Footing 1b

  • Uploaded by: Matt Puerto
  • 0
  • 0
  • January 2021
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Footing 1b as PDF for free.

More details

  • Words: 941
  • Pages: 5
Loading documents preview...
DESIGN OF SQUARE FOOTING 1-B

GIVEN: Dead Load, DL = 496.49 kN Live Load, LL = 260.3 kN Earthquake Load, E = 210.57 kN MDX = 10.73

kN-m MDY = 7.45

kN-m

MLX = 7.05

kN-m MLY = 2.39

kN-m

MEX = 157.77 kN-m MEY = 172.34 kN-m MATERIAL PROPERTIES Concrete compressive strength, f’c = 21 MPa Steel yield strength, fy = 275 MPa Normal weight concrete Unit weight of concrete, Ξ³c = 25

π‘˜π‘ π‘š^3

π‘˜π‘

Unit weight of soil, Ξ³s = 16.3 π‘š^3 Allowable soil bearing capacity, qa = 250 kPa

NSCP 2015 PROCEDURE PROVISIONS A. Footing Dimensions 1.) Assume thickness

422.8.2

COMPUTATION

t = 500 mm

Assume steel cover

Assume steel cover = 100 mm

Calculate Effective Depth, d

d = 500 mm – 100 mm = 400 mm

Calculate Effective Soil Bearing Capacity, qeff

π‘žπ‘’π‘“π‘“ = π‘žπ‘Ž βˆ’ Ξ£π›Ύβ„Ž π‘žπ‘’π‘“π‘“ = 250 βˆ’ [(25)(0.5) + (16.3)(2 βˆ’ 0.5)] π‘žπ‘’π‘“π‘“ = 213.05 π‘˜π‘ƒπ‘Ž π‘žπ‘’π‘“π‘“ =

Calculate Footing Base, B

π‘ƒπ‘’π‘›π‘“π‘Žπ‘π‘‘π‘œπ‘Ÿπ‘’π‘‘ 6π‘€π‘’π‘›π‘“π‘Žπ‘π‘‘π‘œπ‘Ÿπ‘’π‘‘ + 𝐡2 𝐡3

496.49 + 260.3 + 210.57 6( 175.55 + 182.18) + 𝐡2 𝐡3 B = 2.8432 m say B = 2.9 m 213.05 =

2.) Calculate the Ultimate Soil Bearing Capacity, qu Calculate ultimate load

Calculate ultimate moment along x

Calculate ultimate moment along x

𝑃𝑒 6𝑀𝑒π‘₯ 6𝑀𝑒𝑦 Β± 3 Β± 3 𝐡2 𝐡 𝐡 ; 𝑃𝑒 = 1.2(DL) + 1.0(LL) + 0.5(E) ; 𝑃𝑒 = 1.2(496.49) + 1.0(260.3) + 0.5(210.57) ; 𝑃𝑒 = 961.373 π‘˜π‘

π‘žπ‘’ =

; 𝑀𝑒π‘₯ = 1.2(𝑀𝐷𝑋 ) + 1.0(𝑀𝐿𝑋 ) + 0.5(𝑀𝐸𝑋 ) ; 𝑀𝑒π‘₯ = 1.2(10.73) + 1(157.77) + 0.5(7.05) ; 𝑀𝑒π‘₯ = 174.171 kN βˆ’ m ; 𝑀𝑒𝑦 = 1.2(𝑀𝐷𝑦 ) + 1.0(𝑀𝐿𝑦 ) + 0.5(𝑀𝐸𝑦 ) ; 𝑀𝑒𝑦 = 1.2(7.45) + 1(172.34) + 0.5(2.39) ; 𝑀𝑒𝑦 = 182.475 kN βˆ’ m 961.373 6(174.171) 6(182.475) Β± Β± 2.92 2.93 2.93 961.373 6(174.171) 6(182.475) π‘žπ‘’1 = + + 2.92 2.93 2.93 π’’π’–πŸ = 𝟐𝟎𝟐. πŸŽπŸ“πŸ π’Œπ‘·π’‚ 961.373 6(174.171) 6(182.475) π‘žπ‘’2 = βˆ’ + 2.92 2.93 2.93 π’’π’–πŸ = πŸπŸπŸ”. πŸ‘πŸ“πŸ” π’Œπ‘·π’‚ 961.373 6(174.171) 6(182.475) π‘žπ‘’3 = + βˆ’ 2.92 2.93 2.93 π’’π’–πŸ‘ = 𝟏𝟏𝟐. πŸπŸ• π’Œπ‘·π’‚ 961.373 6(174.171) 6(182.475) π‘žπ‘’4 = βˆ’ βˆ’ 2.92 2.93 2.93 π’’π’–πŸ’ = πŸπŸ”. πŸ“πŸ•πŸ’ π’Œπ‘·π’‚ π‘žπ‘’ =

3.) Check on one-way shear

π‘žπ‘’1 βˆ’ π‘žπ‘’3 π‘žβ€²π‘’1 = π‘žπ‘’1 βˆ’ ( )(0.85) 𝐡 202.052 βˆ’ 112.27 π‘žβ€²π‘’1 = 202.052 βˆ’ ( )(0.85) 2.9 π’’β€²π’–πŸ = πŸπŸ•πŸ“. πŸ•πŸ’ π’Œπ‘·π’‚ π‘žπ‘’2 βˆ’ π‘žπ‘’4 π‘žβ€²π‘’2 = π‘žπ‘’2 βˆ’ ( )(0.85) 𝐡 116.356 βˆ’ 26.574 π‘žβ€²π‘’2 = 116.356 βˆ’ ( )(0.85) 2.9 π’’β€²π’–πŸ = πŸ—πŸŽ. πŸŽπŸ’ π’Œπ‘·π’‚ π΅βˆ’πΆ π‘žβ€²π‘’1 + π‘žβ€²π‘’2 + π‘žπ‘’1 + π‘žπ‘’2 βˆ’ 𝑑)(𝐡)( ) 2 4 2.9 βˆ’ 0.4 175.74 + 90.04 + 202.05 + 116.35 𝑉𝑒 = ( βˆ’ 0.4)(2.9)( ) 2 4 𝑽𝒖 = πŸ‘πŸ”πŸŽ. 𝟎𝟎 π’Œπ‘·π’‚ 𝑉𝑒 = (

Eq. (411-1)

Calculate Nominal Shear load

𝑉𝑛 = 0.17(πœ†)βˆšπ‘“β€²π‘π‘π‘€π‘‘ 𝑉𝑛 = 0.17(1)√21(2900)(400)/1000

𝑽𝒏 = πŸ—πŸŽπŸ‘. πŸ”πŸ– π’Œπ‘΅ Use 0.75 reduction factor 411.6.1.6

πœ™π‘‰π‘› = 0.75(903.68) 𝝓𝑽𝒏 = πŸ”πŸ•πŸ•. πŸ•πŸ” π’Œπ‘΅ 𝑉𝑒 < πœ™π‘‰π‘› πŸ‘πŸ”πŸŽ. 𝟎𝟎 π’Œπ‘΅ < πŸ”πŸ•πŸ•. πŸ•πŸ”π’Œπ‘΅, ok!

4.) Check on two-way shear

Calculate the Ultimate Shear Capacity, Vu

π‘ž1 + π‘ž2 +π‘ž3 + π‘ž4 4 202.05 + 116.36 + 112.27 + 26.57 π‘žπ‘Žπ‘£π‘’ = 4 𝒒𝒂𝒗𝒆 = πŸπŸπŸ’. πŸ‘πŸ π’Œπ‘·π’‚ π‘žπ‘Žπ‘£π‘’ =

𝑉𝑒 = π‘žπ‘Žπ‘£π‘’ (𝐡2 βˆ’ (𝑐 + 𝑑)2 ) 𝑉𝑒 = 114.31(2.92 βˆ’ (0.4 + 0.4)2 ) 𝑽𝒖 = πŸ–πŸ–πŸ–. 𝟐𝟏 π’Œπ‘΅ 𝑉𝑛 = 0.33πœ†βˆšπ‘“β€²π‘ π‘π‘œ 𝑑 𝑉𝑛 = 0. .33(1)√21(4)(400 + 400)/1000 𝑽𝒏 = πŸπŸ—πŸ‘πŸ“. πŸ”πŸ– π’Œπ‘΅

Eq. (411-39)

Use 0.75 reduction factor 411.6.1.6 Compare Ultimate Shear to the Reduced Nominal Shear

πœ™π‘‰π‘› = 0.75(1935.68) 𝝓𝑽𝒏 = πŸπŸ’πŸ“πŸ. πŸ•πŸ” π’Œπ‘΅ 𝑉𝑒 < πœ™π‘‰π‘› πŸ–πŸ–πŸ–. 𝟐𝟏 π’Œπ‘΅ < πŸπŸ’πŸ“πŸ. πŸ•πŸ”π’Œπ‘΅, ok! Therefore, The footing dimension will be 2.9mx2.9mx0.5m

B. Main Reinforcement 2

412.3.3

Calculate Nominal moment load

𝑀𝑒 = 14.313(2.9)[(2.9 βˆ’ 0.4)8 ] 𝑀𝑒 = πŸπŸ“πŸ–. πŸ—πŸ—πŸ π’Œπ‘΅

Calculate for the value of w by equating the value of Mu to Ο•Mn

𝑀𝑒 = πœ™π‘€π‘› 𝑀𝑒 = πœ™(πœ†)βˆšπ‘“ β€² 𝑐(𝑏𝑀)(𝑑)2 (𝑀(1 βˆ’ 0.59𝑀)) 258.991(106 ) = 0.9(1.0)√21(2900)(400)2 (𝑀(1 βˆ’ 0.59𝑀)) w= 0.030066112

Calculate the ratio of reinforcement

𝑀𝑓′𝑐 𝑓𝑦 0.030066112(21) ρ= 275 ρ=

ρ = 0.002295958 410.6.1 Eq. (410-3)

Calculate the minimum reinforcement

1.4 𝑓𝑦 1.4 = 275 = 0.00591

Οπ‘šπ‘–π‘› = Οπ‘šπ‘–π‘› Οπ‘šπ‘–π‘›

Use Οπ‘šπ‘–π‘› Calculate the Area of reinforcement

𝐴𝑠 = ρbwd 𝐴𝑠 = 0.00591(2900)(400) 𝐴𝑠 = 5905.455π‘šπ‘š2

Determine the number of 20mm RSB

N=πœ‹ 4

As (𝑑𝑏)2

=

5905.455 πœ‹ (20)2 4

=19 bars

bw βˆ’ c 2900 βˆ’ 400 lπ‘‘π‘π‘Ÿπ‘œπ‘£π‘–π‘‘π‘’π‘‘ = ( βˆ’ 𝑐𝑐) = ( βˆ’ 100) = 1150π‘šπ‘š 2 2 Eq. (412-1)

412.3.4.1

412.3.4.2 412.3.4.3

Calculate the required development length Where: φ𝑑 = bar location; not more than 300mm of fresh concrete below horizontal reinforcement φ𝑒 =coating factor; uncoated φ𝑠 =bar size facto

1 fy φ𝑑 φ𝑒 φ𝑠 lπ‘‘π‘Ÿπ‘’π‘žπ‘‘ = ( ) ( ) (𝑑𝑏) )( 𝐢𝑏 + π‘˜π‘‘π‘Ÿ 1.1 πœ†βˆšπ‘“ β€² 𝑐 𝑑𝑏 𝐢𝑏+π‘˜π‘‘π‘Ÿ 100+0 where: = =5>2.5 𝑑𝑏

1 275 1.0(1.0)(0.8) lπ‘‘π‘Ÿπ‘’π‘žπ‘‘ = ( ) ( )( ) (20) 1.1 1√21 2.5 lπ‘‘π‘Ÿπ‘’π‘žπ‘‘ = 349.15π‘šπ‘š π‘™π‘‘π‘Ÿπ‘’π‘žπ‘‘ < π‘™π‘‘π‘π‘Ÿπ‘œπ‘£π‘–π‘‘π‘’π‘‘ πŸ‘πŸ’πŸ—. πŸπŸ“π’Žπ’Ž < πŸπŸπŸ“πŸŽπ’Žπ’Ž, ok!

C. Load Transfer From Column to Footing 𝐡𝑒 = Pu = 1051.041kN 𝐴 8.41 √ 2 =√ = 7.25 > 2 𝐴1 0.16 𝐡𝑛 = 2(0.85)(f β€² c)A1 𝐡𝑛 = 2(0.85)(f β€² c)1600 𝑩𝒏 = πŸ“πŸ•πŸπŸπ€π πœ™π΅π‘› = 0.65(5712) = 3712.8π‘˜π‘ 𝐡𝑒 < πœ™π΅π‘› πŸπŸŽπŸ“πŸ. πŸŽπŸ’π’Œπ‘΅ < πŸ‘πŸ•πŸπŸ. πŸ–π’Œπ‘΅, ok!

20

Provide Minimum Reinforcement (dowels) π΄π‘ π‘šπ‘–π‘› = 0.005(Ag) π΄π‘ π‘šπ‘–π‘› = 0.005(160000) π‘¨π’”π’Žπ’Šπ’ = πŸ–πŸŽπŸŽπ’Žπ’ŽπŸ N=πœ‹ 4

As (𝑑𝑏)2

=πœ‹ 4

800 (16)2

=4 bars

0.24fyΟ†r 0.24(275)(1.0) ) (db) = ( ) (16) = 230.44π‘šπ‘š β€² 1.0(√21) πœ†βˆšπ‘“ 𝑐 l𝑑𝑐 = 0.043(𝑓𝑦)(Ο†r)(db) = 0.043)(275)(1.0)(16) = 189.20π‘šπ‘š l𝑑𝑐 = 200π‘šπ‘š l𝑑𝑐 = (

use l𝑑𝑐 = 230.44π‘šπ‘š

Related Documents

Footing 1b
January 2021 1
Design Of Square Footing
January 2021 1
1b Grammar Simple Present
February 2021 0
22447_evs_ppt_uo 1a 1b 1c
February 2021 0
1b-7.- Doble Pila
February 2021 0
6-footing Design
January 2021 0

More Documents from "JuNe RaMos Javier"

Footing 1b
January 2021 1
Recetario Clean 340.pdf
January 2021 1
277 Dirty Talk System
January 2021 0
February 2021 1