Gantry Crane.xls

  • Uploaded by: amirthraj74
  • 0
  • 0
  • February 2021
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Gantry Crane.xls as PDF for free.

More details

  • Words: 4,450
  • Pages: 18
Loading documents preview...
SUMITOMO CORPORATION Checked By

PROJECT : SKS, Prai - 350MW CCGT Power Plant DOC.TITLE: DOC. NO

:

Design of Super structure-Design of Crane-girder CGPR1-100-5-011 Rev

0

DESIGN CALCULATIONS

Page of Area: Turbine build. Dept Structural REFERENCES / REMARKS

6.4.a DESIGN OF CRANE GANTRY GIRDER 11M span

All below references are BS 5950, part-1, UNO

a) INPUT DATA :(Refer Appendix-E, for EOT drawing) Crane Capacity

=

1050 kN

Weight of Crab

=

320 kN

Weight of Crane Bridge

=

780 kN

Self weight of the Rail

=

Width of Walk way

=

0.6 m

Dead Load of the Walkway Live Load of the Walkway

= =

1.5 kN/m² 5 kN/m²

Height of the Crane Rail

=

65 mm

Span of the Crane Girder, Lg

=

11 m

Centre to centre distance of , Lc Rail (i.e. Span of Crane Bridge)

=

32 m

Mini. approach of crane hook to the gantry

=

1.800 m

No. of Wheels Wheel Spacing1 Wheel Spacing2 C.G of loading from left load

= = = =

4 1.40 m 4.70 m 3.75 m

Impact Factor :

Vertical

=

30 %

Horizontal (Transverse to rail) Vertical Horizontal

=

10 %

= =

600 500

Imposed load vertical -gIvf Imposed load Horiz.gIhf Dead load gdf

= = =

1.6 1.6 1.4

Deflection Factor

Load Factor :

Design strength of steel, py

146905687.xls.ms_office .xls REF

2 265.0 N/mm

=

Maximum unsupported length Top Flange

gvrs/ST

2 kN/m

=

2.60 m

1.40 4.70

Table:5

Table:6

1.40

SUMITOMO CORPORATION Checked By

PROJECT : SKS, Prai - 350MW CCGT Power Plant DOC.TITLE: DOC. NO

:

Design of Super structure-Design of Crane-girder CGPR1-100-5-011 Rev

Page of Area: Turbine build. Dept Structural

0

DESIGN CALCULATIONS

REFERENCES / REMARKS

Depth of the surge girder

= =

Maximum unsupported length Bottom Flange 1.80m

(1050+320)kN

0.60 m 2.60 m

780 kN

Kicker RL

RL =

RR

32.00m

(1370 x 30.20 + 780 x 32.00/2)/32.00=

1682.938 kN

Wheel Load by calculation

420.73 kN/wheel

b) LOAD CALCULATIONS: b.1) Vertical Loads b.1.a) Conc. Loads Max. static Wheel Load Load due to Impact Total load Factored Load

Wm

=

421 kN

= 0.30 x 421

=

126.3 kN

W mf = 1.60 x 547.30

= =

547 kN 875.68 kN

say

b.1.b) Uniform Dirstributed Load Self weight of rail Walkway Dead Load Walkway Live Load Self weight of girder Factored load

= = = =

W df = 1.40 x 8.61

2.00 0.45 1.50 4.66 8.61 12.06

875.7

875.7

1.40 4.70

1.40

kN/m kN/m kN/m kN/m kN/m kN/m

b.2) Horizontal Loads Maximum lateral load per wheel is equal to 10% Static vertical wheel load, l = 0.1 W H = 0.10(421*4) Max. Lateral load = 168.4 kN 4 wheels are resisting the total lateral load Factored lateral load

146905687.xls.ms_office .xls REF

W df = 1.60 x 168.40 / 4

gvrs/ST

67.36 kN/wheel

from Fig-1 BS:2573,part-1

SUMITOMO CORPORATION Checked By

PROJECT : SKS, Prai - 350MW CCGT Power Plant DOC.TITLE: DOC. NO

:

Design of Super structure-Design of Crane-girder CGPR1-100-5-011 Rev

0

DESIGN CALCULATIONS

Page of Area: Turbine build. Dept Structural REFERENCES / REMARKS

c) MAXIMUM BENDING MOMENT AND SHEAR FORCE: c.1) For vertical loads c.1.a) Bending Moment :The maximum Bending moment under moving loads occurs when line of action of one load and centre of gravity of the loads are at equal distance from the centre of span. CG. OF LOADS

875.68kN

875.68kN 875.68kN

875.68kN

12.06kN/m

=

=

C RA

RB 11.00m

Mid Span of Crane Girder

Reactions :Ra

= 4x875.68x(11 - 11*0.5 - 0.25*4.7)/11 + 12.06 x 11 /2

=

1443.525 kN

Rb

= 4x875.68+12.06x11- 1,443.525

=

2191.834 kN

Maximum Bending moment occurs at C.

=

Mux1

= (1443.53 x 4.33) -875.68 x 1.4 - (12.06 x 4.33²/2) = 4904.517 kN.m c.1.b) Shear Force:875.68kN

RA

875.68kN

11.00m

12.06kN/m

CG. OF GANTRY

Reactions: RA

= 4 x 875.7 x [11.0-3.8] /11+ (12.1 x 11.0/2)

2374.930 kN

RB

= (4 x 875.7) + (12.1 x 11.0) - 2374.93

1260.428 kN

Max. Reaction

=

c.2) For Horizontal loads :-

146905687.xls.ms_office .xls REF

gvrs/ST

2374.930 kN

SUMITOMO CORPORATION Checked By

PROJECT : SKS, Prai - 350MW CCGT Power Plant DOC.TITLE: DOC. NO

:

Design of Super structure-Design of Crane-girder CGPR1-100-5-011 Rev

0

DESIGN CALCULATIONS

Page of Area: Turbine build. Dept Structural REFERENCES / REMARKS

67.36kN

C

c.2.a) Local Bending Moment at C, Crane Girder is laterally bending between Node points of surge Girder Muy = 67.360 x 2.6 /4 43.784 kN.m c.2.b) Axial Force: Because of Lateral force, the Crane Girder is subjected to axial force. Max lateral bending Moment 4904.5 x 67.36 / 875.68

377.27 kN-m

F=Axial force in the surge girder 377.27 / 0.6

628.78 kN

c.2.c) Shear force :-

RA

67.36kN

67.36kN

3.75m

11.00m

RB

Reactions :RA

= 4x 67.4[11.0 - 3.8]11.00

=

177.585 kN

RB

= 4 x 67.360 - 177.585

=

91.855 kN

Max. Horzontal reaction RH

=

177.585 kN

d) DESIGN OF GANTRY GIRDER:

y

146905687.xls.ms_office .xls REF

gvrs/ST

SUMITOMO CORPORATION Checked By

PROJECT : SKS, Prai - 350MW CCGT Power Plant DOC.TITLE: DOC. NO

:

Design of Super structure-Design of Crane-girder CGPR1-100-5-011 Rev

Page of Area: Turbine build. Dept Structural

0

DESIGN CALCULATIONS

REFERENCES / REMARKS

Depth

1250 mm

Width

450 mm

t

=

20 mm

T

=

40 mm

20

x

x

1250

40

450

Properties :Depth of the section, D Width of the section, B Thickness of web, t Thickness of flange, T Effective depth of web, d Second moment of inertia, Ixx Second moment of inertia, Iyy rmin Section modulus, Zxx Section modulus, Zyy Plastic modulus, Sxx Plastic modulus, Syy Buckling parameter, u Torsional index, x : D/T Sectional Area, A Flange Area on one side, Ag Out stand width of panel, b Constant, e, = sqrt(275/py)

= = = = = = = = = = = = = = = = = =

Outstand element of compression flange, b/T Web slenderness, d/t

1250 450 20 40 1170 1.59E+10 6.08E+08 101.19 2.54E+07 2.70E+06 2.96E+07 4.28E+06 1 31.25 59400 18000 215 1.02 =

mm mm mm mm mm mm4 mm4 mm mm3 mm3 mm3 mm3 conservatively as per Cl.4.3.7.5 mm2 mm2 mm

5.38 = 58.50

Plastic Plastic

Cl.3.5.2 and Table:7

d.1) Shear Capacity Web slenderness, d/t

=

58.50 < 63*1.02

Shear area parallel to the web, Avx=t*d

=

23400 mm2

Critical Shear strength, qcr for t/d =58.50

=

Shear Capacity, Vcr=qcr*Avx

=

d.2) Moment capacity, Mb

146905687.xls.ms_office .xls REF

gvrs/ST

159 N/mm2 3720.6 kN >2,374.93 kN

Cl.4.4.4.1 Satisfactory Cl.4.2.3, Table:21, Cl.4.4.5.3 Satisfactory

SUMITOMO CORPORATION Checked By

PROJECT : SKS, Prai - 350MW CCGT Power Plant DOC.TITLE: DOC. NO

:

Design of Super structure-Design of Crane-girder CGPR1-100-5-011 Rev

0

DESIGN CALCULATIONS

Page of Area: Turbine build. Dept Structural REFERENCES / REMARKS

d.2.a) Lateral-torsional buckling moment, Mb: ( as per clause 4.3.7.3 of BS 5950, part-1) Effective length factor = 1.00 ( Destabilizing condition) (As per table:9,BS 5950,part-1: Beam partial restrained against rotation) Effective length, LE

=

Slenderness, l = LE/rmin

=

Equivalent slenderness, lLT

=

Slenderness correction factor, n Uniform moment factor, m Buckling parameter, u l/x N Slenderness factor, n

= = = = = =

lLT pb

= =

Buckling resistance, Mb

= =

Table:9

2.60 m 25.69 nunl

Cl.4.3.7.5 1.0 1.0 1.000 0.822 0.50 1.00

conservatively conservatively

Table:14

25.69 265.00 N/mm2 pb*Sxx 7843.23 kN.m >4904.52 kN.m > m*Mux1

Table:12

Satisfactory Cl.4.3.7.2

e) CHECK FOR COMBINED BENDING COMPRESSIVE STRESS IN EXTREME FIBRE (FOR VERTICAL PLUS LATERAL) e.1) Compressive strength pc :Slenderness, l = LE/rmin Reduced design strength, py pc

= = =

25.69 245.00 N/mm2 240.00 N/mm2

Cl.4.7.5 Table:27c

e.2) Overall buckling check (As per Clause 4.8.3.3.1, BS 5950: part-1) F/Ag*pc + mMux1/Mb + mMuy/py*Zyy

= <

f) CHECK FOR LONGITUDINAL STRESS:

146905687.xls.ms_office .xls REF

gvrs/ST

0.832 1.000

Satisfactory

SUMITOMO CORPORATION Checked By

PROJECT : SKS, Prai - 350MW CCGT Power Plant DOC.TITLE: DOC. NO

:

Design of Super structure-Design of Crane-girder CGPR1-100-5-011 Rev

Page of Area: Turbine build. Dept Structural

0

DESIGN CALCULATIONS

REFERENCES / REMARKS

Height of rail

=

5% of the static wheel load =

65 mm 5/100 x4x 875.7

175.14 kN

Bending moment in the longitudinal direction is equal to Longitudinal Force into Crane Rail Depth plus half of Crane Girder depth Mux2

= 175136 x (65 + 625.0)

120.84 kN.m

CHECK FOR COMBINED BENDING COMPRESSIVE STRESS IN EXTREME FIBRE (FOR VERTICAL PLUS LONGITUDINAL) F/Ag*pc + m(Mux1+Mux2)/Mb

=

0.681

g) CHECK FOR DEFLECTION: Allowable deflection for vertical loads d lim, v = Span / 600 =11,000.0 / 600.0 =

18.33 mm

Allowable deflection for horizontal loads d lim, h = Span / 500 = 11,000.0 /500 =

22.00 mm

Vertical Deflection:3.15 1.75

CG OF LOADS

547.3kN

8.61kN/m

c 11.00 CG. OF GANTRY

RA

dv

547.3kN

=

=

=

=

=

3

4

5

´

384

WL EI

+

PL

48EI

é 3a1

´ê

ëê L

RB

3 3 3 æ a1ö ù PL é 3a2 æ a2 ö ù + ´ 4 ÷ ú ê ç ÷ ú è L ø ûú 48EI êë L è L ø ûú

- 4ç

#VALUE! {( 2 x 547300 x 11000³)/( 48 x 205000 x 1.59E+10)} x {[3 x 1.75/11 - 4 x (1.75/11)³] + [3 x 3.15/11 - 4 x (3.15/11)³]} 11.960 mm

CHECK dv < Allowable Deflection

11.960 < 18.3 HENCE SAFE

h) Crane Girder Welding Calculation Top Flange & Web is welded by full Penetration Butt weld.

146905687.xls.ms_office .xls REF

gvrs/ST

Satisfactory

SUMITOMO CORPORATION Checked By

PROJECT : SKS, Prai - 350MW CCGT Power Plant DOC.TITLE: DOC. NO

:

Design of Super structure-Design of Crane-girder CGPR1-100-5-011 Rev

Page of Area: Turbine build. Dept Structural

0

DESIGN CALCULATIONS

REFERENCES / REMARKS

Bottom Flange Weld. Horizontal Shear = FAy/ Ixx 2 18000 mm

A- Area of the Bottom Flange

=

y - C.G of flange Plate from C.G of section

=

Ixx of the section

=

4 1.59E+10 mm

Maximum vertical shear

=

2374.930 kN

605 mm

Horizontal Shear 2,374.9 x 1000 x 18000x605 / 158510550001631.626 N/mm Size of the weld on each side 1,631.6/ ( 2 x 215x 0.707) Provide weld as

5.421 mm

=

12 mm

i) DESIGN OF BEARING STIFFENER Bearing check: Minimum area of stiffener in contact with the flange = Fx = pys =

0.8*Fx/pys Cl.4.5.4.2 External reaction Design strength of stiffener

Minimum Area of stiffener required

=

7169.60 mm2

Conside Thk. Of Stiffener , ts

=

25.00 mm

Width of the stiffener, bs

=

450.00 mm

Area of the stiffener

=

11250.00 mm2

= =

bs/2-web thickness 215.00 mm

Satisfactory

Check for outstands Outstand from the face of the web

Outstand of web stiffeners, as per Cl.4.5.1.2 of BS5950: Limits: 19tse

=

483.88

mm

13tse

=

331.08

mm

Bearing resistance of the stiffener Bearing Stress in member

146905687.xls.ms_office .xls REF

=

gvrs/ST

2 211.10 N/mm

Satisfactory

SUMITOMO CORPORATION Checked By

PROJECT : SKS, Prai - 350MW CCGT Power Plant DOC.TITLE: DOC. NO

:

Design of Super structure-Design of Crane-girder CGPR1-100-5-011 Rev

Page of Area: Turbine build. Dept Structural

0

DESIGN CALCULATIONS

REFERENCES / REMARKS

< 265

N/mm2

py-20 245.0

N/mm2

Satisfactory

Buckling resistance of the stiffner (as per Cl.4.5.1.5 of BS5950,part-1) Design strength of the stiffner in buckling

= =

Cl.4.5.1.5

Buckling resistance check as a column: Area of combined section 450 x25 + 20 x 20 x 20

2 19250.00 mm

Ixx Rmin = I / A

= =

4 1.90E+08 mm 99.38 mm

l = l / Rmin =1250x 1000 / 99.4

=

Compressive strength, pc

=

Buckling resistance of the stiffener

=

12.58 245.00 N/mm2 4716.25 kN > 2374.93 kN

Tb.27c,

Satistactory

Weld between Stiffener & web Vetical Height avilable for Welding

=

1170.00 mm

Thk. of weld reqd =2,374.9 x1000/(1170x2x0.7*215) Provide weld thickness

6.74 mm

=

12.00 mm

j) Shear buckling of Web under Wheel load Web bearing under wheel load (as per Cl.4.11.4,BS 5950, part-1) Load dispersion under wheel,lw= 2(Height of the wheel + Thickness of the flange) = 210 mm Bearing Capacity

=

lw*py*t

Web buckling under wheel load (as per Cl.4.5.2.1, BS 5950,part-1)

146905687.xls.ms_office .xls REF

gvrs/ST

=

1113 kN > 875.68 kN

Satisfactory

SUMITOMO CORPORATION Checked By

PROJECT : SKS, Prai - 350MW CCGT Power Plant DOC.TITLE: DOC. NO

:

Design of Super structure-Design of Crane-girder CGPR1-100-5-011 Rev

Page of Area: Turbine build. Dept Structural

0

DESIGN CALCULATIONS

REFERENCES / REMARKS

b1

=

Stiff bearing length

n1

= = =

Dispersion at 45degrees through half the depth of the section (depth of the web + 2*thickness of the flange) 1250 mm

d

= =

Depth of the web 1170 mm

Web slenderness, l

= =

2(Height of the crane rail) 130.00 mm

= 2.5*depth of the web/thickness of the web = 146.25

Compressive resistance, pc

=

Buckling resistance, Pw

= =

70 N/mm2

Cl.4.5.2.1

Table 27c

(b1+n1)*t*pc 1932.00 kN > 875.68 kN

Satisfactory

k) Connection for Longitudinal Force Longitudinal Force

=

175.14 kN

Dia of bolt provided No. of bolts provided

= =

Stress in Bolts

=

2 96.78 N/mm < 160 N/mm2

Maximum Horizontal force Max Force in diagonal

= =

177.585 kN 335.1 kN

Angles provided Area of the Section Rmin of the section Length of diagonal Inclination of diagonal w.r.t Horizontal

= = = = =

Stress in member

=

24.00 mm 4.00

l) Design of Surge Girder Design of bracing members

Allowable Stress in member l=1.5 *100 / 3.07 = 48.86

146905687.xls.ms_office .xls REF

gvrs/ST

100X100X8 15.60 3.07 1.50 32.00

RSC cm2 cm m

2 214.82 N/mm

(No.bays are not to count in the sketch)

SUMITOMO CORPORATION Checked By

PROJECT : SKS, Prai - 350MW CCGT Power Plant DOC.TITLE: DOC. NO

:

Design of Super structure-Design of Crane-girder CGPR1-100-5-011 Rev

Page of Area: Turbine build. Dept Structural

0

DESIGN CALCULATIONS

REFERENCES / REMARKS

Compressive stress, pc

=

225.00 N/mm2 > 214.82

Table 27c Satisfactory

Design of bottom chord member (as surge may come on either direction, bottom chord members are designed for compression) Member size provided Area of the Section Rmin of the section Unsupported length

= = = =

300X150X32 40.80 3.29 2.60

MS profile cm2 cm m

Maximum axial force, F Stress in member

= =

628.78 kN 2 154.11 N/mm

Allowable Stress in member l=2.6 *100 / 3.29 = 79.03 Compressive stress, pc

=

161.00 N/mm2 > 154.11

Table 27c Satisfactory

j) Design of Crane Girder Bracket Depth of the bracket, Db Width of the flange plate, Wb Thickness of the flange plate, Tb Thickness of the web plate, tb Eccetricity of Crane girder from grid Maximum Vertical force

= = = = = =

1200 600.00 32.00 25.00 1.00 2374.93

Design for Moment Moment due to eccentricity, Me

=

2374.93 kN.m

Axial Force in Top flange, Ab=Me/Db

=

1979.11 kN

Stress in top flange=Ab/Wb*Tb

= <

mm mm mm mm m kN

10.3078569 N/mm2 265.0 N/mm2

Design for shear Web slenderness

=

45.44 < 63*1.02

Shear area parallel to the web Critical Shear strength

= =

28400 mm2 159 N/mm2

Shear Capacity,

=

146905687.xls.ms_office .xls REF

gvrs/ST

4515.6 kN >2,374.93 kN

Satisfactory Cl.4.4.4.1 Satisfactory Cl.4.2.3, Cl.4.2.3

Satisfactory

5/21/2013 9:48 PM

Name ISMC 75 ISMC 100 ISMC 125 ISMC 150 ISMC 175 ISMC 200 ISMC 225 ISMC 250 ISMC 300 ISMC 350 ISMC 400

Depth Breadth wt/m mm mm kN/m 75 40 0.0681 100 50 0.0918 125 65 0.1271 150 75 0.1639 175 75 0.1914 200 75 0.2214 225 80 0.2591 250 80 0.3036 300 90 0.3583 350 100 0.4212 400 100 0.4940

146905687.xls.ms_office

Tf mm 7.30 7.50 8.10 9.00 10.20 11.40 12.40 14.10 13.00 13.50 15.30

Tw mm 4.40 4.70 5.00 5.40 5.70 6.10 6.40 7.10 7.60 8.10 8.60

Cyy mm 13.10 15.30 19.40 22.20 22.00 21.70 23.00 23.00 23.60 24.40 24.20

G Ixx 4 mm mm 21 760000 28 1867000 35 4164000 40 7794000 40 12233000 40 18193000 45 26946000 45 38168000 50 63626000 60 100080000 60 150828000

Iyy mm4 126000 259000 599000 1023000 1210000 1404000 1872000 2191000 3108000 4306000 5048000

Rxx mm 29.60 40.00 50.70 61.10 70.80 80.30 90.30 99.40 118.10 136.60 154.80

Ryy mm 12.10 14.90 19.20 22.10 22.30 22.30 23.80 23.80 26.10 28.30 28.30

Zxx Zyy mm3 mm3 20300 4700 37300 7500 66600 13100 103900 19400 139800 22800 181900 26300 239500 32800 305300 38400 424200 46800 571900 57000 754100 66600

Page 12 of 29

Area mm2 867 1170 1619 2088 2438 2821 3301 3867 4564 5366 6293

ISMC

5/21/2013 9:48 PM

Section ISMB100 ISMB125 ISMB150 ISMB175 ISMB200 ISMB225 ISMB250 ISMB300 ISMB350 ISMB400 ISMB450 ISMB500 ISMB600

H mm 100 125 150 175 200 225 250 300 350 400 450 500 600

B wt/m mm kN/m 75 0.115 75 0.130 80 0.149 90 0.193 100 0.254 110 0.312 125 0.373 140 0.442 140 0.524 140 0.616 150 0.724 180 0.869 210 1.226

146905687.xls.ms_office

A mm2 1460 1660 1900 2462 3233 3972 4755 5626 6671 7846 9227 11074 15621

Tf mm 7.2 7.6 7.6 8.6 10.8 11.8 12.5 12.4 14.2 16.0 17.4 17.2 20.8

Tw mm 4.0 4.4 4.8 5.5 5.7 6.5 6.9 7.5 8.1 8.9 9.4 10.2 12.0

R1 R2 mm mm 9.0 4.5 9.0 4.5 9.0 4.5 10.0 5.0 11.0 5.5 12.0 6.0 13.0 6.5 14.0 7.0 14.0 7.0 14.0 7.0 15.0 7.5 17.0 8.5 20.0 10.0

H1 mm 65.0 89.2 113.9 134.5 152.7 173.3 194.1 241.6 288.0 334.4 379.2 424.1 509.7

H2 mm 17.50 17.90 18.05 20.25 23.65 25.85 27.95 29.25 31.00 32.80 35.40 37.95 45.15

G mm 35 35 40 50 55 60 65 80 80 80 90 100 140

Ixx mm4 2575000 4490000 7264000 12720000 22354000 34418000 51314000 86034000 136303000 204584000 303908000 452183000 918130000

Iyy mm4 408000 437000 526000 850000 1500000 2183000 3345000 4539000 5377000 6221000 8340000 13698000 26510000

Page 13 of 29

Rxx mm 42.0 52.0 61.8 71.9 83.2 93.1 103.9 123.7 142.9 161.5 181.5 202.1 242.4

Ryy mm 16.7 16.2 16.6 18.6 21.5 23.4 26.5 28.4 28.4 28.2 30.1 35.2 41.2

Zxx mm3 51500 71840 96853 145371 223540 305938 410512 573560 778874 1022920 1350702 1808732 3060433

Zyy mm3 10880 11653 13150 18889 30000 39691 53520 64843 76814 88871 111200 152200 252476

ISMB

DESIGN OF CRANE GANTRY GIRDER Project : Building : Girder Type :

PRAI POWER 350 MW CCGT POWER PLANT PROJECT CW PUMPHOUSE ( INTERNAL) EXISTING CRANE BEAM - DESIGN CHECK

1) INPUT DATA (Refer Appendix-A, for EOT drawing) Crane Capacity

=

100 kN

Weight of Crab

=

0 kN

Weight of Crane Bridge

=

0 kN

Self weight of the Rail

=

1 kN/m

Height of the Crane Rail

=

70 mm

Span of the Crane Girder, Lg

=

8.7 m

Mini. approach of crane hook to the gantry

=

1.000 m

No. of Wheels Wheel Spacing1 C.G of loading from left load

= = =

2 0.60 m 0.30 m

Impact Factor :

Vertical

=

30 %

Horizontal (Transverse to rail) On Stopper

=

10 %

=

16 kN

Deflection Factor

Vertical Horizontal

= =

1000 1000

Load Factor :

Imposed load vertical -gIvf Imposed load Horiz.gIhf Dead load gdf

= = =

1.6 1.6 1.4

All below references are BS 5950, part-1,

Table:5

2 275 N/mm

Design strength of steel, py

=

Maximum unsupported length Top Flange

=

8.70 m

Maximum unsupported length Bottom Flange

=

8.70 m

Table:6

2) LOAD CALCULATIONS Wheel load calculation Wheel Load by Vendor

=

2.a) Vertical Loads i) Conc. Loads Average static Wheel Load

Wm

50.00 kN/wheel

=

50.0 kN

= 0.30 x 50

=

15.00 kN

W mf = 1.60 x 65.00

= =

65 kN 104.00 kN

say

104.0 Load due to Impact Total load Factored Load

ii) Uniform Dirstributed Load Self weight of rail Self weight of girder Factored load

W df = 1.40 x 2.49

= =

1.00 kN/m 1.49 kN/m 2.49 kN/m

=

3.49 kN/m

2.b) Horizontal Loads Maximum lateral load per wheel is equal to 10% Static vertical wheel load, l = 0.1

0.60

104.0

####

0.60

from Fig-1

W H = 0.10(50*2)

Max. Lateral load

=

10.0 kN

=

8.00 kN/wheel

BS:2573,part-1

2 wheels are resisting the total lateral load W df = 1.60 x 10.00 / 2

Factored lateral load 2.c) Stopper Loads Factored lateral load

Wsp = 1.60 x 16.00

=

25.6 kN/stopper

3) MAXIMUM BENDING MOMENT AND SHEAR FORCE 3.a) For vertical loads i) Bending Moment The maximum Bending moment under moving loads occurs when line of action of one load and centre of gravity of the loads are at equal distance from the centre of span. ( refer diagram at deflection check) Reactions :Ra

=

104x(1 + 0.60/2/8.7) +3.49x8.70/2

=

122.76 kN

Rb

=

2x104+3.49x8.7- 122.759

=

115.59 kN

Maximum Bending Moment Mux1

= (122.76 x 4.35) -104 x 0.45 - (3.49 x 4.35²/2) = 355.20 kN.m

ii) Shear Force:Reactions: RA

= 2 x 104.0 x [8.7-0.3] /8.7+ (3.5 x 8.7/2)

RB

= (2 x 104.0) + (3.5 x 8.7) - 216.00

Max. Reaction

=

216.00 kN

=

22.35 kN =

216.00 kN

3.b) For Horizontal loads i) Local Bending Moment at C, Crane Girder is laterally bending between points of restrained at support Muy = 8.000 x 8.7 /4 = 17.40 kN.m ii) Shear force Reactions :RA

= 2x 8.0[8.7 - 0.3]8.70

=

15.448 kN

RB

= 2 x 8.000 - 15.448

=

0.552 kN

=

15.448 kN

Max. Horzontal reaction RH

4) DESIGN OF GANTRY BEAM Properties :Depth of the section, D Width of the section, B Thickness of web, t Thickness of flange, T Effective depth of web, d Second moment of inertia, Ixx

= 609.9 = 304.8 = 11.9 = 19.7 = 537.2 = 1.25E+09

mm mm mm mm mm mm4

rmin

= 9.30E+07 mm4 = 69.90 mm

Section modulus, Zxx

= 4.09E+06 mm3

Second moment of inertia, Iyy

UB610X305X149kg/m

Plastic modulus, Sxx

= 6.10E+05 mm3 = 4.57E+06 mm3

Plastic modulus, Syy Buckling parameter, u Torsional index, x : D/T Sectional Area, A Flange Area on one side, Ag Out stand width of panel, b Constant, e, = sqrt(275/py)

= 9.37E+05 mm3 = 0.886 = 32.5 = 19000 mm2 = 6005 mm2 = 146.45 mm = 1.00

Section modulus, Zyy

Outstand element of compression flange, b/T Web slenderness, d/t

= =

7.43 Plastic 45.14 Plastic

Cl.3.5.2 and Table:7

Web slenderness, d/t

=

45.14 < 63*1.00

Shear area parallel to the web, Avx=t*d

=

Cl.4.4.4.1 Satisfactory Cl.4.2.3,

Critical Shear strength, qcr for d/t =45.14

=

Shear Capacity, Vcr=qcr*Avx

=

4.a) Shear Capacity

6392.68 mm2 165 N/mm2 1054.79 kN > 216 kN

Table:21, Cl.4.4.5.3 Satisfactory

4.b) Moment capacity, Mb i) Lateral-torsional buckling moment, Mb: ( as per clause 4.3.7.3 of BS 5950, part-1) Effective length factor = 1.20 ( Destabilizing condition) (As per table:9,BS 5950,part-1: Beam partial restrained against rotation) Effective length, LE

=

Slenderness, l = LE/rmin

=

Equivalent slenderness, lLT

=

149.36 nunl

Slenderness correction factor, n Uniform moment factor, m Buckling parameter, u l/x N Slenderness factor, n

= = = = = =

1.0 1.0 0.886 4.596 0.50 0.82

lLT pb

= =

Buckling resistance, Mb

= =

Table:9

10.44 m Cl.4.3.7.5 conservatively conservatively

Table:14

108.51 109.00 N/mm2

Table:11

pb*Sxx 498.13 kN.m >355.20 kN.m > m*Mux1

Satisfactory Cl.4.3.7.2

5) CHECK FOR COMBINED BENDING COMPRESSIVE STRESS IN EXTREME FIBRE (FOR VERTICAL PLUS LATERAL) 5.a) Compressive strength pc Slenderness, l = LE/rmin

=

pc

=

149.36 81 N/mm2

Table 27c

5.b) Overall buckling check (As per Clause 4.8.3.3.1, BS 5950: part-1) mMux1/Mb + mMuy/py*Zyy

= <

0.817 1.000

Satisfactory

6) CHECK FOR LONGITUDINAL STRESS Height of rail

=

70 mm

5% of the static wheel load =

5/100 x2x 104.0

10.40 kN

Bending moment in the longitudinal direction is equal to Longitudinal Force into Crane Rail Depth plus half of Crane Girder depth Mux2

= 10400 x (70 + 305.0)

=

3.90 kN.m

CHECK FOR COMBINED BENDING COMPRESSIVE STRESS IN EXTREME FIBRE (FOR VERTICAL PLUS LONGITUDINAL) F/Ag*pc + m(Mux1+Mux2)/Mb

=

0.742

7) CHECK FOR DEFLECTION Allowable deflection for vertical loads d lim, v = Span / 1000 =8,700.0 / 1,000.0 =

8.70 mm

Allowable deflection for horizontal loads d lim, h = Span / 1000 = 8,700.0 /1,000 =

8.70 mm

Satisfactory

Vertical Deflection:4.5

4.2

3.90

CG OF LOADS

65kN

65kN

c 8.70

RA

dv

=

´

384

dv

=

=

WL

+

EI

RB

CG. OF GANTRY

3

4

5

2.49kN/m

=

=

PL

48EI

é 3a1

´ê

ëê L

3 3 3 æ a1ö ù PL é 3a2 æ a2 ö ù ´ê - 4ç ÷ ú+ ÷ ú è L ø ûú 48EI ëê L è L ø ûú

- 4ç

#VALUE! {( 65000 x 8700³)/( 48 x 205000 x 1.25E+09)} x {[3 x 3.90/9 - 4 x (3.90/9)³] + [3 x 4.20/9 - 4 x (4.20/9)³]} 7.625 mm

CHECK dv < Allowable Deflection

7.625 < 8.7 HENCE SAFE

8) SHEAR BUCKING OF WEB UNDER WHEEL LOAD 8.a) Web bearing under wheel load (as per Cl.4.11.4,BS 5950, part-1) Load dispersion under wheel,lw= 2(Height of the wheel + Thickness of the flange) = 179.4 mm Bearing Capacity

=

lw*py*t

=

587.0865 kN > 104.00 kN

Satisfactory

8.b) Web buckling under wheel load (as per Cl.4.5.2.1, BS 5950,part-1) b1

=

Stiff bearing length

n1

= = =

Dispersion at 45degrees through half the depth of the section (depth of the web + 2*thickness of the flange) 609.9 mm

d

=

Depth of the web

Web slenderness, l

Compressive resistance, pc

= =

= =

=

2(Height of the crane rail) 140.00 mm

570.5 mm

2.5*depth of the web/thickness of the web 119.85 =

97 N/mm2

Cl.4.5.2.1

Table 27c

Buckling resistance, Pw = (b1+n1)*t*pc=

865.61 kN > 104.00 kN

=

Satisfactory

9) CONNECTION FOR LONGITUDINAL LOAD Longitudinal Force

=

10.40 kN

Dia of bolt provided No. of bolts provided

= =

16 mm 2

Stress in Bolts

=

25.86 N/mm < 160 N/mm2

2

10) DESIGN OF STOPPER BRACKET Depth of the bracket, Dsp Width of the bracket, Wsp Thickness of the bracket plate, Tsp Thickness of stiffener plate, Ts No of stiffener plate, Ns Distance between Stopper and flange of Crane girder Maximum Stopper force Maximum ultimate Stopper force, S

= = = = = = =

250 102 6 6 1 0.20 16.0 25.6

10.a) Design for Moment Moment due to eccentricity, Mc

=

5.12 kN.m

Combined plate C.G., x

=

91.2 mm

Combined plate Ixx

=

Distance of compression edge

=

158.8 mm

Combined plate Zxx

=

3 88189 mm

Moment capacity, Mc = PypZxx

= >

24.25 kNm 5.12 kNm

=

mm mm mm mm nos m kN kN

4 1.40E+07 mm

Cl.4.13.2.4 Satisfactory

10.b) Weld between Bracket and flange of Crane Girder Design strength of fillet weld, pw

=

2 215 N/mm

Weld thickness

=

6 mm

Effective length of flange weld

=

400 mm

Max.bending tension in bracket, T = M/x

=

56.2 kN

Capacity of bracket weld under tension

= >

361.2 kN 56.2 kN

Tb.36, BS5950

Satisfactory

O.K.

Related Documents

Gantry
February 2021 1
Gantry Crane.xls
February 2021 3
Design Of Gantry Sheds
March 2021 0
142907027 Gantry Crane Xls
February 2021 0

More Documents from "Waheed Ahmad"

Hvac Design Handbook
January 2021 2
Gantry Crane.xls
February 2021 3