Trafo 3 Dan 1 Fasa

  • Uploaded by: elsirpp
  • 0
  • 0
  • January 2021
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Trafo 3 Dan 1 Fasa as PDF for free.

More details

  • Words: 1,567
  • Pages: 10
Loading documents preview...
4. TRAFO 1 PHASE Prinsip kerja dari sebuah transformator pada umumnya adalah sebagai berikut. Ketika Kumparan primer dihubungkan dengan sumber tegangan bolak-balik, perubahan arus listrik pada kumparan primer menimbulkan medan magnet yang berubah. Medan magnet yang berubah diperkuat oleh adanya inti besi dan dihantarkan inti besi ke kumparan sekunder, sehingga pada ujung-ujung kumparan sekunder akan timbul GGL induksi. Efek ini dinamakan induktansi timbal-balik (mutual inductance).

Pada skema transformator di atas, ketika arus listrik dari sumber tegangan yang mengalir pada kumparan primer berbalik arah (berubah polaritasnya) medan magnet yang dihasilkan akan berubah arah sehingga arus listrik yang dihasilkan pada kumparan sekunder akan berubah polaritasnya.

Hubungan antara tegangan primer, jumlah lilitan primer, tegangan sekunder, dan jumlah lilitan sekunder, dapat dinyatakan dalam persamaan:

Dimana:

Vp= tegangan primer (volt)

Vs = tegangan sekunder (volt)

Np = jumlah lilitan primer Ns = jumlah lilitan sekunder Prinsip kerja trafo 1 fasa adalah apabila kumparan primer dihubungkan dengan tegangan (sumber), maka akan mengalir arus bolak balik I 1 pada kumparan tersebut. Oleh karena kumparan menpunyai inti, arus I1, menimbulkan fluks magnet yang juga berubah – ubah, pada intinya.Akibat adanya fluks magnet yang berubah –ubah, pada kumparan primer akan timbul GGL induksi ep. Untuk mencari GGL yang dibangkitkan maka persamaan yang digunakan:

Kontruksi Trafo 1 Fasa

Dalam keadaan sederhana transformator mempunyai bagian-bagian sebagai berikut : 1. Kumparan Primer yaitu kumparan trafo yang dihubungkan ke sumber tegangan. 2. Kumparan Sekunder yaitu kumparan trafo yang dihubungkan dengan beban. 3. Inti yang dibuat dari lapisanplat dinamo. Bagian Inti Trafo Fungsi utama inti trafo adalah sebagai jalan atau penghantar garis-garis gaya magnit. Karena fluksi magnet yang mengalir pada inti trafo adalah fluksi bolak-balik, untuk itu diperlukan persyaratan agar kerugian histerisis dan arus pusar dapat ditekan sekecil mungkin. Untuk itu biasanya inti trafo dibuat dari bahan plat baja silikon dengan kadar silikonnya 4-5% dengan ketebalan 0,3 s/d 0,5mm. Dipasaran tersedia bermacam-macam bentuk bentuk inti trafo dalam bermacam ukuran.Yang perlu diperhatikan disini adalah cara penyusunan pelat-pelat inti trafo, harus diusahakan serapat mungkin, sehingga tidak ada celah udara. Untuk trafo satu fasa tersedia inti :

 Bentuk Core ( UI ) : efesiensinya rendah  Bentuk Shell ( EI ) : efesiensinya dapat mencapai 80-90% Yang dapat digunakan adalah inti yang tebalnya 0,5mm yang pada kerapatan fluksi (B)= 1Wb/m2, mempunyai kerugian besi (Pf)=2,3watt/kg. Luas Penampang Inti Trafo Luas penampang inti trafo akan menentukan daya trafo. Jadi semakin luas penampang suatu trafo akan mempunyai kapasitas daya yang semakin besar pula. Luas penampang inti trafo harus mampu mengalirkan fluksi magnit seluruhnya tanpa menimbulkan panas yang berlebihan. Untuk menentukan luas penampang inti yang diperlukan ,dapat digunakan rumus emperis sebagai berikut :

Dimana:

A = Luas penampang dalam satuan cm2

P = Daya out put trafo dalam Volt Amper f = frekvensi (Hz) Karena inti trafo berupa plat plat tipis untuk mencapai luas penampang tertentu, harus disusun berlapis-lapis. Penampang inti trafo dapat berbentuk bujur sangkar atau empat persegi panjang .apabila luas penampang inti telah diketahui dan lebar inti sudah di pilih maka jumlah plat inti trafo dapat di hitung yaitu : 

Berat inti = volume bersih inti x berat jenis inti



dimana berat jenis inti = 7,8. Untuk inti bentuk shell [ EI ] ukuran luas inti di tentukan lebar kaki tengahnya. Dipasaran tersedia bermacam-macam ukuran antara lain E25 , E32 , E38 , E44 dan seterusnya. Angka dibelakang huruf E menunjukkan lebar kaki tengah inti , sedangkan huruf E menandakan bentuk shell.

5. TRAFO 3 PHASE Transformator 3 fasa pada dasarnya merupakan Transformator 1 fase yang disusun menjadi 3 buah dan mempunyai 2 belitan, yaitu belitan primer dan belitan sekunder. Ada dua metode utama untuk menghubungkan belitan primer yaitu hubungan segitiga dan bintang (delta dan wye).Sedangkan pada belitan sekundernya dapat dihubungkan secara segitiga, bintang dan zig-zag (Delta, Wye dan Zig-zag).Ada juga hubungan dalam bentuk khusus yaitu hubungan open-delta (VV connection). Pada sistem tenaga listrik 3 fase, idealnya daya listrik yang dibangkitkan, disalurkan dan diserap oleh beban semuanya seimbang, P pembangkitan = P pemakain, dan juga pada tegangan yang seimbang. Pada tegangan yang seimbang terdiri dari tegangan 1 fase yang mempunyai magnitude dan frekuensi yang sama tetapi antara 1 fase dengan yang lainnya mempunyai beda fase sebesar 120°listrik, sedangkan secara fisik mempunyai perbedaan sebesar 60°, dan dapat dihubungkan secara bintang (Y,wye) atau segitiga (delta, Δ, D).

Gambar 1.sistem 3 fase.

Gambar 1 menunjukkan fasor diagram dari tegangan fase. Bila fasor-fasor tegangan tersebut berputar dengan kecepatan sudut dan dengan arah berlawanan jarum jam (arah positif), maka nilai maksimum positif dari fase terjadi berturut-turut untuk fase V1, V2 dan V3.sistem 3 fase ini dikenal sebagai sistem yang mempunyai urutan fasa a – b – c . sistem tegangan 3 fase dibangkitkan oleh generator sinkron 3 fase. Konfigurasi Transformator 3 fasa: 

Transformator hubungan segitiga – segitiga (delta – delta)

Gambar 1.Hubungan delta-delta (segitiga-segitiga). Pada gambar 1 baik belitan primer dan sekunder dihubungkan secara delta. Belitan primer terminal 1U, 1V dan 1W dihubungkan dengan suplai tegangan 3 fasa.Sedangkan belitan sekunder terminal 2U, 2V dan 2W disambungkan dengan sisi beban.Pada hubungan Delta (segitiga) tidak ada titik netral, yang diperoleh ketiganya merupakan tegangan line ke line, yaitu L1, L2 dan L3. Dalam hubungan delta-delta (lihat gambar 1), tegangan pada sisi primer (sisi masukan) dan sisi sekunder (sisi keluaran) adalah dalam satu fasa. Dan pada aplikasinya (lihat gambar 2), jika beban imbang dihubungkan ke saluran 1-2-3, maka hasil arus keluaran adalah sama besarnya. Hal ini menghasilkan arus line imbang dalam saluran masukan A-B-C. Seperti dalam beberapa hubungan delta, bahwa arus line adalah 1,73 kali lebih besar dari masing-masing arus Ip (arus primer) dan Is (arus sekunder) yang mengalir dalam lilitan primer dan sekunder. Power rating untuk transformator 3 fasa adalah 3 kali rating transformator tunggal.

Gambar 2. Diagram Hubungan Delta-Delta Transformator 3 Fasa Dihubungkan Pembangkit Listrik dan Beban (Load) 

Transformator hubungan bintang – bintang (wye – wye )

Gambar 3. Hubungan Belitan Bintang-bintang. Ketika transformator dihubungkan secara bintang-bintang, yang perlu diperhatikan adalah mencegah penyimpangan dari tegangan line ke netral (fase ke netral). Cara untuk mencegah menyimpangan adalah menghubungkan netral untuk primer ke netral sumber yang biasanya dengan cara ditanahkan (ground), seperti ditunjukkan pada Gambar 4. Cara lain adalah dengan menyediakan setiap transformator dengan lilitan ke tiga, yang pdisebut lilitan” tertiary”. Lilitan tertiary untuk tiga transformator dihubungkan secara delta seperti ditunjukkan pada Gambar 5, yang sering menyediakan cabang yang melalui tegangan dimana transformator dipasang. Tidak ada beda fasa antara tegangan line transmisi masukan dan keluaran (primer & sekunder) untuk transformator yang dihubungkan bintang-bintang.

Gambar 4.Hubungan bintang-bintang.

Gambar 5.Hubungan Bintang-bintang dengan belitan tertier. 

Transformator hubungan seitiga – bintang (delta – wye) Pada hubungan segitiga-bintang (delta-wye), tegangan yang melalui setiap lilitan primer adalah sama dengan tegangan line masukan. Tegangan saluran keluaran adalah sama dengan 1,73 kali tegangan sekunder yang melalui setiap transformator. Arus line pada phasa A, B dan C adalah 1,73 kali arus pada lilitan sekunder. Arus line pada fasa 1, 2 dan 3 adalah sama dengan arus pada lilitan sekunder.

Gambar 6. Hubungan Segitiga-Bintang (Delta-wye).

Hubungan delta-bintang menghasilkan beda fasa 30° antara tegangan saluran masukan dan saluran transmisi keluaran. Maka dari itu, tegangan line keluaran E12 adalah 30° mendahului tegangan line masukan EAB, seperti dapat dilihat dari diagram phasor. Jika saluran keluaran

memasuki kelompok beban terisolasi, beda fasanya tidak masalah. Tetapi jika saluran dihubungkan paralel dengan saluran masukan dengan sumber lain, beda phasa 30° mungkin akan membuat hubungan paralel tidak memungkinkan, sekalipun jika saluran tegangannya sebaliknya identik. Keuntungan penting dari hubungan bintang adalah bahwa akan menghasilkan banyak isolasi/penyekatan yang dihasilkan di dalam transformator. Lilitan HV (high Voltage/tegangan tinggi) telah diisolasi/dipisahkan hanya 1/1,73 atau 58% dari tegangan saluran.

Gambar 8. Skema Diagram Hubungan Delta-Bintang dan Diagram Phasor 

Transformatot hubungan segitiga terbuka (open delta) Hubungan open-delta ini untuk merubah tegangan sistem 3 fasa dengan menggunakan hanya 2 transformator yang dihubungkan secara open–delta.Rangkaian open–delta adalah identik dengan rangkaian delta–delta, kecuali bahwa satu transformer tidak ada. Bagaimanapun, hubungan open-delta jarang digunakan sebab hanya mampu dibebani sebesar 86.6% (0,577 x 3 x rating trafo) dari kapasitas transformator yang terpasang.

Gambar 7.Hubungan Open Delta. Sebagai contoh, jika 2 transformator 50 kVA dihubungkan secara open–delta, kapasitas transformator bank yang terpasang adalah jelas 2x50 = 100kVA. karen terhubung open-delta, maka transformator hanya dapat dibebani 86.6 kVA sebelum transformator mulai menjadi overheat (panas berlebih). Hubungan open–delta utamanya digunakan dalam situasi darurat. Maka, jika 3 transformator dihubungkan secara delta–delta dan salah satunya rusak dan harus diperbaiki/dipindahkan, maka hal ini memungkinkan 

Transformator hubungan zig – zag Transformator dengan hubungan Zig-zag memiliki ciri khusus, yaitu belitan primer memiliki tiga belitan, belitan sekunder memiliki enam belitan dan biasa digunakan untuk beban yang tidak seimbang (asimetris) - artinya beban antar fasa tidak sama, ada yang lebih besar atau lebih kecil-

Gambar 9. Hubungan Bintang-zigzag (Yzn5) Gambar 9 menunjukkan belitan primer 20 KV terhubung dalam bintang L1, L2 dan L3 tanpa netral N dan belitan sekunder 400 V merupakan hubungan Zig-zag dimana hubungan dari enam belitan sekunder saling menyilang satu dengan lainnya. Saat beban terhubung dgn phasa U dan N arus sekunder I2 mengalir melalui belitan phasa phasa U dan phasa S. Bentuk vektor tegangan Zig-zag garis tegangan bukan garis lurus,tetapi bergeser dengan sudut 60°. Daya pada Sistem 3 Fase 1. Daya sistem 3 fase Pada Beban yang Seimbang Jumlah daya yang diberikan oleh suatu generator 3 fase atau daya yang diserap oleh beban 3 fase, diperoleh dengan menjumlahkan daya dari tiap-tiap fase. Pada sistem yang seimbang, daya total tersebut sama dengan tiga kali daya fase, karena daya pada tiap-tiap fasenya sama.

Related Documents


More Documents from "RanjitKumar"

Trafo 3 Dan 1 Fasa
January 2021 0