Libro De Soldadura 46 Pag

  • Uploaded by: Enrique ViAn
  • 0
  • 0
  • January 2021
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Libro De Soldadura 46 Pag as PDF for free.

More details

  • Words: 17,664
  • Pages: 51
Loading documents preview...
Libro de Soldadura Perteneciente a: Vicente Antahurco Javier Enrique

LIMA – PERU 2011

Soldadura

Soldadura por arco. La soldadura es un proceso de fabricación en donde se realiza la unión de dos materiales, (generalmente metales o termoplásticos), usualmente logrado a través de la coalescencia (fusión), en la cual las piezas son soldadas fundiendo ambas y pudiendo agregar un material de relleno fundido (metal o plástico), para conseguir un baño de material fundido (el baño de soldadura) que, al enfriarse, se convierte en una unión fija. A veces la presión es usada conjuntamente con el calor, o por sí misma, para producir la soldadura. Esto está en contraste con la soldadura blanda (en inglés soldering) y la soldadura fuerte (en inglés brazing), que implican el derretimiento de un material de bajo punto de fusión entre piezas de trabajo para formar un enlace entre ellos, sin fundir las piezas de trabajo. Muchas fuentes de energía diferentes pueden ser usadas para la soldadura, incluyendo una llama de gas, un arco eléctrico, un láser, un rayo de electrones, procesos de fricción o ultrasonido. La energía necesaria para formar la unión entre dos piezas de metal generalmente proviene de un arco eléctrico. La energía para soldaduras de fusión o termoplásticos generalmente proviene del contacto directo con una herramienta o un gas caliente. Mientras que con frecuencia es un proceso industrial, la soldadura puede ser hecha en muchos ambientes diferentes, incluyendo al aire libre, debajo del agua y en el espacio. Sin importar la localización, sin embargo, la soldadura sigue siendo peligrosa, y se deben tomar precauciones para evitar quemaduras, descarga eléctrica, humos venenosos, y la sobreexposición a la luz ultravioleta. Hasta el final del siglo XIX, el único proceso de soldadura era la soldadura de fragua, que los herreros han usado por siglos para juntar metales calentándolos y golpeándolos. La soldadura por arco y la soldadura a gas estaban entre los primeros procesos en desarrollarse tardíamente en el siglo, siguiendo poco después la soldadura por resistencia. La tecnología de la soldadura avanzó rápidamente durante el principio del siglo XX mientras que la Primera Guerra Mundial y la Segunda Guerra Mundial condujeron la demanda de métodos de junta confiables y baratos. Después de las guerras, fueron desarrolladas varias técnicas modernas de soldadura, incluyendo

métodos manuales como la Soldadura manual de metal por arco, ahora uno de los más populares métodos de soldadura, así como procesos semiautomáticos y automáticos tales como Soldadura GMAW, soldadura de arco sumergido, soldadura de arco con núcleo de fundente y soldadura por electroescoria. Los progresos continuaron con la invención de la soldadura por rayo láser y la soldadura con rayo de electrones a mediados del siglo XX. Hoy en día, la ciencia continúa avanzando. La soldadura robotizada está llegando a ser más corriente en las instalaciones industriales, y los investigadores continúan desarrollando nuevos métodos de soldadura y ganando mayor comprensión de la calidad y las propiedades de la soldadura. Se dice que es un sistema porque intervienen los elementos propios de este, es decir, las 5 M: mano de obra, materiales, máquinas, medio ambiente y medios escritos (procedimientos). La unión satisfactoria implica que debe pasar las pruebas mecánicas (tensión y doblez). Las técnicas son los diferentes procesos (SMAW, SAW, GTAW, etc.) utilizados para la situación más conveniente y favorable, lo que hace que sea lo más económico, sin dejar de lado la seguridad.

Contenido  

 

       

1 Historia 2 Procesos de soldadura o 2.1 Soldadura por arco o 2.2 Soldeo blando y fuerte  2.2.1 Fuentes de energía  2.2.2 Procesos o 2.3 Soldadura a gas o 2.4 Soldadura por resistencia o 2.5 Soldadura por rayo de energía o 2.6 Soldadura de estado sólido 3 Geometría 4 Calidad o 4.1 Zona afectada térmicamente o 4.2 Distorsión y agrietamiento o 4.3 Soldabilidad  4.3.1 Aceros  4.3.2 Aluminio 5 Condiciones inusuales 6 Seguridad 7 Costos y tendencias 8 Especificaciones de soldadura 9 Véase también 10 Referencias 11 Notas 12 Enlaces externos

Historia

El Pilar de hierro de Delhi. La historia de la unión de metales se remonta a varios milenios, con los primeros ejemplos de soldadura desde la edad de bronce y la edad de hierro en Europa y el Oriente Medio. La soldadura fue usada en la construcción del Pilar de hierro de Delhi, en la India, erigido cerca del año 310 y pesando 5.4 toneladas métricas.1 La Edad Media trajo avances en la soldadura de fragua, con la que los herreros repetidamente golpeaban y calentaban el metal hasta que ocurría la unión. En 1540, Vannoccio Biringuccio publicó a De la pirotechnia, que incluye descripciones de la operación de forjado. Los artesanos del Renacimiento eran habilidosos en el proceso, y la industria continuó creciendo durante los siglos siguientes.2 Sin embargo, la soldadura fue transformada durante el el siglo XIX. En 1800, Sir Humphry Davy descubrió el arco eléctrico, y los avances en la soldadura por arco continuaron con las invenciones de los electrodos de metal por un ruso, Nikolai Slavyanov, y un americano, C. L. Coffin a finales de los años 1800, incluso como la soldadura por arco de carbón, que usaba un electrodo de carbón, ganó popularidad. Alrededor de 1900, A. P. Strohmenger lanzó un electrodo de metal recubierto en Gran Bretaña, que dio un arco más estable, y en 1919, la soldadura de corriente alterna fue inventada por C. J. Holslag, pero no llegó a ser popular por otra década.3 La soldadura por resistencia también fue desarrollada durante las décadas finales del siglo XIX, con las primeras patentes yendo a Elihu Thomson en 1885, quien produjo posteriores avances durante los siguientes 15 años. La soldadura de termita fue inventada en 1893, y alrededor de ese tiempo, se estableció otro proceso, la soldadura a gas. El acetileno fue descubierto en 1836 por Edmund Davy, pero su uso en la soldadura no fue práctico hasta cerca de 1900, cuando fue desarrollado un soplete conveniente.4 Al principio, la soldadura de gas fue uno de los más populares métodos de soldadura debido a su portabilidad y costo relativamente bajo. Sin embargo, a medida que progresaba el siglo 20, bajó en las preferencias para las aplicaciones industriales. En gran parte fue sustituida por la soldadura de arco, en la medida que continuaron siendo desarrolladas las cubiertas de metal para el electrodo (conocidas como fundente), que estabilizan el arco y blindaban el material base de las impurezas.5

La Primera Guerra Mundial causó un repunte importante en el uso de los procesos de soldadura, con las diferentes fuerzas militares procurando determinar cuáles de los varios procesos nuevos de soldadura serían los mejores. Los británicos usaron primariamente la soldadura por arco, incluso construyendo una nave, el Fulagar, con un casco enteramente soldado. Los estadounidenses eran más vacilantes, pero comenzaron a reconocer los beneficios de la soldadura de arco cuando el proceso les permitió reparar rápidamente sus naves después de los ataques alemanes en el puerto de Nueva York al principio de la guerra. También la soldadura de arco fue aplicada primero a los aviones durante la guerra, pues algunos fuselajes de aeroplanos alemanes fueron construidos usando el proceso.6 Durante los años 1920, importantes avances fueron hechos en la tecnología de la soldadura, incluyendo la introducción de la soldadura automática en 1920, en la que el alambre del electrodo era alimentado continuamente. El gas de protección se convirtió en un tema recibiendo mucha atención, mientras que los científicos procurarban proteger las soldaduras contra los efectos del oxígeno y el nitrógeno en la atmósfera. La porosidad y la fragilidad eran los problemas primarios, y las soluciones que desarrollaron incluyeron el uso del hidrógeno, argón, y helio como atmósferas de soldadura.7 Durante la siguiente década, posteriores avances permitieron la soldadura de metales reactivos como el aluminio y el magnesio. Esto, conjuntamente con desarrollos en la soldadura automática, la corriente alterna, y los fundentes alimentaron una importante extensión de la soldadura de arco durante los años 1930 y entonces durante la Segunda Guerra Mundial.8 A mediados del siglo XX, fueron inventados muchos métodos nuevos de soldadura. 1930 vio el lanzamiento de la soldadura de perno, que pronto llegó a ser popular en la fabricación de naves y la construcción. La soldadura de arco sumergido fue inventada el mismo año, y continúa siendo popular hoy en día. En 1941, después de décadas de desarrollo, la soldadura de arco de gas tungsteno fue finalmente perfeccionada, seguida en 1948 por la soldadura por arco metálico con gas, permitiendo la soldadura rápida de materiales no ferrosos pero requiriendo costosos gases de blindaje. La soldadura de arco metálico blindado fue desarrollada durante los años 1950, usando un fundente de electrodo consumible cubierto, y se convirtió rápidamente en el más popular proceso de soldadura de arco metálico. En 1957, debutó el proceso de soldadura por arco con núcleo fundente, en el que el electrodo de alambre auto blindado podía ser usado con un equipo automático, resultando en velocidades de soldadura altamente incrementadas, y ése mismo año fue inventada la soldadura de arco de plasma. La soldadura por electroescoria fue introducida en 1958, y fue seguida en 1961 por su prima, la soldadura por electrogas.9 Otros desarrollos recientes en la soldadura incluyen en 1958 el importante logro de la soldadura con rayo de electrones, haciendo posible la soldadura profunda y estrecha por medio de la fuente de calor concentrada. Siguiendo la invención del láser en 1960, la soldadura por rayo láser debutó varias décadas más tarde, y ha demostrado ser especialmente útil en la soldadura automatizada de alta velocidad,. Sin embargo, ambos procesos continúan siendo altamente costosos debido al alto costo del equipo necesario, y esto ha limitado sus aplicaciones.10

Procesos de soldadura Soldadura por arco Artículo principal: Soldadura por arco

Estos procesos usan una fuente de alimentación para soldadura para crear y mantener un arco eléctrico entre un electrodo y el material base para derretir los metales en el punto de la soldadura. Pueden usar tanto corriente contínua (DC) como alterna (AC), y electrodos consumibles o no consumibles. A veces, la región de la soldadura es protegida por un cierto tipo de gas inerte o semi inerte, conocido como gas de protección, y el material de relleno a veces es usado también.

Soldeo blando y fuerte El soldeo blando y fuerte es un proceso en el cuál no se produce la fusión de los metales base, sino únicamente del metal de aportación. Siendo el primer proceso de soldeo utilizado por el hombre, ya en la antigua Sumeria.   

El soldeo blando se da a temperaturas inferiores a 450 ºC. El soldeo fuerte se da a temperaturas superiores a 450 ºC. Y el soldeo fuerte a altas temperaturas se da a temperaturas superiores a 900 ºC.

Fuentes de energía Para proveer la energía eléctrica necesaria para los procesos de la soldadura de arco, pueden ser usadas un número diferentes de fuentes de alimentación. La clasificación más común son las fuentes de alimentación de corriente constante y las fuentes de alimentación de voltaje constante. En la soldadura de arco, la longitud del arco está directamente relacionada con el voltaje, y la cantidad de entrada de calor está relacionada con la corriente. Las fuentes de alimentación de corriente constante son usadas con más frecuencia para los procesos manuales de soldadura tales como la soldadura de arco de gas tungsteno y soldadura de arco metálico blindado, porque ellas mantienen una corriente constante incluso mientras el voltaje varía. Esto es importante en la soldadura manual, ya que puede ser difícil sostener el electrodo perfectamente estable, y como resultado, la longitud del arco y el voltaje tienden a fluctuar. Las fuentes de alimentación de voltaje constante mantienen el voltaje constante y varían la corriente, y como resultado, son usadas más a menudo para los procesos de soldadura automatizados tales como la soldadura de arco metálico con gas, soldadura por arco de núcleo fundente, y la soldadura de arco sumergido. En estos procesos, la longitud del arco es mantenida constante, puesto que cualquier fluctuación en la distancia entre material base es rápidamente rectificado por un cambio grande en la corriente. Por ejemplo, si el alambre y el material base se acercan demasiado, la corriente aumentará rápidamente, lo que a su vez causa que aumente el calor y la extremidad del alambre se funda, volviéndolo a su distancia de separación original.11 El tipo de corriente usado en la soldadura de arco también juega un papel importante. Los electrodos de proceso consumibles como los de la soldadura de arco de metal blindado y la soldadura de arco metálico con gas generalmente usan corriente directa,

pero el electrodo puede ser cargado positiva o negativamente. En la soldadura, el ánodo cargado positivamente tendrá una concentración mayor de calor, y como resultado, cambiar la polaridad del electrodo tiene un impacto en las propiedades de la soldadura. Si el electrodo es cargado negativamente, el metal base estará más caliente, incrementando la penetración y la velocidad de la soldadura. Alternativamente, un electrodo positivamente cargado resulta en soldaduras más superficiales.12 Los procesos de electrodo no consumibles, tales como la soldadura de arco de gas tungsteno, pueden usar cualquier tipo de corriente directa, así como también corriente alterna. Sin embargo, con la corriente directa, debido a que el electrodo solo crea el arco y no proporciona el material de relleno, un electrodo positivamente cargado causa soldaduras superficiales, mientras que un electrodo negativamente cargado hace soldaduras más profundas.13 La corriente alterna se mueve rápidamente entre estos dos, dando por resultado las soldaduras de mediana penetración. Una desventaja de la CA, el hecho de que el arco debe ser reencendido después de cada paso por cero, se ha tratado con la invención de unidades de energía especiales que producen un patrón cuadrado de onda en vez del patrón normal de la onda de seno, haciendo posibles pasos a cero rápidos y minimizando los efectos del problema.14 Procesos

Soldadura de arco de metal blindado. Uno de los tipos más comunes de soldadura de arco es la soldadura manual con electrodo revestido (SMAW, Shielded Metal Arc Welding), que también es conocida como soldadura manual de arco metálico (MMA) o soldadura de electrodo. La corriente eléctrica se usa para crear un arco entre el material base y la varilla de electrodo consumible, que es de acero y está cubierto con un fundente que protege el área de la soldadura contra la oxidación y la contaminación por medio de la producción del gas CO2 durante el proceso de la soldadura. El núcleo en sí mismo del electrodo actúa como material de relleno, haciendo innecesario un material de relleno adicional. El proceso es versátil y puede realizarse con un equipo relativamente barato, haciéndolo adecuado para trabajos de taller y trabajo de campo.15 Un operador puede hacerse razonablemente competente con una modesta cantidad de entrenamiento y puede alcanzar la maestría con experiencia. Los tiempos de soldadura son algo lentos, puesto que los electrodos consumibles deben ser sustituidos con frecuencia y porque la escoria, el residuo del fundente, debe ser retirada después de soldar.16 Además, el proceso es generalmente limitado a materiales de soldadura ferrosos, aunque electrodos

especializados han hecho posible la soldadura del hierro fundido, níquel, aluminio, cobre, acero inoxidable y de otros metales. La soldadura de arco metálico con gas (GMAW), también conocida como soldadura de metal y gas inerte o por su sigla en inglés MIG (Metal inert gas) , es un proceso semiautomático o automático que usa una alimentación continua de alambre como electrodo y una mezcla de gas inerte o semi-inerte para proteger la soldadura contra la contaminación. Como con la SMAW, la habilidad razonable del operador puede ser alcanzada con entrenamiento modesto. Puesto que el electrodo es continuo, las velocidades de soldado son mayores para la GMAW que para la SMAW. También, el tamaño más pequeño del arco, comparado a los procesos de soldadura de arco metálico protegido, hace más fácil hacer las soldaduras fuera de posición (ej, empalmes en lo alto, como sería soldando por debajo de una estructura). El equipo requerido para realizar el proceso de GMAW es más complejo y costoso que el requerido para la SMAW, y requiere un procedimiento más complejo de disposición. Por lo tanto, la GMAW es menos portable y versátil, y debido al uso de un gas de blindaje separado, no es particularmente adecuado para el trabajo al aire libre. Sin embargo, debido a la velocidad media más alta en la que las soldaduras pueden ser terminadas, la GMAW es adecuada para la soldadura de producción. El proceso puede ser aplicado a una amplia variedad de metales, tanto ferrosos como no ferrosos.17 Un proceso relacionado, la soldadura de arco de núcleo fundente (FCAW), usa un equipo similar pero utiliza un alambre que consiste en un electrodo de acero rodeando un material de relleno en polvo. Este alambre nucleado?? es más costoso que el alambre sólido estándar y puede generar humos y/o escoria, pero permite incluso una velocidad más alta de soldadura y mayor penetración del metal.18 La soldadura de arco, tungsteno y gas (GTAW), o la soldadura de tungsteno y gas inerte (TIG) (también a veces designada erróneamente como soldadura heliarc), es un proceso manual de soldadura que usa un electrodo de tungsteno no consumible, una mezcla de gas inerte o semi-inerte, y un material de relleno separado. Especialmente útil para soldar materiales finos, este método es caracterizado por un arco estable y una soldadura de alta calidad, pero requiere una significativa habilidad del operador y solamente puede ser lograda en velocidades relativamente bajas. La GTAW pueden ser usada en casi todos los metales soldables, aunque es aplicada más a menudo a metales de acero inoxidable y livianos. Con frecuencia es usada cuando son extremadamente importantes las soldaduras de calidad, por ejemplo en bicicletas, aviones y aplicaciones navales.19 Un proceso relacionado, la soldadura de arco de plasma, también usa un electrodo de tungsteno pero utiliza un gas de plasma para hacer el arco. El arco es más concentrado que el arco de la GTAW, haciendo el control transversal más crítico y así generalmente restringiendo la técnica a un proceso mecanizado. Debido a su corriente estable, el método puede ser usado en una gama más amplia de materiales gruesos que el proceso GTAW, y además, es mucho más rápido. Puede ser aplicado a los mismos materiales que la GTAW excepto al magnesio, y la soldadura automatizada del acero inoxidable es una aplicación importante del proceso. Una variación del proceso es el corte por plasma, un eficiente proceso de corte de acero.20

La soldadura de arco sumergido (SAW) es un método de soldadura de alta productividad en el cual el arco se pulsa bajo una capa de cubierta de flujo. Esto aumenta la calidad del arco, puesto que los contaminantes en la atmósfera son bloqueados por el flujo. La escoria que forma la soldadura generalmente sale por sí misma, y combinada con el uso de una alimentación de alambre continua, la velocidad de deposición de la soldadura es alta. Las condiciones de trabajo están muy mejoradas sobre otros procesos de soldadura de arco, puesto que el flujo oculta el arco y casi no se produce ningún humo. El proceso es usado comúnmente en la industria, especialmente para productos grandes y en la fabricación de los recipientes de presión soldados.21 Otros procesos de soldadura de arco incluyen la soldadura de hidrógeno atómico, la soldadura de arco de carbono, la soldadura de electroescoria, la soldadura por electrogas, y la soldadura de arco de perno. Soldadura por resistencia La soldadura por puntos es un popular método de soldadura por resistencia usado para juntar hojas de metal solapadas de hasta 3 Mm de grueso. Dos electrodos son usados simultáneamente para sujetar las hojas de metal juntas y para pasar corriente a través de las hojas. Las ventajas del método incluyen el uso eficiente de la energía, limitada deformación de la pieza de trabajo, altas velocidades de producción, fácil automatización, y el no requerimiento de materiales de relleno. La fuerza de la soldadura es perceptiblemente más baja que con otros métodos de soldadura, haciendo el proceso solamente conveniente para ciertas aplicaciones. Es usada extensivamente en la industria de automóviles -- Los carros ordinarios puede tener varios miles de puntos soldados hechos por robots industriales. Un proceso especializado, llamado soldadura de choque, puede ser usada para los puntos de soldadura del acero inoxidable. 

Los métodos de soldadura por rayo de energía, llamados soldadura por rayo láser y soldadura con rayo de electrones, son procesos relativamente nuevos que han llegado a ser absolutamente populares en aplicaciones de alta producción. Los dos procesos son muy similares, diferenciándose más notablemente en su fuente de energía. La soldadura de rayo láser emplea un rayo láser altamente enfocado, mientras que la soldadura de rayo de electrones es hecha en un vacío y usa un haz de electrones. Ambas tienen una muy alta densidad de energía, haciendo posible la penetración de soldadura profunda y minimizando el tamaño del área de la soldadura. Ambos procesos son extremadamente rápidos, y son fáciles de automatizar, haciéndolos altamente productivos. Las desventajas primarias son sus muy altos costos de equipo (aunque éstos están disminuyendo) y una susceptibilidad al agrietamiento. Los desarrollos en esta área incluyen la soldadura de láser híbrido, que usa los principios de la soldadura de rayo láser y de la soldadura de arco para incluso mejores propiedades de soldadura.

ELECTRODOS PARA ACEROS DE BAJO CARBÓN TIPO NORMA AWS

USOS Y CARACTERISTICAS

6010 (E-6010) A5.1

ELECTRODO DE ALTA PENETRACION PARA SOLDAR EN TODA POSICION. RECIPIENTES SOMETIDOS A ALTA PRESION Y UNIONES DE TUBERIAS. TIENE CALIDAD RADIODRÁFICA

6011 (E-6011) A5.1

ELECTRODO DE ALTA PENETRACION PARA SOLDAR EN TODA POSICION CON CA Y CD, BARCOS, ESTRUCTURAS, REPARACIONES Y UNIONES DE TUBERIAS.

6013 (E-6013) A5.1 *

ELECTRODO DE FÁCIL APLICACIÓN PARA TRABAJOS GENERALES EN LA INDUSTRIA METAL MECÁNICA LIGERA, ARCO CORTO Y BAJO CHISPORRETEO.

SUPERMATIC (E-6013) A5.1

ELECTRODO DE ALTO RENDIMIENTO CON POLVO DE HIERRO PARA TRABAJOS GENERALES PARA LA INDUSTRIA METAL MECÁNICA LIGERA. SOPORTA ALTOS AMPERAJES.

7010 (E-7010-A1) A5.5

ELECTRODO PARA SOLDAR TUBERIAS Y ACEROS AL CARBONO Y CARBONO MOLIBDENO

RESISTECIA CORRIENTES OPTIMAS DE TENSIL APLICACION LIMITE (AMPERES)-CORRIENTE ELASTICO C ELONGACIÓN 3/32 1/8 5/32 3/16 1/4 RT=71.000LB/Pu2 LE=60.450LB/Pu2

220

CD (+)

60

110

150

195

60

105

155

190

CD (+) CA

70

120

160

210

CD (+) CA

80

130

170

220

CD (+) CA

60

110

150

195

CD (+)

80

130

165

195

240

CD (+) CA

160

210

270

300

CD (+) CA

E=25%

RT=71.000LB/Pu2 LE=60.450LB/Pu2 E=25% RT=71.100LB/Pu2 LE=65.410LB/Pu2 E=25%

RT=71.100LB/Pu2 LE=65.410LB/Pu2 E=25%

RT=79.600LB/Pu2 LE=64.000LB/Pu2 E=25%

7013

7024 (E-7024) A5.1

ELECTRODO DE CONTACTO, DE FACIL REMOCIÓN DE ESCORIA, DEPÓSITOS TERSOS. SE RECOMIENDA COMO PASE FINAL POR SU EXCELENTE PRESENTACION ELECTRODO CON POLVO DE HIERRO PARA SOLDADURAS RÁPIDAS EN PLANO Y HORIZONTAL, EXELENTES CORDONES Y MÁXIMAS PROPIEDADES MECÁNICAS.

RT=75.000LB/Pu2 LE=64.000LB/Pu2 E=25% RT=75.000LB/Pu2 LE=64.000LB/Pu2 E=25%

ELECTRODO DE BAJO HIDROGENO PARA SOLDAR ACEROS DE BAJA ALEACION Y ALTA RESISTENCIA TIPO NORMA AWS

USOS Y CARACTERISTICAS

RESISTECIA TENSIL LIMITE ELASTICO ELONGACIÓN

ANÁLISIS QUÍMICO TÍPICO C

Mn

Si

Cr

Ni

Mo

7018 (E-7018) A5.1 *

ELECTRODO CON POLVO DE HIERRO PARA TODAS POSICIONES, DE ALTO RENDIMIENTO, PARA ACEROS DIFICILES, MAQUINARIA PESADA, ESTRUCTURAS, CALDERAS, GRUAS, TUBERIAS, PLATAFORMAS, TANQUES. FABRICACION Y REPARACION DE BARCOS

RT=78.000LB/Pu2 LE=70.000LB/Pu2 E=32%

0.09 0.80 0.60 MAX

7018-1 (E-7018-1) A5.1 *

ELECTRODO CON PROPIEDADES DE IMPACTO EXELENTES - 70 PIE-LIBRA (95 JOULES) A MENOS 46ºC, ESTO LO HACE IDEAL PARA CONSTRUCCIONES Y REPARACIONES NAVALES Y DONDE SE REQUIERA GRAN RESISTENCIA AL IMPACTO A BAJAS TEMPERATURAS.

RT=80.000LB/Pu2 LE=69.000LB/Pu2 E=33%

0.06 1.35 0.60 MAX

7018 A1 (E-7018 A1) A5.5

ELECTRODO CON 0.5% DE MOLIBDENO PARA SOLDAR ACEROS AL CARBON - MOLIBDENO, IDEAL PARA CALDERAS, RECIPIENTES Y Y TUBERÍAS DE ALTA PRESIÓN

RT=87.000LB/Pu2 LE=69.000LB/Pu2 E=33%

0.07 1.08 0.60 MAX

0.53

8018-B2 (E-8018-B2) A5.5

IDEAL PARA SOLDAR ACEROS A BASE DE CROMO-MOLIBDENO SOMETIDOS A ALTAS TEMPERATURAS: CALDERAS Y TUBERÍAS DE PLANTAS ELÉCTRICAS

RT=94.000LB/Pu2 LE=81.000LB/Pu2 E=25%

0.05 0.80 0.60 1.24 MAX

0.49

8018-C1 (E-8018-C1) A5.5

PARA ACEROS CON CONTENIDO DE 2 A 2.7% DE NÍQUEL, SOMETIDOS A BAJAS TEMPERATURAS, GRAN RESISTENCIA AL IMPACTO A MENOS DE 60ºC.

RT=88.000LB/Pu2 LE=77.000LB/Pu2 E=30%

0.07 1.10 0.35 MAX

2.30

8018-C2 (E-8018-C2) A5.5

PARA ACEROS CON CONTENIDO DE 3 A 4% DE NÍQUEL, FABRICACIÓN Y MANTENIMIENTO DE RECIPIENTES Y TUBERÍAS A PRESIÓN, PARA ACEROS DE BAJA ALEACIÓN.

RT=94.000LB/Pu2 LE=83.000LB/Pu2 E=25%

0.04 MAX

1.10 0.37

3.30

9018-M (E-9018-M) A5.5

PARA SOLDAR ACEROS AL MANGANESO-MOLIBDENO DONDE SE REQUIERE LA MÁXIMA RESISTENCIA TENSIL. LOS DEPÓSITOS SE PUEDEN TEMPLAR REVENIR.

RT=97.000LB/Pu2 LE=85.000LB/Pu2 E=28%

0.05 MAX

1.11 0.32

1.72 0.28

9018-B3 (E-9018-B3) A5.5

PARA SOLDAR ACEROS CON 2.5% DE CROMO Y 1% DE MOLIBDENO SUJETOS A ALTAS TEMPERATURAS DE HASTA 625ºC, CALDERAS, CATALIZADORES, INDUSTRIA PETROLERA.

RT=102.000LB/Pu2 LE=88.000LB/Pu2 E=25%

0.07 0.75 0.60 2.20 MAX

1.05

ELECTRODOS DE ACERO INOXIDABLE TIPO NORMA AWS

USOS Y CARACTERISTICAS

RESISTECIA TENSIL ELONGACION No. DE FERRITA

ANÁLISIS QUÍMICO TÍPICO C

Mn

Si

Cr

Ni

Mo

308L 308L-16 A5.4

ARCO SUAVE, MÍNIMO CHISPORROTEO, EXCELENTE APARIENCIA. PARA EQUIPOS MÉDICOS, SANITARIOS, QUÍMICOS, TANQUES, RECIPIENTES, TUBERÍAS.

RT=83.000LB/Pu2 E=44% FN=8

0.02 0.60 0.90 19.5 10.55 MAX

309L 309L-16 A5.4

ELECTRODO DE ACERO INOXIDABLE DE BAJO CONTENIDO DE CARBÓN, SE USA PARA REVESTIR ACEROS DONDE LA CORROSIÓN INTERGRANULAR DEBE MANTENERSE AL MÍNIMO.

RT=84.000LB/Pu2 E=42% FN=13

0.02 1.80 0.90 25.2 MAX

12.5

309-Cb E 309-Cb-16 A5.4

ELECTRODO ESPECIAL CON CONTENIDO DE COLUMBIO PARA SOLDAR ACEROS INOXIDABLES TIPO: 301, 302, 304, 308, 309 Y 321, EXPUESTOS A ALTAS TEMPERATURAS, HASTA 1100ªC.

RT=96.000LB/Pu2 E=40% FN=8

0.09 1.82 0.90 25.2 MAX

12.5

309-Mo E 309-Mo-16 A5.4

ELECTRODO DE FACIL APLICACION CON ADICION DE MOLIBDENO PARA MAYOR RESISTENCIA A LA CORROSION.

RT=94.000LB/Pu2 E=36% FN=8

0.08 1.72 0.90 25.2 13.35 2.22 MAX

310 310-16 A5.4

PARA SOLDAR TODO TIPO DE ACEROS INOXIDABLES PARA REPARAR PARTES EXPUESTAS A SEVERAS CONDICIONES DE CORROSIÓN Y CALOR.

RT=90.000LB/Pu2 E=40% FN=0

0.15 1.80 0.75 26.5 MAX

ELECTRODO ESPECIAL CON CONTENIDO DE COLUMBIO PARA SOLDAR ACEROS INOXIDABLES TIPO: 310Cb, 310, 347 Y 321. ACEROS AL CARBONO Y ACEROS DE ALEACION.

RT=90.000LB/Pu2 E=35% FN=0

0.11 1.81 0.75 26.10 21.20 MAX

ELECTRODO DE REVESTIMIENTO BASICO CON MOLIBDENO, POSEE ALTA RESISTENCIA MECANICA AL CALOR Y LA CORROSION.

RT=90.000LB/Pu2 E=40% FN=0

0.10 1.80 0.75 26.10 21.2 2.50 MAX

PARA SOLDAR ACEROS EXPUESTOS A MÁXIMA TENSIÓN, RESISTE ALTAS TEMPERATURAS, ABRASIÓN SEVERA, BASE PARA RECUBRIMIENTOS DUROS.

RT=120.000LB/Pu2 E=32% FN=30

0.12 1.75 0.90 29.5 MAX

9.9

SU CONTENIDO DE MOLIBDENO AUMENTA NOTABLEMENTE SU RESISTENCIA AL ATAQUE DE LA CORROSIÓN POR EL EFECTO DE ÁCIDOS ORGÁNICOS.

RT=78.000LB/Pu2 E=46% FN=8

0.02 1.70 0.90 19.5 MAX

10.5 2.80

310-Cb E 310-Cb-16 A5.4

310-Mo (E 310-Mo-16) A5.4 312 (E 312-16) A5.4 316-L (E 316L-16) A5.4

Cb

0.80

21.5

0.80

347 (E 347-16) A5.4

ELECTRODO ESPECIAL PARA SOLDAR ACEROS INOXIDABLES TIPO: 301, 302, 304 ,308, 321 Y 347, ESTABILIZADO CON COLUMBIO PARA EVITAR LA PRECIPITACION DE CARBURO DE CROMO.

410 (E 410-16) A5.4 502 (E 502-16) A5.4

RT=90.000LB/Pu2 E=40% FN=8

0.06 1.85 0.90 19.6 MAX

9.52

0.81

ELECTRODO DEL TIPO MARTENSITICO RT=85.000LB/Pu2 RESISTENTE A LA Relevado de esfuerzo OXIDACION Y CORROSION A E=30 - 35% TEMPERATURAS HASTA 750ºC

0.08 1.00 0.90 12.0 MAX

0.60

td>

ELECTRODO ESPECIAL CON DEPOSITO TIPO PERLITICO RT=95.000LB/Pu2 MARTENSITICO Relevado de esfuerzo RESISTENTE A LA E=29% CORROSION HASTA 600ºC

0.08 1.00 0.90 MAX

0.40 0.50

5.0

SEGURIDAD EN SOLDADURA AL ARCO Protección de la vista La protección de la vista es un asunto tan importante que merece consideración aparte. El arco eléctrico que se utiliza como fuente calórica y cuya temperatura al- canza sobre los 4.000° C, desprende radiaciones visi- bles y no visibles. Dentro de estasúltimas, tenemos aquellas de efecto más nocivo como son los rayos ul- travioletas e infrarrojos. El tipo de quemadura que el arco produce en los ojos no es permanente, aunque sí es extremadamente do- lorosa. Su efecto es como―tener arena caliente en los ojos‖. Para evitarla, debe utilizarse un lente protector (vidrio inactínico) que ajuste bien y, delante deéste, para su protección, siempre hay que mantener una cu- bierta de vidrio transparente, la que debe ser sustituida inmediatamente en caso de deteriorarse. A fin de ase- gurar una completa protección, el lente protector debe poseer la densidad adecuada al proceso e intensidad de corriente utilizada. La siguiente tabla le ayudará a seleccionar el lente adecuado: Influencia de los rayos sobre el ojo humano: Cuando se realiza una soldadura al arco durante la cual ciertas partes conductoras de energía eléctrica están al descubierto, el operador tiene que observar con espe- cial cuidado las reglas de seguridad, a fin de contar con la máxima protección personal y también proteger a las otras personas que trabajan a su alrededor. En la mayor parte de los casos, la seguridad es una cuestión de sentido común. Los accidentes pueden evi- tarse si se cumplen las siguientes reglas:

Protección Personal Siempre utilice todo el equipo de protección necesa- rio para el tipo de soldadura a realizar. El equipo con- siste en: 1. Máscara de soldar, proteje los ojos, la cara, el cuello y debe estar provista de filtros inactínicos de acuerdo al proceso e intensidades de corriente empleadas. 2. Guantes de cuero, tipo mosquetero con costura interna, para proteger las manos y muñecas. 3. Coleto o delantal de cuero, para protegerse de salpicaduras y exposición a rayos ultravioletas del arco. 4. Polainas y casaca de cuero, cuando es necesario hacer soldadura en posiciones verticales y sobre cabeza, deben usarse estos aditamentos, para evitar las severas quemaduras que puedan ocasionar las salpicaduras del metal fundido. 5. Zapatos de seguridad, que cubran los tobillos para evitar el atrape de salpicaduras. 6. Gorro, protege el cabello y el cuero cabelludo, especialmente cuando se hace soldadura en posiciones. IMPORTANTE: Evite tener en los bolsillos todo material inflamable como fósforos, encendedores o papel celofán. No use ropa de material sintético, use ropa de algodón. Para mayor información ver: NCh 1466 - of. 78, NCh 1467 - of. 78, NCh 1562 - of. 79, NCh 1692 - of. 80, NCh 1805 - of. 80 y NCh 1806 - of. 80

Posiciones para soldadura 1Las posiciones de soldadura, se refieren exclusivamente a la posición del eje de la soldadura en los diferentes planos a soldar. Básicamente son cuatro las posiciones de soldar y todas exigen un conocimiento y dominio perfecto del soldador para la ejecución de una unión soldadura. En la ejecución del cordón de soldadura eléctrica, aparecen piezas que no pueden ser colocadas en posición cómoda. Según el plano de referencia fueron establecidas las cuatro posiciones siguientes: 1) 2) 3) 4)

POSICIÓN PLANA O DE NIVEL POSICIÓN HORIZONTAL POSICIÓN VERTICAL POSICIÓN SOBRE CABEZA

POSICIÓN PLANA O DE NIVEL: Es aquella en que la pieza recibe la soldadura colocada en posición plana a nivel. El material adicional viene del electrodo que está con la punta para abajo, depositando el material en ese sentido. POSICIÓN HORIZONTAL: Es aquella en que las aristas o cara de la pieza a soldar está colocada en posición horizontal sobre un plano vertical. El eje de la soldadura se extiende horizontalmente. POSICIÓN VERTICAL: Es aquella en que la arista o eje de la zona a soldar recibe la soldadura en posición vertical, el electrodo se coloca aproximadamente horizontal y perpendicular al eje de la soldadura. POSICIÓN SOBRE LA CABEZA: La pieza colocada a una altura superior a la de la cabeza del soldador, recibe la soldadura por su parte inferior. El electrodo

se ubica con el extremo apuntando hacia arriba verticalmente. Esta posición es inversa a la posición plana o de nivel. MOVIMIENTOS DEL ELECTRODO. Esta denominación abarca a los movimientos que se realizan con el electrodo a medida que se avanza en una soldadura; estos movimientos se llaman de oscilación, son diversos y están determinados principalmente por la clase de electrodo y la posición de la unión. MOVIMIENTO DE ZIG - ZAG (LONGITUDINAL): Es el movimiento zigzagueante en línea recta efectuado con el electrodo en sentido del cordón (Fig. 1). Este movimiento se usa en posición plana para mantener el cráter caliente y obtener una buena penetración. Cuando se suelda en posición vertical ascendente, sobre cabeza y en juntas muy finas, se utiliza este movimiento para evitar acumulación de calor e impedir así que el material aportado gotee.

MOVIMIENTO CIRCULAR: Se utiliza esencialmente en cordones de penetración donde se requiere poco depósito; su aplicación es frecuente en ángulos interiores, pero no para relleno de capas superiores. A medida que se avanza, el electrodo describe una trayectoria circular (Fig. 2).

MOVIENTO SEMICIRCULAR: Garantiza una fusión total de las juntas a soldar. El electrodo se mueve a través de la junta, describiendo un arco o media luna, lo que asegura la buena fusión en los bordes (Fig. 3). Es recomendable, en juntas chaflanadas y recargue de piezas.

MOVIMIENTO EN ZIG - ZAG (TRANSVERSAL): El electrodo se mueve de lado a lado mientras se avanza (Fig. 4). Este movimiento se utiliza principalmente para efectuar cordones anchos. Se obtiene un buen acabado en sus bordes, facilitando que suba la escoria a la superficie, permite el escape de los gases con mayor facilidad y evita la porosidad en el material depositado. Este movimiento se utiliza para soldar en toda posición

MOVIMIENTO ENTRELAZADO: Este movimiento se usa generalmente en cordones de terminación, en tal caso se aplica al electrodo una oscilación lateral (Fig. 5), que cubre totalmente los cordones de relleno. Es de gran importancia que el movimiento sea uniforme, ya que se corre el riesgo de tener una fusión deficiente en los bordes de la unión.

VOCABULARIO TÉCNICO Recargue: relleno. Zig - Zag: chicote, látigo. Pase: pasada, capa, cordón

Posición de soldadura. Tipos de soldaduras

POSICIÓN DE SOLDADURA Los electrodos están diseñados para ser usados en posiciones específicas. Siempre que sea posible hay que llevar la pieza a una posición plana, que es la más cómoda y con mayor rendimiento

TIPOS DE SOLDADURAS

CARACTERÍSTICAS ESPECIALES Para materiales que serán soldados y sometidos a condiciones especiales tales como la alta resistencia a ala tracción, corrosión, abrasión, temperatura, se debe elegir el electrodo más parecido a las propiedades del metal base

Soldadura a gas

Soldadura a gas de una armadura de acero usando el proceso de oxiacetileno. El proceso más común de soldadura a gas es la soldadura oxiacetilénica, también conocida como soldadura autógena o soldadura oxi-combustible. Es uno de los más viejos y más versátiles procesos de soldadura, pero en años recientes ha llegado a ser menos popular en aplicaciones industriales. Todavía es usada extensamente para soldar tuberías y tubos, como también para trabajo de reparación. El equipo es relativamente barato y simple, generalmente empleando la combustión del acetileno en oxígeno para producir una temperatura de la llama de soldadura de cerca de 3100 °C. Puesto que la llama es menos concentrada que un arco eléctrico, causa un enfriamiento más lento de la soldadura, que puede conducir a mayores tensiones residuales y distorsión de soldadura, aunque facilita la soldadura de aceros de alta aleación. Un proceso similar, generalmente llamado corte de oxicombustible, es usado para cortar los metales.5 Otros métodos de la soldadura a gas, tales como soldadura de acetileno y aire, soldadura de hidrógeno y oxígeno, y soldadura de gas a presión son muy similares, generalmente diferenciándose solamente en el tipo de gases usados. Una antorcha de agua a veces es usada para la soldadura de precisión de artículos como joyería. La soldadura a gas también es usada en la soldadura de plástico, aunque la sustancia calentada es el aire, y las temperaturas son mucho más bajas.

Soldadura por resistencia La soldadura por resistencia implica la generación de calor pasando corriente a través de la resistencia causada por el contacto entre dos o más superficies de metal. Se forman pequeños charcos de metal fundido en el área de soldadura a medida que la elevada corriente (1.000 a 100.000 A) pasa a través del metal. En general, los métodos de la soldadura por resistencia son eficientes y causan poca contaminación, pero sus aplicaciones son algo limitadas y el costo del equipo puede ser alto.

Soldador de punto. La soldadura por puntos es un popular método de soldadura por resistencia usado para juntar hojas de metal solapadas de hasta 3 mm de grueso. Dos electrodos son usados simultáneamente para sujetar las hojas de metal juntas y para pasar corriente a través de las hojas. Las ventajas del método incluyen el uso eficiente de la energía, limitada deformación de la pieza de trabajo, altas velocidades de producción, fácil automatización, y el no requerimiento de materiales de relleno. La fuerza de la soldadura es perceptiblemente más baja que con otros métodos de soldadura, haciendo el proceso solamente conveniente para ciertas aplicaciones. Es usada extensivamente en la industria de automóviles -- Los carros ordinarios puede tener varios miles de puntos soldados hechos por robots industriales. Un proceso especializado, llamado soldadura de choque, puede ser usada para los puntos de soldadura del acero inoxidable. Como la soldadura de punto, la soldadura de costura confía en dos electrodos para aplicar la presión y la corriente para juntar hojas de metal. Sin embargo, en vez de electrodos de punto, los electrodos con forma de rueda, ruedan a lo largo y a menudo alimentan la pieza de trabajo, haciendo posible las soldaduras continuas largas. En el pasado, este proceso fue usado en la fabricación de latas de bebidas, pero ahora sus usos son más limitados. Otros métodos de soldadura por resistencia incluyen la soldadura de destello, la soldadura de proyección, y la soldadura de volcado.22

Soldadura por rayo de energía Los métodos de soldadura por rayo de energía, llamados soldadura por rayo láser y soldadura con rayo de electrones, son procesos relativamente nuevos que han llegado a ser absolutamente populares en aplicaciones de alta producción. Los dos procesos son muy similares, diferenciándose más notablemente en su fuente de energía. La soldadura de rayo láser emplea un rayo láser altamente enfocado, mientras que la soldadura de rayo de electrones es hecha en un vacío y usa un haz de electrones. Ambas tienen una muy alta densidad de energía, haciendo posible la penetración de soldadura profunda y minimizando el tamaño del área de la soldadura. Ambos procesos son extremadamente rápidos, y son fáciles de automatizar, haciéndolos altamente productivos. Las desventajas primarias son sus muy altos costos de equipo (aunque éstos están disminuyendo) y una susceptibilidad al agrietamiento. Los desarrollos en esta área incluyen la soldadura de láser híbrido, que usa los principios de la soldadura de rayo láser y de la soldadura de arco para incluso mejores propiedades de soldadura.23

Soldadura de estado sólido Como el primer proceso de soldadura, la soldadura de fragua, algunos métodos modernos de soldadura no implican derretimiento de los materiales que son juntados. Uno de los más populares, la soldadura ultrasónica, es usada para conectar hojas o alambres finos hechos de metal o termoplásticos, haciéndolos vibrar en alta frecuencia y bajo alta presión. El equipo y los métodos implicados son similares a los de la soldadura por resistencia, pero en vez de corriente eléctrica, la vibración proporciona la fuente de energía. Soldar metales con este proceso no implica el derretimiento de los materiales; en su lugar, la soldadura se forma introduciendo vibraciones mecánicas horizontalmente bajo presión. Cuando se están soldando plásticos, los materiales deben tener similares

temperaturas de fusión, y las vibraciones son introducidas verticalmente. La soldadura ultrasónica se usa comúnmente para hacer conexiones eléctricas de aluminio o cobre, y también es un muy común proceso de soldadura de polímeros. Otro proceso común, la soldadura explosiva, implica juntar materiales empujándolos juntos bajo una presión extremadamente alta. La energía del impacto plastifica los materiales, formando una soldadura, aunque solamente una limitada cantidad de calor sea generada. El proceso es usado comúnmente para materiales disímiles de soldadura, tales como la soldadura del aluminio con acero en cascos de naves o placas compuestas. Otros procesos de soldadura de estado sólido incluyen la soldadura de coextrusión, la soldadura en frío, la soldadura de difusión, la soldadura por fricción (incluyendo la soldadura por fricción-agitación en inglés Friction Stir Welding), la soldadura por alta frecuencia, la soldadura por presión caliente, la soldadura por inducción, y la soldadura de rodillo.24

Geometría

Tipos comunes de juntas de soldadura (1) La junta de extremo cuadrado (2) Junta de preparación solo-V (3) Junta de regazo o traslape (4) Junta-T. Las soldaduras pueden ser preparadas geométricamente de muchas maneras diferentes. Los cinco tipos básicos de juntas de soldadura son la junta de extremo, la junta de regazo, la junta de esquina, la junta de borde, y la junta-T. Existen otras variaciones, como por ejemplo la preparación de juntas doble-V, caracterizadas por las dos piezas de material cada una que afilándose a un solo punto central en la mitad de su altura. La preparación de juntas solo-U y doble-U son también bastante comunes —en lugar de tener bordes rectos como la preparación de juntas solo-V y doble-V, ellas son curvadas, teniendo la forma de una U. Las juntas de regazo también son comúnmente más que dos piezas gruesas —dependiendo del proceso usado y del grosor del material, muchas piezas pueden ser soldadas juntas en una geometría de junta de regazo.25 A menudo, ciertos procesos de soldadura usan exclusivamente o casi exclusivamente diseños de junta particulares. Por ejemplo, la soldadura de punto de resistencia, la soldadura de rayo láser, y la soldadura de rayo de electrones son realizadas más

frecuentemente con juntas de regazo. Sin embargo, algunos métodos de soldadura, como la soldadura por arco de metal blindado, son extremadamente versátiles y pueden soldar virtualmente cualquier tipo de junta. Adicionalmente, algunos procesos pueden ser usados para hacer soldaduras multipasos, en las que se permite enfriar una soldadura, y entonces otra soldadura es realizada encima de la primera. Esto permite, por ejemplo, la soldadura de secciones gruesas dispuestas en una preparación de junta solo-V.26

La sección cruzada de una junta de extremo soldado, con el gris más oscuro representando la zona de la soldadura o la fusión, el gris medio la zona afectada por el calor ZAT, y el gris más claro el material base. Después de soldar, un número de distintas regiones pueden ser identificadas en el área de la soldadura. La soldadura en sí misma es llamada la zona de fusión —más específicamente, ésta es donde el metal de relleno fue puesto durante el proceso de la soldadura. Las propiedades de la zona de fusión dependen primariamente del metal de relleno usado, y su compatibilidad con los materiales base. Es rodeada por la zona afectada de calor, el área que tuvo su microestructura y propiedades alteradas por la soldadura. Estas propiedades dependen del comportamiento del material base cuando está sujeto al calor. El metal en esta área es con frecuencia más débil que el material base y la zona de fusión, y es también donde son encontradas las tensiones residuales.27

Calidad Muy a menudo, la medida principal usada para juzgar la calidad de una soldadura es su fortaleza y la fortaleza del material alrededor de ella. Muchos factores distintos influyen en esto, incluyendo el método de soldadura, la cantidad y la concentración de la entrada de calor, el material base, el material de relleno, el material fundente, el diseño del empalme, y las interacciones entre todos estos factores. Para probar la calidad de una soldadura se usan tanto ensayos no destructivos como ensayos destructivos, para verificar que las soldaduras están libres de defectos, tienen niveles aceptables de tensiones y distorsión residuales, y tienen propiedades aceptables de zona afectada por el calor (HAZ). Existen códigos y especificaciones de soldadura para guiar a los soldadores en técnicas apropiadas de soldadura y en cómo juzgar la calidad éstas.

Zona afectada térmicamente

El área azul resulta de la oxidación en una temperatura correspondiente a 316 °C. Esto es una manera precisa de identificar la temperatura, pero no representa el ancho de la zona afectada térmicamente (ZAT). La ZAT es el área estrecha que inmediatamente rodea el metal base soldado. Los efectos de soldar pueden ser perjudiciales en el material rodeando la soldadura. Dependiendo de los materiales usados y la entrada de calor del proceso de soldadura usado, la zona afectada térmicamente (ZAT) puede variar en tamaño y fortaleza. La difusividad térmica del material base es muy importante - si la difusividad es alta, la velocidad de enfriamiento del material es alta y la ZAT es relativamente pequeña. Inversamente, una difusividad baja conduce a un enfriamiento más lento y a una ZAT más grande. La cantidad de calor inyectada por el proceso de soldadura también desempeña un papel importante, pues los procesos como la soldadura oxiacetilénica tienen una entrada de calor no concentrado y aumentan el tamaño de la zona afectada. Los procesos como la soldadura por rayo láser tienen una cantidad altamente concentrada y limitada de calor, resultando una ZAT pequeña. La soldadura de arco cae entre estos dos extremos, con los procesos individuales variando algo en entrada de calor.28 29 Para calcular el calor para los procedimientos de soldadura de arco, puede ser usada la siguiente fórmula:

en donde   

Q = entrada de calor (kJ/mm), V = voltaje (V), I = corriente (A), y



S = velocidad de la soldadura (mm/min)

El rendimiento depende del proceso de soldadura usado, con la soldadura de arco de metal revestido teniendo un valor de 0,75, la soldadura por arco metálico con gas y la soldadura de arco sumergido, 0,9, y la soldadura de arco de gas tungsteno, 0,8.30

Distorsión y agrietamiento Los métodos de soldadura que implican derretir el metal en el sitio del empalme son necesariamente propensos a la contracción a medida que el metal calentado se enfría. A su vez, la contracción puede introducir tensiones residuales y tanto distorsión longitudinal como rotatoria. La distorsión puede plantear un problema importante, puesto que el producto final no tiene la forma deseada. Para aliviar la distorsión rotatoria, las piezas de trabajo pueden ser compensadas, de modo que la soldadura dé lugar a una pieza correctamente formada.31 Otros métodos de limitar la distorsión, como afianzar en el lugar las piezas de trabajo con abrazaderas, causa la acumulación de la tensión residual en la zona afectada térmicamente del material base. Estas tensiones pueden reducir la fuerza del material base, y pueden conducir a la falla catastrófica por agrietamiento frío, como en el caso de varias de las naves Liberty. El agrietamiento en frío está limitado a los aceros, y está asociado a la formación del martensita mientras que la soldadura se enfría. El agrietamiento ocurre en la zona afectada térmicamente del material base. Para reducir la cantidad de distorsión y estrés residual, la cantidad de entrada de calor debe ser limitada, y la secuencia de soldadura usada no debe ser de un extremo directamente al otro, sino algo en segmentos. El otro tipo de agrietamiento, el agrietamiento en caliente o agrietamiento de solidificación, puede ocurrir en todos los metales, y sucede en la zona de fusión de la soldadura. Para disminuir la probabilidad de este tipo de agrietamiento, debe ser evitado el exceso de material restringido, y debe ser usado un material de relleno apropiado.32

Soldabilidad La calidad de una soldadura también es dependiente de la combinación de los materiales usados para el material base y el material de relleno. No todos los metales son adecuados para la soldadura, y no todos los metales de relleno trabajan bien con materiales base aceptables. Aceros La soldabilidad de aceros es inversamente proporcional a una propiedad conocida como la templabilidad del acero, que mide la probabilidad de formar la martensita durante el tratamiento de soldadura o calor. La templabildad del acero depende de su composición química, con mayores cantidades de carbono y de otros elementos de aleación resultando en mayor templabildad y por lo tanto una soldabilidad menor. Para poder juzgar las aleaciones compuestas de muchos materiales distintos, se usa una medida conocida como el contenido equivalente de carbono para comparar las soldabilidades relativas de diferentes aleaciones comparando sus propiedades a un acero al carbono simple. El efecto sobre la soldabilidad de elementos como el cromo y el vanadio, mientras que no es tan grande como la del carbono, es por ejemplo más significativa que la del cobre y el níquel. A medida que se eleva el contenido equivalente de carbono, la soldabilidad de la aleación decrece.33 La desventaja de usar simple carbono y los aceros

de baja aleación es su menor resistencia - hay una compensación entre la resistencia del material y la soldabilidad. Los aceros de alta resistencia y baja aleación fueron desarrollados especialmente para los usos en la soldadura durante los años 1970, y estos materiales, generalmente fáciles de soldar tienen buena resistencia, haciéndolos ideales para muchas aplicaciones de soldadura.34 Debido a su alto contenido de cromo, los aceros inoxidables tienden a comportarse de una manera diferente a otros aceros con respecto a la soldabilidad. Los grados austeníticos de los aceros inoxidables tienden a ser más soldables, pero son especialmente susceptibles a la distorsión debido a su alto coeficiente de expansión térmica. Algunas aleaciones de este tipo son propensas a agrietarse y también a tener una reducida resistencia a la corrosión. Si no está controlada la cantidad de ferrita en la soldadura es posible el agrietamiento caliente. Para aliviar el problema, se usa un electrodo que deposita un metal de soldadura que contiene una cantidad pequeña de ferrita. Otros tipos de aceros inoxidables, tales como los aceros inoxidables ferríticos y martensíticos, no son fácilmente soldables, y a menudo deben ser precalentados y soldados con electrodos especiales.35 Aluminio La soldabilidad de las aleaciones de aluminio varía significativamente dependiendo de la composición química de la aleación usada. Las aleaciones de aluminio son susceptibles al agrietamiento caliente, y para combatir el problema los soldadores aumentan la velocidad de la soldadura para reducir el aporte de calor. El precalentamiento reduce el gradiente de temperatura a través de la zona de soldadura y por lo tanto ayuda a reducir el agrietamiento caliente, pero puede reducir las características mecánicas del material base y no debe ser usado cuando el material base está restringido. El diseño del empalme también puede cambiarse, y puede seleccionarse una aleación de relleno más compatible para disminuir la probabilidad del agrietamiento caliente. Las aleaciones de aluminio también deben ser limpiadas antes de la soldadura, con el objeto de quitar todos los óxidos, aceites, y partículas sueltas de la superficie a ser soldada. Esto es especialmente importante debido a la susceptibilidad de una soldadura de aluminio a la porosidad debido al hidrógeno y a la escoria debido al oxígeno.36

Condiciones inusuales

Soldadura subacuática.

Aunque muchas aplicaciones de la soldadura se llevan a cabo en ambientes controlados como fábricas y talleres de reparaciones, algunos procesos de soldadura se usan con frecuencia en una amplia variedad de condiciones, como al aire abierto, bajo el agua y en vacíos (como en el espacio). En usos al aire libre, tales como la construcción y la reparación en exteriores, la soldadura de arco de metal blindado es el proceso más común. Los procesos que emplean gases inertes para proteger la soldadura no pueden usarse fácilmente en tales situaciones, porque los movimientos atmosféricos impredecibles pueden dar lugar a una soldadura fallida. La soldadura de arco de metal blindado a menudo también es usada en la soldadura subacuática en la construcción y la reparación de naves, plataformas costa afuera, y tuberías, pero también otras son comunes, tales como la soldadura de arco con núcleo de fundente y soldadura de arco de tungsteno y gas. Es también posible soldar en el espacio, fue intentado por primera vez en 1969 por cosmonautas rusos, cuando realizaron experimentos para probar la soldadura de arco de metal blindado, la soldadura de arco de plasma, y la soldadura de haz de electrones en un ambiente despresurizado. Se hicieron pruebas adicionales de estos métodos en las siguientes décadas, y hoy en día los investigadores continúan desarrollando métodos para usar otros procesos de soldadura en el espacio, como la soldadura de rayo láser, soldadura por resistencia, y soldadura por fricción. Los avances en estas áreas podrían probar ser indispensables para proyectos como la construcción de la Estación Espacial Internacional, que probablemente utilizará profusamente la soldadura para unir en el espacio las partes manufacturadas en la Tierra.37

Seguridad La soldadura sin las precauciones apropiadas puede ser una práctica peligrosa y dañina para la salud. Sin embargo, con el uso de la nueva tecnología y la protección apropiada, los riesgos de lesión o muerte asociados a la soldadura pueden ser prácticamente eliminados. El riesgo de quemaduras o electrocución es significativo debido a que muchos procedimientos comunes de soldadura implican un arco eléctrico o flama abiertos. Para prevenirlas, las personas que sueldan deben utilizar ropa de protección, como calzado homologado, guantes de cuero gruesos y chaquetas protectoras de mangas largas para evitar la exposición a las chispas, el calor y las posibles llamas. Además, la exposición al brillo del área de la soldadura produce una lesión llamada ojo de arco (queratitis) por efecto de la luz ultravioleta que inflama la córnea y puede quemar las retinas. Las gafas protectoras y los cascos y caretas de soldar con filtros de cristal oscuro se usan para prevenir esta exposición, y en años recientes se han comercializado nuevos modelos de cascos en los que el filtro de cristal es transparente y permite ver el área de trabajo cuando no hay radiación UV, pero se auto oscurece en cuanto esta se produce al iniciarse la soldadura. Para proteger a los espectadores, la ley de seguridad en el trabajo exige que se utilicen mamparas o cortinas translúcidas que rodeen el área de soldadura. Estas cortinas, hechas de una película plástica de cloruro de polivinilo, protegen a los trabajadores cercanos de la exposición a la luz UV del arco eléctrico, pero no deben ser usadas para reemplazar el filtro de cristal usado en los cascos y caretas del soldador.38 A menudo, los soldadores también se exponen a gases peligrosos y a partículas finas suspendidas en el aire. Los procesos como la soldadura por arco de núcleo fundente y la soldadura por arco metálico blindado producen humo que contiene partículas de varios tipos de óxidos, que en algunos casos pueden producir cuadros médicos como el llamado fiebre del vapor metálico. El tamaño de las partículas en cuestión influye en la

toxicidad de los vapores, pues las partículas más pequeñas presentan un peligro mayor. Además, muchos procesos producen vapores y varios gases, comúnmente dióxido de carbono, ozono y metales pesados, que pueden ser peligrosos sin la ventilación y la protección apropiados. Para este tipo de trabajos, se suele llevar mascarilla para partículas de clasificación FFP3, o bien mascarilla para soldadura. Debido al uso de gases comprimidos y llamas, en muchos procesos de soldadura se plantea un riesgo de explosión y fuego. Algunas precauciones comunes incluyen la limitación de la cantidad de oxígeno en el aire y mantener los materiales combustibles lejos del lugar de trabajo.38

Costos y tendencias Como un proceso industrial, el coste de la soldadura juega un papel crucial en las decisiones de la producción. Muchas variables diferentes afectan el costo total, incluyendo el costo del equipo, el costo de la mano de obra, el costo del material, y el costo de la energía eléctrica. Dependiendo del proceso, el costo del equipo puede variar, desde barato para métodos como la soldadura de arco de metal blindado y la soldadura de oxicombustible, a extremadamente costoso para métodos como la soldadura de rayo láser y la soldadura de haz de electrones. Debido a su alto costo, éstas son solamente usadas en operaciones de alta producción. Similarmente, debido a que la automatización y los robots aumentan los costos del equipo, solamente son implementados cuando es necesaria la alta producción. El costo de la mano de obra depende de la velocidad de deposición (la velocidad de soldadura), del salario por hora y del tiempo total de operación, incluyendo el tiempo de soldar y del manejo de la pieza. El costo de los materiales incluye el costo del material base y de relleno y el costo de los gases de protección. Finalmente, el costo de la energía depende del tiempo del arco y la consumo de energía de la soldadura. Para los métodos manuales de soldadura, los costos de trabajo generalmente son la vasta mayoría del costo total. Como resultado, muchas medidas de ahorro de costo se enfocan en la reducción al mínimo del tiempo de operación. Para hacer esto, pueden seleccionarse procedimientos de soldadura con altas velocidades de deposición y los parámetros de soldadura pueden ajustarse para aumentar la velocidad de la soldadura. La mecanización y la automatización son frecuentemente implementadas para reducir los costos de trabajo, pero con a menudo ésta aumenta el costo de equipo y crea tiempo adicional de disposición. Los costos de los materiales tienden a incrementarse cuando son necesarias propiedades especiales y los costos de la energía normalmente no suman más que un porcentaje del costo total de la soldadura.39 En años recientes, para reducir al mínimo los costos de trabajo en la manufactura de alta producción, la soldadura industrial se ha vuelto cada vez más automatizada, sobre todo con el uso de robots en la soldadura de punto de resistencia (especialmente en la industria del automóvil) y en la soldadura de arco. En la soldadura robotizada, unos dispositivos mecánicos sostienen el material y realizan la soldadura,40 y al principio, la soldadura de punto fue su uso más común. Pero la soldadura de arco robótica ha incrementado su popularidad a medida que la tecnología ha avanzado. Otras áreas clave de investigación y desarrollo incluyen la soldadura de materiales distinitos (como por ejemplo, acero y aluminio) y los nuevos procesos de soldadura. Además, se desea progresar en que métodos especializados como la soldadura de rayo lásers sean prácticos para más aplicaciones, por ejemplo en las industrias aeroespaciales y del automóvil. Los investigadores también tienen la esperanza de entender mejor las

frecuentes propiedades impredecibles de las soldaduras, especialmente la microestructura, las tensiones residuales y la tendencia de una soldadura a agrietarse o deformarse.41

Especificaciones de soldadura   

American Society of Mechanical Engineers - Boiler and Pressure Vessel Code Section IX American Welding Society – Structural Welding Code American Welding Society – Bridge Welding Code

Véase también     

Inspección por líquidos penetrantes Electrodo Tratamiento térmico Tensión mecánica Otras técnica de unión: adhesivo, atornillado, remachado.

Referencias       

ASM International (2003). Trends in Welding Research. Materials Park, Ohio: ASM International. ISBN 0-87170-780-2 Blunt, Jane and Nigel C. Balchin (2002). Health and Safety in Welding and Allied Processes. Cambridge: Woodhead. ISBN 1-85573-538-5. Cary, Howard B. and Scott C. Helzer (2005). Modern Welding Technology. Upper Saddle River, Nueva Jersey: Pearson Education. ISBN 0-13-113029-3. Hicks, John (1999). Welded Joint Design. Nueva York: Industrial Press. ISBN 0-8311-3130-6. Kalpakjian, Serope and Steven R. Schmid (2001). Manufacturing Engineering and Technology. Prentice Hall. ISBN 0-201-36131-0. Lincoln Electric (1994). The Procedure Handbook of Arc Welding. Cleveland: Lincoln Electric. ISBN 99949-25-82-2. Weman, Klas (2003). Welding processes handbook. Nueva York: CRC Press LLC. ISBN 0-8493-1773-8.

Notas 1. ↑ Cary and Helzer, p 4 2. ↑ Lincoln Electric, p 1.1-1 3. ↑ Cary and Helzer, p 5–6 4. ↑ Cary and Helzer, p 6 5. ↑ a b Weman, p 26 6. ↑ Lincoln Electric, p 1.1-5 7. ↑ Cary and Helzer, p 7 8. ↑ Lincoln Electric, p 1.1-6 9. ↑ Cary and Helzer, p 9 10. ↑ Lincoln Electric, 1.1-10

11. ↑ Cary and Helzer, p 246–49 12. ↑ Kalpakjian and Schmid, p 780 13. ↑ Lincoln Electric, p 5.4-5 14. ↑ Weman, p 16 15. ↑ Cary and Helzer, p 103 16. ↑ Weman, p 63 17. ↑ Lincoln Electric, p 5.4-3 18. ↑ Weman, p 53 19. ↑ Weman, p 31 20. ↑ Weman, p 37–38 21. ↑ Weman, p 68 22. ↑ Weman, p 80–84 23. ↑ Weman, p 95–101 24. ↑ Weman, p 89–90 25. ↑ Hicks, p 52–55 26. ↑ Cary and Helzer, p 19, 103, 206 27. ↑ Cary and Helzer, p 401–04 28. ↑ Lincoln Electric, p 6.1-5–6.1-6 29. ↑ Kalpakjian and Schmid, p 821–22 30. ↑ Weman, p 5 31. ↑ Weman, p 7–8 32. ↑ Cary and Helzer, p 404–05 33. ↑ Lincoln Electric, p 6.1-1 34. ↑ Lincoln Electric, p 6.1-14–6.1-19 35. ↑ Lincoln Electric, p 7.1-9–7.1-13 36. ↑ Lincoln Electric, p 9.1-1–9.1-6 37. ↑ Cary and Helzer, p 677–83 38. ↑ a b Cary and Helzer, p 42, 49–51 39. ↑ Weman, p 184–89 40. ↑ Lincoln Electric, p 4.5-1 41. ↑ ASM International, "Welding Research Trends in the United States", p 995– 1005

Soldadura por arco

Soldadura. La idea de la soldadura por arco eléctrico fue propuesta a principios del siglo XIX por el científico inglés Humphrey Davy pero ya en 1885 dos investigadores rusos consiguieron soldar con electrodos de carbono. Cuatro años más tarde fue patentado un proceso de soldadura con varilla metálica. Sin embargo, este procedimiento no tomó importancia en el ámbito industrial hasta que el sueco Oscar Kjellberg descubrió, en 1904, el electrodo recubierto. Su uso masivo comenzó alrededor de los años 1950.

Contenido  



1 Fundamentos o 1.1 Elementos 2 Funciones de los recubrimientos o 2.1 Función eléctrica del recubrimiento o 2.2 Función metalúrgica de los recubrimientos 3 Tipos de soldadura o 3.1 Soldadura por arco manual con electrodos revestidos o 3.2 Soldadura por electrodo no consumible protegido o 3.3 Soldadura por electrodo consumible protegido o 3.4 Soldadura por arco sumergido





4 Seguridad o 4.1 Recomendaciones generales sobre soldadura con arco o 4.2 Equipo de protección personal 5 Véase también

Fundamentos El sistema de soldadura eléctrica con electrodo recubierto se caracteriza, por la creación y mantenimiento de un arco eléctrico entre una varilla metálica llamada electrodo, y la pieza a soldar. El electrodo recubierto está constituido por una varilla metálica a la que se le da el nombre de alma o núcleo, generalmente de forma cilíndrica, recubierta de un revestimiento de sustancias no metálicas, cuya composición química puede ser muy variada, según las características que se requieran en el uso. El revestimiento puede ser básico, rutílico y celulósico. Para realizar una soldadura por arco eléctrico se induce una diferencia de potencial entre el electrodo y la pieza a soldar, con lo cual se ioniza el aire entre ellos y pasa a ser conductor, de modo que se cierra el circuito. El calor del arco funde parcialmente el material de base y funde el material de aporte, el cual se deposita y crea el cordón de soldadura. La soldadura por arco eléctrico es utilizada comúnmente debido a la facilidad de transporte y a la economía de dicho proceso.

Elementos

Esquema. 

Plasma: Está compuesto por electrones que transportan la corriente y que van del polo negativo al positivo, de iones metálicos que van del polo positivo al negativo, de átomos gaseosos que se van ionizando y estabilizándose conforme pierden o ganan electrones, y de productos de la fusión tales como vapores que ayudarán a la forrmación de una atmósfera protectora. Esta zona alcanza la mayor temperatura del proceso.



Llama: Es la zona que envuelve al plasma y presenta menor temperatura que éste, formada por átomos que se disocian y recombinan desprendiendo calor por la combustión del revestimiento del electrodo. Otorga al arco eléctrico su forma cónica.



Baño de fusión: La acción calorífica del arco provoca la fusión del material, donde parte de éste se mezcla con el material de aportación del electrodo, provocando la soldadura de las piezas una vez solidificado.



Cráter: Surco producido por el calentamiento del metal. Su forma y profundidad vendrán dadas por el poder de penetración del electrodo.



Cordón de soldadura: Está constituido por el metal base y el material de aportación del electrodo y se pueden diferenciar dos partes: la escoria, compuesta por impurezas que son segregadas durante la solidificación y que posteriormente son eliminadas, y el sobre espesor, formado por la parte útil del material de aportación y parte del metal base, que es lo que compone la soldadura en sí.



Electrodo: Son varillas metálicas preparadas para servir como polo del circuito; en su extremo se genera el arco eléctrico. En algunos casos, sirven también como material fundente. La varilla metálica a menudo va recubierta por una combinación de materiales que varían de un electrodo a otro. El recubrimiento en los electrodos tiene diversa funciones, éstas pueden resumirse en las siguientes: o Función eléctrica del recubrimiento o Función física de la escoria o Función metalúrgica del recubrimiento

Funciones de los recubrimientos Función eléctrica del recubrimiento La estabilidad del arco para la soldadura depende de una amplia serie de factores como es la ionización del aire para que fluya adecuadamente la electricidad. Para lograr una buena ionización se añaden al revestimiento del electrodo productos químicos denominados sales de sodio, potasio y bario los cuales tienen una tensión de ionización baja y un poder termoiónico elevado. El recubrimiento, también contiene en su composición productos como los silicatos, los carbonatos, los óxidos de hierro y óxidos de titanio que favorecen la función física de los electrodos, que facilitan la soldadura en las diversas posiciones de ejecución del soldeo.

Función metalúrgica de los recubrimientos Además de las funciones de estabilizar y facilitar el funcionamiento eléctrico del arco y de contribuir físicamente a la mejor formación del cordón, el recubrimiento tiene una importancia decisiva en la calidad de la soldadura. Una de las principales funciones metalúrgicas de los recubrimientos de los electrodos es proteger el metal de la

oxidación, primero aislándolo de la atmósfera oxidante que rodea al arco y después recubriéndolo con una capa de escoria mientras se enfría y solidifica.

Tipos de soldadura Se distinguen los siguientes procesos de soldadura basados en el principio del arco eléctrico:

Soldadura por arco manual con electrodos revestidos Artículo principal: Soldadura manual de metal por arco

Electrodos revestidos. La característica más importante de la soldadura con electrodos revestidos, en inglés Shield Metal Arc Welding (SMAW) o Manual Metal Arc Welding (MMAW), es que el arco eléctrico se produce entre la pieza y un electrodo metálico recubierto. El recubrimiento protege el interior del electrodo hasta el momento de la fusión. Con el calor del arco, el extremo del electrodo funde y se quema el recubrimiento, de modo que se obtiene la atmósfera adecuada para que se produzca la transferencia de metal fundido desde el núcleo del electrodo hasta el baño de fusión en el material base. Además los aceros AWS en soldadura sirven para soldaduras de baja resistencia y muy fuertes. Estas gotas de metal fundido caen recubiertas de escoria fundida procedente de la fusión del recubrimiento del arco. La escoria flota en la superficie y forma, por encima del cordón de soldadura, una capa protectora del metal fundido. Como son los propios electrodos los que aportan el flujo de metal fundido, será necesario reponerlos cuando se desgasten. Los electrodos están compuestos de dos piezas: el alma y el revestimiento. El alma o varilla es alambre (de diámetro original 5.5 mm) que se comercializa en rollos continuos. Tras obtener el material, el fabricante lo decapa mecánicamente (a fin de eliminar el óxido y aumentar la pureza) y posteriormente lo trefila para reducir su diámetro. El revestimiento se produce mediante la combinación de una gran variedad de elementos (minerales varios, celulosa, mármol, aleaciones, etc.) convenientemente seleccionados y probados por los fabricantes, que mantienen el proceso, cantidades y dosificaciones en riguroso secreto.

La composición y clasificación de cada tipo de electrodo está regulada por AWS (American Welding Society), organismo de referencia mundial en el ámbito de la soldadura. Este tipo de soldaduras pueden ser efectuados bajo corriente tanto continua como alterna. En corriente continua el arco es más estable y fácil de encender y las salpicaduras son poco frecuentes; en cambio, el método es poco eficaz con soldaduras de piezas gruesas. La corriente alterna posibilita el uso de electrodos de mayor diámetro, con lo que el rendimiento a mayor escala también aumenta. En cualquier caso, las intensidades de corriente oscilan entre 10 y 500 amperios. El factor principal que hace de este proceso de soldadura un método tan útil es su simplicidad y, por tanto, su bajo precio. A pesar de la gran variedad de procesos de soldadura disponibles, la soldadura con electrodo revestido no ha sido desplazada del mercado. La sencillez hace de ella un procedimiento práctico; todo lo que necesita un soldador para trabajar es una fuente de alimentación, cables, un portaelectrodo y electrodos. El soldador no tiene que estar junto a la fuente y no hay necesidad de utilizar gases comprimidos como protección. El procedimiento es excelente para trabajos, reparación, fabricación y construcción. Además, la soldadura SMAW es muy versátil. Su campo de aplicaciones es enorme: casi todos los trabajos de pequeña y mediana soldadura de taller se efectúan con electrodo revestido; se puede soldar metal de casi cualquier espesor y se pueden hacer uniones de cualquier tipo. Sin embargo, el procedimiento de soldadura con electrodo revestido no se presta para su automatización o semiautomatización; su aplicación es esencialmente manual. La longitud de los electrodos es relativamente corta: de 230 a 700 mm. Por tanto, es un proceso principalmente para soldadura a pequeña escala. El soldador tiene que interrumpir el trabajo a intervalos regulares para cambiar el electrodo y debe limpiar el punto de inicio antes de empezar a usar electrodo nuevo. Sin embargo, aun con todo este tiempo muerto y de preparación, un soldador eficiente puede ser muy productivo.

Soldadura por electrodo no consumible protegido Artículo principal: Soldadura TIG

El objetivo fundamental en cualquier operación de soldadura es el de conseguir una junta con la misma característica del metal base. Este resultado sólo puede obtenerse si el baño de fusión está completamente aislado de la atmósfera durante toda la operación de soldeo. De no ser así, tanto el oxígeno como el nitrógeno del aire serán absorbidos por el metal en estado de fusión y la soldadura quedará porosa y frágil. En este tipo de soldadura se utiliza como medio de protección un chorro de gas que impide la contaminación de la junta. Tanto este como el siguiente proceso de soldeo tienen en común la protección del electrodo por medio de dicho gas. La soldadura por electrodo no consumible, también llamada Soldadura TIG (siglas de Tungsten Inert Gas), se caracteriza por el empleo de un electrodo permanente que normalmente, como indica el nombre, es de tungsteno. Este método de soldadura se patentó en 1920 pero no se empezó a utilizar de manera generalizada hasta 1940, dado su coste y complejidad técnica.

A diferencia que en las soldaduras de electrodo consumible, en este caso el metal que formará el cordón de soldadura debe ser añadido externamente, a no ser que las piezas a soldar sean específicamente delgadas y no sea necesario. El metal de aportación debe ser de la misma composición o similar que el metal base; incluso, en algunos casos, puede utilizarse satisfactoriamente como material de aportación una tira obtenida de las propias chapas a soldar. La inyección del gas a la zona de soldeo se consigue mediante una canalización que llega directamente a la punta del electrodo, rodeándolo. Dada la elevada resistencia a la temperatura del tungsteno (funde a 3410 °C), acompañada de la protección del gas, la punta del electrodo apenas se desgasta tras un uso prolongado. Es conveniente, eso sí, repasar la terminación en punta, ya que una geometría poco adecuada perjudicaría en gran medida la calidad del soldado. Respecto al gas, los más utilizados son el argón, el helio, y mezclas de ambos. El helio, gas noble (inerte, de ahí el nombre de soldadura por gas inerte) es más usado en los Estados Unidos, dado que allí se obtiene de forma económica en yacimientos de gas natural. Este gas deja un cordón de soldadura más achatado y menos profundo que el argón. Este último, más utilizado en Europa por su bajo precio en comparación con el helio, deja un cordón más triangular y que se infiltra en la soldadura. Una mezcla de ambos gases proporcionará un cordón de soldadura con características intermedias entre los dos. La soldadura TIG se trabaja con corrientes continua y alterna. En corriente continua y polaridad directa, las intensidades de corriente son del orden de 50 a 500 amperios. Con esta polarización se consigue mayor penetración y un aumento en la duración del electrodo. Con polarización inversa, el baño de fusión es mayor pero hay menor penetración; las intensidades oscilan entre 5 y 60 A. La corriente alterna combina las ventajas de las dos anteriores, pero en contra da un arco poco estable y difícil de cebar. La gran ventaja de este método de soldadura es, básicamente, la obtención de cordones más resistentes, más dúctiles y menos sensibles a la corrosión que en el resto de procedimientos, ya que el gas protector impide el contacto entre la atmósfera y el baño de fusión. Además, dicho gas simplifica notablemente el soldeo de metales no ferrosos, por no requerir el empleo de desoxidantes, con las deformaciones o inclusiones de escoria que pueden implicar. Otra ventaja de la soldadura por arco con protección gaseosa es la que permite obtener soldaduras limpias y uniformes debido a la escasez de humos y proyecciones; la movilidad del gas que rodea al arco transparente permite al soldador ver claramente lo que está haciendo en todo momento, lo que repercute favorablemente en la calidad de la soldadura. El cordón obtenido es por tanto de un buen acabado superficial, que puede mejorarse con sencillas operaciones de acabado, lo que incide favorablemente en los costes de producción. Además, la deformación que se produce en las inmediaciones del cordón de soldadura es menor. Como inconvenientes está la necesidad de proporcionar un flujo continuo de gas, con la subsiguiente instalación de tuberías, bombonas, etc., y el encarecimiento que supone. Además, este método de soldadura requiere una mano de obra muy especializada, lo que también aumenta los costes. Por tanto, no es uno de los métodos más utilizados sino que se reserva para uniones con necesidades especiales de acabado superficial y precisión.

Soldadura por electrodo consumible protegido

Este método resulta similar al anterior, con la salvedad de que en los dos tipos de soldadura por electrodo consumible protegido, MIG (Metal Inert Gas) y MAG (Metal Active Gas), es este electrodo el alimento del cordón de soldadura. El arco eléctrico está protegido, como en el caso anterior, por un flujo continuo de gas que garantiza una unión limpia y en buenas condiciones. En la soldadura MIG, como su nombre indica, el gas es inerte; no participa en modo alguno en la reacción de soldadura. Su función es proteger la zona crítica de la soldadura de oxidaciones e impurezas exteriores. Se emplean usualmente los mismos gases que en el caso de electrodo no consumible, argón, menos frecuentemente helio, y mezcla de ambos. En la soldadura MAG, en cambio, el gas utilizado participa de forma activa en la soldadura. Su zona de influencia puede ser oxidante o reductora, ya se utilicen gases como el dióxido de carbono o el argón mezclado con oxígeno. El problema de usar CO2 en la soldadura es que la unión resultante, debido al oxígeno liberado, resulta muy porosa. Además, sólo se puede usar para soldar acero, por lo que su uso queda restringido a las ocasiones en las que es necesario soldar grandes cantidades de material y en las que la porosidad resultante no es un problema a tener en cuenta. El uso de los métodos de soldadura MIG y MAG es cada vez más frecuente en el sector industrial. En la actualidad, es uno de los métodos más utilizados en Europa occidental, Estados Unidos y Japón en soldaduras de fábrica. Ello se debe, entre otras cosas, a su elevada productividad y a la facilidad de automatización, lo que le ha valido abrirse un hueco en la industria automovilística. La flexibilidad es la característica más sobresaliente del método MIG / MAG, ya que permite soldar aceros de baja aleación, aceros inoxidables, aluminio y cobre, en espesores a partir de los 0,5 mm y en todas las posiciones. La protección por gas garantiza un cordón de soldadura continuo y uniforme, además de libre de impurezas y escorias. Además, la soldadura MIG / MAG es un método limpio y compatible con todas las medidas de protección para el medio ambiente. En contra, su mayor problema es la necesidad de aporte tanto de gas como de electrodo, lo que multiplica las posibilidades de fallo del aparato, además del lógico encarecimiento del proceso. La soldadura MIG/MAG es intrínsecamente más productiva que la soldadura MMA, donde se pierde productividad cada vez que se produce una parada para reponer el electrodo consumido. Las pérdidas materiales también se producen con la soldadura MMA, cuando la parte última del electrodo es desechada. Por cada kilogramo de electrodo revestido comprado, alrededor del 65% forma parte del material depositado (el resto es desechado). La utilización de hilos sólidos e hilos tubulares ha aumentado esta eficiencia hasta el 80-95%. La soldadura MIG/MAG es un proceso versátil, pudiendo depositar el metal a una gran velocidad y en todas las posiciones. El procedimiento es muy utilizado en espesores delgados y medios, en fabricaciones de acero y estructuras de aleaciones de aluminio, especialmente donde se requiere un gran porcentaje de trabajo manual. La introducción de hilos tubulares está encontrando cada vez más, su aplicación en los espesores fuertes que se dan en estructuras de acero pesadas.

Soldadura por arco sumergido

El proceso de soldadura por arco sumergido, también llamado proceso SAW (Submerged Arc Welding), tiene como detalle más característico el empleo de un flujo continuo de material protector en polvo o granulado, llamado flux. Esta sustancia protege el arco y el baño de fusión de la atmósfera, de tal forma que ambos permanecen invisibles durante la soldadura. Parte del flux funde, y con ello protege y estabiliza el arco, genera escoria que aísla el cordón, e incluso puede contribuir a la aleación. El resto del flux, no fundido, se recoge tras el paso del arco para su reutilización. Este proceso está totalmente automatizado y permite obtener grandes rendimientos. El electrodo de soldadura SAW es consumible, con lo que no es necesaria aportación externa de fundente. Se comercializa en forma de hilo, macizo o hueco con el flux dentro (de forma que no se requiere un conducto de aporte sino sólo uno de recogida), de alrededor de 0,5 mm de espesor. El flux, o mejor dicho, los fluxes, son mezclas de compuestos minerales varios (SIO2, CaO, MnO, etc…) con determinadas características de escorificación, viscosidad, etc. Obviamente, cada fabricante mantiene la composición y el proceso de obtención del flux en secreto, pero, en general, se clasifican en fundidos (se obtienen por fusión de los elementos), aglomerados (se cohesionan con aglomerantes; cerámicos, silicato potásico, etc.) y mezclados mecánicamente (simples mezclas de otros fluxes). Ya que el flux puede actuar como elemento fundente, la adición en él de polvo metálico optimiza bastante el proceso, mejora la tenacidad de la unión y evita un indeseable aumento del tamaño de grano en el metal base. Dependiendo del equipo y del diámetro del hilo de electrodo, este proceso se trabaja con intensidades de hasta 1600 amperios, con corrientes continuas (electrodo positivo y base negativa) o alternas. Este proceso es bastante versátil; se usa en general para unir metales férreos y aleaciones, y para recubrir materiales contra la corrosión (overlay). Además, permite la soldadura de piezas con poca separación entre ellas. El arco actúa bajo el flux, evitando salpicaduras y contaminación del cordón, y alimentándose, si es necesario, del propio flux, que además evita que el arco se desestabilice por corrientes de aire. La soldadura SAW puede aplicarse a gran velocidad en posiciones de sobremesa, para casi cualquier tipo de material y es altamente automatizable. El cordón obtenido en estos soldeos es sano y de buen aspecto visual. Una característica mejora del proceso SAW es la soldadura en tándem, mediante la cual se aplican dos electrodos a un mismo baño. Así se aumenta la calidad de la soldadura, ya que uno de los electrodos se encarga de la penetración y el volumen del cordón, mientras que el segundo maneja lo parámetros de geometría y tamaño. En cambio, la mayor limitación de este proceso es que solo puede aplicarse en posiciones de sobremesa y cornisa, ya que de otra manera el flux se derramaría. Flux que ha de ser continuamente aportado, lo cual encarece el procedimiento y aumenta sus probabilidades de fallo (hay que alimentar tanto el rollo de electrodo como el flux); además, si se contamina por agentes externos, la calidad del cordón disminuye bastante. A pesar de que puede unir materiales poco separados, no es recomendable para unir espesores menores de 5mm.

Este proceso tiene su mayor campo de aplicación en la fabricación de tuberías de acero en espiral y, en general, en la soldadura de casi cualquier tipo de aceros (especialmente los inoxidables).

Seguridad Según la NASD (Nacional Ag Safety Database), las medidas de seguridad necesarias para trabajar con soldadura con arco son las siguientes.

Recomendaciones generales sobre soldadura con arco Antes de empezar cualquier operación de soldadura de arco, se debe hacer una inspección completa del soldador y de la zona donde se va a usar. Todos los objetos susceptibles de arder deben ser retirados del área de trabajo, y debe haber un extintor apropiado de PQS o de CO2 a la mano, no sin antes recordar que en ocasiones puede tener manguera de espuma mecánica. Los interruptores de las máquinas necesarias para el soldeo deben poderse desconectar rápida y fácilmente. La alimentación estará desconectada siempre que no se esté soldando, y contará con una toma de tierra Los portaelectrodos no deben usarse si tienen los cables sueltos y las tenazas o los aislantes dañados. La operación de soldadura deberá llevarse a cabo en un lugar bien ventilado pero sin corrientes de aire que perjudiquen la estabilidad del arco. El techo del lugar donde se suelde tendrá que ser alto o disponer de un sistema de ventilación adecuado. Las naves o talleres grandes pueden tener corrientes no detectadas que deben bloquearse.

Equipo de protección personal La radiación de un arco eléctrico es enormemente perjudicial para la retina y puede producir cataratas, pérdida parcial de visión, o incluso ceguera. Los ojos y la cara del soldador deben estar protegidos con un casco de soldar homologado equipado con un visor filtrante de grado apropiado. La ropa apropiada para trabajar con soldadura por arco debe ser holgada y cómoda, resistente a la temperatura y al fuego. Debe estar en buenas condiciones, sin agujeros ni remiendos y limpia de grasas y aceites. Las camisas deben tener mangas largas, y los pantalones deben ser largos, acompañados con zapatos o botas aislantes que cubran. Deben evitarse por encima de todo las descargas eléctricas, que pueden ser mortales. Para ello, el equipo deberá estar convenientemente aislado (cables, tenazas, portaelectrodos deben ir recubiertos de aislante), así como seco y libre de grasas y aceite. Los cables de soldadura deben permanecer alejados de los cables eléctricos, y el soldador separado del suelo; bien mediante un tapete de caucho, madera seca o mediante cualquier otro aislante eléctrico. Los electrodos nunca deben ser cambiados con las manos descubiertas o mojadas o con guantes mojado

Soldadura MIG/MAG La soldadura MIG/MAG es un proceso por arco bajo gas protector con electrodo consumible, el arco se produce mediante un electrodo formado por un hilo continuo y unas piezas a unir, quedando este protegido de la atmosfera circundante por un gas inerte (soldadura MIG) o por un gas activo (soldadura MAG). La soldadura MIG/MAG es intrensicamente mas productiva que la soldadura MMA donde se pierde productividad cada vez que se produce una parada para reponer el electrodo consumido. El uso de hilos solidos e hilos tubulares han aumentado la eficiencia de este tipo de soldadura hasta el 80%-95%. La soldadura MIG/MAG es un proceso versatil, pudiendo depositar el metal a una gran velocidad y en todas las posiciones, este procedimiento es muy utilizado en espesores pequeños y medios en estructuras de acero y aleaciones de aluminio, especialmente donde se requiere una gran trabajo manual. La introduccion de hilos tubulares esta entrando cada vez mas a la produccion de estructuras pesadas donde se necesita de una gran resistencia de soldadura. A continuación podemos observar los elementos mas importantes que intervienen en el proceso:

1. Dirección de la soldadura 2. Tubo de contacto 3. Hilo 4. Gas protector 5. Soldadura 6 y 7. Piezas a unir.

Contenido [ocultar]  









 

1 Ventajas de Soldadura MIG/MAG 2 Procesos de soldadura o 2.1 Proceso semiautomático o 2.2 Proceso automático o 2.3 Proceso robotizado 3 Parámetros o 3.1 Polaridad o 3.2 Tensión de arco o 3.3 Velocidad de hilo o 3.4 Naturaleza del gas 4 Transferencia del metal o 4.1 Transferencia por cortocircuito o 4.2 Transferencia globular o 4.3 Transferencia por pulverización axial o 4.4 Transferencia por arco pulsado 5 Productos de aporte o 5.1 Hilos de soldadura o 5.2 Gases de protección 6 Constitución equipo de soldadura MIG/MAG o 6.1 Transformador o 6.2 Rectificador o 6.3 Inductancia o 6.4 Unidad alimentadora de hilo o 6.5 Circuito de gas protector o 6.6 Antorcha de soldadura o 6.7 Factor de marcha 7 Véase también 8 Referencias

Ventajas de Soldadura MIG/MAG Las principales ventajas que ofrece el proceso MIG/MAG son:      

Se puede soldar en todas las posiciones Ausencia de escoria para retirar Buen apariencia o acabado (pocos salpicados) Poca formación de gases contaminantes y tóxicos Soldadura de buena calidad radiográfica Se suelda espesores desde 0.7 á 6 mm sin preparación de bordes

  

Proceso semiautomático o automático (menos dependiente de la habilidad de operador) Alta productividad o alta tasa de metal adicionado (principal ventaja) Las principales bondades de este proceso son la alta productividad y excelente calidad; en otras palabras, se puede depositar grandes cantidades de metal (tres veces más que con el proceso de electrodo revestido), con una buena calidad (1)

Procesos de soldadura Podemos diferenciar tres tipos de procesos de soldadura:

Proceso semiautomático es la aplicación más común, en la que algunos parámetros previamente ajustados por el soldador, como el voltaje y el amperaje, son regulados de forma automática y constante por el equipo, pero es el operario quien realiza el arrastre de la pistola manualmente. El voltaje, es decir la tensión que ejerce la energía sobre el electrodo y la pieza, resulta determinante en el proceso: a mayor voltaje, mayor es la penetración de la soldadura. Por otro lado, el amperaje (intensidad de la corriente), controla la velocidad de salida del electrodo. Así, con más intensidad crece la velocidad de alimentación del material de aporte, se generan cordones más gruesos y es posible rellenar uniones grandes. Normalmente se trabaja con polaridad positiva, es decir, la pieza al negativo y el alambre al positivo. El voltaje constante mantiene la estabilidad del arco eléctrico, pero es importante que el soldador evite los movimientos bruscos oscilantes y utilice la pistola a una distancia de ± 7 mm sobre la pieza de trabajo.

Proceso automático Al igual que en el proceso semiautomático, en este, la tensión y la intensidad se ajustan previamente a los valores requeridos para cada trabajo y son regulados por el equipo, pero es una boquilla automatizada la que aplica la soldadura. Generalmente, el operario interviene muy poco en el proceso, bien sea para corregir, reajustar los parámetros, mover la pieza o cambiarla de un lugar a otro.

Proceso robotizado Este proceso es utilizado a escala industrial. Todos los parámetros y las coordenadas de localización de la unión que se va a soldar se programan mediante una unidad CNC. En las aplicaciones robotizadas, un brazo mecánico puede soldar toda una pieza, transportarla y realizar los acabados automáticamente, sin necesidad de la intervención del operario.

Parámetros Los parámetros variables de soldadura son los factores que pueden ser ajustados para controlar una soldadura. Para obtener los mejores resultados en el proceso, es necesario conocer el efecto de cada variable sobre las diversas características o propiedades del proceso de soldadura. Algunas de estas variables, a las que denominamos variables preseleccionadas son:

   

Diámetro del alambre-electrodo Composición química del mismo Tipo de gas Caudal

Por otra parte también hay que definir otras variables las cuales las denominamos variables primarias que son las que controlan el proceso después que las variables preseleccionadas fueron seleccionadas, estas controlan la estabilidad del arco, el régimen de soldadura y la calidad de la soldadura, estas variables son:   

Tensión del arco Corriente de soldadura Velocidad de avance

Otras variables a tener en cuenta son las denominadas variables secundarias, que pueden ser modificadas de manera continua, son a veces difíciles de medir con precisión y especialmente en soldadura automática, estas no afectan directamente a la forma del cordón, pero actúan sobre una variable primaria que a su vez influye en el cordón. Estas variables son:   

Altura de la boquilla Angulo de la boquilla Velocidad de alimentación del alambre

Los parametros regulables que podemos considerar como mas importantes y que mas afectan a la soldadura son:    

Polaridad Tension de arco Velocidad del hilo Naturaleza del gas

Polaridad Lo más normal es que en las máquinas de hoy en día se trabaje con polaridad inversa o positiva (la pieza al negativo y el hilo de soldadura al positivo. En algunos casos concretos en los que se requiera mayor temperatura en la pieza que en el hilo se utilizan la polaridad directa o negativa ya que los electrones siempre van de polo negativo al positivo produciéndose un mayor amuento de temperaturo en este último.

Tensión de arco Este parámetro es uno de los más importantes a la hora de transferir el material aportado a la pieza. Se puede regular en la mayoría de máquinas por el operario y nos permite aumentar o disminuir la tensión aplicada en el arco, pero no siempre nos modificará la intensidad de trabajo.

Velocidad de hilo

En este tipo de soldadura no es la intensidad la que se regula previamente, sino que es la variación de la velocidad de hilo la que provoca la aparición de diferentes intensidades gracias al fenómeno de la autorregulación.

Naturaleza del gas El tipo de gas utilizado para la soldadura ingfluye sobre la transferencia del material, penetración, la forma del cordón, proyecciones, etc.

Transferencia del metal En la soldadura MIG/MAG podemos encontrar cuatro tipos de transferencia del metal aportado, los cuales dependen directamene de la tensión e intensidad con los que se trabaje.

Transferencia por cortocircuito En este tipo de transferencia es la mas utilizada por la a plicacion MAG el material aportado se funde en gotitas entre 50 y 200 por segundo cuando la punta del electrodo toca el metal fundido de soldadura y hace cortocircuito. Se usan corrientes y tensiones bajas, los gases son ricos en dióxido de carbono y los electrodos son de alambre de diámetro pequeño. Debido a sus características de bajo aporte de calor, el método produce pequeñas zonas de soldadura fundida de enfriamiento rápido, que lo hacen ideal para soldar en todas las posiciones. La transferencia de corto circuito es también especialmente adaptable a la soldadura de láminas metálicas con un mínimo de distorsión y para llenar vacíos o partes más ajustadas con una tendencia menor al sobrecalentamiento de la pieza que se está soldando. Con este tipo se sueldan piezas de espesores pequeños ya que la corriente aplicada a esta es baja en comparación con otros.

Transferencia globular Se usa frecuentemente en la aplicación MAG y algunas veces en MIG, cuando se trabaja con esta transferencia, el hilo se funde en gotas gruesas que pueden llegar a todos los huecos. El metal se transfiere en gotas de gran tamaño y ocurre por gravedad cuando el peso de éstas excede la tensión superficial. Se usan gases ricos en dióxido de carbono y argón, produce altas corrientes que posibilitan mayor penetración de la soldadura y mayores velocidades que las que se alcanzan con la transferencia por corto circuito y spray. También, se producen bastantes salpicaduras y por ello no es recomendable soldar sobrecabeza, debe ejecutarse en posición horizontal. Las piezas más pesadas se suelen unir por medio de este método. Este tipo de transferencia no se usa en ningún trabajo, pero se puede ver en operaciones de puesta a punto de máquinas.

[Transferencia por pulverización axial

Es el método clásico utilizado en la aplicación MIG. El metal de aporte es transportado a alta velocidad en partículas muy finas a través del arco, entre 500 y 2.000 por segundo. La fuerza electromagnética es alta, lo que permite atomizar las gotas desde la punta del electrodo en forma lineal hacia el área de soldadura. Se puede soldar a altas temperaturas, adicionalmente es preciso usar corriente continua y electrodo positivo para garantizar que las gotas se formen y se suelten a razón de centenares por segundo. El gas de protección es argón o una mezcla rica en argón. Este tipo se recomienda para soldaduras en piezas de grandes espesores gracias a su gran penetración en el material.

Transferencia por arco pulsado En esta nos encontramos con dos corrientes una continua y débil cuyo objetivo es proporcionar al hilo la mínima energía para que se produzca el arco y otra a impulsos producidos a una cierta frecuencia. Cada pulsación hace fundir una gota del mismo diámetro que el hilo desprendiéndola sobre la pieza antes de que el hilo toque a esta. De esta forma se consigue que no se producen las proyecciones que se pueden ver en otros tipos. Con este tipo se produce una ganancia en penetración gracias a la elevada intensidad que se produce durante la pulsación y al mismo tiempo una reducción del consumo de energía.

Productos de aporte Hilos de soldadura Los diámetros mas usuales en este tipo de soldadura son 0,8; 1,0;1,2;1,6 mm y en algunos casos 2,4 mm La elección de uno de estos diámetros a la hora de trabajar es muy importante ya que para grandes diámetros se utilizan grandes intensidades y se producen grandes penetraciones, pudiendo producirse perforaciones en la piezas. Por el otro lado para diámetros pequeños se aplican bajas intensidades y se consiguen bajas penetraciones, pudiendo ocurrir que la penetración en la pieza sea demasiado pequeña.

El formato estándar del hilo son bobinas de diferentes grandarías. Los hilos suelen ir recubiertos de cobre para que la conductividad del hilo con el tubo de contacto sea buena, además de disminuir los rozamientos y para que no aparezcan oxidaciones. También se utiliza hilo tubular, los cuales van rellenos de polvo metálico o flux.

Gases de protección En la variante MIG (Metal Inert Gas), el gas de protección es inerte( no actúa activamente en el proceso de la soldadura) siendo muy estable. Por otro lado en la soldadura MAG(Metal Activ Gas), el gas de protección se comporta de forma inerte en la contaminación de la soldadura pero por el otro lado interviene termodinámicamente en ella. -Soldadura MIG Dentro de los gases inertes disponibles en Europa el más empleado es el argón y en Estados Unidos, el helio es el que más se utiliza. El argón con altas purezas solo es utilizado en soldadura de titanio, aluminio, cobre y níquel. Para la soldadura de acero se tiene que aplicar con cantidades inferiores al 5% de mezcla con oxígeno ya que el argón puro produce mordeduras y cordones irregulares.Así se mejora la penetración y ensanchamiento de la parte inferior del cordón. La utilización de helio produce cordones más anchos y una penetración menos profunda que la producida por el argón. -Soldadura MAG El CO2 es uno de los gases empleados en este tipo de soldadura. Es un gas inodoro, incoloro y con un sabor picante.Tiene un peso de una vez y media mayor que el aire, además es un gas de carácter oxidante que en elevadas temperaturas se disocia en una reacción en el arco de 2CO2-2CO2+O absorbiendo calor y en la recomposición en la base 2CO2+O cendiedo calor. Sus inconvenientes son que produce arcos muy enérgicos, con lo que también se producen un gran número de proyecciones. Por otro lado es un gas mucho más barato que el argón, capaz de producir penetraciones mucho mas profundas y anchas que este. También se tiene la ventaja que reduce el riesgo de mordeduras y faltas de fusión. La mezcla de Ar+CO2 se suele utilizar con cantidades de mezcla de entre el 15 y el 25% de CO2. Las ganancias de trabajara con esta mezcla son una mejor visibilidad del baño, un arco más suave, con menores turbulencias, un baño de fusión más frío, un mejor aspecto del cordón, menos proyecciones y una mejor estabilidad de arco. El único y mayor inconveniente de la mezcla es de tipo económico, pero por otro lado hay que compararlo con los grandes beneficios que nos aporta, siendo estos normalmente mayores que el primero.

Constitución equipo de soldadura MIG/MAG Las máquinas del tipo estándar están formadas por diferentes elementos para poder llevar a cabo la soldadura MIG/MAG.

Transformador La fuente de potencia eléctrica que se encarga de suministrar la suficiente energía para poder fundir el electrodo en la pieza de trabajo. Son de tipo DC (corriente directa) con característica de salida de Voltaje Constante (CV). Tiene la función de reducir la tensión alterna de la red de consumo a otra apta para la soldadura. Principalmente un transformador esta formado de un núcleo constituido por chapas magnéticas apiladas en cuyas columnas se devanan dos bobinas. En la primera de ellas consta del circuito primario formado por un número de espiras superior a la segunda y con una sección inferior a esta. En la segunda se forma el circuito secundario, formado por lo cual con un menor número de espiras y mayor sección.

Rectificador Este elemento convierte la tensión alterna en continua, la cual es muy necesaria para poder realizar la soldadura MIG/MAG. El rectificador está constituido de semiconductores de potencia (diodos de silicio), normalmente colocados sobre aleteas con el objetivo de aumentar su refrigeración.

Inductancia La misión de la inductancia es el aislamiento de la corriente de soldadura, lo que produce una mayor estabilidad de la soldadura. Si la máquina está equipada por una inductancia de valor inductivo elevado, esta también estará dotada de un sistema que elimine este efecto durante el cebado del arco, ya que si al efectuar el cebado se tiene una gran inductancia el arco no se llegaría a producir. Este elemento está formado por un núcleo en el que están arrolladas algunas espiras por las que circula la corriente continua de la soldadura.

Unidad alimentadora de hilo Esta unidad hace el avance a velocidad constante del hilo necesario para realizar la soldadura mediante un motor, general mente de corriente continua. La velocidad se puede regular entre unos valores que van de o a 25 m/min. Esta regulación se puede conseguir normalmente mediante un control eléctrico que actúa sobre un motor de alimentación. El sistema de arrastre está constituido por uno o dos rodillos de arrastre que trabajan contra otros rodillos de presión. El rodillo de presión debe estar bien ajustado, ya que una presión excesiva puede producir aplastamientos en el hilo, haciendo que no se deslice bien. Por lo contrario, cuando no hay suficiente presión sobre el hilo se puede producir una alimentación a velocidades irregulares.

Circuito de gas protector La salida de la botella va equipada con un manorreductor-caudalimetro que permite la regulación por el operario para proporcionar el caudal necesario sobre la soldadura, además se puede ver la presión de la botella y el caudal que estamos utilizando. El paso de gas hacia la soldadura es producido por una válvula accionada eléctricamente mediante un pulsador equipado sobre la antorcha. Como norma estándar debe utilizarse un caudal en l/m diez veces mayor que el diámetro del hilo.

Antorcha de soldadura Mediante este elemento se conduce el hilo, se acciona la corriente eléctrica y se acciona el gas protector a la zona del arco de soldadura. Todos de conductos van recubiertos por una tubería de goma y todo el conjunto forma la manguera que conecta la máquina con la pistola.En la punta de la antorcha va montada una buza exterior que canaliza el gas hasta la zona de soldadura, en el interior se encuentra un tubo de contacto que proporciona al hilo la corriente necesaria para realizar el arco de soldadura. Este tubo de contacto tiene su orificio interior calibrado para cada diámetro de hilo. La distancia entre la punta del tubo de contacto hasta el arco es controlada por el operario, pero la longitud del arco es controlada automáticamente por los parámetros regulados en la máquina.

Tubo de contacto

Factor de marcha

Los equipos de soldadura están diseñados para trabajar a una intensidad nominal de forma continua. Las máquinas al cabo de un tiempo de trabajo tienen que estabilizar la temperatura de sus componentes a la intensisdad nominal de trabajo, pero en la soldadura MIG/MAG estándar no es posible trabajar de forma continua, ya que existen tiempos de preparación, cambios de hilo, de botellas de gas, de descansos del operario, etc. A causa de no poder trabajar de forma continua, las temperaturas disminuyen gracias a los espacios de tiempo que no se está trabajando, por lo que se hace necesario hablar del factor de marcha. El factor de marcha es el cociente entre el tiempo de soldeo y el tiempo total de trabajo. En los paros de la soldara se enfrían los componentes del equipo, estabilizándose la temperatura de estos en un pequeño rango de valores, inferiores a su temperatura máxima de trabajo. Para determinar la intensidad I' para un determinado factor de marcha se utiliza la siguiente expresión:

Soldadura TIG

Accesorios para soldadura TIG.

Esquema de la soldadura TIG.

La soldadura TIG (Tungsten Inert Gas), se caracteriza por el empleo de un electrodo permanente de tungsteno, aleado a veces con torio o zirconio en porcentajes no superiores a un 2%. Dada la elevada resistencia a la temperatura del tungsteno (funde a 3410 °C), acompañada de la protección del gas, la punta del electrodo apenas se desgasta tras un uso prolongado. Los gases más utilizados para la protección del arco en esta soldadura son el argón y el helio, o mezclas de ambos. La gran ventaja de este método de soldadura es, básicamente, la obtención de cordones más resistentes, más dúctiles y menos sensibles a la corrosión que en el resto de procedimientos, ya que el gas protector impide el contacto entre el oxigeno de la atmósfera y el baño de fusión. Además, dicho gas simplifica notablemente el soldeo de metales ferrosos y no ferrosos, por no requerir el empleo de desoxidantes, con las deformaciones o inclusiones de escoria que pueden implicar. Otra ventaja de la soldadura por arco en atmósfera inerte es la que permite obtener soldaduras limpias y uniformes debido a la escasez de humos y proyecciones; la movilidad del gas que rodea al arco transparente permite al soldador ver claramente lo que está haciendo en todo momento, lo que repercute favorablemente en la calidad de la soldadura. El cordón obtenido es por tanto de un buen acabado superficial, que puede mejorarse con sencillas operaciones de acabado, lo que incide favorablemente en los costes de producción. Además, la deformación que se produce en las inmediaciones del cordón de soldadura es menor. Como inconvenientes está la necesidad de proporcionar un flujo continuo de gas, con la subsiguiente instalación de tuberías, bombonas, etc., y el encarecimiento que supone. Además, este método de soldadura requiere una mano de obra muy especializada, lo que también aumenta los costes. Por tanto, no es uno de los métodos más utilizados sino que se reserva para uniones con necesidades especiales de acabado superficial y precisión. De todas formas, hoy en día se está generalizando el uso de la soldadura TIG sobre todo en aceros inoxidables y especiales ya que a pesar del mayor coste de ésta soldadura, debido al acabado obtenido. En nuestros días, las exigencias tecnológicas en cuanto a calidad y confiabilidad de las uniones soldadas, obligan a adoptar nuevos sistemas, destacándose entre ellos la soldadura al Arco con Electrodo de Tungsteno y Protección Gaseosa (TIG). El sistema TIG es un sistema de soldadura al arco con protección gaseosa, que utiliza el intenso calor de un arco eléctrico generado entre un electrodo de tungsteno no consumible y la pieza a soldar, donde puede o no utilizarse metal de aporte. Se utiliza gas de protección cuyo objetivo es desplazar el aire, para eliminar la posibilidad de contaminación de la soldadura por el oxígeno y nitrógeno presente en la atmósfera La característica más importante que ofrece este sistema es entregar alta calidad de soldadura en todos los metales, incluyendo aquellos difíciles de soldar, como también para soldar metales de espesores delgados y para depositar cordones de raíz en unión de cañerías. Las soldaduras hechas con sistema TIG son más fuertes, más resistentes a la corrosión y más dúctiles que las realizadas con electrodos convencionales. Cuando se necesita alta

calidad y mayores requerimientos de terminación, se necesario utilizar el sistema TIG para lograr soldaduras homogéneas, de buena apariencia y con un acabado completamente liso. Características y ventajas del sistema TIG: No se requiere de fundente y no hay necesidad de limpieza posterior en la soldadura No hay salpicadura, chispas ni emanaciones, al no circular metal de aporte a través del arco Brinda soldaduras de alta calidad en todas las posiciones, sin distorsión Al igual que todos los sistemas de soldadura con protección gaseosa, el área de soldadura es claramente visible El sistema puede ser automatizado, controlando mecánicamente la pistola y/o el metal de aporte Equipo: El equipo para sistema TIG consta básicamente de: Fuente de poder Unidad de alta frecuencia Pistola Suministro gas de protección Suministro agua de enfriamiento La pistola asegura el electrodo de tungsteno que conduce la corriente, el que está rodeado por una boquilla de cerámica que hace fluir concéntricamente el gas protector. La pistola normalmente se refrigera por aire. Para intensidades de corriente superiores a 200 Amps. Se utiliza refrigeración por agua, para evitar recalentamiento del mango

Related Documents

Libro De Soldadura 46 Pag
January 2021 1
Soldadura - Libro
January 2021 16
46
January 2021 2
Soldadura
January 2021 1
Soldadura
January 2021 4

More Documents from "Nilson Anthony Laura Buleje"