: 6 mm/m Special:*) 4 mm/m

> 210 mm square: hot-sheared

> 100 mm – 210 mm +/- 1.5% of edge length

Special:*) Cold abrasivecut, cold-sawn

Quenched Edge radius: and tempered < 210 mm - 12-18% of edge length > 210 mm: without defined edge radius Max. perm. surface defect depth: ≤ 140 mm sq. 0.3 mm max. > 140 - 200 mm sq. 0.6 mm max. > 200 mm sq. visible defects eliminated

Bar steel and semis forged

65 – 750 mm dia.

DIN 7527

265 – 650 mm square

Bar steel: to DIN within the tolerance limit

flat: on request

Bright steel peeled

52 – 400 mm dia.

ISA Tol. 11 or comparable tolerance

peeled and polished

52 – 300 mm dia.

ISA Tol. 11 or comparable tolerance

ground

52 – 100 mm dia.

As-cast ingots/c.c. blooms Open-die forgings

on request

Semis: as-forged straightness

ISA-Tol. 8 or comparable tolerance

As-peeled straightness ≤ 2 mm/m, 1 mm/m or closer as a function of dimensions on request

Lengths as a function of dimensions and heattreatment condition on request

Hot abrasivecut or coldsawn

3 - 10 m, on request 30 m max. as a function of dia. and max. bar dead weight of 7 t

Hot-sawn/hot abrasive-cut

3–8m

Forgings forged to shape on request (drawing)

*) Special finishes subject to further inquiry (partly dependent on quality, dimensions and condition)

76

Special:*) Cold abrasivecut

Special:*) Cold-sawn/ abrasive-cut Dimensions 50 - 105 mm with round chamfer 30° or 45°, chamfer width approx. 5 -12 mm, other widths by arrangement

Special:*) - Rough-peeled - Turned - Milled

Technically crack-free condition e.g. eddycurrent tested or comparable technique, defined depth of roughness and suitable packaging by special arrangement

Temperature Comparison Chart

°C

°F

K

X = particular

K

X– 273

9 /5 (X–273) + 32

X

measured

°C

X

9 /5 X + 32

X + 273

temperature

°F

5 /9 (X–32)

X

5 /9 (X–32) + 273

°C

°F

°C

°F

0,00

380,00

716,00

653,15

910,00

1670,00

1183,15

–454,00

3,15

390,00

743,00

663,15

920,00

1688,00

1193,15

–328,00

73,15

400,00

752,00

673,15

930,00

1706,00

1203,15

–150,00

–238,00

123,15

410,00

770,00

683,15

940,00

1724,00

1213,15

–100,00

–148,00

173,15

420,00

788,00

693,15

950,00

1742,00

1223,15

– 90,00

–130,00

183,15

430,00

806,00

703,15

960,00

1760,00

1233,15

– 80,00

–112,00

193,15

440,00

824,00

713,15

970,00

1778,00

1243,15

– 70,00

– 94,00

203,15

450,00

842,00

723,15

980,00

1796,00

1253,15

– 60,00

– 76,00

213,15

460,00

860,00

733,15

990,00

1814,00

1263,15

– 50,00

– 58,00

223,15

470,00

878,00

743,15

1000,00

1832,00

1273,15

– 40,00

– 40,00

233,15

480,00

896,00

753,15

1010,00

1850,00

1283,15

– 30,00

– 22,00

243,15

490,00

914,00

763,15

1020,00

1868,00

1393,15

– 20,00



4,00

253,15

500,00

932,00

773,15

1030,00

1886,00

1303,15

– 17,78

0,00

255,37

510,00

950,00

783,15

1040,00

1904,00

1313,15

– 10,00

14,00

263,15

520,00

968,00

793,15

1050,00

1922,00

1323,15

0,00

32,00

273,15

530,00

986,00

803,15

1060,00

1940,00

1333,15

10,00

50,00

283,15

540,00

1004,00

813,15

1070,00

1958,00

1343,15

20,00

68,00

293,15

550,00

1022,00

823,15

1080,00

1976,00

1353,15

30,00

86,00

303,15

560,00

1040,00

833,15

1090,00

1994,00

1363,15

40,00

104,00

313,15

570,00

1058,00

843,15

1100,00

2012,00

1373,15

50,00

122,00

323,15

580,00

1076,00

853,15

1110,00

2030,00

1383,15

60,00

140,00

333,15

590,00

1094,00

863,15

1120,00

2048,00

1393,15

70,00

158,00

343,15

600,00

1112,00

873,15

1130,00

2066,00

1403,15

80,00

176,00

353,15

610,00

1130,00

883,15

1140,00

2084,00

1413,15

90,00

194,00

363,15

620,00

1148,00

893,15

1150,00

2102,00

1423,15

100,00

212,00

373,15

630,00

1166,00

903,15

1160,00

2120,00

1433,15

110,00

230,00

383,15

640,00

1184,00

913,15

1170,00

2138,00

1443,15

120,00

248,00

393,15

650,00

1202,00

923,15

1180,00

2156,00

1453,15

130,00

266,00

403,15

660,00

1220,00

933,15

1190,00

2174,00

1463,15

140,00

284,00

413,15

670,00

1238,00

943,15

1200,00

2192,00

1473,15

150,00

302,00

423,15

680,00

1256,00

953,15

1210,00

2210,00

1483,15

160,00

320,00

433,15

690,00

1274,00

963,15

1220,00

2228,00

1493,15

170,00

338,00

443,15

700,00

1292,00

973,15

1230,00

2246,00

1503,15

180,00

356,00

453,15

710,00

1310,00

983,15

1240,00

2264,00

1513,15

190,00

374,00

463,15

720,00

1328,00

993,15

1250,00

2282,00

1523,15

200,00

392,00

473,15

730,00

1346,00

1003,15

1260,00

2300,00

1533,15

210,00

410,00

483,15

740,00

1364,00

1013,15

1270,00

2318,00

1543,15

220,00

428,00

493,15

750,00

1382,00

1023,15

1280,00

2336,00

1553,15

230,00

446,00

503,15

760,00

1400,00

1033,15

1290,00

2354,00

1563,15

240,00

464,00

513,15

770,00

1418,00

1043,15

1300,00

2372,00

1573,15

250,00

482,00

523,15

780,00

1436,00

1053,15

1310,00

2390,00

1583,15

260,00

500,00

533,15

790,00

1454,00

1063,15

1320,00

2408,00

1593,15

270,00

518,00

543,15

800,00

1472,00

1073,15

1330,00

2426,00

1603,15

280,00

536,00

553,15

810,00

1490,00

1083,15

1340,00

2444,00

1613,15

290,00

554,00

563,15

820,00

1508,00

1093,15

1350,00

2462,00

1623,15

300,00

572,00

573,15

830,00

1526,00

1103,15

1360,00

2480,00

1633,15

310,00

590,00

583,15

840,00

1544,00

1113,15

1370,00

2498,00

1643,15

320,00

608,00

593,15

850,00

1562,00

1123,15

1380,00

2516,00

1653,15

330,00

626,00

603,15

860,00

1580,00

1133,15

1390,00

2234,00

1663,15

340,00

644,00

613,15

870,00

1598,00

1143,15

1400,00

2552,00

1673,15

350,00

662,00

623,15

880,00

1616,00

1153,15

1500,00

2732,00

1783,15

360,00

680,00

633,15

890,00

1634,00

1163,15

2000,00

3632,00

2273,15

370,00

698,00

643,15

900,00

1652,00

1173,15

2500,00

4532,00

2773,15

–273,15

–459,67

–270,00 –200,00

K

K

°C

°F

K

77

List of photos

78

Page

Source

Object/Motif

Cover 03 04 4– 5 4– 5 5 6 6– 7 7 8 8 8– 9 9 10 10 10 – 11 10 – 11 10 11 11 11 11 11

Alfing Steinmetz MAN, B&W Company photo Company photo, Siemens Company photo Thyssen Umformtechnik Alfing Steinmetz Company photo Company photo Steinmetz Company photo Bavaria Imagine MAN Shuton PSA Peugot Citroen DAF Doppelmayr Mannesmann Company photo Image

Crankshaft Crankshaft Ship’s engine Forge Turbine shaft Team meeting Crankshaft Crankshaft Chips Bar steel warehouse Bar steel warehouse Rudder spindles Bar steel warehouse Landing gear Oil tanker Ship’s engine Recirculating ball screw Peugot 607 XF95 truck Chairlift High-pressure tubes Sliding sleeve Ariane launcher

12 12 12 – 13 12 13 13 13 13 13 13 14 14 15 15 16 16 16 16 – 17 17 17 17

Company photo Atlas Copco Mannesmann Röhrenwerke Company photo Baker Hughes Company photo Schwellis/Peddinghaus Schwellis/Peddinghaus Company photo Worthington Heiser Company photo Company photo Company photo Company photo Company photo Company photo Company photo Company photo Carlow Company photo Company photo

Wheel loader Demolition hammer Continuous tube mill Sliding sleeve Oil tool Drilling rig BMW suspension Ripper tips/Excavator tooth Axle stub Gas cylinders Electric arc furnace Vacuum plant Continuous casting plant ESR plant Control room, 3000 t press Forging bar steel Blooming mill Forging, 3000 t press Peeling machine Bar steel warehouse Forging, 3000 t press

General note (liability) All statements regarding the properties or utilisation of the materials or products mentioned are for the purposes of description only. Guarantees regarding the existence of certain properties or a certain utilisation are only ever valid if agreed upon in writing.

79

THYROFORT THYROFORT

THYROFORT THYROFORT THYROFORT THYROFORT

Heat-treatable steels • Sales - Heat-treatable steels Tel. (+49) 2302/294346 · Fax (+49) 2302/294687 0 23 0 E-mail: [email protected]

EDELSTAHL WITTEN-KREFELD GMBH Auestraße 4, 58452 Witten/Germany · Tel. (+49) 2302/294307 · Fax (+49) 2302/294308 E-mail: [email protected] · Internet: www.edelstahl-witten-krefeld.de

c1/00

• Quality Department Tel. (+49) 2302/294020 · Fax (+49) 2302/2944363 02/29 44 36 Tel. (+49) 2151/832046 · Fax (+49) 2151/834156

Related Documents

Thyrofort
February 2021 0

More Documents from "anupthatta"

Sensor Training.pdf
January 2021 1
Thyrofort
February 2021 0