Langranges Interpolation Method

  • Uploaded by: zee khan
  • 0
  • 0
  • February 2021
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Langranges Interpolation Method as PDF for free.

More details

  • Words: 6,346
  • Pages: 51
Loading documents preview...
UNIT V NUMERICAL METHODS

Interpolation for equal and unequal integrals: Lagrange’s methods – Newton's forward and backward difference formulae - Divided difference method. ODE: Taylor series – Euler– Runge-Kulta methods

Prepared by Dr. A.R. VIJAYALAKSHMI

Interpolation for equal intervals Newton’s forward interpolation formula is

u(u 1) 2 u(u 1)(u  2) 3 y  y0  u  y0   y0   y0  .................. 2! 3! where

x  x0 u h Newton’s backward interpolation formula is

u(u 1) 2 u(u 1)(u  2) 3 y  yn  uyn   yn   yn  .................. 2! 3! where

x  xn u h

1.Obtain the interpolation quadratic polynomial for the given data by using Newton forward difference formula X : 0 2 4 6 Y : -3 5 21 45 Sol. The difference table is X

0

y f (X)

y

2 y

3 y

-3 8

2

5

8 16

4

21

8 24

6

45

0

Newton Forward Interpolation formula is

u (u  1) 2 u (u  1)(u  2) 3 y  y 0  uy 0   y0   y 0  .......... .. 2! 3!

x  x0 x0 x u    h 2 2

where

( x / 2 )( x / 2  1 ) y   3  ( x / 2 )( 8 )  (8 )  0 2! y  3  4 x  x ( x  2)

y  x  2x  3 2

2. Using Newton’s Forward Interpolation formula find the polynomial f(x) Satisfying the following data. Hence find f(2). x : 0 5 10 15 f(x) : 14 379 1444 3584 Sol. The difference table is

X

0

y f (X)  y

2 y

3 y

14 365

5

379

700 1065

10

1444

1075 2140

15

3584

375

Newton Forward Interpolation formula is u( u  1) 2 u( u  1)(u  2) 3 y  y0  u y 0   y0   y0  .... 2! 3!

where

x  x0 x  0 x u   h 5 5

x ( x / 5)( x / 5  1) ( x / 5)( x / 5  1)( x / 5  2) y  14  (365)  (700)  (375) 5 2! 3! 1  14  73 x  x ( x  5)(14)  x ( x  5)( x  10). 2

1 ( i . e .) f ( x )   x  13 x  56 x  28 2 3

2

1  f ( 2)  2  13( 2)  56 ( 2)  28  100 2 3

2



3.Construct Newton’s forward interpolation polynomial for the following data x: 4 6 8 10 y: 1 3 8 16 Use it to find the value of y for x = 5. Sol. The difference table is

X

y  f (X )

4

1

y

3 y

2

y

2 6

3

3 5

8

8

3 8

10

16

0

Newton Forward Interpolation formula is u ( u  1) 2 u ( u  1 )( u  2 ) 3 y  y0  u y0   y0   y 0  ... 2! 3! x  x0 x  4 u  h 2 x 4 1  x  4  x  4  y 1 (2)    1  (3 )  0  2 2!  2   2 

where

3  1  ( x  4)  ( x  4)( x  6) 8 8  8 x  32  3( x  10 x  24)  8 2

y (5) 



1 3(5)  22(5)  48  13  1.625 8 8 2

1 3 x  22 x  48 8 2

4.Given sin45  0.7071, sin50  0.7660, sin55  0.8192, sin60  0.8660 . Find sin 52 by Newton’ s formula 0

0

0

0

0

Sol.

To find sin 52 , we use Newton’s forward formula. Let y  sin x 0

The difference table is

x

y= sinx0

y

2 y

0.0589

-0.0057

3 y

45 0.7071 50 0.7660

-0.0007 0.0532

55 0.8192

-0.0064 0.0468

60 0.8660

0

Newton Forward Interpolation formula is u ( u  1) 2 u ( u  1)( u  2 ) 3 y  y 0  u y 0   y0   y 0  .... 2! 3!

where u  x  x0  52  45  7  1.4 h

5

5

y  0.7071  (1.4)(0.0589)  

(1.4)(1.4  1) (0.0057) 2!

(1 . 4 )(1 . 4  1)(1 . 4  2 ) (  0 . 0007 ) 3! y = 0.7880

(i.e ) sin 52  0.7880 0

5. The following data are taken from the steam table Temp 0 c : 140 150 160 170 180 Pressure kg f/cm2 : 3.685 4.854 6.302 8.076 10.22 Find the pressure at temperature t = 1750 Sol. To find the pressure f(t) at temperature t = 1750 , we use Newton’s Backward formula. The difference table is

t 140

y = f(t)

f (t )

 2 f (t )

 3 f (t )

 4 f (t )

3.685 1.169

150

4.854

0.279 1.448

160

6.302

0.047 0.326

1.774 170

8.076

180

10.225

0.049 0.375

2.149

0.002

Newton Backward Interpolation formula is

u(u  1) 2 u(u  1)(u  2) 3 y  yn  uyn   yn   yn  .... 2! 3! where u  x  xn  175  180  0.5 h 10 y  10.225  (0.5)(2.149) 

(  0 . 5 )(  0 . 5  1 ) ( 0 . 375 ) 2!

(0.5)(0.5  1)(0.5  2) (0.5)(0.5 1)(0.5  2)(0.5  3)  (0.049)  (0.002) 3! 4! y = 9.1005

6.From the following data, estimate the number of persons earning weekly Wages between 60 and 70 rupees. Wage Below 40 40 – 60 60 – 80 80 – 100 100 – 120 (in Rs.) No. of person 250 120 100 70 50 (in thousands ) Sol. The difference table is

Wage x Below 40

No. of persons y

y

2 y

3 y

4

 y

250 120

Below 60

370

-20 100

Below 80

470

-10 -30

70 Below 100

540

Below 120

590

10 -20

50

20

Let us calculate the number of persons whose weekly wages below 70. So we will use Newton’s forward formula. Newton Forward Interpolation formula is

u(u  1) u(u  1)(u  2) y  y  u y  y   y  .... 2! 3! 2

0

where

0

3

0

0

x  x 0 70  40 u   1 .5 h 20

(1.5)(1.5  1) y  250  (1.5)(120)  ( 20) 2! (1.5)(1.5  1)(1.5  2) (1.5)(1.5  1)(1.5  2)(1.5  3)  (10)  (20) 3! 4!



y  423 .59  424

Number of person whose weekly wages below 70 = 424

Number of person whose weekly wages below 60 = 370

 Number of persons whose weekly    424  370  54 thousands . wages between Rs.60 and Rs.70 

Interpolation for unequal intervals Lagrange’s interpolation formula y  f ( x) 



( x  x 1 )( x  x 2 )( x  x 3 ).......( x  x n ) y0 ( x 0  x 1 )( x 0  x 2 )( x 0  x 3 ).......( x 0  x n ) ( x  x 0 )( x  x 2 )( x  x 3 ).......( x  x n ) y1 ( x 1  x 0 )( x 1  x 2 )( x 1  x 3 ).......( x 1  x n )

( x  x 0 )( x  x1 )( x  x 3 ).......( x  x n )  y2 ( x 2  x 0 )( x 2  x1 )( x 2  x 3 ).......( x 2  x n ) +……………………………….+

( x  x0 )( x  x1 )( x  x 2 )( x  x3 ).......(x  xn1 )  yn ( xn  x0 )( xn  x1 )( xn  x 2 )( x n  x3 ).......(x n  xn1 )

7.Find the quadratic polynomial that fits y(x) = x4 at x = 0,1,2 Sol.

The following data is

x :

0

1

2

y=x4 :

0

1

16

By Lagrange’s formula

y  f ( x) 

y  f ( x) 

( x  x1 )( x  x2 ) ( x  x0 )( x  x2 ) ( x  x0 )( x  x1 ) y0  y1  y2 ( x0  x1 )( x0  x2 ) ( x1  x0 )( x1  x2 ) ( x2  x0 )( x2  x1 )

( x 1)(x  2) ( x  0)(x  2) ( x  0)(x 1) (0)  (1)  (16) (0 1)(0  2) (1 0)(1 2) (2  0)(2 1)

y   x ( x  2)  8 x ( x  1)

y( x)  7 x  6 x 2

8.Using Lagrange’s interpolation formula calculate the profit in the year 2000 from the following data

Year : 1997 Profit in lakhs   : 43 of Rs. 

1999

2001

2002

65

159

248

Sol. Lagrange’s interpolation formula is

y  f ( x) 

( x  x1 )( x  x2 )( x  x3 ) ( x  x0 )( x  x2 )( x  x3 ) y0  y1 ( x0  x1 )( x0  x2 )( x0  x3 ) ( x1  x0 )( x1  x2 )( x1  x3 ) 

( x  x0 )( x  x1 )( x  x3 ) ( x  x0 )( x  x1 )( x  x2 ) y2  y3 ( x2  x0 )( x2  x1 )( x 2  x3 ) ( x3  x0 )( x3  x1 )( x3  x2 )

Here x = 2000

(2000  1999)(2000  2001)(2000  2002)  y  f ( x)  43 (1997  1999)(1997  2001)(1997  2002)

( 2000  1997 )( 2000  2001 )( 2000  2002 )  65 ( 2000  1997 )( 2000  2001 )( 2000  2002 ) (2000  1997)(2000  1999)(2000  2002)  159 (2001  1997)(2001  1999)(2001  2002) 

y  f ( x) 

( 2000 ( 2002

 1997 )( 2000  1997 )( 2002

 1999 )( 2000  1999 )( 2002

(1)(1)(2) (3)(1)(2) 43  65 (2)(4)(5) (2)(2)(3) 

( 3 )( 1)(  2 ) ( 3 )( 1)(  1) 159  248 ( 4 )( 2 )(  1) ( 5 )( 3 )( 1 )

y = – 2.15 + 32.5 + 119.25 – 49.6 , y = 100.

 2001 ) 248  2001 )

9. Using Lagrange’s interpolation formula fit a polynomial to following data x : –1 0 2 3 y : –8 3 1 12 and hence find y at x = 1.5 Sol. Lagrange’s interpolation formula is

y  f ( x) 



( x  x1 )(x  x2 )(x  x3 ) ( x  x0 )(x  x2 )(x  x3 ) y0  y1 ( x0  x1)(x0  x2 )(x0  x3 ) ( x1  x0 )(x1  x2 )(x1  x3 )

( x  x0 )(x  x1 )(x  x3 ) ( x  x0 )(x  x1 )(x  x2 ) y2  y3 ( x2  x0 )(x2  x1 )(x2  x3 ) ( x3  x0 )(x3  x1 )(x3  x2 )

y  f ( x) 

( x  0)( x  2)( x  3) ( x  1)( x  2)( x  3) (8)  (3) (1  0)(1  2)(1  3) (0  1)(0  2)(0  3) 

( x  1)( x  0)( x  3) ( x  1)( x  0)( x  2) (1)  (12) (2  1)(2  0)(2  3) (3  1)(3  0)(3  2)

2 1 1 2 2 y  x( x  5x  6)  ( x 1)(x  5x  6)  x( x2  2x  3)  x( x2  x  2) 3 2 6

1 y  [(4 x  20 x  24 x )  (3 x  12 x  3 x  18) 6 3

2

3

2

 ( x  2x  3x)  (6x  6x 12x)] 3

2

3

2

1 y  (12 x  36 x  18 x  18 ) , 6 3

2

y  2 x  6 x  3x  3 3

2

y(1.5) = 2(1.5)3 – 6(1.5)2 + 3(1.5) + 3 = 0.75

10.Find the polynomial f(x) by using Lagrange’s formula and hence find f(3) for x: 0 1 2 5 f(x) : 2 3 12 147 Sol. Lagrange’s interpolation formula is

y  f ( x) 



( x  x1 )( x  x2 )( x  x3 ) ( x  x0 )( x  x2 )( x  x3 ) y0  y1 ( x0  x1 )( x0  x2 )( x0  x3 ) ( x1  x0 )( x1  x2 )( x1  x3 )

( x  x0 )( x  x1 )( x  x3 ) ( x  x0 )( x  x1 )( x  x2 ) y2  y3 ( x2  x0 )( x2  x1 )( x2  x3 ) ( x3  x0 )( x3  x1 )( x3  x2 )

( x  1)( x  2)( x  5) ( x  0)( x  2)( x  5) y  f ( x)  ( 2)  (3) (0  1)(0  2)(0  5) (1  0)(1  2)(1  5)



( x  0 )( x  1)( x  5 ) ( x  0 )( x  1)( x  2 ) (12 )  (147 ) ( 2  0 )( 2  1)( 2  5 ) ( 5  0 )( 5  1)( 5  2 )

y

1 3 49 (x 1)(x2  7x  10)  x(x 2  7x 10)  2x(x 2  6x  5)  x( x 2  3x  2) 5 4 20

11.Given log 654  2 . 8156 , log 10

log10 661 2.8202 . Find The following data is x :

Sol.

log 10 656 654

658

log10 x : 2.8156

2.8182

Let y  log x 10

10

658  2 . 8182 , log10 659  2.8189

by using Lagrange’s formula 659

661

2.8189

2.8202

Here x = 656

Lagrange’s interpolation formula is

( x  x1)(x  x2 )(x  x3 ) ( x  x0 )(x  x2 )(x  x3 ) y  f ( x)  y0  y1 ( x0  x1)(x0  x2 )(x0  x3 ) ( x1  x0 )(x1  x2 )(x1  x3 ) 

( x  x0 )( x  x1 )( x  x3 ) ( x  x0 )( x  x1 )( x  x2 ) y2  y3 ( x2  x0 )( x2  x1 )( x2  x3 ) ( x3  x0 )( x3  x1 )( x3  x2 )

( 656 ( 654

y  .



 658 , )( 656  658 )( 654

 659 )( 656 ,  659 )( 654

 661 ) 2, . 8156  661 )

( 656  654 )( 656  659 )( 656  661 ) 2 . 8182 ( 658  654 )( 658  659 )( 658  661 )

( 656  654 )( 656  658 )( 656  661 )  2 . 8189 ( 659  654 )( 659  658 )( 659  661 ) ( 656  654 )( 656  658 )( 656  659 )  2 . 8202 ( 661  654 )( 661  658 )( 661  659 )

y

(  2 )(  3)(  5 ) ( 2 )(  3)(  5 ) 2 .8156  2 . 8182 (  4 )(  5 )(  7 ) ( 4 )(  1)(  3) ( 2)( 2)( 5) ( 2)( 2)( 3)  2.8189  2.8202 (5)(1)( 2) (7 )(3)( 2)

y = 0.6033 + 7.0455 – 5.6378 + 0.8058 , y = 2.8168 (i.e.)

log

10

656

 2.8168

Lagrange’s formula for inverse interpolation.

( y  y1 )( y  y 2 )( y  y 3 ).......( y  y n ) x  f ( y)  x0 ( y 0  y1 )( y 0  y 2 )( y 0  y 3 ).......( y 0  y n ) ( y  y )( y  y )( y  y ).......( y  y )  x  .... ( y  y )( y  y )( y  y ).......( y  y ) 0

2

3

n

1

1

0

1

2

1

3

1

n

Newton divided difference formula 3  ( x  x )( x  x )( x  x )  y0 y  y0  ( x  x0 )y0  ( x  x0 )( x  x1 ) y0 0 1 2 2

+………..

Divided differences are symmetrical in their arguments. f ( x1 )  f ( x0 ) f ( x0 )  f ( x1 ) f ( x0 , x1 )    f ( x1 , x0 ). x1  x0 x0  x1

1.Find the second divided differences with arguments a,b,c if f(x) = 1/x. Sol. The divided difference table is y = 1/x x a

1/a

b

1/b

c

1/c

y

2 y

–1/ab –1/bc

1/abc

2.If f(x) = 1/x2, find f(a,b) and f(a,b,c) by using divided differences. Sol. The divided difference table is

x

y = 1/x2

a

1/a2

y

2 y

– (a+b)/a2b2 b

1/b2 (ab + bc + ca) / a2b2c2 – (b+c)/b2c2

c

1/c2

12.Using Newton divided difference formula find u(3) given u(1) = –26, u(2) = 12, u(4) = 256, u(6) = 844. Sol. The divided difference table is

x

y = u(x)

1

–26

y

3 y

2 y

38 2

12

28 122

4

256

43 294

6

844

3

Newton divided difference formula is

y  y0  ( x  x0 )y0  ( x  x0 )( x  x1 )2 y0 (x  x0)(x  x1)(x  x2)3 y0 . Here x = 3

y = –26 + (3 –1).(38) + (3 –1)(3 – 2)(28) + (3 –1)(3 – 2)(3 – 4)(3) = 132 – 32 = 100 (i.e.) u(3) = 100.

13.Given u   4 , u   2 , u  220 , u  546 , u  1148 0

Find u & u 2

1

4

5

6

3

Sol. The divided difference table is x 0

y u

y

2 y

3 y

x

4 y

–4 2

1

–2

18 74 9

4

220

63

1

326 15 5

546

138 602

6

1148

Newton divided difference formula is

y  y0  ( x  x0 )y0  ( x  x0 )( x  x1 )2 y0  (x  x0 )(x  x1 )(x  x2 )3 y0  (x  x0 )(x  x1 )(x  x2 )(x  x3 )4 y0  ................ y   4  ( x  0 )( 2 )  ( x  0 )( x  1)(18 )  ( x  0)( x 1)( x  4)(9)  ( x  0)( x 1)( x  4)( x  5)(1) u   4  ( 2 )( 2 )  ( 2 )( 1 )( 18 )  ( 2 )( 1 )(  2 )( 9 )  ( 2 )( 1 )(  2 )(  3 )( 1 ) 2

= – 4 + 4 + 36 – 36 + 12= 12. = – 4 +(3)(2) + (3)(2)(18) + (3)(2)( –1)(9) + (3)(2)( –1)( –2)(1) = – 4 + 6 + 108 – 54 + 12= 68.

u  – 4  (3)(2)  (3)(2)(18)  (3)(2)( – 1)(9)  (3)(2)( – 1)( – 2)(1) 3

 – 4  6  108 – 54  12  68.

14.From the following table, find the value of tan 45 015’ by Newton’s Forward Interpolation formula. x o : 45 46 47 48 49 50 tan x o : 1 1.03553 1.07237 1.11061 1.15037 1.19175 Sol.

y xo

y = tan xo

45

1

2 y

3 y

4 y

5 y

0.03553 46

1.03553

0.00131 0.03684

47

1.07237

0.00009 0.00140

0.03824 48

1.11061

0.00012 0.00152

0.03976 49

1.15037 1.19175

-0.00005 -0.00002

0.00010 0.00162

0.04138 50

0.00003

Newton Forward Interpolation formula is

y  y 0  uy 0 

where

u ( u  1) 2 u ( u  1)( u  2 ) 3  y0   y 0  .......... .. 2! 3!

x  x0 4515  45 u   0.25  h 1

( 0 . 25 )( 0 . 25  1) y  1  ( 0 . 25 )( 0 .03553 )  ( 0 . 00131 ) 2! ( 0 .25 )( 0 .25  1)( 0 .25  2 )  ( 0.00009 ) 3! 

(0.25)(0.25  1)(0.25  2)(0.25  3) (0.00003) 4! (0.25)(0.25  1)(0.25  2)(0.25  3)(0.25  4)  (0.00005) 5!

y  1  0.00888  0.00012  0.0000049 ............... (i.e.) tan 45 015’ = 1.00876

Numerical Solution of Ordinary Differential Equations Taylor series

( x  x0 ) 2 ( x  x0 ) 3 y ( x )  y 0  ( x  x 0 ) y 0  y 0  y 0 2! 3! ( x  x0 ) 4 iv  y  ....... 4!

dy 1 • Using Taylor’ s series find y at x  0.1 if  x y  1, dx y(0)  1. 2

Sol. Given

y   x 2 y  1, x 0  0 , y 0  1

y   x 2 y  1, y   x 2 y   y . 2 x y  x 2 y  y.2x  2x. y  2 y.1

2  y0  x0 y0 1  0 1  1

2

 y 0  x 0 y 0  2 x 0 y 0  0  0  0 2  y0  x0 y0  4x0 y0  2 y0  0  0  2  2

yiv  x2 y  y.2x  4x.y  4y.1 2y  y0 iv  x0 2 y0  2x0 y0  4x0 y0  6 y0  y0

iv

 0  0  0  ( 6)  6

Taylor’ s series about x  x is given by 0

(x  x ) (x  x ) (x  x )       y( x)  y  ( x  x ) y  y  y  y  ....... 2! 3! 4! 2

3

0

0

0

0

4

0

0

iv

0

0

0

( x  0) ( x  0) ( x  0) y ( x )  1  ( x  0 )(  1 )  (0)  (2)  (  6 )  ....... 2! 3! 4! 2

3

4

x3 x4 1 x    .......... ... 3 4

x3 x4 y( x)  1  x  0  (2)  (  6 )  .......... ... 6 24 ( 0 .1) 3 ( 0 .1) 4 y ( 0 .1)  1  ( 0 .1)    .......... ... 3 4

dy 2.Use Taylor series solution to solve numericall y  xy dx , y(1)  1. Tabulate y for x  1.1, 1.2 Sol. Given

1 3

x 0  1, y 0  1

1 3

1 3

y   xy  y 0  x 0 y 0  1(1)  1 2 3

1 3

1 1 4 1 1 2   1  y  x y . y  y  y0  x0 y0 3 . y0  y0 3 3 3 3 3 

1 2 / 3 1 2 / 3 1 2 / 3   2  5 / 3         y  xy   y y  xy y  y y .1  y y  3 3 3  9   y 0

2 4 1 1 8     9 9 3 3 9

Taylor’ s series about x  x is given by 0

(x  x ) (x  x ) (x  x )       y( x)  y  ( x  x ) y  y  y  y  ....... 2! 3! 4! 2

3

0

0

0

0

0

0

3 4 ( x  1 )     3!  3

(1 .1  1) 2 y (1 .1)  1  (1 .1  1)(1)  2!

iv

0

0

( x  1) 2 y ( x )  1  ( x  1)(1)  2!

4

0

8    ..... 9

3  4  (1 .1  1)   3! 3

8    ..... 9

2 ( 0 .1 ) 4 ( 0 .1 )  1  0.1    ........ 3 27 2

3

= 1 + 0.1 + 0.0067 + 0.00014 = 1.1068

(1 .2  1) 2  4  (1 . 2  1) 3 y (1 . 2 )  1  (1 .2  1)(1)    2! 3!  3

2 ( 0 .2 ) 2 4 ( 0 .2 ) 3  1  0.2    ........ 3 27

8    ..... 9

= 1 + 0.2 + 0.0267 + 0.0012 = 1.2279

d y dy 3.Find the value of y(1.1) and y(1.2) from  y  x , dx dx y ( 1 )  1 , y  ( 1 )  1 by using Taylor’ s series method. 2

2

2

Sol. Given

y  y y  x  (1) 2

3

Put y  z  (2) , then y  z  (3)

Sub (2) and (3) in (1), we get

z  y2 z  x3 (ie ).z   x  y z  (4) 3

2

The initial conditions are y(1)  1, y  (1)  1

( i .e ) y ( 1 )  1 , z ( 1 )  1 (sin ce y   z ) ( i .e ) x  1 , y  1 , z  1 0

0

0

Now to solve (1), it is enough if we solve the two first order differential equations (2) and (4).

3

y  z  y 0  z 0  1 y   z   y 0   z 0  0

y   z   y0  z 0  1

y iv  z  iv  y 0  z 0  3

z  x3  y 2 z 3

2

 z 0  x 0  y 0 z 0  1  1  0 z   3 x 2  y 2 z   z .2 y . y   z 0   3 (1 )  0  2 (1 )( 1 )( 1 )  1

z  6x  y 2 z  z.2 y. y  2[ y z. y  y y.z  yz.y]  z0  6(1)  (1)(1)  0  2[0  0  1]  6 1  2  3

Taylor’ s series about x  x is given by 0

(x  x ) (x  x ) (x  x )       y( x)  y  ( x  x ) y  y  y  y  ....... 2! 3! 4! 2

3

0

0

0

0

4

0

0

iv

0

0

0

( x  1) ( x  1) ( x  1) y ( x )  1  ( x  1 )( 1 )  (0)  (1 )  ( 3 )  .......... . 2! 3! 4! 2

3

4

(1.1  1) 3 (1.1  1) 4 y(1.1)  1  (1.1  1)(1)   (3)  ..... 6 24 (0.1)3 (0.1)4  1  0.1    ........ 6 8 = 1 + 0.1 + 0.00017 + 0.0000125 = 1.1002

(1.2  1) 3 (1.2  1) 4 y (1.2)  1  (1.2  1)(1)   (3)  ..... 6 24

(0.2)3 (0.2)4 1 0.2  ........ 6 8 = 1 + 0.2 + 0.0013+ 0.0002 = 1.2015

Euler’s method To solve

use

y' 

dy  f ( x , y ) with y ( x 0 )  y 0 dx

yn1  yn  h f ( xn , yn ) , n  0,1,2,... It’s order is

h2

dy y  x 1.Use Euler’ s method to approximate y when x  0.1 given that  dx y  x with y  1 for x  0. Sol.

We break up the interval 0.1 into five subintervals, we get the answer in more accurate form. So take h = 0.02

yx Given f ( x , y )  , x 0  0, y0  1 and h  0.02 yx x1  x 0  h = 0 + 0.02 = 0.02

y1  y0  hf ( x0 , y0 )  y 0  x0  y1  y 0  h   y  x 0   0 1 0 = 1.02 1 (0.02)  1 0

y 2  y1  hf ( x1 , y1 )  y  x1  y 2  y1  h  1  y  x  1 1 

 1 . 02  0 . 02   1.02  (0.02)   1 . 02  0 . 02  = 1.0392

(i.e.) y(0.02) = 1.02

(i.e.) y(0.04) = 1.0392

x2  x1  h = 0.02 + 0.02

= 0.04

y3  y2  hf(x2 , y2 )  y 2  x2  y3  y 2  h   y  x  2 2  1.0392 0.04 = 1.0392+ (0.02) 1.0392 0.04

(i.e.) y(0.06) = 1.0577

= 1.0577

x3  x2  h

= 0.04+ 0.02= 0.06

y 4  y3  hf ( x3 , y3 )  y3  x3  1.0577 0.06 y4  y3  h  =1.0577+ (0.02)1.0577 0.06  y3  x3 

= 1.0756

(i.e.) y(0.08) = 1.0756

x 4  x3  h

= 0.06 + 0.02= 0.08

y5  y4  hf (x4 , y4 )  y4  x4  y5  y 4  h  y  x 4   4 1 .0756  0 .08  = 1.0756 + (0.02)  1 .0756  0 .08 

= 1.0928

(i.e.) y(0.1) = 1.0928

•Solve

dy  1 y dx

with the initial condition x = 0, y = 0.Using modified Euler’s

.Method tabulate the solutions at x = 0.1, 0.2, 0.3, 0.4. Sol.

Given

Also given

f ( x, y)  1  y

x0 0, y0 0

and h = 0.1

h y1  y0   f ( x0 , y0 )  f [ x0  h, y0  hf ( x0 , y0 )] 2

f ( x0 , y0 )  1  y0 =1–0=1

y1  0 

0 .1 1  f [0  0.1,0  ( 0.1)(1)] 2

 0  0

0 .1 1  f [ 0 . 1, 0 . 1 ] 2

0.1 1  (1  0.1) = 0.095 2

.

(i.e.) y(0.1) = 0.095

x1  x0  h

= 0 + 0.1= 0.1

h y 2  y 1   f ( x 1 , y 1 )  f [ x 1  h , y 1  hf ( x 1 , y 1 )]  2 f (x , y )  1  y 1

1

1

= 1 – 0.095 = 0.905

0 .1 y 2  0 . 095  0 .905  f [ 0 .1  0 .1,0 .095  ( 0 .1)( 0 .905 )] 2 y2

0 .1  0 . 095  0 . 905  f [ 0 . 2 , 0 . 1855 ] 2

 0 . 095 

0 .1 0 .905  (1  0 .1855 ) 2

 0.095 

0.1 0.905  0.8145 2

= 0.18098

(i.e.) y(0.2) = 0.18098

x 2  x1  h y3  y2 

= 0.1+ 0.1= 0.2

h  f ( x 2 , y 2 )  f [ x 2  h , y 2  hf ( x 2 , y 2 )]  2

f ( x2 , y 2 )  1  y 2 = 1 – 0.18098= 0.81902 y 3  0 . 18098  y 3  0.18098 

 0.18098 

0 .1 0 .81902  f [ 0 .2  0 .1,0 .18098  ( 0 .1)( 0 .81902 )] 2 0. 1 0.81902  f [0.3,0.2629] 2

0 .1 0.81902  (1  0.2629) 2

 0 . 18098 

0 .1 0 . 81902  0 .7371  2

= 0.2588 (i.e.) y(0.3) = 0.2588

x3  x 2  h

= 0.2+ 0.1= 0.3

y4  y3 

h  f ( x3 , y3 )  f [ x3  h, y3  hf ( x3 , y3 )] 2

f ( x3 , y 3 )  1  y3 y 4  0 . 2588  y 4  0 .2588 

= 1 – 0.2588 = 0.7412

0 .1 0 .7412  f [ 0 .3  0 . 1,0 .2588  ( 0 .1)( 0 .2588 )] 2

0.1 0.7412  f [ 0.4,0 .3329 ] y 4  0.2588  0.1 0.7412  (1  0.3329) 2 2

y 4  0.2588 

0 .1 0.7412  0.6671 2

= 0.3292 (i.e.) y(0.4) = 0.3292

•Using R-K method of fourth order, solve

y  3 x 

1 y 2

with y(0) = 1 at x = 0.2 taking h = 0.1

Sol. Given

1 f ( x, y)  3x  y 2

Also given

x0  0, y0  1

Take h = 0.1 To find y(0.1)

k1  hf ( x0 , y0 ) y0    (0.1)3x0   2  1   (0.1)  3 ( 0 )    0 . 05 . 2 

h k1   k2  hf  x0  , y0   2 2  0.05   0.1  (0.1) f  0  , 1  2 2   1 . 025     (0.1) f ( 0 . 05 , 1 . 025 )  0.1  3 ( 0 . 05 )  2   = 0.0663

k  h  k 3  hf  x 0  , y 0  2  2 2 

0.0663  0.1  (0.1)f  0  , 1  2 2  

 (0.1) f (0.05,1.0332) 1.0332   0.13(0.05)   2   = 0.0667

= 0.0666

1  [0.05  2(0.0663)  2(0.0667)  0.0833] 6

y1  y0  y (i.e.) y(0.1) = 1.0666

k 4  hf  x 0  h , y 0  k 3   (0.1) f (0  0.1,1 0.0667) 1.0667    (0.1) 3(0.1)   2  

1 y  [k1  2k2  2k3  k4 ] 6

= 0.0833

Related Documents


More Documents from "Dmitriy Iskenderov"