131022 Beams, Columns And Footings

  • Uploaded by: Justin Rome Lacsamana
  • 0
  • 0
  • January 2021
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View 131022 Beams, Columns And Footings as PDF for free.

More details

  • Words: 4,082
  • Pages: 48
Loading documents preview...
DESIGN OF ROOF BEAM (RB-1) Assume Dimension

200 mm x 300 mm

Span (L)=

LOADINGS Dead Load

Point Load Pu(from left) = 7.46 kn 1.68 kn/m Pu(from right) = 3.40 kn 0.58 kn/m

Wt. of Beam Wt. of Truss Total Live Load Wu = =

2.26 kn/m 3.23 kn/m 1.4DL + 1.7LL = 8.66 kn/m

Design Moment Mu= 14.33 kn-m Pmax = 0.75Pb;

Pb = (0.85fc'B600)/[fy(600+275)] Pb = 0.85(20.7)(0.85)(600)/[275(600+275)] = 0.037 Pmax = 0.75Pb = 0.028 W= pfy/fc' = 0.025(275)/20.7 = 0.334 Moment Capacity of Concrete M1= Φfc'bd^2(w)(1-0.59w) = = M1

0.90(20.7) 89.93 kn-m

( 200 mm ) ( 300 mm )^2 ( 0.334 )

>

(1-0.59*0.334)

Mu Reinf. Not Required, Use Min. Reinf. Mu= Φfc'bd^2(w)(1-0.59w) 14.33*10^6 = 0.90(20.7)(w) ( 200 mm ) ( 300 mm )^2 (1-0.59*w) w = 0.032 P = wfc'/Fy = 0.032 (20.7)/275 = 0.0024 Pmin = 1.4/Fy = 0.0051

Reinforcement As=pbd= 0.0051 ( 200 mm ) ( 300 mm ) = 306.00 mm^2 No. of Bars Needed : Use 16 mm Ø Bars; Ab = 201.00 mm^2 NBars= As/Ab = 1.52 Bars Say 2 Bars THEREFORE USE 200 mm X 350 mm Conc. Beam Provided w/ 2- 16mm Bars at Top & 2-16mm at Bot.

1.90 m

1-0.59*0.334)

1-0.59*w) <

Pmin!

DESIGN OF ROOF BEAM (RB-2) Assume Dimension

150 mm x 300 mm

Span (L)=

LOADINGS Dead Load Wt. of Beam Wt. of floor Wt. of Stair Total Live Load Wu = =

1.26 0.11 0.60 1.97

kn/m kn/m kn/m kn/m

3.00 kn/m 1.4DL + 1.7LL = 7.86 kn/m

1.4(1.97) + 1.7(3.00)

Design Moment Mu= WL2/8

= 3.55 kn-m

Pmax = 0.75Pb;

Pb = (0.85fc'B600)/[fy(600+275)] Pb = 0.85(20.7)(0.85)(600)/[275(600+275)] = 0.037 Pmax = 0.75Pb = 0.028 W= pfy/fc' = 0.025(275)/20.7 = 0.334 Moment Capacity of Concrete M1= Φfc'bd^2(w)(1-0.59w) = 0.90(20.7) ( 150 mm ) ( 300 mm )^2 ( 0.334 ) (1-0.59*0.334) = 67.45 kn-m M1 > Mu Reinf. Not Required, Use Min. Reinf. Mu= Φfc'bd^2(w)(1-0.59w) 3.55*10^6 = 0.90(20.7)(w) ( 150 mm ) ( 300 mm )^2 (1-0.59*w) w = 0.01 P = wfc'/Fy = 0.01 (20.7)/275 = 0.0008 Pmin = 1.4/Fy = 0.0051 Reinforcement As=pbd= 0.0051 ( 150 mm ) ( 300 mm ) = 229.50 mm^2 No. of Bars Needed : Use 16 mm Ø Bars; Ab = 201.00 mm^2 NBars= As/Ab = 1.14 Bars Say 2 Bars THEREFORE USE 150 mm X 350 mm Conc. Beam Provided w/ 2- 16mm Bars at Top & 2-16mm at Bot.

1.90 m

1-0.59*0.334)

1-0.59*w) <

Pmin!

DESIGN OF FLOOR BEAM (B-1) Assume Dimension

200 mm x 400 mm

Span (L)=

LOADINGS Dead Load

Point Load Pu(from left) = 33.64 kn 1.92 kn/m 3.96 kn/m

Wt. of Beam Wt. of Slab Total Live Load Wu = =

1.4DL + 1.7LL 13.57 kn/m

5.88 kn/m 3.14 kn/m =

Design Moment Mu= 34.67 kn-m Pmax = 0.75Pb;

Pb = (0.85fc'B600)/[fy(600+275)] Pb = 0.85(20.7)(0.85)(600)/[275(600+275)] = 0.037 Pmax = 0.75Pb = 0.028 W= pfy/fc' = 0.025(275)/20.7 = 0.334 Moment Capacity of Concrete M1= Φfc'bd^2(w)(1-0.59w) = 0.90(20.7) ( 200 mm ) ( 400 mm )^2 ( 0.334 ) (1-0.59*0.334) = 159.88 kn-m M1 > Mu Reinf. Not Required, Use Min. Reinf. Mu= Φfc'bd^2(w)(1-0.59w) 34.67*10^6 = 0.90(20.7)(w) ( 200 mm ) ( 400 mm )^2 (1-0.59*w) w = 0.06 P = wfc'/Fy = 0.06 (20.7)/275 = 0.0045 Pmin = 1.4/Fy = 0.0051 Reinforcement As=pbd= 0.0051 ( 200 mm ) ( 400 mm ) = 408.00 mm^2 No. of Bars Needed : Use 16 mm Ø Bars; Ab = 201.00 mm^2 NBars= As/Ab = 2.03 Bars Say 3 Bars THEREFORE USE 200 mm X 400 mm Conc. Beam Provided w/ 4- 16mm Bars at Top & 2-16mm at Bot.

3.33 m

1-0.59*0.334)

1-0.59*w) <

Pmin!

DESIGN OF FLOOR BEAM (B-2) Assume Dimension

200 mm x 400 mm

Span (L)=

LOADINGS Dead Load Wt. of Beam Wt. of Wall Wt. of Slab Total Live Load Wu = =

Point Load Pu(from left) = 16.35 kn 1.92 kn/m 8.25 kn/m 3.36 kn/m 13.53 kn/m

1.4DL + 1.7LL 23.46 kn/m

2.66 kn/m =

1.4(13.53) + 1.7(2.66)

Design Moment Mu= 31.31 kn-m Pmax = 0.75Pb;

Pb = (0.85fc'B600)/[fy(600+275)] Pb = 0.85(20.7)(0.85)(600)/[275(600+275)] = 0.037 Pmax = 0.75Pb = 0.028 W= pfy/fc' = 0.025(275)/20.7 = 0.334 Moment Capacity of Concrete M1= Φfc'bd^2(w)(1-0.59w) = 0.90(20.7) ( 200 mm ) ( 400 mm )^2 ( 0.334 ) (1-0.59*0.334) = 159.88 kn-m M1 > Mu Reinf. Not Required, Use Min. Reinf. Mu= Φfc'bd^2(w)(1-0.59w) 31.31*10^6 = 0.90(20.7)(w) ( 200 mm ) ( 400 mm )^2 (1-0.59*w) w = 0.054 P = wfc'/Fy = 0.054 (20.7)/275 = 0.0041 Pmin = 1.4/Fy = 0.0051 Reinforcement As=pbd= 0.0051 ( 200 mm ) ( 400 mm ) = 408.00 mm^2 No. of Bars Needed : Use 16 mm Ø Bars; Ab = 201.00 mm^2 NBars= As/Ab = 2.03 Bars Say 4 Bars THEREFORE USE 200 mm X 400 mm Conc. Beam Provided w/ 4- 16mm Bars at Top & 2-16mm at Bot.

2.70 m

1-0.59*0.334)

1-0.59*w) <

Pmin!

DESIGN OF FLOOR BEAM (B-3) Assume Dimension

200 mm x 350 mm

Span (L)=

LOADINGS Dead Load Wt. of Beam Wt. of Slab

1.68 kn/m 3.72 kn/m

Total Live Load Wu = =

5.40 kn/m

2.95 kn/m 1.4DL + 1.7LL = 12.58 kn/m

Design Moment Mu= WL2/8

= 10.63 kn-m

Pmax = 0.75Pb;

Pb = (0.85fc'B600)/[fy(600+275)] Pb = 0.85(20.7)(0.85)(600)/[275(600+275)] = 0.037 Pmax = 0.75Pb = 0.028 W= pfy/fc' = 0.025(275)/20.7 = 0.334 Moment Capacity of Concrete M1= Φfc'bd^2(w)(1-0.59w) = 0.90(20.7) ( 200 mm ) ( 350 mm )^2 ( 0.334 ) (1-0.59*0.334) = 122.41 kn-m M1 > Mu Reinf. Not Required, Use Min. Reinf. Mu= Φfc'bd^2(w)(1-0.59w) 10.63*10^6 = 0.90(20.7)(w) ( 200 mm ) ( 350 mm )^2 (1-0.59*w) w = 0.024 P = wfc'/Fy = 0.024 (20.7)/275 = 0.0018 Pmin = 1.4/Fy = 0.0051 Reinforcement As=pbd= 0.0051 ( 200 mm ) ( 350 mm ) = 357.00 mm^2 No. of Bars Needed : Use 16 mm Ø Bars; Ab = 201.00 mm^2 NBars= As/Ab = 1.78 Bars Say 2 Bars THEREFORE USE 200 mm X 350 mm Conc. Beam Provided w/ 3-16mm Bars at Top & 2-16mm at Bot.

2.60 m

1-0.59*0.334)

1-0.59*w) <

Pmin!

DESIGN OF FLOOR BEAM (B-4) Assume Dimension

150 mm x 350 mm

Span (L)=

LOADINGS Dead Load Wt. of Beam Wt. of Slab

1.26 kn/m 1.15 kn/m

Total Live Load Wu = =

2.41 kn/m 0.91 kn/m 1.4DL + 1.7LL = 4.92 kn/m

1.4(2.41) + 1.7(0.91)

Design Moment Mu= WL2/8

= 1.38 kn-m

Pmax = 0.75Pb;

Pb = (0.85fc'B600)/[fy(600+275)] Pb = 0.85(20.7)(0.85)(600)/[275(600+275)] = 0.037 Pmax = 0.75Pb = 0.028 W= pfy/fc' = 0.025(275)/20.7 = 0.334 Moment Capacity of Concrete M1= Φfc'bd^2(w)(1-0.59w) = 0.90(20.7) ( 150 mm ) ( 350 mm )^2 ( 0.334 ) (1-0.59*0.334) = 91.81 kn-m M1 > Mu Reinf. Not Required, Use Min. Reinf. Mu= Φfc'bd^2(w)(1-0.59w) 1.38*10^6 = 0.90(20.7)(w) ( 150 mm ) ( 350 mm )^2 (1-0.59*w) w = 0.004 P = wfc'/Fy = 0.004 (20.7)/275 = 0.0003 Pmin = 1.4/Fy = 0.0051 Reinforcement As=pbd= 0.0051 ( 150 mm ) ( 350 mm ) = 267.75 mm^2 No. of Bars Needed : Use 16 mm Ø Bars; Ab = 201.00 mm^2 NBars= As/Ab = 1.33 Bars Say 2 Bars THEREFORE USE 150 mm X 350 mm Conc. Beam Provided w/ 2- 16mm Bars at Top & 2-16mm at Bot.

1.50 m

1-0.59*0.334)

1-0.59*w) <

Pmin!

DESIGN OF CONTINUOUS BEAM (CB-1) Assume Dimension

200 mm x 350 mm

Span (L)=

LOADINGS Dead Load

Point Load Pu(from left) = 8.67 kn 1.92 kn/m

Wt. of Beam

Total Live Load Wu = =

1.92 kn/m

1.4DL + 1.7LL 2.69 kn/m

0.00 kn/m =

Design Moment Mu= 10.00 kn-m Pmax = 0.75Pb;

Pb = (0.85fc'B600)/[fy(600+275)] Pb = 0.85(20.7)(0.85)(600)/[275(600+275)] = 0.037 Pmax = 0.75Pb = 0.028 W= pfy/fc' = 0.025(275)/20.7 = 0.334 Moment Capacity of Concrete M1= Φfc'bd^2(w)(1-0.59w) = 0.90(20.7) ( 200 mm ) ( 350 mm )^2 ( 0.334 ) (1-0.59*0.334) = 122.41 kn-m M1 > Mu Reinf. Not Required, Use Min. Reinf. Mu= Φfc'bd^2(w)(1-0.59w) 10.00*10^6 = 0.90(20.7)(w) ( 200 mm ) ( 350 mm )^2 (1-0.59*w) w = 0.017 P = wfc'/Fy = 0.017 (20.7)/275 = 0.0013 Pmin = 1.4/Fy = 0.0051 Reinforcement As=pbd= 0.0051 ( 200 mm ) ( 350 mm ) = 357.00 mm^2 No. of Bars Needed : Use 16 mm Ø Bars; Ab = 201.00 mm^2 NBars= As/Ab = 1.78 Bars Say 4 Bars THEREFORE USE 200 mm X 350 mm Conc. Beam Provided w/ 4- 16mm Bars at Top & 2-16mm at Bot.

1.00 m

1-0.59*0.334)

1-0.59*w) <

Pmin!

DESIGN OF COLUMN Assume Dimension Abd =

(C-1) 400 mm x 400 mm

Span (L)=

###

LOADINGS Dead Load PDEADLOAD = 170.00 kn Live Load PLIVELOAD = 30.00 kn PU = 1.4DL + 1.7LL Ag = Pu/{Φ0.8[0.85Fc'(1-Pg)+FyPg]} Ag = 72860.69 mm^2 Abd Ag <

Pu

= 289.00 kn

Fc' Fy

= 20.70 Mpa = 275.00 Mpa

Φ (Tied Col)

= 0.70

Pg

= 0.01

OK!

NSCP PROVISION Abd 60000 < REINFORCEMENT As = PgAg = 1600.00 mm^2 N#16

.:Try =

OK!

16.00 mm Bars As/A16 = 7.96

A16 = 201.06 mm^2 Say

8 Bars

FOR TIES Spacing of Lateral ties (Try 10 mm Ties) S = 16db = 256.00 mm S = 48 dt = 480.00 mm S = Least Dimension

=

250.00 mm

THEREFORE USE 200 mm X 400 mm Cocrete Column Provided With 8-16mm Vert. Bars and 10mm Ties at 250 mm

3.00 m

DESIGN OF COLUMN

(C-2)

Assume Dimension Abd = 80000 mm^2 LOADINGS

200 mm x 400 mm

Dead Load PDEADLOAD = 63.65 kn Live Load PLIVELOAD = 19.84 kn PU = 1.4DL + 1.7LL Ag = Pu/{Φ0.8[0.85Fc'(1-Pg)+FyPg]} Ag = 30969.07 mm^2 Abd Ag <

Span (L)=

Pu

= 122.84 kn

Fc' Fy

= 20.70 Mpa = 275.00 Mpa

Φ (Tied Col)

= 0.70

Pg

= 0.01

OK!

NSCP PROVISION Abd 60000 < REINFORCEMENT As = PgAg = 800.00 mm^2 N#16

.:Try =

OK!

16.00 mm Bars As/A16 = 3.98

A16 = 201.06 mm^2 Say

4 Bars

FOR TIES Spacing of Lateral ties (Try 10 mm Ties) S = 16db = 256.00 mm S = 48 dt = 480.00 mm S = Least Dimension

=

250.00 mm

THEREFORE USE 200 mm X 400 mm Cocrete Column Provided With 6-16mm Vert. Bars and 10mm Ties at 250 mm

3.00 m

DESIGN OF COLUMN

(C-3)

Assume Dimension Abd = 62500 mm^2 LOADINGS

250 mm x 250 mm

Dead Load PDEADLOAD = 12.00 kn Live Load PLIVELOAD = 0.00 kn PU = 1.4DL + 1.7LL Ag = Pu/{Φ0.8[0.85Fc'(1-Pg)+FyPg]} Ag = 4235.50 mm^2 Abd Ag <

Span (L)=

Pu

= 16.80 kn

Fc' Fy

= 20.70 Mpa = 275.00 Mpa

Φ (Tied Col)

= 0.70

Pg

= 0.01

OK!

NSCP PROVISION Abd 60000 < REINFORCEMENT As = PgAg = 400.00 mm^2 N#16

.:Try =

OK!

12.00 mm Bars As/A12 = 3.54

A12 = 113.10 mm^2 Say

4 Bars

FOR TIES Spacing of Lateral ties (Try 10 mm Ties) S = 16db = 192.00 mm S = 48 dt = 480.00 mm S = Least Dimension

=

250.00 mm

THEREFORE USE 250 mm X 250 mm Cocrete Column Provided With 4-12mm Vert. Bars and 10mm Ties at 250 mm

3.00 m

DESIGN OF COLUMN

(PC-1)

Assume Dimension Abd = 70000 mm^2 LOADINGS

200 mm x 350 mm

Dead Load PDEADLOAD = 10.84 kn Live Load PDEADLOAD = 1.82 kn PU = 1.4DL + 1.7LL Ag = Pu/{Φ0.8[0.85Fc'(1-Pg)+FyPg]} Ag = 4606.11 mm^2 Abd Ag <

Span (L)=

Pu

= 18.27 kn

Fc' Fy

= 20.70 Mpa = 275.00 Mpa

Φ (Tied Col)

= 0.70

Pg

= 0.01

OK!

NSCP PROVISION Abd 60000 < REINFORCEMENT As = PgAg = 700.00 mm^2 N#16

.:Try =

OK!

16.00 mm Bars As/A16 = 3.48

A16 = 201.06 mm^2 Say

4 Bars

FOR TIES Spacing of Lateral ties (Try 10 mm Ties) S = 16db = 256.00 mm S = 48 dt = 480.00 mm S = Least Dimension

=

250.00 mm

THEREFORE USE 200 mm X 350 mm Cocrete Column Provided With 4-12mm Vert. Bars and 10mm Ties at 250 mm

3.00 m

DESIGN OF COLUMN FOOTING (F-1) LOADINGS: Max. Column Load : 37.39 kn Weight of Footing : 8.64 kn Af =( 1.2 m^2) Total loads (Pu) : 46.03 kn Allowable Soil Bearing Capacity (Assumed q b) : 150 kpa = Qe = 150 - 0.20 (24) = 145.2 kpa (Effective Soil Bearing) Area Required: Af2= Pu/Qe Qu = Pu/Af

= 0.32 m^2 = 38.36 kpa

Footing Thickness Allowable Punching Shear: Vc= √Fc'/3 = 1.52 Mpa Actual Punching Shear: Vu= 46.03 kn - 38.36 kpa Vn= Vu/Φbd = 0.039 Mpa Design of Moment Mu= 38.36 kpa (1.20 m) Moment Capacity of Concrete Mu= Φfc'bd^2(w)(1-0.59w)

<

Af

Ok!

<

Qe

Ok!

[(0.4 m)^2] = < Vc

39.89 kn Ok!

[(0.4 m)^2/2] = 3.68 kn-m

Mu= Φfc'bd^2(w)(1-0.59w) 3.68*10^6 =0.90(20.7)(w) ( 1200 mm ) ( 1200 mm )^2 w = 0.0042 P = wfc'/Fy = 0.0042 (20.7)/275 = Pmin = 1.4/Fy = 0.0051 Reinforcement As=pbd= 0.0051 ( 1200 mm) ( 225 mm ) = 1377.00 mm^2 No. of Bars Needed : Use 16 mm Ø Bars; Ab = 201.00 mm^2 NBars= As/Ab = 6.85 Bars Say 7 Bars THEREFORE USE 1200 mm^2 X 300 mm Thick Column Footing Provided With 7-16 mm Each Way

(1-0.59*w) 0.000316

1-0.59*w) <

Pmin!

DESIGN OF COLUMN FOOTING (F-2) LOADINGS: Max. Column Load Weight of Footing

: :

37.39 kn 8.64 kn

Qe =

Af =( 1.2 m^2)

Total loads (Pu) : 46.03 kn Allowable Soil Bearing Capacity (Assumed q b)

Af2= :

150 kpa

= Qe = 150 - 0.20 (24) = 145.2 kpa (Effective Soil Bearing) Area Required: Af2= 1.02 m^2 SAY 1.10 m^2 Af < = qb Qu = Pu/Af 38.36 kpa < Footing Thickness Allowable Punching Shear: Vc= √Fc'/3 = 1.52 Mpa Actual Punching Shear: Vu= 46.03 kn - 38.36 kpa Vn= Vu/Φbd = 0.039 Mpa Design of Moment Mu= 38.36 kpa (1.20 m) Moment Capacity of Concrete Mu= Φfc'bd^2(w)(1-0.59w)

[(0.4 m)^2] = < Vc

Ok! Ok!

39.89 kn Ok!

[(0.4 m)^2/2] = 3.68 kn-m

Mu= Φfc'bd^2(w)(1-0.59w) 3.68*10^6 =0.90(20.7)(w) ( 1200 mm ) ( 1200 mm )^2 w = 0.0042 P = wfc'/Fy = 0.0042 (20.7)/275 = Pmin = 1.4/Fy = 0.0051 Reinforcement As=pbd= 0.0051 ( 1200 mm) ( 225 mm ) = 1377.00 mm^2 No. of Bars Needed : Use 16 mm Ø Bars; Ab = 201.00 mm^2 NBars= As/Ab = 6.85 Bars Say 7 Bars THEREFORE USE 1200 mm^2 X 300 mm Thick Column Footing Provided With 7-16 mm Each Way

(1-0.59*w) 0.000316

P Af22

+

1.02 m^2

1-0.59*w) <

Pmin!

6Pe Af23

DESIGN OF COLUMN FOOTING (F-3) LOADINGS: Max. Column Load : 12.00 kn Weight of Footing : 4.80 kn Af =( 0.8 m^2) Total loads (Pu) : 16.80 kn A =( 0.64 m^2) Allowable Soil Bearing Capacity (Assumed q b) : 150 kpa = Qe = 150 - 0.20 (24) = 145.2 kpa (Effective Soil Bearing) Area Required: Af2= Pu/Qe Qu = Pu/Af

= 0.12 m^2 = 21.00 kpa

Footing Thickness Allowable Punching Shear: Vc= √Fc'/3 = 1.52 Mpa Actual Punching Shear: Vu= 16.80 kn - 21.00 kpa Vn= Vu/Φbd = 0.020 Mpa Design of Moment Mu= 21.00 kpa (0.80 m) Moment Capacity of Concrete Mu= Φfc'bd^2(w)(1-0.59w)

<

Af

Ok!

<

Qe

Ok!

[(0.4 m)^2] = < Vc

13.44 kn Ok!

[(0.4 m)^2/2] = 1.34 kn-m

Mu= Φfc'bd^2(w)(1-0.59w) 1.34*10^6 =0.90(20.7)(w) ( 800 mm ) ( 800 mm )^2 w = 0.0042 P = wfc'/Fy = 0.0042 (20.7)/275 = Pmin = 1.4/Fy = 0.0051 Reinforcement As=pbd= 0.0051 ( 800 mm) ( 175 mm ) = 714.00 mm^2 No. of Bars Needed : Use 12 mm Ø Bars; Ab = 201.00 mm^2 NBars= As/Ab = 3.55 Bars Say 5 Bars THEREFORE USE 800 mm X 800 mm X 250 mm Thick Column Footing Provided With 5-12 mm Each Way

(1-0.59*w) 0.000316

1-0.59*w) <

Pmin!

DESIGN OF WALL FOOTING (WF-1) LOADINGS: 6" CHB Uniform Load : 1.29 kn/m Weight of Footing : 2.40 kn/m Total loads (Wu) : 3.69 kn/m Allowable Soil Bearing Capacity (Assumed q b) Effective Soil Bearing: = Qe = 150 - 0.20 (24) = 145.2 kpa Width of Footing Considering 1 m Strip P + Qe = B

:

150 kpa

6Pe B2

B=

Ultimate Bearing Pressure 1.4DL + 1.7LL Qu = = 10.33 kpa B (1 m) Mu = Qu*(B*0.5-0.15)2/2 = 0.052 kn-m Mu= Φfc'bd^2(w)(1-0.59w) 0.05*10^6 = 0.90(20.7)(w) ( 500 mm ) ( 200 mm )^2 (1-0.59*w) w = 0.00014 P = wfc'/Fy = 0.00014 (20.7)/275 = 0.000011 Pmin = 1.4/Fy = 0.0051 Reinforcement As=pbd= 0.0051 ( 500 mm ) ( 200 mm ) = 510.00 mm^2 No. of Bars Needed : Use 16 mm Ø Bars; Ab = 201.00 mm^2 NBars= As/Ab = 2.54 Bars Say 3 Bars THEREFORE USE 500 mm WIDE X 200 mm Thick Wall Footing Provided With 3-16 mm Cont Bars w/ 10 mm Ø Tie Bars at 450 mm o.c.

<

THEREFORE USE 1000 mm^2 X 300 mm Thick Column Footing Provided With 6-16 mm Each Way

0.05 m

Pmin!

SAY

0.50 m

DESIGN OF WALL FOOTING (WF-2) LOADINGS: 6" CHB Uniform Load : 1.29 kn/m Weight of Footing : 2.40 kn/m Total loads (Wu) : 3.69 kn/m Allowable Soil Bearing Capacity (Assumed q b) Effective Soil Bearing: = Qe = 150 - 0.20 (24) = 145.2 kpa Width of Footing Considering 1 m Strip 3.69 k/m B= = 0.03 m SAY 145.2 kpa

:

150 kpa

0.50 m

Ultimate Bearing Pressure 1.4DL + 1.7LL Qu = = 10.33 kpa B (1 m) Mu = Qu*(B*0.5-0.15)2/2 = 0.052 kn-m Mu= Φfc'bd^2(w)(1-0.59w) 0.05*10^6 = 0.90(20.7)(w) ( 500 mm ) ( 200 mm )^2 (1-0.59*w) w = 0.00014 P = wfc'/Fy = 0.00014 (20.7)/275 = 0.000011 Pmin = 1.4/Fy = 0.0051 Reinforcement As=pbd= 0.0051 ( 500 mm ) ( 200 mm ) = 510.00 mm^2 No. of Bars Needed : Use 16 mm Ø Bars; Ab = 201.00 mm^2 NBars= As/Ab = 2.54 Bars Say 3 Bars THEREFORE USE 500 mm WIDE X 200 mm Thick Wall Footing Provided With 3-16 mm Cont Bars w/ 10 mm Ø Tie Bars at 450 mm o.c.

<

Pmin!

DESIGN OF WALL FOOTING (WF-3) LOADINGS: 4" CHB Uniform Load : 0.83 kn/m Weight of Footing : 2.40 kn/m Total loads (Wu) : 3.23 kn/m Allowable Soil Bearing Capacity (Assumed q b) Effective Soil Bearing: = Qe = 150 - 0.20 (24) = 145.2 kpa Width of Footing Considering 1 m Strip 3.23 k/m B= = 0.02 m SAY 145.2 kpa

:

150 kpa

0.40 m

Ultimate Bearing Pressure 1.4DL + 1.7LL Qu = = 11.29 kpa B (1 m) Mu = Qu*(B*0.4-0.15)2/2 = 0.014 kn-m Mu= Φfc'bd^2(w)(1-0.59w) 0.01*10^6 = 0.90(20.7)(w) ( 400 mm ) ( 200 mm )^2 (1-0.59*w) w = 0.00005 P = wfc'/Fy = 0.00005 (20.7)/275 = 0.000004 Pmin = 1.4/Fy = 0.0051 Reinforcement As=pbd= 0.0051 ( 400 mm ) ( 200 mm ) = 408.00 mm^2 No. of Bars Needed : Use 16 mm Ø Bars; Ab = 201.00 mm^2 NBars= As/Ab = 2.03 Bars Say 3 Bars THEREFORE USE 400 mm WIDE X 200 mm Thick Wall Footing Provided With 3-16 mm Cont Bars w/ 10 mm Ø Tie Bars at 450 mm o.c.

<

THEREFORE USE 1000 mm^2 X 300 mm Thick Column Footing Provided With 6-16 mm Each Way

Pmin!

DESIGN OF SLAB (S1) Min. Thickness L1 = 1.35 m t = (L/20)(0.4+fy/700) LOADINGS:

L2 = 2.80 m 53.52 mm

Dead Load Wt. of Slab Wt. of Floor Finish

2.40 kpa 0.60 kpa

Total Dead Load

3.00 kpa

Live Load Residential

1.90 kpa

Wu = 1.4DL+1.7LL Wu = 7.43 kn-m

Say

100 mm

= 7.43 kpa (per 1 m strip)

Slab Aspect Ratio m = L2/L1 =

2.07 > 0.50 One-way Slab

Design Moment Mu= WL2/8 d = t-20-0.5(Φbar)

= 0.93 kn-m = 75 mm Mu= Φfc'bd^2(w)(1-0.59w)

0.93*10^6 w P Pmin As=pbd= S= Thickness 100 mm S1

= 0.90(20.7)(w) ( 1000 mm ) ( 75 mm )^2 (1-0.59*w) = 0.0089 = wfc'/Fy = 0.0089 (20.7)/275 = 0.0007 = 1.4/Fy = 0.0051

0.0051

( 1000 mm ) ( 75 mm ) = Use 10 mm Ø Bars; Ab = 78.5(1000)/ 382.50 = 205.23 mm At Short Span At Support 10 mm Φ at 200 mm o.c.

at Mid Span 10 mm Φ at 200 mm o.c.

382.5 mm^2 78.54 mm^2 SAY 200 mm

At Long Span At Support at Mid Span 10 mm Φ at 10 mm Φ at 200 mm o.c. 200 mm o.c.

<

Pmin!

DESIGN OF SLAB (S2) Min. Thickness

t = 100 mm d = 75 mm L1 = 1.70 m L2 = 2.60 m

LOADINGS: Dead Load Wt. of Slab Wt. of Floor Finish Elect. & Other Fixtures Total Dead Load

2.40 0.60 0.15 3.15

Live Load Residential

1.90 kpa

Wu = Wu = Slab Aspect m=

kpa kpa kpa kpa

1.4DL+1.7LL = 7.64 kpa 7.64 kn-m (per 1 m strip) Ratio L1/L2 = 0.65 > 0.50 Two-way Slab

At Continuous End Ms = 0.069 (7.64 Mb = 0.022 (7.64 At Midspan Ms = 0.076 (7.64 Mb = 0.024 (7.64 Design Moment Mu= Φfc'bd^2(w)(1-0.59w)

kpa) 1.70 m = kpa) 2.60 m =

1.52 kn-m 1.14 kn-m

kpa) 1.70 m = kpa) 2.60 m =

1.68 kn-m 1.24 kn-m

(at Continuous Edge short/long direction) Mu= Φfc'bd^2(w)(1-0.59w) 1.52*10^6 = 0.90(20.7)(w) ( 1000 mm ) ( 75 mm )^2 w = 0.015 P = wfc'/Fy = 0.015 (20.7)/275 = Pmin = 1.4/Fy = 0.0051 Reinforcement As=pbd= 0.0051 ( 1000 mm ) ( 75 mm ) = Spacing of Bars using 10 mm Φ As = 78.5 mm^2 S= 78.5(1000)/ 382.50 = 205.23 mm SAY Design Moment Mu= Φfc'bd^2(w)(1-0.59w) (at Midspan short/long direction) Mu= Φfc'bd^2(w)(1-0.59w) 1.68*10^6 = 0.90(20.7)(w) ( 1000 mm ) ( 75 mm )^2 w = 0.02 P = wfc'/Fy = 0.02 (20.7)/275 = Pmin = 1.4/Fy = 0.0051

Reinforcement As=pbd= 0.0051 ( 1000 mm ) ( 75 mm ) = Spacing of Bars using 10 mm Φ As = 78.5 mm^2 S= 78.5(1000)/ 382.50 = 205.23 mm SAY

Thickness 100 mm S2

At Short Span At Support at Mid Span 10 mm Φ at 10 mm Φ at 200 mm o.c. 200 mm o.c.

At Long Span At Support at Mid Span 10 mm Φ at 10 mm Φ at 200 mm o.c. 200 mm o.c.

long direction) (1-0.59*w) 0.001129

<

Pmin!

<

Pmin!

382.50mm^2 200 mm

(1-0.59*w) 0.001505

382.50mm^2 200 mm

At Discontinuous End At Support at Mid Span 10 mm Φ at 10 mm Φ at 200 mm o.c. 200 mm o.c.

DESIGN OF SLAB (S3) Min. Thickness

t = 100 mm d = 75 mm L1 = 2.80 m L2 = 3.80 m

LOADINGS: Dead Load Wt. of Slab Wt. of Floor Finish Elect. & Other Fixtures Total Dead Load

2.40 0.60 0.15 3.15

Live Load Residential

1.90 kpa

Wu = Wu = Slab Aspect m=

kpa kpa kpa kpa

1.4DL+1.7LL = 7.64 kpa 7.64 kn-m (per 1 m strip) Ratio L1/L2 = 0.74 > 0.50 Two-way Slab

At Continuous End Ms = 0.069 (7.64 Mb = 0.022 (7.64 At Midspan Ms = 0.076 (7.64 Mb = 0.024 (7.64 Design Moment Mu= Φfc'bd^2(w)(1-0.59w)

kpa) 2.80 m = kpa) 3.80 m =

4.13 kn-m 2.43 kn-m

kpa) 2.80 m = kpa) 3.80 m =

4.55 kn-m 2.65 kn-m

(at Continuous Edge short/long direction) Mu= Φfc'bd^2(w)(1-0.59w) 4.13*10^6 = 0.90(20.7)(w) ( 1000 mm ) ( 75 mm )^2 w = 0.04 P = wfc'/Fy = 0.04 (20.7)/275 = Pmin = 1.4/Fy = 0.0051 Reinforcement As=pbd= 0.0051 ( 1000 mm ) ( 75 mm ) = Spacing of Bars using 10 mm Φ As = 78.5 mm^2 S= 78.5(1000)/ 382.50 = 205.23 mm SAY Design Moment Mu= Φfc'bd^2(w)(1-0.59w) (at Midspan short/long direction) Mu= Φfc'bd^2(w)(1-0.59w) 4.55*10^6 = 0.90(20.7)(w) ( 1000 mm ) ( 75 mm )^2 w = 0.045 P = wfc'/Fy = 0.045 (20.7)/275 = Pmin = 1.4/Fy = 0.0051

Reinforcement As=pbd= 0.0051 ( 1000 mm ) ( 75 mm ) = Spacing of Bars using 10 mm Φ As = 78.5 mm^2 S= 78.5(1000)/ 382.50 = 205.23 mm SAY

Thickness 100 mm S3

At Short Span At Support at Mid Span 10 mm Φ at 10 mm Φ at 175 mm o.c. 175 mm o.c.

At Long Span At Support at Mid Span 10 mm Φ at 10 mm Φ at 200 mm o.c. 200 mm o.c.

long direction) (1-0.59*w) 0.003011

<

Pmin!

<

Pmin!

382.50mm^2 200 mm

(1-0.59*w) 0.003387

382.50mm^2 200 mm

At Discontinuous End At Support at Mid Span 10 mm Φ at 10 mm Φ at 200 mm o.c. 200 mm o.c.

Related Documents

Absorption Columns
February 2021 0
Lime Columns
January 2021 1
Chp9 Beams
January 2021 1
Design Of Curved Beams
February 2021 1

More Documents from "ayingba"