Iec 62386-102-2018 (dali Control Gear)

  • Uploaded by: Pero Croata
  • 0
  • 0
  • March 2021
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Iec 62386-102-2018 (dali Control Gear) as PDF for free.

More details

  • Words: 89,798
  • Pages: 76
Loading documents preview...
I EC 62386-1 02 ®

Edition 2.1 201 8-09

FI N AL VE R SI ON

VE R SI ON FI N ALE

colour i n si de

Di g i tal ad d ressabl e l i g h ti n g i n terface – Part 1 02: G en eral req u i rem en ts – Con tro l g ear

I n terface d ’ écl ai rag e ad ressabl e n u m éri q u e –

IEC 62386-1 02:201 4-1 1 +AMD1 :201 8-09 CSV(en-fr)

Parti e 1 02: E xi g en ces g én éral es – Apparei l l ag es d e com m an d e

– 2



I EC

6 2 3 8 6 - 1 0 2 : 2 0 1 4 + AM D 1 : 2 0 1 8 © I EC

CSV 201 8

C O N TE N TS

F O R E WO R D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

I N TR OD U C TI ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1

S co pe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1

2

N o rm a t i ve

3

Te rm s

4

G e n e ral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 4

re fe re n ce s

an d

.................................................................................................. 1 1

d e fi n i ti o n s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1

4. 1

G e n e ral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 4

4. 2

V e rs i o n

n u m ber. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 4

5

E l e ctri cal

s pe ci fi cati o n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 5

6

I n te rface

p o we r s u p p l y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 5

7

Tran s m i s s i o n

p ro to co l

s tru ctu re . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 5

7. 1

G e n e ral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 5

7. 2

1 6

b i t fo rward

7. 2. 1

fram e

e n co d i n g . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 5

G e n e ra l . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 5

7. 2. 2

Ad d re s s

b yte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 5

7. 2. 3

O pco d e

b yte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 5

8

Ti m i n g . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 6

9

M e th o d

o f o p e rati o n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 6

9. 1

G e n e ral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 6

9. 2

C o n tro l

g e ar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 6

9. 2. 1

G e n e ra l . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 6

9. 2. 2

C o n tro l

g e ar p h as e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 6

9. 3

Dimming

9. 4

C al cu l ati n g

cu rve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 7

9. 5

F ad i n g . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 0

“targetLevel”

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

9. 5. 1

G e n e ra l . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 0

9. 5. 2

Fad e

ti m e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1

9. 5. 3

Fad e

ra te . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 3

9. 5. 4

E xte n d e d

fad e

ti m e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 3

9. 5. 5

U sing

th e

fad e

ti m e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 5

9. 5. 6

U sing

th e

fad e

rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 5

9. 5. 7

S ys te m

re s p o n s e

to

ch an g e s

d u ri n g

a fad e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 6

9. 5. 8

S ys te m

re s p o n s e

to

ch an g e s

d u ri n g

s tan d b y an d

9. 5. 9

Stoppi n g an d

m ax

s tartu p . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 6

a fad e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 6

9. 6

Min

l e ve l . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 6

9. 7

C o m m an d s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 7

9. 7. 1

G e n e ra l . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 7

9. 7. 2

L e ve l

i n s tru cti o n s

wi th o u t fad e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 8

i n s tru cti o n s

i n i ti ati n g

9. 7. 3

L e ve l

9. 7. 4

C o n fi g u rati o n

9. 7. 5

Q u e ri e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 8

9. 7. 6

S p e ci al

9. 7. 7

Ap p l i cati o n

9. 8 9. 8. 1

C o m m an d

a fad e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 8

i n s tru cti o n s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 8

co m m an d s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 8 e xte n d e d

co m m an d s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 8

i te ra ti o n s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 8

G e n e ra l . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 8

IEC

6 2 3 8 6 - 1 0 2 : 2 0 1 4 + AM D 1 : 2 0 1 8

© I EC

CSV

– 3



201 8

C o m m an d

9. 8. 2 9. 8. 3 9. 9

D AP C M od es

i te rati o n

SEQU EN CE

o f o p e ra t i o n

o f “U P ” an d

“ D O WN ”

co m m an d s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 9

( d e p re cate d ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 9

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

9. 9. 1

G e n e ra l . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 0

9. 9. 2

O p e rati n g

mode

0 x00 :

9. 9. 3

O p e rati n g

mode

0 x01

to

0 x7F:

re s e rve d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 0

O p e rati n g

mode

0 x80

to

0 xFF:

m an u fac tu re r s p e ci fi c

9. 9. 4 9. 1 0

s ta n d a rd

m ode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

m odes . . . . . . . . . . . . . . . . . . . . . . . . . 30

M e m o r y b a n ks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 0

9. 1 0. 1

G e n e ra l . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 0

9. 1 0. 2

M e m o ry m ap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1

9. 1 0. 3

Se l ecti n g

9. 1 0. 4

M e m o ry b an k re ad i n g . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2

9. 1 0. 5

M e m o ry b an k wri ti n g . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2

9. 1 0. 6

M e m o ry b an k 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 3

9. 1 0. 7

M e m o ry b an k 1

9. 1 0. 8

M a n u f a c t u r e r s p e c i f i c m e m o r y b a n ks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 7

9. 1 0. 9

R e s e r ve d

9. 1 1

a m e m o ry b an k l o cati o n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

m e m o r y b a n ks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 7

Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

9. 1 1 . 1

R e s e t o p e rati o n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 7

9. 1 1 . 2

R e s e t m e m o ry b an k o p e ra ti o n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 7

9. 1 2

S ys te m

9. 1 3

P o we r o n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 8

fai l u re . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 7

9. 1 4

As s i g n i n g

s h o rt a d d re s s e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 9

9. 1 4. 1

G e n e ra l . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 9

9. 1 4. 2

Ran d o m

9. 1 4. 3

I d e n ti fi c ati o n

9. 1 4. 4

D i re c t ad d re s s

9. 1 5

F ai l u re

9. 1 6

S tatu s

s tate

ad d re s s

al l o cati o n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 9

o f a d e vi ce

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

al l o cati o n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1

b e h avi o u r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1

i n fo rm at i o n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1

9. 1 6. 1

G e n e ra l . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1

9. 1 6. 2

Bi t 0:

C o n tro l

9. 1 6. 3

Bi t 1 :

l am p

fai l u re . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2

9. 1 6. 4

Bi t 2:

l am p

on

9. 1 6. 5

Bi t 3:

l i m i t e rro r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 4

9. 1 6. 6

Bi t 4:

fad e

9. 1 6. 7

Bi t 5:

re s e t s tate

9. 1 6. 8

Bi t 6:

m i ssi n g

9. 1 6. 9

Bi t 7:

po we r cycl e

g e ar fa i l u re . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

ru n n i n g . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

s h o rt a d d re s s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 4 seen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

9. 1 7

N o n - vo l a ti l e

9. 1 8

D e vi ce

m e m o ry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 5

9. 1 9

U sing

scen es . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

1 0

D e c l ara ti o n

o f vari ab l e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 7

1 1

D e fi n i ti o n

type s

an d

fe a tu re s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 5

o f co m m an d s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 9

1 1 .1

G e n e ral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 9

1 1 .2

O ve rvi e w s h e e ts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 9

1 1 .3

L e ve l

i n s tru ct i o n s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 4 (

level)

1 1 .3.1

D AP C

1 1 .3.2

OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 4

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

1 1 .3.3

U P . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

– 4



I EC

6 2 3 8 6 - 1 0 2 : 2 0 1 4 + AM D 1 : 2 0 1 8 © I EC

CSV 201 8

1 1 . 3. 4

D O WN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 4

1 1 .3.5

S TE P

U P . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

1 1 .3.6

S TE P

D O WN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 5

1 1 .3.7

R E C ALL

M AX LE VE L . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 5

1 1 .3.8

R E C ALL

MIN

1 1 .3.9

S TE P

1 1 .3.1 0

ON

1 1 .3.1 1

E N AB L E

1 1 .3.1 2

GO

1 1 .3.1 4

C ON TI N U OU S

U P . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

1 1 .3.1 5

C ON TI N U OU S

D O WN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 7

1 1 .3.1 3

GO

1 1 .4

LE VE L . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 5

D O WN

AN D

TO

TO

AN D

S TE P

OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 6

U P . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

D AP C

SEQU EN CE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

L AS T AC TI VE

SCEN E

C o n fi g u rati o n

(

LE VE L . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 7

sceneNumber)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

i n s tru cti o n s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 7

1 1 . 4. 1

G e n e ra l . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 7

1 1 . 4. 2

RESET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

1 1 . 4. 3

S TOR E

1 1 . 4. 4

S AVE

1 1 . 4. 5

S E T O P E R AT I N G

1 1 . 4. 6

R E S E T M E M O R Y B AN K (

1 1 . 4. 7

I D E N TI FY D E VI C E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 9

AC TU AL LE VE L I N

M OD E

DTR0)

1 1 . 4. 8

S E T M AX LE VE L (

1 1 . 4. 9

SET MI N

1 1 . 4. 1 0

S E T S YS T E M

1 1 . 4. 1 1

S E T P O WE R

1 1 . 4. 1 2

S E T F AD E

TI M E

1 1 . 4. 1 3

S E T F AD E

R AT E

1 1 . 4. 1 4

S E T E XTE N D E D

1 1 . 4. 1 5

SET SCEN E

1 1 . 4. 1 6

R E M OVE

1 1 . 4. 1 7

AD D

1 1 . 4. 1 8

R E M OVE

1 1 . 4. 1 9

S E T S H O R T AD D R E S S

1 1 . 4. 20

E N AB L E

1 1 .5

D TR 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 8

P E R S I S TE N T V AR I AB L E S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 8

TO

LE VE L (

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

LE VE L (

DTR0)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

DTR0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 0

LE VE L ( (

DTR0)

DTR0)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

F AI LU R E ON

(

DTR0)

(

DTR0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 0

(

DTR0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 0

F AD E

TI M E

(

DTR0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 0

DTR0, sceneX) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1

FROM

SCEN E

G ROU P FROM

WR I TE

(

group )

(

sceneX) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

G ROU P (

(

group ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1

DTR0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2

M EM ORY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Q u e ri e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2

1 1 . 5. 1

G e n e ra l . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2

1 1 . 5. 2

Q U E R Y S T ATU S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2

1 1 . 5. 3

Q U E R Y C O N TR O L G E AR

PRESEN T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

1 1 . 5. 4

Q U E R Y C O N TR O L G E AR

F AI LU R E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2

1 1 . 5. 5

Q U E R Y L AM P

F AI LU R E

1 1 . 5. 6

Q U E R Y L AM P

P OWE R

1 1 . 5. 7

QU ERY LI M I T ERR OR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

1 1 . 5. 8

Q U E R Y R E S E T S TATE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 3

1 1 . 5. 9

QU ERY M I SSI N G

1 1 . 5. 1 0

QU E R Y VE R S I ON

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

S H O R T AD D R E S S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 3 N U M BER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

1 1 . 5. 1 1

Q U E R Y C O N TE N T D TR 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 3

1 1 . 5. 1 2

QU E R Y D E VI C E

TYP E

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

1 1 . 5. 1 3

QU E R Y N E XT D E VI C E

T YP E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 3

1 1 . 5. 1 4

Q U E R Y P H YS I C AL M I N I M U M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 4

1 1 . 5. 1 5

QU E R Y P OWE R

F AI LU R E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 4

IEC

6 2 3 8 6 - 1 0 2 : 2 0 1 4 + AM D 1 : 2 0 1 8

© I EC

1 1 . 5. 1 6

– 5



Q U E R Y C O N TE N T D TR 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 4

1 1 . 5. 1 7

Q U E R Y C O N TE N T D TR 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 4

1 1 . 5. 1 8

Q U E R Y O P E R AT I N G

1 1 . 5. 1 9

QU ERY LI G H T SOU RCE

1 1 . 5. 20

Q U E R Y AC TU AL L E VE L . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 5

1 1 . 5. 21

Q U E R Y M AX L E VE L . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 5

1 1 . 5. 22

QU ERY M I N

1 1 . 5. 23

QU E R Y P OWE R

1 1 . 5. 24

Q U E R Y S YS T E M

M OD E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 T YP E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 4

LE VE L . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 5 ON

LE VE L . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 5

FAI LU R E

1 1 . 5. 25

Q U E R Y F AD E

1 1 . 5. 26

Q U E R Y E XTE N D E D

1 1 . 5. 27

Q U E R Y M AN U F AC TU R E R

T I M E /F A D E F AD E

LE VE L (

LE VE L . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 R ATE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 5 TI M E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 5 SPECI FI C

M OD E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

sceneX

1 1 . 5. 28

QU ERY SCE N E

1 1 . 5. 29

QU ERY G ROU PS

0-7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

1 1 . 5. 30

QU ERY G ROU PS

8-1 5

1 1 . 5. 31

Q U E R Y R AN D O M

AD D R E S S

(H ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

1 1 . 5. 32

Q U E R Y R AN D O M

AD D R E S S

(M ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

1 1 . 5. 33

Q U E R Y R AN D O M

AD D R E S S

1 1 . 5. 34

R E AD

1 1 .6

) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

M E M O R Y LO C ATI O N

Appl i cati o n

exten d ed

(L) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 6

(

DTR1 , DTR0

) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

co m m an d s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 6

1 1 . 6. 1

G e n e ra l . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 6

1 1 . 6. 2

Q U E R Y E XTE N D E D

1 1 .7

1 2

CSV

201 8

S pe ci al

VE R S I ON

N U M BER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

co m m an d s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 7

1 1 . 7. 1

G e n e ra l . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 7

1 1 . 7. 2

TE R M I N ATE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 7

1 1 . 7. 3

D TR 0

1 1 . 7. 4

I N I TI ALI S E

1 1 . 7. 5

R AN D O M I S E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 8

1 1 . 7. 6

C O M P AR E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 8

1 1 . 7. 7

WI TH D R AW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 8

1 1 . 7. 8

S E AR C H AD D R H

1 1 . 7. 9

S E AR C H AD D R M

1 1 . 7. 1 0

S E AR C H AD D R L

1 1 . 7. 1 1

P R OG R AM

1 1 . 7. 1 2

VE R I F Y S H O R T AD D R E S S

1 1 . 7. 1 3

Q U E R Y S H O R T AD D R E S S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 9

(

data

) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 (

device

) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

data data data

(

)

( (

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

data data

S H O R T AD D R E S S

D E VI C E

(

data

(

) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

1 1 . 7. 1 4

E N AB L E

1 1 . 7. 1 5

D TR 1

(

1 1 . 7. 1 6

D TR 2

(

1 1 . 7. 1 7

WR I TE

M E M OR Y LOC ATI ON

(

1 1 . 7. 1 8

WR I TE

M E M OR Y LOC ATI ON

– NO

1 1 . 7. 1 9

PI N G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

data data

T YP E

(

) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

DTR1 , DTR0, data DTR1 , DTR0, data

) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

R E PLY (

) . . . . . . . . . . . . . . . . . . . . . 71

Te s t p ro ce d u re s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1

Vo i d

An n e x

A ( i n fo rm a t i ve )

A. 1

Ran d o m

A. 2

On e

A. 3

U sing

An n e x B

E xam pl e s

ad d re s s

sing le

( n o rm a t i ve )

al l o cati o n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2

co n tro l

ap p l i cati o n High

o f al g o ri th m s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2

g ear co n n e cte d

e xte n d e d

re s o l u ti o n

to

th e

co n tro l

d e vi ce . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2

co m m an d s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 di mm er . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

– 6



I EC

6 2 3 8 6 - 1 0 2 : 2 0 1 4 + AM D 1 : 2 0 1 8 © I EC

CSV 201 8

B i b l i o g ra p h y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 6

F i g u re

1

– IEC

62386

F i g u re

2

– C o n tro l

F i g u re

3

– Dimming

F i g u re

4

– Le ve l

F i g u re

5

– Ti m i n g

F i g u re

1 1

F i g u re

B. 1

g rap h i cal

o ve rvi e w . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

g e ar d i re c t l y o p e rat i n g

cu rve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 8

o ve r t i m e ,

an d

fad i n g

re s p o n s e

– C o rre l a ti o n

– Le ve l

a l i g h t s o u rce . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 6

an d

wh e n

b e twe e n

b e h avi o u r i n

up



e xe cu ti n g

lampFailure

case s

fram e

d o wn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1

”,



co m m an d

lampOn

o f o ff- g ri d

”,

s tarti n g

i te ra ti o n

an d



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

fadeRunning



bi ts . . . . . . . . . . . . . . . . . . . 4 3

po i n ts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 5

Tab l e

1

– 1 6 - bi t co m m an d

e n co d i n g . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 5

Tab l e

2

– Dimming

c u rve

Tab l e

3

– Dimming

c u rve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 9

Tab l e

4

– Fad e

ti m e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2

Tab l e

5

– Fad e

rate s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 3

Tab l e

6

– E xte n d e d

fad e

ti m e

– bas e

Tab l e

7

– E xte n d e d

fad e

ti m e

– m u l ti pl i er . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 4

Tab l e

8

– B as i c m e m o ry m ap

Tab l e

9

– M e m o ry m ap o f m e m o ry ban k 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 3

Tab l e

1 0

– M e m o ry m ap

Tab l e

1 1

– P o we r o n

Tab l e

1 2

– C o n tro l

Tab l e

1 3

– S ce n es . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Tab l e

1 4

– D e c l a ra t i o n

Tab l e

1 5

– S tan d ard

Tab l e

1 6

– S pe ci al

Tab l e

1 7

– Li g h t s o u rc e

Tab l e

1 8

– D e vi ce

to l e ran ce

(%,

ro u n d e d

to

two

d eci m al s) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 8

val u e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 4

o f m e m o r y b a n ks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1

o f m e m o ry b an k 1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

ti m i n g . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 9

g e ar s tatu s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1

o f vari ab l e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 7

com m an d s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

co m m an d s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 3

typ e

en cod i n g . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

ad d re s s i n g

wi th

“ I N I TI ALI S E ” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 7

IEC

6 2 3 8 6 - 1 0 2 : 2 0 1 4 + AM D 1 : 2 0 1 8

© I EC

CSV

– 7



201 8

I N TE R N ATI O N AL E L E C TR O TE C H N I C AL C O M M I S S I O N

____________

DIGITAL ADDRESSABLE LIGHTING INTERFACE – Part 1 02: General requirements – Control gear F O R E WO R D

1 )

Th e

I n te rn ati o n al

al l

n ati on al

i n te rn ati o n al th i s

end

co - o p e rati o n

an d

Te ch n i cal

in

ad d i ti o n

R e po rts ,

P u b l i cati o n (s ) ”) . in

th e

su bj ect

g o ve rn m e n t al wi t h

2)

th e

d e al t

b e twe e n

Th e

d eci s i o n s

i n te re s te d

IEC

in

P u bl i cati o n s

is

o rd e r

to

b e t we e n th e

5)

an y

I EC

i ts el f

does

ass e ss m e n t s e rvi c e s

Al l

7)

No

IEC

wi t h

in

th e

fo r

to

pu bl i sh es

th i s

an d

(I SO)

in

in

for

s tan d ard i z ati o n

o bj ect

of

e l e c tri c al

S tan d ard s ,

an y

wo rk.

p arti ci p ate

S tan d ard i z ati o n

th e

G u i des

co m m i ttees ;

p re p arato ry

al s o

in

Th e

I n t e rn ati o n al

( P AS )

te ch n i cal

IEC

o rg an i z ati o n

Co m m i ttees ) .

s tan d ard i z ati o n

S pe ci fi cati o n s

p arti ci pate

an d

( h e re afte r

IEC

wi th

co m p ri s i n g to

fi e l d s .

To

S p e ci fi cati o n s , to

Co m m i tte e

g o ve rn m e n t al IEC

p ro m o t e

e l e c t ro n i c

re f e rre d

N ati o n al

p re p a ra ti o n .

a cc o rd an c e

is

Te ch n i cal

I n te rn ati o n al ,

th i s

IEC

as

an d

co l l abo rate s

co n d i ti o n s

“I EC

i n te re s te d non -

cl os el y

d e te rm i n e d

by

o rg an i z ati o n s .

th e

of

IEC

re l e van t

th e

fo rm

of

Wh i l e

on

te ch n i cal

s u bj e cts

si n ce

I EC

en d

re c o m m e n d a t i o n s

al l

re a s o n ab l e

can n o t

m a tte rs e ach

e xp re s s ,

te ch n i cal

as

n e arl y

as

co m m i ttee

possi bl e,

h as

an

i n te rn ati o n al

re p re s e n tati o n

fro m

al l

be

h el d

fo r

e ffo rts

i n te rn ati o n a l

are

m ad e

re s p o n s i b l e

for

to

th e

u se

an d

e n s u re wa y

are

th at

in

acce pte d

th e

wh i ch

by

tech n i cal

th e y

are

IEC

N ati o n al

co n ten t

u sed

or

of

IEC

fo r

an y

u s e r.

i n te rn a ti o n a l

th e

wo rl d wi d e

m axi m u m

P u bl i cati o n

u n i fo rm i t y,

exten t

an d

th e

IEC

possi bl e

N ati o n al

in

th ei r

co rre s po n d i n g

C o m m i tte e s

n ati on al

n ati o n al

or

an d

u n d e rt ake

re g i o n al

re g i o n al

to

appl y

IEC

p u bl i cati o n s .

pu bl i cati o n

s h al l

be

P u bl i cati o n s

An y

d i ve rg e n ce

c l e a rl y

i n d i cate d

in

l atte r.

IEC

6)

to

a

Co m m i ttee s.

an y

p ro m o t e

tran s p a re n tl y

is

N ati o n al

c o n ce rn i n g

e n tru s te d

l i ai si n g

sen se.

by

is

a g re e m e n ts

on

accu rate ,

m i s i n te rp re t ati o n

In

m ay

t wo

or

h ave

th at

Avai l abl e

(I EC)

(I EC

acti vi ti e s ,

Org an i z ati o n

th e

N ati o n al

P u bl i cati on s

Co m m i tte es

4)

wi th

opi n i on

IEC

q u es ti o n s

oth er

o rg an i z ati o n s

of

al l

p re p a ra t i o n

I n te rn at i o n al

fo rm al

on to

Com mi ssi on

co m m i ttees

P u bl i cl y

Th e i r

ag re e m e n t

con sen su s

3)

E l e ctro te ch n i cal

e l e ctro te ch n i cal

c a rri e d

u s e rs

m e m b e rs

i ts

d am ag e

e xp e n s es

an d ,

by

attach

th at

to

tech n i cal of

an y

a ri s i n g

ou t

an y

in

atte s tati o n

some

a re as ,

i n d epen d en t

e n s u re

s h al l

of

p ro vi d e

out

should

l i abi l i ty

o th er

not

s e rvi ce s

th ey

IEC

or

c o n fo rm i ty.

ce rti fi cati o n

h ave

i ts

co m m i ttees

th e

l ate s t

d i re c t o rs , an d

IEC

n atu re

wh a t s o e ve r,

of

pu bl i cati o n ,

th e

of

acce s s

to

I EC

of

ce rti fi cati o n

co n fo rm i ty.

I EC

bodi es is

p ro vi d e

not

co n fo rm i ty

re s po n s i bl e

fo r

an y

e x p e rt s

an d

bodi es.

e d i ti o n

of

e m p l o ye e s ,

N ati o n al

wh e th e r use

I n d epen d en t m a rks

o f,

pu bl i cati o n .

s e rvan ts

C om m i ttees

d i re ct or

th i s

or

or

fo r

i n d i re ct,

re l i an ce

u pon ,

ag en ts an y or

i n cl u d i n g

p e rs o n al fo r

th i s

costs

I EC

i n d i vi d u al

i n j u ry,

p ro p e rty

(i n cl u d i n g

P u bl i cati o n

l e g al

or

an y

d am ag e

or

fe e s)

an d

o th e r

IEC

P u bl i cati o n s .

8)

Atte n ti o n

is

d rawn

i n d i spe n s abl e

9)

Atte n ti o n pate n t

is

fo r

to

th e

d rawn

ri g h ts .

IEC

to

th e

N o rm ati ve

co rre c t

th e

s h al l

poss i bi l i ty

n ot

re f e re n c e s

appl i cati o n

be

h eld

of

th at

th i s

som e

re s p o n s i bl e

ci te d

in

th i s

p u bl i cati o n .

U se

of

th e

re fe re n ce d

pu bl i cati o n s

is

pu bl i cati o n .

of

th e

el em en ts

fo r i d e n ti fyi n g

of

an y

th i s

or

al l

IEC s u ch

P u bl i cati on pate n t

m ay

be

th e

su bj ect

of

ri g h t s .

DISCLAIMER This Consolidated version is not an official IEC Standard and has been prepared for user convenience. Only the current versions of the standard and its amendment(s) are to be considered the official documents. This Consolidated version of IEC 62386-1 02 bears the edition number 2.1 . It consists of the second edition (201 4-1 1 ) [documents 34C/1 099/FDIS and 34C/1 1 1 2/RVD] , its amendment 1 (201 8-09) [documents 34/523/FDIS and 34/534/RVD]. The technical content is identical to the base edition and its amendment. This Final version does not show where the technical content is modified by amendment 1 . A separate Redline version with all changes highlighted is available in this publication.

– 8



IEC

6 2 3 8 6 - 1 0 2 : 2 0 1 4 + AM D 1 : 2 0 1 8 © I EC

I n te rn ati o n al for l am ps ,

S tan d ard

of I EC

I EC

te ch n i cal

Th i s

s e co n d

e d i ti o n

Th i s

ed i ti o n

i n cl u d es

62386-1 02 co m m i tte e

co n s ti tu te s

th e

h as

34:

been

Lam ps

a te ch n i cal

fo l l o wi n g

p re p are d an d

by

re l ate d

s u bco m m i tte e

34C:

CSV 201 8

Au xi l i a ri e s

e q u i pm e n t.

re vi s i o n .

s i g n i fi can t

te ch n i cal

ch an g es

wi th

re s p e c t

to

th e

p re vi o u s

ed i ti o n :

a)

e l i m i n ati o n

b)

i m p ro ve m e n t o f th e

re q u i re m e n ts

c)

i m p ro ve m e n t o f t h e

te s t co m m an d

d)

ad d i ti o n

e)

th e

d e l e ti o n

ti m i n g ;

2)

co n tro l

Th e

Th i s

1 02

( parti cu l ar

l ist

of

Th e

,

is

fo r

ti m i n g

been

i te ra ti o n s

to

i n c re as e

th e

th e

d e s c ri p ti o n ,

co m p ati b i l i ty,

fo r:

are

d ra fte d

i n te n d e d th e

to

be

re l e van t

cl au s e s

n ow

in

P art

1 01

an d

wi th

th e

th e

re q u i re m e n ts

fo r

co n tro l

d e vi ce s

fo r

in

in

acco rd an ce

u sed

co n tro l

P arts

in

p ro d u ct

1 01

co n j u n cti o n

type

g e ar) an d

1 02

wi th

( s ys te m ) ,

co n tai n i n g in

o rd e r

I S O /I E C

P art

an d

1 01 ,

wi th

cl au s e s to

D i re c t i ve s ,

to

p ro vi d e

P art 2 .

wh i ch

th e

co n tai n s

app ro p ri ate

su ppl em en t

th e

re l e van t

or

g e n e ral

P art

m o d i fy

re q u i re m e n ts

2 xx th e fo r

o f p ro d u ct.

p arts

can

be

co m m i tte e

rem ai n

g e ar b y c l a ri fyi n g

an d

re q u i re m e n ts

re q u i re m e n ts

al l

interface

h as

fo r

co rre s p o n d i n g typ e

fo r co n tro l

P art 1 0 3 .

P art

e ach

g e ar re l e van t d e fi n i ti o n s ,

d e vi ce s .

re q u i re m e n ts in

re q u i re m e n ts

A

o f th e

pu bl i cati o n

Th i s

n o n - co n t ro l

o f n ew co m m an d s ,

1 )

a re

o f al l

of

th e

fo u n d

h as

u n ch an g e d

wi l l

62386

th e

d eci d ed u n ti l

" h t t p : //w e b s t o r e . i e c . c h " pu bl i cati o n

IEC on

in

I EC

th at th e

th e

s e ri e s ,

u n der

th e

g e n e ral

th e

b as e

ti tl e :

Digital addressable lighting

we b s i te .

th e

co n te n ts

s tabi l i ty d ata

of

d ate

re l a t e d

to

i n d i cate d th e

pu bl i cati o n on

s pe ci fi c

th e

an d I EC

p u bl i cati o n .

i ts

am e n d m e n t

web At

s i te

th i s

wi l l

u n d er

d ate ,

th e

be



re co n fi rm e d ,



wi th d rawn ,



re p l ace d



am e n d e d .

b y a re vi s e d

e d i ti o n ,

or

IMPORTANT – The 'colour inside' logo on the cover page of this publication indicates that it contains colours which are considered to be useful for the correct understanding of its contents. Users should therefore print this document using a colour printer.

I EC

6 2 3 8 6 - 1 0 2 : 2 0 1 4 + AM D 1 : 2 0 1 8

© I EC

CSV

– 9



201 8

I N TR O D U C TI O N

IEC

62386

co n tai n s

s pe ci fi cati o n s . e xte n d s

th i s

fu rth e r wi th

Th e

2 xx

(m ai n l y

1 01

g e n e ra l

parts ,

wi th

e xte n d

th e

g e n e ral

g e n e ra l

re q u i re m e n ts

b a c kw a r d

re fe rre d

co n tai n s

i n fo rm a t i o n

p art s fo r

s e ve ra l

P art

as

wi th

Th e

fo r

fo r

1 xx

s e ri e s

s ys te m

c o n t ro l

g e ar

i n cl u d es

th e

co m po n e n ts , an d

P art

1 03

b as i c

P art

1 02

e xte n d s

it

d e vi c e s .

re q u i re m e n ts

co m pati b i l i ty

s e ri e s .

re q u i re m e n ts

fo r co n tro l

g e n e ra l

to

re q u i re m e n ts

E d i ti o n

fo r 1

c o n tro l

of

I EC

g e ar

62386)

wi th an d

l am p wi th

s p e ci fi c

co n t ro l

e xte n s i o n s

g e ar

s pe ci fi c

d e vi ce

s p e ci fi c

fe atu re s .

Th e

3 xx

p a rts

e xte n s i on s co m bi n e d

Th i s

I EC

wi th

s eco n d

1 01 :201 4

exten d

th e

d e s cri b i n g m u l ti pl e

e d i ti o n

an d

I EC

62 3 8 6 - 2 xx

p ro vi d e s as

an d

Th e

i n s tan ce

of

IEC

s e ri e s

fo r

fo r

e as e

s e tu p

2 xx

of

a n eed

o f th e

1 02

as

fo r

fu tu re

is

g e a r,

i n te n d e d

vari o u s

co n tro l

is

as

to

an d

to g e th e r p arts

d e vi ce s .

am e n d m e n ts

is

2 xx

G e n e ral

th e

fo r th e m

co n tro l

we l l

wi th

co m m o n

i n pu t

fe a tu re s

th at

can

be

an d

be

u sed

wi th

th e

wi th

th at Th e

I EC

m a ke

co n j u n cti o n p arts

wi th

th at

62386-1 03: 201 4 up

d i vi s i o n

re vi s i o n s .

in

va ri o u s

th e

i n to

I EC

an d

I EC

6 2 3 8 6 - 3 xx

s e p ara te l y

Ad d i ti o n al

I EC

62386-

m a ke

up

s e ri e s

pu bl i sh ed

re q u i re m e n ts

th e

62386-

wi l l

be

of

p arts ad d ed

re c o g n i s e d .

g rap h i ca l l y re p re s e n te d

2 xx

in

2 xx

F i g u re

3 xx

re q u i re m e n t s -

C o n tro l

d e vi ce s

som e

types .

co n tro l

fo r

s tan d ard

2 xx

types

62386-1 02

an d

re q u i re m e n ts

wh e n

re q u i re m e n ts

i n s tan ce

6 2 3 8 6 - 1 0 1 : 2 0 1 4 /A M D 1 : 2 0 1 8

1 0 3 : 2 0 1 4 /A M D 1 : 2 0 1 8 p arti cu l ar

g e n e ra l

th e

1

be l ow.

3 xx

1 03

3 xx

G e n e ral

g ear

G e n e ra l S ys te m

3 xx

re q u i re m e n t s -

C o n tro l

1 01

3 xx

d e vi ce s

re q u i re m e n t s -

com pon en ts

IEC

Fi g u re 1 – IEC 62386 g raph ical overvi ew

Wh e n I EC th e

th i s

p art

62 386-1 xx te s ts

are

re q u i re m e n ts ,

Al l

n u m b e rs

g i ve n

in

to as

u sed

H e xad e ci m al are

th e

fo l l o wi n g

I EC

be

62386

th e

re fe rs

e xte n t

to

p e rfo rm e d

to

an y

wh i ch

are

of

su ch

th e a

s pe ci fi e d .

cl au s e s

cl au se Th e

is

of

th e

o th e r

ap p l i cab l e

o th e r

p arts

an d

al s o

two th e

p arts

o rd e r

i n cl u d e

of

in

th e

wh i ch

ad d i ti o n al

n e ce s s ary.

in

th i s

n u m b e rs

b i n ary n u m b e rs

Th e

of

s e ri e s ,

I n te rn ati o n a l

are

g i ve n

in

f o rm a t XX XX XXX Xb m e an s

S tan d ard

th e

fo rm a t

or in

th e

are

are

wh e re

n u m b e rs VV

is

fo rm a t XXXX XXXX,

" d o n ' t c are " .

typ o g rap h i c e x p re s s i o n s

d e ci m al

0 xVV,

u sed :

u n less

th e

val u e .

wh e re

X

is

o t h e rwi s e B i n ary 0

or 1

n o te d .

n u m b e rs an d

" x"

in

– 1 0



IEC

6 2 3 8 6 - 1 0 2 : 2 0 1 4 + AM D 1 : 2 0 1 8 © I EC

Vari abl e s :

Ran g e

variableName

o f va l u e s :

C o m m an d :

or

[l o we s t,

“ C O M M AN D

variableName[3:0]

h i g h e s t]

N AM E ”

,

g i vi n g

o n l y bi ts

3

to

0

of

variableName

CSV 201 8

IEC

6 2 3 8 6 - 1 0 2 : 2 0 1 4 + AM D 1 : 2 0 1 8

© I EC

CSV

– 1 1



201 8

DIGITAL ADDRESSABLE LIGHTING INTERFACE – Part 1 02: General requirements – Control gear

1

Scope

Th i s

P art

s i g n al s p arts ) ,

N OTE not

of

I EC

62386

is

appl i cabl e

o f e l e ctro n i c l i g h ti n g wi th

Te s ts

th e

in

ad d i ti o n

th i s

of DC

s tan d a rd

are

to

co n tro l

e q u i p m e n t wh i ch

is

g e ar

in

in

line

a

wi th

bu s th e

s ys te m

for

c o n tro l

re q u i re m e n ts

by

of I EC

d i g i tal

61 347

( al l

su ppl i es.

type

tes ts .

R e q u i re m e n ts

fo r

testi n g

i n d i vi d u al

co n t ro l

g ear

d u ri n g

pro d u cti o n

are

i n cl u d ed .

2

Normative references

Th e

fo l l o wi n g

co n te n t ci ted

d o cu m e n ts

co n s ti tu tes

ap p l i e s .

Fo r u n d ate d

an y am e n d m e n ts )

are

re fe rre d

re q u i re m e n ts

re fe re n ce s ,

62386-1 01 : 201 4,

IEC

6 2 3 8 6 - 1 0 1 : 2 0 1 4 /A M D 1 : 2 0 1 8

I EC

62386-1 03:201 4,

I EC

6 2 3 8 6 - 1 0 3 : 2 0 1 4 /A M D 1 : 2 0 1 8

– Control devices

Terms and definitions

For

th e

I SO

I EC

an d

th e

te xt

d o cu m en t.

in

s u ch

Fo r

l ates t e d i ti o n

a

d ate d

o f th e

way

th at

re fe re n ce d

of

th i s

m ai n tai n

d o cu m e n t,

th e

te rm i n o l o g i cal

t e rm s

an d

d atab as e s

d e fi n i ti o n s

fo r

u se

in

g i ve n

in



I EC

E l e c tro p e d i a :



I SO

On l i n e

a va i l a b l e

b ro ws i n g

a t h t t p : //w w w . e l e c t r o p e d i a . o r g /

pl atfo rm :

avai l ab l e

a t h t t p : //w w w . i s o . o r g /o b p

3.1 actual level re p re s e n ti n g

th e

cu rre n t l i g h t o u tp u t

3.2 arc power p o we r s u p p l i e d

to

th e

l i g h t s o u rc e s

( l am ps )

3.3 broadcast type

o f ad d re s s

or

on ly

al l th e

d ocu m en t

u sed

to

ad d re s s

al l

co n tro l

g e ar i n

th e

s ys te m

I EC

of

th e i r

ed i ti o n

( i n cl u d i n g

6 2 3 8 6 - 1 0 1 an d

s tan d ard i z ati o n

ad d re s s e s :

val u e

som e

re fe re n ce s ,

Digital addressable lighting interface – Part 103: General requirements

3

appl y.

th e

in

Digital addressable lighting interface – Part 101: General requirements

IEC

p u rp o s e s

to

th i s

ap p l i e s .

– System components

fo l l o wi n g

of

at o n ce

at

th e

th e

fo l l o wi n g

– 1 2



IEC

6 2 3 8 6 - 1 0 2 : 2 0 1 4 + AM D 1 : 2 0 1 8 © I EC

CSV 201 8

3.4 broadcast unaddressed typ e

of

ad d re s s

u sed

to

ad d re s s

al l

co n tro l

d e vi ce s

in

th e

s ys te m

th at

h ave

no

s h o rt

ad d re s s

at on ce

3.5 DAPC direct arc power control a m e th o d

N o te

1

to

to

d i re ctl y co n tro l

e n t ry:

Th e

n o te

to

th e

e n try

in

l i g h t o u tpu t

Fre n ch

co n ce rn s

th e

Fre n ch

text

o n l y.

th e

Fre n ch

text

o n l y.

3.6 DTR data transfer register m u l ti p u rp o s e

N o te

1

to

re g i s te r u s e d

e n t ry:

Th e

n o te

to

to

e n try

e xch an g e

in

Fre n ch

d ata

co n ce rn s

3.7 group address type

o f ad d re s s

u sed

to

ad d re s s

a g ro u p

o f c o n tro l

g ear i n

th e

s ys te m

al l

at on ce

3.8 GTIN g lobal trade item number n u m ber u sed

N o te

1

to

N ote

2

N ote

3

e n t ry:

to

n u m ber

Fo r

e n try:

an d

to

fo r th e

a

unique

fu rth e r i n fo rm ati o n

Th e

n u m ber

ch eck d i g i t.

e n try:

i d e n ti fi cati o n

Th e

It

n ote

3

is

to

is

see

e n t ry

in

in

i te m s

wo rl d wi d e

h t t p : // e n . w i k i p e d i a . o r g / w i k i / G T I N

c o m p ri s e d

d e s cri b e d

o f tra d e

of

th e

Fre n ch

a

GS1

“G S1

or

U. P. C.

G e n e ral

c o n c e rn s

th e

co m pan y

p re fi x

fo l l o we d

by

an

i tem

re fe re n c e

S p e ci fi cati o n s ”.

Fre n ch

te xt

o n l y.

1 .1 identification te m p o rary co n tro l

state

u sed

d u ri n g

com m i ssi on i n g

th at

al l o ws

th e

i n s tal l e r

to

i d e n ti fy

p a rt i c u l ar

g e ar

3.9 level 8

b i t val u e

3.1 0 MASK th e

va l u e

0 xFF

3.1 1 monotonic f a

fu n cti o n

d e fi n e d

n o n - d e cre as i n g , L i ke w i s e , so

it

a

th e

on

fo r

fu n c ti o n

re ve rs e s

d e cre as i n g

if

is

a

al l

su bset

x

an d

cal l ed

o rd e r.

For

y

of

th e

su ch

re al th at

m o n o to n i cal l y th i s

s tan d ard

o r m o n o to n i cal l y n o n - i n cre as i n g

3.1 2 NO an s we r u s e d

to

d e n y o r re fu s e

a q u e ry

n u m b e rs

x≤ y

one

wi th h as

n o n - i n cre as i n g m o n o to n i c

is

re al

va l u e s

f x) ≤ f y (

(

i f,

),

is

so

wh e n e ve r

d e fi n e d

as

cal l e d

f x≤ y

m o n o to n i cal l y

p re s e rve s

ei th e r

,

th en

th e

o rd e r.

f x) ≥ f y (

m o n o to n i cal l y

(

),

non-

IEC

6 2 3 8 6 - 1 0 2 : 2 0 1 4 + AM D 1 : 2 0 1 8

© I EC

N o te th e

1

CSV

– 1 3



201 8

to

q u e ry

e n t ry: wi l l

If

a

q u e ry

co n cl u d e

is

“n o

a s ke d

wh e re

b a c kwa rd

th e

fram e "

a n s we r

f o l l o wi n g

is

N O,

I EC

th e re

wi l l

be

no

62386-1 01 :201 4

re s p o n s e ,

an d

su ch

th at

th e

sen der

of

I E C 6 2 3 8 6 - 1 0 1 : 2 0 1 4 /A M D 1 : 2 0 1 8 ,

8. 2. 5.

N o te

2

to

e n t ry:

Th e

a n s we r

NO

cou l d

al s o

be

t ri g g e re d

th e

co n ten t

by

a

m i ssed

q u e ry.

3.1 3 NVM n o n - vo l ati l e to

r e a d /w r i t e

m e m o ry,

of

wh i ch

can

be

ch an g e d

an d

wi l l

not

be

l ost

due

a po we r cycl e

3. 1 4 opcod e operati on cod e p art o f a fo rwa rd

fra m e

th at i d e n ti fi e s

th e

com m an d

to

be

e xe cu te d

3. 1 5 operati ng mode set

of

s tate s

va ri ab l e s co n tro l

N o te

1

g e ar,

to

i d en ti fi e d

an d

m e m o ry

i n cl u d i n g

e n t ry:

C o n tro l

by

a

n u m ber

se tti n g s , i ts

an d

re q u i re d

g e ar m ay

in

th e

u sed

to

re ac t i o n

s u p p o rt

m o re

ran g e sel ect

to

[0, 255] , a

set

of

ch arac t e ri s e d fu n c ti o n al i ty

by

to

a

be

co l l e cti o n

e xh i b i te d

by

of a

co m m an d s

th an

one

to

th e

o p e rati n g

mode

3.1 6 PHM p h ys i cal o pe rate

minimum

l e ve l

co rre s po n d i n g

minimum

light

o u tpu t

th e

co n tro l

g e ar

can

at

3.1 7 RAM vo l ati l e

r e a d /w r i t e

m e m o ry,

th e

co n te n t

of

wh i ch

can

be

ch an g e d

an d

wi l l

be

l ost

due

to

a

p o we r c yc l e

3.1 8 rand om add ress ran d o m

24

N o te

e n t ry:

1

to

b i t n u m b e r g e n e ra te d

An n e x

A. 1

p ro vi d e s

b y th e

an

co n t ro l

e xam pl e

of

h ow

g e ar o n

th e

s e arch

re q u e s t d u ri n g

an d

ran d o m

s ys te m

ad d re s s e s

a re

i n i ti al i s ati o n

used.

3.1 9 reset state s tate a re

in

wh i ch

m a r ke d

al l

“no

N VM

va ri ab l e s

ch an g e ” o r are

of

th e

co n tro l

o th e rwi s e

g e ar

h a ve

th e i r

re s e t

va l u e ,

e xce pt

th os e

th at

e xpl i ci tl y e xcl u d e d

3.20 ROM n o n - vo l ati l e

N o te

1

to

re ad

e n t ry:

i m pl em e n te d

in

In

o n l y m e m o ry,

th i s

N VM ,

s tan d ard

bu t

th i s

th e

re ad

s t an d ard

co n te n t o f wh i ch

only does

is

m ean t

not

fro m

p ro vi d e

a

an y

is

fi xe d

s ys te m

p e rs p e cti ve .

m e ch an i sm

to

A

ch an g e

ROM

i ts

vari ab l e

m ay

actu al l y

val u e .

3.21 scene co n fi g u rab l e

pre s e t l e ve l

3.22 search ad dress 24

bi t n u m ber u sed

N o te

1

to

e n t ry:

An n e x

to

A. 1

i d e n ti fy an

p ro vi d e s

an

i n d i vi d u a l

e xam pl e

of

co n tro l

h ow th e

g e ar i n

s e arch

an d

th e

s ys te m

ran d o m

d u ri n g

a d d re s s e s

are

i n i ti al i s ati o n

used.

be

– 1 4



IEC

6 2 3 8 6 - 1 0 2 : 2 0 1 4 + AM D 1 : 2 0 1 8 © I EC

CSV 201 8

3.23 short ad d ress typ e

o f a d d re s s

u sed

to

ad d re s s

an

i n d i vi d u al

co n tro l

g e ar i n

th e

s ys te m

3.24 startup ti m e

n eeded

N o te

1

to

to

e n t ry:

ch an g e

Th i s

ti m e

fro m

l am p

i n cl u d es

o ff to

p re h e at

an d

n o rm al

o p e ra t i o n

o f th e

l am p

o r fai l u re

s tate

i g n i ti on .

1 .2 strictl y mon otoni c a

f

fu n cti o n

d e fi n e d

i n cre as i n g ,

if

L i ke w i s e ,

fu n c ti o n

it

a

re ve rs e s

i n cre as i n g

fo r

th e

on

a

x

al l

is

o rd e r.

su bset

y

an d

cal l e d Fo r

of

s u ch

th e

re al

x

th at

m o n o to n i cal l y

th i s

s tan d ard

n u m b e rs

y

<

on e

wi th (

d e c re as i n g

s tri ctl y

re al

fx

h as

)

i f,

<

va l u e s

fy (

),

is

f

x

wh e n e ve r

m o n o to n i c

is

so

d e fi n e d

< as

cal l e d

m o n o to n i cal l y

p re s e rve s

y

,

th e n

e i th e r

th e

fx (

)

>

o rd e r.

fy (

),

so

m o n o ton i cal l y

o r m o n o to n i cal l y d e cre as i n g

3.25 targ et level th e

targ e t l i g h t o u tp u t e xp e cte d

afte r co m p l e ti o n

o f th e

cu rre n t l e ve l

co m m an d

3.26 YES an s we r u s e d

N o te th e

1

to

e n t ry:

val u e

4

to

of

acce p t o r affi rm

If

a

q u e ry

is

th e

a n s we r

is

YE S ,

th e

re s p o n s e

wi l l

be

a

b a c kwa rd

fram e

co n tai n i n g

G eneral

Th e

re q u i re m e n ts

I EC

wi th

4. 2

Version nu mber

Th i s

Th e

ve rs i o n an d

en cod e d ve rs i o n

re p l ace s

s h al l

th e

i n to

e ach

a

Th e

am e n d m en t

IEC

th e

th e

to

fo rm a t

" x. y" ,

n u m ber

y

in

ed i ti o n

in

of

1

to

6 2 3 8 6 - 1 0 1 : 2 0 1 4 /A M D 1 : 2 0 1 8 ,

i d e n ti fi e d

IEC

th e

th e

n u m ber

b i ts

I EC

an d

wh e re

is

ve rs i o n

pl aced

an

an d

ad d i ti o n s

62386-1 01 : 201 4

m aj or

be

an d

x

6 2 3 8 6 - 1 0 1 : 2 0 1 4 /A M D 1 : 2 0 1 8 ,

m aj o r

ra n g e

C l au s e

ve rs i o n

of

s h al l

0

be

4

b e l o w.

to

n u m ber x

2.

Wh e n

p l ace d

in

is

th e

bi ts

7

in

th e

ve rs i o n to

2

4. 2.

ran g e

of 0

n u m ber

an d

th e

is

m inor

0.

I EC

62386-1 02

th e

m i n or

ve rs i o n

n u m ber

s h al l

be

by on e.

of I EC

m i n o r ve rs i o n

N o rm al l y

2

62386-1 02

n u m ber sh al l

cu rre n t ve rs i o n

N OTE

in

ch an g e s

ve rs i o n

b yte ,

a n e w ed i ti o n

th e

be

minor

n u m be r y s h al l

i n cre m e n te d

62386-1 01 : 201 4

re s tri cti o n s ,

s u bcl au se

62

At

th e

of

appl y,

At

wh e re

M AS K.

General

4.1

to

a s ke d

a q u e ry

n u m ber i s

am e n d m e n ts

on



be

th e

m a j o r ve rs i o n

s e t to

versionNumber”

IEC

n u m be r s h al l

be

i n cre m e n te d

0.

d o cu m e n ts

a re

as

d e fi n e d

m ad e

b e fo re

a

in

Tabl e

new

1 4.

e d i ti o n

is

c re ate d .

by on e

an d

IEC

6 2 3 8 6 - 1 0 2 : 2 0 1 4 + AM D 1 : 2 0 1 8

© I EC

5

CSV

– 1 5



201 8

Electrical specification

Th e

re q u i re m e n ts

of

IEC

62386-1 01 :201 4

an d

I EC

6 2 3 8 6 - 1 0 1 : 2 0 1 4 /A M D 1 : 2 0 1 8 ,

C l au se

5

appl y.

6

Interface power supply

If

a

IEC

7

bu s

p o we r

su ppl y

62386-1 01 :201 4

an d

is

I EC

i n te g rate d

i n to

a

c o n t ro l

6 2 3 8 6 - 1 0 1 : 2 0 1 4 /A M D 1 : 2 0 1 8 ,

g e ar,

C l au s e

6

th e

re q u i re m e n ts

of

appl y.

Transmission protocol structure

7.1

General

Th e

re q u i re m e n ts

I EC

fo l l o wi n g

62386-1 01 : 201 4

wi th

7.2

1 6 bit forward frame encoding

7.2.1

th e

of

appl y,

an d

I EC

6 2 3 8 6 - 1 0 1 : 2 0 1 4 /A M D 1 : 2 0 1 8 ,

C l au s e

ad d i ti o n s .

General

Fo r co m m an d s ,

th e

1 6

b i t fo rward

fram e

s h al l

be

e n co d e d

as

is

d e pi cte d

in

Tab l e

1 .

Table 1 – 1 6-bit command frame encoding B ytes/Bi ts Ad dress byte 15

14

13

0

12

64

Opcode byte

11

s h o rt

10

8a

9

ad d re s s e s

x

G ro u p

0

1

1

1

1

1

1

0

x

1

1

1

1

1

1

1

x

7.2.2 Th e

ad d re s s e s

S h o rt

0

S e l e cto r

g ro u p

1 01 0

0000

to

1 1 00

1 01 1

1 1 00

1 1 00

to

1 1 1 1

1 01 1

bi t,

see

7. 2. 2;

0

i n d i cate s

b yte



th e

m e th o d



th e

typ e

o f co m m an d

S p e ci al

i n d i cates

u sed

t ran s m i tte d

in

s ta n d a rd

Bi t 8

=’0’:

d i re c t arc p o we r c o n tro l



re s e r ve d

R e s e r ve d

Th e

1

ad d re s s i n g

=’1 ’:

ad d re s s

s paces

o th e r co m m an d

d e vi ce

sh ou l d

Opcode byte byte

th e

ap p l i cati o n

opcod e

co n tro l l e r;

byte ;

( D AP C )

co m m an d ;

co m m an d s ;

ad d re s s e s .

ad d re s s e s

o pco d e

b y th e

co m m an d ;

fo r s peci al

p ro vi d e s

n ot be

u n ad d re s s e d

co m m an d

R e s e rve d

D AP C ,

Bi t 8



ad d re s s i n g

B ro ad cas t

p ro vi d e s

o f d e vi ce

ad d re s s i n g

B ro ad cas t

Address byte

ad d re s s

7.2.3

7. ..0

x

1

a

1 6

Devi ce addressi ng meth od

u sed

b y th e

ap p l i cati o n

co n tro l l e r.

7

– 1 6



IEC

6 2 3 8 6 - 1 0 2 : 2 0 1 4 + AM D 1 : 2 0 1 8 © I EC



fo r D AP C



fo r s tan d ard



co m m an d



r e s e r ve d

8

Timing

Th e

co m m an d s ,

th e

co m m an d s ,

re q u e s te d

th e

re q u i re m e n ts

of

fo r s p e c i al

fo r re s e rve d

IEC

l i g h t o u tpu t;

opcod e;

s p e ci fi c i n fo rm ati o n

i n fo rm a ti o n

CSV 201 8

co m m an d s ;

co m m an d s .

62386-1 01 :201 4

an d

I EC

6 2 3 8 6 - 1 0 1 : 2 0 1 4 /A M D 1 : 2 0 1 8 ,

C l au se

8

an d

I EC

6 2 3 8 6 - 1 0 1 : 2 0 1 4 /A M D 1 : 2 0 1 8 ,

C l au se

9

appl y.

9

Method of operation

9.1

General

Th e

re q u i re m e n ts

app l y wi th

9.2

of

IEC

fo l l o wi n g

62386-1 01 :201 4

ad d i ti o n s .

Control gear

9.2.1

General

C o n tro l is

th e

g e ar

s pe ci fi e d

m ay

re c e i ve

by I EC

co m m an d s

62386-1 03:201 4

fro m

an d

an

I EC

ap p l i cati o n

co n tro l l e r.

Th e

appl i cati o n

co n tro l l e r

6 2 3 8 6 - 1 0 3 : 2 0 1 4 /A M D 1 : 2 0 1 8 .

R e q u e s te d l i g h t o u tpu t

C o n tro l g e ar

Arc po we r

Li g h t o u tpu t

Actu al l e ve l

IEC

Figure 2 – Control gear directly operating a light source F i g u re a

2

s h o ws

co n tro l

th e re

is

kn o w n

N OTE

g e ar

a

as

h o w th e is

minimum th e

PHM

is

vari o u s

re fe rre d th at

ph ys i cal

c o n t ro l

to

th e

g e ar spe ci fi c,

Control gear phases

9.2.2.1

General

g e ar.

In

on

th e

g e n e ral

light

th es e

as

l e ve l

an d

s o u rce

are

1 00

co n t ro l

minimum

9.2.2

D epen d i n g

l e ve l s

as

is

l e ad

%.

to

Al l

g ear

l i g h t ou tpu t.

l e ve l s

can

are

su ppl y

Th e

m axi m u m

s peci fi e d wh i l s t

in

th e re

a is

( l i g h t)

re l ati ve s ti l l

light

o u tpu t l e ve l

way.

of

P h ys i cal l y

ou tpu t.

Th i s

is

(PH M ) .

g re ate r

va ri o u s

th an

0.

p h as e s

of

o p e ra ti o n

can

be

i d e n ti fi e d

wi th i n

a

co n tro l

fo l l o ws .

9.2.2.2 Standby D u ri n g are

0.

th i s

p h as e ,

th e

l am p

is

o ff

an d

on l y

in

th i s

p h as e

both



targetLevel



an d



actualLevel



IEC

6 2 3 8 6 - 1 0 2 : 2 0 1 4 + AM D 1 : 2 0 1 8

© I EC

9.2.2.3

– 1 7



Startu p

S tartu p p h as e



CSV

201 8

is

is

a

tran s i ti o n al

som e ti m es

p re h e at:

th e

p h as e

n o ti ce abl e

l am p

is

ch an g i n g

as

h e ate d

fro m

a d e l ay.

to

s tan d b y

E xam pl es

p re p a re

fo r

to

n o rm al

o p e rati o n

or

fa i l u re .

Th i s

are :

i g n i ti o n .

Th i s

is

typi cal l y

seen

fo r

fl u o re s ce n t

an d

fl u o re s ce n t

l i g h t s o u rce s ;



i g n i ti on :

th e

l am p

l i g h t s o u rce s



is

p o we r s tag e

Wh i l e

n o rm a l

9.2.2.5

e xce pti o n s

re fe r to

th e

an d

l am p

is

e m i tti n g

e xce p ti o n s

re fe r to

th e

fai l u re

p h as e

th e

an d

l am p can n o t b e

e xce p ti o n s

fo r

HID

light

s o u rce s

9. 1 6. 3.

l i g h t an d

can

be

o p e ra te d

as

e xpecte d .

9. 1 6. 3.

o p e ra te d

re fe r to

dimming

c u r ve

“actualLevel”

d e te rm i n e s

g re a te r

th an

l i g h t o u tp u t acco rd i n g

h o w th e

as

e xpe cte d .

9. 1 6. 3.

or

l e ve l

eq u al

to

1

Li g h t o u tpu t (

actualLevel

Li g h t

is

o u tpu t

g e ar- l a m p ends

at

1 00

re l a t i ve

N OTE

1

Th e

%

fo r

)

=

re l a ti ve

th an

or

i n to

e q u al

l i g h t o u tpu t.

to

254

s h al l

be

tran s l ate d

is

be

% .

to

dimming

“actualLevel”

cu rve

l ess

tran s l ate d

−1

3

1 0

Th e

accu racy s h al l

dimming

an d

be

253

e xp re s s e d

co m bi n ati o n .

1

s h al l

to

actualLevel −

th e

seen

Di mm in g cu rve

Th e

i n to

typ i cal l y

Fai l u re

F o r fu rth e r i n fo rm ati o n

An

an d

o p e ra ti o n

F o r fu rth e r i n fo rm ati o n

9.3

is

Norm al operati on

in

D u ri n g

Th i s

p re p ara t i o n .

F o r fu rth e r i n fo rm a ti o n

9. 2.2.4

i g n i ted .

afte r p re h e at;

th e

e q u al

±½

i n ten d ed

s te p .

to

m axi m u m

cu rve to

s tarts

0 xFE .

Th i s

Th e

sh al l

co m pe n s ate

possi bl e

at 0 , 1

th e

be

% fo r

dimming te s te d

light

light

cu rve

u sin g

s e n s i ti vi ty

o u tpu t

of

“actualLevel” is

s tri ctl y

a fad e ,

cu rve

of

th e

a

g i ve n

e q u al

h u m an

co n tro l -

0 x0 1

an d

m o n o to n i c,

an d

e xcl u d i n g

e ye .

to

PH M.

– 1 8



IEC

6 2 3 8 6 - 1 0 2 : 2 0 1 4 + AM D 1 : 2 0 1 8 © I EC

CSV 201 8

IEC

Figure 3 – Dimming curve Th e

accu racy

Tab l e ve rs u s

N OTE IEC

2

an d

th e

2

of

th e

l e ve l .

Th e

light

o u tp u t

dimming Th e

l am p

minimum

an d

is

s pe ci fi e d

cu rve type

are

o r l o ad

m axi m u m

by

th e

d epi cted u sed

val u e s

in

te s t

d u ri n g

a re

p o i n ts

F i g u re

3,

tes ti n g

bas e d

on

g i ve n an d

s h al l

th e

in

Tab l e

Tabl e be

test

3

2.

Th e

s h o ws

s tate d

val u e s

te s t

th e

p o i n ts

light

of

o u tpu t

fo r re pro d u ci b i l ty.

th at

can

be

fou n d

in

62386-1 02:2009.

Table 2 – Dimming curve tolerance (%, rounded to two decimals) Level Mi ni mu m val ue Nomi nal val ue Maxi mum val ue

1

60

85

1 26

1 45

1 70

1 95

21 6

229

243

0, 05

0, 25

0, 50

2, 00

3, 93

7, 00

1 5, 00

27, 28

40, 00

63, 53

0, 1 0

0, 50

0, 99

3, 04

5, 1 0

1 0, 09

1 9, 97

35, 43

50, 53

74, 05

0, 20

1 , 00

2, 00

4, 50

7, 50

1 5, 0

30, 00

52, 09

71 , 00

86, 1 4

254

1 00, 00

IEC

6 2 3 8 6 - 1 0 2 : 2 0 1 4 + AM D 1 : 2 0 1 8

© I EC

CSV

– 1 9



201 8

Table 3 – Dimming curve Level

Li g ht ou tpu t

Level

Li g h t output

Level

Li g ht ou tpu t

Level

Li g h t output

Level

Li g h t ou tpu t

1

0, 1 00

52

0, 402

1 03

1 , 620

1 54

6, 520

205

26, 241

2

0, 1 03

53

0, 41 4

1 04

1 , 665

1 55

6, 700

206

26, 967

3

0, 1 06

54

0, 425

1 05

1 , 71 1

1 56

6, 886

207

27, 71 3

4

0, 1 09

55

0, 437

1 06

1 , 758

1 57

7, 076

208

28, 480

5

0, 1 1 2

56

0, 449

1 07

1 , 807

1 58

7, 272

209

29, 269

6

0, 1 1 5

57

0, 461

1 08

1 , 857

1 59

7, 473

21 0

30, 079

7

0, 1 1 8

58

0, 474

1 09

1 , 908

1 60

7, 680

21 1

30, 91 1

8

0, 1 21

59

0, 487

1 1 0

1 , 961

1 61

7, 893

21 2

31 , 767

9

0, 1 24

60

0, 501

1 1 1

2, 01 5

1 62

8, 1 1 1

21 3

32, 646

1 0

0, 1 28

61

0, 51 5

1 1 2

2, 071

1 63

8, 336

21 4

33, 550

1 1

0, 1 31

62

0, 529

1 1 3

2, 1 28

1 64

8, 567

21 5

34, 479

1 2

0, 1 35

63

0, 543

1 1 4

2, 1 87

1 65

8, 804

21 6

35, 433

1 3

0, 1 39

64

0, 559

1 1 5

2, 248

1 66

9, 047

21 7

36, 41 4

1 4

0, 1 43

65

0, 574

1 1 6

2, 31 0

1 67

9, 298

21 8

37, 422

1 5

0, 1 47

66

0, 590

1 1 7

2, 374

1 68

9, 555

21 9

38, 457

1 6

0, 1 51

67

0, 606

1 1 8

2, 440

1 69

9, 820

220

39, 522

1 7

0, 1 55

68

0, 623

1 1 9

2, 507

1 70

1 0, 091

221

40, 61 6

1 8

0, 1 59

69

0, 640

1 20

2, 577

1 71

1 0, 371

222

41 , 740

1 9

0, 1 63

70

0, 658

1 21

2, 648

1 72

1 0, 658

223

42, 895

20

0, 1 68

71

0, 676

1 22

2, 721

1 73

1 0, 953

224

44, 083

21

0, 1 73

72

0, 695

1 23

2, 797

1 74

1 1 , 256

225

45, 303

22

0, 1 77

73

0, 71 4

1 24

2, 874

1 75

1 1 , 568

226

46, 557

23

0, 1 82

74

0, 734

1 25

2, 954

1 76

1 1 , 888

227

47, 846

24

0, 1 87

75

0, 754

1 26

3, 035

1 77

1 2, 21 7

228

49, 1 70

25

0, 1 93

76

0, 775

1 27

3, 1 1 9

1 78

1 2, 555

229

50, 531

26

0, 1 98

77

0, 796

1 28

3, 206

1 79

1 2, 902

230

51 , 930

27

0, 203

78

0, 81 9

1 29

3, 294

1 80

1 3, 260

231

53, 367

28

0, 209

79

0, 841

1 30

3, 386

1 81

1 3, 627

232

54, 844

29

0, 21 5

80

0, 864

1 31

3, 479

1 82

1 4, 004

233

56, 362

30

0, 221

81

0, 888

1 32

3, 576

1 83

1 4, 391

234

57, 922

31

0, 227

82

0, 91 3

1 33

3, 675

1 84

1 4, 790

235

59, 526

32

0, 233

83

0, 938

1 34

3, 776

1 85

1 5, 1 99

236

61 , 1 73

33

0, 240

84

0, 964

1 35

3, 881

1 86

1 5, 620

237

62, 866

34

0, 246

85

0, 991

1 36

3, 988

1 87

1 6, 052

238

64, 607

35

0, 253

86

1 , 01 8

1 37

4, 099

1 88

1 6, 496

239

66, 395

36

0, 260

87

1 , 047

1 38

4, 21 2

1 89

1 6, 953

240

68, 233

37

0, 267

88

1 , 076

1 39

4, 329

1 90

1 7, 422

241

70, 1 21

38

0, 275

89

1 , 1 05

1 40

4, 449

1 91

1 7, 905

242

72, 062

39

0, 282

90

1 , 1 36

1 41

4, 572

1 92

1 8, 400

243

74, 057

40

0, 290

91

1 , 1 67

1 42

4, 698

1 93

1 8, 909

244

76, 1 07

41

0, 298

92

1 , 200

1 43

4, 828

1 94

1 9, 433

245

78, 21 3

42

0, 306

93

1 , 233

1 44

4, 962

1 95

1 9, 971

246

80, 378

43

0, 31 5

94

1 , 267

1 45

5, 099

1 96

20, 524

247

82, 603

44

0, 324

95

1 , 302

1 46

5, 240

1 97

21 , 092

248

84, 889

45

0, 332

96

1 , 338

1 47

5, 385

1 98

21 , 675

249

87, 239

46

0, 342

97

1 , 375

1 48

5, 535

1 99

22, 275

250

89, 654

47

0, 351

98

1 , 41 3

1 49

5, 688

200

22, 892

251

92, 1 35

48

0, 361

99

1 , 452

1 50

5, 845

201

23, 526

252

94, 686

49

0, 371

1 00

1 , 492

1 51

6, 007

202

24, 1 77

253

97, 307

50

0, 381

1 01

1 , 534

1 52

6, 1 73

203

24, 846

254

1 00, 000

51

0, 392

1 02

1 , 576

1 53

6, 344

204

25, 534

– 20



IEC

6 2 3 8 6 - 1 0 2 : 2 0 1 4 + AM D 1 : 2 0 1 8

CSV

© I EC

Cal cu l atin g “targetLevel”

9.4 An

appl i cati o n

b e h avi o u r

co n tro l l e r

d u ri n g

appro pri ate

th e

sh al l



0 x0 0



An y va l u e

be twe e n



An y val u e

be twe e n



“ M AS K”

sh al l

be

Th e

re q u e s te d on

cal cu l ate d

On

e ve ry

0 x0 1

no

sh al l

targ e t

ch an g e

be

to



9. 5

Fad i ng

on

th e

re q u e s te d to

light

ou tpu t

“targetLevel” by

th e

an d

on

th e

m ean s

of

bas i s

an d

tu rn

sh al l

0 xFE

of th e

re q u e s te d

o ff th e

l i g h t.

“targetLevel”=“maxLevel”.

re s u l t i n

“targetLevel”

fo l l o ws :

“targetLevel”=“minLevel”.

re s u l t i n

s h al l

l i g h t o u tpu t as

e xce pt

wh e n

a

fad e

is

ru n n i n g ,

see

l e ve l

g e ar

cal cu l ati o n

th e

“targetLevel”

of

s to re d

”,

“targetLevel”.

as

val u e ,

wi th

th e

sh al l

su ch

as

e xcepti o n

of

“limitError” “targetLevel”. targetLevel”

s h al l

n ew

u pd ate

th e

(see

If



al so

a

be

appl i e d

i n i ti al i s ati o n

s u bcl au s e

is

not

if

th e

re q u e s t

“powerOnLevel”

s ce n e ,

cau se d

9. 1 6. 5)

by

an d

a

is or

p o we r

s h al l

“lastActiveLevel”

0 x0 0 ,

,

set

s h al l

be

G eneral

F ad i n g

is

th e

A fad e

a

l i n e ar

tra n s i ti o n

l i g h t o u tpu t,

can

be

s h al l

s tarte d



u si n g

a fad e

ti m e :



u si n g

a fad e

ra te :

A fad e

Wh e n (see

th e

on

acce p te d

“targetLevel

of

co n tro l

se t to

on

an d

e ffe c t

i n te rn al l y

“lastLightLevel” targetLevel”.

th u s

g e ar

“actualLevel”

th e

“minLevel”

an d

“maxLevel”

h ave

an

th e

9. 5.1

co n tro l

“targetLevel”

as

“systemFailureLevel”.

c yc l e ,

th e

fro m

9. 5. 9.

o th e r val u e s

b as e d

be

acce p te d

s h al l

su bcl au se

Al l

i n s tru c ts

tra n s i ti o n

o pco d e s .

“targetLevel”

Th e



201 8

sh al l

a

n o t be

fad e

in

two

th i s

th i s

th e

ti m e

“actualLevel”

fro m

to

“targetLevel”

s tri c tl y m o n o to n i c acco rd i n g

to

th e

.

“actualLevel”,

Th e

appl i cabl e

dimming

an d

c u r ve .

ways :

s e ts

a ti m e

s e ts

s tarte d

s tarts ,

in

be

to

a speed

i f th e

fad e

use

to

u se

cal cu l ate d

ti m er

s h al l

fo r th e

fad e

fo r th e

fad e

“targetLevel”

be

s tarte d

p ro ce s s ;

pro ce ss .

is

an d

eq u al

“actualLevel”

to

“fadeRunning”

.

s h al l

be

set

i d eal

fad i n g

to

TR U E

9. 1 6. 6. ) .

D u ri n g

th e

fad e ,

th e

light

o u tp u t

sh al l

be

m ai n tai n e d

as

cl ose

to

th e

cu rve

as

possi bl e.

D u ri n g th e

a

p ro ce s s

i n te rs e ct i o n

“actualLevel”

+

co rre s p o n d i n g

“actualLevel” usin g

is

If

m om en t

c o n fi rm e d

th e be

i t.



“actualLevel” fad i n g

wh e n

o r fad e

fad e

fad e

fad e





of 1 .

s h al l

be

wi th

th e

i d e al

F i g u re

4

/ fad e

rate

p l ace

i m m e d i ate l y

TR U E

fad e

ti m e .

At

m i d -po i n t

fad i n g

i l l u s trate s

at

s h al l

c u rve

a

ti m e

be

wi th

co rre s p o n d i n g

“actualLevel”

be twe e n

d e c re m e n te d th e

th i s ,

an d

s to p

con d i ti on

m i d - po i n t

appl i e s

fo r

at

a

to

an d ti m e

b e twe e n

fad e s

s tarte d

rate .

ti m e

is

i n cre m e n te d

“actualLevel”

d o wn ,

an

t a ke s

A

(see

c u r ve

fad i n g

i n t e rs e c t i o n

“actualLevel”

lampOn

F ALS E

u p,

i d e al

L i ke w i s e ,

TR U E .

appl i cabl e s e t to

an

ti m e

of

th e

fad i n g

th e

an d

M e as u re m e n ts

th e

1 . to

e i th e r fad e

tri g g e rs

of of

o r,

s h al l th i s

su bcl au se

in

s h al l

cas e

of

s tart

to tal

au to m ati cal l y

poi n t

th e

9. 1 6. 6. ) .

fad e

afte r

afte r

th e

s tartu p ,

l am p

en d ti m er

fai l u re ,

wh e n s h al l

th e be

of

m e as u re m e n t fro m fad e

th e

co m m an d

moment

ti m er

s topped

th e

s h al l

an d

h as

be “

done

th at fro m

lampFailure

been

acti ve

“fadeRunning”



fo r

sh al l

IEC

6 2 3 8 6 - 1 0 2 : 2 0 1 4 + AM D 1 : 2 0 1 8

© I EC

Th i s a

m ean s

l am p

is

th e

fad e

If

l am p

a

wh e n

N OTE

th at

to

co n tri bu te

0 x0 0

CSV

– 21



201 8

be

to

th e

ti m e

is

th e

fad e

h as

to

be

lit

th e

s ta rt u p

Th e

ti m e.

at

fro m

at

fad e s

th e

Th e

.

th e

sh al l

ph as e

t ran s i ti o n

g ear

o ff

e l apse d

“minLevel”

to

co n tro l

s wi tch e d

end

s te p

h as

0 x0 0

th e

ta rg e t

th e

fad e ,

fro m

beg i n n i n g

n ot

to of

of

co n tri bu te

“minLevel”

th e to

l e ve l th e

fad e

th e

an d

fad e

e ve n

s te p

to

0 x0 0

cas e

to

Th i s

a

of

a

"minLevel"

s h al l

di m med

ti m e .

in

fro m

be

t a ke n

ce rtai n

m ean s

to tal

th at

to

l am p

0 x0 0

e rro r. I f

s h al l

i m m e d i ate l y

va l u e , th e

th e

fad e

step

ti m e

not

after

fro m

s tarts

fi n i s h e d .

to

“minLevel”

i n co rp o rate s

s tartu p .

Fad i n g d o wn cu rve

MIN +3

Id

e

a

l

c

u

rv

e

,

fa

d

in

g

d

o

w

n

MIN +2

MIN +1

Id

e

a

l

c

u

rv

e

,

fa

d

in

g

u

p

MIN Fad i n g u p cu rve

S tartu p ti m e ( 0 wh e n fad i n g d o wn )

O ff S to p co n d i ti o n

Fad e ti m e s tart

1 /3 Fad e ti m e

2 /3 Fad e ti m e

Fad e ti m e

IEC

Fi g u re 4 – Level over time, fad i ng u p and down Te s ti n g

sh al l

9. 5.2 Th e

fad e

ti m e

q u e ri e d

Th e

if



in

Th e



s h al l

s h al l u sing

“fadeTime”



“DTR0” al l

fad e

if

done

wi th



minLevel” ≥ PH M +1 . For fu rth er i n formati on , see

An n e x

B.

Fad e ti me

“fadeTime” be

be

>

be

be

set

s h al l

1 5:

=

be

to

re ce i p t

set to

Tabl e

of

th e

4:

co m m an d

T I M E /F A D E

a val u e

“ S E T F AD E

TI M E

(

R ATE .

acco rd i n g

to

th e

fo l l o wi n g

s teps :

1 5

s h al l

“fadeTime”

on

Q U E R Y F AD E

o th e r cas e s :

ti m e

acco rd i n g

“DTR0”

be

0:

cal cu l ate d

u se

on

th e

b as i s

of

“fadeTime”

as

fo l l o ws :

DTR0

) ”.



fadeTime



can

– 22



IEC

6 2 3 8 6 - 1 0 2 : 2 0 1 4 + AM D 1 : 2 0 1 8 © I EC

Mi ni mu m fade rate

Nomi nal fade rate

Maxi mu m fade rate

s t e p s /s

s t e p s /s

s t e p s /s

1

322

358

394

2

228

253

278

3

1 61

1 79

1 97

“fadeRate”

4

1 1 4

1 27

1 39

5

80, 5

89, 4

98, 4

6

56, 9

63, 3

69, 6

7

40, 3

44, 7

49, 2

8

28, 5

31 , 6

34, 8

9

20, 1

22, 4

24, 6

1 0

1 4, 2

1 5, 8

1 7, 4

1 1

1 0, 1

1 1 ,2

1 2, 3

1 2

7, 1

7, 9

8, 7

1 3

5, 0

5, 6

6, 1

1 4

3, 6

4, 0

4, 3

1 5

2, 5

2, 8

3, 1



E xte n d e d



if

fad e

“fadeTime”

Tab l e

4

CSV 201 8

l i s ts

th e

ti m e

1 is

in

th e

ran g e

[1 , 1 5 ] :

2 possi bl e

fad e

ti m e



2

"fadeTime"

⋅1 s

val u e s .

Table 4 – Fade times “fadeTime”

Mi ni mum fade ti me

Nomi nal fade ti me

Maxi mu m fade ti me

s

s

s

0

E xten d e d

fad e

1

0, 6

0, 7

0, 8

2

0, 9

1 ,0

1 ,1

3

1 ,3

1 ,4

1 ,6

4

1 ,8

2, 0

2, 2

5

2, 5

2, 8

3, 1

6

3, 6

4, 0

4, 4

7

5, 1

5, 7

6, 2

8

7, 2

8, 0

8, 8

9

1 0, 2

1 1 ,3

1 2, 4

1 0

1 4, 4

1 6, 0

1 7, 6

1 1

20, 4

22, 6

24, 9

1 2

28, 8

32, 0

35, 2

1 3

40, 7

45, 3

49, 8

1 4

57, 6

64, 0

70, 4

1 5

81 , 5

90, 5

99, 6

IEC

6 2 3 8 6 - 1 0 2 : 2 0 1 4 + AM D 1 : 2 0 1 8

© I EC

9.5.3 Th e

fad e

rate

“DTR0”

if



if



in

“DTR0” al l

rate

ra te

5

set

s h al l

>

1 5:

=

0:



on

be

to

re c e i p t

s e t to

Tabl e

of

th e

5.

co m m an d

T I M E /F A D E

a va l u e

“ S E T FAD E

R ATE

(

DTR0

) ”.



fadeRate



can

R ATE .

acco rd i n g

to

th e

fo l l o wi n g

s te ps :

1 5

1

s h al l

be

“DTR0” cal cu l ate d

on

th e

b as i s

of

“fadeRate”

as

fo l l o ws :

506

= 2

Tab l e

acco rd i n g

Q U E R Y F AD E

o th e r cas e s :

fad e

Fad e

be

be

using

“fadeRate”



Th e

s h al l

sh al l

q u e ri e d

Th e

– 23

Fade rate

“fadeRate” be

CSV

201 8

l i s ts

"fadeRate"

th e

possi bl e

s t e p s /s .

fad e

ra te

val u e s .

Table 5 – Fade rates Mi ni mu m fade rate

Nomi nal fade rate

Maxi mu m fade rate

s t e p s /s

s t e p s /s

s t e p s /s

1

322

358

394

2

228

253

278

3

1 61

1 79

1 97

4

1 1 4

1 27

1 39

5

80, 5

89, 4

98, 4

6

56, 9

63, 3

69, 6

7

40, 3

44, 7

49, 2

8

28, 5

31 , 6

34, 8

9

20, 1

22, 4

24, 6

1 0

1 4, 2

1 5, 8

1 7, 4

1 1

1 0, 1

1 1 ,2

1 2, 3

1 2

7, 1

7, 9

8, 7

1 3

5, 0

5, 6

6, 1

1 4

3, 6

4, 0

4, 3

1 5

2, 5

2, 8

3, 1

“fadeRate”

9.5.4 If “

Extended fade time

fadeTime

an d

e q u al s



e q u al s

0,

Th e

e xten d e d

an d

Tab l e

7.

m u l ti pl i cati o n

th e

fad e Th e

0,

an d

th e

e xte n d e d

ti m e

can

e xte n d e d

facto r.

fas t

fad e

be

fad e

ti m e

set

fad e

ti m e

s h al l

u sin g

ti m e

as

be

a

can

d e fi n e d

in

I EC

62386

P art 2 0 7

is

i m p l e m e n te d

u sed.

b as e be

val u e

an d

cal cu l ate d

a

m u l ti pl i er

bas e d

on

th e

acc o rd i n g bas e

to

val u e

Tab l e an d

6

th e

– 24



IEC

6 2 3 8 6 - 1 0 2 : 2 0 1 4 + AM D 1 : 2 0 1 8 © I EC

F ad e

Th i s

ti m e

yi e l d s

=

extendedFadeTimeBase

a

ra n g e

of

1 00

ms

to

CSV 201 8

extendedFadeTimeMultiplier

*

1 6

min,

an d

a

s p e ci al

val u e

i n d i cati n g

no

fad e

( as

q u i c kl y

as

possi bl e) .

Table 6 – Extended fade time – base value Base bi ts

Base val u e

0000b

1

0001 b

2

001 0b

3

001 1 b

4

01 00b

5

01 01 b

6

01 1 0b

7

01 1 1 b

8

1 000b

9

1 001 b

1 0

1 01 1 b

1 1

1 01 1 b

1 2

1 1 00b

1 3

1 1 01 b

1 4

1 1 1 0b

1 5

1 1 1 1 b

1 6

Table 7 – Extended fade time – multiplier Mu l ti pl i er bi ts

Mu l ti pl i cati on factor Mi ni mu m

000b

0

001 b

95

01 0b

0, 95

01 1 b

9, 5

1 00b

a

On

No

1 00

s

1

s

1

s

min

R e s e rve d

1 1 1 b

R e s e rve d

( as

b as e d

q u i c kl y

of









>

“DTR0” .

an d th e

01 00

Th e

AAAAb base

F AD E

fo rm at

th e

ti m e

“targetLevel”

ms

1 , 05

s

1 0, 5

s

1 , 05

min

ti m e

s h al l

DTR0

(

be

bas e :

)”

th e

co n tro l

0 YYYA A AA b ,

Th e

re s u l ti n g

g e ar

s h al l

wh e re

fad e

set

YYYb

ti m e

th e

e q u al s

sh al l

be

th e

fad e

fo l l o wi n g th e

fad e

m o n o ti cal l y

i n cre as e s .

1 1 1 1 b:

” s h al l

no

TI M E

u sed

fad e

extendedFadeTimeBase extendedFadeTimeMultiplier

m ean i n g

a

possi bl e)

“ S E T E XTE N D E D

on

wh e n

DTR0”

as

ms

1 05

s

1 0

min

0

ms

1 1 0b

m u l ti p l i e r,

If “

ms

R e s e rve d

i n cre as i n g



ms

0, 95

e xe cu ti o n

ti m e

0

Maxi mum

a

1 01 b

fad e

va l u e s

ms

Nomi nal

a

fad e

( as

s h al l

t a ke



be

s e t to

s h al l

q u i c kl y pl ace

be as

0;

s e t to

0

m s,

possi bl e) .

i m m e d i ate l y

an d

e ffe cti ve l y s e tti n g

Th e th e

tra n s i t i o n light

fro m

ou tpu t

s h al l

ti m e

to

“actualLevel” be

ad j u sted

0

s to

as

IEC

6 2 3 8 6 - 1 0 2 : 2 0 1 4 + AM D 1 : 2 0 1 8

© I EC

q u i c kl y

In

al l









Th e



possi bl e,

be

0

fad e

ti m e



l ess

Tabl e

4) .

” s h al l

be

th an

0,8

s

wh i ch

re p re s e n ts

th e

m axi m u m

fad e

ti m e

be



s e t to

s h al l

q u e ri e d

wh e re

YYYb

be

AAAAb ;

se t to

usi ng

YYYb .

“ QU E R Y E XTE N D E D

eq u al s



F AD E

extendedFadeTimeMultiplier

TI M E ”.



an d

Th e

an s we r

AAAAb

e q u al s

”.

Using the fade time

be



If “



If

th at

fadeTime



If

u se

d e te rm i n e d

” >

fadeTime

e xte n d ed





0:

=

0:

fad e

Th e

targ e t

ti m e

h as

as

l e ve l

th e

sh al l

be

s h al l

o u tp u t

as

fad e

q u i c kl y

s u p p o rt .

fad e



=

0

ti m e

as

it

on

al s o

be

th e

th e

ap pl i cab l e

u sed ,

fad e

ti m e

as

bas i s

th e

s h al l

an

th e

“actualLevel” of

be

fad e

fad e

ti m e .

Th i s

ti m e

as

if

Tab l e

val u e

eq u al s

0

6

an d

an d

s,

th e

Tabl e

7.

Th e

m u l t i p l i e r.

m ean i n g

“targetLevel”

to

q u i c kl y a s

no

s h al l

fad e

t a ke

( as

pl ace

possi bl e.

co m m an d

bel ow

s u ch

e xte n d e d

re s p o n d

see

base

p aram e te r.

Afte r

th e

fad e

re ach e d .

ti m es

co m bi n ati o n s ,

wh e n

sh ou l d

be

ad j u s te d

s u pp o rts

s o u rce

s h al l

th e

fro m

targ e t l e ve l

possi bl e

H o we ve r,

usin g

b y m u l ti p l yi n g

ms,

tran s i ti o n

cal cu l ate d

light

fad e

ti m e

cal cu l ated

cal cu l ate d

an d

a

ru l e s :

4

l i g h t o u tpu t s h al l

be

th e

g e ar

Th e

s tart

fo l l o wi n g

e xte n d e d

can

th e

e xte n d e d

co n tro l

can n o t

Th e

ti m e

ti m e

on

Tab l e

possi bl e) .

e xp i re d ,

th e

al l

fad e

see

i m m ed i atel y an d

S i n ce

a

bas ed

extendedFadeTimeMultiplier

q u i c kl y

light

can

YYY A A A A b ,

Co m m an d s

by

m ean i n g

(see

extendedFadeTimeMultiplier

9.5.5



1

extendedFadeTimeBase

extendedFadeTimeBase

can

– 25

o th e r cas e s :

e xte n d ed

s h al l

as

“fadeTime ” =

fo r



CSV

201 8

fad e

th e

0, 7

co n tro l ti m e

fad e

s

is

h as

th at

g e ar

might

m ay

re q u e s te d

fi n i s h e d

not

be

si m pl y th at

wi th i n

re al i s e d

ad j u s t

it

th e

p h ys i c al l y

th e

re q u e s te d

ti m e .

9.5.6

Using the fade rate

9.5.6.1

Fading with “UP” and “DOWN” commands

C o m m an d s



targetLevel

rate .

1

s h al l

S i n ce

does

N OTE rate



Afte r th e

N OTE Th i s

“U P ” an d

at

2

not

d i ffe re n t

th e

B e cau s e

s l i g h tl y

fad e in

might

fad e

rate

th e

th e re

s h al l

cal cu l ate d

ms

d i ffe re n t

g e ar

“lastLightLevel”

be

200

re s u l t

“ D O WN ”

is

h as

on

are

used,

fad e

h ave

th e

it

is

rate

th e

possi bl e be i n g

val u e s

20

th e

to

ms

fad e .

“actualLevel”

cal cu l ate d

ta rg e t l e ve l

“minLevel”

re ach

d i ffe re n t

C o n s e q u e n tl y,

d i ffe re n t

of

±

using

sh al l

“maxLevel”

or

th e

be

appl i cabl e

fad e

re ach e d .

b e fo re

th e

end

of

th e

fad e.

cl e are d .

to l e ran ce s ,

rate s .

ms

bas i s

e xp i re d ,

“fadeRunning ” b i t

e ffe cti ve

s tart a 2 0 0

co n tro l

afte r

th e

g ear

“targetLevel”

fo r

can

p ro ce s s i n g (an d

re ac t of

to

th ese

th e re fo re

co m m an d s re l ati ve al s o

th at

use

dimming

fo r



th e

fad e

com m an d s,

actualLevel



an d

).

9.5.6.2 Fading with “CONTINUOUS UP” and “CONTINUOUS DOWN” commands C o m m an d

“C ON TI N U OU S

ap p l i cab l e

fad e

C o m m an d

“C ON TI N U OU S

th e

appl i cabl e

U pon one

fad e

e xe cu ti o n

s te p

sh al l

ra te .

of

be

Th e

rate .

e i th e r

m ad e ,

U P”

fad e

D O WN ”

Th e

a

sh al l

s h al l

fad e

set

sto p

s h al l

sh al l

“targetLevel” “maxLevel” maxLevel” to

wh e n

set

s to p

“ C O N TI N U O U S

u n l ess

th i s

is



is

an d

“targetLevel” “minLevel” minLevel” to

wh e n

U P”

p re cl u d e d

or



is

fad e

u si ng

th e

va l u e s

an d

s tart

a

fad e

u si n g

re ach e d .

“C ON TI N U OU S

by th e

s tart a

re ach e d .

of

D O WN ”

"minLevel"

i n s tru cti o n or

at

l e ast

"maxLevel"

.

– 26



IEC

6 2 3 8 6 - 1 0 2 : 2 0 1 4 + AM D 1 : 2 0 1 8 © I EC

R e fe r to

9. 5. 9

N OTE

1

b e fo re

th e

In

N OTE

2

fo r s to p pi n g

co n tras t

end

of

th e

S i m i l ar

“targetLevel”

,



to

th e

fad e .

to

“U P ”

an d

Th e re fo re ,

th e

actualLevel

a fad e

“U P” ”

an d

b e fo re

“ D O WN ”

i n s t ru ct i o n s ,

“fadeRunning ” b i t

“D OWN ”

is

afte r

it

goi ng

i n s tru cti o n s ,

“lastLightLevel”

an d

“minLevel”

re ach i n g

is to

not be

fad e

“maxLevel”

possi bl e

c l e a re d

d i ffe re n t

th e

or

g e ar

h as

to

at

might

been

en d

en d

.

“minLevel”

re ach

th e

of

up

s to pped

CSV 201 8

a

or

“maxLevel”

fad e .

wi t h

d i f f e re n t

ah e ad

of

val u e s

ti m e

(e. g .

fo r vi a

D AP C ( M AS K) ) .

9.5.7

System response to chang es d uri ng a fad e

“fadeTime”, ”extendedFadeTimeBase

If

ch an g e d fad e

d u ri n g

rate

9.5.8 If

a

to



fad e

is

fad e

re c al c u l ate d .

d u ri n g



th e

d u ri n g

we re

is

re acti o n

th en

Th e

extendedFadeTimeMultiplier

“,

th e

ru n n i n g

n e xt fad e

fad e



As



in

l e ve l

s h al l

fad e u se

sh al l

th e

fi n i s h



“fadeRate”

a n d /o r

wi th o u t

re cal cu l ate d

th e

fad e

ti m e

is

a n d /o r

va l u e s .

th e

d u ri n g

fad e

Th e

“minLevel”

s tart- u p ,

co m m an d s

sh al l

to

be

l e ve l

pen d ed

com m an d s

wi th



s h al l

actualLevel be

th e



e q u al

s am e

as

if

.

th e

s h al l

p ro ce s s

re acti o n

be

fad e th e

p ro c e s s sam e

sh al l

as

if

be

pen d ed

th e

at



actualLevel

l am p ( s )

we re

co n fi rm e d

TR U E

”.

Th e

o p e ra t i n g

at

s tart:

“lampOn ” i s

as

cas e

o f to tal

TR U E ,

l am p

F o r fu rt h e r i n fo rm a ti o n

9. 5.9

at

th e

ph ase .

.

sh al l

soon

s tan d b y,

s tartu p

o p e ra ti n g

i n i ti ate d

to

“actualLevel” Th e

fad e ,

i n i ti ate d

l am p( s )

a

ru n n i n g

System response to chang es d uri ng stand by and startup

minLevel

th e

If

bei n g

a

or

fai l u re ,

as

soon

“lampOn ” a n d

on



as



lampFailure

lampFailure

” see



is

9. 1 6. 3

an d

9. 1 6. 4.

Stoppi ng a fade

An y co m m an d

s e tti n g

one

o r m o re

of th e

fo l l o wi n g

vari a b l e s

“targetLevel” “minLevel” “maxLevel”



,

as

we l l



as

th e

,

e xe cu ti o n

“ D AP C ( M AS K) ” ,

s h al l

s to p

N OTE

1

Wh e n

a ru n n i n g

Th e

a

fad e

ru n n i n g

i m m e d i ate l y an d

th e

If

ru n n i n g

a

9.6

2

fad e

Th i s

eve n

i m pl i es

is

th e

fo l l o wi n g

co m m an d s

P E R S I S TE N T V AR I AB L E S ” ,

is

if

th e

be

ti m e r

s to p pe d

in

of th e

by

su ch

an

h as

e xe cu te d

s tartu p

th at

val u e

s to ppe d

fad e

sh al l

th e

o f th e

“ I D E N TI F Y D E VI C E ”

fad e .

fad e

Afte r

fi n i s h

“ S AVE

s to ps

co m m an d

g ear s h al l

N OTE

.

of on e

wh i l s t

affe cte d

vari a b l e

appl i cati o n

been

does

n ot

c o n tro l l e r,

s to ppe d ,

ch an g e .

th e

“targetLevel”

fad e

ti m e r

s h al l

be

sh al l

set

to

be

s to p pe d

“actualLevel”

( i f ap p l i cab l e ) .

it

was

pen d i n g

at

“minLevel”

d u ri n g

s tartu p ,

th e

co n tro l

p ro ce s s .

a

case

b o th

“targetLevel”

an d

“actualLevel”

are

e q u al

to

“minLevel”

.

Mi n and max l evel

C h an g i n g

th e

min

or

m ax

l e ve l

s h al l

s h al l

set

s to p

an y

ru n n i n g

fad e ,

b e fo re

th e

s to rag e

o r m ax l e ve l .

“SET M I N

LE VE L (

DTR0

)”

“minLevel”

depen d i n g

on

th e

“DTR0”

val u e :

of

th e

n ew

min

IEC

6 2 3 8 6 - 1 0 2 : 2 0 1 4 + AM D 1 : 2 0 1 8

© I EC

CSV

– 27



i f 0 ≤ “DTR0” ≤ PH M : PH M



if



in

“DTR0” ≥ “maxLevel” al l

“maxLevel”

o r M AS K:

“DTR0”

o th e r cas e s :

“actualLevel” “actualLevel” “targetLevel” “targetLevel” limitError

If

>

0

sh al l

ch an g e d

to

possi bl e.

As

if



if



in

If

a con seq u en ce,

“DTR0” al l

on



M AS K:

an d

h ave

th e

s h al l

as

th e

light

be

“maxLevel”

set

of

a

be

as

o f th e

light

a

n ew

o u tpu t

s e t to

new

min

sh al l

be

ad j u s te d

as

l e ve l ,

s h al l

be

q u i c kl y

as

TR U E .

d epen d i n g

on

“DTR0”

th e

val u e ,

as

fo l l o ws :

re s u l t

of

s e tti n g

a

n ew

m ax

“maxLevel” “actualLevel” .

s h al l

be

ad j u s te d

as

l e ve l ,

s h al l

q u i c kl y

as

be

“targetLevel” “targetLevel” sh al l

ch an g e d

possi bl e.

As

be

re -

to

a

co n se q u e n ce ,

val u e s

can

fo r

be

PHM,

u sed th e y

to

can

co m pen s ate be

m ad e

to

fo r

d i ff e re n c e s

b e h ave

in

a

in

si m i l ar

co n tro l

g e ar

wa y

by

ad j u s ti n g

p ro p e rt i e s .

it

is

E. g.

“minLevel”

if

.

G eneral

co n tro l

g e ar

Th e

sh al l

Th e

ch e ck

c o n tro l

co m m an d

“shortAddress”

is

th e

g ear

sen t

d e vi ce

s h al l

u sin g

ad d re s s i n g

e xe cu te

S h o rt

th e

sch em e

is

i d e n ti fi e d



Th e

co m m an d

is



Th e

a d d re s s i n g

an d

g i ve n

co m m an d

is

sen t by

using

G ro u p

“gearGroups”

Th e

co m m an d

fo l l o wi n g

Le ve l

sen t u si n g

sen t

is

ad d re s s i n g

R e s e rve d

u sing

n o t d e fi n e d

co m m an d

g ro u p s

(e. g .

can

an d

g i ve n

U n ad d re s s e d

re s e rve d

be



L e ve l

i n s tru cti o n s

wi th o u t fad e



L e ve l

i n s tru cti o n s

i n i ti ati n g

C o n fi g u rati o n



Q u e ri e s



S p e ci al

s h o rt

i n s tru cti o n s



I n s tru cti o n s



Q u e ri e s

e xte n d e d

co m m an d s

g ro u p

an y

ad d re s s e d of

ad d re s s

does

a d d re s s i n g

co m m an d ) .

i d en ti fi e d :

a fad e

co m m an d s

Ap pl i cati o n

if

is

th e

by

a

fo l l o wi n g

not

eq u al

to

not

m atch

an y

of

th e

is

not

ad d re s s i n g .

B ro ad cas t

i n s tru cti o n s



see

u n l ess

.

M AS K.

Th e

to

co m m an d ,

.

co m m an d

g ro u p s



a

Com m and s

hold:



s e tti n g .

o u tp u t

s e t to

of

“minLevel” “actualLevel”

TR U E .

“maxLevel”

an d

co n d i ti o n s



re s u l t

new

“DTR0”

d i ffe re n t

Th e



an d



s h al l

bas i s

0 xFE

b as i s th e

s h al l

co m m an d .



)”



“maxLevel”

>

th e

“minLevel” g e ar

9.7.1 A

=

o th e r cas e s :

limitError

9.7

DTR0

“minLevel”

<

th e

:

i m m ed i atel y

N OTE

on

i m m e d i ate l y

“actualLevel”

c o n t ro l

re - c al c u l a te d

“minLevel” ≥ “DTR0” “minLevel”

cal cu l ate d



an d

be

“ S E T M AX L E V E L (





201 8

an d

“shortAddress”

– 28



IEC

6 2 3 8 6 - 1 0 2 : 2 0 1 4 + AM D 1 : 2 0 1 8 © I EC

9.7.2

Level i nstru cti ons wi thout fade

L e ve l th e

i n s tru c t i o n s

tran s i ti o n

o u tpu t s h al l

Th e s e





R e l a t i ve





U P”,

i n s tru cti o n s

th e

Th e s e

0

th e

co m m an d s

R e l a t i ve

(

fad e

sh al l

be

i m m e d i ate l y

cal cu l ate d ;

an d

th e

light

cate g o ri e s :

AN D

S TE P

DTR0

) ”,

U P”,

“ STE P

“ S E T M AX LE V E L (

be

) ”,

fro m

ad j u s ted

“U P”,



“ C O N TI N U OU S

i n to

u si n g

TO

i n s tru cti o n s

i n s tru ct i o n s

wh e re

u si n g

d i vi d e d

“G O

are

“targetLevel” “actualLevel”

th e

i n s tru cti o n s

level

l e ve l

a

to

be



D O WN

AN D

OFF”

DTR0

)”

as

th e

SCEN E

u si n g

th e

“targetLevel” fad e

sh al l

sh al l

be

cal cu l ate d ;

t i m e /r a t e .

t a ke

p l ace

If

th e

fad e

i m m e d i ate l y

possi bl e.

ca te g o ri e s :

fad e

(

th e

appl i cabl e

“targetLevel”

to

q u i c kl y a s

two

th e

ti m e

sceneNumber

) ”,

fad e

“G O

TO

L AS T AC T I VE

LE VE L”

ra t e

“ D O WN ”

U P”,

“C ON TI N U OU S

D O WN ”

Confi g u rati on in structi ons

C o n fi g u rati o n

9. 7.5

i n s tru cti o n s

can

be

u sed

to

m o d i fy s e ve ral

co n tro l

g e ar pro p e rti e s .

Qu eries

Qu e ri e s

9.7.6

can

be

u sed

to

re q u e s t th e

va l u e

o f s e ve ral

c o n tro l

g e ar p ro p e rti e s .

Speci al com m ands

s peci al

co m m an d s

i n te rpre t th e

9.7.7

a re

s p e ci al

a

g ro u p

of

co m m an d s

th at

are

n ot

ad d re s s ab l e .

Al l

co n tro l

g ear

co m m an d s .

Appl ication extend ed com m and s

Co m m an d s fe atu re s .

wi th

pl ace

“ R E C ALL M AX LE VE L” ,

“ON

LE VE L (

tran s i ti o n

can

l e ve l

“ D AP C

9. 7.4

or

fad e

l i g h t o u tpu t s h al l

Abs o l u te

Th e

t ake

possi bl e.

th re e

LE VE L”,

D O WN ” ,

i n i ti ati n g

s,

e q u al s

s h al l

i n to

“targetLevel”

th e

s h al l

Level i nstru cti on s in iti ati ng a fad e

ti m e



“ S TE P

“SET M I N

s h al l



q u i c kl y a s

d i vi d e d

wh e re

“targetLevel”

co m m an d s

“R E S E T”,

Le ve l



be

i n s tru cti o n s

to

co m m an d s

“actualLevel” an d

are

co m m an d s

C o n fi g u rati o n

9.7.3

as

“ R E C ALL M I N

l e ve l

“STE P



can

l e ve l

fad e

“actualLevel”

ad j u s te d

co m m an d s

“OFF”,

wi th o u t

fro m

be

Ab s o l u te



CSV 201 8

wi th

th e i r

E ach

o pcod e

opco d e

d e vi c e

0 xFF

typ e

in or

th e

ran g e

fe atu re

0 xE 0

to

re - d e fi n e s

( “ Q U E R Y E XTE N D E D

0 xF F

are

th es e

VE R S I O N

re s e rve d

co m m an d s ,

N U M BE R”) .

fo r

spe ci al

e xce p t See

fo r

9. 1 8

d e vi ce th e

types

co m m an d

fo r

fu rt h e r

i n fo rm ati o n .

9. 8

Com mand i terations

9. 8.1 Th e wi th

G eneral re q u i re m e n ts th e

fo l l o wi n g

of

I EC

62386-1 01 : 201 4

ad d i ti o n s .

an d

I EC

6 2 3 8 6 - 1 0 1 : 2 0 1 4 /A M D 1 : 2 0 1 8 ,

9. 4

appl y

IEC

6 2 3 8 6 - 1 0 2 : 2 0 1 4 + AM D 1 : 2 0 1 8

© I EC

9.8.2 “U P”



“D O WN ”

i n s tru cti o n

maxLevel

N OTE

Afte r

1

”,

i te rati o n cau s e

be

th e

200

tran s i ti o n

2

of

co m m an d

If

F i g u re

th at

s tep,

5

ms of

th e

th e

fad e

is

at

rate

an

e ffe ct

ms

ti m e

to ”



be

as

at

th e

s ta rt

sh al l

of

co m m an d is

an

s tart

d e te rm i n e d

occu r

an d



at

by

targetLevel ± ”

u sin g by

th e

th e

1 )

e xe cu ti o n

val u e s

sh al l

ap p l i cab l e

app l i cab l e

e xe cu te d

“targetLevel”

a

U po n

th e

be

of

of

minLevel



th e ”

or

m ad e.

i te rati o n .

acco rd i n g

o cc u rri n g

i te rati o n .

pre cl u d e d

i n s tru cti o n

re s tart e d

s te p ,

a

th i s

cal cu l ate d

“D O WN ”

s h al l

i n i ti al

” =

fad e

or

sen t

u n l ess

i n te rval s

“U P”

“ D O WN ”

be

targetLevel

actualLevel th e

can

i te rati o n ,

200

E ve ry

fad e





th e re

e xe cu te d

an d

N OTE

an

( fi n al

excl u d i n g

fi rs t “ U P ”

th i s

s te p

co n ti n u e s .

tra n s i t i o n , th e

su ch

e n s u re s

fi rs t

sh al l

i n s tru c ti o n s

of

one

Th i s

th at

s te ps

Th e

– 29

Command iteration of “UP” and “DOWN” commands an d

fi rs t

CSV

201 8

to

ti m e

9. 5. 1

as

to

of

1 /( 2 *

new

fad e

a

be

an d

fad e

fad e

ra te .

rate ,

p art

of

Su bseq u en t

as

th e

re cal cu l ate d

Fi g u re

4,

“fadeRate”

wi th )

long

as

i te rati o n

th e

s h al l

acco rd i n g l y.

th e

afte r

fi rs t

s u ch

e xecu ti o n

of

co m m an d .

ch an g e s

d u ri n g

a

co m m an d

i t e ra t i o n ,

th e

rate

is

not

u sed

d u ri n g

th e

e xe cu ti o n

i te rati o n .

s u m m a ri z e s

th e

re q u i re d

b e h avi o u r.

Th e

i te rati o n s

s tart

at

Cm d

1 ,

an d

en d

at

Ti m e

o u t.

1 /

fade Rate

(2*"

")

1 /"

fadeRate

"

1 /"

fadeRate

"

X S tep

S te p

S tep

Cm d 2

1

3

4

5

6

X

S tep

7

S te p

Cm d

Ti m e

9

out

8

Ti m e

Cm d

ou t

1

IEC

Figure 5 – Timing and response when executing command iteration 9.8.3

DAPC SEQUENCE (deprecated)

“ E N AB LE

D AP C

th at al l o ws

U pon ti m e

e xe cu ti o n of

200

ms

f a d e /e x t e n d e d sh al l

N OTE

Th e

be

arc

th e

D AP C (

of

±

“ E N AB L E 20

fad e

ms

ti m e .

s tarts

o f th e

D AP C

wh i l e Afte r

a

d i re ct

arc

p o we r

co n tro l

( D AP C )

co m m an d

i te ra t i o n

l i g h t o u tp u t.

SE QU EN CE”

th e th e

co m m an d l as t

fad e

th e

co n tro l

i te ra ti o n

of

th e

is

g e ar

sh al l

a c t i ve

s e q u e n ce

te m p o rari l y

i n depen den t

h as

fi n i s h e d ,

th e

u se

of

a

fad e

th e

actu al

o ri g i n al

val u e s

u sed .

As

“D AP C

SEQU E N CE”

d yn am i c co n tro l

fad e

level

po we r

i te rati o n ,

t i m e /ra t e

seq u en ce )”

s h al l

co m m an d .

co n tro l

sh al l

vari ab l e s

be

en d

Th e

co m m an d . d i s c ard e d .

do

n ot

if

D AP C

ch an g e ,

200

th e

ms

D AP C

t i m e /r a t e

el apse

s eq u en ce

“ E N AB L E

fad e

s h al l

can

wi th o u t be

be

th e

ab o rt e d

SEQU EN CE”

set

a n d /o r

co n tro l on

acce p te d

q u e ri e d

g ear

e xe cu ti o n d u ri n g

as

n o rm al .

acce p ti n g of

an

D AP C

a

i n d i re c t

co m m an d

– 30



IEC

6 2 3 8 6 - 1 0 2 : 2 0 1 4 + AM D 1 : 2 0 1 8 © I EC

Wh i l e 200

th e

ms

S i n ce

D AP C

s eq u en ce

is

se q u en ce

u ses

th e

D AP C

l i g h t s o u rce

possi bl e.

H o we ve r,

e xe cu ti o n

o f a “ D AP C

(

level

)”

co m m an d

be

re al i s e d

s h al l

s tart a

a fad e

co m bi n ati o n s ,

i t sh ou l d

ti m e

su ch

re s p o n d

as

of 200

ms

th at m i g h t n o t

g e ar m ay s i m pl y ad j u s t th e

i f th e

fad e

h as

fi n i s h e d

by al l

l i g h t o u tpu t as

wi th i n

th e

c o n tro l

q u i c kl y as

re q u e s te d

ti m e .

Mod es of operati on

9.9.1

G eneral

D i ffe re n t

o pe rati n g

“ S E T OP E R ATI N G m ean s

sh al l

m od es

M ODE

(

DTR0

o f “ Q U E R Y O P E R ATI N G

O pe rati n g be

m odes

0 x0 0

a va i l a b l e .

to

g e ar i s

in

9. 9.2 If a

an

I EC

Th e

be

s e l e cte d

cu rre n tl y

se l ected

by

m ean s

of

“operatingMode”

can

co m m an d

be

q u e ri e d

by

M OD E”.

are

d e fi n e d

m odes

0 x80

SPECI FI C

s tan d ard

in

th i s

to

0 xFF

M OD E”

o p e ra ti n g

can

mode

s tan d ard . a re

be

or i n

At

l eas t

o p e ra ti n g

m a n u fac tu re r

u sed

to

m od e

s pe ci fi c.

d e te rm i n e

Th e

wh e th e r

th e

0 x0 0 q u e ry

co n tro l

a m an u fac tu re r s p e ci fi c m o d e .

Operati ng m od e 0x00: stand ard mode

d e vi c e

per th i s

is

in

s tan d ard

s p e c i fi c ati o n ,

9.9.3

m ode

u n ti l

it is

(

“operatingMode”

set i n

an

=

o p e ra ti n g

0 x00 ) ,

mode

i ts

b e h avi o u r s h al l

d i ffe re n t fro m

be

as

is

re q u i re d

0 x0 0 .

Operati ng m od e 0x01 to 0x7F: reserved

O p e rati n g

9.9.4

m odes

0 x01

to

0 x7 F

are

re s e r ve d

an d

sh al l

n o t be

u sed .

Operati ng m od e 0x80 to 0xFF: man ufactu rer speci fic mod es

M an u fac tu re r are

62386

can ) ”.

0 x7F

O pe rati n g

“ Q U E R Y M AN U F AC TU R E R

not

mode,

th e

as

s p e c i fi c

c o ve re d

fo l l o wi n g



e ach

fad e .

g ear an d

9.9

acti ve ,

CSV 201 8

by

m odes

th e

b e h avi o u r

sh ou l d

s tan d ard .

of

th e

only

If

a

co n tro l

be

u sed

co n tro l

g e ar

if

g ear

m ay

be

th e is

fe atu re s

in

a

re q u i re d

m an u fact u re r

m an u factu re r

spe ci fi c

by

th e

ap p l i cati o n

s pe ci fi c as

we l l ,

o pe rati n g wi th

th e

62386-1 01 :201 4

an d

e xce p ti o n s :

far

as

th e

co n t ro l

g ear

acce s s e s

th e

bu s,

it

sh al l

ad h e re

to

I EC

I E C 6 2 3 8 6 - 1 0 1 : 2 0 1 4 /A M D 1 : 2 0 1 8 ;



th e

co n tro l

co m m an d s



g e ar are

sh al l

ad h e re

“ S E T O P E R ATI N G

M ODE

(

al l

s p e ci al

WR I TE NO

Fo r th e

It

is

th i s

9. 1 0

at

l e as t

as

far

as

th e

fo l l o wi n g

th at

be

“ Q U E R Y O P E R ATI N G

th e

vari o u s

e ve n

in

( )

DTR1 , DTR0, data an d

M OD E”,

an d

M OD E”.

(see ),

1 1 . 7) WR I TE

e xce pt

M E M O R Y LO C ATI O N



PI NG.

ad d re s s i n g

m an u factu re r

m e th o d s

s pe ci fi c

sh al l

m odes,

appl y,

th e

see

7. 2. 2.

com m an d s

as

s pe c i fi e d

in

o be yed .

Memory ban ks

9. 1 0.1

G eneral

M e m o ry co n tro l wi th i n

s ti l l

) ”,

com m an d s

DTR1 , DTR0, data

co m m an d s

re co m m e n d e d s tan d ard

s p e c i fi cati o n

SP ECI FI C

M E M O R Y LO C ATI O N

R E PLY (

ab o ve

th i s

DTR0

“ Q U E R Y M AN U F AC TU R E R



to

co n ce rn e d :

b a n ks

g e ar

a

m e m o ry

in

are a

m e m o ry ban k

fre e l y

s ys te m . b an k

not

l o cati o n s

of

acce s s i b l e Not

al l

m e m o ry

co n s e cu t i ve

al l

co n s e cu t i ve

al l

i m pl e m en te d

s p ace s m e m o ry

l o cati o n s m e m o ry

d e fi n e d b a n ks

need b a n ks

to

be

a re

fo r

n eed

e. g. to

i d e n ti fi cati o n

be

i m pl e m en ted .

re ad ab l e

of

i m pl em en ted .

u sin g

Al l

th e Al s o

i m pl e m en te d

m e m o ry

acce s s

IEC

6 2 3 8 6 - 1 0 2 : 2 0 1 4 + AM D 1 : 2 0 1 8

© I EC

co m m an d s . co n tro l

b a n ks

by

can

l e a ve s

th e

al l

m e m o ry

o th e r

– 31

m e m o ry



0

is

an d

1

to

ROM

l i m i ted

o f m axi m u m (if

m e m o r y b a n ks

an d

acce s s

acces s

R AM ,

s p ace

b a n ks

b an k

fo r 1 9 8

re ad - o n l y wri te

Wri te

using

m e m o ry

m e m o ry

is

p arts ,

m an u fac tu re r.

i m pl e m e n te d

256

ro o m

9.1 0.2 a

th e

be

i m pl em en t

i ts

of

For

ad d re s s a b l e

m axi m u m

If

P art

g e ar.

e n abl e d

Th e

CSV

201 8

p ro g ram m e d

using

by

m e m o ry

a m e m o ry

th e

m an u factu re r

acce s s

ban k l o cati o n

co m m an d s

can

be

l o c ke d .

of

th e

can

be

M e m o ry

o r N VM .

to

a

255

m axi m u m

b yte s

p re s e n t) ,

an d

of

e ach .

al m o s t

As

re s e r ve s

th i s

64

kB y t e s ,

s t an d ard

m e m o ry

b a n ks

fo r m a n u fac tu re r s p e ci fi c p u rp o s e s

in

o rg a n i z e d

p re s c ri b e s

th e

200

to

ran g e

in

h ow

255,

to

th i s

of [2, 1 99 ] .

Memory map

m an u fac tu re r

co n ten t s h al l

s p e ci fi c

m e m o ry

co m p l y wi th

th e

ban k

in

th e

m e m o ry m ap

ra n g e

of

p ro vi d e d

[2 , 1 9 9 ]

in

Tab l e

is

i m pl em en ted ,

al l o cati o n

of

8.

Table 8 – Basic memory map of memory banks Ad dress

Descri pti on

0 x0 0

Ad d re s s

of

l as t

acces si bl e

Defaul t val u e (factory)

m e m o ry

l o cati o n

F acto ry ran g e

0 x0 1

I n d i cato r

0 x0 2

M e m o ry

[0 x0 3 , 0 xFE ]

b

c

Al s o

Th e

used

b yte

Th e

1

It

c h e c ks u m

Th e

re ad

p o we r

a

in

be

m e m o ry

o n l y.

Th e

co n seq u en ce affe cti n g

Lo cati o n l o cati o n co n tro l “

DTR0

N OTE

th e

val u e

of

d i ffe re n t

a

in

0 xFF

0 xFF

f ro m

R AM

0 x5 5.

a

An y

an d

An s we r

m e m o ry

access

of

th es e

byte s

NO

No

s h al l

e xpl i ci tl y

is

s tate d

be

ch an g e

d e fi n e d

by

a

n . a.

th e

m a n u fa c t u re r.

ban k

s h al l

be

co n tai n s

in

th e

m an u fac tu re r

e xam pl e th e

sh al l

to

s to re

be

s h al l

cycl e

or

we l l

to

a

in

ch an g e

If

case th e

e n ti re

of

a

th e

l as t

acce s s i b l e

acce s s .

th e

th e

th e

g e ar

is

ban k not

M e m o ry

co n tai n s

m e m o ry

of

th e

“ R E S E T M E M O R Y B AN K (

wi th

of

th i s

b yte

m e m o r y b a n k) .

s tati c

co n te n t.

U si n g

a

u sefu l .

l o cati o n

an y

c o rre s p o n d i n g

val u e

u s ag e

co n te n t o f th e

m e m o ry

c o n tro l

l o cati o n

of

of

i m p l e m e n te d ,

th e

l o ck wri te

m e m o ry

" ( l o c ka b l e ) " n ot

as

by

ad d re s s

[0 x0 3 , 0 xFE ] .

s pe c i fi c .

ch an g e d

th i s

th e

ran g e

c h e cks u m

is

u sed

Wh i l e

m a r ke d

g e ar

a

co n te n t

o th e rwi s e .

0 x0 2

val u e

m e m o ry

l ock

DTR0

byte )”

or

i ts e l f

s h al l

d i ffe re n t

fro m

ban k

o th e r o th er

s h al l

th an

be

as

a

co m m an d

l o ck byte .

0 xFF s h al l

is

not

a be

g ear

s h al l

Th i s

l o cati o n

re s e r ve d

l o cati o n

i m pl e m e n te d

re s p o n d

as

if

as

th i s

a

in

e ve ry

n o rm al

l o cati o n

is

m e m o ry m e m o ry not

b a n k,

ban k

is

re s e rv e d

in

o rd e r to

s to p

th e

au to

an d

i m pl em e n te d ,

i n cre m e n t

of

is

l o cati o n .

”.

2

c

a

wh i l e

a

m an u factu re r ( as

l o cati o n s

p o we r

b yte s

re ad - o n l y

a

each

val u e

wri ti n g .

co n tro l

of

u n l ess

0 x0 1

fo r

ROM

M E M OR Y B AN K”.

0 x0 2

fo r

val u e

val u e

b an k wh e re

l o cati o n

l o c ke d

a

L o c ka b l e

be

i m pl em en ted

o n /re s e t

by th e

u sed

m e m o ry

h as

– not

Th e

l o cati o n

cou l d

ban k s h al l

0 x0 0

b a n k.

d e s c ri b e d

be al l

on

ch an g e

An y

ban k co n ten t

“RE SE T

l ocati o n

in

on

b yte

0 x5 5 ,

as

in

be

n e ve r

afte r

o f th e

byte

sh ou l d

N OTE

d e f a u l t /p o we r

val u e

l o cati o n

l o c k b yt e

R e s e rve d

P u rp o s e ,

Reset

th e

M e m o ry

0 xFF

a

m e m o ry

No

a

ban k l o ck byte .

th e

b u rn - i n ,

[0 x0 3 , 0 xFE ]

a

b yt e

RESET val u e b Memory type

D TR 0 .

an d

not

acce s s i b l e .

Wh e n it

ad d re s s e d ,

s h al l

not

Th i s th e

i n cre m e n t

– 32



IEC

6 2 3 8 6 - 1 0 2 : 2 0 1 4 + AM D 1 : 2 0 1 8

CSV

© I EC

9.1 0.3 In

Sel ecti ng a m emory bank locati on

o rd e r

l o cati o n

Th e

to

m e m o ry in

9.1 0.4

m e m o ry

sh al l

m e m o ry

s e l e cte d

m e m o ry

n o t i m pl e m e n te d ,

or



a b o ve

To

th e

s e l e cte d e ve n

if

al l o ws

byte

th e

fi rs t

co m m an d

th an

re ad i n g

va l u e

of

e rro r wh i l e

9. 1 0.5 Wri te



a

th e

a

th e

b an k

ban k

n u m ber

an d

by th e

m e m o ry val u e

n u m ber

“DTR0”

in

“DTR1 ”

in

.

Th e

.

can ) ”.

be

Th e

re ad

an s we r

by

s h al l

be

m e an s

th e

val u e

of of

co m m an d

th e

b yte

at

th e

i m pl e m e n te d ,

th e

co m m an d

m e m o ry ban k l o cati o n

of



l o cati o n

d ata

th e

to

is

is

bel ow

not

wh e n

re ad i n g

re ad i n g

be

a

sh al l

be

d i s card e d .

If

th e

is

of

byte s it

val u e

fro m

is

at

a

th e

0 xFF,

is

va l u e

l atch e s

an d

th at

DTR1 , DTR0

m e m o ry

sh al l

be

i n cre m e n te d

s h al l

not

by

ch an g e .

o f m e m o ry ban k l o cati o n s .

th at

re ad

(

“DTR0” “DTR0”

O th e rwi s e ,

m u l ti - b yte

i m pl e m e n te d

m u l ti - b yte

ve ri fy

l o cati o n

i m p l e m e n te d .

M E M O R Y L O C AT I O N

n u m ber

DTR0

not

m e m o ry l o cati o n ,

m e ch an i s m

“ R E AD

b an k,

a

bytes

u n l atch e s

m e m o ry

of

th e

th e

b a n k,

m u l ti - byte

b yte s

at

an y

it

is

val u e o th e r

) ”.

th e

e x p e c t e d /d e s i r e d

fro m

al l

ap pl i cati o n

l o cati o n .

co n tro l l e r

An y

sh ou l d

m i s m atch

ch e ck

i n d i cate s

an

re ad i n g .

co m m an d s co n t ro l

are

e xe cu ti o n

wh i l e

c o n tro l

s peci al

g e ar( s ) of

“writeEnableState” On l y

m e m o ry

Memory bank writi ng

co rre c t U pon

of

se tti n g

fo r e as y co n s e cu ti ve

co n s i s te n t

wh e n

is

b an k l o cati o n

m e m o ry

th at

Afte r

co m bi n ati o n

N O.

m e m o ry

th e

m ech an i s m

e n s u re

be

re co m m e n d e d

th e

by

s e l e cte d

l o cati o n

se l ected

l as t acce s s i b l e

an s we r s h al l

Th i s

be

DTR1 , DTR0

(

ban k



th e

a

m e m o ry b an k l o cati o n .

an d

one,

l o cati o n ,

re q u i re d .

s e l e cte d

ban k

m e m o ry b an k e xi s ts ,

If

be

m e m o ry b an k s h al l

M E M O R Y L O C ATI O N

ad d re s s e d

th e

ban k

m e m o ry ban k i s

ban k

th e

se l ected

th e

a

th e

Memory ban k read i ng

“ R E AD

If

sel ect

i n side

l o cati o n

A

201 8

th e

co m m an d s

ad d re s s ab l e

“ E N AB LE

to

th e re fo re

M E M O R Y” ,

not

ad d re s s ab l e .

“ E N AB LE th e

WR I TE

ad d re s s e d

In

o rd e r

M E M O R Y” co n tro l

to

sel ect

s h al l

g e ar( s )

be

th e

u sed.

s h al l

set

E N AB LE D .

“writeEnableState” g e ar

WR I TE

an d

co m m an d

sh al l

is

e xe cu te

E N AB L E D , th e

an d

fo l l o wi n g

th e

ad d re s s e d

com m an d s

to

m e m o ry

wri te

to

a

ban k

is

s e l e cte d

i m pl em e n te d , m e m o ry

ban k

l o cati o n :



“ WR I TE

M E M O R Y LO C ATI O N

m e m o ry l o cati o n

N OTE



1

Th e

val u e

wi th

th at

can

re ad

f ro m

“ WR I TE

M E M OR Y LOC ATI ON sh al l

n o t cau s e

g e ar s h al l

fo l l o wi n g

co m m an d s

“ WR I TE NO



be



set is

DTR0

th e

( d ata) ” ,



DTR1 , DTR0, data

th e

to

m e m o ry

– NO

co n t ro l

th e

RE PLY (

to

Th e

data

ban k l o cati o n

g e ar to

“writeEnableState”

) ”:

val u e

is

co n tro l

g e ar s h al l

co n fi rm

wri ti n g

a

.

n ot

n e ce s s ari l y

DTR1 , DTR0, data

) ”:

data

.

Wri ti n g

a

m e m o ry

re p l y.

D I S AB LE D

i f an y co m m an d

o th e r th an

on e

o f th e

acce p te d :

M E M O R Y LO C ATI O N

R E P LY ( D TR 1 ,

(

an s we r e q u al

l o cati o n

A co n tro l



an

D TR 0 ,

DTR1

( D TR 1 ,

D TR 0 ,

d ata) ”

( d ata) ” ,



DTR2

( d ata) ”

d ata) ” ,

“ WR I TE

M E M OR Y LOC ATI ON



IEC

6 2 3 8 6 - 1 0 2 : 2 0 1 4 + AM D 1 : 2 0 1 8

© I EC



“ Q U E R Y C O N TE N T D TR 0 ” ,

I f th e

s e l e cte d

n o t i m pl e m e n te d ,



a b o ve



l o c ke d



n o t wri te ab l e ,

If

th e

th e

to

sh al l

s u bcl au s e

“ WR I TE be

s e l e cte d

to

e n s u re

fo r wri ti n g

Afte r

2





or

b an k l o cati o n

“DTR0”

th at

afte r al l

a

a

s h al l

not



d ata

(

is

bel ow

ch an g e .

b yte s

to

wh e n

m e ch an i s m

n u m ber

DTR0

e rro r wh i l e

N OTE

9. 1 0. 2) ,

or

DTR1 , DTR0, data

)”

sh al l

be

NO

an d

no

m e m o ry

to .

co n s i s te n t

wri ti n g of

m e m o ry l o cati o n ,

l o cati o n Th i s

0 xFF,

“DTR0”

m e ch an i s m

sh al l

al l o ws

be

fo r

i n cre m e n te d

e as y

by

c o n s e c u t i ve

m e m o ry b an k l o cati o n s .

re co m m e n d e d

va l u e

“QU E R Y C ON TE N T D TR 2 ”

is

M E M O R Y L O C ATI O N

wri t te n

m e m o ry

O th e rwi s e ,

wri t i n g

To



or

l as t acce s s i b l e

(see

an s we r

l o cati o n

one.

– 33

“ QU E R Y C ON TE N T D TR 1 ”,

m e m o ry b an k l o cati o n



th e

CSV

201 8

o f th e

of

it

is

to

a

at

a

m u l ti - byte

i m pl e m e n te d

m u l ti - byte

byte s

ve ri fy

wri ti n g

be

val u e

m e m o ry

th e

th at

h ave

b a n k,

val u e

on l y

been

th e

i n to

acce p ts

m e m o ry n ew

b a n k,

m u l ti - byte

it

is

val u e

acce p te d .

appl i cati o n

e x p e c t e d /d e s i r e d

a th e

l o cati o n .

co n tro l l e r An y

sh ou l d

m i s m atch

ch e ck

i n d i cate s

th e an

wri ti n g .

DTR0



is

al s o

i n c re m e n te d

if

a

n o n - i m pl em en ted

m e m o ry

ban k

l o cati o n

is

ad d re s s e d

b e fo re

0 xFF

is

re ach e d .

9.1 0.6

Memory bank 0

M e m o ry

ban k 0

i m pl e m e n ted

M e m o ry th e

in

ban k

co n tai n s

al l

0

co n tro l

s h al l

be

m e m o ry l o ca t i o n s

i n fo rm ati o n

abo u t

th e

co n tro l

g e ar.

M e m o ry

b an k

0

s h al l

be

g e ar.

i m pl e m e n te d

u p to

ad d re s s

u sin g

th e

m e m o ry

0 x7 F i m p l e m e n te d ,

m ap

s h o wn

e xcl u d i n g

in

Tab l e

re s e r ve d

9,

wi th

at

l e as t

l o cati o n s .

Table 9 – Memory map of memory bank 0 Address

Descri pti on

0 x00

Ad d re s s

of

0 x01

R e s e rve d

0 x02

N u m ber

l as t

– n ot

of

l ast

acces si bl e

Defaul t val u e (factory)

m e m o ry

l o cati o n

i m pl em e n ted

acce ssi bl e

facto ry

an s we r

m e m o ry

ban k

facto ry ran g e

0 x03

G TI N

byte

0

(M SB)

a

b u rn - i n

NO

b u rn - i n ,

Memory type ROM

n . a.

ROM

[0, 0 xFF]

fac to ry

b u rn - i n

ROM

0 x0 4

G TI N

byte

1

facto ry

b u rn - i n

ROM

0 x0 5

G TI N

byte

2

facto ry

b u rn - i n

ROM

0 x0 6

G TI N

byte

3

facto ry

b u rn - i n

ROM

0 x0 7

G TI N

byte

4

facto ry

b u rn - i n

ROM

0 x0 8

G TI N

byte

5

facto ry

b u rn - i n

ROM

0 x0 9

F i rm ware

v e rs i o n

( m aj o r)

fac to ry

b u rn - i n

ROM

0 x0 A

F i rm ware

v e rs i o n

( m i n o r)

0 x0 B

I d e n ti fi cati o n

n u m ber

byte

0

0 x0 C

I d e n ti fi cati o n

nu m ber

byte

1

fac to ry

b u rn - i n

ROM

0 x0 D

I d e n ti fi cati o n

nu m ber

byte

2

fac to ry

b u rn - i n

ROM

0 x0 E

I d e n ti fi cati o n

n u m ber

byte

3

fac to ry

b u rn - i n

ROM

0 x0 F

I d e n ti fi cati o n

n u m ber

byte

4

fac to ry

b u rn - i n

ROM

(LS B )

(M SB)

fac to ry

b u rn - i n

ROM

fac to ry

b u rn - i n

ROM

– 34



IEC

6 2 3 8 6 - 1 0 2 : 2 0 1 4 + AM D 1 : 2 0 1 8

CSV

© I EC

Ad d ress

Descri pti on

Defau l t val u e (factory)

M em ory type

0 x1 0

I d e n ti fi cati o n

n u m ber

b yt e

5

facto ry

b u rn - i n

ROM

0 x1 1

I d e n ti fi cati o n

n u m ber

b yt e

6

facto ry

b u rn - i n

ROM

0 x1 2

I d e n ti fi cati o n

n u m ber

b yt e

7

facto ry

b u rn - i n

ROM

0 x1 3

H ard ware

ve rs i o n

( m aj o r)

facto ry

b u rn - i n

ROM

0 x1 4

H ard ware

ve rs i o n

( m i n o r)

facto ry

b u rn - i n

ROM

0 x1 5

1 01

fac to ry

b u rn - i n ,

ROM

ve rs i o n

(LS B )

b

n u m ber

acco rd i n g

0 x1 6

1 02

ve rs i o n

0 x1 7

1 03

ve rs i o n

N u m ber bu s

bu s

i n te g rate d

co n tro l

fac to ry

n u m ber

of

al l

i n te g rate d

co n tro l

l o g i cal

co n tro l

d e vi ce

u n i ts

in

th e

of

l o g i cal

co n tro l

g e ar u n i ts

in

th e

ran g e

n u mber

of

th i s

l o g i cal

co n tro l

g e ar

R e s e rve d

Ad d i ti o n al

0 xFF

a

R e s e rve d

It

is

re co m m e n d e d

– not

– not

th at

p ro d u ct

n u m ber

ROM

ROM

b u rn - i n ,

ROM

[0 , ( l o cati o n

0 x1 9 ) - 1 ]

NO

n . a.

ROM an s we r

G TI N

ve rs i o n

ROM

i m pl em e n ted

e

i m pl em en ted

th e

to

b u rn - i n ,

an s we r e

g e ar i n fo rm ati o n

n u m ber

b u rn - i n ,

facto ry

i m pl em en ted

c o n tro l

ve rs i o n

ROM

i m pl em en ted

[1 , 64]

ran g e

[0 x80 , 0 xFE ]

n u m ber

[0, 64]

facto ry

unit

ve rs i o n

b u rn - i n ,

facto ry ran g e

[0 x1 B, 0 x7F]

to

acco rd i n g

of

i m pl em en ted

b u rn - i n ,

facto ry

d

unit

I ndex

0 x1 A

al l

unit

N u m ber

0 x1 9

of

acco rd i n g

d e vi ce s

0 x1 8

n um ber

c

g e ar

to

201 8

is

n ot

re - u s e d

NO

n . a.

wi th i n

th e

expe cted

l i fe ti m e

of

th e

pro d u ct

afte r

i n s tal l ati o n .

b

c

d

F o rm at

of

th e

ve rs i o n

n u m ber i s

d efi n e d

in

I EC

F o rm at

of

th e

ve rs i o n

n u m ber

d efi n ed

in

4. 2.

F o rm at

of

not

e

If

P u rp o s e

th e re

s am e

A

bu s

is

sam e

unit

in

fi l l e d

as

Th e

b yte s bu s

Th e

b yte s

byte

7”)

n u m b e r.

in

bo th

byte s

IEC

sh al l

unit

wel l .

e. g .

th e

to

in

to

an d

I EC

an d

(“G TI N

bi n ary.

th e

6 2 3 8 6 - 1 0 1 : 2 0 1 4 /A M D 1 : 2 0 1 8 ,

I EC

4. 2.

6 2 3 8 6 - 1 0 3 : 2 0 1 4 /A M D 1 : 2 0 1 8 ,

4. 2.

If

an d

can

al l

l o g i cal

Th e y

p ro b l e m s u sed ,

th e

i n cl u d i n g

u se

e i th e r

u n i ts

s h al l

h a ve

th e

0 x1 9 .

d e vi c e s .

a vo i d

to

u n i t,

i n cl u d i n g

sch e m e

up

m an u factu re r.

bu s

an d

co n tro l

To

co n tro l l e r are

by

on e

up

d e vi c e s

bo th

0 x0 8

E AN ,

i n to

0 x0 3

g e ar

d e fi n e d

ad d re s s i n g

appl i cati o n p ro vi d e d

0 x0 3 th e

be

n u m be r… ) .

fo r co n tro l

Th e

an d

62386-1 03: 201 4

bu i l t

c o n tro l

on

62386-1 01 :201 4

0 xFF.

l o g i cal

g ear an d

l ead i n g

s h are

wh e n

m e m o ry

l o cati o n

th e

1 02

vari o u s

re ad i n g ,

ban k l ayo u t

0 x1 9 .

or

n u m b e rs

an d

th e

Th e

1 03

g e tti n g are

th e

d ata s h al l

co m m an d s

i m p l e m e n te d .

0”

Th e

to

“ G TI N

b yte s

5”)

s h al l

sh al l be

co n tai n

s to re d

th e

m ost

G l o bal

Tra d e

s i g n i fi can t

fi rs t

I tem an d

z e ro e s .

l o cati o n s

0 x0 9

an d

0 x0 A

( “ fi rm wa re

ve rs i o n ” )

s h al l

co n tai n

th e

fi rm ware

ve rs i o n

u n i t.

in

sh al l Th e

n u m be r byte

Th e

by

th ese

d epen d i n g

l o cati o n s

in

d e fi n e d

i d e n ti fi cati o n

bas i c d ata,

( G TI N ) ,

wi th

o f th e

in

of

on e

co n tai n

unique

an s we rs

bytes

N u m ber

is

i n d i cate d

val u e

th an

might

s am e

n u m ber is

m e m o ry b an k l o cati o n s

fo r co n tro l

th e

th i s

( d e fau l t)

i d e n ti fy th e

Th e

ve rsi o n

m o re

G TI N ,

d i ffe re n t

be

an d

val u e s

(e. g .

to

th e

i m pl em en ted ,

is

l o cati o n s co n tai n

0 x0 B

64

b i ts

i d e n ti fi cati o n 7”

an d

co m bi n ati o n

0 x1 2

of

an

n u m ber

u n u sed

o f th e

to

bi ts

( “ i d e n ti fi cati o n

i d e n ti fi cati o n s h al l

sh al l

i d e n ti fi c ati o n

be

be

s to re d

fi l l e d

wi th

n u m ber an d

n u m ber

n u m ber wi th

of

byte

th e

l e as t

0”

bu s

to

“i d e n ti fi cati o n

u n i t,

s i g n i fi can t

p re fe rab l y byte

in

G TI N

n u m be r s h al l

be

s e ri al

“ i d e n ti fi cati o n

0.

th e

n u m ber

th e

unique.

IEC

6 2 3 8 6 - 1 0 2 : 2 0 1 4 + AM D 1 : 2 0 1 8

© I EC

Th e th e

b yte bu s

b yte

bu s

u n i t.

u n i t.

Th e

th e

Th e

Th e

b yte th at

ve rs i o n ” )

sh al l

co n tai n

th e

th e

i m pl e m e n ted

I EC

62386-1 01

in

l o cati o n

0 x1 6

s h al l

co n tai n

th e

i m p l e m e n te d

I EC

62386-1 02

co n tro l

l o cati o n

in

in

in

As

0 x1 7

co n tro l

0 x1 8

Th e

l o cati o n Th e

val u e

usi ng

3

s h al l

s h al l

0 x1 A th at

co n tro l

t h e re

th es e an d

co n tai n

s h al l

yi e l d s

9. 5. 2

of

a

h as

th e

a

in

be

th e

th e

h ard ware

ve rs i o n

of

index

unit minus

G TI N g e ar

an d is

of

co n tro l

ra n g e

co n tro l of 1

th i s

n u m be r o f th e

ve rs i o n

n u m be r o f th e

ve rs i o n

be

d e vi ce to

n u m be r o f th e

0 xFF.

u n i ts

i n te g rate d

64.

g e ar

to

n u m ber

u n i ts

i n te g ra te d

i n to

64.

of

i n dex

th e

l o g i cal

n u m ber

is

co n tro l 0

to

g e ar

th e

to tal

d i ffe re n t

s h o rt

on e.

t h re e

l o g i cal

i d e n ti fi cati o n

re p o rte d

acco rd i n g

of 0

ve rs i o n

0 xFF.

62386-1 03

ran g e

ran g e

be

n u m b e r s h al l

l o g i cal

th e

unique

f ra m e

b ac kwa rd

I EC

l o g i cal

in

of

in

co n tai n i n g

co n tro l

of

be

va l i d

bu s

sam e

b ac kwa rd

( o ve rl ap p i n g

s h al l

n u m ber

p ro d u ct th e

n u m be r s h al l

ve rs i o n

n u m ber

Th e

th e

th re e

th e

sh al l

b an k.

be

g e ar

index

th e

re p re s e n t

g e ar u n i ts

might

th e

u n i ts

ve rs i o n

i m p l e m e n te d

u n i ts

co n tai n

m e m o ry

c o n t ro l

th e

b ro ad cas t

1 0 1 : 2 0 1 4 /AM D 1 : 2 0 1 8 ,

th e

th e

i m pl em en ted ,

n u m be r o f l o g i cal

0 x1 9

e xam pl e of

co n tai n

is

n u m ber o f l o g i cal

l o cati o n

an

i m pl em e n ted ,

s h al l

d e vi ce

l o cati o n u n i t.

E ach

th e

9.1 0.7

g e ar i s

i m pl e m e n ts

ad d re s s e s .

0 x1 A

( “ h ard ware

co n tai n

n u m be r o f l o g i cal

d e vi ce s

0 x1 4

s h al l

u n i t.

unit

N OTE

an d

0 x1 5

bu s

b yte bu s

0 x1 3

l o cati o n

If no

b yte

i n to



in

in

u n i t.

Th e

l o cati o n

If no

b yte

bu s

th e

in

b yte

bu s

– 35

u n i t.

Th e

Th e

CSV

201 8

as

to

0,

d e vi ce s n u m b e r,

1

IEC

or

2

wi t h e ach

th re e

re p o rts

re s p e ct i ve l y.

62386-1 01 : 201 4

as

n u m ber

Read i n g an d

of

l o cati o n

I EC62386-

fram e ) .

Memory ban k 1

M e m o ry l u m i n a i re

ban k 1

is

re s e rve d

m a n u fac tu re r)

fu n cti o n al i ty

of

th e

for

to

co n tro l

u se

s to re g e ar.

by

an

OE M

ad d i ti o n al Th e

( o ri g i n al

eq u i pm en t

i n fo rm a ti o n ,

co n tro l

g ear

wh i ch

m a n u fac t u re r

m an u factu re r,

h as

no

i m pact

m ay

i m pl em en t

e. g . on

a

th e

m e m o ry

b an k 1 .

If

i m pl e m e n te d ,

i n cl u d i n g

m e m o ry

a d d re s s

m e m o ry m ap

0 x1 0 .

u s ag e

ban k Th e

1

sh al l

fi xe d

fo r l o c ati o n

at

u s ag e

0 x03

to

l e ast fo r

0 x1 0

is

i m pl em en t

l o cati o n s h o wn

th e

0 x00 in

to

Tab l e

m e m o ry 0 x0 2 1 0.

l o cati o n s

an d

th e

up

to

an d

re co m m e n d e d

– 36



IEC

6 2 3 8 6 - 1 0 2 : 2 0 1 4 + AM D 1 : 2 0 1 8 © I EC

CSV 201 8

Table 1 0 – Memory map of memory bank 1 Address

Descri pti on

0 x0 0

Ad d re s s

of

l as t

acces si bl e

m e m o ry

Defau l t val u e (factory)

l o cati o n

RESET Memory val u e type b

facto ry

no

b u rn - i n ,

ch an g e

ROM

ran g e [0 x1 0 , 0 xFE ]

0 x0 1

I n d i cato r

0 x0 2

M e m o ry be

0 x0 3

0 x0 5

G TI N

OEM

0 x0 6

G TI N

OEM

0 x0 7

G TI N

OEM

0 x0 8

G TI N

OEM

0 x0 9

G TI N

OEM

0 x0 A

i d e n ti fi cati o n

Ad d i ti o n al

0 xFF

5

i d e n ti fi cati o n

OEM

0 x1 1

byte

R e s e rve d

co n tro l

– not

a

in

th e

val u e

m e m o ry

d i ffe re n t

ban k s h al l

fro m

(MSB)

0 xFF

0 xFF

no

N VM

ch an g e

( l o c ka b l e )

no

N VM

ch an g e

( l o c ka b l e )

no

N VM

ch an g e

( l o c ka b l e )

no

N VM

ch an g e

( l o c ka b l e )

no

N VM

ch an g e

( l o c ka b l e )

no

N VM

ch an g e

( l o c ka b l e )

no

N VM

ch an g e

( l o c ka b l e )

no

N VM

ch an g e

( l o c ka b l e )

no

N VM

ch an g e

( l o c ka b l e )

no

N VM

ch an g e

( l o c ka b l e )

no

N VM

ch an g e

( l o c ka b l e )

no

N VM

ch an g e

( l o c ka b l e )

no

N VM

ch an g e

( l o c ka b l e )

no

N VM

0 xFF

0 xFF

0 xFF

(LSB )

0 xFF

n u m ber

n u m ber

n u m ber

n u m ber

n u m ber

n u m ber

n u m ber

byte

0

b yte

(MSB)

0 xFF

1

b yte

0 xFF

2

b yt e

0 xFF

3

b yt e

0 xFF

4

b yte

0 xFF

5

b yte

0 xFF

6

byte

0 xFF

7

(LSB )

g e ar i n f o rm ati o n

R AM

0 xFF

0 xFF

n u m ber

c

a

0 x5 5 .

4

i d e n ti fi cati o n

OE M

0 x1 0

byte

byte s

h as

3

i d e n ti fi cati o n

OEM

0 x0 F

byte

L o c ka b l e

l o ck byte

2

i d e n ti fi cati o n

OE M

0 x0 E

byte

th e

1

i d e n ti fi cati o n

OE M

0 x0 D

byte

0

i d e n ti fi cati o n

OEM

0 x0 C

l o ck byte .

wh i l e

byte

a

an y

i d e n ti fi cati o n

OEM

0 x0 B



G TI N

OEM

a

ban k 1

re ad - o n l y

OEM

0 x0 4

byte

a

0 xFF

a

a

i m pl em en ted

an s we r

NO

ch an g e

( l o c ka b l e )

a

a

no

n . a.

ch an g e

a

b

c

P u rp o s e ,

Reset

Al s o

Th e

val u e

used

byte s

i d e n ti fy be

d e f a u l t /p o we r

s to re d

as

in

th e

Th e

b yte s

bytes

p o we r

on

in

u sed

0 x0 3

m e m o ry

access

of

th es e

byte s

s h al l

be

d e fi n e d

by

th e

m a n u fa c t u re r.

0 x0 8

th e

bi t

(“OEM

co n tro l

fi rs t

an d

G TI N

g e ar. fi l l e d

If

0”

th e

wi th

to

“OE M

bytes

l ead i n g

are

G TI N u sed

z e ro e s .

5”)

for

sh ou l d

G TI N

Th e s e

th e

b yte s

be

u sed

byte s

to

sh al l

sh ou l d

be

OEM .

0 x0 9

shou ld

fo r

to

co n tai n i n g

l o cati o n s 7”)

an d

M E M O R Y B AN K” .

s i g n i fi can t

by th e

val u e

val u e .

l o cati o n s

m ost

b yte

are

“RE SE T

p ro d u c t

p ro g ram m e d

n u m ber

afte r

o n /r e s e t

th e

to

0 x1 0

co n tai n

64

i d e n ti fi cati o n

(“OEM bi ts

of

i d e n ti fi cati o n an

n u m be r,

n u m be r b yte

i d en ti fi cati o n it

s h al l

be

n u m ber

s to re d

wi th

0”

of th e

to

th e

“OEM

OEM

l e as t

i d e n ti fi cati o n

p ro d u c t.

s i g n i fi c an t

If

th e

b yte

in

IEC

6 2 3 8 6 - 1 0 2 : 2 0 1 4 + AM D 1 : 2 0 1 8

© I EC

“ I d e n ti fi cati o n p ro g ram m e d

Th e

n u m ber

by th e

co m bi n ati o n

9.1 0.8 Th e

an d

u n u sed

bi ts

s h al l

be

fi l l e d

wi th

0.

Th e s e

b yte s

shou l d

be

G TI N

an d

OEM

i d e n ti fi cati o n

n u m ber sh ou l d

be

uniqu e.

m ay

u se

Th e

ad d i ti o n al

m e m o ry

m e m o ry m ap

b a n ks

o f ad d i ti o n al

in

th e

b a n ks

ran g e

s h al l

of

2

to

co m p l y wi th

1 99

Tabl e

to

s to re

8.

200

to

255

are

re s e r ve d

fo r fu tu re

u se

an d

sh al l

n ot be

i m p l e m e n te d .

Reset Reset operati on

co n tro l

(see

Th e

g e ar

Tab l e

N OTE

Fo r

som e

re s e t

s h al l

va ri ab l e s

o p e rati o n th e

o p e rati o n

is

a

o p e rat i o n

t a ke

g ear

co m pl e te ,

re s e t

co n tro l l e r

or

o f th e

can

ms

to

cou l d

at

m ay

none

wai t at l e as t 3 5 0

9. 1 1 .2

o pe rati o n

to

set

al l

va ri ab l e s

to

th e i r

re s e t

val u e s

h ave

m ost m ay

no

300

not

tri g g e r

th e al l

ms

at

to

to

vari ab l e s

re s e t

al l .

co m p l e te .

re s p o n d

affe cte d

e n s u re

e ffe ct

an y

n eeds

o p e rati o n

g e ar h ave

Wh i l e

th e

co m m an d . to

h a ve

u sing

fi n i s h e d

th e

re s e t

a d e fi n e d

th e

o pe rati o n

H o we ve r,

u n ti l

th e

is

in

re s e t

va l u e .

“R E S E T”

i n s tru c t i o n

an d

re s e t o p e rati o n .

Reset memory ban k operati on

co n tro l

g ear

b a n ks

to

N OTE

Fo r

Th e

th i s

s h al l

co n tro l

ap p l i cati o n

sh ou l d

i m pl em en t

1 4) .

p ro g re s s ,

som e

re s e t

i m pl em en t

m e m o ry

o pe rati o n

is

co n tro l

appl i cati o n

wai t

s h al l g ear

co m p l e te ,

i m pl e m e n te d

co n tro l l e r

at

at

or

1 0,1

so

o p e rati o n

m ost

1 0

not

th e

to

set

th e

to

h ave

no

an y

o p e ra ti o n

at

Wh i l e

th e

co m m an d .

fo r

al l

g ear

al l

u n l o c ke d

m e m o ry

al l .

a

s p e ci fi c

enough

re s e t

ti m e

o p e rati o n

H o we ve r,

h ave

“ R E S E T M E M O R Y B AN K (

al l o w

of

m e m o r y b a n ks .

e ffect

co m pl e te . to

co n te n t

th e

m e m o ry b an k l o cati o n s

re s e t

th e

as

cou l d

s

to

b y l o c ki n g

re s p o n d

affe c te d

u si n g

s

o p e ra ti o n

fo l l o we d

m ay

tri g g e r

b a n ks ,

l e as t

th i s

o f th e

can

re s e t

9. 1 0) ,

t a ke m ay

none

m e m o ry

fo r

a

(see

b an k l o cati o n s

o p e ra ti o n th e

sh ou l d

sh al l

t h e i r re s e t va l u e s

p ro g re s s ,

An

7”

Reserved mem ory banks

9.1 1 .1

A

byte

i n fo rm ati o n .

M e m o r y b a n ks

An



OEM.

of OEM

m an u factu re r

9.1 0.9

A

– 37

Manufactu rer speci fi c mem ory ban ks

ad d i ti o n al

9.1 1

CSV

201 8

a d e fi n e d

m e m o ry

DTR0

to

u n ti l

)”

fi n i s h

in

re s e t

val u e .

b an k,

or

i n s tru cti o n th e

is

th e

re s e t

fo r an d

al l it

m e m o ry

b an k o pe rati o n .

9. 1 2 If

System fai lu re

th e

co n tro l

g ear

d e te cts

I E C 6 2 3 8 6 - 1 0 1 : 2 0 1 4 /A M D 1 : 2 0 1 8 , sh al l

be

cal cu l ate d

“targetLevel”

s h al l

on

th e

t ake

b as i s

p l ace

a

of

s ys te m

fai l u re

(see

“systemFailureLevel” “systemFailureLevel”

4. 1 1 )

an d

.

i m m ed i atel y

an d

th e

light

Th e

o u tpu t

I EC is

62386-1 01 : 201 4

not

t ran s i ti o n s h al l

be

fro m

ad j u s te d

to

as

possi bl e.

If

“systemFailureLevel”

On

re s to ra ti o n

o f th e

is

bu s

M AS K,

idle

th e

co n tro l

vo l tag e

th e

g ear sh al l

co n tro l

n o t re act to

g ear s h al l

a s ys te m

n o t re act.

an d

“targetLevel” “actualLevel”

M AS K,

fai l u re .

q u i c kl y

as

– 38

“systemFailureLevel” “ Q U E R Y S YS T E M

Wh e n

bu s

po we r

p o we r- o n

can

is

sh al l

N OTE

o f al l

is

done

to

Power on

Afte r

an

4. 1 1 . 1 ) ,



th e

e xte rn al

th e

sh al l

s ys te m

sh al l

re l ati n g

(see

i ts

e n ab l e

s h al l

be

s topped



“powerCycleSeen”

sh al l

be

s e t to



“actualLevel”



“lampOn”



“limitError”



“targetLevel”



th e

co n tro l

Al l



set to

be

m ay

Th e

not

DTR0

an d

LE VE L (

)”

b e l o w.

co n tro l

g e ar,

co n fo rm

c o n tro l

g e ar

s h al l

C o n s eq u e n tl y, i n cl u d i n g

to

th e

fo l l o w

th e

th e

va ri ab l e

b u s - p o we re d

co n tro l

re q u i re m e n ts

of

th e

i t.

th i s

vari abl e

c o n tro l

is

n o rm al l y

62386-1 01

sh al l

not

appl i cabl e

fo r

bu s

p o we re d

g e ar.

an d

I E C 6 2 3 8 6 - 1 0 1 : 2 0 1 4 /A M D 1 : 2 0 1 8 ,

be

d i sabl ed

wi th

fo r

th e

al l

fo l l o wi n g

m e m o ry

e xce pti o n s :

b a n ks

an d

th e

l o ck

ke e p i n g

th e

l am p

o ff;

0 x0 0 ;

pre h e ati n g

s h al l

in

be

th e

l am p

ke p t a t 0 x 0 0

Tab l e

va r i a b l e s

be

c a n c e l l e d /r e s e t ;

F ALS E ;

s tart ”

an d

TR U E ;

0 x0 0

se t to

m en ti o n ed

s h al l

201 8

F ALS E ;

set to

actualLevel

co l u m n .

co l u m n

be

s h al l

vari ab l e s

val u e

be

s e t to

g e ar

p re h e a ti n g ,



sh al l

s h al l

of

al l an d

to

I EC

s tate

ti m e rs

be

CSV

© I EC

0 xFF;

al l

sh al l

F AI LU R E

b u s - p o we re d

9. 1 3

m o s t re ce n t co n fi g u ra t i o n ,



ru n n i n g

fai l u re ,

al th ou g h

co n d i ti o n s

c yc l e

re tai n

wri te

s e t to

test

6 2 3 8 6 - 1 0 2 : 2 0 1 4 + AM D 1 : 2 0 1 8

“ S E T S YS TE M

s u bcl au se

N e ve rth e l e s s ,

co m m an d s

s e p arate

ban k

be

a

in

u sed .

wi th

IEC

re s p e c t i ve l y.

“systemFailureLevel”

p o we r

d e vi c e

m e m o ry

byte

not

th e

avo i d

9.1 3

afte r

“systemFailureLevel”

I m pl em en ti n g

d e vi ce s ,

is

q u e ri e d

LE VE L”

d e fi n ed

m ai n tai n

s p e ci fi cati o n s

s e t an d

re s to re d

p ro ce d u re

“systemFailureLevel” g e ar,

be

FAI LU R E



1 4

th at

co n s i d e re d .

sh al l

a re

Th e

bu t

th e

c o n t ra ry to

be

set

m a r ke d

to

wi th

vari abl e s

l am p

n o rm a l

s h al l

s tartu p

th e

val u e

“n o

ch an g e ”

d e fi n e d

in

not

i n d i cate d in

th e

i m pl e m e n ted

i g n i te .

Wh i l e

acti vi ty.

in

th e

po we r

p o we r

P arts

on

2 xx

on

va l u e

sh al l

be

i n cl u d ed .

Bu s

p o we re d

d e vi c e s

If

a

th e

l e ve l

co n tro l

sce n e

eq u al s

If

TO

“G O

co n tro l

d e vi c e s

fo l l o wi n g

s h al l

co m m an d

M AS K an d

SCEN E

(

g e ar s h al l

ac t i va te

th e

p o we r

on

l e ve l

i m m e d i atel y.

For

e x te rn al l y

p o we re d

holds:

o th e r

th an

o th e r th an

sceneNumber

)”

d i s card

th e

“G O

TO

SCEN E

D AP C ( M AS K)

wh e re

co m m an d

th e an d

is

val u e

(

sceneNumber

)”

acce p te d

of

th e

co n ti n u e

as

i t s h al l

scen e if no

e q u al s

l e ve l

wh e re

be

th e

va l u e

of

th e

acce p te d ,

th e

e xecu te d .

M AS K

co n tro l

is

co m m an d

h as

been

acce p te d .

I f D AP C ( M AS K)

N OTE

Th e

1

S i n ce

co n tro l

be

set

e xe cu te d ,

“actualLevel ” =

g ear

“targetLevel” s h al l

is

s h al l

on

to



th e

0,

If

co m m an d

l e ve l be

co n tro l

e xe cu te d

is

th e

g ear s h al l

ke e p s

p o we r

as

q u i c kl y a s

acce p te d

i m m e d i ate l y an d

th e

th e

on

powerOnLevel “actualLevel”



”.

ad j u s te d

co n tro l

e ffe cti ve l y

of

lastLightLevel be

a

th i s

ac t i va te

b as i s

l i g h t o u tpu t s h al l

s h al l

th e

”.

s to p

l am p

l e ve l If



s h al l

an y s ta rt u p

acti vi ty.

o ff.

acco rd i n g

to

Tab l e

1 1

powerOnLevel “targetLevel” ”

be

set

e q u al s

to

by

cal cu l ati n g

M AS K,



th e

targetLevel

i m m ed i atel y

an d



th e

possi bl e.

be fo re

co n t ro l

th e

p o we r

g e ar s h al l

on

l e ve l

is

n o t ac t i va te

ac t i va te d , th e

th i s

p o we r o n

com m an d

l e ve l .

IEC

6 2 3 8 6 - 1 0 2 : 2 0 1 4 + AM D 1 : 2 0 1 8

© I EC

CSV

– 39



201 8

Table 1 1 – Power on timing Power on system response Lam p

G re y

540

are a

on

2

o b e ye d

>

l e vel

is

Th u s ,

th e re

is

an

so

possi bl e

th at

a

systemFailureLevel “systemFailureLevel”

s ys te m



“powerOnLevel”

re ce i vi n g on l y

is

d u ri n g

wh i ch

or

a

<

660

ms

ms

c o n t ro l

D AP C ( M AS K)

an d

ON

th e

fa i l u re

not

can

“QU E R Y P O WE R

Af te r

i n te rval

D AP C ( 0 x0 0 )

ms

ms

d e vi ce can

can

be

sen d

used

a

to

l evel

c o n tro l

p re v e n t

fro m

com m an d g oi n g

wi l l

be

au to m ati cal l y

wh i c h

to

.



sh al l

540

660

i m m e d i ate l y,

“powerOnLevel” It

Maxi mu m ti me

o ff

P o we r

N OTE

Mi ni mum ti me

th e

be

fi rs t

set

1 6

d e te cte d

bi t

to

l e ve l

an d

b e fo re

th e

p o we r

“targetLevel”

th e

po we r o n

LE VE L”

re s p o n d

is

M AS K,

s h al l

q u e ri e d

n ot be

wi th

is

on

l e ve l

h as

re cal cu l ate d

been

on

re ach e d .

th e

bas i s

If of

a c ti va t e d .

“ S E T P O WE R

ON

LE VE L (

DTR0

)”

an d

re s pe cti ve l y.

fo rward

fram e s

on

th e

d e s cri b e d

fram e

in

i n te rface I EC

afte r

p o we r- o n ,

th e

62386-1 01 :201 4

c o n t ro l

an d

g ear

I EC62386-

1 0 1 : 2 0 1 4 /A M D 1 : 2 0 1 8 .

9.1 4 Assig ning short addresses 9.1 4.1

General

“shortAddress” be

sh al l

set

be

d e ri ve d

on

“ S E T S H O R T AD D R E S S



if



if



in

data data al l

9.1 4.2 A

“DTR0”

or

co n tro l l e r ad d re s s e s

g ear

)”

as

M AS K:

=

1 xxxxxxxb

“DTR0”

d epen d i n g

“ P R OG R AM

on

th e

com m an d

S H O R T AD D R E S S

(

u sed.

data

It

)”

sh al l or

fo l l o ws :

M AS K ( e ffe c ti ve l y d e l e ti n g

o r xxxxxxx0 b :

( 0 AAAAAA1 b ) :

sh al l

i m pl em en t

i d e n ti fi e d

to

d e te ct

to

(

“ I N I TI ALI S E

(

no

th e

s h o rt ad d re s s )

ch an g e

0 0 AAAAAAb .

) ”.

D I S AB L E D ,



E N AB LE D ,



WI TH D R AWN ,

fo l l o wi n g

is

It

)”

i n i ti al i s ati o n

s tate ,

onl y

a s e t o f co m m an d s

i d en ti fy

cau se

not in

a

co n tro l

th e

h ave

“ R AN D O M I S E ” ,



“ S E AR C H AD D R H

was

g e ar

in

are

wh i ch ,

e n abl ed

a va i l a b l e

on

in

ad d i ti o n

to

th at al l o w an

th e

bu s

an d

th e

o th er

appl i cati o n

as s i g n

“ C O M P AR E ”

) ”,

g e ar to

possi bl e

is 1 5

Ad d i ti o n al l y,

l e ave

va l u e s

th e

fo r

e n te re d

min a

±

1 ,5

power

i n i ti al i s ati o n

wi th

th e

min

afte r

s h o rt

cycl e

or

s tate

“initialisationState”

co m m an d th e

th e

:

s tate ,

are

an d

ye t i d e n ti fi e d

i n i ti al i s ati o n

an d

wi th d rawn .

co m m an d s :

“ WI TH D R AW”

“ S E AR C H AD D R M

(

data

)”

an d

“ S E AR C H AD D R L (

data

)”

l as t

co m m an d

i m m e d i ate l y.

s tate ;

co m m an d s

data

wh i ch

s tate ;

i n i ti al i s ati o n

(

s tate

au to m ati cal l y

e xe cu te d .

co n tro l

i n i ti al i s ati o n

(s peci al )



en d

th re e

i n i ti al i s ati o n

in

te m p o rary

sh al l

com m an d

g ear s h al l



an

s tan d ard ,

u ni quely

s tate

device device

in

th i s

d e vi ce s .

“ TE R M I N ATE ” s h al l

co n tro l

in

an d

th ese

i n i ti al i s ati o n

“ I N I TI ALI S E

Th e

DTR0

or

of

Random address allocation

co n tro l

Th e

(

=

o th e r cas e s

o pe rati o n s

Th e

“DTR0”

or

data

fro m

re c e i p t

– 40



IEC

6 2 3 8 6 - 1 0 2 : 2 0 1 4 + AM D 1 : 2 0 1 8 © I EC



“ P R O G R AM

S H O R T AD D R E S S

(

data

) ”,

“ VE R I F Y S H O R T AD D R E S S

(

data

CSV 201 8

)”

an d

“ Q U E R Y S H O R T AD D R E S S ”



“ I D E N TI FY D E VI C E ”

N OTE

“I D E N TI FY D E VI C E ”

9.1 4.3

D u ri n g

i ts el f

not

an

i n i ti al i s ati o n

co m m an d ,

bu t

typi cal l y

used

d u ri n g

i n i ti al i s ati o n

G eneral

i d e n ti fi cati o n

no

ap pro p ri ate ,

vari abl e s

t h e re

side

are

Wh e n

no

” an d

I d e n ti fi cati o n I N I TI ALI S E

(



a

1 0

i d e n ti fy th e

N OTE

Th e

Wh i l e

s h al l

be

affe c te d

te m p o rari l y

u n less

i g n o re d ,

so

th at

expl i ci tl y

s tate d

afte r

i d en ti fi cati o n

th e

o th e rwi s e .

Wh e re

h as

en ded,

),

be

th e

we l l

light

as

s to ppe d ,

an d



th e

ou tpu t

m ay

actualLevel

s to ppe d

R E C ALL M I N

h as ”

” as

u pon

LE VE L,

th e

be

bei n g

at in

an y

l e ve l

be twe e n

o ff

an d

1 00

%,

e ffe c t te m p o rari l y i g n o re d .

e xe cu ti o n

of

an y

i n s tru cti o n

o th e r

th an

R E C AL L M AX L E VE L o r I D E N TI F Y D E VI C E .

light

co m m an d



o u tpu t

s h al l

be

sh al l

be

e xe cu te d

ad j u s te d

as

q u i c kl y

as

possi bl e

to

( i f ap p l i cab l e ) .

Meth od on e: si ng l e instructi on

I d e n ti fi c ati o n re s tart

be

a c t i ve ,

s h al l

device

actualLevel

9.1 4.3.2

is

maxLevel

i d e n ti fi cati o n

re fl e ct “

vari ab l e s

can

e ffe c ts .

i d e n ti fi cati o n

minLevel

Af te r

by

I d enti fi cati on of a devi ce

9.1 4.3.1



is

can s

±

be

1

s

s e l e cte d

actu al

s tarte d ti m e r. co n t ro l

p ro ce d u re

i d e n ti fi cati o n

by sen di n g

Wh i l e

is

is

th e

g e ar s h al l

m an u f ac t u re r

ac ti ve ,

th e

th e

i n s tru c t i o n

ti m e r ru n .

is

“ I D E N TI FY D E VI C E ”.

ru n n i n g ,

I f th e

a

p ro c e d u re

ti m e r e xp i re s ,

Th i s

en abl i n g

i d e n ti fi cati o n

s h al l

an

s tart o r

o b s e r ve r

sh al l

to

s to p.

s p e ci fi c.

co n tro l

g ear

s h al l ,

” an d



wi th o u t

i n t e rru p ti n g

th e

i d e n ti fi cati o n

p ro ce d u re :



on

R E C ALL M I N



on

R E C ALL M AX LE VE L:

Wh e n

i d e n ti fi cati o n

can ce l l e d

9.1 4.3.3



.

on

set “

o f h o w to

u se

actualLevel

set “

s to ppe d

R E C AL L M I N light

by

th e

o u tp u t

is

LE VE L: as

set

q u i c kl y



set

R E C ALL M AX LE VE L: l i g h t o u tp u t as

Al te rn ati ve l y, i d e n ti fi cati o n

It

an d

see

is in

th e



” to

targetLevel

co n tro l l e r,



to

th e



minLevel “

”;

maxLevel

”.

co rre s p o n d i n g

ti m e r

s h al l

be

An n e x A.

co n tro l

g e ar

possi bl e %,



th e n



to

th e

actualLevel

possi bl e

s h al l

to

e xe cu te



co n tro l

an d i ts



targetLevel

PH M

l am p

an d

1 00

g e ar s h al l :

l e ve l .

s h al l



be



to

I f,



minLevel

h o we ve r,

”,

an d

PH M

is

te m p o rari l y s wi tch e d

targetLevel



to



maxLevel

”,

th en

ad j u s t

not

vi s i b l y

o ff i n s te ad ;

an d

th e n

ad j u s t

%.

“ I D E N TI FY D E VI C E ”,

s tarti n g

or

re - tri g g e ri n g

th e

p ro ce d u re .

acce ptab l e an

q u i c kl y as

th e

actualLevel

as

on

N OTE



ap p l i cati o n

n o t D I S AB L E D ,

1 00

execu ted

an

co m m an d s ,

s i g n i fi can tl y d i ffe re n t fro m

th e

actualLevel

targetLevel

Meth od two: u si ng “RECALL MAX LEVEL” and /or “RECALL MIN LEVEL” (d eprecated)

“initialisationState”

th e



is

i m m ed i atel y

Fo r e xam pl e s

Wh i l e

LE VE L:

for

al te rn a ti n g

I d e n ti fi c ati o n

s h al l

be

th e

p ro ce s s

of

i d e n ti f yi n g

i n d i vi d u al

co n tro l

g ear

to

depen d

upon

bo th

co m m an d s

seq u en ce.

s to ppe d

i m m e d i ate l y wh e n

one

of th e

fo l l o wi n g

co n d i ti o n s

hold:

bei n g

IEC

6 2 3 8 6 - 1 0 2 : 2 0 1 4 + AM D 1 : 2 0 1 8

© I EC



th e



CSV

– 41



201 8

“initialisationState”

u pon

e xe cu ti o n

of

ch an g e s

an y

to

D I S AB LE D ;

i n s tru cti o n

o th e r

th an

I N I TI ALI S E

(

device

),

R E C AL L M I N

a

s h o rt

LE VE L,

R E C AL L M AX L E V E L o r I D E N TI F Y D E VI C E .

Fo r e xam pl es

9.1 4.4

o f h o w to

use

th e

co m m an d s ,

see

An n e x A.

Direct address allocation

“ S E T S H O R T AD D R E S S ad d re s s e d

(

DTR0

)”

can

be

u sed

to

d i re ct l y

p ro g ram

a d d re s s

to

th e

g e ar.

9.1 5 Failure state behaviour If

th e

co n tro l

i n te n d e d fo l l o wi n g

Th e an d

co n tro l co n tro l

N OTE

If

of

Fo r

g e ar th e

in

b e twe e n

a

d am ag e

fa i l u re

fai l u re

s tate ,

co n tro l

in

wh i c h

g ear

o p e ra t i o n

fai l u re )

s tate

as

th at

“actualLevel”

co n tro l by

“targetLevel”

cal cu l ate

i n s o far

g ear

l i m i ti n g

is

“actualLevel”

b e twe e n

a

a n d /o r

s h al l

l am p

e xam pl e ,

th e rm al

th e

is

fai l u re

it

of

s h al l

th e

l am p( s )

re act

to

is

l e ve l

not

possi bl e

co m m an d s

in

as th e

way:

re l ati o n s h i p

ri s k

g e ar

( l am p

ight

in

acco rd a n ce

p rac ti ca b l e .

an d

m i g h t,

th e

re s o l ve d , an d

is

As

a

l i g h t o u tpu t co u l d

on

d e tecti n g

an

wi th

th e

co n s e q u e n ce

co m m an d s

of

th e

fau l t,

e xe cu te d , th e

n o rm al

te m p o rari l y ch an g e .

e xces si vel y

high

te m p e ratu re ,

p ro te ct

i tsel f

f ro m

th e

ou tpu t.

th e

co n tro l

l i g h t ou tpu t

.

g ear

s h al l

re - e s tab l i s h

th e

n o rm al

re l ati o n s h i p

9.1 6 Status information 9.1 6.1 E ach

General co n tro l

Tabl e

g e ar

s h al l

expose

i ts

statu s

as

a

co m bi n ati o n

of

d e vi ce

p ro p e rt i e s

as

g i ve n

in

1 2.

Table 1 2 – Control gear status Bi t 0

2

3

4

5

6

7

d e vi ce

s i tu ati o n

s tatu s

“lampOn”

is

“limitError” “resetState”

" YE S "

9. 1 6. 2

"1 "

=

" YE S "

9. 1 6. 3

TR U E ?

"1 "

=

" YE S "

9. 1 6. 4

is

TRU E ?

"1 "

=

" YE S "

9. 1 6. 5

is

"1 "

=

" YE S "

9. 1 6. 6

"1 "

=

" YE S "

9. 1 6. 7

"1 "

=

" YE S "

9. 1 6. 8

"1 "

=

" YE S "

9. 1 6. 9

is

TRU E ?

TR U E ?

TRU E ?

“shortAddress”

is

M AS K?

“powerCycleSeen”

can

be

TRU E ?

See

=

is

is

Val u e "1 "

“fadeRunning”

is

q u e ri e d

wi th o u t d e l ay u n l e s s

9.1 6.2

TR U E ?

u sing

“ Q U E R Y S T ATU S ” .

e xp l i ci tl y s tate d

Th e

bi ts

s h al l

re fl e c t

th e

actu al

o th e rwi s e .

Bit 0: Control gear failure

A co n tro l o pe rate

N OTE

“controlGearFailure” “lampFailure”

1

Th e

Descri pti on

g e a r fai l u re

as

E xam pl e s

I f a c o n tro l

acco rd i n g

to

th i s

s tan d ard

is

a

s i tu ati o n

in

wh i ch

th e

co n tro l

i n te n d e d .

are

m ai n s

g e ar fa i l u re

un der

is

vo l tag e ,

d e te cte d ,

ove r

te m p e rat u re ,

u n e xpe cte d

“controlGearFailure”

wat ch d o g

sh al l

be

ti m e rs

s e t to

f i ri n g

TR U E .

etc.

g e ar

can n o t

– 42



IEC

6 2 3 8 6 - 1 0 2 : 2 0 1 4 + AM D 1 : 2 0 1 8 © I EC

If

th e

fai l u re

is

no

“controlGearFailure” C o n tro l

g e ar fai l u re

9.1 6.3 A

fai l u re

i n ten d ed

d e tecti o n

to

m e th o d on

If

fai l u re

l am p

d e te cte d cas e be

th e

wi th

If



an d

l am p

s ti l l

th e

d e tected ,

se t to

an d

n o rm al

o pe rati o n

h as

been

re s u m e d ,

FALS E .

d e te cte d

F ALS E .

is

fro m

th i s

l am p

an d

is

s ta n d ard

i n d i cate d

type

l ate s t t ake s

a l am p

is

a

l ate s t afte r 3 0

s i tu ati o n

l am p

l am p

(see

s.

30

s

fa i l u re

to

wi th

wh i ch

d i sco n n ect,

wh e n

l o n g e r th an p h as e

in

co n n e cti o n

or

th e

l am p

l am p

u n l ess

can n o t

d e fe cts .

e xpl i ci tl y

be

Th e

s tate d

o pe rate d minimum o th e rwi s e

1 1 . 5. 1 9) .

“lampFailure”

afte r

s tartu p

is

i n co rre c t

fai l u re

d e te cte d ,

o f th e

fai l u re

som e

s i tu ati o n

ch an g e s

fo r

to

e xam pl e

l i g h t s o u rce

ph as e

en d

lampFailure

l am p

fo r

i n d i cated

s tartu p

se t at th e

A to tal

be

acco rd i n g

due

d epen d i n g

a

sh al l

be

Bi t 1 : lamp fai l u re

l am p

as

l on g er

s h al l

CSV 201 8

30

th e

no

s,

sh al l th e

be

set

co n tro l

to

TR U E .

g ear

fo r e xam p l e

is

not

fo r H I D

Lam p in

fai l u re

s tan d b y

l am ps ,

s h al l

(see

be

9. 2) .

“lampFailure”

In

s h al l

c o r re c t va l u e .

l i g h t ou tpu t.

A p a rt i al

l am p

fai l u re

is

a

l am p

fai l u re

l i g h t o u tp u t.



is

TR U E ,

h as 0 x0 0

th e

i m p ro ve d . to

co n tro l Th i s

g e ar

ch eck

a g re at e r va l u e .

sh al l s h al l

p e ri o d i cal l y be

e xe cu te d

Afte r a s u cce s s fu l

ch e ck at

s tartu p ,

to

l eas t

d e te rm i n e wh e n e ve r

“lampFailure”

wh e th e r “

th e

targetLevel

s h al l

be



s e t to

IEC

6 2 3 8 6 - 1 0 2 : 2 0 1 4 + AM D 1 : 2 0 1 8

© I EC

CSV

– 43



201 8

Bus

i n t e rf ace

Com m an d t u rn

Li g h t

on

th e

to

l am p

o u tpu t

Li g h t

on

Li g h t

off

TRU E

lampOn

F AL S E

TRU E

C as e

lampFailure

A

F AL S E

TRU E

fadeRunning

F AL S E S ta rt u p

i n cl u d i n g

val i d ati o n

TRU E

lampOn

F AL S E

TRU E

C as e

lampFailure

B

F AL S E

TRU E

fadeRunning

F AL S E

Val i d ati on

S tart u p

<0,3

N o rm al S tan d by

s

o p e rati o n

S tartu p F a i l u re

Lam p

f ai l u re

N o rm al

p re s e n t

wh e n

e n te ri n g

stan d by

o p e rati o n

F a i l u re

IEC

Fi g u re 1 1 – Correlati on between “ lampFailure ”, “ lampOn ”, an d “ fadeRunning ” bits Th e

s tartu p

co n ti n u i n g an d

appl i es





th e

in

l am p

s tartu p

F i g u re





th e

th i s

s

N OTE

C as e

l am p

s i tu ati o n

th e

1 1

For

light no

part o f th e

m ay

is

b e fo re

val i d ati o n fai l u re .

e n te ri n g

l o n g e r th an

e xcl u d e

F AL S E

th e

th e

b e fo re

t a ke s

al s o

th at

Th i s

th e

l am p

b e h avi o u r

s tan d by,

0, 3

is

s tabl e

is

i l l u s trate d

an d

e m i tti n g in

light

F i g u re

1 1

be fo re

C as e

A

or

s.

val i d ati o n

is

type fo r

e n te ri n g

th an

shou l d

Th i s

of

th e

l am p

in

th e

fo l l o wi n g

s i tu ati o n ,

i l l u s trate d

0, 3

be

i m pl i es

s tan d b y an d ,

s.

p art

th at

of



th e

n o rm al

lampOn



o p e ra ti o n

might

be

an d

i n co rre c t

sh al l fo r

a

be

e xe cu te d

m axi m u m

of

fi n i s h e d .

i l l u s trate s

s o u rc e

l ess

va l i d a t i o n

s tartu p .

s u ppo rt

I EC

or

si tu ati o n s :

t a ke s

val i d ati o n

ab o ve .

is



th e

B:

afte r

Fi g u re

th e

TR U E

val i d ati o n

d e s cri b e d

th e re

is

p h as e

1 1

u n ti l



i n cl u d e

o p e ra ti o n

fo l l o wi n g

val i d ati o n

i m m ed i atel y 0, 3

th e

lampFailure



In

to

s h al l

n o rm a l

lampFailure



Th e

ph as e

wi th

th e

e ffe ct

“ u n kn o w n

th e

l am p

6 2 3 8 6 - 2 xx s e ri e s .

of



lampFailure

light

fa i l u re

s o u rce

bi t,

th i s



on



lampOn

typ e ” , s h al l



an d

th e re

be



fadeRunning

sh al l

m ad e

be



bi ts

s u pp o rt

expl i ci t

in

th e

fo r

th e

fo r

s c e n a ri o s

th i s

bi t.

If

c o rre s p o n d i n g

– 44



I EC

6 2 3 8 6 - 1 0 2 : 2 0 1 4 + AM D 1 : 2 0 1 8 © I EC

For

th e

light

e xcl u d ed m ad e

th i s

e xp l i ci t i n

9.1 6.4

In

9.1 6.5 th e

typ e

light

th e

sh al l al l

s o u rce ” , If

t h e re

p art o f th e

th e re

is

m ay

s u p po rt

I EC

be

fo r

s u p po rt

th e

l am p

fo r

th i s

fa i l u re

bi t.

bi t,

Te s ti n g

th i s

s h al l

is be

6 2 3 8 6 - 2 xx s e ri e s .

be

s e t to

F ALS E

o th e r cas es

wh e n

i t sh al l

be

th e

se t to

l am p

is

o ff,

d u ri n g

s tartu p ,

an d

in

case

o f to tal

l am p

TR U E .

Bit 3: l im i t error l as t

re q u e s te d

targ e t

l i m i tati o n s ,

or



th e

light type .

co rre s p o n d i n g

“maxLevel” “maxLevel”, limitError If

“n o

s o u rce

Bit 2: l amp on

“lampOn” fai l u re .

If

s o u rce

fo r

CSV 201 8

l as t



ta rg e t

s h al l

l e ve l

l e ve l

h as

“targetLevel” be

s e t to

re q u e s te d

been

h as

m o d i fi e d

been

in

m o d i fi e d

acc o rd an ce

due

to

a

wi th

ch an g e

of

“minLevel” “minLevel”

or or

TR U E .

by

“ D AP C

(

level

)”

eq u al s

“ M A S K” ,



limitError



s h al l

n ot

ch an g e .

In

al l

o th e r cas es

9.1 6.6



limitError



sh al l

be

ru n n i n g . u n ti l

th e

en d

of

th e

sh al l



In

re s e t

al l



va l u e

al l

to

F ALS E

be

ti m e,

be

set

e xcept

to

TR U E

re g ard l e s s

set

be

to

TR U E

if

of

al l

at th e i r re s e t val u e .

co l u m n

o th e r cas es

fo r

th e

fro m

wh e th e r

ti m e

th e

d u ri n g

beg i n n i n g

“targetLevel”

wh i ch

of

th e

th e

fad e

fad e

“actualLevel”

an d

ti m e r

(afte r

is

s tartu p )

re ach

th e

s h al l

not

th e

Th e

be

N VM

N VM

vari ab l e s

va ri ab l e s

co n s i d e re d .

N VM

m e n ti o n e d

th at are

in

m a rke d

va ri a b l e s

Tabl e

wi th

d e fi n e d

1 4

‘no

in

e xce pt

ch an g e ’

in

i m pl e m e n te d

i n cl u d ed .

th e

bi t s h al l

be

se t to

F AL S E .

Bit 6: m i ssin g sh ort add ress

bi t

i n d i cates

“shortAddress” In

set s h al l

fad e

are

2 xx sh al l

9. 1 6.8 Th i s

F AL S E .

Bit 5: reset state

“resetState” lastLightLevel P arts

s e t to

l e ve l .

9. 1 6.7

th e

be

Bit 4: fade ru nn i ng

“fadeRunning” “fadeRunning” sam e

s h al l

.

o th e r cas e s

9.1 6.9

wh e th e r

Th e

bi t sh al l

th e

a

s h o rt

be

b i t s h al l

ad d re s s

TR U E

be

if

se t to

h as

been

“shortAddress”

=

as s i g n ed

to

th e

g e ar,

by

c h e c ki n g

M AS K.

F AL S E .

Bit 7: power cycl e seen

“powerCycleSeen” 1 01 :201 4

an d

sh al l

be

set

to

TR U E

afte r

I E C 6 2 3 8 6 - 1 0 1 : 2 0 1 4 /A M D 1 : 2 0 1 8 ,

“powerCycleSeen”

s h al l

be

set

to

F ALS E

an

4. 1 1 )

on ce

e x te rn a l h as

one

of

p o we r

cycl e

(see

IEC

62386-

o ccu rre d .

th e

fo l l owi n g

co m m an d s

h as

been

e xe cu te d :

“ R E S E T” ,

“ D AP C

(

level

) ”,

“OFF”,

“ R E C ALL M AX LE VE L” , “STE P “G O

D OWN

TO

AN D

SCEN E

(

OFF”,

“U P”,

“ R E C AL L M I N “ON

sceneNumber

AN D

) ”.

S TE P

“ D O WN ” ,

LE VE L”,

U P”,

“ S TE P “G O

“C ON TI N U OU S

TO

U P”,

U P”,

“ S TE P

D O WN ” ,

L AS T AC TI VE

LE VE L” ,

“C ON TI N U OU S

D O WN ” ,

I EC

6 2 3 8 6 - 1 0 2 : 2 0 1 4 + AM D 1 : 2 0 1 8

© I EC

201 8

9. 1 7

Non-vol ati l e m em ory

P h ys i cal

n o n - vo l a ti l e

va ri ab l e s

are

A

g ear

co n tro l

th e

i n te n d e d

p h ys i cal l y co n tro l

S i n ce

is

shou ld

is

d e fi n e d

fo rc e

to

al l

is

an

i m p o rtan t

s h o rt

o f ti m e s

N OTE g e a r’ s

to

to

th e

Typi cal l y

ad d i ti o n

or

a

be

in

a

l i m i ted

n eed

s u ch

way

Th i s

vari ab l e s

th at

Th e re

to

of

wri te

cycl e s .

Si n ce

m an y

atte n ti o n .

th e i r

m ean s

i m m e d i atel y.

th e

n u m ber

som e

a

re ac h e d .

va r i a b l e

to

can n o t

va ri a b l e s ,

g e ar th e

m ad e

to

an

wri te

wri ti n g

of

i m p o rtan t

l e ve l

th e

co n te n t

th at

m ay

N VM ,

co n tro l

i n s tru cti o n

ap pl i cati o n

o th e r

e ve ry

kn o w

th e

p h ys i cal l y

n o rm a l

by

s e tti n g

afte r

e n ti re

th e

can

ph ys i cal l y wri te

co n tro l

u sed

fo r an

s u p p o rts

l i m i tati o n s

vari a b l e s

co n tro l l e r

ch an g e s

be

in



it

m ay

be

is

n e ve r

not

be

s i tu ati o n s

e s peci al l y

if a

lost

an d

possi bl e

in

wh i ch

to

th e

p arti cu l ar N VM

ve ry fre q u e n t l y.

p e rs i s t e n t

ad d re s s e s

i n te n d e d

N VM d e vi c e

ch an g e

app l i cati o n s a vi n g

th at

th e

– 45

typi cal l y

ph ys i cal

s to re

n o t abl e

p h ys i cal l y

co m m an d

th e

of

e ve ry

ch an g e d

th e

m e m o ry

typ e ,

l i fe ti m e

wri te

g e ar

va ri ab l e

N VM

CSV

N VM

of

vari ab l e s .

typ e

I ts

can n o t

s tabl e )

Typ i cal l y,

i n te rn al

N VM

to

i n ten d ed

be

l os t,

co n fi g u rati o n

th i s

m ech an i s m

fo r

P E R S I S T E N T V AR I AB L E S ”

vari ab l e s

co n tro l l e r

( an d

ch an g e .

al l

g e ar’ s

“ S AV E

co m m an d

u se

e. g .

d ata.

is

m e m o ry. is

to

afte r

e n s u re

as s i g n i n g

C l e arl y

u sed

is

Th i s

onl y

it

a

is

not

h an d fu l

i n s tal l ati o n .

com m an d

can

be

used

a

fe w

th o u san d

ti m es

be fo re

cau si n g

ph ys i cal

d am ag e

to

th e

co n tro l

N VM .

P h ys i cal l y

s avi n g

co m pl e te .

Wh i l e

co n tro l

g e ar

th e th e

m ay

or

co m pl e te ,

th e

wh e n

i n s tru cti o n

th e

va ri a b l e s s a vi n g

val u e

m ay

of

th e

in

re s p o n s e

o pe rati o n

not

is

re s p o n d

affe cte d

is

e xe cu te d ,

not

fl u ctu ate

to

to

an y

va ri ab l e s th e

th e

i n s tru c ti o n

on -g oi n g ,

light

th e

light

co m m an d .

m ay

s h al l

be

s h al l

o ff;

in

at

m ay

H o we ve r,

u n d e fi n e d .

s tay

t a ke

o u tpu t

m ost

u n ti l

th e

M o re o ve r,

th i s

cas e ,

300

fl u ctu ate

if

no

ms

an d

o p e rati o n

th e

light

f l i c ke r

to

th e is

is

o ff

sh al l

be

vi s i bl e .

Th e

light

o u tp u t

m ay

d u ri n g

s avi n g

o p e rati o n s

u n l ess

th es e

are

tri g g e re d

by

th i s

co m m an d .

An

appl i cati o n

“ S AVE

g e ar h a ve

9. 1 8

fi n i s h e d

wi th

fe atu re s .

wi th

Th e

o pco d e

se l ecti o n

th e

an d

s ave

sh ou l d

wai t

o p e ra ti o n

at

l eas t

350

u sin g

ms

to

th e

e n s u re

al l

o p e ra ti o n .

e n ab l i n g

co n t ro l

co n tro l

TYP E

sh al l

of

an d an

g e ar if

g e ar.

th e

ra n g e

sel ect

to

VE R S I ON

co m m an d

0 xFF

th e s e

are

re s e rve d

co m m an d s ,

fo r

s p e ci al

e xce p t

fo r

d e vi ce

th e

type s

co m m an d

N U M BER”) .

set

can

be

s e l e cte d

by

th e

i n s t ru c ti o n

n e xt

appl i cati on

) ”.

th e

1 1 . 6)

d e vi ce

co m m an d

appl i cati o n

sh al l

data

s pe ci fi c

data

0 xE0

re - d e fi n e s

d e vi ce is

val i d .

t y p e /f e a t u r e E xe cu ti n g

fo r

th i s

wh i ch

onl y

i n s tru cti o n

th e

s h al l

can ce l

an y p re vi o u s

type .

th e

th at

(

( re fe r to

o f a d e vi ce

co m m an d s

in

t y p e /f e a t u r e

t y p e /f e a t u r e

co m m an d

wh e th e r i t i s

opco d e

d e vi ce

D E VI CE

co m m an d ,

A

tri g g e r

i n s tru cti o n

0 xFF ( “Q U E R Y E XTE N D E D

i n s tru cti o n

exten d ed

Th e

th e

th e i r

E ach

d e vi c e

“ E N AB LE

Th i s

can

Devi ce types and features

C o m m an d s or

co n tro l l e r

P E R S I S TE N T VAR I AB L E S ”

not

e q u al s

t y p e /f e a t u r e s h al l

e xte n d e d

re act

M AS K,

to 254

be

s h al l

e xe cu te d

co m m an d

be

can ce l l e d

acc o rd i n g

to

u po n i ts

e xe cu ti o n

s pe ci fi cati o n ,

of

th e

n e xt

re g ard l e s s

of

o r n o t.

co m m an d s

wh i ch

o r re p re s e n ts

a

bel on g

d e vi ce

to

th e

t y p e /f e a t u r e

app l i cati o n not

e xte n d e d

s u p po rte d

by th i s

– 46



IEC

6 2 3 8 6 - 1 0 2 : 2 0 1 4 + AM D 1 : 2 0 1 8

CSV

© I EC

Th e

d e vi ce

I EC

An

t y p e s /f e a t u r e s

s h al l

be

co d ed

as

s pe c i fi e d

in

th e

p arti cu l ar

201 8

p arts

th e

6 2 3 8 6 - 2 xx s e ri e s .

app l i cati o n

g e ar.

co n tro l l e r

“QU E R Y D E VI C E

d e vi c e

t y p e /f e a t u r e

ap p l i cati o n

is

can

“QU E R Y N E XT D E VI C E

be

re p o rte d

To

ch e ck th e

ch e ck

ch e ck

ve rs i o n

t y p e /f e a t u r e

Ap p l i cati o n b e twe e n

254

VE R S I ON

re p o rts

d e vi ce

is

M AS K.

by

as

an

fi rs t s u pp o rte d

th e

co n tro l

If

m o re

th an

In

th at

cas e ,

t y p e s /f e a t u r e s

re ce i ve d

th at th e

s u p po rte d

by

th e

re p e a ti n g

an s we r.

d e vi ce

one

I ssu i n g

t y p e /f e a t u r e

wi l l

s u pp o rte d

d e vi ce

D E VI C E

N U M BER”.

Th i s

t y p e s /f e a t u r e s ,

T YP E wi l l

(

data

re po rt

th e

)

app l i cati o n

co n tro l l e r

fo l l o we d

th e

ve rs i o n

by

n u m be r o f th at s p e ci fi c

i m pl em e n tati o n .

co n tro l l e rs

th e

TYP E ”

are

t y p e /f e a t u r e s .

TYP E ” .

“ E N AB L E

“Q U E R Y E XTE N D E D d e vi c e

u n ti l

n u m ber o f th e

d e vi ce

s u p p o rte d

a u to m a t i ca l l y e n s u re s

send

t y p e s /f e a t u r e s

s u p p o rt e d

al l

b y “ Q U E R Y N E XT D E VI C E

can

d e vi ce

th e

“QU E R Y D E VI C E

T YP E ”

T YP E ”

wh i ch

re p o rts

s u ppo rte d ,

co n tro l l e r

“QU E R Y D E VI C E

can

TYP E ”

g e ar' s

sh ou ld

i n d i vi d u a l

be

abl e

ad d re s s

to

i d e n ti fy

an d

i ts

i n d i vi d u al

d e vi c e

g ear

an d

t y p e s /f e a t u r e s

in

s to re

th e

re l ati o n s h i p

p e rs i s te n t m e m o ry.

9.1 9 Using scenes A

co n tro l

g e ar

s h al l

s u p po rt

th e

use

of

1 6

sce n e s .

Th e

fo l l o wi n g

co m m an d s

s h al l

be

s u pp o rte d :

“G O

TO

SCEN E

(

“QU ERY SCE N E

Th e s e

can

U pon

) ”,

co m m an d s

acc o m p l i s h e d used

sceneNumber sceneX

LE VE L (

by

th u s

e xecu ti o n

o pco d e :

actu al l y

s e l e cti n g

eas i l y be

of

o pco d e Bas e

can

be

an d

“SET SCEN E

co m pri s e

a

1 6

bl o ck o f 1 6

(

DTR0, sceneX

co m m an d s

co n s e cu ti ve

FROM

SCEN E

(

sceneX

) ”,

) ”.

each ,

o pco d es .

on e

fo r

Th e

e ach

n u m ber

of

scen e. th e

Th i s

scen e

is

to

be

cal cu l ate d .

on e

sceneNumber

“R E M OVE

) ”,

=

of

th e

scen e

o pco d e

fou n d

in



Tab l e

sceneNumber

com m an d s ,

o pco d e B as e .

Th i s

i d e n ti fi e s

sh al l

th e

be

s ce n e

d e ri ve d to

be

fro m

u sed.

th e Th e

1 3.

Table 1 3 – Scenes Command GO

TO

SCEN E

RE M OVE

(

FR OM

SET

Th e

“sceneX”

th e

ra n g e

On

acce p ti n g

d epen d eq u al s

al so

(

0 x1 0

[0 x1 0 , 0 x1 F]

LE VE L

(

0 x5 0

[0 x50 , 0 x5F]

(

0 xB0

[0 xB 0 , 0 xB F]

0 x40

[0 x40 , 0 x4F]

sceneX

)

sceneX

)

DTR0, sceneX

)

s tan d s

fo r

1 6

i n d i vi d u a l

vari ab l e s ,

wh e re

X

e q u al s

sceneNumber

in

o f [0 , 1 5 ] .

u pon

co m m an d th e

M AS K,

e xactl y as

N OTE

vari ab l e

SCEN E

Opcode rang e

sceneNumber)

SCENE

QU ERY SCE N E

opcodeBase



“D AP C

(

(

level

)”

)”

TO

val u e

targetLevel level

i f “ D AP C

Usi ng

“G O

cu rre n t



s h al l h ad

i m pl i es

sceneNumber sceneX

SCEN E

of



n ot

been

th e

(

)”

”,

be

wh e re

affe c te d .

acce p te d

tran s i ti o n

is

wi th

m ad e

X

is

th e

re acti o n

d e ri ve d

fro m

O t h e rwi s e ,

th e

l e ve l

to

u si n g

th e

e q u al

set

fad e

"

of

th e

co n tro l

sceneX

ti m e .

co n tro l

sceneNumber ".

g e ar

.

g e ar If

s h al l



sh al l

sceneX



b e h ave

IEC

6 2 3 8 6 - 1 0 2 : 2 0 1 4 + AM D 1 : 2 0 1 8

© I EC

CSV

– 47



201 8

1 0 Declaration of variables Th e

d e fau l t

va l u e s ,

m e m o ry o f th e

Th e

va ri a b l e s

th e

d e fi n e d

th at are

re s e t

va l u e s ,

va ri ab l e s

d e cl are d

s h al l

in

th i s

p o we r be

as

on

va l u e s ,

g i ve n

cl au s e

in

s h al l

th e

Tabl e

n ot be

ran g e

of

va l i d i t y

an d

th e

type

of

1 4.

m ad e

ava i l ab l e

fo r wri ti n g

th ro u g h

a

m e m o ry b a n k.

Table 1 4 – Declaration of variables VARI ABLE

DEFAULT VALU E (factory)

“actualLevel”

RESET VALU E

POWER ON VALUE

0 xFE

0 x0 0

RANGE OF VALI DITY

MEMORY TYPE

0,

R AM

a

“minLevel” “maxLevel”

[

“targetLevel”

0 xFE

“lastActiveLevel”

See

9. 1 3

0 xFE

0 xFE

0xFE

0,

“minLevel” “maxLevel”

on

[

“maxLevel”

a

“lastLightLevel”

c

no

“minLevel” “maxLevel”

[

ch an g e

“powerOnLevel” “systemFailureLevel” “minLevel” “maxLevel”

,

R AM

]

N VM , ]

0 xFE

no

ch an g e

[0 , 0 xFF]

N VM

0 xFE

0 xFE

no

ch an g e

[0 , 0 xFF]

N VM

PHM

PHM

no

ch an g e

[PH M ,

0 xFE

0 xFE

no

ch an g e

[

7

7

no

ch an g e

[1 , 0 xF]

N VM

0

0

no

ch an g e

[0 , 0 xF]

N VM

“fadeTime” “extendedFadeTimeBase” “extendedFadeTimeMultiplier”

“maxLevel”

“minLevel”

]

N VM

, 0 xFE ]

N VM

0

0

no

ch an g e

[0 , 1 1 1 1 b]

N VM

0

0

no

ch an g e

[0, 1 00b]

N VM

no

ch an g e

M AS K (no

]

0 xFE

“fadeRate”

“shortAddress”

R AM ,

0,

“minLevel” “maxLevel”

[

no

ch an g e

[0, 63] ,

M AS K

N VM

ad d re s s )

“searchAddress” “operatingMode”

]

a

P o we r

“randomAddress”

,

a

0 xFF

facto ry

“initialisationState”

FF

FF

b u rn - i n

0 xFF

FF

FF

0 xFF

FF

FF

no

ch an g e

no

ch an g e

0 xFF

FF

FF

no

ch an g e

no

ch an g e

[0 , 0 xFF

FF

FF]

R AM

[0 , 0 xFF

FF

FF]

N VM

0 , [0 x8 0 , 0 xFF]

N VM

[E N AB LE D ,

R AM

a

D I S AB LE D

D I S AB LE D , WI TH D R AWN ]

“writeEnableState”

a

D I S AB LE D

D I S AB LE D

[E N AB L E D ,

R AM

D I S AB L E D ]

“controlGearFailure”

a

b

d

d

a

FALS E

“fadeRunning”

d

FALS E

[TRU E ,

FALS E ]

R AM

[TRU E ,

FALS E ]

R AM

[TRU E ,

FALS E ]

R AM

[TRU E ,

FALS E ]

R AM

[TRU E ,

FALS E ]

R AM

[TRU E ,

FALS E ]

R AM

[TR U E ,

FALS E ]

R AM

a

FALS E

TRU E

“powerCycleSeen”

TRU E

FALS E

TR U E

d

a

FALS E

0 x0 0

(n o

e

b

FALS E

“limitError”

“sceneX”

a

FALS E

“lampOn”

“gearGroups”

b

FALS E

“lampFailure”

“resetState”

a

00

g ro u p )

M AS K

0x0 0

(no

00

TR U E

no

ch an g e

no

ch an g e

[0 , 0 xFF

FF]

N VM

g ro u p )

M AS K

[0 , 0 xFF]

N VM

– 48



IEC

6 2 3 8 6 - 1 0 2 : 2 0 1 4 + AM D 1 : 2 0 1 8 © I EC

VARI ABLE

DEFAULT VALU E (factory)

“DTR0”

a

“DTR1 ”

a

“DTR2”

a

PHM

fac to ry

“versionNumber” a

b

c

d

e

N ot

Th e

b u rn - i n

2. 1

POWER ON VALUE

RANGE OF VALI DITY

MEMORY TYPE

no

ch an g e

0 x0 0

[0 , 0 xFF]

R AM

no

ch an g e

0 x0 0

[0 , 0 xFF]

R AM

no

ch an g e

0 x0 0

[0 , 0 xFF]

R AM

no

ch an g e

no

ch an g e

[1 , 0 xFE ]

ROM

no

ch an g e

no

ch an g e

00001 001 b

ROM

appl i cabl e .

val u e

co u l d

ch an g e

Th i s

N VM

Th e

val u e

sh ou l d

X

in

ran g e

is

RESET VALU E

th e

va ri ab l e

is

a

con seq u en ce

e xcl u d e d

re fl e c t

0 x0

as

to

th e

0 xF,

for

actu al



of

th e

resetState

”.

s i tu ati o n

as

e ffe cti ve l y

th e re

CSV 201 8

is

RESET

soon

on e

as

com m an d

execu ti on .

possi bl e.

vari ab l e

fo r

e ach

of

th e

1 6

scen es.

201 8

General

U n u sed

o pco d e s

a re

re s e r ve d

fo r fu tu re

n eeds.

1 1 .2 Overview sheets g i ve s

an

o ve rvi e w o f th e

s tan d ard

co m m an d s .

Th e

s pe ci al

co m m an d s

o ve rvi e w ca n

be

fo u n d

in

Tab l e

1 6.

Table 1 5 – Standard commands

TO

Send twi ce

Answer

DTR2

DTR1

DTR0

OFF

Device

1

0 x0 0

0

9. 7. 2

1 1 . 3. 2

UP

Device

1

0 x0 1

1

9. 7. 3

1 1 . 3. 3

D OWN

Device

1

0 x0 2

2

9. 7. 3

1 1 . 3. 4

UP

Device

1

0 x0 3

3

9. 7. 2

1 1 . 3. 5

D OWN

Device

1

0 x0 4

4

9. 7. 2

1 1 . 3. 6

Device

1

0 x0 5

5

9. 7. 2,

9. 1 4. 2

1 1 . 3. 7

Device

1

0 x0 6

6

9. 7. 2,

9. 1 4. 2

1 1 . 3. 8

Device

1

0 x0 7

7

9. 7. 2

1 1 . 3. 9

UP

Device

1

0 x0 8

8

9. 7. 2

1 1 . 3. 1 0

SEQU EN CE

Device

1

0 x0 9

9

9. 8

1 1 . 3. 1 1

Device

1

0 x0 A

9. 7. 3

1 1 . 3. 1 2

R E CALL

GO



-

R E CALL

E N AB LE

Command reference

level

S TE P

ON

References

0

(

S TE P

S TE P

Opcode byte

Device

D AP C

level )

See 7.2. 2

M AX

MIN

D OWN

AN D

LE VE L

AN D

S TE P

D AP C

LAS T

LE VE L

AC TI VE

OFF

LE VE L

– 49

Command name

CSV

Ad dress byte Ed. 1 cmd nu mber

1 5

Sel ector bi t

Tab l e

6 2 3 8 6 - 1 0 2 : 2 0 1 4 + AM D 1 : 2 0 1 8

1 1 .1

I EC

© I EC

1 1 Definition of commands

9. 4,

9. 7. 3,

9. 8

1 1 .3.1

GO

TO

SCEN E

(

S AVE

0 x0 C

9. 7. 3

1 1 .3.1 5

Device

1

Device

1

0 x20

32

D TR 0

Device

1

0 x21

33

VAR I AB LE S

Device

1

0 x22

DTR0 )

Device

1

0 x23

DTR0 )

Device

1

0 x24

Device

1

0 x25

DTR0 )

Device

1

0 x2A

42

DTR0 )

Device

1

0 x2 B

43

Device

1

0 x2C

44

Device

1

0 x2 D

45

DTR0 )

Device

1

0 x2 E

46

DTR0 )

Device

1

0 x2F

47

LE VE L

IN

M OD E

(

(

I D E N TI FY D E VI C E

S YS T E M

SET

SET

SET

LE VE L

ON

FAD E

FAD E

SCEN E

(

FAD E

TI M E

(

SCEN E

GROU P

FROM

(

DTR0 )

DTR0, sceneX)

(

(

sceneX)

group )

G ROU P

a

(

a

a

group )

a

– 31

1

Device

1

Device

1

Device

1

0 x60

+

group

96

Device

1

0 x70

+

group

1 1 2

0 x3 0

0 x5 0

+

+

  

Device

0 x40

9. 7. 3,

sceneNumber

64

– 79

scene Number

80

– 95

– 1 1 1

– 1 27

       

                

9. 1 9

9. 1 1 . 1 ,

1 0

1 1 . 3. 1 3

1 1 . 4. 2

1 1 . 4. 3

9. 1 7,

1 0

1 1 . 4. 4

9. 9. 4

1 1 . 4. 5

9. 1 1 . 2

1 1 . 4. 6

9. 1 4. 2

1 1 . 4. 7

9. 6

1 1 . 4. 7

9. 6

1 1 . 4. 9

9. 1 2

1 1 . 4. 1 0

9. 1 3

1 1 . 4. 1 1

9. 5. 2

1 1 . 4. 1 2

0

1 1 . 4. 1 3

0

1 1 . 4. 1 4

9. 1 9

1 1 . 4. 1 4

9. 1 9

1 1 . 4. 1 6

1 1 . 4. 1 7

1 1 . 4. 1 8

CSV

R E M OVE

DTR0 )

R ATE

FR OM

TO

(

(

DTR0 )

1 6

201 8

AD D

LE VE L

(

sceneNumber

© I EC

RE M OVE

LE VE L

TI M E

E XTE N D E D

SET

(

FAI LU R E

P OWE R

SET

(

+

6 2 3 8 6 - 1 0 2 : 2 0 1 4 + AM D 1 : 2 0 1 8

SET

MIN

LE VE L

0 x1 0

IEC

SET

M AX

Send twi ce

1

M E M OR Y B AN K

SET

Answer

Device a



RESET

DTR2

1 1 .3.1 4

sceneNumber)

OP E RATI N G

DTR1

9. 7. 3

D OWN

P E R S I S TE N T

DTR0

0 x0 B

– 50

SET

AC TU AL

Command reference

1

UP

RESET

S TO R E

References

Device

CON TI N U OU S

C ON TI N U O U S

See 7.2. 2

Opcode byte

Sel ector bi t

Command name

Ed. 1 cmd number

Ad dress byte

SH ORT

E N AB LE

AD D R E S S

WR I TE

(

DTR0

)

M EM ORY

QU E R Y S TATU S

G E AR

QU E R Y LAM P

QU E R Y LAM P

FAI LU R E

P OWE R

ERROR

S TATE

SH ORT

QU E RY VE RS I ON

AD D R E S S

NU MBER

QU E RY CON TE N T

QU E RY D E VI CE

Q U E R Y P H YS I C A L

D TR0

T YP E

MINIMUM

FAI LU RE

Device

1

0 x81

1 29

Device

1

0 x90

1 44

Device

1

0 x91

1 45

Device

1

0 x92

1 46

Device

1

0 x93

1 47

Device

1

0 x94

1 48

Device

1

0 x95

1 49

Device

1

0 x96

1 50

Device

1

0 x97

1 51

Device

1

0 x98

1 52

Device

1

0 x99

1 53

Device

1

0 x9 A

1 54

Device

1

0 x9 B

1 55

QU E RY CON TE N T

D TR1

Device

1

0 x9 C

1 56

QU E RY CON TE N T

D TR2

Device

1

0 x9 D

1 57

Device

1

0 x9 E

Device

1

0 x9 F

Device

1

0 xA0

1 60

Device

1

0 xA1

1 61

Device

1

0 xA2

1 62

Q U E R Y O P E R ATI N G

QU E RY LI G H T

M ODE

SOU RCE

Q U E R Y AC TU AL

QU E R Y M AX

QU ERY M I N

T YP E

LE VE L

LE VE L

LE VE L

                        

Send twi ce

Answer

DTR2



DTR1

DTR0

Ed. 1 cmd number

Sel ector bi t

1 28

 

9. 1 4. 4

1 1 . 4. 1 9

9. 1 0

1 1 . 4. 20

9. 1 6

1 1 . 5. 2

1 1 . 5. 3

1 1 . 5. 4

1 1 . 5. 6

1 1 . 5. 7

1 1 . 5. 8

9. 1 4. 2

1 1 . 5. 9

1 1 . 5. 1 0

9. 1 0

1 1 . 5. 1 1

9. 1 8

1 1 . 5. 1 2

1 1 . 5. 1 3

1 1 . 5. 1 5

9. 1 0

1 1 . 5. 1 6

1 1 . 5. 1 7

9. 9. 4

1 1 . 5. 1 8

1 1 . 5. 1 9

1 1 . 5. 20

1 1 . 5. 21

1 1 . 5. 22



QU ERY RESET

QU E R Y P OWE R

ON

0 x8 0

– 51

QU E RY LI M I T

QU E RY M I SSI N G

PRESEN T

1

Command reference

CSV

QU E RY C ON TR OL

Device

References

201 8

SET

See 7.2. 2

Opcode byte

6 2 3 8 6 - 1 0 2 : 2 0 1 4 + AM D 1 : 2 0 1 8

Command name

I EC

© I EC

Ad dress byte

QU E R Y P OWE R

Q U E R Y S YS T E M

QU E RY FAD E

ON

1 63

LE VE L

Device

1

0 xA4

1 64

R ATE

Device

1

0 xA5

1 65

Device

1

0 xA6

D e vi ce

1

0 xA7

D e vi ce

1

0 xA8

D e vi ce

1

0 xAA

Device

1

0-7

Device

1

0 xC 0

1 92

8-1 5

Device

1

0 xC 1

1 93

T I M E /F A D E

QU E R Y N E XT

D E VI CE

QU E R Y E XTE N D E D

QU E R Y C ON TR OL

QU E RY SCEN E

SPE CI FI C

T YP E

FAD E

G E AR

LE VE L

QU ERY G ROU PS

QU ERY G ROU PS

M ODE

TI M E

F AI LU R E

(

sceneX)

a

0 xB0

+

sceneNumber

1 76

(H )

Device

1

0 xC 2

1 94

QU E R Y R AN D OM

AD D R E S S

(M )

Device

1

0 xC 3

1 95

(L)

Device

1

0 xC 4

1 96

DTR1 , DTR0 )

Device

1

0 xC 5

1 97

Device

1

Device

1

QU E R Y R AN D OM

R E AD

M E M ORY LOC ATI ON

Appl i cati o n

e xte n d e d

QU E R Y E XTE N D E D

Th e re

AD D R E S S

is

one

(

co m m an d s

VE R S I ON

com m an d

N U M BER

p e r s ce n e ,

so

th e re

a re

actu al l y

1 6

co m m an d s

fo r sce n es

0 xE 0

– 0 xFE

224

0 xFF

0

– 5.

An al o g u e

– 254

?

255

fo r

th e

1 6

g ro u p

?

Send twi ce

Answer

DTR2

DTR1

DTR0

  ?

?



1 1 . 5. 23

9. 1 2

1 1 . 5. 24

9. 9

1 1 . 5. 27

9. 1 8

1 1 . 5. 1 3

0

1 1 . 5. 26

9. 1 6. 2

1 1 . 5. 4

9. 1 9

1 1 . 5. 28

1 1 . 5. 29

1 1 . 5. 30

1 1 . 5. 31

1 1 . 5. 32

1 1 . 5. 33

?

9. 1 0

1 1 . 5. 34

9. 1 8

1 1 .6

1 1 . 6. 2

co m m an d s.

© I EC

6 2 3 8 6 - 1 0 2 : 2 0 1 4 + AM D 1 : 2 0 1 8

AD D R E S S

9. 1 3

1 1 . 5. 25

      

– 1 91

QU E R Y R AN D OM

      

IEC

0 xA3

Command reference



1

References

– 52

Device

LE VE L

FAI LU RE

QU E R Y M AN U FAC TU R E R

a

See 7.2. 2

Opcode byte

Sel ector bi t

Command name

Ed. 1 cmd number

Ad dress byte

CSV

201 8

D TR0

(

data

I N I TI ALI S E

(

)

device

0 xA9

0 x0 0

260

WI TH D R AW

0 xAB

0 x0 0

261

PI NG

0 xAD

0 x0 0

VE RI FY S H OR T

AD D R E S S

DE VI CE

D TR1

(

D TR2

(

0 xB3

)

0 xB5

AD D R E S S

QU E RY SH ORT

(

(

data

T YP E

data data

(

data

)

0 xB7

)

0 xB9

0 xBB

)

0 xC1

)

0 xC3

)

0 xC5

(

DTR1 , DTR0, data

M E M OR Y LOC ATI ON

R E P LY (

data

AD D R E S S

M E M OR Y LOC ATI ON

NO

data

)

)

0 xC7



DTR1 , DTR0, data

0 xC9 )

data data data data data 0 x0 0

data data data data data

Send twi ce

Answer

9. 1 4. 2

1 1 . 7. 1

9. 1 0

1 1 . 7. 3

9. 1 4. 2

1 1 . 7. 4

9. 1 4. 2

1 1 . 7. 5

9. 1 4. 2

1 1 . 7. 6

9. 1 4. 2

1 1 . 7. 7

1 1 . 7. 1 9

264

9. 1 4. 2

1 1 . 7. 8

265

9. 1 4. 2

1 1 . 7. 9

266

9. 1 4. 2

1 1 . 7. 1 0

9. 1 4. 2

1 1 . 7. 1 1



SH ORT

(

data

0 xB1



Command reference

– 53

(

)

 

References

CSV

C OM P AR E

data



258

259

S E AR C H AD D R M

WR I TE

device 0 x0 0

(

E N AB LE

0 xA5

257

0 xA7

S E AR C H AD D RH

P R OG R AM

)

data

256

R AN D OM I S E

S E AR C H AD D R L

WR I TE

0 xA3

DTR2

0 x0 0

DTR1

0 xA1

DTR0

TE R M I N ATE

Ed. 1 cmd nr

Opcode byte

201 8

Address byte

6 2 3 8 6 - 1 0 2 : 2 0 1 4 + AM D 1 : 2 0 1 8

Command name

I EC

© I EC

Table 1 6 – Special commands

267

 

268

269

272



273

1 1 . 7. 1 2

1 1 . 7. 1 3

9. 1 4. 2

1 1 . 7. 1 4

9. 1 0

0



274

275

9. 1 4. 2

9. 1 4. 2









1 1 . 7. 1 6



9. 1 0

1 1 . 7. 1 7

9. 1 0

1 1 . 7. 1 8

– 54



I EC

6 2 3 8 6 - 1 0 2 : 2 0 1 4 + AM D 1 : 2 0 1 8 © I EC

CSV 201 8

1 1 .3 Level instructions 1 1 .3.1

DAPC ( level)

U pon on

e xe cu ti o n

th e

Th e

bas i s

tran s i ti o n

of

“ D AP C

“level”

of

s u bcl au s e s

1 1 .3.2

OFF

Th e be

sh al l

tran s i ti o n

ad j u s te d

s u bcl au s e

1 1 .3.3

UP

Dim

up

To

using

e n s u re

cal cu l ate d Afte r

th at

fad i n g

is

a

th at “

9. 7. 2

fi rs t

step,

ms

fad e

th e

s e t fad e

s h al l

to

be

no

DOWN using

e n s u re

th at

cal cu l ate d Af te r

th at

fad i n g

is



200

step,

ru n n i n g .

ms

fad e

an d

th e

s e t fad e

Th e re

a

s h al l

to

be

be

s h al l

be

cal cu l ate d

s h al l

s tart u s i n g

th e

appl i cabl e

fad e

ti m e

.

fo r fu rth e r i n fo rm ati o n .

th e

l am p( s )

“targetLevel”

to

th e

be

sh al l

s wi tch

s h al l

be

o ff.

i m m ed i ate

an d

th e

light

o u tpu t

sh al l

to

set

fad e

th e

“targetLevel”

co m m an d ,

u po n

s h al l

be

i n s tru c ti o n

at

e xe cu ti o n

e xecu te d

e xecu te d

“targetLevel”

an d

rate .

sh al l

be

cal cu l ate d

on

th e

rate .

m ad e

s te ps

“U P”

to

is

fad e

th e

th e

a

”-1 )

“actualLevel”

9. 7. 3

an d

to

be

l eas t of

u sing

as

a

on e

th e

fi rs t

th e

p a rt

s te p

( fi n al

an on



com m an d

s pe c i fi e d

of

re cal cu l ate d

wi th

th e

re ac ti o n

n ext

be

s te ps

“ D O WN ” an d

to

“actualLevel”

if

9. 8. 2

s e t fad e

s h al l

re s tart e d

no

ch an g e

1 1 .3.5

STEP UP

if

“targetLevel”

co n tro l ) ,

fad e

i te rati o n th e

bas i s

targetLevel

of

an

rate

s h al l of



=

i te rati o n . wh i l e

th e

cau s e

th e

“actualLevel”

is

at

“maxLevel”

o r 0 x0 0 .

fo r fu rth e r i n fo rm ati o n .

set

fad e

ra te .

“targetLevel”

sh al l

be

cal cu l ate d

s h al l

“targetLevel”

9. 5. 1 ,

be

=

to

th e

m ad e sh al l

co m m an d ,

u pon be

e xe cu ted e xecu te d

“targetLevel”

at

e xe cu ti o n

i n s tru cti o n

set to :

0:

“actualLevel”

9. 7. 3

0 x0 0

an d

on

th e

rate .

to

be

l e as t of

using as

a

on e

th e

fi rs t

th e

part

s te p

( fi n al

s p e c i fi e d of

re cal cu l ate d

an

on



co m m an d fad e

i te rati o n

th e

bas i s

targetLevel

of

an

rate

sh al l of

9. 8. 2

if

“actualLevel”

is

at

“minLevel”

fo r fu rth e r i n fo rm ati o n .



=

i te ra t i o n . wh i l e

th e

cau s e

th e

“actualLevel”

rate .

s u bcl au s es



an d

re ac ti o n

n ext

ms

E ve ry

R e fe r to

“targetLevel”

9. 1 3

s e t fad e

sh al l

an d

th e re

200

a

9. 5. 1 ,

targetLevel

fi rs t

an d

wi th

th e

”+ 1 )

th e

“actualLevel”

of

fad e

ch an g e

1 1 .3.4

To

is

“targetLevel”

to

0 x0 0

re s tart e d

s u bcl au s es

d o wn

p o we r

rate .

R e fe r to

Dim

arc

fo r fu rth e r i n fo rm ati o n .

E ve ry

be

( d i re ct

possi bl e.

an d

th e re

an d

basi s

ms

targetLevel

ru n n i n g .

)”

“actualLevel”

200

200

Th e re

set to

“actualLevel”

of

9. 7. 3

q u i c kl y a s

R e fe r to

bas i s

9. 4,

be

fro m

as

level

“actualLevel”

fro m

R e fe r to

“targetLevel”

(

.

o r 0 x0 0 .

I EC

6 2 3 8 6 - 1 0 2 : 2 0 1 4 + AM D 1 : 2 0 1 8

© I EC



if



if

Th e

“minLevel” ≤ “targetLevel” “targetLevel” tran s i ti o n

s h al l

be

as

q u i c kl y a s

1 1 .3.6

STEP DOWN

“targetLevel”



if



if

Th e

s h al l

“targetLevel” “minLevel”

<

9 . 4 an d

be

=

9. 5. 9

s h al l

be

i m m e d i ate l y

an d

th e

light

o u tpu t

an d

th e

light

o u tpu t

fo r fu rth e r i n fo rm at i o n .

set to:

0:

0 x0 0

“targetLevel” ≤ “maxLevel”: “targetLevel”

tran s i ti o n be

“actualLevel”

fro m

ad j u s te d

as

q u i c kl y a s

-1

1 1 .3.7

RECALL MAX LEVEL

Wh e n

th e

“maxLevel” R e fe r to

9 . 4 an d

9. 5. 9

“initialisationState” i m m e d i ate l y an d

9. 7. 2

is

th e

th e



to



”,

te m p o rari l y i g n o ri n g

th e

d e vi ce

It

is

is

u n ab l e

acce ptabl e

R E C ALL

MIN

fo r

LE VE L

to

th e

i d e n ti fi cati o n

vari ab l e s

en ded,

th e re

si de

sh al l an d

R E C AL L M I N

Wh e n

th e

no

no

be

u pon

LE VE L,

can

s to p pe d



ad j u s t

th e

actualLevel

i d e n ti fy

“actualLevel”

an d

ad j u s ted

exe cu ted

sh al l be

be

th e

light

as

q u i c kl y a s

sh al l

be

set

to

possi bl e.

in

th e

g e ar as

an

th i s

way,

i d e n ti fi cati o n

i n d i vi d u al

in

co n tro l o u tpu t

s h al l

q u i c kl y

set as



actualLevel

possi bl e

to



an d

1 00

%

”.

i ts e l f

i d e n ti f yi n g

c o n t ro l

al te rn ati n g

affe cte d

te m p o rari l y

i m m e d i ate l y

e xe cu ti o n

g ear

th e

co n tro l

g ear

s h al l

e xe cu te

p ro c e d u re .

to

depend

upon

R E C ALL

M AX

LE VE L

seq u en ce.

e xce p t

i g n o re d ,

wh e n

so

th at

e xpl i ci tl y afte r

th e

s tate d

o th e rwi s e .

i d e n ti fi cati o n

h as

of

an y

wh e n

“initialisationState”

th e

i n s tru cti o n

o th e r

th an

ch an g es

I N I TI ALI S E

(

to

device

),

R E C ALL M AX L E VE L o r I D E N TI F Y D E V I C E .

ch an g e s

RECALL MIN LEVEL

to

D I S AB LE D ,

th e

i d e n ti fi cati o n

s h al l

s to p

i m m ed i atel y.

fo r fu rth e r i n fo rm ati o n .

“initialisationState” i m m e d i ate l y an d

9. 7. 2

i m m e d i ate l y

e ffe cts .

1 1 .3.8

R e fe r to

of

bei n g

9. 1 4. 3

th e

be

D I S AB LE D ,

o r re - tri g g e ri n g

R e fer to

Wh e n

an d

vari ab l e s

“initialisationState”

“minLevel”

n ot th e n

p ro c e s s

ap p ro p ri a te , are



co m m an d s

Wh e re

I d e n ti fi cati o n

“targetLevel”

D I S AB LE D ,

vi s u al l y

s ta rti n g

D u ri n g

D I S AB L E D

be

fo r fu rth e r i n fo rm at i o n .

l i g h t o u tpu t s h al l

is

an d



“ I D E N TI FY D E VI C E ” ,

N OTE

s h al l

fo r fu rt h e r i n fo rm a ti o n .

“initialisationState” targetLevel maxLevel maxLevel

Wh e n

“targetLevel”

to

possi bl e.

s u bcl au s e s

an d

“targetLevel”

to

possi bl e.

R e fe r to

If

+1

“targetLevel” = “minLevel”: “minLevel”

s h al l





“maxLevel”: “targetLevel”

<

“actualLevel”

fro m

ad j u s te d

s u bcl au s e s

if

– 55

“maxLevel”: “maxLevel”

=

R e fe r to



CSV

201 8

is

th e

D I S AB LE D ,

“targetLevel”

l i g h t o u tpu t s h al l

fo r fu rth e r i n fo rm a ti o n .

be

an d

ad j u s te d

as

“actualLevel” q u i c kl y a s

s h al l

possi bl e.

be

set

to

– 56



I EC

6 2 3 8 6 - 1 0 2 : 2 0 1 4 + AM D 1 : 2 0 1 8 © I EC

“initialisationState” targetLevel minLevel

Wh e n “



l e ve l

to



is



te m p o rari l y

i g n o ri n g

s i g n i fi can tl y d i ffe re n t fro m

If

th e

d e vi ce

is

u n abl e

“ I D E N TI FY D E VI C E ” ,

N OTE an d

It

is

acce ptabl e

R E C ALL

MIN



to

th e

i d e n ti fi cati o n ap p ro p ri a te ,

vari ab l e s

en ded,

th e re

si de

I d e n ti fi cati o n D I S AB L E D

sh al l an d

R E C AL L M I N

Wh e n

th e

be

u pon

LE VE L,

can

s to p pe d



if

Th e s h al l

“targetLevel” “minLevel”

R e fe r to

in

th e

i n d i vi d u al

in

an

”.

be

I f,

h o we ve r,

set

as



way,

c o n t ro l

al te rn ati n g

g ear

th e

actualLevel

possi bl e PH M

te m p o rari l y s wi tch e d

th i s

affe cte d

s h al l

q u i c kl y

i d e n ti fi cati o n

te m p o rari l y

i m m e d i ate l y of

ch an g e s

<

be

co n tro l

to

is



i ts

not

an d PH M

vi s i b l y

o ff i n s te ad .

g e ar

s h al l

e xe cu te

p ro c e d u re .

to

depend

upon

R E C ALL

M AX

LE VE L

seq u en ce.

e xce p t

i g n o re d ,

wh e n

so

th at

e xpl i ci tl y afte r

th e

s tate d

o th e rwi s e .

i d e n ti fi cati o n

h as

an y

wh e n

“initialisationState”

th e

i n s tru cti o n

o th e r

th an

ch an g es

I N I TI ALI S E

(

to

device

),

to

D I S AB LE D ,

i d e n ti fi cati o n

sh al l

s to p

i m m ed i ate l y.

=

set to :

0:

0 x0 0

“targetLevel” ≤ “maxLevel”: “targetLevel”

“targetLevel” = “minLevel” be

be

s h al l

g e ar as

fo r fu rth e r i n fo rm ati o n .

sh al l

tran s i ti o n

exe cu ted

be

actualLevel

i ts e l f

i d e n ti f yi n g

sh al l

o u tp u t

R E C ALL M AX L E VE L o r I D E N TI F Y D E V I C E .

STEP DOWN AND OFF

if



co n tro l

l am p

i d e n ti fy

e xe cu ti o n

1 1 .3.9



th e

th e light

e ffe cts .

9. 1 4. 3

if

of

bei n g

R e fer to



an d

th e n

vari ab l e s

“initialisationState”

“targetLevel”



th e

o r re - tri g g e ri n g

p ro c e s s

Wh e re

no

%,

vi s u al l y

D u ri n g

are

ad j u s t

minLevel

co m m an d s

no

D I S AB LE D ,

th e n

1 00

s tarti n g

fo r

LE VE L

not

an d

CSV 201 8

0 x0 0

“actualLevel”

fro m

ad j u s te d

:

as

s u bcl au s e s

q u i c kl y as

9. 4

an d

-1

to

“targetLevel”

sh al l

be

i m m e d i ate l y

an d

th e

light

o u tpu t

an d

th e

light

o u tpu t

possi bl e.

9. 5. 9

fo r fu rth e r i n fo rm a ti o n .

1 1 .3.1 0 ON AND STEP UP “targetLevel” •

if



if



if

Th e sh al l

sh al l

“targetLevel”

be

=

set to :

0:

“minLevel”

“minLevel” ≤ “targetLevel”

“maxLevel”: “targetLevel”

<

+1

“targetLevel” ≥ “maxLevel”: “maxLevel” tran s i ti o n be

R e fer to

“actualLevel”

fro m

ad j u s te d

as

su bcl au s e s

q u i c kl y a s

9. 4

an d

to

“targetLevel”

sh al l

be

i m m e d i ate l y

possi bl e.

9. 5. 9

fo r fu rt h e r i n fo rm a ti o n .

1 1 .3.1 1 ENABLE DAPC SEQUENCE I n d i cates

R e fe r to

th e

s tart o f a co m m an d

s u bcl au s e

9. 8. 3

i te ra ti o n

o f “ D AP C

fo r fu rth e r i n fo rm ati o n .

(

level

)”

co m m an d s .

I EC

6 2 3 8 6 - 1 0 2 : 2 0 1 4 + AM D 1 : 2 0 1 8

© I EC

CSV

– 57



201 8

1 1 .3.1 2 GO TO LAST ACTIVE LEVEL U pon

Th e

e xe cu ti o n

tran s i ti o n

R e fe r to

o f th i s

fro m

“targetLevel”

co m m an d

“actualLevel”

s u bcl au s e s

9. 7. 3

an d

“targetLevel”

to

9. 4

sh al l

be

s h al l

cal cu l ate d

s tart u s i n g

b as e d

th e

on

“lastActiveLevel”

s e t fad e

ti m e

.

.

fo r fu rth e r i n fo rm a ti o n .

1 1 .3.1 4 CONTINUOUS UP Dim

up

s tarte d

Th e re

u si n g usi ng

s h al l

R e fe r to

th e th e

be

9. 7. 3

set

fad e

s e t fad e

no

ch an g e

an d

9. 5. 6. 2

rate .

rate .

to



targetLevel



Th e

fad e

actualLevel



s h al l



if “

sh al l s to p

be

maxLevel maxLevel

set

wh e n

actualLevel





to





is

at “

is



an d

a

fad e

sh al l

be

s h al l

be

re ach e d .

maxLevel



or 0 x00 .

fo r fu rth e r i n fo rm at i o n .

1 1 .3.1 5 CONTINUOUS DOWN Dim

d o wn

s tarte d

Th e re

u sing

usi ng

sh al l

R e fer to

th e

th e

be

9. 7. 3

set

fad e

s e t fad e

no

ch an g e

an d

9. 5. 6. 2

rate .

rate .

to





Th e

targetLevel

fad e

actualLevel

s h al l



if “



s h al l

s to p

be

actualLevel



minLevel minLevel

set

wh e n



is

to





at “

is



an d

a

fad e

re ach e d .

minLevel

” o r 0 x0 0 .

fo r fu rth e r i n fo rm ati o n .

1 1 .3.1 3 GO TO SCENE ( sceneNumber) Th e

co n tro l

fro m



if



in

g e ar

s h al l

sceneNumber “sceneX” al l

N OTE

M AS K:

o th e r cas e s :

Usi ng

R e fe r to

=

re ac t

d epen d i n g

on

th e

actu al

val u e

of

“sceneX”

X

wh e re

is

d e ri ve d

:

“D AP C

(

co m m an d

s h al l

i n te rn al l y “ D AP C

level

s u bcl au s es

th e

)”

i m pl i es

9. 1 9

an d

th e

(

level

t ran s i ti o n

1 1 .3.1

is

targetLevel

n o t affe c t “

) ”,

wi th

m ad e

level

u si n g

th e

e q u al

set

fad e

to

”;

“sceneX”

sh al l

be

e xe cu te d .

ti m e .

fo r fu rth e r i n fo rm at i o n .

1 1 .4 Configuration instructions 1 1 .4.1 D e vi ce

General co n fi g u rati o n

o pe rati o n

of

d i s ca rd e d , 1 01 :201 4

U n l ess

Th e

i n s t ru c t i o n s

co n tro l

u n l ess

an d

it

is

g e ar.

are

For

acce p te d

u sed

th i s

twi ce

to

th e

s tate d

fo l l o wi n g

i n s tru cti o n

o th e rwi s e

ch an g e

re as o n

a

acc o rd i n g

to

I E C 6 2 3 8 6 - 1 0 1 : 2 0 1 4 /A M D 1 : 2 0 1 8 ,

e xpl i ci tl y

i n s tru cti o n ,



th e

in

th e

th e

co n fi g u rati o n

a n d /o r

d e vi c e

co n fi g u rati o n

i n s tru c ti o n

th e

re q u i re m e n ts

as

s tate d

th e

in

m od e sh al l

I EC

of be

62386-

9. 3.

d e s cri p ti o n

of

parti cu l ar

d e vi c e

c o n fi g u ra ti o n

hol ds:

s h al l

be

i g n o re d

if

so

re q u i re d

by

th e

p ro vi s i o n s

of

s u bcl au s e

9. 7

of

th i s

s tan d ard .



Th e

1 1 .4.2 Al l to

co n tro l

g ear s h al l

n o t re p l y to

th e

i n s tru cti o n .

RESET

va ri ab l e s co m m an d s

s h al l no

be

ch an g e d

l ate r th an

300

to

th e i r

ms

re s e t

afte r th e

va l u e s .

C o n tro l

e xe cu ti o n

o f th e

g e ar

sh al l

i n s tru cti o n

s tart h as

to

re act

been

p ro p e rl y

s tart e d .

– 58



I EC

6 2 3 8 6 - 1 0 2 : 2 0 1 4 + AM D 1 : 2 0 1 8 © I EC

I f d u ri n g

a re s e t m ai n s

R e fe r to

s u bcl au s e

1 1 .4.3

STORE ACTUAL LEVEL IN DTR0

“actualLevel”

Th e

1 1 .4.4 Th e

co n tro l

p a rts

co n tro l s ta rt

i n s tru cti o n

D u ri n g

an d

be

s h al l Th i s

Tab l e

s to re d

n o t g u ara n te e d

1 4

is

co m p l e te d .

fo r fu rth e r i n fo rm ati o n .

“DTR0”

in

th at “ R E S E T”

.

might

re act

h as

been

th e

of

b as e d

th e

As

might

th e re

of

on

is

not

re act

th i s

to

al l

vari ab l e s

ap pl i cati o n

sh al l

“targetLevel”

re co m m e n d e d

co n tro l

be

to

co m m an d s

co m m an d s

co m m an d ,

o u tp u t

wri te - c yc l e s

re acti o n ,

al l

i d e n ti fi e d

e xte n d e d

in

Tab l e

N VM

1 4

as

vari a b l e s

n o n - vo l a ti l e

d e fi n e d

in

th e

no

afte r

e xecu ti o n

l ate r

th an

300

of

th i s

ms

com m an d .

afte r

th e

C o n tro l

e xe cu ti o n

g e ar

of

th e

s tart e d .

light

co m m an d

n u m ber

s to re

i n cl u d e

p ro p e rl y

p ro ce s s i n g

co m m an d ,

p h ys i cal l y

s h al l

2 xx.

g ear to

co m pl e te d ,

Th i s

s h al l

g e ar

( N VM ) .

appl i cabl e

Th e

9. 1 1 . 1

it is

SAVE PERSISTENT VARIABLES

m e m o ry

sh al l

p o we r fai l s ,

CSV 201 8

of

to

light

th e

th e

be

sh ou l d

arte facts ,

th e

at

an d

p e rs i s t e n t

d e vi c e s

vi s u al

be

u sed

l i m i t th e

is

as

tra n s i t i o n

an d

u se

m ay

afte r

due

to

o f th i s

re c o m m e n d e d

fl u ctu ate .

e xpe cte d

th at was

typ i cal l y

m e m o ry

it

o u tp u t

l e ve l

b e fo re

ac t i ve

Afte r th e

fac t

of

is

th i s

( i f an y) .

co m m i ss i o n i n g .

th e

pro ce s s i n g

e xe cu ti o n

th at

Due

th e re

to

might

th e be

a

l i m i te d vi s i b l e

co m m an d .

to

u se

th i s

co m m an d

onl y

d u ri n g

th e

o ff

s tate .

R e fe r to

Tab l e

1 4

1 1 .4.5

SET OPERATING MODE ( DTR0 )

“operatingMode” If

“DTR0”

does

an d

su bcl au se

s h al l

not

be

set

9. 1 7

“DTR0”

co rre s p o n d

to

fo r fu rth e r i n fo rm ati o n .

.

an

i m p l e m e n te d

o p e ra ti n g

mode,

th e

co m m an d

s h al l

be

d i s ca rd e d .

R e fer to

su bcl au s e

1 1 .4.6

RESET MEMORY BANK ( DTR0 )

Th e as

co m m an d

s h al l

fo r fu rth e r i n fo rm at i o n .

tri g g e r th e

pro ce ss

to

ch an g e

th e

m e m o ry b an k co n te n t

to

i ts

re s e t val u e s

fo l l o ws :



if

“DTR0”

be



in

=

0:

al l

i m pl e m en te d

an d

u n l o c ke d

m e m o ry

b a n ks

e xcept

m e m o ry

ban k

0

s h al l

re s e t

al l

o th e r

cas e s :

i m pl e m e n te d

A

9. 9

m e m o ry

ban k

an d

th e

m e m o ry

b an k

i d e n ti fi e d

by

“DTR0”

s h al l

be

re s e t

p ro vi d e d

it

is

u n l o c ke d

n eeds

to

be

u n l o c ke d

to

al l o w

bo th

l o c ka b l e

an d

n o n - l o c ka b l e

l o cati o n s

to

be

re s e t.

C o n tro l th e

g e ar sh al l

i n s tru c ti o n

R e fe r to

s tart to

h as

s u bcl au s e

been

re ac t p ro p e rl y to

co m m an d s

s tarte d .

9. 1 1 . 2

fo r fu rt h e r i n fo rm a ti o n .

no

l ate r th an

1 0

s

afte r th e

e xe cu ti o n

of

I EC

6 2 3 8 6 - 1 0 2 : 2 0 1 4 + AM D 1 : 2 0 1 8

© I EC

1 1 .4.7 Th e

CSV

– 59



201 8

IDENTIFY DEVICE

co n tro l

p ro ce d u re p ro ce s s

g e ar

sh al l

fro m

sh al l

ru n

an y

i d e n ti fi cati o n

s tart

wh i ch

d e vi ce s

s h al l

(of

i d e n ti fi cati o n

Wh e re

ap p ro p ri a te ,

vari ab l e s

en ded,

th e re

si de

Wh e n



is

actualLevel

I d e n ti fi c ati o n I N I TI ALI S E

Wh i l e

no

no

i d e n ti fi cati o n

M AX an d

(

re s tart

th e

an

a

1 0

s

o b s e rve r

sam e

typ e )

±1 to

s

ti m e r.

Wh i l e

d i s ti n g u i sh

wh i ch

a re

not

th e

an y

ti m er

co n tro l

ru n n i n g

i t.

If

is

g ear th e

ru n n i n g , ru n n i n g

ti m e r

a

th i s

e xpi re s ,

s to p .

D u ri n g

are

or

e n abl es

s h al l

device

vari ab l e s

bei n g

be

),

be

th e in

s to ppe d

is

affe cte d

e xce p t

i g n o re d ,

wh e n

so

e xpl i ci tl y

th at

afte r

th e

s tate d

o th e rwi s e .

i d e n ti fi cati o n

h as

l i g h t o u tp u t m ay be

at an y l e ve l

be twe e n

o ff an d

1 00

%,

MIN,

o th e r

th an

e ffe c t t e m p o rari l y i g n o re d .

i m m e d i ate l y

R E C ALL M I N

i d e n ti fi cati o n

be

te m p o rari l y

e ffe cts .

acti ve ,



sh al l

can

ac ti ve ,

LE VE L,

th e

u pon

e xecu ti o n

of

an y

i n s tru cti o n

R E C AL L M AX L E VE L o r I D E N TI F Y D E VI C E .

co n tro l

g ear

s h al l ,

” an d



wi th o u t

i n te rru p t i n g

th e

i d e n ti fi cati o n

p ro ce d u re :



on

R E C ALL M I N



on

R E C ALL M AX LE VE L:

Wh e n

i d e n ti fi cati o n

can ce l l e d

Afte r

actualLevel

I d e n ti fi c ati o n th e

is

i m m e d i ate l y

i d en ti fi cati o n

re fl e ct “

LE VE L:

can

.

be

u sed

p a rt i c u l ar i d e n ti fi e d

Th e

i n d i cati o n

au d i bl e

can

m ean s .

d e scri be d

in

N OTE

appl i cati o n

Th e

be

Th e

th e

th e

actualLevel

by

sto pped ,

an d

actualLevel

set “

s to ppe d

h as ”

set “

th e

d u ri n g

d e vi ce

done

e xact

to

e. g .

by

pro ce ss



if



in

If

as

be

targetLevel

co n t ro l l e r,

s h al l

be

e xe cu te d

in

th at





to

th e

minLevel “

”;

maxLevel

”.

c o rre s p o n d i n g

ad j u s ted

as

q u i c kl y

ti m er

as

s h al l

possi bl e

be

to

( i f appl i cabl e ) .

it

al l o ws

th e

i n s tal l e r

to

e. g .

al l o cate

g ro u p .

fl as h i n g

a

u sed

i d e n ti fy

to

” to

LE D ,

by is

p ro d u c i n g

a

sou n d

m an u factu re r

or

s pe ci fi c

o th e r an d

vi s u al

sh ou l d

or be

m an u al .

c o n tro l l e r

be

9. 1 4. 3

can

al s o

SET MAX LEVEL ( DTR0 )

if

o u tp u t

s h al l

co m m i ss i o n i n g

1 1 .4.8



light



a p a rt i c u l ar d e vi ce

s u bcl au s e

sh al l

an d

ap p l i cati o n

co m m an d

R e fe r to

“maxLevel”

an



targetLevel

s to p

th e

i d e n ti fi cati o n

p ro c e s s

using

a

“RE S E T”

com m an d .

fo r fu rth e r i n fo rm at i o n .

s e t to :

“minLevel” ≥ “DTR0” “minLevel” :

“DTR0” al l

a

=

M AS K:

o th e r cas e s :

re s u l t

cal cu l ate d

on

of

0 xFE

“DTR0”

s e tti n g

th e

basi s

s tart i m m e d i ate l y an d

a of

th e

m ax

s u b cl au s e

1 1 .4.9

SET MIN LEVEL ( DTR0 ) s h al l

be

l e ve l .

Th e

l i g h t o u tp u t s h al l

R e fe r to

“minLevel”

9. 7. 2

n ew

“maxLevel”

“actualLevel” tran s i ti o n be

ad j u s te d

fo r fu rth e r i n fo rm a ti o n .

s e t to :

>

fro m as

“maxLevel” “targetLevel” “actualLevel” “targetLevel” ,

sh al l

to

q u i c kl y as

possi bl e.

be

s h al l

– 60



I EC

6 2 3 8 6 - 1 0 2 : 2 0 1 4 + AM D 1 : 2 0 1 8 © I EC



i f 0 ≤ “DTR0” ≤ PH M : PH M



if



in

“DTR0” ≥ “maxLevel” al l

If





>

0

s h al l

to

possi bl e.

an d

be

as

a

re s u l t

cal cu l ate d

s h al l

R e fe r to

“maxLevel”

o r M AS K:

“DTR0”

o th e r cas e s :

actualLevel “targetLevel” “targetLevel”

CSV 201 8

be

on

of th e

i m m e d i ate l y

s u b cl au s e

9. 7. 2

s e tti n g b as i s an d

a

new

min

“minLevel”

of

th e

light

“actualLevel”

l e ve l .

o u tpu t

Th e

tra n s i t i o n

sh al l

be

“minLevel” “actualLevel”

<

fro m

ad j u s ted

,

as

q u i c kl y

as

fo r fu rt h e r i n fo rm a ti o n .

1 1 .4.1 0 SET SYSTEM FAILURE LEVEL ( DTR0 ) “systemFailureLevel” R e fe r to

s u bcl au s e

sh al l

9. 1 2

be

“DTR0”

s e t to

.

fo r fu rth e r i n fo rm ati o n .

1 1 .4.1 1 SET POWER ON LEVEL ( DTR0) “powerOnLevel” R e fe r to

s h al l

s u bcl au s e

be

9. 1 3

“DTR0”

set to

.

fo r fu rth e r i n fo rm ati o n .

1 1 .4.1 2 SET FADE TIME ( DTR0 ) Th e

“fadeTime” “DTR0”



if



in

If



is

is

a

n ew

b e fo re

not

ti m e

s e t to

a va l u e

acco rd i n g

to

th e

fo l l owi n g

s te ps :

1 5

“DTR0”

e q u al

e q u al

fad e

th e

R e fe r to

1 5:

be

o th e r cas e s :

fadeTime” fadeTime”

If “

al l

>

sh al l

to

is

to

th e

s to re d

n e w val u e

s u bcl au s e s

0,

is

0,

fad e

d u ri n g

u sed

9. 5,

th e

e xte n d e d

in

9. 7. 3,

th e

a

ti m e

fad e

ru n n i n g

fo l l o wi n g

1 1 . 4. 1 4

an d

s h al l

ti m e

be

s h al l

fad e

cal cu l ate d be

on

th e

b as i s

of

“fadeTime”

.

If

u sed.

p ro c e s s ,

th i s

p ro ce s s

s h al l

be

fi n i s h e d

fi rs t

fad e .

1 1 . 7. 1 9

fo r fu rt h e r i n fo rm a ti o n .

1 1 .4.1 3 SET FADE RATE ( DTR0) Th e

“fadeRate” “DTR0”



if



if



in

Th e

“DTR0” al l

in

th e

>

1 5:

=

0:

rate

fo l l o wi n g

s e t to

a va l u e

acco rd i n g

to

th e

fo l l o wi n g

s te ps :

1 5

1

s h al l

a ru n n i n g

R e fe r to

be

o th e r cas e s :

fad e

d u ri n g

sh al l

“DTR0”

be

fad e

cal cu l ate d

p ro c e s s ,

th i s

on

th e

p ro ce s s

bas i s

of

s h al l

be

“fadeRate” fi n i sh e d

.

If

a

new

fi rs t b e fo re

fad e

th e

ra te

is

n e w va l u e

s to re d is

u sed

fad e .

s u bcl au s e

9. 5

an d

9. 7. 3

fo r fu rth e r i n fo rm ati o n .

1 1 .4.1 4 SET EXTENDED FADE TIME ( DTR0) Th e

“extendedFadeTimeBase”

acc o rd i n g



If “



to

DTR0” “

th e

>

fo l l o wi n g

0 x4F (0 1 00

an d



extendedFadeTimeMultiplier

s te ps :

1 1 1 1 b) :

extendedFadeTimeBase



s h al l

be

s e t to

0;



s h al l

be

set

to

a

val u e

I EC

6 2 3 8 6 - 1 0 2 : 2 0 1 4 + AM D 1 : 2 0 1 8

© I EC





extendedFadeTimeMultiplier

E f fe c t i ve l y s e l e c t i n g



Fo r al l

• If









as

ti m e

fad e

th e

s h al l

ti m e

is

co m m an d

by s e l e cti n g

is



s h al l

0

R e fe r to

set to

0.

possi bl e.

of

sh al l

be

in

a

th e

s e t to

be

AAAAb

set to

YYYb

b y m u l ti pl yi n g

ru n n i n g

fo l l o wi n g

fad e

“DTR0” = xxxxAAAAb;

wh e re

th e

wh e re

b as e

p ro c e s s ,

“DTR0” = xYYYxxxxb.

va l u e

an d

th e

th i s

pro ce s s

e ach

sce n e .

m u l ti pl i e r.

s h al l

be

fi n i sh e d

fi rs t

fad e .

sceneX)

co m pri s e s

=

opcod e

9. 1 9

1 6

c o n s e c u ti ve

“SET SCEN E

s e t to

s u bcl au s e

be

fo r fu rth e r i n fo rm a ti o n .

actu al l y

sceneNumber

“sceneX”

be

” s h al l

d u ri n g

u sed

a bl o ck o f 1 6

e xe cu ti o n

o pco d e :

” s h al l

cal cu l ate d

s to re d

n e w val u e

s u bcl au s e

be

1 1 .4.1 5 SET SCENE ( DTR0,

U pon



o th e r cas e s :

fad e

R e fe r to

Th i s

– 61

q u i c kl y a s

extendedFadeTimeMultiplier

new

b e fo re

a fad e

extendedFadeTimeBase

Th e

a

CSV

201 8

(

DTR0, sceneX

) ”,

– 0 x4 0 .

“DTR0”

co m m an d s ,

one

fo r

Th i s

is

acco m p l i s h e d

o pco d es .

Th i s

th e

scen e

i d e n ti fi e s

th e



n u m ber

sceneX”

to

sh al l be

be

d e ri ve d

fro m

th e

u sed.

.

fo r fu rth e r i n fo rm ati o n

1 1 .4.1 6 REMOVE FROM SCENE ( sceneX) Th i s

co m m an d

by s e l e cti n g

U pon th e

actu al l y

e xe cu ti o n

opcod e:

“sceneX”

co m pri s e s

a bl o ck o f 1 6

o f “R E M OVE

sceneNumber

sh al l

be

set

to

1 6

c o n s e c u ti ve

=

FR OM

o pco d e

M AS K.

co m m an d s ,

SCEN E

– 0 x50 .

Th i s

one

fo r

e ach

sce n e .

Th i s

is

acco m p l i s h e d

o pco d es .

(

sceneX

),

Th i s

e ffe cti ve l y

th e

i d e n ti fi e s

re m o ve s

sce n e th e

th e



n u m be r s h al l

sceneX”

co n tro l

to

be

g e ar

be

d e ri ve d

fro m

u sed.

as

m em ber

fro m

th e

sce n e .

Re fer to

su bcl au s e

9. 1 9

fo r fu rth e r i n fo rm ati o n .

1 1 .4.1 7 ADD TO GROUP ( group ) Th i s

co m m an d

se l e cti n g

U pon

group

bi t[

actu al l y

a bl ock o f 1 6

e xe cu ti o n =

opco d e

group

]

of

of

co m p ri s e s

“ AD D

– 0 x6 0 .

TO

Th i s

“gearGroups”

m e m be r o f th i s

1 6

co n s e cu ti ve

co m m an d s ,

G ROU P

i d en ti fi e s

sh al l

one

fo r e ach

g ro u p .

Th i s

is

acco m p l i s h e d

by

o pco d e s .

be

(

group group group ) ”,

th e

set

to

to

be

TR U E .

sh al l

be

d e ri ve d

fro m

th e

opcod e:

u sed .

Th i s

i m pl i es

th at

th e

co n tro l

g e ar

is

a

g ro u p .

1 1 .4.1 8 REMOVE FROM GROUP ( group ) Th i s

co m m an d

se l ecti n g

U pon

group

actu al l y co m p ri s e s

a bl o ck o f 1 6

e xe cu ti o n =

o pco d e

o f “R E M OVE – 0 x70 .

1 6

c o n s e c u t i ve

Th i s

co m m an d s ,

one

fo r e ach

g ro u p .

Th i s

is

acco m pl i s h e d

by

o pco d es .

FR OM

group group

G ROU P

i d e n ti fi e s

th e

(

to

) ”,

be

group u sed.

s h al l

be

d e ri ve d

fro m

th e

o pco d e :

– 62



I EC

6 2 3 8 6 - 1 0 2 : 2 0 1 4 + AM D 1 : 2 0 1 8 © I EC

bi t[

group

]

of

“gearGroups”

m e m be r o f th i s

sh al l

be

set

to

F ALS E .

Th i s

i m pl i es

th at

th e

co n tro l

g e ar

is

CSV 201 8

not

a

g ro u p .

1 1 .4.1 9 SET SHORT ADDRESS ( DTR0 ) “shortAddress” •

if



if



in

“DTR0” “DTR0” al l

s h al l

be

s e t to :

=

M AS K:

=

1 xxxxxxxb

o th e r cas e s

M AS K ( e ffe cti ve l y d e l e ti n g

or xxxxxxx0 b:

( 0 AAAAAA1 b ) :

no

th e

s h o rt ad d re s s ) ;

ch an g e ;

0 0 AAAAAAb .

1 1 .4.20 ENABLE WRITE MEMORY “writeEnableState” N OTE

Th e re

i n vo l ved

wi t h

R e fe r to

is

no

wri ti n g

sh al l

be

co m m an d i n to

s u bcl au s e

s e t to

to

m e m o ry

9. 1 0. 5

E N AB LE D .

e xpl i ci tl y b a n ks

d i sabl e

wi l l

m e m o ry

au to m ati cal l y

wri t e

set

acce ss ,

si n ce

“writeEnableState”

an y to

co m m an d

th at

is

n ot

d i re ctl y

D I S AB LE D .

fo r fu rth e r i n fo rm at i o n .

1 1 .5 Queries 1 1 .5.1

General

Q u e ri e s

are

u sed

to

th e

U n l ess

e xp l i ci tl y s tate d



Th e

Wh e n

in

1 1 .5.2 Th e

q u e ry s h al l

appl i cabl e ,

“DTR1 ” g i ve n

q u e ri e d

re tri e ve

re tu rn s

an d

be

th e

“DTR2”

Tabl e

pro p e rty

p ro p e r t y va l u e

)

o th e rwi s e

i g n o re d

q u e ry are

in

in

i f so

s h al l

o u ts i d e

val u e s

fro m

a b a c kw a r d

th e

d e s cri p ti o n

re q u i re d

be th e

b y th e

d i s card e d ran g e

of

be

th e

wh i ch

is

fo rm e d

1 1 .5.3

QUERY CONTROL GEAR PRESENT

an s we r s h al l

Th e

Th e

ad d re s s e d

if

o f a p arti cu l ar q u e ry,

p ro vi s i o n s

an y

va l i d i t y

of of

th e th e

th e

o f s u bcl au s e

p aram e te r ad d re s s e d

be

b y a co m b i n ati o n

co n t ro l

fo l l o wi n g

g e ar

hol ds:

9. 7.

va l u e s d e vi c e

o f co n tro l

(i n

“DTR0”

vari ab l e s ,

g e ar p ro p e rt i e s .

fo r fu rth e r i n fo rm ati o n .

YE S .

be

YE S

if

“controlGearFailure”

is

TR U E

an d

NO

o th e rwi s e .

QUERY LAMP FAILURE

an s we r s h al l

1 1 .5.6

Th e

QUERY CONTROL GEAR FAILURE

an s we r s h al l

1 1 .5.5

9. 1 6

s tatu s ,

s u bcl au s e

Th e

g e ar.

QUERY STATUS

an s we r s h al l

1 1 .5.4

co n tro l

1 4.

R e fe r to

Th e

a

fra m e .

be

YE S

if

“lampFailure”

is

TR U E

an d

NO

o th e rwi s e .

QUERY LAMP POWER ON

an s we r s h al l

be

YE S

if

“lampOn”

is

TR U E

an d

NO

o t h e rwi s e .

,

as

I EC

6 2 3 8 6 - 1 0 2 : 2 0 1 4 + AM D 1 : 2 0 1 8

© I EC

1 1 .5.7 Th e

an s we r s h al l



be

an s we r s h al l

be

if

“limitError”

is

TR U E

an d

NO

o th e rwi s e .

YE S

if

“resetState”

is

TR U E

an d

NO

o th e rwi s e .

QUERY MISSING SHORT ADDRESS

an s we r s h al l

N OTE

YE S

QUERY RESET STATE

1 1 .5.9 Th e

– 63

QUERY LIMIT ERROR

1 1 .5.8 Th e

CSV

201 8

Si n ce

b ro ad cas t

th e

mode

be

YE S

co n tro l

or if

g ear

g ro u p

if

“shortAddress”

an s we rs

ad d re s s i n g

onl y is

if

no

is

eq u al

s h o rt

to

a d d re s s

is

M AS K a n d

s to re d ,

th e

NO

use

of

o th e rwi s e .

th e

co m m an d

is

u sefu l

onl y

in

u sed.

1 1 .5.1 0 QUERY VERSION NUMBER Th e

an s we r s h al l

R e fer to

C l au s e

be

th e

4 an d

co n te n t o f m e m o ry ban k 0

Tab l e

9

l o cati o n

0 x1 6 .

fo r fu rth e r i n fo rm at i o n .

1 1 .5.1 1 QUERY CONTENT DTR0 Th e

an s we r s h al l

“DTR0”

be

.

1 1 .5.1 2 QUERY DEVICE TYPE Th e

an s we r s h al l



if no



i f on e



i f m o re

Th e

be:

P art 2 xx i s

d e vi ce

co d i n g

th an

i m pl e m e n te d :

t y p e /f e a t u r e

one

o f th e

d e vi c e

d e vi ce

is

254;

s u p p o rte d :

t y p e /f e a t u r e

t y p e s /f e a t u r e s

is

th e

d e vi ce

s u p po rte d :

sh al l

be

as

t y p e /f e a t u r e

n u m be r;

M AS K.

s pe ci fi e d

in

th e

p arti cu l ar P arts

2 xx

of I EC

62386.

R e fe r to

s u bcl au s es

9. 1 8

an d

1 1 . 5. 1 3

fo r fu rth e r i n fo rm ati o n .

1 1 .5.1 3 QUERY NEXT DEVICE TYPE Th e



an s we r s h al l

if

d i re ctl y

pre ce d e d

s u ppo rte d :



if

d i re ctl y

h a ve

• •

if

th e

p re c e d e d

re p o rte d :

in

o th e r cas e s :

Th e byte .

s e q u e n ce

of

by

TYP E ” ,

an d

t y p e /f e a t u r e

“Q U E R Y N E XT D E VI C E

th e

n e x t l o we s t d e vi c e

m o re

th an

one

d e vi ce

t y p e /f e a t u r e

is

d e vi c e

t y p e s /f e a t u r e s

n u m be r;

TYP E ” ,

t y p e /f e a t u r e

“QU E R Y N E XT D E VI C E

T YP E ” ,

an d

not

al l

n u m b e r;

an d

al l

d e vi ce

t y p e s /f e a t u r e s

h a ve

N O.

co m m an d s

s u bcl au s e

s h al l

tra n s m i tte rs

t y p e s /f e a t u r e s

R e fe r to

l o we s t d e vi ce

254;

M u l ti - m as te r

d e vi c e

“QU E R Y D E VI C E

by

re p o rt e d :

been

al l

by

fi rs t an d

pre ce d e d

been

d i re ctl y

be:

s h al l

9. 1 8

be

an d

on l y

s h al l

as

be

sen d

s pe c i fi e d

1 1 . 5. 1 2

acce p te d

s u ch in

as

l on g

se q u e n ce

th e

as

as a

p arti cu l ar P arts

fo r fu rth e r i n fo rm ati o n .

th e y

u se

t ran s ac ti o n . 2 xx o f I EC

th e

s am e

Th e

ad d re s s

co d i n g

62386.

of

th e

– 64



I EC

6 2 3 8 6 - 1 0 2 : 2 0 1 4 + AM D 1 : 2 0 1 8 © I EC

CSV 201 8

1 1 .5.1 4 QUERY PHYSICAL MINIMUM Th e

an s we r s h al l

be

PH M .

1 1 .5.1 5 QUERY POWER FAILURE Th e

an s we r s h al l

be

YE S

if

“powerCycleSeen”

is

TR U E

an d

NO

o th e rwi s e .

1 1 .5.1 6 QUERY CONTENT DTR1 Th e

an s we r s h al l

“DTR1 ”

be

.

1 1 .5.1 7 QUERY CONTENT DTR2 Th e

an s we r s h al l

“DTR2”

be

.

1 1 .5.1 8 QUERY OPERATING MODE Th e

an s we r s h al l

R e fe r to

“operatingMode”

be

s u bcl au s e

9. 9

.

fo r fu rth e r i n fo rm a ti o n .

1 1 .5.1 9 QUERY LIGHT SOURCE TYPE Th e

an s we r s h al l

be

th e

n u m ber o f th e

l i g h t s o u rce

type

g i ve n

in

Tab l e

1 7.

Table 1 7 – Light source type encoding Type of l i g h t sou rce

Encodi ng

Lamp fai l ure detecti on Open ci rcu i t (Lamp di sconnected)

Low

p re s s u re

fl u o re s ce n t

HID

Low

2

vo l t ag e

h al o g e n

3

I n can d e s ce n t

4

LE D

6

OLE D

Oth er

7

th an

U n kn o wn

No

light

l i sted

light

light

above

s o u rc e

s o u rc e

M u l ti pl e

252

typ e

b

253

b

c

d

e

Te s ti n g

type s

See

in

u sed

cas e s

done

in

th e

wh e re

typ e ,

th e

wi t h

cas e

no

light

of

light

s u p p o rt e d

an s we re d

D TR 1

l i g h t s o u rce

Wh e n "no

on

M AS K i s

s o u rce th i rd

d

d

d

5,

e

[8, 251 ]

o u tpu t

si g n al



e

of

at

l e as t

c o n ve rs i o n ,

s o u rc e

is

5

%.

fo r e xam pl e

co n n ected ,

fo r

1

V

e xam pl e

a

to

1 0

V.

re l ay.

9. 1 6. 3.

D epen di n g

Wh e n

be



M AS K

1 ,

Typ i cal l y

U sed

a

a

254

so u rce

s h al l

 

a

a

d

c

R e s e rve d

a

       

0

Sh ort circu i t

th e

s o u rc e

type s .

co n te n t

re pre s e n t

o f D TR 0

th e

s e co n d

s h al l

co n tai n

l i g h t s o u rce

a

val u e

type ,

an d

re p re s e n ti n g D TR 2

s h al l

th e

fi rs t

light

re p re s e n t

th e

typ e .

e xactl y two

l i g h t s o u rce " .

sh al l

light

d i ffe re n t

l i g h t s o u rce

type s

are

avai l ab l e ,

D TR 2

s h al l

co n tai n

254,

i n d i cati n g

I EC

6 2 3 8 6 - 1 0 2 : 2 0 1 4 + AM D 1 : 2 0 1 8

© I EC

201 8

Wh e n

m o re

th an

th re e

CSV

– 65

d i ffe re n t l i g h t s o u rce



type s

are

avai l ab l e ,

D TR 2

s h al l

co n tai n

255.

1 1 .5.20 QUERY ACTUAL LEVEL Th e

an s we r s h al l

be:

“actualLevel”



if



In

al l

d u ri n g



no

s tartu p :

light

0 x0 0

(see

al so

9. 1 3) ;

al l

M AS K;

o u tpu t

e xpe cte d :

in

0 x0 0 :

o th e r cas es :





=

(e. g .

due

to

to tal

l am p

fai l u re ,

co n tro l

g ear

fai l u re )

wh i l e

light

o u tp u t

is

M AS K;

“actualLevel”

o th e r cas e s :

.

1 1 .5.21 QUERY MAX LEVEL Th e

an s we r s h al l

be

“maxLevel”

.

1 1 .5.22 QUERY MIN LEVEL Th e

an s we r s h al l

be

“minLevel”

.

1 1 .5.23 QUERY POWER ON LEVEL Th e

an s we r s h al l

R e fer to

be

su bcl au s e

“powerOnLevel”

9. 1 2

.

fo r fu rth e r i n fo rm ati o n .

1 1 .5.24 QUERY SYSTEM FAILURE LEVEL Th e

an s we r s h al l

R e fe r to

be

s u bcl au s e

“systemFailureLevel”

9. 1 2

.

fo r fu rth e r i n fo rm ati o n .

1 1 .5.25 QUERY FADE TIME/FADE RATE Th e

an s we r

“fadeRate”

s h al l

be

X X X X YYYYb ,

wh e re

XXXXb

“fadeTime”

e q u al s

an d

YYYYb

eq u al s

.

1 1 .5.26 QUERY EXTENDED FADE TIME Th e

an s we r

YYYYb

s h al l

e q u al s



be

0

X X X YYYYb ,

extendedFadeTimeBase

wh e re

XXXb

eq u al s



extendedFadeTimeMultiplier



an d

an d

NO

”.

1 1 .5.27 QUERY MANUFACTURER SPECIFIC MODE Th e

an s we r

s h al l

be

YE S

“operatingMode”

wh e n

is

in

th e

ran g e

[0 x80 , 0 xFF]

o t h e rwi s e .

1 1 .5.28 QUERY SCENE LEVEL ( sceneX) Th i s

co m m an d

by s e l e cti n g

U pon th e

Th e

e xe cu ti o n

opcod e:

actu al l y

co m pri s e s

a bl o ck o f 1 6

of

“QU ERY SCEN E

sceneNumber

an s we r s h al l

1 6

c o n s e c u ti ve

be

=

o pco d e

“sceneX”

.

co m m an d s ,

one

fo r

e ach

sce n e .

Th i s

is

acco m p l i s h e d

o pco d es .

LE VE L (

– 0 xB0 .

sceneX

Th i s

) ”,

th e

i d e n ti fi e s

scen e th e



n u m ber

sceneX”

to

s h al l be

be

d e ri ve d

u sed.

fro m

– 66

R e fe r to

s u bcl au s e

9. 1 9



I EC

6 2 3 8 6 - 1 0 2 : 2 0 1 4 + AM D 1 : 2 0 1 8

CSV

© I EC

201 8

bi t

e ach

fo r fu rth e r i n fo rm ati o n .

1 1 .5.29 QUERY GROUPS 0-7 Th e

an s we r s h al l

be

Th e

m e m b e rs h i p

of

g ro u p .

“0 ”

s h al l

g ro u p .

B i t[

X

]

be

sh al l

“gearGroups[7:0]” g ro u ps

0-7

i n te rp re te d

s h al l

as

.

be

n ot a

re p re s e n te d

m e m be r,

re p re s e n t m e m b e rs h i p

an d

o f g ro u p

X

,

as “1 ”

an

8-bi t

s h al l

wh e re

be

X

is

val u e ,

wi th

i n te rp re te d

in

th e

ran g e

one

as

fo r

m e m be r o f th e

[0 , 7 ] .

1 1 .5.30 QUERY GROUPS 8-1 5 Th e

an s we r s h al l

be

Th e

m e m b e rs h i p

of

g ro u p .

“0 ”

sh al l

g ro u p .

B i t[

X

]

be

s h al l

“gearGroups[1 5:8]” g ro u p s

8-1 5

i n t e rp re te d

s h al l

as

.

be

not a

re p re s e n te d

m e m be r,

re p re s e n t m e m b e rs h i p

an d

o f g ro u p

X

as

“1 ”

+8,

an

8-bi t

s h al l

be

X

wh e re

val u e ,

wi th

i n te rp re te d is

in

th e

on e

as

ran g e

bi t

fo r

each

m e m be r o f th e [0 , 7] .

1 1 .5.31 QUERY RANDOM ADDRESS (H) Th e

an s we r s h al l

“randomAddress[23:1 6]”

be

.

1 1 .5.32 QUERY RANDOM ADDRESS (M) Th e

an s we r s h al l

“randomAddress[1 5:8]”

be

.

1 1 .5.33 QUERY RANDOM ADDRESS (L) Th e

an s we r s h al l

“randomAddress[7:0]”

be

.

1 1 .5.34 READ MEMORY LOCATION ( DTR1, DTR0) Th e

If

q u e ry s h al l

e xe cu te d ,

wi th i n

Th e

If

1

th e

th e

d i s card e d

an s we r

Th i s

g e ar s h al l

al l o ws

ad d re s s e d

h ol es

i f th e

s h al l

“DTR1 ”

m e m o ry b an k

co n tro l

N OTE

be

be

th e

l o cati o n

th e

co n te n t

i f th e

m e m o ry

is

m e m o ry b an k i s

of

th e

n o t i m pl em en ted .

m e m o ry

l o cati o n

i d e n ti fi e d

by

“DTR0”

.

an s we r N O

in

ad d re s s e d

ad d re s s e d

m e m o ry l o cati o n

is

n o t i m pl e m e n te d .

ban k i m pl e m e n tati o n .

bel ow

l o cati o n

0 xFF,

th e

co n t ro l

g ear

s h al l

i n cre m e n t

“DTR0”

by

one.

N OTE

2

R e fe r to

Th i s

al l o ws

e ffi ci e n t

s u bcl au s e

9. 1 0

m u l ti - byte

re ad i n g

wi t h i n

a

tran s acti o n .

fo r fu rth e r i n fo rm ati o n .

1 1 .6 Application extended commands 1 1 .6.1

General

“ E N AB LE to

co m m an d

If

D E VI C E

en abl e

th e

“E N AB LE

“ E N AB L E

e xte n d e d

T YP E

co rre c t

data

D E VI C E

D E VI CE

com m an d

(

T YP E

is

)”

d e vi c e

(

sh al l

TYP E

data

acce p te d ,

be

e xe cu te d

t y p e /f e a t u r e

)”

(

is

th e

data

)”

be fo re

co m m an d

an d

an

s e t.

appl i cati o n For

fu rth e r

e xte n d e d

co m m an d

re q u i re m e n ts ,

see

1 1 . 7. 1 4.

d i s card e d appl i cati o n

or

not

re c e i ve d

exten d e d

d i re c tl y

co m m an d

b e fo re

sh al l

be

an

ap pl i cati o n

d i s card e d .

I EC

6 2 3 8 6 - 1 0 2 : 2 0 1 4 + AM D 1 : 2 0 1 8

© I EC

Th e

CSV

– 67



201 8

d e fi n i ti o n

o f th e

e xte n d e d

co m m an d s

is

p art o f th e

R e fe r to

9. 1 8

1 1 .6.2

QUERY EXTENDED VERSION NUMBER

Th e

an s we r

d e vi c e

Th e

s h al l

an s we r s h al l

i f th e



if

be

th e

R e fe r to

th e

as

ve rs i o n

an

n u m ber

of

P a rt

2 xx

of

th i s

n o t i m pl e m en te d :

N O;

s tan d ard

fo r

th e

c o rre s p o n d i n g

8 - b i t n u m be r.

be:

en abl ed

d e vi ce

e n ab l e d

d e vi c e

s p e c i fi c s ta n d a rd s .

fo r fu rth e r i n fo rm a ti o n .

t y p e /f e a t u r e



app l i cati o n

t y p e /f e a t u r e

d e vi c e

t y p e /f e a t u r e

s u bcl au s e

is

t y p e /f e a t u r e

is

s u p p o rte d :

th e

ve rs i o n

n u m ber

bel on g i n g

to

th e

n u m b e r.

9. 1 8

fo r fu rth e r i n fo rm ati o n .

1 1 .7 Special commands 1 1 .7.1 Al l

General

s p e ci al

m od e

co m m an d s

s h al l

be

i n t e rp re te d

as

i n s tru c ti o n s

u n l ess

e xpl i ci tl y

s tated

o th e rwi s e .

1 1 .7.2 Th e



TERMINATE

fo l l o wi n g

pro ce s s e s

I n i ti al i s ati o n ,





Th e

co m m an d

wh e th e r LE VE L)

cou l d

R e fe r to

s u bcl au s e

1 1 .7.3

DTR0 ( data )

“DTR0”

sh al l

be

al s o

9. 1 4. 2

s e t to

1 1 .7.4

INITIALISE ( devic e )

i n s tru cti o n

s tate d

On l y in

in

d e vi ce s

Tab l e

s h al l

IEC

s h al l

as

be

i m m e d i ate l y u po n

s e t to

p art

a s tan d ard

e xe cu ti o n

data

be

D I S AB LE D .

of

i n i ti al i s ati o n

o p e rati o n

o th e r pro ce s s e s

(u si ng

R E C AL L M AX L E VE L ,

( I D E N TI F Y D E VI C E )

as

i d e n ti fi ed

in

th e

th e

u n l ess

an d

g i ve n

it

device

Devi ce

is

acce p te d

twi ce

s h al l

re s p o n d

to

Responsi ve d evi ce(s)

00000000b

Al l

Oth er

None

wi t h

“shortAddress”

g e ar wi th o u t

c o n tro l

s to ppe d .

acc o rd i n g

g e ar s h al l

e q u al

“shortAddress” re act

to

th e

re q u i re m e n ts

I E C 6 2 3 8 6 - 1 0 1 : 2 0 1 4 /A M D 1 : 2 0 1 8 , 9 . 4.

th e

i n s tru cti o n ,

Table 1 8 – Device addressing with “INITIALISE”

C o n tro l

be

.

d i s ca rd e d ,

m atch i n g

1 1 1 1 1 1 1 1 b

sh al l

r e l e va n t 2 x x p a rts .

1 8:

D e vi ce (s )

i n s tru c ti o n :

fo r fu rth e r i n fo rm ati o n .

62386-1 01 : 201 4

0 AAAAAA1 b

o f th i s

fo r fu rt h e r i n fo rm a ti o n .

g i ve n

9. 1 0



te rm i n a te

s u bcl au s e

Th i s

te rm i n a te d

s tarte d

o r as

R e fe r to

as

be

initialisationState

I d e n ti fi cati o n , R E C AL L M I N

s h al l

to

0 0 AAAAAAb

s h al l

re act

as

fo l l o ws

– 68



I EC

6 2 3 8 6 - 1 0 2 : 2 0 1 4 + AM D 1 : 2 0 1 8 © I EC

Th e

i n s tru cti o n

E N AB LE D

s h al l

i f i t was

s tart

R e fe r to

s u bcl au s e

1 1 .7.5

RANDOMISE

Th i s as

i n s tru cti o n

s tate d

Th e

in

i n s tru cti o n

I f e xe cu te d ,

9. 1 4. 2

s h al l

I EC

sh al l

th e

th e re

are

be

be

l og i cal

co n tai n e d

Th e re

th e

unit

sh al l

th e

be

bu s

no

s u bcl au s e

1 1 .7.6

COMPARE

q u e ry s h al l

I f e xe cu te d ,



if “



in

th e

co n tro l

o th e r cas e s :

s u bcl au s e

1 1 .7.7

WITHDRAW be



“randomAddress” i n s tru c t i o n

be

no

to

an s we r.

acce p te d

twi ce

acc o rd i n g

to

th e

re q u i re m e n ts

a ran d o m

val u e

wi th i n

an d

ad d re s s e s

th e

1 00

is

D I S AB LE D .

“randomAddress”

fo r ms

th e

not

bu s

fo u n d

,

in

th e

ran g e

of

for u s e .

i n s tru cti o n

wi th i n

th at

is

is

unit

in

e xecu te d sh al l

an y

of

be

th e

u si ng

b ro a d cas t

unique, o th e r

i. e.

e ve ry

l o g i cal

u n i ts

th i s

i n s tru cti o n .

fo r fu rth e r i n fo rm at i o n .

u n l ess

“initialisationState”

is

E N AB LE D .

an s we r:

”:

YE S ;

NO

“initialisationState”

th e

is

avai l ab l e

ad d re s s

g e ar s h al l

9. 1 4. 2

sh al l

it

p re s e n t





If

u n i ts

ran d o m

d i s card e d



i n s tru cti o n

“initialisationState”

s e tti n g

s h al l

u n i t.

R e fe r to

Th e

be

randomAddress ≤ searchAddress

al l

by

Th e re

I E C 6 2 3 8 6 - 1 0 1 : 2 0 1 4 /A M D 1 : 2 0 1 8 , 9 . 4.

g e n e rate

ran d o m

9. 1 4. 2

be

s tate ,

ti m e r.

“initialisationState”

if

s h al l

l o g i cal

re p l y to

R e fe r to

Th e

sh al l

wh i ch

a

i n i ti al i sati o n

u n l ess

an d

d i s ca rd e d

h a ve

th e

( re - ) tri g g e r th e

d i s ca rd e d ,

g e n e ra te d

s h al l

in

an d

fo r fu rth e r i n fo rm a ti o n .

i n s tru cti o n

m u l ti pl e

ad d re s s i n g ,

p ro l o n g

62386-1 01 :201 4

[0 x0 0 0 0 0 0 , 0 xFFFFFE ]

If

or

D I S AB L E D

CSV 201 8

d i s card e d

is

is

fo r fu rth e r i n fo rm ati o n .

e q u al

eq u al

is

u n l ess

to

to

th e

fo l l o wi n g

E N AB LE D ,

co n d i ti o n s

hold:

an d

“searchAddress”

e xe cu te d ,

th e

co n tro l

g e ar

sh al l

“initialisationState”

ch an g e

to

WI TH D R AWN .

B e fo re

wi th d rawi n g

usin g

“ P R O G R AM

N OTE

Th e

appl i cati o n no

an s we r

e ffe ct

is

co n tro l l e r ( f ro m

an y

a

co n tro l

g e ar,

th at to

th e

co n tro l

con d u ct

co n tro l

a

g e ar)

on

th e

s u bcl au s e

1 1 .7.8

SEARCHADDRH ( data )

i n s tru cti o n

9. 1 4. 2

g e ar

( b i n a ry)

R e fe r to

Th e

th e

S H O R T AD D R E S S

sh al l

be

is

(

appl i cati o n

data

e xcl u d e d

s e arch

co n tro l l e r

m ay

ass i g n

it

a

f ro m

o pe rati o n

su bseq u en t a c ro s s

al l

“COM P AR E ”

d e vi ce s

u n ti l

o p e rat i o n s ,

th e

bu s.

if

“initialisationState”

is

e q u al

to

th u s

“COM P AR E ”

fo r fu rth e r i n fo rm at i o n .

d i s ca rd e d

s h o rt

ad d re s s ,

) ”.

D I S AB LE D .

al l o wi n g

q u e ry

th e

l ead s

to

I EC

6 2 3 8 6 - 1 0 2 : 2 0 1 4 + AM D 1 : 2 0 1 8

© I EC

I f e xe cu te d ,

“searchAddress[23:1 6]”

R e fer to

su bcl au s e

1 1 .7.9

SEARCHADDRM ( data )

Th e

CSV

– 69



201 8

i n s tru cti o n

I f e xe cu te d ,

R e fe r to

9. 1 4. 2

sh al l

be

d i s card e d

9. 1 4. 2

be

s e t to

th e

g i ve n

data

.

fo r fu rth e r i n fo rm ati o n .

“initialisationState”

if

“searchAddress[1 5:8]”

s u bcl au s e

sh al l

s h al l

be

s e t to

th e

is

e q u al

g i ve n

data

to

D I S AB L E D .

to

D I S AB L E D .

.

fo r fu rth e r i n fo rm at i o n .

1 1 .7.1 0 SEARCHADDRL ( data ) Th e

i n s tru cti o n

I f e xe cu te d ,

R e fe r to

sh al l

be

d i s ca rd e d

“searchAddress[7:0]”

s u bcl au s e

9. 1 4. 2

“initialisationState”

if

s h al l

be

s e t to

th e

is

g i ve n

e q u al

data

.

fo r fu rth e r i n fo rm a ti o n .

1 1 .7.1 1 PROGRAM SHORT ADDRESS ( data ) Th e

i n s tru cti o n

sh al l

be



“initialisationState”



“randomAddress”

I f e xe cu te d ,



if



if



in

data data al l

R e fe r to

is

d i s ca rd e d

is

e q u al

eq u al

“shortAddress”

=

M AS K:

=

1 xxxxxxxb

to

th e

E N AB LE D

fo l l o wi n g

hold:

an d

“searchAddress”

s h al l

be

s e t as

o r xxxxxxx0 b :

( 0 AAAAAA1 b ) :

9. 1 4. 2

co n d i ti o n s

o r WI TH D R AWN ,

fo l l o ws :

M AS K ( e ffe c ti ve l y d e l e t i n g

o th e r cas e s

s u bcl au s e

to

u n less

no

th e

s h o rt ad d re s s )

ch an g e

0 0 AAAAAAb .

fo r fu rth e r i n fo rm ati o n .

1 1 .7.1 2 VERIFY SHORT ADDRESS ( data ) Th e

If

q u e ry s h al l

e xe cu te d ,

th e

b y 0 AAAAAA1 b ,

R e fe r to

be

d i s card e d

an s we r an d

s u bcl au s e

NO

s h al l

“initialisationState”

if

be

YE S

if

is

e q u al

“shortAddress”

is

to

D I S AB L E D .

e q u al

to

0 0 AAAAAAb

fo r

data

g i ve n

o th e rwi s e .

9. 1 4. 2

fo r fu rth e r i n fo rm at i o n .

1 1 .7.1 3 QUERY SHORT ADDRESS Th e

q u e ry s h al l

be

d i s card e d



“initialisationState”



“randomAddress”

If

e xe cu te d ,

o r M AS K,

R e fer to

in

th e

is

is



su bcl au s e

e q u al

to

n o t eq u al

an s we r

cas e

i f:

sh al l

be

shortAddress 9. 1 4. 2



D I S AB L E D ,

to

or

“searchAddress”

0 AAAAAA1 b ,

e q u al s

.

wh e re

M AS K.

fo r fu rth e r i n fo rm ati o n .



shortAddress



is

eq u al

to

0 0 AAAAAAb ' ,

– 70



I EC

6 2 3 8 6 - 1 0 2 : 2 0 1 4 + AM D 1 : 2 0 1 8 © I EC

CSV 201 8

1 1 .7.1 4 ENABLE DEVICE TYPE ( data ) Th i s

i n s tru c ti o n

co m m an d p re vi o u s

A

a

of

co n tro l

g e ar

co m m an d s co n tro l

Th e

a

is

th e

d e vi ce

val i d .

d e vi ce

n o n - app l i cati o n D E VI C E

T YP E

th at co m m an d

I EC

sel ect

1 1 . 6)

t y p e /f e a t u r e

E xe cu ti n g

t y p e /f e a t u r e .

fo r

“ E N AB LE Th e

wh i ch

th e

D E VI C E

se l ecti o n

is

n ext

T YP E

only

ap pl i cati o n

( d ata) ”

val i d

fo r

sh al l

th e

exten d e d

can ce l

n ext

an y

ap p l i cati o n

co m m an d .

“ E N AB LE an d

to

s e l e cti o n

exten d ed

If

s h al l

( re fe r

s h al l

data

if

sh al l

e xte n d e d

( d ata) ” ,

be

not

e q u al s

th e

e xe cu te d

re ac t

M AS K,

to

co m m an d of

th e

acco rd i n g

to

i ts

co m m an d s

254

is

e n abl i n g

afte r

t y p e /f e a t u r e

s h al l

e xe cu ti n g be

can ce l l e d

app l i cati o n

e xten d ed

s p e ci fi cati o n .

wh i ch

o r re p re s e n ts

accepted

d e vi ce

bel on g

a d e vi ce

to

th e

t y p e /f e a t u r e

n o t s u ppo rte d

by

th i s

g e ar.

d e vi ce

t y p e s /f e a t u r e s

s h al l

be

co d ed

as

s pe c i fi e d

i d e n ti fy

i n d i vi d u al

in

th e

p arti cu l ar

p arts

of

th e

6 2 3 8 6 - 2 xx se ri e s .

Ap p l i cati o n b e twe e n

co n tro l l e rs

th e

g e ar' s

sh ou l d

i n d i vi d u a l

be

abl e

ad d re s s

to

an d

th e

d e vi ce

g e ars

an d

t y p e s /f e a t u r e s

in

sto re

th e

re l a t i o n s h i p

a p e rs i s te n t m e m o ry.

1 1 .7.1 5 DTR1 ( data ) “DTR1 ” R e fe r to

sh al l

be

s e t to

s u bcl au s e

g i ve n

9. 1 0

data

.

fo r fu rth e r i n fo rm ati o n .

1 1 .7.1 6 DTR2 ( data ) “DTR2”

sh al l

be

s e t to

g i ve n

data

.

1 1 .7.1 7 WRITE MEMORY LOCATION ( DTR1 ,

DTR0, data

Th e

fo l l o wi n g

i n s tru cti o n

sh al l

be



th e



“writeEnableState”

N OTE wri t e

If

ad d re s s e d

1

Th i s

e n abl e

th e

i n s tru cti o n

i d e n ti fi e d

N OTE

2

m e m o ry b an k i s

o p e rati o n

co n d i ti o n

by

d i s card e d

is

is

a

i f an y o f th e

n o t i m pl e m e n te d ,

)

co n d i ti o n s

h old:

or

D I S AB LE D .

bro ad cas t

o p e rati o n .

S e l e cti ve

co n tro l

g e ar

ad d re s s i n g

can

be

ach i eve d

by

s e tti n g

th e

s e l e cti ve l y.

is

“DTR0”

S i m u l tan e o u s

e xecu te d , wi th i n

th e

co n tro l

m e m o ry b an k

wri t i n g

to

m u l ti pl e

can

re a d

co n tro l

g ear

“DTR1 ” g e ar

wi l l

s h al l an d

wri te

re tu rn

p ro b ab l y

data data

i n to

as

l e ad

to

an

fram i n g

th e

m e m o ry

l o cati o n

an s we r.

e rro rs

becau s e

of

col l i d i n g

an s we rs .

N OTE

I f th e

3

Th e

val u e

s e l e cte d

th at

n o t i m pl e m e n te d ,



a b o ve



l o c ke d



n o t wri te ab l e ,

th e

to

sh al l

th e

s u bcl au s e

“ WR I TE be

m e m o ry

ban k l o cati o n

is

n ot

n e ce s s ari l y

data

.

is

or

l as t acce s s i b l e

(see

an s we r

l o cati o n

f ro m

m e m o ry b an k l o cati o n



th e

be

m e m o ry l o cati o n ,

9. 1 0. 2) ,

or

M E M O R Y L O C ATI O N

wri tt e n

to .

or

(

DTR1 , DTR0, data

)”

s h al l

be

NO

an d

no

m e m o ry

I EC

6 2 3 8 6 - 1 0 2 : 2 0 1 4 + AM D 1 : 2 0 1 8

© I EC

If

th e

CSV

– 71



201 8

ad d re s s e d

l o cati o n

is

bel ow

l o cati o n

0 xFF,

th e

co n t ro l

g ear

s h al l

i n cre m e n t

“DTR0”

by

one.

N OTE

4

Th i s

R e fe r to

al l o ws

e ffi ci e n t

s u bcl au s e

9. 1 0

m u l ti - byte

wri t i n g

wi t h i n

a

tran s acti o n .

fo r fu rth e r i n fo rm ati o n .

1 1 .7.1 8 WRITE MEMORY LOCATION – NO REPLY ( DTR1 , Th i s

i n s tru cti o n

co m m an d

R e fe r to

is

i d en ti cal

e xce p t th at th e

s u bcl au s e

9. 1 0

to

re c e i vi n g

th e

co n tro l

“ WR I TE

DTR0, data

)

M E M OR Y LOC ATI ON

g e ar sh al l

n o t re p l y t o

th e

(

DTR1 , DTR0, data

)”

co m m an d .

fo r fu rth e r i n fo rm ati o n .

1 1 .7.1 9 PING Th e

pi n g

i n d i cate

com m an d

is

th e i r p re s e n ce .

1 2 Test procedures Vo i d

u sed Th e

by

si n g l e

pi n g

m as te r

co m m an d

appl i cati o n

s h al l

be

c o n tro l l e rs

i g n o re d

b y co n tro l

(see

I EC

g e ar.

62386-1 03)

to

– 72



I EC

6 2 3 8 6 - 1 0 2 : 2 0 1 4 + AM D 1 : 2 0 1 8 © I EC

CSV 201 8

Annex A ( i n f o rm at i ve )

Exampl es of alg orith ms A.1

Rand om ad d ress al locati on

Th e

co n tro l

se tu p

a)

g e ar

o f th e

S tart

th e

Send 0

c)

co n n ecte d

al g o ri th m

fo r a ti m e

b)

are

pe ri o d

Th e

co n tro l

d e vi c e

al g o ri th m

ti m i n g

is

in

al l

+2

(

data

b a c kw a r d

At

d e vi ce

th at

u ses

ran d o m

ad d re s s

al l o cati o n

fo r

fo r th e

s h o rt

)”

re m ai n i n g

is

h)

Th e

g e ar

se q u e n ce

co n tro l

(

(

th e

Th e

co n tro l

ad d re s s i n g

co m m an d s

randomAddress

a

l owes t

fro m

d i ffe re n t

(

data

c o n tro l

d e vi c e

in

ra n d o m

) ”,

so

to

wi th

be

g e ar.

wh i ch

ad d re s s

by

th at

m e an s

“ S E AR C H AD D R M

g e ar

n eeds

co n tro l

randomAddress

data

data

can

of

Al s o ,

cas e

th e

ab l e

l o we s t

to

h an d l e

th e re

is

a

(

data

ran d o m d i ffe re n t

ch an ce

ra n d o m i s a ti o n

of ) ”,

th at

shou ld

be

)”

be

to

th e

co n tro l

to

can

be

u sed

i d e n ti fi e d

fo u n d

re co rd

can

be

sh al l

th e

to

by

l o cal

ch an g e d

be

g ear

fo u n d

wi th

ai d

of

) ”.

ve ri fy th e

using

“ R E C ALL M AX L E V E L”

s h o rt a d d re s s

g ear

ch o o s e

g e ar wi th

p ro g ram m e d

s h o rt ad d re s s

th e

th e

g e ar.

Th e

I f n eeded,

th e

s am e

f)

p ro g ram m e d

en abl es

“ S E AR C H AD D R H

“ C O M P AR E ” .

S H O R T AD D R E S S

co n tro l

wh i ch

g ear

co n tro l

com i n g

th e

“ V E R I F Y S H O R T AD D R E S S

g)

th e

po i n t,

e)

fo u n d

co n tro l

an d

fram e s

a d d re s s

al te rn ati n g

( d e vi c e ) ”

-2.

u ses

th i s

g e n e rate d

“ P R O G R AM

24

s e arch e s

fo u n d .

g ear

re s tarte d

Th e

co n tro l

“ I N I TI ALI S E

wh i ch

“ S E AR C H AD D R L

co n tro l

a

min.

“ R AN D O M I S E ” ;

ad d re ss

d)

wi th

of 1 5

≤ randomAddress ≤

an

to

s ys te m .

g oing

re m o ve d

“ I D E N TI FY D E VI C E ”,

an d

posi ti on

“ R E C ALL M I N

o f th e

b ack to

fro m

co rre c t p ro g ram m i n g .

th e

re s p e c ti ve

s te p

or

LE VE L” co n tro l

use

an

wi th

th e

g e ar

d)

s e arch

p ro ce s s

by

m e an s

of

“ WI TH D R AW” .

i)

Re peat

fro m

“ I N I TI ALI S E

j)

In

S to p

th e

th e

ad d re s s

A.2 On l y

p ro ce s s

e ve n t

ad d re s s i n g in

s tep

( d e vi ce ) ”

of

wi th

two

p ro ce d u re th e

seco n d

or

c) to

on

u n ti l

p ro l o n g

th e

no 1 5

fu rth e r

min

c o n tro l

g e ar

can

be

fo u n d .

U se

ti m er i f n e ed e d .

“ TE R M I N ATE ” .

m o re

on l y byte )

fo r

co n tro l th e s e

fo l l o we d

g ear

co n tro l by s teps

h avi n g g ear b)

to

th e

wi th

s am e

s h o rt

“ I N I TI ALI S E

(

ad d re s s ,

device

)”

re s ta rt

(u si n g

th e

th e

s h o rt

j).

One si ng l e control g ear connected to th e control device one

p ro g ram

co n tro l

g ear

is

co n n ected

to

a

co n tro l

d e vi ce

th at

u ses

th e

fo l l o wi n g

al g o ri th m

to

a s h o rt ad d re s s .

a)

Tran s m i t th e

n e w s h o rt ad d re s s

b)

Ve ri fy th e

c)

Sen d

“ S E T S H O R T AD D R E S S

s tated

in

co n te n t o f th e

I EC

D TR 0

62386-1 01 :201 4

( 0 AAA AAA1 b )

by “D TR 0

(

data

) ”.

b y “ Q U E R Y C O N TE N T D TR 0 ” .

(

DTR0

an d

wi th

th e

I E C 6 2 3 8 6 - 1 0 1 : 2 0 1 4 /A M D 1 : 2 0 1 8 ,

)”

twi ce

in

acco rd an ce

9. 3.

re q u i re m e n ts

as

I EC

6 2 3 8 6 - 1 0 2 : 2 0 1 4 + AM D 1 : 2 0 1 8

© I EC

A.3 A

co n tro l

d e vi ce

u si n g

co m m an d s

I n i ti al i s ati o n

b)

Q u e ry ' M AS K'

can

be

1 )

th e

th e

app l i cati o n

are

s u p po rte d

u sed

p ro ce s s

d e vi ce

d e vi ce

to

Send

e xte n d by

th e

co m m an d s

d i ffe re n t

n eeds

co n tro l

to

g e ar.

d e te ct

Th e

wh i ch

fo l l o wi n g

appl i cati o n

al g o ri th m

can

Th e

t y p e /f e a t u r e

co n tro l

of

m o re

al l o cati o n .

e ve ry

th an

d e vi ce

to

a)

d e vi ce

wi th

d e vi c e

co m m an d .

TYP E

al l

s h al l

(

data)

typ e



g e ar

d e vi c e

th e

data

in

type .

co n tro l

VE R S I ON wi th

th e In

s ys te m .

th i s

cas e

g e ar b e l o n g s

N U M BER”

e q u al

to

“0”.

If

th e

th e

an s we r

p ro c e d u re

to:

co m m an d I f th e re

re ce i ve d

fo l l o wi n g

is

an

p re ce d e d

an s we r,

th e

by co n tro l

0.

o th e r d e vi c e

send

co n tro l

one

type s

“ Q U E R Y E XTE N D E D

R e peat s te p

e xte n d e d

ad d re s s

s u pp o rts

D E VI C E

g e ar b e l o n g s

2)

an d

g e t a l i s t o f th e

“ E N AB LE

c)



u sed:

a)

is

– 73

U si ng appl i cati on extend ed com m and s

exten d ed be

CSV

201 8

typ e s

“ E N AB L E

s u p p o rt e d

D E VI C E

by th e

TYP E

(

co n tro l

data

)”

d e vi ce .

b e fo re

e ve ry

appl i cati o n

– 74



I EC

6 2 3 8 6 - 1 0 2 : 2 0 1 4 + AM D 1 : 2 0 1 8 © I EC

CSV 201 8

An n ex B ( n o rm at i ve )

High

A

high

re s o l u ti o n

i m pl em e n ted

Th e

di mm er

acco rd i n g

“actualLevel”

seen

in

Fi g u re

sh al l

a fad e

is

ru n n i n g



a fad e

is

s to p pe d



an o th e r d i m m i n g



a

was on

dimming

Wh e n



“actualLevel”



a

fad e

( vi a i d e al ,

b e fo re

cu rve

to

is

"in

th e

s tarts

poi n t on

fad e

j u m ps



th e re





sh al l

to

th e

is

th e

fro m

H o we ve r,

if

it

is

i m p l e m e n te d ,

it

s h al l

be

l e ve l ,

afte r

ro u n d i n g

of

an

i n te rn a l

va l u e

as

can

be

fad e

th e

wi th

re s o l u ti o n

ti m e

h as

an o th e r

fa i l u re

two

th e

s e l e cte d

i n te rn al

dimming

cu rve ,

e xce p t wh e n :

cu rve ) ;

e l apsed ;

dimming

l e ve l , in

th e

actu al an d

d i s cre te

s el e cte d

light

en ds

s to re

p o i n ts

two

o u tp u t

at

dimming

cu rve th e

o th e r cu rve s

n e a re s t o f th e s e

th e

an d

on

th e

as

th e

we l l

as

sce n e s , th e

i n cl u d i n g

c o rre s p o n d i n g

b ack wi th o u t l o s s ) .

s e l e cte d

dimming

cu rve :

po i n ts ;

( wh i ch targ e t

c u rve ,

( typ i cal l y

l e ve l

i . e.

m ay

not

light

wh e n

m atch

ou tpu t

a d i s cre te

( wh i ch

a p re s e t i s

u sed

m ay

poi n t on

n ot

th at was

th e

m atch

a

set u si n g

cu rve ) ;

fo l l ow

po i n t o n

th e

th e

co n se q u e n ce s

afte r

s to ppi n g

m o re

th an

a

a fu l l

wi th

poi n t on

sel ected ;

c u rve )

al ways

som e

te s ti n g

or hig h

be twe e n "

a d i s cre t e

are

n e are r

a d i s cre te

s ys te m

s e t to

an o th e r d i m m i n g



m an d ato ry.

al l o w re pre s e n ti n g

dimming

d i s cre te

m atch

an d

l i g h t ou tpu t i s

n ew

th e

p ro g ra m m e d

l e ve l

c u rve ,

se l ected

not

an n e x.

re p o rt

al ways



l e ve l

is

th i s

B. 1 .

Li g h t o u tp u t s h al l

p o we r

to

reso l u ti o n d i m m er

fad e , s tep

l e ve l s

or

in

or

i n t e rn al

dimming

high

re s o l u ti o n

c u r ve

wi th o u t

m aki n g

c u r ve ;

fo r te s ti n g :

s wi tch i n g

th e

fro m

i d e al

s e l e cte d

ac ti ve

m o re

dimming

dimming

th an

on e

cu rve ,

a

fi rs t

s te p

might

be

less

th an

or

c u r ve ;

dimming

c u r ve

at

a

ti m e

is

co m pl e x,

pe rh aps

b e tte r avo i d e d

B e h avi o u r th at can

be

e xp e ri e n ce d :



th e o re ti cal l y a m i n i m al



D i re ct high



a

STE P

s te p”; 0, 51



Arc

th e

UP

e. g .

" fad e

actu al

S p e ci al



STE P

wh i l e

ru n n i n g "

e ve n

l e ve l

can th at

is

" Ac tu al

set

wo rs t

to

to

th e

th e

case at

s te p

"1 "

is

“actualLevel” actu al

po i n t (l ess

ended

Le ve l "

re p re s e n ts

wh i l e

to

d i s cre te

re s po n s e

s tatu s

wh e n

al ways

D O WN

th e

( D AP C )

th e

di mm er

possi bl e

re s u l t

in

is

a

Fad e

1 , 49

ti m e

al re ad y at th e

n e are r d i s c re te

n o t ch an g e d ;

might

fad e

h al f a d i m

“h al f

s te psi z e+ 0 , 49

d o wn

at

l e ve l

th an

is

s te p”

s tart

fi n al

d e l ta

steps i ze :

s te ps i z e

to

an d

fro m

th e

poi n t

on

th e

s te p) ;

or

”o n e

re s p o n s e

en d

l as ts

to

an d

at a d i scre te

u n ti l

a

s te p

h al f

up

is

s te p;

Fad e Ti m e

h as

l e ve l ;

poi n t on

th e

dimming

c u r ve .

cas es :

Wh e n be

or

is

C o m m an d

d i m m e r to

H i g h Res

s te ps i z e ,

el apsed ,



P o we r

re s o l u ti o n

fad e

a fad e

m ad e

is

s tarte d

at fad e

fro m

s tart ti m e .

“Lam p Th e

o ff”

s tep

co n d i ti o n ,

fro m

o ff to

th e

min

fi rs t s t e p

l e ve l

is

fro m

o ff to

n o t p art o f th e

“M i n fad e

L e ve l ” ti m e .

mu st

I EC

6 2 3 8 6 - 1 0 2 : 2 0 1 4 + AM D 1 : 2 0 1 8

© I EC



Wh e n be

CSV

– 75



201 8

a

fad e

m ad e

fad e

at

is

s tarte d

fad e

s tart

to

“Lam p

ti m e

+

o ff”

co n d i ti o n ,

F ad e Ti m e .

Th e

th e

s te p

l as t fro m

s te p min

fro m l e ve l

“Mi n to

o ff

Le ve l ” is

not

to

o ff

p art

mu st

of

th e

ti m e.

actualLevel

MIN

High

+3

R e s o l u ti o n Li g h t Ou tpu t Le vel

MIN +2 M i n i m u m S tep U p d el ta

L

MIN

(I

d

e

ig

a

l

h

c

t

u

u

O rv

e

tp

;

s

u

L

t

ta

rt

e

in

+1

L

(I

d

e

ig

a

l

h

c

t

u

O

rv

u

e

;

v

e

g

tp s

u

l

o

t

ta

ff

L

i rt

g

e

n

ri

v g

d

e

)

l

o

n

g

ri

d

)

R e po rte d l e ve l

M axi m u m S tep D o wn d e l ta

MIN

P re h e at an d F ad e ru n n i n g bi t = “1 ”

I g n i ti o n ti m e ( 0 wh e n fad i n g d o wn )

Off S to pco n d i ti o n

Fad e ti m e s tart

1 /3 Fad e ti m e

2 /3 F ad e ti m e

Fad e ti m e

IEC

Fi g u re B. 1 – Level beh avi ou r i n cases of off-g ri d starti ng poin ts

– 76



I EC

6 2 3 8 6 - 1 0 2 : 2 0 1 4 + AM D 1 : 2 0 1 8 © I EC

CSV 201 8

B i bl i o g raph y

Luminaires – Part 1: General requirements and tests Switches for household and similar fixed electrical installations – Part 2-2, Particular requirements – Electronic switches Ballasts for tubular fluorescent lamps – Performance requirements Auxiliaries for lamps – Ballasts for discharge lamps (excluding tubular fluorescent lamps – Performance requirements D.C.-supplied electronic ballasts for tubular fluorescent lamps – performance requirements Lamp controlgear Equipment for general lighting purposes – EMC immunity requirements Digital addressable lighting interface – Part 102: General requirements – Control gear Limits and methods of measurement of radio disturbance characteristics of electrical lighting and similar equipment GS1 General Specification, Version 14: Jan-2014, [cited 2014-07-15] . Available at: IEC

60598-1 ,

IEC

60669-2-1 ,

I EC

60921 ,

IEC

60923,

IEC

60925,

I EC

61 347

I EC

61 547,

I EC

62386-1 02:2009,

CI SPR

(al l

p arts ) ,

1 5,

h t t p : //w w w . g o o g l e . c h /u r l ? s a = t & r c t = j & q = & e s r c = s & f r m = 1 & s o u r c e = w e b & c d = 2 & v e d = 0 C C I Q F j A B & u r l = h t t p % 3 A % 2 F % 2 F w w w . g s 1 . a t % 2 F i n d e x . p h p % 3 F o p t i o n % 3 D c o m _p h o c a d o w n l o a d % 2 6 v i e w % 3 D c a te g o ry % 2 6 d o w n l o a d % 3 D 2 8 9 % 3 Ag s 1 - g e n e ra l - s p e c i fi c a t i o n s - v1 4 e n % 2 6 i d % 3 D 9 % 3 A g s 1 - s p e z i f i ka t i o n e n - a ri ch t l i n i e n %2 6 I te m i d % 3 D 3 0 4 & e i = z n m 2 U 4 P q F o P 2 0 g XXm I H g A Q &u s g = AF Q j C N H o q aU j WXvLb y J fVJ o G xg O Al 6 3 m C w

______________

Related Documents

Gear
March 2021 0
Gear Design
February 2021 1
Landing Gear
March 2021 0
Iec 62874
January 2021 2
Iec-squirrelcagemotors
January 2021 1

More Documents from "J"