Asociación Interamericana De Yoga: Por Swami Shankarananda Saraswathi

  • Uploaded by: Adriana Neira
  • 0
  • 0
  • January 2021
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Asociación Interamericana De Yoga: Por Swami Shankarananda Saraswathi as PDF for free.

More details

  • Words: 8,932
  • Pages: 36
Loading documents preview...
Asociación Interamericana de Yoga PROFESORADO TERAPIAS ENERGÉTICAS PARA LA MUJER

Por Swami Shankarananda Saraswathi

MODULO 1 ANATOMÍA DE LA MUJER TEMAS: SISTEMA REPRODUCTOR FEMENINO              

Sistema reproductor femenino. Esquema Órganos genitales externos o vulva Monte de Venus Labios mayores Labios menores Vestíbulo de la vagina Clítoris Bulbos del vestíbulo Órganos genitales internos Vagina Útero o matriz Trompas de Falopio Ovarios Glándulas genitales auxiliares: glándulas vestibulares y glándulas parauretrales

FISIOLOGÍA APARATO REPRODUCTOR FEMENINO     

Ovogénesis Ciclo sexual femenino Ciclo ovárico Ciclo uterino o menstrual Hormonas en el ciclo sexual femenino. Acciones

SISTEMA ENDOCRINO HORMONAL EN LA MUJER         

La glándula pituitaria El hipotálamo El timo La glándula pineal La tiroides Las glándulas adrenales La paratiroides El páncreas Los ovarios



Control del sistema endocrino por medio de autoregulación negativa

  

Órganos asociados al sistema endocrino Factores que afectan la función endocrina Patologías endocrinas

FISIOLOGÍA APARATO REPRODUCTOR FEMENINO     

Ovogénesis Ciclo sexual femenino Ciclo ovárico Ciclo uterino o menstrual Hormonas en el ciclo sexual femenino - Acciones

2

SISTEMA REPRODUCTOR FEMENINO

3

ESQUEMA SISTEMA REPRODUCTOR FEMENINO Los órganos genitales femeninos comprenden:

Órganos genitales externos 

(Colectivamente = vulva)



monte de Venus



labios mayores



labios menores



vestíbulo de la vagina



clítoris



bulbos del vestíbulo

Órganos genitales internos 

vagina



útero



trompas de Falopio



ovarios

Glándulas genitales auxiliares 

glándulas vestibulares



glándulas parauretrales

4

1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14.

trompa uterina (de Falopio) ovario cuerpo del útero fondo del útero vejiga urinaria sínfisis del pubis uretra clítoris vagina labio menor labio mayor Recto cuello uréter

MONTE DEL PUBIS = MONTE DE VENUS El monte del pubis es una eminencia redondeada que se encuentra por delante de la sínfisis del pubis. Está formada por tejido adiposo recubierto de piel con vello pubiano. LABIOS MAYORES Los labios mayores son dos grandes pliegues de piel que contienen en su interior tejido adiposo subcutáneo y que se dirigen hacia abajo y hacia atrás desde el monte del pubis. Después de la pubertad, sus superficies externas quedan revestidas de piel pigmentada que contiene glándulas sebáceas y sudoríparas y recubiertas por vello. El orificio entre los labios mayores se llama hendidura vulvar. LABIOS MENORES Los labios menores son dos delicados pliegues de piel que no contienen tejido adiposo subcutáneo ni están cubiertos por vello pero que poseen glándulas sebáceas y sudoríparas. Los labios menores se encuentran entre los labios mayores y rodean el vestíbulo de la vagina. En mujeres jóvenes sin hijos, habitualmente los labios menores están cubiertos por los labios mayores. En mujeres que han tenido hijos, los labios menores pueden protruir a través de los labios mayores.

VESTÍBULO DE LA VAGINA El vestíbulo de la vagina es el espacio situado entre los labios menores y en él se localizan los orificios de la uretra, de la vagina y de los conductos de salida de las glándulas vestibulares mayores (de Bartolino) que secretan moco durante la excitación sexual, el cual se añade al moco cervical y proporciona lubrificación. El orificio uretral externo se localiza 2 - 3 cm. por detrás del clítoris, e inmediatamente por delante del orificio vaginal. A cada lado del orificio uretral se encuentran los orificios de desembocadura de las glándulas parauretrales (de Skenne) que están situadas en las paredes de la uretra, y también secretan moco. El orificio vaginal es mucho más grande que el orificio uretral. El aspecto del orificio vaginal depende del himen, que es un delgado pliegue incompleto de membrana mucosa que rodea dicho orificio. CLÍTORIS El clítoris es un pequeño órgano cilíndrico compuesto por tejido eréctil que se agranda al rellenarse con sangre durante la excitación sexual. Tiene 2 - 3 cm. de longitud y está localizado entre los extremos anteriores de los labios menores. Consiste en: dos pilares, dos cuerpos cavernosos y un glande y se mantiene en su lugar por la acción de varios ligamentos. El glande del clítoris es la parte expuesta del mismo y es muy sensitivo igual que sucede con el glande del pene. La porción de los labios menores que rodea al clítoris recibe el nombre de prepucio del clítoris BULBOS DEL VESTÍBULO Los bulbos del vestíbulo son dos masas alargadas de tejido eréctil de unos 3 cm. de longitud que se encuentran a ambos lados del orificio vaginal. Estos bulbos están conectados con el glande del clítoris por unas venas. Durante la excitación sexual se agrandan, al rellenarse con sangre, y estrechan el orificio vaginal produciendo presión sobre el pene durante el acto sexual.

VAGINA La vagina es el órgano femenino de la copulación, el lugar por el que sale el líquido menstrual al exterior y el extremo inferior del canal del parto. Se trata de un tubo músculo membranoso que se encuentra por detrás de la vejiga urinaria y por delante del recto. En posición anatómica, la vagina desciende y describe una curva de concavidad anterior. Su pared anterior tiene una longitud de 6 - 8 cm., su pared posterior de 7 6

- 10 cm. y están en contacto entre sí en condiciones normales. Desemboca en el vestíbulo de la vagina, entre los labios menores, por el orificio de la vagina que puede estar cerrado parcialmente por el himen que es un pliegue incompleto de membrana mucosa. La vagina comunica por su parte superior con la cavidad uterina ya que el cuello del útero se proyecta en su interior, quedando rodeado por un fondo de saco vaginal. En esta zona es donde debe quedar colocado el diafragma anticonceptivo. El útero se encuentra casi en ángulo recto con el eje de la vagina. La pared vaginal tiene 3 capas: una externa o serosa, una intermedia o muscular (de músculo liso) y una interna o mucosa que consta de un epitelio plano estratificado no queratinizado y tejido conectivo laxo que forma pliegues transversales. La mucosa de la vagina tiene grandes reservas de glucógeno que da lugar a ácidos orgánicos originando un ambiente ácido que dificulta el crecimiento de las bacterias y resulta agresivo para los espermatozoides. Los componentes alcalinos del semen secretados, sobre todo, por las vesículas seminales, elevan el pH del fluido de la vagina que así resulta menos agresivo para los espermatozoides.

ÚTERO O MATRIZ El útero es un órgano muscular hueco con forma de pera que constituye parte del camino que siguen los espermatozoides depositados en la vagina hasta alcanzar las trompas de Falopio. Tiene unos 7-8 cm. de longitud, 5 - 7 cm. de ancho y 2 - 3 cm. de espesor ya que sus paredes son gruesas. Su tamaño es mayor después de embarazos recientes y más pequeño cuando los niveles hormonales son bajos como sucede en la menopausia. Está situado entre la vejiga de la orina por delante y el recto por detrás y consiste en dos porciones: los 2/3 superiores constituyen el cuerpo y el 1/3 inferior, el cuello o cérvix que protruye al interior de la parte superior de la vagina y en donde se encuentra el orificio uterino por el que se comunica el interior del útero con la vagina. La porción superior redondeada del cuerpo se llama fondo del útero y a los extremos del mismo o cuernos del útero se unen las trompas de Falopio, cuyas cavidades quedan así comunicadas con el interior del útero. Varios ligamentos mantienen al útero en posición. La pared del cuerpo del útero tiene tres capas: 

una capa externa serosa o perimetrio



una capa media muscular (constituida por músculo liso) o miometrio



una capa interna mucosa (con un epitelio simple columnar ciliado) o endometrio, en donde se implanta el huevo fecundado y es la capa uterina que se expulsa, casi en su totalidad, durante la menstruación. 7

Las células secretoras de la mucosa del cuello uterino producen una secreción llamada moco cervical, mezcla de agua, glucoproteínas, lípidos, enzimas y sales inorgánicas. A lo largo de sus años reproductores, las mujeres secretan de 20-60 ml de este líquido cada día que es menos viscoso y más alcalino durante el tiempo de la ovulación, favoreciendo así el paso de los espermatozoides a los que aporta nutrientes y protege de los fagocitos y del ambiente hostil de la vagina y del útero. Parece, además, que podría tener un papel en el proceso de capacitación de los espermatozoides. Durante el resto del tiempo, es más viscoso y forma un tapón cervical que impide físicamente el paso de los espermatozoides. TROMPAS DE FALOPIO Las trompas de Falopio son 2 conductos de 10 - 12 cm. de longitud y 1 cm. de diámetro que se unen a los cuernos del útero por cada lado. Están diseñadas para recibir los ovocitos que salen de los ovarios y en su interior se produce el encuentro de los espermatozoides con el óvulo y la fecundación. Con propósitos descriptivos, se divide cada trompa en cuatro partes:  El infundíbulo que es el extremo más externo y en donde se encuentra el orificio abdominal de la trompa, que comunica con la cavidad peritoneal. El infundíbulo presenta numerosos pliegues o fimbrias que atrapan al ovocito cuando se produce la ovulación para llevarlo al orificio abdominal de la trompa e introducirlo en el interior de la misma. Una de las fimbrias está sujeta al ovario correspondiente.  La ampolla que es la parte más ancha y larga de la trompa y la que recibe al ovocito desde el infundíbulo. Es el lugar en donde tiene lugar la fertilización del ovocito por el espermatozoide  El istmo que es una porción corta, estrecha y de paredes gruesas. Se une con el cuerno del útero en cada lado  La porción uterina que es el segmento de la trompa que atraviesa la pared del útero y por donde el ovocito es introducido en el útero. La pared de las trompas tiene una capa interna o mucosa con un epitelio simple columnar ciliado que ayuda a transportar el ovocito hasta el útero junto a células secretoras que producen nutrientes para el mismo, una capa intermedia de músculo liso cuyas contracciones peristálticas ayudan también, junto con los cilios de la mucosa, a transportar el ovocito, y una capa externa o serosa. OVARIOS Los ovarios son 2 cuerpos ovalados en forma de almendra, de aproximadamente 3 cm. de longitud, 1 cm. de ancho y 1 cm. de espesor. Se localiza uno a cada lado del útero y se mantienen en posición por varios ligamentos como, por ejemplo, el ligamento ancho del útero que forma parte del peritoneo parietal y que se une a los ovarios por un pliegue llamado mesoovario, formado por una capa 8

doble de peritoneo. Los ovarios constituyen las gónadas femeninas y tienen el mismo origen embriológico que los testículos o gónadas masculinas. En los ovarios se forman los gametos femeninos u óvulos, que pueden ser fecundados por los espermatozoides a nivel de las trompas de Falopio, y se producen y secretan a la sangre una serie de hormonas como la progesterona, los estrógenos, la inhibina y la relaxina. En los ovarios se encuentran los folículos ováricos que contienen los ovocitos en sus distintas fases de desarrollo y las células que nutren a los mismos y que, además, secretan estrógenos a la sangre, a medida que los ovocitos van aumentando de tamaño. El folículo maduro o folículo De Graaf es grande, está lleno de líquido y preparado para romperse y liberar el ovocito que será recogido por el infundíbulo de las trompas de Falopio. A este proceso se le llama ovulación. Los cuerpos lúteos o cuerpos amarillos son estructuras endocrinas que se desarrollan a partir de los folículos ováricos que han expulsado sus ovocitos u óvulos en la ovulación y producen y secretan a la sangre diversas hormonas como progesterona, estrógenos, relaxina e inhibina hasta que, si el ovocito no es fecundado, degeneran y son reemplazados por una cicatriz fibrosa. Antes de la pubertad, la superficie del ovario es lisa mientras que después de la pubertad se cubre de cicatrices progresivamente a medida que degeneran los sucesivos cuerpos lúteos. fondo fimbrias ovario trompa uterina (de Falopio) endometrio miometrio conducto cervical vagina (cortada) cuello cuerpo del útero GLÁNDULAS GENITALES AUXILIARES: GLÁNDULAS VESTIBULARES Y GLÁNDULAS PARAURETRALES Las glándulas vestibulares mayores (de Bartolino) son dos y tienen un tamaño de 0.5 cm. Se sitúan a cada lado del vestíbulo de la vagina y tienen unos conductos por donde sale su secreción de moco para lubrificar el vestíbulo de la vagina durante la excitación sexual.

9

Las glándulas vestibulares menores son pequeñas y están situadas a cada lado del vestíbulo de la vagina y también secretan moco que lubrifica los labios y el vestíbulo. Las glándulas parauretrales (de Skene) desembocan a cada lado del orificio externo de la uretra. También tienen una secreción mucosa lubrificante. SISTEMA ENDOCRINO HORMONAL EN LA MUJER Las glándulas son órganos pequeños pero poderosos que están situados en todo el cuerpo y que controlan importantes funciones del organismo por medio de la liberación de hormonas.         

La glándula pituitaria El hipotálamo El timo La glándula pineal La tiroides Las glándulas adrenales La paratiroides El páncreas Los ovarios

La glándula pituitaria

La glándula pituitaria a veces se denomina la "glándula maestra" porque ejerce gran influencia en los otros órganos del cuerpo. Su función es compleja e importante para el bienestar general. La glándula pituitaria está dividida en dos partes, la parte anterior y la posterior.

10

La pituitaria anterior produce diversas hormonas: Prolactina - La prolactina (o PRL por sus siglas en inglés) estimula la secreción láctea en la mujer después del parto y puede afectar los niveles hormonales de los ovarios en las mujeres y de los testículos en los hombres. Hormona del crecimiento - La hormona del crecimiento (GH por sus siglas en inglés) estimula el crecimiento infantil y es importante para mantener una composición corporal saludable. En adultos también es importante para mantener la masa muscular y ósea. Puede afectar la distribución de grasa en el cuerpo. Adrenocorticotropina - La adrenocorticotropina (ACTH por sus siglas en inglés) estimula la producción de cortisol por las glándulas adrenales. Cortisol se denomina una "hormona del estrés" porque es esencial para sobrevivir. Ayuda a mantener la presión arterial y los niveles de glucosa en la sangre. Hormona estimulante de la tiroides - La hormona estimulante de la tiroides (TSH por sus siglas en inglés) estimula la glándula tiroides para que produzca hormonas tiroideas, las cuales, a su vez, regulan el metabolismo del cuerpo, la energía, el crecimiento y el desarrollo, y la actividad del sistema nervioso. Hormona luteinizante - La hormona luteinizante (LH por sus siglas en inglés) regula la testosterona en los hombres y el estrógeno en las mujeres. Hormona estimuladora de folículos - Esta hormona (también llamada FSH por sus siglas en inglés) fomenta la producción de espermatozoides en los hombres y estimula los ovarios para que suelten los óvulos en las mujeres. La hormona luteinizante y la estimuladora de folículos trabajan conjuntamente para permitir el funcionamiento normal de los ovarios o los testículos. La pituitaria posterior produce dos hormonas: Oxitocina - La oxitocina causa el reflejo de lactancia materna (eyección) y causa contracciones durante el parto. Hormona antidiurética - La hormona antidiurética (ADH por sus siglas en inglés), también llamada vasopresina, se almacena en la parte posterior de la glándula pituitaria y regula el equilibrio de fluido en el cuerpo. Si la secreción de esta hormona no es normal, pueden producirse problemas entre el equilibrio de sodio (sal) y fluido, y también puede afectar los riñones de manera que funcionen deficientemente. En reacción al exceso o deficiencia de las hormonas pituitarias, las glándulas afectadas por estas hormonas pueden producir un exceso o una deficiencia de sus propias hormonas. Por ejemplo, demasiada hormona del crecimiento puede causar gigantismo, o crecimiento excesivo, y una deficiencia puede causar enanismo, o sea muy baja estatura.

11

Esta ilustración médica muestra las funciones de la glándula pituitaria y los síntomas resultantes debidos a deficiencias pituitarias (hipopituitarismo) en la mujer. La imagen muestra las glándulas y los órganos en el cuerpo influenciados por la glándula pituitaria, incluyendo la glándula tiroides, las glándulas mamarias, las glándulas suprarrenales y ovarios. Las flechas con códigos de color

12

unen a la pituitaria con los órganos objetivo, indicando las hormonas transmitidas a cada órgano. Las hormonas etiquetadas incluyen TSH, MSH, GH, LH, ACTH, FSH y prolactina.

El hipotálamo

El hipotálamo es la parte del cerebro situada arriba de la glándula pituitaria. Libera hormonas que inician o paran la secreción de las hormonas pituitarias. El hipotálamo controla la producción de hormonas en la glándula pituitaria por medio de varias hormonas "liberadoras." Algunas de éstas son: la hormona que libera la hormona del crecimiento, o GHRH (que controla la liberación de la hormona del crecimiento); la hormona liberadora de tirotropina o TRH (que controla la liberación de la hormona estimulante de la tiroides); y la hormona liberadora de corticotropina, o CRH (que controla la liberación de adrenocorticotropina) . La hormona liberadora de gonadotropina (GnRH) le indica a la glándula pituitaria que produzca la hormona luteinizante (LH) y la hormona estimuladora de folículos (FSH), que son importantes para una pubertad normal. La glándula pineal

13

Los científicos aún están determinando cómo funciona la glándula pineal. Hasta ahora han descubierto una hormona producida por esta glándula: la melatonina. Ésta puede parar la acción (inhibir) de las hormonas que producen la gonadotropina, la cual controla el desarrollo y funcionamiento de los ovarios y los testículos. También puede ayudar a controlar los ritmos del sueño. El timo

El timo es una glándula que se necesita en los primeros años para tener una función inmune normal. Es bastante grande inmediatamente después de que nace un niño y tiene un peso máximo cuando el niño llega a la pubertad, momento en que su tejido es reemplazado por grasa. La glándula del timo secreta hormonas llamadas humores. Estas hormonas ayudan a desarrollar el sistema linfoide o sistema inmune, que es el sistema que ayuda al cuerpo a tener una reacción inmune madura en las células para protegerlas contra la invasión de cuerpos invasores, tales como la bacteria. La tiroides

14

La tiroides es una pequeña glándula dentro del cuello, situada adelante de la traquea y abajo de la laringe. Las hormonas tiroideas controlan el metabolismo, que es la capacidad del cuerpo de desintegrar los alimentos y almacenarlos en forma de energía, y convertir los alimentos en productos de desperdicio, liberando energía en el proceso. La tiroides produce dos hormonas, T3 (llamada triyoditironina) y T4 (llamada tiroxina). Los trastornos de la tiroides resultan de la deficiencia o exceso de la hormona tiroidea. Los síntomas del hipotiroidismo (deficiencia de hormona) incluyen pérdida de energía, reducción del ritmo cardíaco, resecamiento de la piel, estreñimiento y sensación de frío a todo momento. En los niños, el hipotiroidismo comúnmente conduce a un atraso en el crecimiento. Los bebés que nacen con hipotiroidismo pueden tener un atraso en el desarrollo y retraso mental si no se tratan. En los adultos, esta deficiencia muchas veces causa aumento de peso. Puede producirse un crecimiento de la tiroides o bocio.

El hipertiroidismo (exceso de hormona) puede resultar en bocio exoftálmico, o enfermedad de Grave. Los síntomas incluyen ansiedad, ritmo acelerado del corazón, diarrea y pérdida de peso. Es común que la glándula tiroides se agrande (bocio) y que haya una inflamación detrás de los ojos, la cual causa protuberancia de los mismos.

15

La paratiroides

Situadas detrás de la glándula tiroides hay cuatro glándulas paratiroides. Éstas fabrican las hormonas que ayudan a controlar los niveles de calcio y fósforo en el cuerpo. Las paratiroides son necesarias para una formación ósea apropiada. En reacción a una deficiencia de calcio en la dieta, las paratiroides fabrican la hormona paratiroidea (PTH por sus siglas en inglés) que toma el calcio de los huesos para que esté disponible en la sangre para conducción en los nervios y contracción de los músculos. Si las paratiroides se extraen durante una operación de la tiroides, el nivel de calcio bajo en la sangre producirá síntomas tales como un ritmo cardíaco irregular, espasmos musculares, hormigueo en las manos y los pies y, posiblemente, dificultad para respirar. Un tumor o una enfermedad crónica puede causar una secreción excesiva de la hormona paratiroidea y puede producir dolor en los huesos, cálculos renales, aumento de la orina, debilidad muscular y fatiga. Las glándulas adrenales

16

Cada glándula adrenal es, en realidad, dos órganos endocrinos. La parte exterior se llama la corteza adrenal. La parte interior se llama la médula adrenal. Las hormonas de la corteza adrenal son esenciales para sostener la vida; las de la médula no lo son. La corteza adrenal produce glucocorticoides (tales como el cortisol) que ayuda al cuerpo a controlar el azúcar en la sangre, aumentar el consumo de proteína y grasa, y responder a factores estresantes tales como la fiebre, las enfermedades graves y lesiones. Los minerocorticoides (tales como la aldosterona) controlan el volumen de sangre y ayudan a regular la presión arterial actuando sobre los riñones para ayudarles a retener suficiente sal y fluido. La corteza adrenal también produce algunas hormonas sexuales, que son importantes para algunas de las características sexuales secundarias tanto en los hombres como las mujeres. Dos trastornos importantes causados por problemas en la corteza adrenal son el síndrome de Cushing (un exceso de cortisol) y la enfermedad de Addison (una deficiencia de cortisol). La médula adrenal produce epinefrina (adrenalina), la cual es secretada por los extremos de los nervios y aumenta el ritmo cardíaco, dilata las vías respiratorias para aumentar la cantidad de oxígeno y aumenta el flujo de sangre a los músculos, generalmente cuando la persona está asustada, emocionada o bajo estrés. Norepinefrina también se fabrica en la médula adrenal pero esta hormona está asociada con el mantenimiento de actividades normales en vez de reacciones de emergencia. Demasiada norepinefrina puede elevar la presión sanguínea. El páncreas

El páncreas es una glándula grande situada detrás del estómago que ayuda al cuerpo a mantener niveles saludables de azúcar (glucosa) en la sangre. El 17

páncreas secreta insulina, una hormona que ayuda a la glucosa a circular desde la sangre hasta las células donde se utiliza para obtener energía. El páncreas también secreta glucagón cuando el azúcar en la sangre está bajo. El glucagón le indica al hígado que debe enviar glucosa al flujo sanguíneo, la cual se almacena en el hígado en forma de glicógeno. La diabetes, un desequilibrio en los niveles de azúcar en la sangre, es el principal trastorno del páncreas. La diabetes ocurre cuando el páncreas no produce suficiente insulina (Tipo 1) o el cuerpo es resistente a la insulina en la sangre (Tipo 2). Sin suficiente insulina para hacer que la glucosa circule a través del proceso metabólico, los niveles de glucosa en la sangre se elevan excesivamente. En la diabetes Tipo 1, el paciente tiene que inyectarse insulina. En la diabetes Tipo. 2 puede ser que el paciente no necesite insulina, pudiendo a veces controlar los niveles de azúcar en la sangre con ejercicio, dieta y otros medicamentos. El exceso de insulina causa una condición llamada hiperinsulismo (HI) que conduce a la hipoglucemia (deficiencia de azúcar en la sangre). La forma hereditaria, llamada hiperinsulismo congénito, causa hipoglucemia grave en la infancia. A veces se puede tratar con medicamentos pero, con frecuencia, se tiene que extraer quirúrgicamente parte o todo el páncreas. Una causa menos común de hipoglucemia es un tumor del páncreas que produce insulina, llamado un insulinoma. Los síntomas de azúcar baja incluyen ansiedad, sudor, aumento del ritmo cardíaco, debilidad, hambre y mareo. La deficiencia de azúcar en la sangre estimula la liberación de epinefrina, glucagón y la hormona de crecimiento, todas las cuales ayudan a regresar el nivel de azúcar a la normalidad. Los ovarios fondo fimbrias ovario trompa uterina (de Falopio) endometrio miometrio conducto cervical vagina (cortada) cuello cuerpo del útero Las dos hormonas femeninas más importantes producidas por las glándulas reproductivas gemelas, los ovarios, son el estrógeno y la progesterona. Estas hormonas son las responsables de desarrollar y mantener las características sexuales femeninas y de mantener el embarazo. Junto con las gonadotropinas 18

pituitarias (FH y LSH), también controlan el ciclo menstrual. Los ovarios también producen inhibina, una proteína que inhibe la liberación de la hormona estimuladora de folículos producida por la pituitaria anterior y ayuda a controlar el desarrollo de los óvulos. El cambio más común en las hormonas ovarianas ocurre con el inicio de la menopausia que es parte del proceso natural de envejecimiento. También puede ocurrir cuando los ovarios se extirpan quirúrgicamente. La pérdida de función ovariana significa la pérdida de estrógeno, lo cual puede producir sofocos, adelgazamiento del tejido vaginal, suspensión de la menstruación, cambios de estado de ánimo y pérdida ósea u osteoporosis. Una condición llamada síndrome de ovario poliquístico (PCOS) es causada por la producción excesiva de hormonas masculinas en las mujeres. El síndrome PCOS puede afectar los ciclos menstruales, la fertilidad y los niveles hormonales, y puede causar acne, crecimiento de vello facial y calvicie de configuración masculina. Control del sistema endocrino por medio de autoregulación negativa Uno de los aspectos más importantes del sistema endocrino es su regulación por medio de la autoregulación negativa. Esto significa que las glándulas que estimulan la liberación de una hormona (por ejemplo, la pituitaria) desde otra glándula (por ejemplo, la tiroides) se desactivan a un punto determinado, de manera que no se produzca un exceso de hormona. Como ejemplo, el hipotálamo secreta la hormona liberadora de tirotropina (TRH por sus siglas en inglés) que hace que la pituitaria produzca la hormona estimulante de la tiroides (TSH por sus siglas en inglés), la cual hace que la glándula tiroides produzca T4 (hormona tiroxina). Cuando el cuerpo tiene suficiente hormona tiroides en la sangre, el T4 le comunica al hipotálamo y la pituitaria y causa una reducción en la producción de TRH y TSH. Este tipo de retroalimentación también existe en los ovarios y los testículos, y en las glándulas adrenales. Órganos asociados al sistema endocrino Hay varios órganos que desempeñan un papel importante para ayudar al sistema endocrino a funcionar bien. Aunque estos órganos no son glándulas en sí mismos, sí producen, almacenan y vierten hormonas que ayudan al cuerpo a funcionar correctamente y mantener un sistema endocrino saludable. La placenta Además de servir de conexión entre la madre y el feto, la placenta es un sistema endocrino especial. Produce hormonas que son semejantes a las que se producen en otras partes del cuerpo. La gonadotropina coriónica humana (GCH 19

por sus siglas en inglés), el estrógeno y la progesterona son las más importantes entre éstas, porque mantienen el embarazo y preparan las glándulas mamarias femeninas para amamantar al bebé. La gonadotropina coriónica humana estimula al ovario para que produzca estrógenos y progestinas y ayuda a controlar el desarrollo normal de las genitales del feto. Los estrógenos en la placenta estimulan el desarrollo del seno, ayudan a un parto normal y a producir un aumento constante de prolactina. Las progestinas estimulan el desarrollo del seno y ayudan a reducir las contracciones del músculo uterino. La lactógena de la placenta humana es una hormona que reduce el nivel de la hormona de crecimiento materno y aumenta la glucemia y lípidos (grasas) circulantes en la sangre de la madre. Piel, hígado y riñones Estos tres órganos trabajan conjuntamente para sintetizar 1,25-dihidroxivitamina D, la forma activa de vitamina D, que controla los niveles de calcio y fósforo en la sangre. En la piel, un molécula de colesterol (grasa) modificada se transforma a vitamina D por cambios químicos producidos por los rayos ultravioletas del sol. En el hígado, la vitamina D3 se convierte a 25 hidroxivitamina D (calcidiol) antes de pasar al riñón donde se convierte en 1,25-dihidroxivitamina D3 (calcitriol) con la ayuda de la hormona paratiroides. El calcitriol actúa sobre el intestino, riñones y huesos para mantener los niveles normales de calcio y fósforo en la sangre. Una deficiencia de calcio en la dieta puede producir raquitismo en niños y osteoporosis en adultos. Estómago e intestino delgado El aparato digestivo es el mayor órgano de los asociados al sistema endocrino. Éste produce y secreta diversas hormonas que desempeñan un papel en el metabolismo del cuerpo. Gherlin y leptina son dos de estas hormonas que, se ha demostrado, regulan el apetito y pueden ser importantes en la obesidad y en la pérdida de peso Factores que afectan la función endocrina El cuerpo de todo el mundo está sujeto a cambios, algunos naturales y otros no, que pueden afectar la forma en que funciona el sistema endocrino. Algunos factores que afectan los órganos endocrinos incluyen la edad, las enfermedades, el estrés, el ambiente y factores genéticos. La edad A pesar de los cambios asociados con la edad, el sistema endocrino funciona bien en la mayoría de las personas a medida que envejecen. Sin embargo, algunos cambios ocurren debidos al deterioro normal que ocurre en las células durante el proceso de envejecer y debido a cambios celulares programados genéticamente. Estos cambios pueden alterar lo siguiente: 

Producción y secreción hormonal 20

     

Metabolismo de las hormonas (qué tan rápido se desintegra el exceso de hormonas y se expulsan del cuerpo por medio de la orina, por ejemplo) Niveles de las hormonas circulantes en la sangre Actividades biológicas Reacción que las células o tejidos receptores tienen a las hormonas Ritmos en el cuerpo, tales como el ciclo menstrual Por ejemplo, se cree que la edad está asociada al desarrollo de la diabetes Tipo 2. Con la edad, la reacción de las células receptoras a veces se torna más lenta, especialmente en las personas que tienen el riesgo de sufrir esta enfermedad.

Las señas y síntomas de los trastornos endocrinos afectan muchos otros sistemas del cuerpo. En las personas de edad avanzada, estos muchas veces son sutiles y más difíciles de detectar que en las personas jóvenes. A veces, estas señas se asocian incorrectamente a otras causas, tales como los cambios normales de la edad, otros trastornos médicos o enfermedades, o a terapia de medicamentos. El proceso de envejecer afecta a casi todas las glándulas. Por ejemplo, el hipotálamo es el responsable de liberar hormonas que estimulan la glándula pituitaria. Durante el envejecimiento hay una deficiencia en la secreción de algunas de las hormonas hipotalámicas o hay una reacción pituitaria defectuosa. Estos cambios parecen afectar la habilidad del sistema endocrino de reaccionar al ambiente interno del cuerpo. Como resultado, el cuerpo no puede reaccionar tan bien como antes a estreses internos o externos. Con el aumento de edad, la glándula pituitaria puede reducirse en tamaño y volverse más fibrosa y es posible que no funcione tan bien como antes. Por ejemplo, puede reducirse la producción de la hormona de crecimiento, lo cual puede resultar en problemas tales como una reducción del músculo liso, reducción de la función cardiaca y osteoporosis. La edad puede afectar los ovarios de la mujer. Estos órganos con el tiempo exhiben el cambio endocrino más estrechamente asociado a la edad: la menopausia. En la menopausia, los ovarios dejan de reaccionar a la hormona estimulante de folículos (FSH) y la hormona luteinizante (LH) producidas por la pituitaria anterior. La producción ovariana de las hormonas estrógeno y progesterona disminuye y eventualmente cesa; con el tiempo, se retira la menstruación en la mujer. Enfermedades Las enfermedades pueden afectar la función endocrina de diversas formas. Las enfermedades agudas o crónicas pueden cambiar las funciones endocrinas. Enfermedades crónicas y agudas Las hormonas se eliminan de la sangre cuando circulan a los tejidos receptores. El hígado y los riñones son los órganos principalmente responsables de eliminar las hormonas. Varios de estos procesos se alteran u ocurren más lentamente en individuos que tienen trastornos crónicos, cardíacos, hepáticos o renales. 21

Los factores estresantes agudos físicos o mentales pueden iniciar una reacción preprogramada al estrés. La reacción al estrés es compleja y puede afectar la función cardiaca, renal, hepática y endocrina.

22

Patologías endocrinas Los siguientes factores pueden producir patologías endocrinas:     

Defectos congénitos (de nacimiento) o genéticos (Cirugía Lesiones traumáticas Tumores cancerosos y no cancerosos Infección Destrucción autoinmune (el sistema inmune ataca los órganos del cuerpo y los lesiona)

En general, las patologías endocrinas crean hiposecreción (deficiencia) o hipersecreción (exceso) de hormonas. El problema subyacente puede estar radicado en la glándula endocrina en sí o en algo exterior a ésta. El estrés Hay muchos factores que pueden comenzar la reacción al estrés pero los factores de estrés físico son los más importantes. Para que el cuerpo pueda reaccionar y manejar el estrés físico, las glándulas adrenales fabrican más cortisol. Si las glándulas adrenales no reaccionan, puede ser un problema que ponga en peligro la vida. Algunos factores de importancia médica que causan una reacción de estrés son los siguientes:       

Trauma (lesión grave) de cualquier tipo Enfermedad o infección grave Calor o frío intenso Intervenciones quirúrgicas Enfermedades graves Reacciones Alérgicas

Otros tipos de estrés son estrés emocional, social o económico, pero estos no exigen que el cuerpo produzca niveles elevados de cortisol para superarlos. Factores externos Un disruptor endocrino ambiental es una sustancia externa al cuerpo que puede causar efectos adversos para el funcionamiento normal del sistema endocrino. Algunos disruptores imitan la adhesión natural de la hormona con el receptor en la célula. Estas sustancias inician los mismos procesos entre las células del cuerpo que iniciaría la hormona natural. Los disruptores de este tipo se denominan agonistas hormonales. Otros disruptores bloquean los eventos celulares asociados a la adhesión hormonal. Estos disruptores se denominan antagonistas hormonales. Otros disruptores pueden interferir directamente con la producción, almacenamiento, liberación, transporte, adhesión o eliminación de hormonas endógenas en el 23

cuerpo. Esto puede grandemente afectar la función de ciertos sistemas corporales. En la actualidad hay más de 84.000 sustancias químicas sintéticas que se utilizan en todo el mundo. Por lo menos 30.000 han sido introducidas al ambiente estadounidense desde 1979. No sabemos hasta qué punto pueden interferir con el sistema endocrino. En base a nuestros conocimientos sobre los efectos de ciertas sustancias químicas sintéticas, tales como el diclorodifeniltricloroetano (DDT), dietilestilbestrol (DES) y los policlorobifenilos (PCB), y la evidencia creciente de que la función reproductiva en animales salvajes y en humanos está cambiando, los científicos ahora están examinando una serie extensa de efectos químicos. Los disruptores pueden afectar a la gente y a los animales en diversas formas:      

Trastornos en el desarrollo sexual Reducción de fertilidad Defectos congénitos Empollamiento reducido en animales Disminución de la reacción inmune Cambios neurológicos y de comportamiento, incluso menos tolerancia al estrés

Genética Partes de su sistema endocrino pueden ser afectadas por los genes. Éstos son unidades de información hereditaria, pasada de padres a hijos. Los genes contienen las instrucciones para la producción de proteínas, que son algunos de los componentes esenciales del cuerpo. Los genes están en los cromosomas, cuya cantidad normal es 46 (23 pares). A veces hay cromosomas adicionales, ausentes, alterados o deteriorados que pueden causar enfermedades que afecten la producción y función hormonal. El par 23, por ejemplo, es el par de cromosomas que determina el sexo: la madre y el padre contribuyen un cromosoma al sexo del niño. Las niñas tienen dos cromosomas X (uno de la madre y una del padre), y los niños tienen uno X (de la madre) y uno Y (del padre). No obstante, hay veces en que puede faltar un cromosoma o parte de uno. En el síndrome Turner, sólo hay un cromosoma X normal y esto puede causar un crecimiento deficiente. En otro ejemplo, a un niño con el síndrome Prader-Willi (SPW) le puede faltar o tener incompleto el cromosoma 15, el cual también afecta el crecimiento, el metabolismo y la pubertad. Sus genes también pueden ponerlo a riesgo de sufrir ciertas enfermedades, tales como cáncer del seno. Si toma estrógeno puede que el tejido mamario crezca más rápidamente. El cáncer normalmente aparece en tejidos que crecen rápido. Esta es una de las razones por las cuales los científicos piensan que el tomar estrógeno para los síntomas de la menopausia puede estar relacionado al cáncer en el seno. Otra idea es que el tejido del seno convierte el estrógeno en 24

sustancias químicas que pueden adherirse al ADN (material genético) y causar daños. Daños al ADN es una causa común del cáncer. En el presente, no se sabe exactamente por qué el estrógeno puede causar cáncer o el papel que desempeña en el cáncer del seno. Ciclos de liberación hormonal El tiempo parece afectar la liberación de ciertas hormonas. Algunas hormonas tienen una liberación típica de ciclos. Este patrón muchas veces encaja con ritmos diarios del cuerpo o con el ciclo de dormir y despertar. El cortisol se acumula temprano en el día, se reduce hacia la tarde, y se eleva hacia el fin del sueño y sube al máximo durante las horas de la mañana. La hormona estimulante de la tiroides (TSH) se eleva al máximo punto durante el sueño y llega a su punto bajo tres horas después de que se despierta el individuo. Los niveles de la hormona de crecimiento (GH) se elevan 90 minutos después de que comienza el sueño. Típicamente aumenta durante las primeras 2 horas de sueño profundo. También aumenta si la persona es hipoglucémica (glucemia baja), tiene hambre, está haciendo ejercicio, está emocionada o es víctima de una lesión grave. Hay un patrón bastante definido de elevación y caída de la actividad del estrógeno y la progesterona durante el ciclo menstrual de la mujer, que dura un promedio de 28 días.

25

FISIOLOGÍA APARATO REPRODUCTOR FEMENINO OVOGÉNESIS La ovogénesis es la formación de los gametos femeninos u ovocitos en los ovarios o gónadas femeninas. Los ovocitos son células sexuales especializadas producidas por los ovarios, que transmiten la información genética entre generaciones. A diferencia de la espermatogénesis que se inicia en la pubertad en los varones, la ovogénesis se inicia mucho antes del nacimiento en las mujeres. El ovario fetal contiene muchas células germinales que se dividen por mitosis y se convierten en otro tipo de células mayores, las ovogonias, que también se dividen por mitosis y finalmente, dan lugar a los ovocitos primarios. Tanto las ovogonias como los ovocitos primarios tienen 46 cromosomas. La división de las ovogonias termina antes del nacimiento, de modo que si son destruídas en esta fase no pueden ser renovadas. Los ovocitos primarios permanecen en un estado de desarrollo estacionario desde su formación antes del nacimiento, hasta inmediatamente antes de la pubertad y están rodeados por una sencilla capa de células. En conjunto, el ovocito primario y la capa de células que lo acompañan constituyen el folículo primordial. En la especie humana cada ovario contiene en el momento del nacimiento entre 200.000 y 2 millones de ovocitos primarios, contenidos en folículos primordiales. Al llegar a la pubertad hay alrededor de 40.000 y solamente unos 400 podrán madurar a lo largo de la vida fértil de la mujer, mientras que el resto de ovocitos primarios degenerará. En cada ciclo sexual, las hormonas gonadotropinas, secretadas por el lóbulo anterior de la hipófisis, estimulan a varios folículos primordiales a continuar su desarrollo, aunque solo uno suele alcanzar el grado de maduración necesario para ser ovulado. Los folículos primordiales maduran a folículos primarios que, a su vez, dan lugar a los folículos secundarios. Por último, el desarrollo del folículo secundario da lugar al folículo maduro o De Graaf en el interior del cual el ovocito primario se convierte en ovocito secundario que es el que será expulsado durante la ovulación a lo largo de la vida reproductora de la mujer, de un modo cíclico e intermitente. Aunque la célula germinal femenina es conocida popularmente como óvulo después de la ovulación, estrictamente hablando es un ovocito secundario y contiene 23 cromosomas, es decir, la mitad de la dotación genética de una célula humana. El ovocito secundario solo se convertirá en óvulo maduro en el momento de la fecundación, cuando se produzca la penetración del espermatozoide dentro del ovocito. A continuación y como consecuencia, se formará una nueva célula, el zigoto o huevo que tendrá 46 cromosomas, 23 procedentes del óvulo maduro y 23 procedentes del espermatozoide.

26

CICLO SEXUAL FEMENINO En la especie humana la liberación de ovocitos por los ovarios, es cíclica e intermitente, lo que queda reflejado en los cambios cíclicos que se producen, como consecuencia, en la estructura y la función de todo el sistema reproductor de la mujer. Tales cambios dependen de 2 ciclos interrelacionados, el ciclo ovárico y el ciclo uterino o menstrual los cuales, en conjunto, duran aproximadamente 28 días en la mujer, aunque se producen variaciones. El ciclo menstrual está controlado por el ciclo ovárico a través de las hormonas ováricas: los estrógenos y la progesterona.

CICLO OVÁRICO Los ovarios tienen la doble función de producir gametos (ovocitos) y de secretar hormonas sexuales femeninas. El ovario produce 2 tipos principales de hormonas esteroides, los estrógenos y la progesterona. En el plasma del ser humano se han aislado seis estrógenos diferentes, pero solamente tres se encuentran en cantidades importantes: el 17-beta estradiol, la estrona y el estriol. En la mujer que no está embarazada, el estrógeno más abundante es el 17-beta estradiol. Al comienzo de cada ciclo ovárico, que se considera coincidente con el primer día de la menstruación, empiezan a aumentar de tamaño varios folículos primordiales por la influencia de una hormona secretada por la adenohipófisis, la hormona folículo estimulante (FSH). Los folículos primordiales maduran a folículos primarios y después a folículos secundarios. Normalmente uno de éstos continúa desarrollándose mientras los demás sufren regresión. El número de folículos que se desarrollan está determinado por los niveles de FSH de la sangre circulante. Se distinguen 3 fases en el ciclo ovárico: 1ª fase) fase folicular: del día 1 al día 14 del ciclo. Durante el desarrollo folicular, el folículo secundario aumenta de tamaño y llega a ser el folículo De Graaf o folículo maduro listo para descargar el óvulo (el ovocito secundario). Durante esta primera fase del ciclo ovárico, el folículo en desarrollo sintetiza y secreta el estrógeno 17-beta estradiol, y los niveles plasmáticos de esta hormona aumentan progresivamente hasta alcanzar un valor máximo 2 días antes de la ovulación, aproximadamente. El 17-beta estradiol es el responsable del desarrollo del endometrio en la fase proliferativa del ciclo uterino.

27

2ª fase) ovulación: el folículo descarga el óvulo (ovocito secundario), es lo que se llama ovulación. Todo el proceso hasta aquí, dura unos 14-16 días contados a partir del 1º día de la menstruación. El ovocito se libera y es atraído por las prolongaciones o fimbrias de la trompa de Falopio para ser introducido en el interior de la trompa y ser transportado hacia el útero. Los niveles altos de estrógenos hacen que las células de la adenohipófisis se vuelvan más sensibles a la acción de la hormona liberadora de gonadotropinas (GnRH) secretada por el hipotálamo en forma de pulsos (cada 90 minutos, aproximadamente). Cerca del día 14 del ciclo, las células de la adenohipófisis responden a los pulsos de la GnRH y liberan las hormonas folículo estimulante (FSH) y luteinizante (LH). La LH causa la ruptura del folículo maduro y la expulsión del ovocito secundario y del líquido folicular, es decir, la ovulación. Como la ovulación se produce unas 9 horas después del pico plasmático de LH, si se detecta la elevación de LH en plasma, por un análisis de laboratorio, se puede predecir la ovulación con un día de antelación. Después de la ovulación la temperatura corporal aumenta de medio grado a un grado centígrado y se mantiene así hasta el final del ciclo, lo que se debe a la progesterona que es secretada por el cuerpo lúteo (ver la fase luteínica). 3ª fase) fase luteínica: del día 15 al día 28 del ciclo. Después de la ovulación, las células restantes del folículo forman una estructura que se llama cuerpo lúteo o cuerpo amarillo bajo la influencia de la LH. El cuerpo lúteo entonces sintetiza y secreta dos hormonas: el estrógeno 17-beta estradiol y la progesterona que inducen la fase secretora del ciclo uterino, es decir, preparan el endometrio para la implantación del óvulo fecundado. En caso de embarazo, el endometrio requiere el soporte hormonal del 17-beta estradiol y de la progesterona para permanecer en la fase secretora, de modo que el cuerpo lúteo se transforma en cuerpo lúteo gestacional y persiste hasta el tercer mes de embarazo conservando su función secretora de hormonas. Si no hay fecundación, el cuerpo lúteo degenera hacia el final del ciclo uterino y se atrofia, quedando una cicatriz, y deja de secretar estrógenos y progesterona, con lo que bajan mucho los niveles de estas hormonas en sangre y, como consecuencia, las capas superficiales del endometrio del útero se desprenden y son expulsadas al exterior por la vagina, es la menstruación. CICLO UTERINO O MENSTRUAL Durante el ciclo uterino las capas superficiales del endometrio experimentan cambios estructurales periódicos que pueden dividirse también en 3 fases: 1ª fase) fase menstrual: del día 1 al día 4 del ciclo. Durante esta fase se expulsan al exterior por la vagina, las capas superficiales del endometrio del útero, es lo que se llama menstruación, provocada por la disminución de los niveles plasmáticos de estrógenos y progesterona debido a la atrofia del cuerpo lúteo en 28

el ovario, que entonces deja de secretar estas hormonas. El flujo menstrual está compuesto por unos 50-150 ml de sangre, líquido intersticial, moco y células epiteliales desprendidas del endometrio, y pasa de la cavidad uterina al exterior a través de la vagina. 2ª fase) fase proliferativa: del día 5 al día 14 del ciclo. Coincide con la fase folicular del ciclo ovárico. Se caracteriza porque las células endometriales se multiplican y reparan la destrucción que tuvo lugar en la menstruación anterior. La hormona responsable de esta fase es el estrógeno 17-beta estradiol, secretado por las células del folículo ovárico en desarrollo. 3ª fase) fase secretora: del día 15 al día 28 del ciclo. Coincide con la fase luteínica del ciclo ovárico. Las glándulas del endometrio se hacen más complejas en su estructura y comienzan a secretar un líquido espeso rico en azúcares, aminoácidos y glicoproteínas. En esta fase el endometrio se prepara para la implantación del óvulo fecundado. Las hormonas responsables de esta fase son la progesterona y el estrógeno 17-beta estradiol secretadas por el cuerpo lúteo en el ovario.

HORMONAS EN EL CICLO SEXUAL FEMENINO. ACCIONES En el ciclo sexual femenino intervienen hormonas secretadas por el hipotálamo, por la hipófisis y por los ovarios. La hipófisis anterior o adenohipófisis secreta unas hormonas proteicas, las gonadotropinas, que son de importancia fundamental para la función reproductora y, como indica su nombre, actúan sobre las gónadas o glándulas sexuales: testículos en el hombre y ovarios en la mujer. Son la hormona folículo-estimulante (FSH) y la hormona luteinizante (LH). La FSH llega por la sangre hasta los ovarios y provoca el crecimiento de los folículos ováricos antes de la ovulación mensual y la secreción de estrógenos por el folículo que se está desarrollando. La LH provoca la ruptura del folículo De Graaf o folículo maduro y la ovulación, así como la secreción de estrógenos y progesterona por el cuerpo lúteo o estructura en que se ha transformado el folículo una vez ha expulsado el ovocito en la ovulación. La secreción de las gonadotropinas depende a su vez, del hipotálamo que es una estructura que se encuentra en el sistema nervioso central, lo que explica el que los ciclos y la fertilidad de la mujer pueden ser profundamente afectados por las emociones. El hipotálamo sintetiza y secreta la hormona liberadora de gonadotropinas (GnRH) que es liberada en forma de pulsos cada 90 minutos aproximadamente y es la responsable de la secreción de FSH y LH por la adenohipófisis. Por su parte, los ovarios producen dos tipos de hormonas, los estrógenos y la progesterona. 29

30

Los efectos de los estrógenos son: 

Modulan la descarga de GnRH por el hipotálamo y varían la sensibilidad de la células de la adenohipófisis a dicha hormona hipotalámica



Desarrollan los órganos genitales femeninos



Son los responsables de la morfología femenina

 

Desarrollan las glándulas mamarias Reducen los niveles de colesterol en plasma, lo que explica los menores riesgos de infarto de miocardio en la mujer premenopáusica con respecto al hombre de la misma edad y a la mujer menopáusica



Reducen la fragilidad capilar



Tienen efectos estimulantes sobre el estado de ánimo



Tienen efectos protectores sobre el tejido óseo



Producen retención de agua y sodio por el organismo

Los efectos de la progesterona son: 

estimula el crecimiento de las glándulas mamarias

 

estimula las secreciones del endometrio tiene efecto calmante sobre el estado de ánimo



sube la temperatura corporal



facilita el metabolismo de los estrógenos Los estrógenos y la progesterona se metabolizan en el hígado y los productos resultantes de su degradación son expulsados por la orina. Ciclo ovárico grafico Desde la aparición de la primera menstruación (menarquia) hasta la menopausia, la mujer mes con mes experimenta distintos cambios en el útero y los ovarios y en estos últimos se lleva a cabo la maduración de varios folículos cada mes de los cuales solo uno se desarrollara por completo y expulsara a un ovulo hacia la cavidad uterina para que pueda ser fecundado. eso es lo que se le conoce como ciclo ovárico. El ciclo ovárico está regulado por el eje hipotálamo-hipófisis-ovario. A continuación se enlistan los componentes de este eje y la acción que ejerce sobre el ciclo ovárico.

31

Como ya se mencionó anteriormente, durante el ciclo ovárico se experimentan una serie de cambios tanto hormonales, uterinos y ováricos. en la siguiente imagen se ilustran los cambios que se dan durante el ciclo ovárico en las estructuras ya mencionadas y en la tabla se explica con detalle en que consiste cada cambio y que es lo que sucede exactamente en él. 

32

33

En la tabla ya mostrada se explica de manera extensa cada cambio que sucede durante el ciclo ovárico, sin embargo, para una mejor comprensión de este ciclo tan importante y en ocasiones difícil de aprender, en el siguiente mapa mental se expone de manera sintetizada los principales cambios que suceden durante este ciclo. 

Los estrogenos son una de las hormonas que se sintetizan durante el ciclo ovárico, son de especial importancia ya que su acción no se ve reducida solamente al ciclo ovárico, sino que ejercen otros efectos en el cuerpo de la mujer, los cuales se explican en el siguiente mapa mental. 

34

35

Bibliografía general                             



Agur MR, Dalley F. Grant. Atlas de Anatomía. 11ª ed. Madrid: Editorial Médica Panaméricana; 2007. Berne RM y Levy MN. Fisiología. 3ª ed. Madrid: Harcourt. Mosby; 2001. Boron WF, Boulpaep EL. Medical Physiology. Updated edition. Filadelfia (EEUU): Elsevier Saunders. 2005. Burkitt HG, Young B, Heath JW. Histología funcional Wheater. 3ª ed. Madrid: Churchill Livingstone; 1993. Costanzo LS. Fisiologia. 1ª ed. Méjico: McGraw-Hill Interamericana; 2000. Drake RL, Vogl W, Mitchell AWM. GRAY Anatomia para estudiantes. 1ª ed. Madrid: Elsevier; 2005. Fox SI. Fisiología Humana. 7ª ed. Madrid: McGraw-Hill-Interamericana; 2003. Fox SI. Fisiología Humana. 10ª ed. Madrid: McGraw-Hill-Interamericana; 2008. Gartner LP, Hiatt JL. Histología Texto y Atlas. 1ª ed. Méjico: Mc Graw Hill Interamericana; 1997. Guyton AC. Tratado de Fisiología Médica. 11ª ed. Madrid: Elsevier España. 2006. Jacob SW, Francone CA, Lossow WJ. Anatomía y Fisiología Humana. 4ª ed. Méjico: Nueva Editorial Interamericana; 1988. Jacob S. Atlas de Anatomia Humana. 1ª ed. Madrid: Elsevier España, S.A. 2003. Lamb JF, Ingram CG, Johnston IA, Pitman RM. Fundamentos de Fisiología. 2ª ed. Zaragoza: Ed. Acribia,SA; 1987. Lumley JSP, Craven JL, Aitken JT. Anatomía esencial. 3ª ed. Barcelona: Salvat Editores S.A. 1985. Moore KL. Anatomía con orientación clínica. 3ª ed. Buenos Aires: Editorial Médica Panamericana; 1993. Netter FH. Sistema Digestivo. Conducto superior. Colección Ciba de ilustraciones médicas. 1ª ed. Barcelona: Masson-Salvat Medicina; 1981. Netter FH. Interactive Atlas of Human Anatomy. CIBA MEDICAL EDUCATION & PUBLICATIONS. 1995. Netter FH. Atlas de Anatomia Humana. 3ª ed. Barcelona: Ed. Masson; 2003. Pocock G, Richards ChD. Fisiología Humana. 1ª ed. Barcelona: Ed. Masson; 2002. Pocock G, Richards ChD. Fisiología Humana. 2ª ed. Barcelona: Ed. Masson; 2005. Regueiro González JR, López Larrea C, González Rodríguez S, Martínez Naves E. Inmunología. Biología y patología del sistema inmune. 3ª ed. Madrid: Editorial Médica Panamericana; 2002. Rhoades RA, Tanner GA. Fisiología médica. 1ª ed. Barcelona: Ed. Masson-Little, Brown, S.A. 1997. Schmidt RF, Thews G. Fisiología Humana. 24ª ed. Madrid: Interamericana.McGraw-Hill. 1993. Stevens A, Lowe J. Histologia Humana. 3ªed. Madrid: Elsevier/Mosby; 2006. Thibodeau GA, Patton KT. Anatomía y Fisiología. 2ª ed. Madrid: Mosby/Doyma Libros; 1995. Thibodeau GA, Patton KT. Anatomía y Fisiología. 4ª ed. Madrid: Ediciones Harcourt; 2000. Thibodeau GA, Patton KT. Anatomía y Fisiología. 6ª ed. Madrid: Elsevier España, S.A; 2007. Thibodeau GA, Patton KT. Estructura y Función del cuerpo humano. 10ª ed. Madrid: Harcourt Brace; 1998. Tortora GJ, Derricskon B. Principios de Anatomía y Fisiología. 11ª ed. Madrid: Editorial Médica Panamericana; 2006. West JB. Bases fisiológicas de la práctica médica. 12 ª ed. Madrid: Editorial Médica Panamericana; 1993.

36

Related Documents


More Documents from "kartikscribd"

January 2021 0
Cremas Cosmetica Natural
February 2021 0
Cosmetica Natural 5
January 2021 1
Cosmetica Natural 7
February 2021 1