40314987-example-cantilever-method.doc

  • Uploaded by: Syafiq Shaffiai
  • 0
  • 0
  • February 2021
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View 40314987-example-cantilever-method.doc as PDF for free.

More details

  • Words: 1,382
  • Pages: 11
Loading documents preview...
FAKULTI KEJURUTERAAN AWAM Faculty of Civil Engineering Tel:(+603) 5543 6189 Fax: (+603) 5543 5275

Example No. 1 The steel jointed building frame show in the figure carry the lateral load as shown. Analyse the frame and draw the bending moment diagram using the cantilever method. 10 kN

1.5 m

10 kN

2.0 m

2.0 m

2.5 m

3.0 m

Solution Step # 1 : Locate point of inflection X = 3.5 m

10 kN A

C

E

G 1.5 m

10 kN

2.0 m

2.0 m

2.5 m

3.0 m

Step # 2 : Locate the centre of gravity X=

- Cantilever Method

=

A(0)  A(2)  A( 4.5)  A(7.5)  3.5m 4A

Page 1

FAKULTI KEJURUTERAAN AWAM Faculty of Civil Engineering Tel:(+603) 5543 6189 Fax: (+603) 5543 5275

Step # 3 : Determine the axial force in each column 10 kN

P

P1

P2

P3

Since any column stress, , is proportional to its distance from the neutral axis, NA, we can relate the column stress by proportional triangles. P3 P2

P1 P P P1  , P1 = 0.429P = 0.429x0.833=0.357kN 3.5 1.5 P P2  , P2 = 0.286P = 0.238kN 3.5 1 P P3  , P3 = 1.143P = 0.952kN 3.5 4

Calculate the value of “P” using equation of equilibrium Mh

+=0

10 (0.75) + P1 (2) - P2 (4.5) - P3 (7.5) = 0 10 (0.75) + (0.429P)(2) – (0.286P)(4.5) – (1.143P)(7.5) = 0 P = 0.833 kN

- Cantilever Method

Page 2

FAKULTI KEJURUTERAAN AWAM Faculty of Civil Engineering Tel:(+603) 5543 6189 Fax: (+603) 5543 5275

Step # 4 :

Determine Shear forces of each part of frame and determine member end moments

At Point “a” Vb 10 kN

Mb

Hb

+=0

Hh (0.75) = 0.833(1) Hh = 1.111 kN #

Hh

FY+ = 0

FX+ = 0

-P + VAB = 0

10 – Hb - Hh = 0

Vb = P

Hb = 10 - Hh

Vb = 0.833 kN #

Hb = 8.889 kN #

P = 0.833 kN

Vb

Ma

Ma

Hb

Ma

+=0

+=0

(down)

Ma = Vb(1)

Ma=0.75(1.111)

Ma = (0.833)(1)

Ma=0.833kNm(column)

Ma = 0.833 kNm (beam)

At Point “c” Vd

Vb = 0.833 kN

Md Hd

Hb = 8.889 kN

FY+ = 0

+=0

Hi(0.75)-0.833(2.25)

Vd-0.357-0.833=0 8.889-3.094-Hd

-0.357(1.25)=0

Vd = 1.19kN #

=0 Hd = 5.795kN #

Hi = 3.094kN #

Hi

FX+ = 0

P1 =0.357kN

Mc

Vd Mc

Mi

Mc=3.094(0.75)

Hd Md

+=0

Hi

Mc = 2.321kNm (column)

+=0

Mc=1.19(1.25)kNm

P1

Mc = 1.488kNm (beam) - Cantilever Method

Page 3

FAKULTI KEJURUTERAAN AWAM Faculty of Civil Engineering Tel:(+603) 5543 6189 Fax: (+603) 5543 5275

At Point “e” Vf

Vd = 1.19 kN

Mf Hf

Hd = 5.79 kN

FY+ = 0

+=0

FX+ = 0

Hj(0.75)-1.19(2.75) Vf-1.19-0.238=0 -Hf+5.79-4.84 Vf = 1.428kN #

-0.238(1.5)=0

Hf = 0.96 kN #

Hj = 4.84kN #

Hj

P2 =0.238kN

=0

Me

Vf

Mj

+=0

Me=4.84(0.75) Me

Hf Mf

Me = 3.63kNm (column)

Hj

+=0

P2

Me=1.428(1.5) Me = 2.142kNm (beam)

At Point “g” Vf Hf

Vf

FX+ = 0 Hk=Hf Hk

Hk = 0.96kN #

Hf Mf

P3 = 0.952 kN

Mg

+=0

Mg=1.428(1.5) Mg = 2.142kNm (beam) Mf

+=0

Mg=0.75(0.96) Mg=0.72kNm(column)

- Cantilever Method

Page 4

FAKULTI KEJURUTERAAN AWAM Faculty of Civil Engineering Tel:(+603) 5543 6189 Fax: (+603) 5543 5275

Step # 5 : Draw bending moment diagram (Beam ACEG) 1.488kNm

2.14kNm

0.833kNm

0.833kNm

1.488kNm

2.14kNm

1.5 m

2.0 m

2.0 m

2.5 m

3.0 m

1.5 m

2.0 m

2.0 m

- Cantilever Method

2.5 m

3.0 m

Page 5

FAKULTI KEJURUTERAAN AWAM Faculty of Civil Engineering Tel:(+603) 5543 6189 Fax: (+603) 5543 5275

Example No. 2 The building frame in figure below is subjected to horizontal forces of 100 kN, 80 kN and 50 kN at node D, H and L, respectively, and all columns has a dimension of 250 mm x 250 mm. Using the cantilever method; i. ii. iii.

establish the location of the centroidal axis of the frame calculate the axial forces for columns EI, FJ, GK and HL draw the bending moment diagram for beam ABCD

A

B

C

D

100 kN 3.2 m

E

F

G

H

80 kN 3.2 m

I

J

K

L

50 kN

4.0 m M

N

4.0 m

- Cantilever Method

O

6.0 m

P

8.0 m

Page 6

FAKULTI KEJURUTERAAN AWAM Faculty of Civil Engineering Tel:(+603) 5543 6189 Fax: (+603) 5543 5275

Solution i.

Establish the location of the centroidal axis of the frame

X=

=

A(0)  A(4)  A(10)  A(18)  8m 4A

8m

4.0 m

ii.

4.0 m

2.0 m

8.0 m

calculate the axial forces for columns EI, FJ, GK and HL From the distribution diagram shown calculate the value of P1, P2 and P3 in term of P P P1

P2 P3

P P1  , P1 = 0.5 P 8 4 P P2 8m P  , P2 = 0.25 8 2

100 kN

P P3  , P3 = 1.25P 8 10

3.2 m

80 kN 1.6 m 4.0 m

4.0 m

2.0 m

8.0 m

- Cantilever Method

P

P1

P2

P3

Page 7

FAKULTI KEJURUTERAAN AWAM Faculty of Civil Engineering Tel:(+603) 5543 6189 Fax: (+603) 5543 5275

By taking Moment at mid point of column EI, calculate the value of P MEI

+=0

P2 (10) + P3 (18) – P1 (4) – 80 (1.6) – 100 (4.8) = 0 (0.25P)(10) + (1.25P)(18) – (0.5P)(4) – (80)(1.6) – (100)(4.8) =0 2.5P + 22.5P – 2P – 128 – 480 = 0 P = 26.435 kN Therefore the value of axial forces for columns EI, FJ, GK and HL are as follows; EI = P = 26.435 kN FJ = P1 = 0.5P = (0.5)( 26.435) = 13.218 kN GK = P2 = 0.25P = (0.25)(26.435) = 6.609 kN HL = P3 = 1.25P = (1.25)(26.435) = 33.044 kN

iii.

draw the bending moment diagram for beam ABCD

- Cantilever Method

Page 8

FAKULTI KEJURUTERAAN AWAM Faculty of Civil Engineering Tel:(+603) 5543 6189 Fax: (+603) 5543 5275

8m 100 kN 1.6 m 4.0 m

P

4.0 m

P1

2.0 m

8.0 m

P2

P3

By taking Moment at mid point of column AE, calculate the value of P MAE

+=0

P2 (10) + P3 (18) – P1 (4) – 100 (1.6) = 0 (0.25P)(10) + 1.25P(18) – (0.5P)(4) – (100)(1.6) =0 2.5P + 22.5P – 2P – 160 = 0 P = 6.957 kN Therefore the value of axial forces for columns AE, BF, CG and DH are as follows; AE = P = 6.957 kN BF = P1 = 0.5P = (0.5)( 6.957) = 3.479 kN CG = P2 = 0.25P = (0.25)( 6.957) = 1.739 kN DH = P3 = 1.25P = (1.25)(6.957) = 8.697 kN

Determine shear force and moment for beam ABCD

- Cantilever Method

Page 9

FAKULTI KEJURUTERAAN AWAM Faculty of Civil Engineering Tel:(+603) 5543 6189 Fax: (+603) 5543 5275

At Point A VAB

FY+ = 0 P + VAB = 0 VAB = - P VAB = - 6.957 kN #

P = 6.957 kN

VAB = - 6.957 kN

MA

+=0

MA - VAB(2) = 0 MA

MA – (-6.957)(2) = 0 MA = - 13.914 kNm #

At Point B VBC

VAB = - 6.957 kN

FY+ = 0 - VAB + VBC + P1 = 0 VBC = - 6.957 - 3.479 VBC = - 10.436 kN #

P1 = 3.479 kN

VBC = - 10.436 kN

MB

+=0

MB - VBC (3) = 0 MB

MB – (-10.436)(3) = 0 MB = - 31.308 kNm #

- Cantilever Method

Page 10

FAKULTI KEJURUTERAAN AWAM Faculty of Civil Engineering Tel:(+603) 5543 6189 Fax: (+603) 5543 5275

At Point C VCD

VBC = - 10.436 kN

FY+ = 0 - VBC + VCD - P2 = 0 VCD = - 10.436 + 1.739 VCD = - 8.697 kN #

P2 = 1.739 kN

VCD = - 8.697 kN

MC

+=0

MC - VCD (4) = 0 MC

MC – (-8.697)(4) = 0 MC = - 34.788 kNm #

Bending moment diagram for beam ABCD 34.788 kNm

31.308 kNm 13.914 kNm

13.914 kNm 31.308 kNm

4.0 m

- Cantilever Method

6.0 m

34.788 kNm

8.0 m

Page 11

More Documents from "Syafiq Shaffiai"