Math 29 Problem Set Compilation [fixed]

  • Uploaded by: Jade Mark Ramos
  • 0
  • 0
  • February 2021
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Math 29 Problem Set Compilation [fixed] as PDF for free.

More details

  • Words: 20,653
  • Pages: 114
Loading documents preview...
EXERCISE 9.1

1.

BASIC INTEGRATION FORMULAS

6π‘₯ 2 βˆ’ 4π‘₯ + 5 𝑑π‘₯ =

6π‘₯ 3 3

βˆ’

4π‘₯ 2 2

7.

+ 5π‘₯ + 𝑐

= Factor, (x-c), c = 2 P(c) = 0 – the (x-c ) is the factor P(c) = 0 2 1 0 0 -8 2 4 8 12 4 0

= πŸπ’™πŸ‘ βˆ’ πŸπ’™πŸ + πŸ“π’™ + 𝒄

3.

=

π‘₯( π‘₯ βˆ’ 1)𝑑π‘₯ =

= π‘₯ 𝑑π‘₯ βˆ’ π‘₯𝑑π‘₯

5.

𝟐 πŸ“ π’™πŸ πŸ“

𝟏 𝟐 𝒙 𝟐

βˆ’

(𝑋 2 +2𝑋+4)(π‘‹βˆ’2) (π‘‹βˆ’2)

= (π‘₯ 2 + 2π‘₯ + 4)𝑑π‘₯

π‘₯ π‘₯ βˆ’ π‘₯ 𝑑π‘₯ 3 2

=

π‘₯ 3 βˆ’8 𝑑π‘₯ π‘₯βˆ’2

+𝒄

9.

2π‘₯ 2 +4π‘₯βˆ’3 𝑑π‘₯ π‘₯2

=

π‘₯3 3

=

π’™πŸ‘ + πŸ‘

+

2π‘₯ 2 2

+ 4π‘₯ + 𝑐

π’™πŸ + πŸ’π’™ + 𝒄

π‘₯ 4 βˆ’ 2π‘₯ 3 + π‘₯ 2 𝑑π‘₯ 2

=

2+

4 𝑋

= 2𝑑π‘₯ + = 2π‘₯ + 4

βˆ’

3 𝑋2

4 𝑑π‘₯ π‘₯ 𝑑π‘₯ π‘₯

𝑑π‘₯ βˆ’

3 𝑑π‘₯ π‘₯2

=

π’™πŸ‘ πŸ‘

πŸ“

βˆ’

πŸ”πŸ‘ πŸ“

+

π’™πŸ 𝟐

+π‘ͺ

3π‘₯ βˆ’1 𝑑π‘₯ βˆ’1

βˆ’

= πŸπ’™ + πŸ’π’π’π’™ +

= π‘₯ 2 𝑑π‘₯ βˆ’ 2π‘₯ 3 𝑑π‘₯ + π‘₯𝑑π‘₯

πŸ‘ 𝒙

+𝒄

DIFFERENTIAL & INTEGRAL CALCULUS | Feliciano & Uy

1

EXERCISE 9.2

1.

INTEGRATION BY SUBSTITUTION

2 βˆ’ 3π‘₯ 𝑑π‘₯

(2π‘₯+3)𝑑π‘₯ π‘₯ 2 +3π‘₯+4

5.

𝑑𝑒

Let u = 2 - 3x𝑑π‘₯ = βˆ’3

Let u = π‘₯ 2 + 3π‘₯ + 4 𝑑π‘₯ = 2π‘₯ + 3

βˆ’π‘‘π‘’ = 𝑑π‘₯ 3

𝑑𝑒 = (2π‘₯ + 3)𝑑π‘₯

= 𝑒

1 2

𝑑𝑒 𝑒

=

𝑑𝑒 (βˆ’ 3 )

1 =βˆ’ 3

𝑑𝑒

= 𝑙𝑛𝑒 + 𝑐

1 2

𝑒 𝑑𝑒

= π₯𝐧 π’™πŸ + πŸ‘π’™ + πŸ’ + 𝒄

3

1 2π‘₯ 2 3

= βˆ’3

+𝑐 πŸ‘

=βˆ’

𝟐 πŸβˆ’πŸ‘π’™ 𝟐 πŸ—

2

π‘₯ 2 𝑑π‘₯ (π‘₯ 3 βˆ’1)4

7. +𝒄

3

𝑑𝑒

Let u = π‘₯ 3 βˆ’ 1 𝑑π‘₯ = 3π‘₯ 2 4

3. π‘₯ (2π‘₯ βˆ’ 1) 𝑑π‘₯ Let u = 2π‘₯ 3 βˆ’ 1

𝑑𝑒 = π‘₯ 2 𝑑π‘₯ 3 𝑑𝑒 3 π‘₯4

=

𝑑𝑒 = 6π‘₯ 2 𝑑π‘₯

=

1 3

𝑑𝑒 = π‘₯ 2 𝑑π‘₯ 6

=

1 𝑒 βˆ’3 3 βˆ’3 𝑒 βˆ’3 βˆ’9

π‘’βˆ’4 +𝑐

=

π‘₯ 2 (2π‘₯ 3 βˆ’ 1)4 𝑑π‘₯

=

=

𝑑𝑒 (𝑒 )( ) 6

= βˆ’ πŸ—(π’™πŸ‘βˆ’πŸ)πŸ‘ + 𝒄

=

1 (𝑒4 )𝑑𝑒 6

=

1 𝑒5 +𝑐 6 5

4

+𝑐 𝟏

𝑒5

= 30 + 𝑐 =

(πŸπ’™πŸ‘ βˆ’ 𝟏)πŸ“ +𝒄 πŸ‘πŸŽ

DIFFERENTIAL & INTEGRAL CALCULUS | Feliciano & Uy

2

EXERCISE 9.2

INTEGRATION BY SUBSTITUTION 13. cos4 π‘₯ sin π‘₯𝑑π‘₯

𝑑π‘₯ π‘₯𝑙𝑛 2 π‘₯

9.

𝑑𝑒

1

Let u = 𝑙𝑛π‘₯ 𝑑π‘₯ = π‘₯

= 𝑒4 βˆ’π‘‘π‘’

=

1 𝑑π‘₯ ( ) 𝑙𝑛 2 π‘₯ π‘₯

= - 𝑒4 𝑑𝑒

=

1 𝑑𝑒 𝑒2

=βˆ’

𝑒5 5

=

π‘’βˆ’2 𝑑𝑒

=βˆ’

𝐜𝐨𝐬 πŸ“ 𝒙 πŸ“

=

𝑒 βˆ’1 βˆ’1

= βˆ’sin π‘₯

𝑑𝑒 = βˆ’sin π‘₯ 𝑑π‘₯

𝑑π‘₯ π‘₯

𝑑𝑒 =

𝑑𝑒 𝑑π‘₯

Let u = cos π‘₯

+𝑐 +𝒄

+𝑐

𝟏

= βˆ’ 𝒍𝒏𝒙 + 𝒄 15. 𝑑π‘₯ 𝑒 π‘₯ βˆ’1

11.

Let u = 3π‘₯

Let u = 𝑒 π‘₯ 𝑑𝑒 = 𝑒 π‘₯ 𝑑π‘₯ 1 π‘’βˆ’1

= ( =

1 𝑒

βˆ’ )𝑑𝑒

1 𝑑𝑒 π‘’βˆ’1

1 𝑒

βˆ’

𝑑𝑒

𝑑𝑒 =3 𝑑π‘₯ 𝑑𝑒 = 𝑑π‘₯ 3

=

𝑑𝑣 = 𝑑𝑒 𝑒 1 𝑒

𝑑𝑣 βˆ’

𝑑𝑒

=

Let v = 𝑒 βˆ’ 1

=

1 + 2 sin 3π‘₯ π‘π‘œπ‘ 3π‘₯𝑑π‘₯

1 + 2 sin 𝑒 π‘π‘œπ‘ π‘’ ( 3 ) 1 3

1 + 2 sin 𝑒 π‘π‘œπ‘ π‘’π‘‘π‘’

Let v =1 + 2 sin 𝑒 1 𝑑𝑣 𝑒

= 𝑙𝑛𝑒 βˆ’ 𝑙𝑛𝑒 + 𝑐 𝑒 =π‘’βˆ’1

𝑑𝑣 𝑑𝑒

=

; 𝑒 = 𝑒π‘₯

= ln⁑|𝑒 βˆ’ 1| βˆ’ ln⁑|𝑒 π‘₯ | + 𝑐 = ln⁑ (1 βˆ’ 𝑒 π‘₯ )

𝑑𝑣 2

= 2π‘π‘œπ‘ π‘’ ;

= π‘π‘œπ‘ π‘’π‘‘π‘’

1 + 2 sin 3π‘₯ π‘π‘œπ‘ 3π‘₯𝑑π‘₯ 1

=

1 [ 3

𝑑𝑣

=

1 2𝑣 2 6 3

=

(𝟏+πŸπ’”π’Šπ’π’™)𝟐 πŸ—

𝑣 2 ( 2 )] 3

= π₯𝐧 𝟏 βˆ’ 𝒆𝒙 βˆ’ 𝒙 + 𝒄

+𝑐 πŸ‘

+𝒄

DIFFERENTIAL & INTEGRAL CALCULUS | Feliciano & Uy

3

EXERCISE 9.2

INTEGRATION BY SUBSTITUTION

𝑠𝑒𝑐 2 π‘₯𝑑π‘₯ ` π‘Ž+𝑏 π‘‘π‘Žπ‘›π‘₯

17.

3π‘₯ 2 +14π‘₯+14 𝑑π‘₯ π‘₯+4

21.

𝑓 (π‘₯) 𝑔 (π‘₯)

Let u = π‘Ž + 𝑏 π‘‘π‘Žπ‘›π‘₯

=

𝑑𝑒 𝑑π‘₯

* using synthetic division

=𝑏

;

𝑑𝑒 𝑏

= 𝑠𝑒𝑐 2 π‘₯𝑑π‘₯

𝑑𝑒 𝑏

=

𝑅 π‘₯ 𝑔 π‘₯

𝑑(π‘₯)

-4 3 14 13

𝑒

1 =𝑏

=

sin π‘₯ π‘π‘œπ‘ π‘₯

= 𝑄 π‘₯ 𝑑 π‘₯ +

-12 -8

𝑑𝑒 𝑒 𝟏 π₯𝐧 𝒃

3 2 5 - R(x) 𝒂 + 𝒃𝒕𝒂𝒏𝒙 + 𝒄

𝑄 π‘₯ = 3π‘₯ + 2 π‘₯ + 4 = π‘‘π‘’π‘›π‘œπ‘šπ‘–π‘›π‘Žπ‘‘π‘œπ‘Ÿ 𝑔(π‘₯) 5 𝑑π‘₯ π‘₯+4

= (3π‘₯ + 2) 𝑑π‘₯ +

For the second integral : 2

19.

π‘‘π‘Žπ‘›3π‘₯ 𝑠𝑒𝑐 3π‘₯𝑑π‘₯ 𝑙𝑒𝑑 𝑒 = π‘₯ + 4

Let u = π‘‘π‘Žπ‘›3π‘₯ 𝑑𝑒 𝑑π‘₯

= 3𝑠𝑒𝑐 2 3π‘₯ ;

= 𝑒

1 2

𝑑𝑒 3

=

1 [ 3 3

3π‘₯ 2 2

=

1 3

=

𝟐(𝐭𝐚𝐧 πŸ‘π’™)𝟐 πŸ—

=

]+𝑐

𝑑𝑦 = 1 ; 𝑑𝑒 = 𝑑π‘₯ 𝑑π‘₯

= (3π‘₯ + 2)𝑑π‘₯ + 5 =[

𝑑𝑒 (3)

3 2𝑒 2

= 𝑠𝑒𝑐 2 3π‘₯𝑑π‘₯

;

πŸ‘π’™πŸ 𝟐

𝑑𝑒 𝑒

+ 2π‘₯ + 5𝑙𝑛𝑒 + 𝑐]

+ πŸπ’™ + πŸ“π₯𝐧⁑ (𝒙 + πŸ’) + 𝒄

3

2tan 3π‘₯ 2 3

+𝑐

πŸ‘

+𝒄

DIFFERENTIAL & INTEGRAL CALCULUS | Feliciano & Uy

4

EXERCISE 9.2

INTEGRATION BY SUBSTITUTION

π‘₯ 5 βˆ’2π‘₯ 3 βˆ’2π‘₯ π‘₯ 2 +1

23.

𝑑π‘₯

π‘₯ 3 βˆ’ 3π‘₯ π‘₯ 2 + 1 π‘₯ 5 βˆ’ 2π‘₯ 3 βˆ’ 2π‘₯ π‘₯5 + π‘₯3 βˆ’3π‘₯ 3 βˆ’ 2π‘₯ βˆ’3π‘₯ 3 βˆ’ 3π‘₯ π‘₯ 𝑓(π‘₯) dx = 𝑔(π‘₯)

𝑄 π‘₯ 𝑑π‘₯ +

= π‘₯ 3 βˆ’ 3π‘₯ 𝑑π‘₯ + π‘₯4

=4 βˆ’

3π‘₯ 2 + 2

𝑅(π‘₯) 𝑑π‘₯ 𝑔(π‘₯) π‘₯ 𝑑π‘₯ π‘₯ 2 +1

π‘₯ 𝑑π‘₯ π‘₯ 2 +1

For the 2nd term Let u = x2+1 𝑑𝑒 = 2π‘₯ 𝑑π‘₯ 𝑑𝑒 = π‘₯𝑑π‘₯ 2 π‘₯4 =4

=

3π‘₯ 2 βˆ’ 2

π’™πŸ’ πŸ’

βˆ’

+

πŸ‘π’™πŸ 𝟐

𝑑𝑒 2

𝑒 𝟏

+ 𝟐 π₯𝐧 π’™πŸ + 𝟏 + 𝒄

DIFFERENTIAL & INTEGRAL CALCULUS | Feliciano & Uy

5

EXERCISE 9.3 1.

INTEGRATION OF TRIGONOMETRIC FUNCTIONS

𝑠𝑒𝑐5π‘₯π‘‘π‘Žπ‘›5π‘₯𝑑π‘₯ 𝐿𝑒𝑑 𝑒 = 5π‘₯ 𝑑𝑒 𝑑π‘₯

𝑑𝑒 5

=5

=

cos 3 π‘₯𝑑π‘₯ 1+𝑠𝑖𝑛π‘₯ . 1βˆ’π‘ π‘–π‘›π‘₯ 1+𝑠𝑖𝑛π‘₯

7. =

(cos 3 π‘₯) 1+𝑠𝑖𝑛π‘₯ 𝑑π‘₯ (1βˆ’π‘ π‘–π‘›π‘₯ )(1+𝑠𝑖𝑛π‘₯ )

=

(co s 3 π‘₯+cos 3 π‘₯𝑠𝑖𝑛π‘₯ )𝑑π‘₯ 1βˆ’sin 2 π‘₯

=

cos 3 π‘₯ 1+𝑠𝑖𝑛π‘₯ 𝑑π‘₯ cos 3 π‘₯

= 𝑑π‘₯

π‘ π‘’π‘π‘’π‘‘π‘Žπ‘›π‘’

𝑑𝑒 5

1

= 5 π‘ π‘’π‘π‘’π‘‘π‘Žπ‘›π‘’π‘‘π‘’ 1 =5

𝑠𝑒𝑐𝑒 + 𝑐

𝟏 =πŸ“

π’”π’†π’„πŸ“π’™ + 𝒄

= π‘π‘œπ‘ π‘₯ 1 + 𝑠𝑖𝑛π‘₯ 𝑑π‘₯ = 𝑠𝑖𝑛π‘₯ + π‘π‘œπ‘ π‘₯𝑠𝑖𝑛π‘₯𝑑π‘₯ 𝐿𝑒𝑑 𝑒 = 𝑠𝑖𝑛π‘₯ 𝑑𝑒 𝑑π‘₯

𝑠𝑖𝑛π‘₯ +π‘π‘œπ‘ π‘₯ 𝑠𝑖𝑛 2 π‘₯

3.

𝑑π‘₯

=

𝑠𝑖𝑛π‘₯ 𝑠𝑖𝑛 2 π‘₯

=

1 𝑠𝑖𝑛π‘₯

=

𝑐𝑠𝑐𝑑π‘₯ +

= π‘π‘œπ‘ π‘₯ ; 𝑑𝑒 = π‘π‘œπ‘ π‘₯𝑑π‘₯

= 𝑠𝑖𝑛π‘₯ + 𝑒𝑑𝑒 π‘π‘œπ‘ π‘₯ 𝑠𝑖𝑛 2 π‘₯

𝑑π‘₯ +

𝑑π‘₯

𝑑π‘₯ + π‘π‘œπ‘‘π‘₯𝑐𝑠𝑐π‘₯𝑑π‘₯

= 𝑠𝑖𝑛π‘₯ +

𝑒2 2

= π’”π’Šπ’π’™ +

𝐬𝐒𝐧𝟐 𝒙 𝟐

+𝑐 +𝒄

π‘π‘œπ‘‘π‘₯𝑐𝑠𝑐π‘₯𝑑π‘₯

= βˆ’ 𝒍𝒏 𝒄𝒔𝒄𝒙 + 𝒄𝒐𝒕𝒙 βˆ’ 𝒄𝒔𝒄𝒙 + 𝒄

9.

1 + π‘‘π‘Žπ‘›π‘₯ 2 𝑑π‘₯ = (1 + 2π‘‘π‘Žπ‘›π‘₯ + tan2 π‘₯)𝑑π‘₯

5.

𝑑π‘₯ 1 2

1

; Let u= 2 π‘₯

1 2

sin π‘₯ cot π‘₯ 𝑑𝑒 𝑑π‘₯

=

= =2 =2 =2

1 2

2𝑑𝑒 = 𝑑π‘₯

= [2π‘‘π‘Žπ‘›π‘₯ + (1 + tan2 π‘₯)]𝑑π‘₯ = 2 π‘‘π‘Žπ‘›π‘₯𝑑π‘₯ +

sec 2 π‘₯𝑑π‘₯

= 2 βˆ’π‘™π‘›|π‘π‘œπ‘ π‘₯| + π‘‘π‘Žπ‘›π‘₯ + 𝑐

2𝑑𝑒 π‘ π‘–π‘›π‘’π‘π‘œπ‘‘π‘’

= βˆ’πŸ 𝒍𝒏 |𝒄𝒐𝒔𝒙| + 𝒕𝒂𝒏𝒙 + 𝒄

𝑑𝑒 𝑠𝑖𝑛𝑒 π‘π‘œπ‘‘π‘’ 𝑑𝑒 𝑠𝑖𝑛𝑒 ( 1 π‘π‘œπ‘ π‘’

π‘π‘œπ‘ π‘’ 𝑠𝑖𝑛𝑒

)

(𝑑𝑒)

= 2 𝑠𝑒𝑐𝑒𝑑𝑒 = πŸπ’π’ 𝒄𝒔𝒄𝒙 + 𝒄𝒐𝒕𝒙 + 𝒄 DIFFERENTIAL & INTEGRAL CALCULUS | Feliciano & Uy

6

EXERCISE 9.3

INTEGRATION OF TRIGONOMETRIC FUNCTIONS

π‘π‘œπ‘  6π‘₯𝑑π‘₯ cos 2 3π‘₯

11.

Let u = 3x ; 2u = 6x 𝑑𝑒 𝑑π‘₯

=3 ;

𝑑𝑒 3

π‘π‘œπ‘  2𝑒

𝑑𝑒 3

= =

= 𝑑π‘₯

cos 2 𝑒 2 3

4 sin 2 π‘₯π‘π‘œ 𝑠 2 π‘₯ 𝑠𝑖𝑛 2π‘₯π‘π‘œπ‘  2π‘₯

15.

1 π‘π‘œπ‘ π‘’

π‘π‘œπ‘ π‘’ π‘π‘œπ‘ π‘’

𝑑𝑒

=

(4𝑠𝑖𝑛π‘₯π‘π‘œπ‘ π‘₯ )(𝑠𝑖𝑛π‘₯π‘π‘œπ‘ π‘₯ ) 𝑑π‘₯ 2𝑠𝑖𝑛π‘₯π‘π‘œπ‘ π‘₯ π‘π‘œπ‘  2π‘₯

=

2𝑠𝑖𝑛π‘₯π‘π‘œπ‘ π‘₯ π‘π‘œπ‘  2π‘₯

=

𝑠𝑖𝑛 2π‘₯ π‘π‘œπ‘  2π‘₯

𝑑𝑒 𝑑π‘₯

2

𝑑π‘₯ π‘π‘œπ‘ π‘₯

=

1 π‘π‘œπ‘ π‘₯

= 𝑑π‘₯

𝑑𝑒 2

π‘‘π‘Žπ‘›π‘’π‘‘π‘’

𝟏 = βˆ’ π₯𝐧 π’„π’π’”πŸπ’™ + 𝒄 𝟐

𝑠𝑖𝑛 2π‘₯𝑑π‘₯ 2𝑠𝑖𝑛π‘₯π‘π‘œ 𝑠 2 π‘₯

=

.

1 2

=

2𝑠𝑖𝑛π‘₯π‘π‘œπ‘ π‘₯𝑑π‘₯ (2𝑠𝑖𝑛π‘₯π‘π‘œπ‘ π‘₯ )π‘π‘œπ‘ π‘₯

𝑑π‘₯

𝑑𝑒 2

=2

𝑠𝑖𝑛𝑒 π‘π‘œπ‘ π‘’

𝟐

= πŸ‘ π₯𝐧 π’”π’†π’„πŸ‘π’™ + π’•π’‚π’πŸ‘π’™ + 𝒄

=

𝑑π‘₯

Let u = 2x

= 3 𝑠𝑒𝑐𝑒𝑑𝑒

13.

𝑑π‘₯

𝑑π‘₯ 𝑠𝑖𝑛 3π‘₯π‘‘π‘Žπ‘› 3π‘₯

17.

Let u = 3x 𝑑π‘₯

= 𝑠𝑒𝑐π‘₯𝑑π‘₯ = 𝒍𝒏 𝒔𝒆𝒄𝒙 + 𝒕𝒂𝒏𝒙 + 𝒄

𝑑𝑒 𝑑π‘₯

𝑑𝑒 3

=3

= 𝑑π‘₯

𝑑𝑒 3

=

π‘ π‘–π‘›π‘’π‘‘π‘Žπ‘›π‘’ 1

=3 𝑐𝑠𝑐𝑒 + 𝑐 𝟏

= βˆ’ πŸ‘ π’„π’”π’„πŸ‘π’™ + 𝒄

DIFFERENTIAL & INTEGRAL CALCULUS | Feliciano & Uy

7

EXERCISE 9.4

1.

𝑑π‘₯ 𝑒 2π‘₯

=

𝑒 βˆ’2π‘₯ dx

INTEGRATION OF EXPONENTIAL FUNCTIONS

𝑑𝑒 𝑑𝑒 𝑙𝑒𝑑 𝑒 = 2π‘₯ ; = βˆ’2 ; βˆ’ = 𝑑π‘₯ 𝑑π‘₯ 2 = 𝑒 𝑒 (βˆ’ =βˆ’

1 2

2𝑑𝑒 ) 3

2

𝑒 𝑒 𝑑𝑒

= 3 𝑒 𝑒 𝑑𝑒

1

1

𝟏

=βˆ’ 𝟐 (π’†βˆ’πŸπ’™ ) + 𝒄

𝑒 𝑠𝑖𝑛 4π‘₯ π‘π‘œπ‘ 4π‘₯𝑑π‘₯

2 3

=

𝟐 π’†πŸ‘π’™ πŸ‘

𝑑𝑒 4

1 4

=

𝑒

𝑠𝑖𝑛𝑒

1 4

)

1 =4

=

𝑒𝑣 + 𝑐

π’†π’”π’Šπ’πŸ’π’™ πŸ’

53βˆ’2π‘₯ 𝑑π‘₯

= 5𝑒 (βˆ’

π‘π‘œπ‘ π‘’π‘‘π‘’

𝑒 𝑣 𝑑𝑣

+𝒄

𝑙𝑒𝑑 𝑒 = 3 βˆ’ 2π‘₯ ;

𝑑𝑣 𝑙𝑒𝑑 𝑣 = 𝑠𝑖𝑛𝑒 ; = cos 𝑒 ; 𝑑𝑣 = π‘π‘œπ‘ π‘’π‘‘π‘’ 𝑑𝑒 =

𝑒2 +𝑐

7.

𝑑𝑒 𝑑𝑒 𝑙𝑒𝑑 𝑒 = 4π‘₯ ; =4; = 𝑑π‘₯ 𝑑π‘₯ 4 𝑒 𝑠𝑖𝑛𝑒 π‘π‘œπ‘ π‘’(

3π‘₯

=

=βˆ’ 2𝑒 𝑒 + 𝑐

=

3π‘₯ 2𝑑𝑒 ; = 𝑑π‘₯ 2 3

𝑙𝑒𝑑 𝑒 = = 𝑒𝑒 (

𝑑𝑒 ) 2

=βˆ’ 2 𝑒 𝑒 + 𝑐

3.

3π‘₯

𝑒 3π‘₯ 𝑑π‘₯ = 𝑒 2 𝑑π‘₯

5.

𝑑𝑒 𝑑𝑒 = βˆ’2 ; βˆ’ = 𝑑π‘₯ 𝑑π‘₯ 2

𝑑𝑒 ) 2

1

= βˆ’ 2 5𝑒 𝑑𝑒 1 53βˆ’2π‘₯ 𝑙𝑛 5

= βˆ’2 =βˆ’

πŸ“πŸ‘βˆ’πŸπ’™ π’π’πŸπŸ“

+𝑐

+𝒄

+𝒄 3π‘₯ 2π‘₯ 𝑑π‘₯

9.

π‘Ž π‘₯ 𝑏 π‘₯ = (π‘Žπ‘)π‘₯ = 6π‘₯ 𝑑π‘₯ πŸ”π’™

= π’π’πŸ” + 𝒄

DIFFERENTIAL & INTEGRAL CALCULUS | Feliciano & Uy

8

EXERCISE 9.5

1.

INTEGRATION OF HYPERBOLIC FUNCTIONS

𝑠𝑖𝑛𝑕 3π‘₯ βˆ’ 1 𝑑π‘₯

𝑠𝑒𝑐 𝑕 2 𝑙𝑛π‘₯ 𝑑π‘₯ π‘₯

5.

Let u = 3π‘₯ βˆ’ 1 𝑑𝑒 𝑑π‘₯

𝑙𝑒𝑑 𝑒 = 𝑙𝑛π‘₯ ; 𝑑𝑒 3

= 3 ; 𝑑π‘₯ =

=

𝑑𝑒

= 1 3

=

1 π‘π‘œπ‘ π‘• 𝑒𝑑𝑒 3

=

𝟏 𝒄𝒐𝒔𝒉 πŸ‘

𝑠𝑒𝑐𝑕2 𝑒𝑑𝑒

= π‘‘π‘Žπ‘›π‘•π‘’ + 𝑐

𝑠𝑖𝑛𝑕 𝑒 ( 3 )

=

𝑑𝑒 1 𝑑π‘₯ = ; 𝑑𝑒 = 𝑑π‘₯ π‘₯ π‘₯

= 𝒕𝒂𝒏𝒉⁑ (𝒍𝒏𝒙) + 𝒄

𝑠𝑖𝑛𝑕 𝑒𝑑𝑒 +c

πŸ‘π’™ βˆ’ 𝟏 + 𝒄

7.

1

1

𝑐𝑠𝑐𝑕 2 π‘₯ π‘π‘œπ‘‘π‘• 2 π‘₯𝑑π‘₯ 1

Let u = 2 π‘₯ ;

𝑑𝑒 𝑑π‘₯

=

1 2

; 2𝑑𝑒 = 𝑑π‘₯

= 2 𝑐𝑠𝑐𝑕𝑒 π‘π‘œπ‘‘π‘•π‘’π‘‘π‘’ 3.

𝑐𝑠𝑐𝑕2 1 βˆ’ π‘₯ 2 π‘₯𝑑π‘₯

= 2(βˆ’π‘π‘ π‘π‘•π‘’ + 𝑐)

Let u=1 βˆ’ π‘₯ 2

= βˆ’πŸπ’„π’”π’„π’‰ 𝒙 + 𝒄

𝑑𝑒 𝑑π‘₯

βˆ’

𝟏 𝟐

= -2π‘₯

𝑑𝑒 = π‘₯𝑑π‘₯ 2 = 𝑐𝑠𝑐𝑕2 𝑒(βˆ’ =βˆ’

1 2

𝑑𝑒 ) 2

𝑐𝑠𝑐𝑕2 𝑒𝑑𝑒

1

=βˆ’ 2 (βˆ’π‘π‘œπ‘‘π‘•π‘’ + 𝑐) =

𝟏 𝒄𝒐𝒕𝒉 𝟐

𝟏 βˆ’ π’™πŸ + 𝒄

DIFFERENTIAL & INTEGRAL CALCULUS | Feliciano & Uy

9

EXERCISE 9.6

APPLICATION OF INDEFINITE INTEGRATION

1. Given slope 3π‘₯ 2 + 4 𝑑𝑦 = 3π‘₯ 2 + 4 𝑑π‘₯ 𝑑𝑦 = 3π‘₯ 2 + 4 𝑑π‘₯

𝑦=

π’š = πŸ‘π’™πŸ + πŸ’π’™ + 𝒄

π‘₯+1 π‘¦βˆ’1

𝑑𝑦 π‘₯ + 1 = 𝑑π‘₯ 𝑦 βˆ’ 1

𝑑𝑦 = 𝑦2

𝑦 2 βˆ’ 2𝑦 =

𝑑π‘₯ π‘₯

βˆ’ ln π‘₯ βˆ’

1 =𝑐 4

βˆ’ ln 1 βˆ’

1 =𝑐 4

𝑐=βˆ’

1 4

βˆ’ ln π‘₯ βˆ’

𝑦 βˆ’ 1 𝑑𝑦 = π‘₯2 2

through 1,4

1 βˆ’ = 𝑙𝑛π‘₯ + 𝑐 4

+ 4π‘₯ + 𝑐

3. Given slope

𝑦2 , π‘₯

𝑑𝑦 𝑦 2 = 𝑑π‘₯ π‘₯

3π‘₯ 2 + 4 𝑑π‘₯

𝑑𝑦 = 3π‘₯ 3 3

7. Given slope

π‘₯ + 1 𝑑π‘₯ +π‘₯+𝑐 2

1 1 + = 0 4𝑦 𝑦 4

βˆ’4𝑦 ln π‘₯ βˆ’ 4 + 𝑦 = 0 πŸ’π’š π₯𝐧 𝒙 βˆ’ π’š + πŸ’ = 𝟎

𝑦 2 βˆ’ 2𝑦 = π‘₯ 2 + 2π‘₯ + 2𝑐 π’™πŸ βˆ’ π’šπŸ + πŸπ’š + πŸπ’™ + πŸπ’„ = 𝟎

1 5. Given slope π‘₯𝑦

𝑑𝑦 1 = 𝑑π‘₯ π‘₯𝑦

𝟐

=

𝑑𝑦 = 𝑑π‘₯

𝑦

1

𝑦 βˆ’2 𝑑𝑦 =

𝑑π‘₯

1

𝑦2 𝑑π‘₯ π‘₯

𝑦𝑑𝑦 = 𝑦2 2

9. Given slope 𝑦, through 1,1

ln π‘₯ 2 2 𝟐

+𝑐 2

π’š = 𝒍𝒏𝒙 + πŸπ’„

1 2

2𝑦

=π‘₯+𝑐 1

2

=π‘₯+𝑐

When π‘₯ = 1 , 𝑦 = 1 2 1 =1+𝑐 ; 𝑐 =1 2𝑦

1

2

=π‘₯+𝑐

πŸ’π’š = 𝒙 + 𝟏

2

𝟐

DIFFERENTIAL & INTEGRAL CALCULUS | Feliciano & Uy

10

EXERCISE 9.6

APPLICATION OF INDEFINITE INTEGRATION

11. Given slope π‘₯ βˆ’2 , through 1,2

v = -32t + vo

𝑑𝑦 1 = 2 𝑑π‘₯ π‘₯

when t = 1 sec, s=h=48ft 𝑑π‘₯ π‘₯2

𝑑𝑦 =

1 𝑦 =βˆ’ +𝑐 π‘₯

h=-16t2+ vot + c1 48 = -16(1)2 + vo(1) + c2 64 - vo = c2 When t = 0, s = 0, c2 = 0

1 2=βˆ’ +𝑐 1

s = -16t2 + vot

2 = βˆ’1 + 𝑐

when t = 1 sec, s = 48

𝑐=3

s = -16t2 + c1t 1 π‘₯

𝑦 = βˆ’ +3 x π‘₯𝑦 = βˆ’1 + 3π‘₯ π’™π’š βˆ’ πŸ‘π’™ + 𝟏 = 𝟎

c1=64 s=-16t2 + 64t v = -32t + 64 @ max, v = 0

13. a=-32 ft/sec2 a=-2

0 = -32t + 64 32t=64 t = 2 sec

𝑑𝑦 = βˆ’32 𝑑𝑑 𝑑𝑣 =

48 = -16(1)2 + c1(1)

s = -16t2 + 64t βˆ’32𝑑𝑑

s = -16(2)2 + 64(2) s = 64ft

v=-32t+c 𝑑𝑠 = βˆ’32𝑑 + 𝑐1 𝑑𝑑 𝑑𝑠 =

(βˆ’32𝑑 + 𝑐1 )𝑑𝑑

s=16t2 + c1t + c2 when t = 0, v = vo v=-32t + c1 vo= -32(0) + c1 vo =c1 DIFFERENTIAL & INTEGRAL CALCULUS | Feliciano & Uy

11

EXERCISE 9.6

APPLICATION OF INDEFINITE INTEGRATION

15. a = 32ft/sec2 a = 32 𝑑𝑣 = 32 𝑑𝑑 𝑑𝑣 =

32𝑑𝑑

v = 32t + c1 𝑑𝑠 = 32𝑑 + 𝑐1 𝑑𝑑 𝑑𝑠 =

32𝑑 + 𝑐1 𝑑𝑑

S = 16t2 + c1 + c2 when t = 0, v = 0 c1 = 0 v = 32t when t = 0 , s = 0 c2 = 0 s = 16t2 400 16

𝑑=

𝑑=

20 4

t = 5 sec v = vt *since it is a free falling body, its velocity is ( - ) vt = -32t vt = -32(5) vt = -160 ft/sec

DIFFERENTIAL & INTEGRAL CALCULUS | Feliciano & Uy

12

EXERCISE 10.1

PRODUCT OF SINES AND COSINES

1. Κƒ sin 5π‘₯ sin π‘₯ 𝑑π‘₯ =

5. Κƒ cos 3π‘₯ βˆ’ 2πœ‹ cos π‘₯ + πœ‹ 𝑑π‘₯ 1 = Κƒ[cos 𝑒 + 𝑣 + cos⁑ (𝑒 βˆ’ 𝑣)]𝑑π‘₯ 2

2 sin 𝑒 sin 𝑣 𝑑π‘₯

𝑙𝑒𝑑 𝑒 = 3π‘₯ βˆ’ 2πœ‹

= [cos 𝑒 βˆ’ π‘₯ βˆ’ cos(𝑒 + 𝑣)]𝑑π‘₯ 𝑒 = 5π‘₯

𝑣 =π‘₯+πœ‹

𝑣=π‘₯

1 = Κƒ[cos 5π‘₯ βˆ’ π‘₯ βˆ’ cos⁑ (5π‘₯ + π‘₯)]𝑑π‘₯ 2 1 = Κƒ[cos 4π‘₯ βˆ’ cos 6π‘₯]𝑑π‘₯ 2

= =

π’”π’Šπ’ πŸ’π’™ π’”π’Šπ’πŸ”π’™ βˆ’ +π‘ͺ πŸ– 𝟏𝟐

βˆ’

1 sin 6π‘₯ 6

𝑒 + 𝑣 = 3π‘₯ βˆ’ 2πœ‹ + π‘₯ + πœ‹ = 4π‘₯ βˆ’ πœ‹

ο‚·

1 = [Κƒ cos 4π‘₯𝑑π‘₯ βˆ’ Κƒ cos 6π‘₯𝑑π‘₯ 2 1 1 [ sin 4π‘₯ 2 4

ο‚·

𝑒 βˆ’ 𝑣 = 3π‘₯ βˆ’ 2πœ‹ βˆ’ π‘₯ + πœ‹ = 2π‘₯ βˆ’ 3πœ‹ 1 = Κƒ[cos 4π‘₯ βˆ’ πœ‹ + cos(2π‘₯ βˆ’ 3πœ‹)]𝑑π‘₯ 2

]+𝐢

π‘“π‘œπ‘Ÿ cos 4π‘₯ βˆ’ πœ‹ = cos 4π‘₯π‘π‘œπ‘ πœ‹ + 𝑠𝑖𝑛4π‘₯π‘ π‘–π‘›πœ‹ = βˆ’π‘π‘œπ‘ 4π‘₯ π‘“π‘œπ‘Ÿ cos 2π‘₯ βˆ’ 3πœ‹ = cos 2π‘₯π‘π‘œπ‘  3πœ‹ + sin 2π‘₯𝑠𝑖𝑛 3πœ‹ = βˆ’ cos 2π‘₯

3. Κƒ sin 9π‘₯ βˆ’ 3 cos π‘₯ + 5 𝑑π‘₯ 1 = Κƒ [sin 9x βˆ’ 3 + x + 5 + sin 9π‘₯ βˆ’ 3 βˆ’ π‘₯ βˆ’ 5 𝑑π‘₯ 2

1 = Κƒ[sin 5π‘₯ + 2 + sin(3π‘₯ βˆ’ 8)]𝑑π‘₯ 2 𝑙𝑒𝑑 𝑧 = 5π‘₯ + 2 𝑑𝑧 =5 𝑑π‘₯ 𝑑𝑧 = 𝑑π‘₯ 5 1

= 2 [βˆ’ cos 𝑧 =βˆ’

1 5

1 2

= Κƒ(cos 4π‘₯ βˆ’ cos 2π‘₯)𝑑π‘₯ 1

1

1

= 2 [βˆ’ 4 sin 4π‘₯ βˆ’ 2 sin 2π‘₯] + 𝐢 𝟏 𝟏 = βˆ’ 𝐬𝐒𝐧 πŸ’π’™ βˆ’ 𝐬𝐒𝐧 πŸπ’™ + π‘ͺ πŸ– πŸ’

; 𝑙𝑒𝑑 𝑀 = 3π‘₯ βˆ’ 8 𝑑𝑀 ; =3 𝑑π‘₯ 𝑑𝑀 ; = 𝑑π‘₯ 3

1

βˆ’ 3 π‘π‘œπ‘ π‘€] + 𝐢

𝟏 𝟏 𝒄𝒐𝒔 πŸ“π’™ + 𝟐 βˆ’ 𝒄𝒐𝒔 πŸ‘π’™ βˆ’ πŸ– + π‘ͺ 𝟏𝟎 πŸ”

DIFFERENTIAL & INTEGRAL CALCULUS | Feliciano & Uy

13

EXERCISE 10.1

7.

PRODUCT OF SINES AND COSINES

πœ‹

4 𝑠𝑖𝑛 8π‘₯ π‘π‘œπ‘ 3π‘₯𝑑π‘₯

= 2Κƒ[sin 8π‘₯ + 3π‘₯ + 𝑠𝑖𝑛π‘₯ 8π‘₯ βˆ’ 3π‘₯ 𝑑π‘₯

5 = Κƒ[cos 𝑒 βˆ’ 𝑣 βˆ’ cos⁑ (𝑒 + 𝑣)]𝑑π‘₯ 2

= 2Κƒ[𝑠𝑖𝑛11π‘₯ + sin 5π‘₯]𝑑π‘₯

𝑙𝑒𝑑 𝑒 = 4π‘₯ +

𝑙𝑒𝑑 𝑒 = 11π‘₯ ; 𝑙𝑒𝑑 𝑣 = 5π‘₯

1

𝑑𝑒 = 11 ; 𝑑π‘₯

𝑑𝑣 =5 𝑑π‘₯

𝑑𝑒 = 𝑑π‘₯ ; 11

𝑑𝑣 = 𝑑π‘₯ 5

1

= 2[βˆ’ 11 cos 11π‘₯ βˆ’ 5 cos 5π‘₯ ] + 𝐢 =βˆ’

πœ‹

9. 5 𝑠𝑖𝑛 4π‘₯ + 3 𝑠𝑖𝑛 2π‘₯ βˆ’ 6 𝑑π‘₯

πœ‹ 3

;

πœ‹

πœ‹

πœ‹

πœ‹

ο‚·

𝑒 βˆ’ 𝑣 = 4π‘₯ + 3 βˆ’ 2π‘₯ βˆ’ 6 = 2π‘₯ + πœ‹/2 πœ‹ 𝑣 = 2π‘₯ βˆ’ 6

ο‚·

𝑒 + 𝑣 = 4π‘₯ + 3 + 2π‘₯ βˆ’ 6 = 6π‘₯ + πœ‹/6

𝟐 𝟐 𝐜𝐨𝐬 πŸπŸπ’™ βˆ’ π’„π’π’”πŸ“π’™ + π‘ͺ 𝟏𝟏 πŸ“

5 πœ‹ πœ‹ = Κƒ[π‘π‘œπ‘  2π‘₯ + βˆ’ π‘π‘œπ‘  6π‘₯ + ]𝑑π‘₯ 2 2 6 ο‚·

πœ‹

π‘“π‘œπ‘Ÿ cos 2π‘₯ + 2 = cos 2π‘₯π‘π‘œπ‘  = βˆ’π‘ π‘–π‘›2π‘₯

ο‚·

π‘“π‘œπ‘Ÿ cos 6π‘₯ +

πœ‹ πœ‹ βˆ’ sin 2π‘₯ sin 2 2

πœ‹ 6

πœ‹ πœ‹ βˆ’ 𝑠𝑖𝑛 6π‘₯ 𝑠𝑖𝑛 6 6 3 1 = π‘π‘œπ‘  6π‘₯ βˆ’ 𝑠𝑖𝑛 6π‘₯ 2 2 = π‘π‘œπ‘  6π‘₯π‘π‘œπ‘ 

5 3 1 = Κƒ[βˆ’ 𝑠𝑖𝑛 2π‘₯ βˆ’ π‘π‘œπ‘  6π‘₯ + 𝑠𝑖𝑛 6π‘₯ ]𝑑π‘₯ 2 2 2 5 1

3

2 2

12

= [ π‘π‘œπ‘  2π‘₯ βˆ’

=

πŸ“ 𝒄𝒐𝒔 πŸπ’™ πŸ’

βˆ’

𝑠𝑖𝑛 6π‘₯ βˆ’

πŸ“ πŸ‘ π’”π’Šπ’ πŸ”π’™ πŸπŸ’

1 12

𝑠𝑖π‘₯ 6π‘₯ + 𝐢 πŸ“

βˆ’ 𝟏𝟐 π’”π’Šπ’ πŸ”π’™ + π‘ͺ

DIFFERENTIAL & INTEGRAL CALCULUS | Feliciano & Uy

14

EXERCISE 10.2

POWER OF SINES AND COSINES

1. 𝑠𝑖𝑛3 π‘₯π‘π‘œπ‘  4 π‘₯𝑑π‘₯; 𝑏𝑦 πΆπ‘Žπ‘ π‘’ 𝐼 = =

=

1 𝑒5 𝑒7 βˆ’ +𝐢 3 5 7

=

1 5 𝑒 15

=

𝟏 𝟏 π’”π’Šπ’πŸ“ πŸ‘π’™ βˆ’ π’”π’Šπ’πŸ• πŸ‘π’™ + π‘ͺ πŸπŸ“ 𝟐𝟏

𝑠𝑖𝑛4 π‘₯π‘π‘œπ‘  4 π‘₯𝑠𝑖𝑛π‘₯𝑑π‘₯ (1 βˆ’ π‘π‘œπ‘  2 π‘₯)2π‘π‘œπ‘  4 π‘₯𝑠𝑖𝑛π‘₯𝑑π‘₯

=

(1 βˆ’ 2π‘π‘œπ‘  2 π‘₯ + π‘π‘œπ‘  4 π‘₯)π‘π‘œπ‘  4 π‘₯𝑠𝑖𝑛π‘₯𝑑π‘₯

=

(π‘π‘œπ‘  4 π‘₯ βˆ’ 2π‘π‘œπ‘  6 π‘₯ + π‘π‘œπ‘  8 π‘₯)𝑠𝑖𝑛π‘₯𝑑π‘₯

1

βˆ’ 21 𝑒7 + 𝐢

5.

𝑠𝑖𝑛4 π‘₯π‘π‘œπ‘  2 π‘₯𝑑π‘₯

Let u = cosx

=

(𝑠𝑖𝑛2 π‘₯)2π‘π‘œπ‘  2 π‘₯𝑑π‘₯

𝑑𝑒 = βˆ’π‘ π‘–π‘›π‘₯ 𝑑π‘₯

=

1 βˆ’ π‘π‘œπ‘ 2π‘₯ 2 1 + π‘π‘œπ‘ 2π‘₯ ( ) 𝑑π‘₯ 2 2

-𝑑𝑒 = 𝑠𝑖𝑛π‘₯𝑑π‘₯ =

= - (𝑒4 βˆ’ 2𝑒6 + 𝑒8 )𝑑𝑒 = =

2𝑒 6 7

𝑒5 5

𝑒9 9

+𝐢

=

𝟐 𝟏 𝟏 π’„π’π’”πŸ• 𝒙 βˆ’ π’„π’π’”πŸ“ 𝒙 βˆ’ π’„π’π’”πŸ— 𝒙 + π‘ͺ πŸ• πŸ“ πŸ—

=

βˆ’

βˆ’

=

3. 𝑠𝑖𝑛4 3π‘₯π‘π‘œπ‘  3 3π‘₯𝑑π‘₯ ; 𝑏𝑦 πΆπ‘Žπ‘ π‘’ 𝐼𝐼 =

4

2

𝑠𝑖𝑛 3π‘₯π‘π‘œπ‘  3π‘₯π‘π‘œπ‘ 3π‘₯𝑑π‘₯

1 1 1 1 π‘π‘œπ‘ 2π‘₯ βˆ’ ( π‘π‘œπ‘ 2π‘₯ + π‘π‘œπ‘  2 2π‘₯) + 𝑑π‘₯ 4 2 4 2 2

1 8

1 βˆ’ 2π‘π‘œπ‘ 2π‘₯ + π‘π‘œπ‘  2 2π‘₯ 1 + π‘π‘œπ‘ 2π‘₯ 𝑑π‘₯

1 (1 βˆ’ 2π‘π‘œπ‘ 2π‘₯ + π‘π‘œπ‘  2 π‘₯ + π‘π‘œπ‘ 2π‘₯ βˆ’ 2π‘π‘œπ‘  2 2π‘₯ + π‘π‘œπ‘  3 2π‘₯)𝑑π‘₯ 8

=

1 8

𝑠𝑖𝑛4 3π‘₯ 1 βˆ’ 𝑠𝑖𝑛2 3π‘₯ π‘π‘œπ‘ 3π‘₯𝑑π‘₯ (𝑠𝑖𝑛4 3π‘₯ βˆ’ 𝑠𝑖𝑛6 3π‘₯)π‘π‘œπ‘ 3π‘₯𝑑π‘₯

4

(π‘π‘œπ‘  2 2π‘₯ 1 + π‘π‘œπ‘ 2π‘₯ 𝑑π‘₯ 2

1 (1 βˆ’ π‘π‘œπ‘ 2π‘₯ βˆ’ π‘π‘œπ‘  2 2π‘₯ + π‘π‘œπ‘  3 2π‘₯)𝑑π‘₯ 8

= =

1 4

=

=

=

1 βˆ’ 2π‘π‘œπ‘ 2π‘₯ +

1 8

𝑑π‘₯ βˆ’

π‘π‘œπ‘  2 2π‘₯𝑑π‘₯ +

π‘π‘œπ‘ 2π‘₯𝑑π‘₯ βˆ’

π‘π‘œπ‘  3 2π‘₯𝑑π‘₯

1

1

1

1

1

2

2

8

2

6

[π‘₯ βˆ’ 𝑠𝑖𝑛2π‘₯ βˆ’ ( π‘₯ + 𝑠𝑖𝑛4π‘₯ + 𝑠𝑖𝑛2π‘₯ βˆ’ 𝑠𝑖𝑛3 2π‘₯]

𝒙 π’”π’Šπ’πŸ’π’™ π’”π’Šπ’πŸ‘ πŸπ’™ βˆ’ βˆ’ +π‘ͺ πŸπŸ” πŸ”πŸ’ πŸ’πŸ–

Let u = sin3x 𝑑𝑒 𝑑π‘₯

=

= 3π‘π‘œπ‘ 3π‘₯ ; ( 𝑒4 βˆ’ 𝑒6 )

𝑑𝑒 3

= π‘π‘œπ‘ 3π‘₯𝑑π‘₯

𝑑𝑒 3 DIFFERENTIAL & INTEGRAL CALCULUS | Feliciano & Uy

15

EXERCISE 10.2

POWER OF SINES AND COSINES

7. ( 𝑠𝑖𝑛π‘₯ + π‘π‘œπ‘ π‘₯)2dx =

(𝑠𝑖𝑛π‘₯ + 2 𝑠𝑖𝑛π‘₯ π‘π‘œπ‘ π‘₯ + π‘π‘œπ‘  2 π‘₯)𝑑π‘₯

=

𝑠𝑖𝑛π‘₯𝑑π‘₯ + 2

=

𝑠𝑖𝑛π‘₯𝑑π‘₯ + 2 𝑠𝑖𝑛2 π‘π‘œπ‘ π‘₯𝑑π‘₯ + (

1

π‘π‘œπ‘  2 π‘₯𝑑π‘₯

𝑠𝑖𝑛2 π‘π‘œπ‘ π‘₯𝑑π‘₯ + 1

1+π‘π‘œπ‘ 2π‘₯ )𝑑π‘₯ 2

Let u = sinx

=

𝑠𝑖𝑛2 2π‘₯ 𝑠𝑖𝑛2π‘₯ 𝑑π‘₯

=

1 βˆ’ π‘π‘œπ‘  2 2π‘₯ 𝑠𝑖𝑛2π‘₯ 𝑑π‘₯

𝑙𝑒𝑑 𝑒 = π‘π‘œπ‘  2π‘₯

= -π‘π‘œπ‘ π‘₯ + 2

𝑒 𝑑𝑒 +

2 3 𝑒2 3 πŸ‘

πŸ’

1 𝑑π‘₯ + 2

1 2

π‘₯

+2+ 𝒙

= -𝒄𝒐𝒔𝒙 + πŸ‘ π’”π’Šπ’πŸ + 𝟐 +

𝑠𝑖𝑛 2π‘₯ 4

π’”π’Šπ’πŸπ’™ πŸ’

π‘π‘œπ‘ 2π‘₯ 𝑑π‘₯ 2

1

βˆ’πŸ 𝟏 π’„π’π’”πŸπ’™ + π’„π’π’”πŸ‘ πŸπ’™ + 𝒄 𝟐 πŸ”

= π’™βˆ’

π‘₯

𝒄𝒐𝒔𝒙

+𝑐

𝑠𝑖𝑛7 π‘₯ π‘π‘œπ‘  2 π‘₯ 𝑑π‘₯

=

𝑠𝑖𝑛7 π‘₯ π‘π‘œπ‘  2 π‘₯ π‘π‘œπ‘ π‘₯ 𝑑π‘₯

=

𝑠𝑖𝑛7 π‘₯ 1 βˆ’ 𝑠𝑖𝑛2 π‘₯ π‘π‘œπ‘ π‘₯𝑑π‘₯

=

𝑠𝑖𝑛7 π‘₯ βˆ’ 𝑠𝑖𝑛9 π‘₯ π‘π‘œπ‘ π‘₯ 𝑑π‘₯ u=sinx du=cosxdx

=

𝑒7 βˆ’ 𝑒9 𝑑𝑒

π‘π‘œπ‘  2 2π‘₯ 𝑑π‘₯

1

= 2 βˆ’ 2 𝑠𝑖𝑛6π‘₯ βˆ’ 5 π‘π‘œπ‘  5π‘₯ βˆ’ π‘π‘œπ‘ π‘₯ + 2 + 8 𝑠𝑖𝑛4π‘₯ + 𝑐 π’”π’Šπ’πŸ”π’™ π’„π’π’”πŸ“π’™ βˆ’ πŸ“ βˆ’ 𝟏𝟐

π‘’βˆ’

+π‘ͺ

𝑠𝑖𝑛3π‘₯π‘π‘œπ‘ 2π‘₯ 𝑑π‘₯ +

1

𝑑𝑒 2

=

πŸπŸ“.

= 𝑠𝑖𝑛2 3π‘₯ + 2𝑠𝑖𝑛3π‘₯π‘π‘œπ‘ 2π‘₯ + π‘π‘œπ‘  2 2π‘₯ 𝑑π‘₯

π‘₯

βˆ’

βˆ’1 2

+𝐢

9. (𝑠𝑖𝑛3π‘₯ + π‘π‘œπ‘ 2π‘₯)2 𝑑π‘₯

= 𝑠𝑖𝑛2 3π‘₯ 𝑑π‘₯ + 2

𝑒3 3

; 𝐷𝑒 = βˆ’2𝑠𝑖𝑛2π‘₯ 𝑑π‘₯

=

𝑑𝑒 = π‘π‘œπ‘ π‘₯𝑑π‘₯ 𝑠𝑖𝑛π‘₯𝑑π‘₯ + 2

1 βˆ’ 𝑒2

=

𝑑𝑒 = π‘π‘œπ‘ π‘₯ 𝑑π‘₯

=

𝑠𝑖𝑛3 2π‘₯ 𝑑π‘₯

πŸπŸ‘.

π’”π’Šπ’πŸ’π’™ + πŸ– +

𝒄

= =

𝑒8 𝑒10 βˆ’ +𝑐 8 10 𝟏 𝟏 π’”π’Šπ’πŸ– 𝒙 βˆ’ 𝟏𝟎 π’”π’Šπ’πŸπŸŽ 𝒙 + πŸ–

𝒄

11. π‘π‘œπ‘  2 4π‘₯ 𝑑π‘₯ 1 + π‘π‘œπ‘ 8π‘₯ 𝑑π‘₯ 2

= 1

=2 =

1 + π‘π‘œπ‘ 8π‘₯ 𝑑π‘₯

𝒙 π’”π’Šπ’πŸ–π’™ + +𝒄 𝟐 πŸπŸ” DIFFERENTIAL & INTEGRAL CALCULUS | Feliciano & Uy

16

EXERCISE 10.3

POWER OF TANGENTS AND SECANTS

1. π‘‘π‘Žπ‘›2 2π‘₯𝑠𝑒𝑐 4 2π‘₯𝑑π‘₯

5. ____ 2 π‘₯𝑑π‘₯ β†’ π‘Žπ‘›π‘ . 𝑦 = 3 π‘‘π‘Žπ‘›

= π‘‘π‘Žπ‘›2 2π‘₯𝑠𝑒𝑐 2 2π‘₯𝑠𝑒𝑐 2 2π‘₯𝑑π‘₯

𝐹𝑖𝑛𝑑 𝑑𝑕𝑒 π‘šπ‘–π‘ π‘ π‘–π‘›π‘” π‘‘π‘’π‘Ÿπ‘š:

= π‘‘π‘Žπ‘›2 2π‘₯(1 + π‘‘π‘Žπ‘›2 2π‘₯)𝑠𝑒𝑐 2 2π‘₯𝑑π‘₯

𝑑𝑦 π‘₯ π‘₯ π‘₯ = π‘‘π‘Žπ‘›2 𝑠𝑒𝑐 2 βˆ’ 𝑠𝑒𝑐 2 + 1 𝑑π‘₯ 2 2 2

1

= (π‘‘π‘Žπ‘›2 2π‘₯ + π‘‘π‘Žπ‘›4 2π‘₯)𝑠𝑒𝑐 2 2π‘₯𝑑π‘₯

𝑑𝑒

=

1 𝑒3 2 3

=

+

π’•π’‚π’πŸ‘ πŸπ’™ πŸ”

+

2

π‘₯ π‘₯ = π‘‘π‘Žπ‘›2 (π‘‘π‘Žπ‘›2 ) 2 2

(𝑒2 + 𝑒4 )𝑑𝑒 𝑒5 5

π‘₯

βˆ’ 2π‘‘π‘Žπ‘› + π‘₯ + 𝑐

π‘₯ π‘₯ = π‘‘π‘Žπ‘›2 (𝑠𝑒𝑐 2 βˆ’ 1) 2 2

= (𝑒2 + 𝑒4 )( 2 ) =

2

π‘₯ π‘₯ π‘₯ = π‘‘π‘Žπ‘›2 𝑠𝑒𝑐 2 βˆ’ π‘‘π‘Žπ‘›2 2 2 2

𝑑𝑒 = 𝑠𝑒𝑐 2 2π‘₯𝑑π‘₯ 2

1 2

3π‘₯

π‘₯ π‘₯ π‘₯ = π‘‘π‘Žπ‘›2 𝑠𝑒𝑐 2 βˆ’ (𝑠𝑒𝑐 2 βˆ’ 1) 2 2 2

𝑑𝑒 = 2𝑠𝑒𝑐 2 2π‘₯ 𝑑π‘₯

𝑙𝑒𝑑 𝑒 = π‘‘π‘Žπ‘›2π‘₯ ;

2

π‘₯ 2

𝑑𝑦 = π‘‘π‘Žπ‘›4 dx

+𝑐

= 𝒕𝒉𝒆𝒓𝒆𝒇𝒐𝒓𝒆, 𝒕𝒉𝒆 π’Žπ’Šπ’”π’”π’Šπ’π’ˆ π’•π’†π’“π’Ž π’Šπ’” "π’•π’‚π’πŸ’ "

π’•π’‚π’πŸ“ πŸπ’™

+𝒄

𝟏𝟎

7. (𝑠𝑒𝑐π‘₯ + π‘‘π‘Žπ‘› π‘₯)2 𝑑π‘₯ 3.

π‘‘π‘Žπ‘›π‘₯ 𝑠𝑒𝑐 6 π‘₯𝑑π‘₯ ; 𝐢𝐴𝑆𝐸 𝐼

= (𝑠𝑒𝑐 2 π‘₯ + 2𝑠𝑒𝑐π‘₯ π‘‘π‘Žπ‘› π‘₯ + π‘‘π‘Žπ‘›2 π‘₯) 𝑑π‘₯

1

= π‘‘π‘Žπ‘›π‘₯ + 2𝑠𝑒𝑐π‘₯ + π‘‘π‘Žπ‘›2 π‘₯ 𝑑π‘₯

= π‘‘π‘Žπ‘›2π‘₯ 𝑠𝑒𝑐 4 π‘₯𝑠𝑒𝑐 2 π‘₯𝑑π‘₯ 1

= π‘‘π‘Žπ‘›π‘₯ + 2𝑠𝑒𝑐π‘₯ + (𝑠𝑒𝑐 2 π‘₯ βˆ’ 1) 𝑑π‘₯

1

= π‘‘π‘Žπ‘›π‘₯ + 2𝑠𝑒𝑐π‘₯ + π‘‘π‘Žπ‘›π‘₯ βˆ’ π‘₯ + 𝑐

= π‘‘π‘Žπ‘›2 π‘₯(1 + π‘‘π‘Žπ‘›2 π‘₯)2 𝑠𝑒𝑐 2 π‘₯𝑑π‘₯ = π‘‘π‘Žπ‘›2 π‘₯(1 + 2π‘‘π‘Žπ‘›2 π‘₯ + π‘‘π‘Žπ‘›4 π‘₯)𝑠𝑒𝑐 2 π‘₯𝑑π‘₯ 1 2

5 2

= πŸπ’•π’‚π’π’™ + πŸπ’”π’†π’„π’™ βˆ’ 𝒙 + 𝒄

9 2

2

= (π‘‘π‘Žπ‘› π‘₯ + 2π‘‘π‘Žπ‘› π‘₯ + π‘‘π‘Žπ‘› π‘₯)𝑠𝑒𝑐 π‘₯𝑑π‘₯ 𝑙𝑒𝑑 𝑒 = π‘‘π‘Žπ‘›π‘₯ ; 1

𝑑𝑒 = 𝑠𝑒𝑐 2 π‘₯ ; 𝑑𝑒 = 𝑠𝑒𝑐 2 π‘₯ 𝑑π‘₯ 𝑑π‘₯

5

9

= (𝑒2 π‘₯ + 2𝑒2 π‘₯ + 𝑒2 π‘₯)𝑑𝑒 3

7

4𝑒 2 + 7

11

=

2𝑒 2 3

=

πŸπ’•π’‚π’πŸ 𝒙 πŸ’π’•π’‚π’πŸ 𝒙 + πŸ‘ πŸ•

πŸ‘

+

2𝑒2 11 πŸ•

+𝑐 𝟏𝟏

𝟐 𝒕𝒂𝒏 𝟐 𝒙 + 𝟏𝟏

+𝒄 DIFFERENTIAL & INTEGRAL CALCULUS | Feliciano & Uy

17

EXERCISE 10.3

POWER OF TANGENTS AND SECANTS

𝑠𝑒𝑐 3π‘₯

9. (π‘‘π‘Žπ‘› 3π‘₯ )4 𝑑π‘₯ 𝑠𝑒𝑐 4 3π‘₯ π‘‘π‘Žπ‘› 4 3π‘₯

=

1

𝑑π‘₯

= π‘‘π‘Žπ‘›3 π‘₯𝑠𝑒𝑐 βˆ’2 π‘₯𝑑π‘₯

= 𝑠𝑒𝑐 4 3π‘₯π‘‘π‘Žπ‘›βˆ’4 3π‘₯𝑑π‘₯

3

= π‘‘π‘Žπ‘›2 π‘₯π‘‘π‘Žπ‘›π‘₯𝑠𝑒𝑐 βˆ’2 π‘₯𝑠𝑒𝑐π‘₯𝑑π‘₯

= 𝑠𝑒𝑐 2 3π‘₯𝑠𝑒𝑐 2 3π‘₯π‘‘π‘Žπ‘›βˆ’4 3π‘₯𝑑π‘₯

3

= (𝑠𝑒𝑐 2 π‘₯ βˆ’ 1)π‘‘π‘Žπ‘›π‘₯𝑠𝑒𝑐 βˆ’2 π‘₯𝑠𝑒𝑐π‘₯𝑑π‘₯

= 𝑠𝑒𝑐 2 3π‘₯(1 + π‘‘π‘Žπ‘›2 3π‘₯)π‘‘π‘Žπ‘›βˆ’4 3π‘₯𝑑π‘₯ = (π‘‘π‘Žπ‘›βˆ’4 3π‘₯ + π‘‘π‘Žπ‘›βˆ’2 3π‘₯)𝑠𝑒𝑐 2 3π‘₯𝑑π‘₯ 𝑑𝑒 𝑙𝑒𝑑 𝑒 = π‘‘π‘Žπ‘› 3π‘₯ ; = 3𝑠𝑒𝑐 2 3π‘₯ 𝑑π‘₯ 𝑑𝑒 = 𝑠𝑒𝑐 2 3π‘₯𝑑π‘₯ 3

1

=

βˆ’

𝑒 βˆ’2 3

1 π‘‘π‘Žπ‘› βˆ’3 3π‘₯ 3 βˆ’3

= βˆ’

βˆ’

𝑑𝑒 = 𝑠𝑒𝑐π‘₯π‘‘π‘Žπ‘›π‘₯𝑑π‘₯ 1

3

3

=

+𝑐

2𝑒 2 3

1

βˆ’ 2π‘’βˆ’2 + 𝑐 πŸ‘

π‘‘π‘Žπ‘› βˆ’1 3π‘₯ 3

π’„π’π’•πŸ‘ πŸ‘π’™ π’„π’π’•πŸ‘π’™ βˆ’ πŸ‘ + πŸ—

𝑑𝑒 = 𝑠𝑒𝑐π‘₯π‘‘π‘Žπ‘›π‘₯ 𝑑π‘₯

𝑙𝑒𝑑 𝑒 = 𝑠𝑒𝑐 π‘₯ ;

1

1 𝑒 βˆ’3 βˆ’3

3

= (𝑠𝑒𝑐 2 π‘₯ βˆ’ 𝑠𝑒𝑐 βˆ’2 π‘₯)π‘‘π‘Žπ‘›π‘₯𝑠𝑒𝑐π‘₯𝑑π‘₯

= (𝑒2 βˆ’ π‘’βˆ’2 )𝑑𝑒

=3 (π‘’βˆ’4 + π‘’βˆ’2 ) 𝑑𝑒 =3

π‘‘π‘Žπ‘› 3 π‘₯ 𝑑π‘₯ 𝑠𝑒𝑐π‘₯

11.

+𝑐

=

πŸπ’”π’†π’„πŸ 𝒙 βˆ’ πŸ‘

𝟐 𝟏

+𝒄

π’”π’†π’„πŸ 𝒙

𝒄

DIFFERENTIAL & INTEGRAL CALCULUS | Feliciano & Uy

18

EXERCISE 10.4

POWER OF COTANGENTS AND COSECANTS

1. π‘π‘œπ‘‘ 4 π‘₯𝑐𝑠𝑐 4 π‘₯𝑑π‘₯

= π‘π‘œπ‘‘ 4 π‘₯(1 + π‘π‘œπ‘‘ 2 π‘₯)𝑐𝑠𝑐 2 π‘₯𝑑π‘₯

1

= π‘π‘œπ‘‘ 2 3π‘₯ 𝑐𝑠𝑐 2 3π‘₯ 𝑐𝑠𝑐 2 3π‘₯ 𝑑π‘₯

= (π‘π‘œπ‘‘ 4 π‘₯ + π‘π‘œπ‘‘ 6 π‘₯)𝑐𝑠𝑐 2 π‘₯𝑑π‘₯ 𝑙𝑒𝑑 𝑒 = π‘π‘œπ‘‘ π‘₯ ;

1

= π‘π‘œπ‘‘ 2 3π‘₯ 1 + π‘π‘œπ‘‘ 2 3π‘₯ 𝑐𝑠𝑐 2 3π‘₯ 𝑑π‘₯

𝑑𝑒 = βˆ’π‘π‘ π‘ 2 π‘₯ ; 𝑑𝑒 = βˆ’π‘π‘ π‘ 2 π‘₯𝑑π‘₯ 𝑑π‘₯

= βˆ’ (𝑒4 + 𝑒6 )𝑑𝑒 =-

𝑒5 5

= -

3.

+

𝑒7 7

5

𝑑𝑒 𝑑 π‘₯ = βˆ’3 𝑐𝑠𝑐 2 3π‘₯ 𝑑π‘₯ 𝑑π‘₯

c βˆ’

π‘π‘œπ‘‘ 5 4π‘₯𝑑π‘₯

= π‘π‘œπ‘‘ 3 4π‘₯π‘π‘œπ‘‘ 2 4π‘₯𝑑π‘₯ 3

1

= π‘π‘œπ‘‘ 2 3π‘₯ + π‘π‘œπ‘‘ 2 3π‘₯ 𝑐𝑠𝑐 2 3π‘₯ 𝑑π‘₯ 𝑙𝑒𝑑 𝑒 = π‘π‘œπ‘‘ 3π‘₯

+c

π’„π’π’•πŸ“ 𝒙 π’„π’π’•πŸ• 𝒙 + + πŸ“ πŸ•

π‘π‘œπ‘  3π‘₯ 𝑐𝑠𝑐 4 3π‘₯ 𝑑π‘₯

5.

2

= π‘π‘œπ‘‘ 4π‘₯(𝑐𝑠𝑐 4π‘₯ βˆ’ 1)𝑑π‘₯

𝑑𝑒 = 𝑐𝑠𝑐 2 3π‘₯ 𝑑π‘₯ 3

=βˆ’

1 3

=βˆ’

1 3

1

5

𝑒2 + 𝑒2 𝑑𝑒 3

𝑒2 3 2

7

+

𝑒2 7 2

+𝑐

πŸ‘ πŸ• 𝟐 𝟐 = βˆ’ π’„π’π’•πŸ πŸ‘π’™ βˆ’ π’„π’π’•πŸ πŸ‘π’™ + 𝒄 πŸ— 𝟐𝟏

= (π‘π‘œπ‘‘ 3 4π‘₯𝑐𝑠𝑐 2 4π‘₯ βˆ’ π‘π‘œπ‘‘ 3 4π‘₯)𝑑π‘₯ = [π‘π‘œπ‘‘ 3 4π‘₯𝑐𝑠𝑐 2 4π‘₯ βˆ’ (𝑐𝑠𝑐 2 4π‘₯ βˆ’ 1)π‘π‘œπ‘‘4π‘₯]𝑑π‘₯ =

π‘π‘œπ‘‘ 3 4π‘₯𝑐𝑠𝑐2 4π‘₯𝑑π‘₯ βˆ’ π‘π‘œπ‘‘4π‘₯𝑐𝑠𝑐2 4π‘₯𝑑π‘₯ βˆ’ π‘π‘œπ‘‘4π‘₯𝑑π‘₯

𝑙𝑒𝑑 𝑒 = π‘π‘œπ‘‘ 4π‘₯ ; 1

𝑑𝑒 = 𝑐𝑠𝑐 2 4π‘₯𝑑π‘₯ βˆ’4

1

1

=βˆ’ 4 𝑒3 𝑑𝑒 βˆ’ 4 𝑒𝑑𝑒 + 4 𝑙𝑛⁑(π‘π‘œπ‘ 4π‘₯) 1 𝑒4 𝑑π‘₯ 4

=βˆ’ 4

= βˆ’

βˆ’

𝑒2 2

1 4

+ 𝑙𝑛 π‘π‘œπ‘ 4π‘₯ + 𝑐

π’„π’π’•πŸ’ πŸ’π’™ π’„π’π’•πŸ πŸ’π’™ + πŸπŸ” πŸ–

𝟏

+ πŸ’ 𝒍𝒏 π’„π’π’”πŸ’π’™ + 𝒄

DIFFERENTIAL & INTEGRAL CALCULUS | Feliciano & Uy

19

EXERCISE 10.4

POWER OF COTANGENTS AND COSECANTS

7.

π‘π‘œπ‘  5 2π‘₯𝑑π‘₯ 𝑠𝑖𝑛 8 2π‘₯

π‘π‘œπ‘  5 2π‘₯𝑑π‘₯ 𝑠𝑖𝑛 5 2π‘₯

=

π‘π‘œπ‘‘ 5 2π‘₯ 𝑐𝑠𝑐 3 2π‘₯ 𝑑π‘₯ \

=

π‘π‘œπ‘‘ 4 2π‘₯ 𝑐𝑠𝑐 2 2π‘₯ 𝑐𝑠𝑐 2π‘₯ π‘π‘œπ‘‘ 2π‘₯ 𝑑π‘₯

=

𝑐𝑠𝑐 2 2π‘₯ βˆ’ 1

=

2

1 𝑠𝑖𝑛 3 2π‘₯

𝑑π‘₯

𝑐𝑠𝑐 2 2π‘₯ 𝑐𝑠𝑐 2π‘₯ π‘π‘œπ‘‘ 2π‘₯ 𝑑π‘₯

=

𝑐𝑠𝑐 4 2π‘₯ βˆ’ 2 𝑐𝑠𝑐2 2π‘₯ + 1 𝑐𝑠𝑐 2 2π‘₯ 𝑐𝑠𝑐 2π‘₯ π‘π‘œπ‘‘ 2π‘₯ 𝑑π‘₯

=

𝑐𝑠𝑐 6 2π‘₯ βˆ’ 2 𝑐𝑠𝑐 4 2π‘₯ + 𝑐𝑠𝑐 2 2π‘₯ 𝑐𝑠𝑐 2π‘₯ π‘π‘œπ‘‘ 2π‘₯ 𝑑π‘₯

𝑙𝑒𝑑 𝑒 = 𝑐𝑠𝑐 2π‘₯

=βˆ’

1 2

𝑒6 βˆ’ 2𝑒4 + 𝑒2 𝑑𝑒

=βˆ’

1 𝑒7 2 7

βˆ’

= βˆ’

𝑑π‘₯

=

π‘π‘œπ‘‘ βˆ’6 π‘₯ 𝑐𝑠𝑐 2 π‘₯ 𝑐𝑠𝑐 2 π‘₯ 𝑑π‘₯

=

π‘π‘œπ‘‘ βˆ’6 π‘₯ 1 + π‘π‘œπ‘‘ 2 π‘₯ 𝑐𝑠𝑐 2 π‘₯ 𝑑π‘₯

=

π‘π‘œπ‘‘ βˆ’6 π‘₯ + π‘π‘œπ‘‘ βˆ’4 π‘₯ 𝑐𝑠𝑐 2 π‘₯ 𝑑π‘₯

𝑙𝑒𝑑: 𝑒 = π‘π‘œπ‘‘ π‘₯ 𝑑𝑒 = βˆ’ 𝑐𝑠𝑐 2 π‘₯ 𝑑π‘₯ 𝑑π‘₯

= βˆ’1

𝑑𝑒 = 𝑐𝑠𝑐 2π‘₯ π‘π‘œπ‘‘ 2π‘₯ 𝑑π‘₯ 2

2𝑒 5 5

𝑐𝑠𝑐 4 π‘₯ π‘π‘œπ‘‘ 6 π‘₯

βˆ’π‘‘π‘’ = 𝑐𝑠𝑐 2 π‘₯𝑑π‘₯

𝑑𝑒 𝑑(π‘₯) = βˆ’2 𝑐𝑠𝑐 2π‘₯ π‘π‘œπ‘‘ 2π‘₯ 𝑑π‘₯ 𝑑π‘₯ βˆ’

9.

+

𝑒3 3

π‘’βˆ’6 + π‘’βˆ’4 𝑑π‘₯

= βˆ’1 βˆ’ =

+𝑐

π’„π’”π’„πŸ• πŸπ’™ π’„π’”π’„πŸ“ πŸπ’™ π’„π’”π’„πŸ‘ πŸπ’™ + βˆ’ +𝒄 πŸπŸ’ πŸ“ πŸ”

π‘π‘œπ‘‘ βˆ’5 π‘₯ 5

π‘’βˆ’5 π‘’βˆ’3 βˆ’ +𝑐 5 3

+

π‘π‘œπ‘‘ βˆ’3 π‘₯ 3

+𝑐

π’•π’‚π’πŸ“ 𝒙 π’•π’‚π’πŸ‘ 𝒙 = + +𝒄 πŸ“ πŸ‘

DIFFERENTIAL & INTEGRAL CALCULUS | Feliciano & Uy

20

EXERCISE 10.5

1.

TRIGONOMETRIC SUBSTITUTIONS

π‘₯ 2 𝑑π‘₯

3.

4βˆ’π‘₯ 2

𝑑π‘₯

π‘₯ = 𝑒 ; π‘Ž = 2 ; 22 βˆ’ π‘₯ 2

𝑒 = 3π‘₯

𝑒 = π‘Ž 𝑠𝑖𝑛 πœƒ π‘₯ 𝑠𝑖𝑛 πœƒ = 2 π‘₯ = 2𝑠𝑖𝑛 πœƒ 𝑑π‘₯ = 2π‘π‘œπ‘ πœƒπ‘‘πœƒ

π‘Ž=2

= =

𝑒 = π‘Žπ‘‘π‘Žπ‘›πœƒ 3π‘₯ = 2π‘‘π‘Žπ‘›πœƒ 2 3π‘₯ π‘₯ = π‘‘π‘Žπ‘›πœƒ ; π‘‘π‘Žπ‘›πœƒ = 3 2

π‘₯ 2 𝑑π‘₯ 4 βˆ’ π‘₯2

2 𝑑π‘₯ = 𝑠𝑒𝑐 2 πœƒπ‘‘πœƒ 3

4 𝑠𝑖𝑛 πœƒ 2π‘π‘œπ‘ πœƒπ‘‘πœƒ 2π‘π‘œπ‘ πœƒ 𝑠𝑖𝑛2 πœƒπ‘‘πœƒ

=4

1 βˆ’ π‘π‘œπ‘ 2πœƒπ‘‘πœƒ 2 π‘‘πœƒ βˆ’

π‘₯ 2

= πŸπ’‚π’“π’„π’”π’Šπ’

1 2

𝑑π‘₯

=

π‘₯ 9π‘₯ 2 + 4 2 𝑠𝑒𝑐 2 πœƒπ‘‘πœƒ 3

=

2π‘ π‘–π‘›πœƒπ‘π‘œπ‘ πœƒ ]2 + C

𝒙 𝒙 βˆ’πŸ 𝟐 𝟐

9π‘₯ 2 + 4

2π‘ π‘’π‘πœƒ =

1 π‘₯ 𝑠𝑖𝑛2πœƒ + 𝐢 ; πœƒ = π‘ π‘–π‘›βˆ’( ) 2 2

= 2[π‘Žπ‘Ÿπ‘π‘ π‘–π‘› βˆ’

9π‘₯ 2 + 4 2

π‘ π‘’π‘πœƒ =

=4

=2

;

π‘₯ 9π‘₯ 2 +4

πŸ’ βˆ’ π’™πŸ +π‘ͺ 𝟐

2 π‘‘π‘Žπ‘›πœƒ2π‘ π‘’π‘πœƒ 3

π‘ π‘’π‘πœƒπ‘‘πœƒ 2π‘‘π‘Žπ‘›πœƒ

= 1 = 2

1 π‘π‘œπ‘ πœƒ π‘ π‘–π‘›πœƒ π‘π‘œπ‘ πœƒ

π‘‘πœƒ

=

1 2

1 π‘‘πœƒ π‘ π‘–π‘›πœƒ

=

1 2

π‘π‘ π‘πœƒπ‘‘πœƒ

=

1 [-𝑙𝑛⁑|π‘π‘ π‘πœƒ 2

= βˆ’

𝟏 𝒍𝒏 𝟐

+ π‘π‘œπ‘‘πœƒ|] + 𝐢

πŸ—π’™πŸ + πŸ’ 𝟐 βˆ’ +π‘ͺ πŸ‘π’™ πŸ‘π’™

DIFFERENTIAL & INTEGRAL CALCULUS | Feliciano & Uy

21

EXERCISE 10.5

5.

π‘₯ 2 𝑑π‘₯ 3 9βˆ’π‘₯ 2 2

7.

π‘₯ 2 𝑑π‘₯

=

=

TRIGONOMETRIC SUBSTITUTIONS

9βˆ’

9 βˆ’ π‘₯2

3 𝑑π‘₯ = π‘π‘œπ‘ πœƒπ‘‘πœƒ 2

π‘₯ = 3π‘ π‘–π‘›πœƒ 𝑑π‘₯ = 3π‘π‘œπ‘ πœƒ

=

= =

2π‘₯

πœƒ = π‘ π‘–π‘›βˆ’1 ( )

(3π‘ π‘–π‘›πœƒ)2 3 π‘π‘œπ‘  πœƒ 9 βˆ’ (3π‘ π‘–π‘›πœƒ)2 3 π‘π‘œπ‘  πœƒ 9𝑠𝑖𝑛2 πœƒ 1 βˆ’ 𝑠𝑖𝑛2 πœƒ

3

= =

𝑠𝑖𝑛2 πœƒ (1 βˆ’ 𝑠𝑖𝑛2 πœƒ)

=

𝑠𝑖𝑛2 πœƒ π‘‘πœƒ π‘π‘œπ‘  2 πœƒ π‘‘π‘Žπ‘›2 πœƒπ‘‘πœƒ βˆ’

3 π‘₯ = π‘ π‘–π‘›πœƒ 2 2π‘₯ = π‘ π‘–π‘›πœƒ 3

𝑒 = π‘Žπ‘ π‘–π‘›πœƒ

=

𝑑π‘₯

𝑒 = π‘Žπ‘ π‘–π‘›πœƒ ; 2π‘₯ = 3π‘ π‘–π‘›πœƒ

π‘₯ 2 𝑑π‘₯

𝑒=π‘₯ ; π‘Ž=3

=

π‘₯2

π‘Ž = 3 ; 𝑒 = 2π‘₯

π‘₯2 3

9 βˆ’ π‘₯2

9βˆ’4π‘₯ 2

3 2

3π‘π‘œπ‘ πœƒ ( π‘π‘œπ‘ πœƒπ‘‘πœƒ ) 3 2

( π‘ π‘–π‘›πœƒ )2 3π‘π‘œπ‘ πœƒ (3π‘π‘œπ‘ πœƒπ‘‘πœƒ ) 3 2

2( π‘ π‘–π‘›πœƒ )2 9π‘π‘œπ‘  2 πœƒπ‘‘πœƒ 2(

9 ) 4𝑠𝑖𝑛 2 πœƒ

𝑠𝑒𝑐 2 πœƒπ‘‘πœƒ

= π‘‘π‘Žπ‘›πœƒ βˆ’ πœƒ =

𝒙

𝒙 βˆ’ π‘¨π’“π’„π’”π’Šπ’ + 𝒄 πŸ‘ πŸ— βˆ’ π’™πŸ

DIFFERENTIAL & INTEGRAL CALCULUS | Feliciano & Uy

22

EXERCISE 10.5

𝑑π‘₯ π‘₯ 2 +4 2

9.

TRIGONOMETRIC SUBSTITUTIONS

π‘₯ = 2 π‘‘π‘Žπ‘›πœƒ ;

𝑑π‘₯

11.

; π‘€π‘•π‘’π‘Ÿπ‘’: 𝑒 = π‘₯ , π‘Ž = 2

π‘₯ π‘₯ 2 βˆ’9

π‘Ž = 3 ;𝑒 = π‘₯

π‘₯ π‘‘π‘Žπ‘›πœƒ = 2

𝑒 = π‘Žπ‘ π‘’π‘πœƒ π‘₯ = 3π‘ π‘’π‘πœƒ ; 𝑑π‘₯ = 3π‘ π‘’π‘πœƒπ‘‘π‘Žπ‘›πœƒπ‘‘πœƒ π‘₯ π‘₯ π‘ π‘’π‘πœƒ = ; πœƒ = π΄π‘Ÿπ‘π‘ π‘’π‘ 3 3

π‘₯

𝐷π‘₯ = 2 𝑠𝑒𝑐 2 πœƒπ‘‘πœƒ ; πœƒ = π‘Žπ‘Ÿπ‘π‘‘π‘Žπ‘› 2

x

π‘₯2 + 4

x π‘₯2 βˆ’ 9

2 π‘₯2 + 4 2

π‘ π‘’π‘πœƒ =

π‘₯2 + 4

2π‘ π‘’π‘πœƒ =

3

2

4 𝑠𝑒𝑐 2 πœƒ = π‘₯ 2 + 4 π‘‘π‘Žπ‘›πœƒ =

2

2 𝑠𝑒𝑐 πœƒπ‘‘πœƒ 4 𝑠𝑒𝑐 2 πœƒ 2

=

2 𝑠𝑒𝑐 2 πœƒπ‘‘πœƒ = 16 𝑠𝑒𝑐 4 πœƒ

= 1 8

π‘π‘œπ‘  2 πœƒπ‘‘πœƒ

=

1 8

1 + π‘π‘œπ‘ 2πœ— π‘‘πœƒ 2

=

1 8

=

1 π‘‘πœƒ + 2

1 1 πœƒ 2

=8 =

π‘‘πœƒ 1 = 2 8 𝑠𝑒𝑐 πœƒ 8

π‘π‘œπ‘ 2πœƒ π‘‘πœƒ 2

π‘‘πœƒ 𝑠𝑒𝑐 2 πœƒ

= =

π‘₯2 βˆ’ 9 ; 3π‘‘π‘Žπ‘›πœƒ = 3 𝑑π‘₯

π‘₯ π‘₯2 βˆ’ 9

=

π‘₯2 βˆ’ 9

3π‘ π‘’π‘πœƒπ‘‘π‘Žπ‘›πœƒπ‘‘πœƒ 3π‘ π‘’π‘πœƒ(3π‘‘π‘Žπ‘›πœƒ)

π‘‘πœƒ 3

=

1 πœƒ 3

=

𝟏 𝒙 𝑨𝒓𝒄𝒔𝒆𝒄 + 𝒄 πŸ‘ πŸ‘

1

+ 4 (2)π‘ π‘–π‘›πœƒπ‘π‘œπ‘ πœƒ + 𝑐

𝟏 𝟏 𝜽+ π’”π’Šπ’πœ½π’„π’π’”πœ½ + 𝒄 πŸπŸ” πŸπŸ”

DIFFERENTIAL & INTEGRAL CALCULUS | Feliciano & Uy

23

EXERCISE 10.5

TRIGONOMETRIC SUBSTITUTIONS

𝑑π‘₯

3

π‘₯ 2 βˆ’ 16 2 πŸπŸ‘. ( ) π‘₯3

πŸπŸ“.

𝑒 = π‘₯; π‘Ž = 4

5 βˆ’ 12π‘₯ + 4π‘₯ 2 = 2π‘₯ βˆ’ 9 βˆ’ 4

𝑒 = π‘ π‘’π‘βˆ… ; π‘₯ = 4π‘ π‘’π‘βˆ… ; π‘ π‘’π‘βˆ… =

π‘₯ 4

𝑒 = π‘Žπ‘ π‘’π‘βˆ… ; 2π‘₯ βˆ’ 3 = 2π‘ π‘’π‘βˆ… 2π‘₯ βˆ’ 3 = 2π‘ π‘’π‘βˆ… ; 2π‘₯ = 2π‘ π‘’π‘βˆ… + 3

π‘₯ 3 = 64 sec 3 βˆ…; 𝑑π‘₯ = 4π‘ π‘’π‘βˆ…π‘‘π‘Žπ‘›βˆ…π‘‘βˆ… π‘₯ 2 βˆ’ 16 ; 4π‘‘π‘Žπ‘›βˆ… = 4

π‘₯ 2 βˆ’ 16

=4 =4

2𝑑π‘₯ = 2π‘ π‘’π‘βˆ…π‘‘π‘Žπ‘›βˆ… 𝑑π‘₯ = π‘ π‘’π‘βˆ…π‘‘π‘Žπ‘›βˆ… π‘ π‘’π‘βˆ… =

3

=

5 βˆ’ 12π‘₯ + 4π‘₯ 2

π‘Ž = 2 ; 𝑒 = 2π‘₯ βˆ’ 3

π‘₯ βˆ… = π‘Žπ‘Ÿπ‘π‘ π‘’π‘βˆ… 4

π‘‘π‘Žπ‘›βˆ… =

2π‘₯ βˆ’ 3

( 4π‘‘π‘Žπ‘›βˆ… (4π‘ π‘’π‘βˆ…π‘‘π‘Žπ‘›βˆ…π‘‘βˆ…)) (64sec3 )

2π‘₯ βˆ’ 3 2

βˆ… = π‘Žπ‘Ÿπ‘π‘ π‘’π‘

tan4 βˆ…π‘‘βˆ… sec⁑^2βˆ…

π‘‘π‘Žπ‘›βˆ… =

(sec 2 βˆ’1)^2π‘‘βˆ… sec 2 βˆ…

2π‘‘π‘Žπ‘›βˆ… =

2π‘₯ βˆ’ 3 2

2π‘₯ βˆ’ 3 2

2π‘₯ βˆ’ 3

=4

sec 4 βˆ’2 sec 2 βˆ… + 1 sec 2 βˆ…

=

(π‘ π‘’π‘βˆ…π‘‘π‘Žπ‘›βˆ…) 2π‘ π‘’π‘βˆ…2π‘‘π‘Žπ‘›βˆ…

=4

sec 4 βˆ… βˆ’ 2 sec 2 βˆ… + 1 sec 2 βˆ…

=

1 4

π‘ π‘’π‘βˆ…π‘‘π‘Žπ‘›βˆ… π‘ π‘’π‘βˆ…π‘‘π‘Žπ‘›βˆ…

=4

sec 2 βˆ… βˆ’ 2 + 1/ sec 2 βˆ…π‘‘βˆ…

=

1 4

π‘‘βˆ…

1

= 4(π‘‘π‘Žπ‘›βˆ… βˆ’ 2βˆ… + 2 βˆ… + π‘ π‘–π‘›βˆ…π‘π‘œπ‘ βˆ… =

1 4

= βˆ…; βˆ… = π‘Žπ‘Ÿπ‘π‘ π‘’π‘

𝒙 πŸ– π’™πŸ βˆ’ πŸπŸ” π’™πŸ βˆ’ πŸπŸ” βˆ’ πŸ” 𝐚𝐫𝐜𝐬𝐞𝐜 + +𝒄 πŸ’ π’™πŸ

=

2

βˆ’4 2

βˆ’4

2π‘₯βˆ’3 2

𝟏 πŸπ’™ βˆ’ πŸ‘ 𝒂𝒓𝒄𝒔𝒆𝒄 + 𝒄 πŸ’ 𝟐

DIFFERENTIAL & INTEGRAL CALCULUS | Feliciano & Uy

24

EXERCISE 10.6

𝟏.

π‘₯2

ADDITIONAL STANDARD FORMULAS

𝑑π‘₯ + 25

36 βˆ’ 9π‘₯ 2 𝑑π‘₯

πŸ•.

Let: 𝑒 = π‘₯

Let: π‘Ž = 6

π‘Ž=5

𝑒 = 3π‘₯

𝑑𝑒 = 𝑑π‘₯

𝑑𝑒 = 𝑑π‘₯ 3

=

𝟏 𝒙 𝑨𝒓𝒄𝒕𝒂𝒏 + 𝒄 πŸ“ πŸ“

π‘₯𝑑π‘₯

πŸ‘.

1 βˆ’ π‘₯4

=

1 3π‘₯ 1 3π‘₯ 36 βˆ’ 9π‘₯ 2 + 8π΄π‘Ÿπ‘π‘ π‘–π‘› +𝑐 3 2 3 6 1 3π‘₯ 2

1

=

Let: 𝑒 = π‘₯ 2

π‘₯

36 βˆ’ 9π‘₯ 2 + 3 8π΄π‘Ÿπ‘π‘ π‘–π‘› 2 + 𝑐

=3

𝒙 𝒙 πŸ‘πŸ” βˆ’ πŸ—π’™πŸ + πŸ”π‘¨π’“π’„π’”π’Šπ’ + 𝒄 𝟐 𝟐

π‘Ž=1 𝑑𝑒 = 𝑑π‘₯ 2

πŸ—.

1 π‘₯2 = π΄π‘Ÿπ‘π‘ π‘–π‘› + 𝑐 2 1

Let: π‘Ž = 5

𝟏 𝟐

= π‘¨π’“π’„π’”π’Šπ’π’™πŸ + 𝒄

16π‘₯ 2 + 25𝑑π‘₯

𝑒 = 4π‘₯ 𝑑𝑒 = 𝑑π‘₯ 4

πŸ“.

𝑑π‘₯ 49 βˆ’ 25π‘₯ 2

Let: π‘Ž = 7

=

=

1 4π‘₯ 4

2

16π‘₯ 2 + 25 +

1 52 4

2

𝑙𝑛 4π‘₯ + 16π‘₯ 2 + 25 + 𝑐

𝟏 πŸπŸ“ πŸπŸ”π’™πŸ + πŸπŸ“ + 𝒍𝒏 πŸ’π’™ + πŸπŸ”π’™πŸ + πŸπŸ“ + 𝒄 πŸπ’™ πŸ–

𝑒 = 5π‘₯ 𝑑𝑒 2

= 𝑑π‘₯

=

𝟏 πŸ“π’™ βˆ’ πŸ• 𝒍𝒏 +𝒄 πŸ•πŸŽ πŸ“π’™ + πŸ•

DIFFERENTIAL & INTEGRAL CALCULUS | Feliciano & Uy

25

EXERCISE 10.7

INTEGRANDS INVOLVING QUADRATIC EQUATIONS

πŸ‘.

𝑑π‘₯ π‘₯ 2 βˆ’3π‘₯+2

1.

π‘π‘œπ‘šπ‘π‘™π‘’π‘‘π‘–π‘›π‘” 𝑑𝑕𝑒 π‘ π‘žπ‘’π‘Žπ‘Ÿπ‘’

2π‘₯ 2

𝑑π‘₯

=

1 2

π‘₯βˆ’2

2

π‘₯ βˆ’ 3π‘₯ = βˆ’2 π‘₯ 2 βˆ’ 3π‘₯ = 3 2

2

3 π‘₯βˆ’ 2

2

π‘₯βˆ’

9 9 = βˆ’2 + 4 4

=

(π‘₯ βˆ’

=

𝑒2 1

βˆ’

2

1 2

= 𝒍𝒏

𝑑𝑒 1 π‘’βˆ’π‘Ž = 𝑙𝑛 +𝑐 2 βˆ’π‘Ž 2π‘Ž 𝑒+π‘Ž

𝑙𝑛

1 2

1 4

1 2

=

𝑑𝑒 + π‘Ž2

= π‘Žπ‘Ÿπ‘π‘‘π‘Žπ‘›

3 𝑒=π‘₯βˆ’ 2 π‘Ž=

𝑒2

1 1 π‘Ž= , 𝑒=π‘₯βˆ’ 2 2

1 βˆ’ 4 3 2 ) 2

=

1

+4

1 𝑒 = π‘Žπ‘Ÿπ‘π‘‘π‘Žπ‘› + 𝑐 2 π‘Ž

1 4

𝑑π‘₯

=

𝑑π‘₯ βˆ’ 2π‘₯ + 1

3 1 2 2 3 1 π‘₯βˆ’ + 2 2

π‘₯βˆ’ βˆ’

+𝑐

π’™βˆ’πŸ +𝒄 π’™βˆ’πŸ

1 2

π‘₯βˆ’ 1 2

+𝑐

=

𝟏 π’‚π’“π’„π’•π’‚π’πŸπ’™ βˆ’ 𝟏 + 𝒄 𝟐

πŸ“.

3 βˆ’ 2π‘₯ βˆ’ π‘₯ 2

=

4βˆ’ π‘₯+1

2

𝑒 = π‘₯ + 1, π‘Ž = 2 π‘Ž2

= =

π‘₯+1 2

=

βˆ’

𝑒2

𝑒 π‘Ž2 𝑒 2 2 = π‘Ž βˆ’ 𝑒 + π‘Žπ‘Ÿπ‘π‘ π‘–π‘› + π‘Ž 2 π‘Ž 4

3 βˆ’ 2π‘₯ βˆ’ π‘₯ 2 + 2 π‘Žπ‘Ÿπ‘π‘ π‘–π‘›

π‘₯+1 2

+𝑐

𝒙+𝟏 𝒙+𝟏 πŸ‘ βˆ’ πŸπ’™ βˆ’ π’™πŸ + πŸπ’‚π’“π’„π’”π’Šπ’ +𝒄 𝟐 𝟐

DIFFERENTIAL & INTEGRAL CALCULUS | Feliciano & Uy

26

EXERCISE 10.7 πŸ•.

π‘₯2

INTEGRANDS INVOLVING QUADRATIC EQUATIONS

𝑑π‘₯ βˆ’ 8π‘₯ + 7

2π‘₯βˆ’3𝑑π‘₯ 4π‘₯ 2 βˆ’1

11.

2π‘₯𝑑π‘₯ 4π‘₯ 2 βˆ’1

Completing the square

=

π‘₯ 2 βˆ’ 8π‘₯ = βˆ’7

=2

π‘₯ 2 βˆ’ 8π‘₯ + 16 = βˆ’7 + 16 π‘₯βˆ’4

2

=9

π‘₯βˆ’4

2

βˆ’9=0

π‘₯𝑑π‘₯ 4π‘₯ 2 βˆ’1

βˆ’3

𝑑π‘₯ 4π‘₯ 2 βˆ’1

𝑙𝑒𝑑 𝑒 = 4π‘₯ 2 βˆ’ 1 ; 𝑑𝑒 8

=2

𝑑π‘₯ (π‘₯ βˆ’ 4)2 + 9

=

3𝑑π‘₯ 4π‘₯ 2 βˆ’1

βˆ’

=

𝑒

1

βˆ’ 3[2 𝑙𝑛

𝟏 𝒍𝒏|πŸ’π’™πŸ πŸ’

𝑑𝑒 = π‘₯𝑑π‘₯ 8 4π‘₯ 2 βˆ’1 4π‘₯ 2 +1 πŸ‘

βˆ’ 𝟏| βˆ’ πŸ’ 𝒍𝒏

+ 𝑐] πŸπ’™βˆ’πŸ πŸπ’™+𝟏

+𝒄

π‘Ž = 3 ;𝑒 = π‘₯ βˆ’4 = =

𝑒2

1 π‘’βˆ’π‘Ž 𝑙𝑛 +𝑐 2π‘Ž 𝑒+π‘Ž 1

= 6 𝑙𝑛 =

𝑑𝑒 βˆ’ π‘Ž2

π‘₯βˆ’4βˆ’3 π‘₯βˆ’4+3

+𝑐

=

𝟏 π’™βˆ’πŸ• 𝒍𝒏 +𝒄 πŸ” π’™βˆ’πŸ

(2π‘₯+7)𝑑π‘₯ π‘₯ 2 +2π‘₯+5

13.

=

2π‘₯+2 +5𝑑π‘₯ π‘₯ 2 +2π‘₯+5 2π‘₯+2 π‘₯ 2 +2π‘₯+5

+5

𝑑π‘₯ (π‘₯+1)2 +4

𝑙𝑒𝑑 𝑒 = π‘₯ 2 + 2π‘₯ + 5 ; 𝑑𝑒 = (2π‘₯𝑑2)𝑑π‘₯ =

3+2π‘₯ 𝑑π‘₯ π‘₯ 2 +9

9. = =3

2π‘₯𝑑π‘₯ π‘₯ 2 +9

𝑑π‘₯ + π‘₯ 2 +9

1

+ 2 π΄π‘Ÿπ‘π‘‘π‘Žπ‘›

π‘₯+1 2

+𝑐 𝟏

=

3𝑑π‘₯ + π‘₯ 2 +9

𝑑𝑒 𝑒

2

⁑𝒍𝒏|π’™πŸ + πŸπ’™ + πŸ“| + 𝟐 𝑨𝒓𝒄𝒕𝒂𝒏

𝒙+𝟏 + 𝟐

𝒄

π‘₯𝑑π‘₯ π‘₯ 2 +9

𝑙𝑒𝑑 𝑒 = π‘₯ 2 + 9 ; 𝑑𝑒 = 2π‘₯𝑑π‘₯ 1

π‘₯

= 33 π΄π‘Ÿπ‘π‘‘π‘Žπ‘› 3 + 2

𝑑𝑒 2

𝑒

𝒙

= 𝑨𝒓𝒄𝒕𝒂𝒏 πŸ‘ + 𝒍𝒏 π’™πŸ + πŸ— + 𝒄

DIFFERENTIAL & INTEGRAL CALCULUS | Feliciano & Uy

27

EXERCISE 10.7 (π‘₯βˆ’3)𝑑π‘₯

15. = =

INTEGRANDS INVOLVING QUADRATIC EQUATIONS 19.

4π‘₯βˆ’π‘₯ 2 π‘₯βˆ’2 βˆ’1𝑑π‘₯

=2

4π‘₯βˆ’π‘₯ 2 π‘₯βˆ’2 𝑑π‘₯ 4π‘₯βˆ’π‘₯ 2

𝑙𝑒𝑑 𝑒 = 𝑑𝑒 =

4π‘₯βˆ’π‘₯ 2

4π‘₯ βˆ’

π‘₯2

βˆ’2(π‘‹βˆ’2)𝑑π‘₯ 2 4π‘₯βˆ’π‘₯ 2

+

17 2

𝑑π‘₯ π‘₯ 2 βˆ’4π‘₯+20

π‘₯ 2 βˆ’ 4π‘₯ + 20 = π‘₯ βˆ’ 2

4 βˆ’ 2π‘₯

; 𝑑𝑒 =

2 4π‘₯ βˆ’ π‘₯ 2

𝑑π‘₯ = 2[

; 4π‘₯ βˆ’ π‘₯ 2 = 4 βˆ’ (2 βˆ’ π‘₯)2

𝑑𝑒 𝑒

+

17 2

2

πŸβˆ’π’™ + 𝟐

+ 16

𝑑π‘₯ ] π‘₯βˆ’2 2 +16

= 2[𝑙𝑛 π‘₯ 2 βˆ’ 4π‘₯ + 20 +

17 1 π‘₯βˆ’2 ( )Arctan 4 2 4

= 𝟐 𝒍𝒏 π’™πŸ βˆ’ πŸ’π’™ + 𝟐𝟎 +

4βˆ’(2βˆ’π‘₯)2

= βˆ’ πŸ’π’™ βˆ’ π’™πŸ βˆ’ π‘¨π’“π’„π’”π’Šπ’

πŸπŸ• π’™βˆ’πŸ Arctan + πŸ’ πŸ’

+ 𝑐] 𝒄

𝒄

π‘₯+3 𝑑π‘₯

17.

8π‘₯βˆ’π‘₯ 2 π‘₯βˆ’4 +7𝑑π‘₯

=

8π‘₯βˆ’π‘₯ 2 π‘₯βˆ’4 𝑑π‘₯ 8π‘₯βˆ’π‘₯ 2

𝑙𝑒𝑑 𝑒 = 𝑑𝑒 = =

2π‘₯+4𝑑π‘₯ π‘₯ 2 βˆ’4π‘₯+20

2(2π‘₯+4+17)𝑑π‘₯ π‘₯ 2 βˆ’4π‘₯+20

𝑑𝑒

= 𝑑𝑒 βˆ’

=

=

𝑙𝑒𝑑 𝑒 = π‘₯ 2 βˆ’ 4π‘₯ + 20 ; 𝑑𝑒 = (2π‘₯ βˆ’ 4)𝑑π‘₯

𝑑π‘₯

βˆ’

(4π‘₯+9)𝑑π‘₯ π‘₯ 2 βˆ’4π‘₯+20

+7

𝑑π‘₯ 8π‘₯βˆ’π‘₯ 2

8π‘₯ βˆ’ π‘₯ 2 ; 𝑑𝑒 =

βˆ’2(π‘₯ βˆ’ 4)𝑑π‘₯ 2 8π‘₯

βˆ’ π‘₯2

8 βˆ’ 2π‘₯ 2 8π‘₯ βˆ’ π‘₯ 2

𝑑π‘₯

; 8π‘₯ βˆ’ π‘₯ 2

16 βˆ’ (4 βˆ’ π‘₯)2

=βˆ’ 𝑑𝑒 + 7

𝑑𝑒 16βˆ’(4βˆ’π‘₯)2

= - πŸ–π’™ βˆ’ π’™πŸ + πŸ•π‘¨π’“π’„π’”π’Šπ’

πŸ’βˆ’π’™ + πŸ’

𝒄

DIFFERENTIAL & INTEGRAL CALCULUS | Feliciano & Uy

28

EXERCISE 10.8

ALGEBRAIC SUBSTITUTION

𝑑π‘₯

1.

5

𝑧=

3

π‘₯

5

=

𝑧 2 𝑑𝑧 𝑧3 βˆ’ 𝑧2

=3

3

9π‘₯ 6 βˆ’10π‘₯ 4 30 𝟏

+𝑐

𝟏

𝟏

π’™πŸ (πŸ—π’™πŸ‘ βˆ’ πŸπŸŽπ’™πŸ’ ) = +𝒄 πŸ‘πŸŽ

𝑑𝑧 π‘§βˆ’1

=3

7

3π‘₯ 6 π‘₯ 4 = βˆ’ +𝑐 10 3

2 π‘₯βˆ’π‘₯ 3

𝑒 = π‘§βˆ’1 𝑑𝑒 = 𝑑𝑧 5.

𝑑𝑒 𝑒

=3

𝑑π‘₯ π‘₯+2

= 3 𝑙𝑛 |𝑧 βˆ’ 1 | + 𝑐

𝑧 = π‘₯+2 𝑧4 = π‘₯ + 2 π‘₯ = 2 βˆ’ 𝑧4 𝑑π‘₯ = βˆ’4𝑧 3 𝑑𝑧

πŸ‘

= πŸ‘ 𝒍𝒏 | 𝒙 βˆ’ 𝟏 | + 𝒄

1

1

π‘₯+2 2

4

= 3 𝑙𝑛 𝑒 + 𝑐

= βˆ’4

𝑧 3 𝑑𝑧 𝑧3 βˆ’ 𝑧2

= βˆ’4

𝑧𝑑𝑧 π‘§βˆ’1

1

(π‘₯ 3 βˆ’π‘₯ 4 𝑑π‘₯

3.

3 4βˆ’

𝑒 = π‘§βˆ’1

1

4π‘₯ 2

𝑧=

12

𝑑𝑒 = 𝑑𝑧

π‘₯

𝑧 = 𝑒+1

𝑑π‘₯ = 12𝑧11 𝑑𝑧 5

=3

(𝑧 4 βˆ’π‘§ 3 ) 𝑧 11 𝑑𝑧 𝑧8

= 3 (𝑧 9 βˆ’ 𝑧 8 ) 𝑑π‘₯ = 3[ 𝑧 9 𝑑𝑧 βˆ’

𝑧 8 𝑑𝑧]

= βˆ’4

𝑒 + 1 𝑑𝑒 𝑒

= βˆ’4[

𝑒 𝑑𝑒 + 𝑒

𝑑𝑒 ] 𝑒

= βˆ’4[𝑒 + 𝑙𝑛 𝑒 + 𝑐 = βˆ’πŸ’[𝒛 βˆ’ 𝟏 + 𝒍𝒏 𝒛 βˆ’ 𝟏 + 𝒄]

10

9

𝑧 𝑧 = 3[ βˆ’ + 𝑐] 10 9 =

3𝑧10 𝑧 9 βˆ’ +𝑐 10 3 DIFFERENTIAL & INTEGRAL CALCULUS | Feliciano & Uy

29

EXERCISE 10.8

7.

ALGEBRAIC SUBSTITUTION

1

4 + π‘₯𝑑π‘₯ ;

9. π‘₯ π‘₯ + 4 3 𝑑π‘₯ 𝑧 = π‘₯+4

𝑧 =(4+ π‘₯)1/2

12

π‘₯ (𝑧 2 βˆ’ 4)2= π‘₯𝑑π‘₯ = 4𝑧 3 βˆ’ 16𝑧 𝑑𝑧

=

𝑧 4𝑧 3 βˆ’ 16𝑧 𝑑𝑧

=

4𝑧 4 βˆ’ 16𝑧 2 𝑑𝑧

=4

𝑧5 𝑧3 βˆ’ 16 +𝐢 5 3

=

4 (4 + 5

= 4+ π‘₯

= 4+ π‘₯

= 4+ π‘₯

π‘₯)5/2βˆ’

4 4+ π‘₯ 5

3 2

3 2

3 2

=

4 15

=

πŸ’ πŸ’+ 𝒙 πŸ“

4+ π‘₯

16 (4 + 3

; 𝑧3 = π‘₯ + 4

π‘₯ = 𝑧 3 βˆ’ 4 ; 𝑑π‘₯ = 3𝑧 3 𝑑𝑧

𝑧 2 βˆ’ 4 = π‘₯𝑧 4 βˆ’ 8𝑧 2 + 16 = π‘₯ 𝑧=

1 3

𝑧 3 βˆ’ 4 𝑧 3𝑧 2 𝑑𝑧

=

𝑧 6 𝑑𝑧 βˆ’ 4

=3

𝑧 3 𝑑𝑧

7

4 3𝑧 3 = βˆ’ 3𝑧 3 + 𝑐 7

3 π‘₯+4 = 7

π‘₯)3/2+C

7 3

βˆ’3 π‘₯+4

4 3

+𝑐

4

16 βˆ’ +𝐢 3

12 4 + π‘₯ βˆ’ 80 +𝐢 15

=

3 π‘₯+4 3 7

π‘₯+4βˆ’7 +𝑐 1 3

π‘₯ π‘₯ + 4 𝑑π‘₯ =

πŸ‘ 𝒙+πŸ’

πŸ’ πŸ‘

πŸ•

π’™βˆ’πŸ‘

+𝒄

48 + 12 π‘₯ βˆ’ 80 +𝐢 15 3 2

πŸ‘ 𝟐

12 + 3 π‘₯ βˆ’ 20 + 𝐢 πŸ‘ π’™βˆ’πŸ– +π‘ͺ

DIFFERENTIAL & INTEGRAL CALCULUS | Feliciano & Uy

30

EXERCISE 10.8

11.

4βˆ’ 2π‘₯+1 1βˆ’2π‘₯

ALGEBRAIC SUBSTITUTION

𝑑π‘₯

𝑧 = 2π‘₯ + 1 ; 𝑧 2 = 2π‘₯ + 1 𝑧2 βˆ’ 1 2π‘₯ = 𝑧 2 βˆ’ 1 ; π‘₯ = ; 𝑑π‘₯ = 𝑧𝑑𝑧 2 =

= = = =

πŸπŸ‘.

x 5 4 + x 3 dx

𝑧=

4 + π‘₯3𝑧2 = 4 + π‘₯3 ; π‘₯ =

𝑑π‘₯ =

1 4 βˆ’ 𝑧2 3

=βˆ’

4 βˆ’ 𝑧 𝑧𝑑𝑧 1βˆ’2

𝑧 2 βˆ’1 2

𝑑𝑧 βˆ’ 2

=π‘§βˆ’2

2𝑧𝑑𝑧 βˆ’ 𝑧2 βˆ’ 2

= 𝑧 βˆ’ 2 𝑙𝑛 𝑧 2 βˆ’ 2 +

𝑑𝑧 2 𝑧 βˆ’2 1 𝑙𝑛 2

= πŸπ’™ + 𝟏 βˆ’ 𝟐 𝒍𝒏 πŸπ’™ βˆ’ 𝟏 +

𝟏 𝟐

2π‘₯𝑑1βˆ’ 2 2π‘₯+1+ 2

𝒍𝒏

+𝑐

πŸπ’™π’•πŸ βˆ’ 𝟐 πŸπ’™ + 𝟏 + 𝟐

+𝒄

2 3

4 βˆ’ 𝑧2

5

(𝑧)

=

1 3

=

1 2𝑧 5 8𝑧 3 βˆ’ +𝑐 3 5 3

=

2𝑧 5 8𝑧 3 βˆ’ +𝑐 15 9

=

βˆ’2𝑧𝑑𝑧 3 4 βˆ’ 𝑧2

2 3

βˆ’8𝑧 2 + 2𝑧 4 𝑑𝑧 3

=

2𝑧 βˆ’ 1 𝑑𝑧 𝑧2 βˆ’ 2

3 4 βˆ’ 𝑧2

4 βˆ’ 𝑧 2 𝑧 βˆ’2𝑧𝑑𝑧 3

=

4𝑧 βˆ’ 2𝑑𝑧 𝑧2 βˆ’ 2

βˆ’2𝑧𝑑𝑧

2𝑧𝑑𝑧

3

=

4𝑧 βˆ’ 2𝑑𝑧 1+ βˆ’ 𝑧2 βˆ’ 2 1βˆ’

6

2𝑧 4 𝑑𝑧 βˆ’ 8𝑧 2 𝑑𝑧

4 + π‘₯ 3 βˆ’ 40 4 βˆ’ π‘₯ 3 +𝑐 45

=

4 + π‘₯ 3 6 4 + π‘₯ 3 βˆ’ 40 +𝑐 45

=

4 + π‘₯ 3 24 + 6π‘₯ 3 βˆ’ 40 +𝑐 45

= =

4 βˆ’ 𝑧2

π‘₯ 5 4 + π‘₯ 3 𝑑π‘₯

=

4𝑧 βˆ’ 𝑧 2 𝑑𝑧 2 βˆ’ 𝑧2

2 3

3

4+π‘₯ 3 βˆ’16+6π‘₯ 3 45

+𝑐

𝟐 πŸ’ + π’™πŸ‘ πŸ‘π’™πŸ‘ βˆ’ πŸ– +𝒄 πŸ’πŸ“

DIFFERENTIAL & INTEGRAL CALCULUS | Feliciano & Uy

31

EXERCISE 10.8

ALGEBRAIC SUBSTITUTION

3

1

15. π‘₯ 3 (4 + π‘₯ 2 )2 𝑑π‘₯

17. Κƒ

3+1 =2 2

π‘₯ = π‘‘π‘Žπ‘› 𝑒 ; 𝑑π‘₯ = 𝑠𝑒𝑐 2 𝑒 𝑑𝑒

𝑧2 = 4 + π‘₯2

= Κƒ π‘π‘œπ‘‘ 3 𝑒 𝑐𝑠𝑐 𝑒 𝑑𝑒

X = 4 βˆ’ 𝑧2

= Κƒ π‘π‘œπ‘‘ 𝑒 𝑐𝑠𝑐 𝑒 𝑐𝑠𝑐 2 ( 𝑒 βˆ’ 1)𝑑𝑒 1

1

dx = 2 4 βˆ’ 𝑧 2 βˆ’2 (-2zdz)

= 𝑠𝑒𝑏𝑠. 𝑠 = 𝑐𝑠𝑐 𝑒 π‘Žπ‘›π‘‘ 𝑑𝑠 = βˆ’ π‘π‘œπ‘‘ 𝑒 𝑐𝑠𝑐 𝑒 𝑑𝑒

= βˆ’Κƒ 𝑠 2 βˆ’ 1 𝑑𝑠

𝑧𝑑𝑧

1 (4βˆ’π‘§ 2 )2

= Κƒ1𝑑𝑠 βˆ’ ʃ𝑠 2 𝑑𝑠

= (4 βˆ’ 𝑧 2 )(𝑧 3 )(βˆ’π‘§π‘‘π‘§) = ʃ𝑠 βˆ’ = =

𝑑π‘₯

𝑑𝑕𝑒𝑛 π‘₯ 2 + 1 = π‘‘π‘Žπ‘›2 𝑒 + 1 = 𝑠𝑒𝑐 𝑒 & 𝑒 = π‘‘π‘Žπ‘›βˆ’1 π‘₯

Z = 4 + π‘₯2

=-

π‘₯ 4 π‘₯ 2 +1

βˆ’4𝑧 4 + 𝑧 6 𝑑𝑧

𝑠3 3

= 𝑐𝑠𝑐 𝑒 βˆ’

4𝑧 5 𝑧 7 βˆ’ + +𝐢 5 7

=

=

28𝑧 5 + 5𝑧 7 +𝐢 35

=

βˆ’28( 4+π‘₯ 2 )5 +5( 4+π‘₯ 2 )7 +C 35

𝑐𝑠𝑐 3 𝑒 3

+𝐢

π’™πŸ + 𝟏 πŸπ’™πŸ βˆ’ 𝟏 +π‘ͺ πŸ‘π’™πŸ‘

5

= =

=

4 + π‘₯ 2 (βˆ’28 + 5(4 + π‘₯ 2 ) +𝐢 35 4+π‘₯ 2

5

(βˆ’28+20+5π‘₯ 2 ) 35

πŸ’ + π’™πŸ

πŸ“

+𝐢

(πŸ“π’™πŸ βˆ’ πŸ–)

πŸ‘πŸ“

+π‘ͺ

DIFFERENTIAL & INTEGRAL CALCULUS | Feliciano & Uy

32

EXERCISE 10.8

πŸπŸ—. ( π‘₯=

ALGEBRAIC SUBSTITUTION

𝑑π‘₯ π‘₯ 2 (81 +

π‘₯4

)

1 1 ; 𝑑π‘₯ = βˆ’ 2 𝑑𝑧 𝑧 𝑧

1 𝑧2

βˆ’π‘‘π‘§ 𝑧2

81 +

𝑙𝑒𝑑 π‘₯ = 1 𝑧

=

1

3 4

1 π‘₯

𝑑𝑧

βˆ’ π‘₯3

βˆ’ 𝑧2

1 𝑧4

𝑑𝑧

βˆ’ 𝑧2

1/𝑧 4

1

(𝑧 2 βˆ’1) 3 𝑧 𝑧4

=

𝑙𝑒𝑑 𝑒 = 81𝑧 4 + 1 ; 𝑑𝑒 = 324𝑧 3 𝑑𝑧

βˆ’1 81

𝑧=

1

81𝑧 4 + 1

1 324

1 , 𝑧2

𝑧 2 βˆ’1 3 𝑧3

𝑧3

=

=

(π‘₯βˆ’π‘₯ 3 )1/3 𝑑π‘₯ π‘₯4

=

1 𝑍4

βˆ’π‘‘π‘§ 𝑧2 81𝑧 4 +1 𝑧6

=

21.

(βˆ’

𝑑𝑧 ) 𝑧2

1

𝑧 2 βˆ’ 1 3 𝑧𝑑𝑧

=βˆ’

𝑑𝑒 𝑙𝑒𝑑 𝑒 = 𝑧 2 βˆ’ 1

3

𝑒4 81𝑧 4 + 1

1 4

+𝑐

=βˆ’

1 2

1

𝑒3 𝑑𝑒 4

𝟏 πŸ–πŸ + π’™πŸ’ =βˆ’ +𝒄 πŸ–πŸ π’™πŸ’

=

1 𝑒3 βˆ’ 2 ( 4 )+c 3

=βˆ’

3 2 𝑧 βˆ’1 8 3

= βˆ’8

1 π‘₯2

βˆ’1

4 3

4 3

+𝑐 +𝑐

4

=

3 1-x2 3 βˆ’ 8 x2 +c

DIFFERENTIAL & INTEGRAL CALCULUS | Feliciano & Uy

33

EXERCISE 10.9

INTEGRATION OF RATIONAL FUNCTIONS OF SINES AND COSINES

𝐷π‘₯ 1+π‘π‘œπ‘ π‘₯

1.

𝑑π‘₯ = 𝑠𝑖𝑛π‘₯ + π‘π‘œπ‘ π‘₯ + 3

πŸ“.

2𝑑𝑧 1+𝑧 2 2𝑧 1βˆ’π‘§ 2 + +3 1+𝑧 2 1+𝑧 2

2 𝐷𝑧

=

1+𝑧 2 1βˆ’π‘§ 2 1+𝑧 2

1+

2𝑑𝑧

=

1+𝑧 2 1+𝑧 2 + 1βˆ’π‘§ 2 1+𝑧 2

=

2𝑑𝑧 1 2

𝑧+2

𝑧+2 2 𝑒 2 = π‘Žπ‘Ÿπ‘π‘‘π‘Žπ‘› + 𝑐 = π‘Žπ‘Ÿπ‘π‘‘π‘Žπ‘› + 𝑐 7 7 π‘Ž π‘Ž 2

= 𝑑π‘₯ 4+2 𝑠𝑖𝑛π‘₯

2 𝑑𝑧

=

=

1+ 𝑧 2 2𝑧 1+𝑧 2

1 2𝑧+1 π‘Žπ‘Ÿπ‘π‘‘π‘Žπ‘› 7 7

𝟏 πŸ•

4+2

2𝑑𝑧

=

1+𝑧 2

𝑑𝑧

=

=

1 2 2

+

3

= 2

𝑒2

3 2

π‘Žπ‘Ÿπ‘π‘‘π‘Žπ‘›

𝟏 πŸ‘

𝑧+2 3 2

𝑑𝑒 2 𝑒 = π‘Žπ‘Ÿπ‘π‘‘π‘Žπ‘› + 𝑐 2 +π‘Ž π‘Ž π‘Ž

4

1

2

𝒙

𝒂𝒓𝒄𝒕𝒂𝒏

πŸπ’•π’‚π’ 𝟐 + 𝟏 πŸ•

+ 𝒄

1+𝑧 2

πŸ•.

𝑠𝑒𝑐π‘₯𝑑π‘₯ = 2𝑑𝑧 =2 1 βˆ’ 𝑧2

= 𝑧+

+ 𝐢

4+4𝑧 2 + 4𝑧 1+𝑧 2

2 𝑑𝑧 1 3 ; π‘€π‘•π‘’π‘Ÿπ‘’: 𝑒 = 𝑧 + ; π‘Ž = 4𝑧 2 + 4𝑧 + 4 2 2

=2

2

2𝑑𝑧

=

4𝑧 4+ 1+𝑧 2

=

7 4

1

𝒙 = 𝒕𝒂𝒏 + 𝒄 𝟐

3.

+

𝑑𝑒 7 1 ∢ π‘€π‘•π‘’π‘Ÿπ‘’ π‘Ž = , 𝑒 = 𝑧 + 𝑒2 + π‘Ž2 2 2

=2

𝑑𝑧 = 𝑧 + 𝑐

1+2π‘§βˆ’2𝑧 2 +3+3𝑧 2 1+𝑧 2

2𝑑𝑧 = 4 + 2𝑧 + 2𝑧 2

=

2𝑑𝑧 2

=

1+𝑧 2

1+2π‘§βˆ’2𝑧 2 +3 1+𝑧 2

2 𝑑𝑧

=

2𝑑𝑧

=

1+𝑧 2

+ 𝑐=

1 3

π‘Žπ‘Ÿπ‘π‘‘π‘Žπ‘›

𝒙

𝒂𝒓𝒄𝒕𝒂𝒏

𝟐 𝒕𝒂𝒏 𝟐 + 𝟏 πŸ‘

2𝑧+1 3

+ 𝑐

2

= 2π‘Ž 𝑙𝑛

π‘Ž+𝑒 π‘Žβˆ’π‘’

1 + 𝑧 2 2𝑑𝑧 . 1 βˆ’ 𝑧2 1 + 𝑧2 π‘Ž2

𝑑𝑒 π‘€π‘•π‘’π‘Ÿπ‘’ π‘Ž = 1, 𝑒 = 𝑧 βˆ’ 𝑒2

+ 𝑐 = 𝑙𝑛

1+𝑧 1βˆ’π‘§

+𝐢 𝒙

𝟏 + 𝒕𝒂𝒏 𝟐 𝟐 𝒂+𝒖 = 𝒍𝒏 + 𝒄 = 𝒍𝒏 𝒙 + 𝒄 πŸπ’‚ π’‚βˆ’π’– 𝟏 βˆ’ 𝒕𝒂𝒏 𝟐

+𝒄

DIFFERENTIAL & INTEGRAL CALCULUS | Feliciano & Uy

34

EXERCISE 10.10

INTEGRATION BY PARTS

1. π‘₯π‘π‘œπ‘ π‘₯𝑑π‘₯ =

π‘₯π‘π‘œπ‘ π‘₯𝑑π‘₯

; 𝑙𝑒𝑑 𝑑𝑣 = π‘π‘œπ‘₯𝑑π‘₯ 𝑣 = 𝑠𝑖𝑛π‘₯

= π‘₯𝑠𝑖𝑛π‘₯ βˆ’

𝑒=π‘₯ 𝑑𝑒 = 𝑑π‘₯

𝑠𝑖𝑛π‘₯𝑑π‘₯

= π’™π’”π’Šπ’π’™ + 𝒄𝒐𝒔𝒙 + π‘ͺ

3. 𝑒 βˆ’π‘₯ π‘π‘œπ‘ 2π‘₯𝑑π‘₯ ; 𝑒 = π‘π‘œπ‘ 2π‘₯

𝑑𝑣 = 𝑒 βˆ’π‘₯ 𝑑π‘₯ ; 𝑒 = 𝑠𝑖𝑛2π‘₯

;

𝑣 = -𝑒 βˆ’π‘₯

𝑑𝑒 = 𝑠𝑖𝑛2π‘₯𝑑π‘₯ ;

; 𝑑𝑣 = 𝑒 βˆ’π‘₯ 𝑑π‘₯

; 𝑑𝑒 = 2π‘π‘œπ‘ 2π‘₯𝑑π‘₯ ; 𝑣 = -𝑒 βˆ’π‘₯

= -𝑒 π‘₯ π‘π‘œπ‘ 2π‘₯ βˆ’ 2𝑒 βˆ’π‘₯ 𝑠𝑖𝑛2π‘₯𝑑π‘₯ = -𝑒 π‘₯ π‘π‘œπ‘ 2π‘₯ βˆ’ 2 𝑒 βˆ’π‘₯ 𝑠𝑖𝑛2π‘₯𝑑π‘₯ = -𝑒 βˆ’π‘₯ π‘π‘œπ‘ 2π‘₯ βˆ’ 2[-𝑒 βˆ’π‘₯ 𝑠𝑖𝑛2π‘₯ βˆ’

-𝑒 βˆ’π‘₯ 2π‘π‘œπ‘ 2π‘₯𝑑π‘₯

= -𝑒 βˆ’π‘₯ π‘π‘œπ‘ 2π‘₯ + 2𝑒 βˆ’π‘₯ 𝑠𝑖𝑛2π‘₯ βˆ’ 4 𝑒 βˆ’π‘₯ π‘π‘œπ‘ 2π‘₯𝑑π‘₯ π‘Žπ‘‘π‘‘ 4 𝑒 βˆ’π‘₯ π‘π‘œπ‘ 2π‘₯𝑑π‘₯ π‘‘π‘œ π‘π‘œπ‘‘π‘• 𝑠𝑖𝑑𝑒𝑠 =

2𝑒 βˆ’π‘₯ 𝑠𝑖𝑛 2π‘₯βˆ’π‘’ βˆ’π‘₯ π‘π‘œπ‘  2π‘₯ 5

=

π’†βˆ’π’™ πŸ“

+𝐢

π’”π’Šπ’πŸπ’™ βˆ’ π’„π’π’™πŸπ’™ + π‘ͺ

5. π‘Žπ‘Ÿπ‘π‘‘π‘Žπ‘›2π‘₯𝑑π‘₯ ; 𝑑𝑣 = 𝑑π‘₯ ; 𝑒 = π‘Žπ‘Ÿπ‘π‘‘π‘Žπ‘›2π‘₯ 2𝑑π‘₯

𝑣 = π‘₯ ; 𝑑𝑒 = 1+π‘₯ 2 2π‘₯𝑑π‘₯ 1+4π‘₯ 2

= π‘₯π‘Žπ‘Ÿπ‘π‘‘π‘Žπ‘›2π‘₯ βˆ’ = π‘₯π‘Žπ‘Ÿπ‘π‘‘π‘Žπ‘›2π‘₯ βˆ’ 2 1

𝑑π‘₯ 1+4π‘₯ 2 𝑑𝑒 𝑒

= π‘₯π‘Žπ‘Ÿπ‘π‘‘π‘Žπ‘›2π‘₯ βˆ’ 4 𝟏 πŸ’

= π’™π’‚π’“π’„π’•π’‚π’πŸπ’™ βˆ’ 𝒍𝒏 𝟏 + πŸ’π’™πŸ + π‘ͺ

DIFFERENTIAL & INTEGRAL CALCULUS | Feliciano & Uy

35

EXERCISE 10.10

INTEGRATION BY PARTS

7. 𝑠𝑒𝑐 3 π‘₯𝑑π‘₯ ; 𝑑𝑣 = 𝑠𝑒𝑐 2 π‘₯𝑑π‘₯ ; 𝑒 = 𝑠𝑒𝑐π‘₯ 𝑣 = π‘‘π‘Žπ‘›π‘₯

𝑑𝑒 = 𝑠𝑒𝑐π‘₯π‘‘π‘Žπ‘›π‘₯

𝑠𝑒𝑐 2 π‘₯𝑠𝑒𝑐π‘₯𝑑π‘₯

=

= 𝑠𝑒𝑐π‘₯π‘‘π‘Žπ‘›π‘₯ βˆ’

𝑠𝑒𝑐 2 π‘₯ βˆ’ 1 𝑠𝑒𝑐π‘₯𝑑π‘₯

= 𝑠𝑒𝑐π‘₯π‘‘π‘Žπ‘›π‘₯ + 𝑙𝑛 𝑠𝑒𝑐π‘₯π‘‘π‘Žπ‘›π‘₯ βˆ’ 𝑠𝑒𝑐 3 π‘₯𝑑π‘₯ ; π‘Žπ‘‘π‘‘

𝑠𝑒𝑐 3 π‘₯𝑑π‘₯ π‘œπ‘› π‘π‘œπ‘‘π‘• 𝑠𝑖𝑑𝑒𝑠

2 𝑠𝑒𝑐 3 π‘₯𝑑π‘₯ = 𝑠𝑒𝑐π‘₯π‘‘π‘Žπ‘›π‘₯ + 𝑙𝑛 𝑠𝑒𝑐π‘₯ + π‘‘π‘Žπ‘›π‘₯ 𝟏 𝟐

𝑠𝑒𝑐 3 π‘₯𝑑π‘₯ =

𝒔𝒆𝒄𝒙𝒕𝒂𝒏𝒙 + 𝒍𝒏 𝒔𝒆𝒄𝒙 + 𝒕𝒂𝒏𝒙 + π‘ͺ

9. π‘₯π‘π‘œπ‘  2 2π‘₯𝑑π‘₯ ; 𝑑𝑣 = 𝑑2π‘₯𝑑π‘₯ 𝑣= 1 π‘₯ 2

=π‘₯ =

π‘₯2 2

1 π‘₯ 2

;

1

+ 8 𝑠𝑖𝑛4π‘₯

1

1

𝑑𝑒 = π‘₯ 1

+ 8 𝑠𝑖𝑛4π‘₯ βˆ’ (2 π‘₯ + 8 𝑠𝑖𝑛4π‘₯)𝑑π‘₯

1 8

1 4

+ π‘₯𝑠𝑖𝑛4π‘₯ βˆ’ π‘₯ 2 +

𝟏

𝑒 =π‘₯

𝟏

1 π‘π‘œπ‘ 4π‘₯ 32

+𝐢

𝟏

= πŸ’ π’™πŸ + πŸ– π’”π’Šπ’πŸ’π’™ + πŸ‘πŸ π’„π’π’”πŸ’π’™ + π‘ͺ

11.

π‘₯π‘Žπ‘Ÿπ‘π‘ π‘–π‘›π‘₯𝑑π‘₯ 1βˆ’π‘₯ 2

;

𝑑𝑣 =

π‘₯𝑑π‘₯

;

1βˆ’π‘₯ 2

𝑣 = - 1 βˆ’ π‘₯2

;

𝑒 = π‘Žπ‘Ÿπ‘π‘ π‘–π‘›π‘₯ 𝑑𝑒 =

= - 1 βˆ’ π‘₯ 2 π‘Žπ‘Ÿπ‘π‘ π‘–π‘›π‘₯ βˆ’ (- 1 βˆ’ π‘₯ 2 )(

𝑑π‘₯ 1βˆ’π‘₯ 2

𝑑π‘₯ 1βˆ’π‘₯ 2

)

= - 1 βˆ’ π‘₯ 2 π‘Žπ‘Ÿπ‘π‘ π‘–π‘›π‘₯ + 𝑑π‘₯ = 𝒙 βˆ’ 𝟏 βˆ’ π’™πŸ π’‚π’“π’„π’”π’Šπ’π’™ + π‘ͺ

DIFFERENTIAL & INTEGRAL CALCULUS | Feliciano & Uy

36

EXERCISE 10.10

INTEGRATION BY PARTS

13. 𝑠𝑖𝑛π‘₯𝑙𝑛 1 + 𝑠𝑖𝑛π‘₯ 𝑑π‘₯ ;

𝑒 = 𝑙𝑛 1 + 𝑠𝑖𝑛π‘₯ 𝑑𝑒 =

1 1+𝑠𝑖𝑛π‘₯

;

𝑑𝑣 = 𝑠𝑖𝑛π‘₯𝑑π‘₯

π‘π‘œπ‘ π‘₯𝑑π‘₯ ;

𝑣 = π‘π‘œπ‘ π‘₯

π‘π‘œπ‘  2 π‘₯𝑑π‘₯ 1+𝑠𝑖𝑛π‘₯

= -π‘π‘œπ‘  𝑙𝑛 1 + 𝑠𝑖𝑛π‘₯ +

1βˆ’π‘ π‘–π‘› 2 π‘₯𝑑π‘₯ 1+𝑠𝑖𝑛π‘₯

= -π‘π‘œπ‘  𝑙𝑛⁑|1 + 𝑠𝑖𝑛π‘₯ | + = -π‘π‘œπ‘  𝑙𝑛 1 + 𝑠𝑖𝑛π‘₯ +

1 βˆ’ 𝑠𝑖𝑛π‘₯ 𝑑π‘₯

= -π‘π‘œπ‘  𝑙𝑛 1 + 𝑠𝑖𝑛π‘₯ + π‘₯ + π‘π‘œπ‘ π‘₯ + 𝐢 = βˆ’ 𝒄𝒐𝒔 𝒍𝒏 𝟏 + π’”π’Šπ’π’™ + 𝒙 + 𝒄𝒐𝒔𝒙 + π‘ͺ

15.

𝑒 π‘₯ π‘₯𝑑π‘₯ (π‘₯+1)2

;

𝑒 = 𝑒π‘₯ π‘₯ 𝑑𝑒 = 𝑒 π‘₯ π‘₯ + 1 𝑑π‘₯

=-

𝑒π‘₯π‘₯ π‘₯+1

+ 𝑒 π‘₯ 𝑑π‘₯ =

𝑑𝑣 = (π‘₯+1)2 𝑑π‘₯

;

𝑣 =-

π‘₯3

=

1 π‘Žπ‘Ÿπ‘π‘ π‘–π‘› 3

=

1 3 π‘₯ π‘Žπ‘Ÿπ‘π‘ π‘–π‘›π‘₯ 3

+ (3 π‘π‘œπ‘  𝑒 βˆ’

=

1 3 π‘₯ π‘Žπ‘Ÿπ‘π‘ π‘–π‘›π‘₯ 3

+

=

1 3 π‘₯ π‘Žπ‘Ÿπ‘π‘ π‘–π‘› 3

π‘π‘œπ‘›π‘ π‘–π‘‘π‘’π‘Ÿ; 1

=3

1

1 3

1βˆ’π‘₯ 2

3βˆ’ 1βˆ’π‘₯ 2 9 1βˆ’π‘₯ 2 2+π‘₯ 2

π‘₯3 1βˆ’π‘₯ 2

𝑑π‘₯ 1βˆ’π‘₯ 2

;

𝑑𝑣 = π‘₯ 2 𝑑π‘₯ ; 𝑣 =

π‘₯3 3

𝑑π‘₯

1

+

1 π‘₯+1

𝒆𝒙 +π‘ͺ 𝒙+𝟏

17. π‘₯ 2 π‘Žπ‘Ÿπ‘π‘ π‘–π‘›π‘₯𝑑π‘₯; 𝑒 = π‘Žπ‘Ÿπ‘π‘ π‘–π‘›π‘₯ ; 𝑑𝑒 = βˆ’3

1

;

9

π‘π‘œπ‘  3 𝑒 )+ 9

𝐢

+𝐢 +𝐢

𝑑π‘₯ ; π‘Ž = 1 ; 𝑣 = π‘₯ ; π‘₯ = 𝑠𝑖𝑛 𝑒 ; 𝑑π‘₯ = π‘π‘œπ‘  𝑒 𝑑𝑒 ;

1 βˆ’ π‘₯ 2 = π‘π‘œπ‘ π‘’

𝑠𝑖𝑛 3 𝑒 (π‘π‘œπ‘ π‘’π‘‘π‘’) π‘π‘œπ‘ π‘’

1

= 3 𝑠𝑖𝑛2 𝑒 𝑠𝑖𝑛𝑒𝑑𝑒 𝟏 πŸ‘

= (βˆ’π’„π’π’”π’† +

π’„π’π’”πŸ‘ 𝒆 )+ πŸ‘

π‘ͺ DIFFERENTIAL & INTEGRAL CALCULUS | Feliciano & Uy

37

EXERCISE 10.11

INTEGRATION OF RATIONAL FUNCTIONS

12π‘₯+18 π‘₯+2 π‘₯+4 (π‘₯βˆ’1)

1.

12π‘₯ + 18 𝐴 𝐡 𝐢 = + + π‘₯ + 2 π‘₯ + 4 (π‘₯ βˆ’ 1) (π‘₯ + 2) (π‘₯ + 4) (π‘₯ βˆ’ 1) 12π‘₯ + 18 = 𝐴 π‘₯ + 4 π‘₯ βˆ’ 1 + 𝐡 π‘₯ + 2 π‘₯ βˆ’ 1 + 𝐢 π‘₯ + 2 (π‘₯ + 4) 12π‘₯ + 18 = 𝐴(π‘₯ 2 + 3π‘₯ βˆ’ 4) + 𝐡 π‘₯ 2 + π‘₯ βˆ’ 2 + 𝐢(π‘₯ 2 + 6π‘₯ + 8) 12π‘₯ + 18 = 𝐴π‘₯ 2 + 3𝐴π‘₯ βˆ’ 4𝐴 + 𝐡π‘₯ 2 + 𝐡 βˆ’ 2𝐡 + 𝐢π‘₯ 2 + 6𝐢π‘₯ + 8𝐢 𝐴π‘₯ 2 + 𝐡π‘₯ 2 + 𝐢π‘₯ 2 = 0 3𝐴π‘₯ + 𝐡π‘₯ + 6𝐢π‘₯ = 12π‘₯ 4𝐴 + 𝐡 + 8𝐢 = 18 𝐴=1 𝐡 = βˆ’3 𝐢=2

=

𝑑π‘₯ + (π‘₯+2)

βˆ’3𝑑π‘₯ + (π‘₯+4)

2𝑑π‘₯ (π‘₯βˆ’1)

= 𝒍𝒏 𝒙 + 𝟐 βˆ’ πŸ‘ 𝒍𝒏 𝒙 + πŸ’ + πŸπ’π’ 𝒙 βˆ’ 𝟏 ⁑

3.

1=

𝑑π‘₯ π‘₯βˆ’1 (π‘₯βˆ’4) 𝐴 𝐡 + (π‘₯ βˆ’ 1) (π‘₯ βˆ’ 4)

1 = 𝐴 π‘₯ βˆ’ 4 + 𝐡(π‘₯ βˆ’ 1) 1 = 𝐴π‘₯ βˆ’ 4𝐴 + 𝐡π‘₯ βˆ’ 𝐡

=

βˆ’1 3 (π‘₯ βˆ’1)

1

𝑑π‘₯ +

1 3 (π‘₯ βˆ’4)

1

𝐴+𝐡 =0 βˆ’4𝐴 βˆ’ 𝐡 = 1 𝐴 = βˆ’π΅ 1 𝐡= 3

𝑑π‘₯

= βˆ’ 3 𝑙𝑛 π‘₯ βˆ’ 1 + 3 𝑙𝑛 π‘₯ βˆ’ 4 + 𝐢

=

𝟏 𝒍𝒏 π’™βˆ’πŸ’ πŸ‘ 𝒍𝒏 π’™βˆ’πŸ

+C

DIFFERENTIAL & INTEGRAL CALCULUS | Feliciano & Uy

38

EXERCISE 10.11

INTEGRATION OF RATIONAL FUNCTIONS

6π‘₯ 2 +23π‘₯βˆ’9 𝑑π‘₯ (π‘₯ 3 +2π‘₯ 2 βˆ’3π‘₯)

5.

6π‘₯ 2 + 23π‘₯ βˆ’ 9 𝑑π‘₯ π‘₯ π‘₯ + 3 (π‘₯ βˆ’ 2) 6π‘₯ 2 + 23π‘₯ βˆ’ 9 =

𝐴 𝐡 𝐢 + + π‘₯ (π‘₯ + 3) (π‘₯ βˆ’ 1)

6π‘₯ 2 + 23π‘₯ βˆ’ 9 = 𝐴 π‘₯ + 3 π‘₯ βˆ’ 1 + 𝐡 π‘₯ π‘₯ βˆ’ 1 + 𝐢 π‘₯ (π‘₯ + 3) 6π‘₯ 2 + 23 βˆ’ 9 = 𝐴 π‘₯ 2 + 2𝑋 βˆ’ 3 + 𝐡 π‘₯ 2 βˆ’ π‘₯ + 𝐢(π‘₯ 2 + 3π‘₯) 𝐴+𝐡+𝐢 =6 2𝐴 βˆ’ 𝐡 + 3𝐢 = 23 βˆ’3𝐴 + 0𝐡 + 0𝐢 = βˆ’9 𝐴=3 𝐡 = βˆ’2 𝐢=5 =3

𝑑π‘₯ π‘₯

βˆ’2

𝑑π‘₯ + (π‘₯+3)

5

𝑑π‘₯ (π‘₯βˆ’1)

= πŸ‘π’π’ 𝒙 βˆ’ πŸπ’π’ 𝒙 + πŸ‘ + πŸ“π’π’ 𝒙 βˆ’ 𝟏 + π‘ͺ π‘₯ 3 +5π‘₯ 2 +9π‘₯+7 𝑑π‘₯ π‘₯ 2 +5π‘₯+4

7.

π‘₯ 3 + 5π‘₯ 2 + 9π‘₯ + 7 𝑑π‘₯ π‘₯ + 4 (π‘₯ + 1)

By division of polynomials, 5π‘₯ + 7 𝐴 𝐡 = + π‘₯ + 4 (π‘₯ + 1) (π‘₯ + 4) (π‘₯ + 1) 5π‘₯ + 7 = 𝐴 π‘₯ + 1 + 𝐡(π‘₯ + 4)

= =

π‘₯𝑑π‘₯ + π’™πŸ 𝟐

+

πŸπŸ‘ 𝒍𝒏 πŸ‘

13 𝑑π‘₯ 3

(π‘₯ + 4) 𝒙+πŸ’ +

+ 𝟐 𝒍𝒏 πŸ‘

𝑖𝑓 π‘₯ = 4, 13 𝐴= 3 𝑖𝑓 π‘₯ = βˆ’1 2 𝐡= 3

2 𝑑π‘₯ 3

(π‘₯ + 1) 𝒙+𝟏 +π‘ͺ

DIFFERENTIAL & INTEGRAL CALCULUS | Feliciano & Uy

39

EXERCISE 10.11

9.

INTEGRATION OF RATIONAL FUNCTIONS

2π‘₯+1 π‘₯βˆ’2 (π‘₯βˆ’3)2

2π‘₯ + 1 =

𝐴 𝐡 𝐢 + + (π‘₯ βˆ’ 2) (π‘₯ βˆ’ 3) (π‘₯ βˆ’ 3)2

2π‘₯ + 1 = 𝐴 π‘₯ βˆ’ 3

2

+𝐡 π‘₯βˆ’3 π‘₯βˆ’2 +𝐢 π‘₯βˆ’2

2π‘₯ + 1 = 𝐴 π‘₯ 2 βˆ’ 6π‘₯ + 9 + 𝐡 π‘₯ 2 βˆ’ 5π‘₯ + 6 + 𝐢 π‘₯ βˆ’ 2 𝐴+𝐡 =0 βˆ’6𝐴 βˆ’ 5𝐡 + 𝐢 = 2 9𝐴 + 6𝐡 βˆ’ 2𝐢 = 1 𝐴=5 𝐡 = βˆ’5 𝐢=7 =

5𝑑π‘₯ + π‘₯βˆ’2

βˆ’5𝑑π‘₯ + π‘₯βˆ’3

7𝑑π‘₯ π‘₯βˆ’3

2

7

= 5𝑙𝑛 π‘₯ βˆ’ 2 βˆ’ 5𝑙𝑛 π‘₯ βˆ’ 3 + π‘₯βˆ’3 = πŸ“π’π’

π’™βˆ’πŸ πŸ• + π’™βˆ’πŸ‘ (𝒙 βˆ’ πŸ‘)

DIFFERENTIAL & INTEGRAL CALCULUS | Feliciano & Uy

40

EXERCISE 10.11

11.

INTEGRATION OF RATIONAL FUNCTIONS

2π‘₯βˆ’5 𝑑π‘₯ π‘₯(π‘₯βˆ’1)

2π‘₯ βˆ’ 5 𝐴 𝐡 𝐢 𝐷 = + + + π‘₯(π‘₯ βˆ’ 1) π‘₯ (π‘₯ βˆ’ 1) (π‘₯ βˆ’ 1)2 (π‘₯ βˆ’ 13 2π‘₯ βˆ’ 5 = 𝐴 π‘₯ βˆ’ 1

3

+ 𝑏π‘₯ π‘₯ βˆ’ 1

2

+ 𝑐π‘₯ π‘₯ βˆ’ 1 + 𝐷π‘₯

2π‘₯ βˆ’ 5 = 𝐴π‘₯ 3 βˆ’ 3𝐴π‘₯ 2 + 3𝐴π‘₯ βˆ’ 𝐴 + 𝐡π‘₯ 3 βˆ’ 2𝐡π‘₯ 2 + 𝐡π‘₯ +C π‘₯ 2 βˆ’ 𝐢π‘₯ + 𝐷π‘₯ 2π‘₯ βˆ’ 5 = 𝐴π‘₯ 3 = 3𝐴π‘₯ 2 βˆ’ 2𝐡π‘₯ 2 + 𝐡π‘₯ + 𝐢π‘₯ 2 βˆ’ 𝐢π‘₯ + 𝐷π‘₯ 2π‘₯ βˆ’ 5 = 𝐴π‘₯ 3 + 𝐡π‘₯ 2 βˆ’ 3𝐴π‘₯ 2 βˆ’ 2𝐡π‘₯ 2 + 𝐢π‘₯ 2 + 3𝐴π‘₯ + 𝐡π‘₯ βˆ’ 𝐢π‘₯ + 𝐷π‘₯ βˆ’ 𝐴 2π‘₯ βˆ’ 5 = 𝐴 + 𝐡 π‘₯ 3 + βˆ’3𝐴 βˆ’ 2𝐡 + 𝑐 π‘₯ 2 + 3𝐴 + 𝐡 βˆ’ 𝐢 + 𝐷 π‘₯ βˆ’ 𝐴 𝐴+𝐡 =0 βˆ’3𝐴 βˆ’ 2𝐡 + 𝐢 = 0 3𝐴 + 𝐡 βˆ’ 𝐢 + 𝐷 = 2 βˆ’π΄ = βˆ’5 𝐴=5 𝐡 = βˆ’5 𝐢=5 𝐷 = βˆ’3 =

5𝑑π‘₯ + π‘₯

=5

𝑑π‘₯ βˆ’5 π‘₯

βˆ’5𝑑π‘₯ + (π‘₯ βˆ’ 1)

5𝑑π‘₯ + (π‘₯ βˆ’ 1)2

𝑑π‘₯ +5 (π‘₯ βˆ’ 1) 5

βˆ’3𝑑π‘₯ (π‘₯ βˆ’ 1)3

𝑑π‘₯ βˆ’3 (π‘₯ βˆ’ 1)2

𝑑π‘₯ (π‘₯ βˆ’ 1)3

3

= 5𝑙𝑛 π‘₯ βˆ’ 5𝑙𝑛 π‘₯ βˆ’ 1 βˆ’ (π‘₯βˆ’1) + 2(π‘₯βˆ’1)2 + 𝐢 = πŸ“π’π’

𝒙 πŸ“ πŸ‘ βˆ’ + +π‘ͺ 𝒙 βˆ’ 𝟏 (𝒙 βˆ’ 𝟏) 𝟐(𝒙 βˆ’ 𝟏)𝟐

DIFFERENTIAL & INTEGRAL CALCULUS | Feliciano & Uy

41

EXERCISE 10.11

INTEGRATION OF RATIONAL FUNCTIONS

3π‘₯ 2 +17π‘₯+32 π‘₯ 3 +8π‘₯ 2 +16π‘₯

13.

3π‘₯ 2 + 17π‘₯ + 32 π‘₯(π‘₯ + 4)2 3π‘₯ 2 + 17π‘₯ + 32 𝐴 𝐡 𝐢 = + + 2 π‘₯(π‘₯ + 4) π‘₯ (π‘₯ + 4) (π‘₯ + 4)2 𝐴+𝐡 =3 8𝐴 + 4𝐡 + 𝐢 = 17 16𝐴 = 32 𝐴=2 𝐡=1 𝐢=3 2𝑑π‘₯ + π‘₯

=

𝑑π‘₯ + (π‘₯ + 4)

βˆ’3𝑑π‘₯ (π‘₯ + 4)2 πŸ‘

= πŸπ’π’ 𝒙 + 𝒍𝒏 𝒙 + πŸ’ + 𝒙+πŸ’ 2π‘₯+1 3π‘₯βˆ’1 (π‘₯ 2 +2π‘₯+2)

15.

2π‘₯ + 1 𝐴 𝐡 2π‘₯ + 2 + 𝐢 = + 2 2 3π‘₯ βˆ’ 1 (π‘₯ + 2π‘₯ + 2) (3π‘₯ βˆ’ 1) π‘₯ + 2π‘₯ + 2 2π‘₯ + 1 = 𝐴 π‘₯ 2 + 2π‘₯ + 2 + 𝐡 2π‘₯ + 2 3π‘₯ βˆ’ 1 + 𝐢 3π‘₯ βˆ’ 1 2π‘₯ + 1 = 𝐴 π‘₯ 2 + 2π‘₯ + 2 + 𝐡(6π‘₯ 2 + 4π‘₯ + 2) + 𝐢 3π‘₯ βˆ’ 1 𝐴+𝐡 =0 2𝐴 + 4𝐡 + 3𝐢 = 2 2𝐴 + 2𝐡 βˆ’ 𝐢 = 1 5 𝐴=βˆ’ 2 5 𝐡= 2 𝐢 = βˆ’1 =βˆ’

5 2 5

𝑑π‘₯ 5 + (3π‘₯ βˆ’ 1) 2

(2π‘₯ + 2) 𝑑π‘₯ βˆ’ π‘₯ 2 + 2π‘₯ + 2

π‘₯2

𝑑π‘₯ + 2π‘₯ + 2

5

= βˆ’ 2 𝑙𝑛 3π‘₯ βˆ’ 1 + 2 𝑙𝑛 π‘₯ 2 + 2π‘₯ + 2 βˆ’ 𝑙𝑛 π‘₯ 2 + 2π‘₯ + 2 =

πŸ“ π’™πŸ + πŸπ’™ + 𝟐 𝒍𝒏 βˆ’ 𝒍𝒏 π’™πŸ + πŸπ’™ + 𝟐 𝟐 πŸ‘π’™ βˆ’ 𝟏

DIFFERENTIAL & INTEGRAL CALCULUS | Feliciano & Uy

42

EXERCISE 10.11

17.

INTEGRATION OF RATIONAL FUNCTIONS

5π‘₯ 2 βˆ’π‘₯+17 𝑑π‘₯ π‘₯+2 (π‘₯ 2 +9)

5π‘₯ 2 βˆ’ π‘₯ + 17 𝐴 𝐡 2π‘₯ + 𝐢 = + 2 π‘₯ + 2 (π‘₯ + 9) π‘₯ + 2 π‘₯2 + 9 5π‘₯ 2 βˆ’ π‘₯ + 17 = 𝐴 π‘₯ 2 + 9 + 2𝐡π‘₯ + 𝐢 (π‘₯ + 2) 5π‘₯ 2 βˆ’ π‘₯ + 17 = 𝐴π‘₯ 2 + 9𝐴 + 2𝐡π‘₯ 2 + 4𝐡π‘₯ + 𝐢π‘₯ + 2𝐢 5π‘₯ 2 βˆ’ π‘₯ + 17 = 𝐴π‘₯ 2 + 2𝐡π‘₯ 2 + 4𝐡π‘₯ + 𝐢π‘₯ + 9𝐴 + 2𝐢 5π‘₯ 2 βˆ’ π‘₯ + 17 = 𝐴 + 2𝐡 π‘₯ 2 + 4𝐡 + 𝐢 π‘₯ + 9𝐴 + 2𝐢 π‘₯ 2 = 𝐴 + 2𝐡 = 5 π‘₯ = 4𝐡 + 𝐢 = βˆ’1 𝑐 = 9𝐴 + 2𝐢 = 17 𝐴 + 2𝐡 = 5 βˆ’ 2 4𝐡 + 𝐢 = βˆ’1

= βˆ’2𝐴 βˆ’ 4𝐡 = βˆ’10 =

4𝐡 + 𝐢 = βˆ’1 βˆ’2𝐴 + 𝐢 = βˆ’11

βˆ’2𝐴 + 𝐢 = βˆ’1 βˆ’ 2 9𝐴 + 2𝐢 = 17

= 4𝐴 βˆ’ 2𝐢 = 22 =

9𝐴 + 2𝐢 = 17 13𝐴 = 39

A=3 9(3)+2C=17

4B-5=-1

27+2C=17

4B=-1+5

2C=17-27

4B=4

2C=-10

B=1

C=-5 =

=3

3 1 2π‘₯ βˆ’ 5 + 𝑑π‘₯ π‘₯+2 π‘₯2 + 9 𝑑π‘₯ π‘₯+2

+2

π‘₯𝑑π‘₯ βˆ’ π‘₯ 2 +9

5

𝑑π‘₯ π‘₯ 2 +9 πŸ“

= πŸ‘π’π’ 𝒙 + 𝟐 + 𝒍𝒏 π’™πŸ + πŸ— βˆ’ πŸ‘ 𝑨𝒓𝒄𝒕𝒂𝒏

𝒙 + πŸ‘

π‘ͺ

DIFFERENTIAL & INTEGRAL CALCULUS | Feliciano & Uy

43

EXERCISE 10.11

19.

INTEGRATION OF RATIONAL FUNCTIONS

4π‘₯ 2 +21π‘₯+54 π‘₯ 2 +6π‘₯+13

4 βˆ’ 3π‘₯ βˆ’ 2 π‘₯ 2 + 6π‘₯ + 13 𝐴 2π‘₯ + 6 + 𝐡 π‘₯ 2 + 6π‘₯ + 13 𝐴 2π‘₯ + 6 + 𝐡 = 3π‘₯ βˆ’ 2 2𝐴 + 𝐡 = 3 𝐡 = βˆ’11 𝐴=

3 2

3 2π‘₯ + 6 𝑑π‘₯ 𝑑π‘₯ =Κƒ4βˆ’[ Κƒ 2 + (βˆ’11Κƒ 2 + 6π‘₯ + 13)] 2 π‘₯ + 6π‘₯ + 13 π‘₯ = βˆ’11Κƒ

π‘₯2

𝑑π‘₯ + 6π‘₯ + 9 + 13 βˆ’ 9

𝑑π‘₯ π‘₯ + 3 2 + 13 βˆ’ 9

= βˆ’11Κƒ 1 2

= βˆ’11( π‘Žπ‘Ÿπ‘π‘‘π‘Žπ‘› = 4π‘₯ βˆ’

π‘₯+3 ) 2

3 𝑙𝑛⁑| π‘₯ 2 2 πŸ‘

2

+ 6π‘₯ + 13| βˆ’

= πŸ’π’™ βˆ’ 𝟐 𝒍𝒏⁑| π’™πŸ + πŸ”π’™ + πŸπŸ‘| +

11 π‘₯+3 π‘Žπ‘Ÿπ‘π‘‘π‘Žπ‘› 2 2 𝟏𝟏 𝒙+πŸ‘ 𝒂𝒓𝒄𝒕𝒂𝒏 𝟐 + 𝟐

π‘ͺ

DIFFERENTIAL & INTEGRAL CALCULUS | Feliciano & Uy

44

EXERCISE 10.11

21.

INTEGRATION OF RATIONAL FUNCTIONS

π‘₯ 3 +7π‘₯ 2 +25π‘₯+35 π‘₯ 2 +5π‘₯+6

π‘₯+2+

9π‘₯ + 23 𝑑π‘₯ + 5π‘₯ + 6

π‘₯2

9π‘₯ + 23 𝐴 𝐡 = + π‘₯ + 3 (π‘₯ + 2) π‘₯ + 3 π‘₯ + 2 9π‘₯ + 23 = 𝐴 π‘₯ + 2 + 𝐡(π‘₯ + 3)

x=-3 9(-3)+23= A(-3+2)+B(-3+3) -27+23=A(-1)+B(0) -4=-A A=4 If x=-2 9(-2)+23= A(-2+2)+B(-2+3) -18+23=A(0)+B 5=B B=5 βˆ’2 5 + 𝑑π‘₯ π‘₯+3 π‘₯+2

=

π‘₯+2+

=

π‘₯𝑑π‘₯ + 2 𝑑π‘₯ βˆ’ 4

𝑑π‘₯ π‘₯+3

+5

𝑑π‘₯ π‘₯+2

π’™πŸ = + πŸπ’™ βˆ’ πŸ’π’π’ 𝒙 + πŸ‘ + πŸ“π’π’ 𝒙 + 𝟐 + 𝒄 𝟐

DIFFERENTIAL & INTEGRAL CALCULUS | Feliciano & Uy

45

EXERCISE 10.11

23.

INTEGRATION OF RATIONAL FUNCTIONS

π‘₯ 2 βˆ’π‘₯βˆ’8 (2π‘₯βˆ’3)(π‘₯ 2 +2π‘₯+2)

𝐴 𝐡 2π‘₯ βˆ’ 2 + 𝐢 + 2 2π‘₯ βˆ’ 3 π‘₯ + 2π‘₯ + 2

A(π‘₯ 2 + 2π‘₯ + 2) + 𝐡 2π‘₯ + 2 2π‘₯ βˆ’ 3 + 𝐢(2π‘₯ βˆ’ 3) A(π‘₯ 2 + 2π‘₯ + 2) + 𝐡 4π‘₯ 2 βˆ’ 2π‘₯ βˆ’ 6 + 𝐢(2π‘₯ βˆ’ 3) A+4B=1 2A-2B+2C=-1 2A-6B-3C=-8 1

A=-2 1

A=2 C=1 𝑑π‘₯ 1 + (2π‘₯ βˆ’ 3) 2

βˆ’1

2π‘₯ + 2 𝑑π‘₯ + π‘₯ 2 + 2π‘₯ + 2

1 βˆ’π‘™π‘›(2π‘₯ βˆ’ 3) + 𝑙𝑛│π‘₯ 2 + 2π‘₯ + 2β”‚ + 2

𝑑π‘₯ π‘₯ 2 + 2π‘₯ + 2 𝑑π‘₯ π‘₯ + 1 2 + 12

1

= βˆ’ 2 βˆ’ 𝑙𝑛 2π‘₯ βˆ’ 3 + 𝑙𝑛│π‘₯ 2 + 2π‘₯ + 2β”‚ + π‘Žπ‘Ÿπ‘π‘‘π‘Žπ‘› π‘₯ + 1 + 𝐢 =

𝟏 π’™πŸ + πŸπ’™ + 𝟐 𝒍𝒏│ β”‚ + 𝒂𝒓𝒄𝒕𝒂𝒏 𝒙 + 𝟏 + 𝒄 𝟐 πŸπ’™ βˆ’ πŸ‘

DIFFERENTIAL & INTEGRAL CALCULUS | Feliciano & Uy

46

EXERCISE 10.11

25. Κƒ

INTEGRATION OF RATIONAL FUNCTIONS

π‘₯ 5 +2π‘₯ 3 βˆ’3π‘₯ π‘₯ 2 +1 3

=Κƒ

π‘₯ 5 + 2π‘₯ 3 βˆ’ 3π‘₯ π‘₯ 6 + 3π‘₯ 4 + 2π‘₯ 2 + 1

=

𝐴 2π‘₯ + 𝐡 𝐢 2π‘₯ + 𝐷 𝐸 2π‘₯ + 𝐹 + 2 + 2 π‘₯2 + 1 π‘₯2 + 1 π‘₯ +1 2 π‘₯ +1 3

= 𝐴 2π‘₯ π‘₯ 2 + 1

2

+ 𝐡 π‘₯2 + 1

2

3

+ 𝐢 2π‘₯ π‘₯ 2 + 1 + 𝐷 π‘₯ 2 + 1 + 𝐸 2π‘₯ + 𝐹

= 𝐴 2π‘₯ π‘₯ 4 + 2π‘₯ 2 + 1 + 𝐡 π‘₯ 4 + 2π‘₯ 2 + 1 + 𝐢 2π‘₯ 3 + 2π‘₯ + 𝐷 π‘₯ 2 + 1 + 𝐸 2π‘₯ + 𝐹 = 𝐴 2π‘₯ 5 + 4π‘₯ 3 + 2π‘₯ + 𝐡 π‘₯ 4 + 2π‘₯ 2 + 1 + 𝐢 2π‘₯ 3 + 2π‘₯ + 𝐷 π‘₯ 2 + 1 + 𝐸 2π‘₯ + 𝐹 1 2

π‘₯ 5 : 2𝐴 = 1

; 𝐴=

π‘₯4: 𝐡 = 0

; 𝐡=0

π‘₯ 3 : 4𝐴 + 2𝐢 = 2

; 𝐢=0

π‘₯ 2 : 2𝐡 + 𝐷 = 0

; 𝐷=0

π‘₯: 2𝐴 + 2𝐢 + 2𝐸 = βˆ’3 ; 𝐸 = 0 𝑐: 𝐡 + 𝐷 + 𝐹 = 0 =

; 𝐹=0

𝟏 𝟏 𝒍𝒏 π’™πŸ + 𝟏 + 𝟐 𝟐 𝒙 +𝟏

𝟐

+π‘ͺ

DIFFERENTIAL & INTEGRAL CALCULUS | Feliciano & Uy

47

EXERCISE 10.11

INTEGRATION OF RATIONAL FUNCTIONS

27. π‘₯ 4 + 2π‘₯ 3 + 11π‘₯ 2 + 8π‘₯ + 16 π‘₯(π‘₯ 2 + 4)2 𝐴 𝐡 2π‘₯ + 𝐢 𝐷 2π‘₯ + 𝐸 [ + + 2 ][(π‘₯ 2 + 4)2 ] 𝑋 (π‘₯ 2 + 4) (π‘₯ + 4)2

A π‘₯2 + 4

2

+ 𝐡 2π‘₯ π‘₯ (π‘₯ 2 + 4) + 𝐢 π‘₯ 2 + 4 (π‘₯) + 𝐷(2π‘₯)(π‘₯) + 𝐸(π‘₯)

A(π‘₯ 4 + 8π‘₯ 2 + 16) + 𝐡 2π‘₯ 4 + 8π‘₯ 2 + 𝐢 π‘₯ 3 + 4π‘₯ + 𝐷2π‘₯ 2 + 𝐸π‘₯ π‘₯ 4 : 𝐴 + 2𝐡 = 1

A=1

π‘₯3: 𝐢 = 2

B=0

π‘₯ 2 : 8A+8B+2D=11

C=2

X: 4C + E=8

D = 3/2

C : 16A = 16

E=0

=

𝑑π‘₯ 2𝑑π‘₯ 3 + 2 + π‘₯ π‘₯ +4 2

= 𝑙𝑛π‘₯ + 2

1 2

π‘Žπ‘Ÿπ‘π‘‘π‘Žπ‘›

2π‘₯𝑑π‘₯ (π‘₯ 2 + 4)2 π‘₯ 2

βˆ’

3 2 π‘₯ 2 +4

+𝐢

𝒙 πŸ‘ = 𝒍𝒏𝒙 + 𝒂𝒓𝒄𝒕𝒂𝒏 βˆ’ +π‘ͺ 𝟐 𝟐 π’™πŸ + πŸ’

DIFFERENTIAL & INTEGRAL CALCULUS | Feliciano & Uy

48

EXERCISE 11.1

SUMMATION NOTATION

𝑛=10

βˆ— 𝑛 = 10

πŸ“.

𝑛

12𝑖 3

𝟏.

𝑛

𝑖=1

𝑖=1

𝑖3

𝑛=10

𝑖=1 2

10 10 + 1 4

= 12

𝑖3 βˆ’ 𝑖

=

𝑛=10

= 12

𝑖(𝑖 βˆ’ 1)(𝑖 + 1) 𝑖=1

𝑖3 βˆ’ 𝑖

=

2

𝑖=1 𝑛=10

=

= 3(100 121 )

𝑛=10 3

𝑖 + 𝑖=1

= πŸ‘πŸ”πŸ‘πŸŽπŸŽ

=

𝑖 𝑖=1

10 2 10+1 2 4

βˆ’

10 10+1 2

= πŸπŸ—πŸ•πŸŽ 𝑛=10

(12𝑖 2 + 4𝑖 )

πŸ‘.

𝒏=𝟏𝟎

πŸ•.

𝑖=1 𝑛=10

𝑖=1

𝑖

𝑛=10

9𝑖 2 + 6𝑖 + 1

=

𝑖=1

10(10 + 1)(2 10 + 1) 10(10 + 1) = 12 +4 6 2

𝑖=1

𝑖2 + 6

=9

= 2 110 21 + 2 110 = πŸ’πŸ–πŸ’πŸŽ

𝟐

π’Š=𝟏

𝑛=10

𝑖2 + 4

= 12

πŸ‘π’Š + 𝟏

=9

𝑖+

10(10+1)(2 10 +1) 6

+6

1 10(10+1) 2

+ 10

= πŸ‘πŸ–πŸŽπŸ“

πŸ—. π’‚πŸ βˆ’ π’ƒπŸ + π’‚πŸ βˆ’ π’ƒπŸ + β‹― + (𝒂𝒏 βˆ’ 𝒃𝒏 ) 𝒏

=

π’‚π’Š βˆ’ π’ƒπ’Š π’Š=𝟏

DIFFERENTIAL & INTEGRAL CALCULUS | Feliciano & Uy

49

EXERCISE 11.1

SUMMATION NOTATION

𝟏𝟏. 𝑓 π‘₯1 βˆ†π‘₯1 + 𝑓 π‘₯2 βˆ†π‘₯2 + β‹― + 𝑓 π‘₯𝑛 βˆ†π‘₯𝑛 𝒏

=

𝒇(π’™π’Š ) βˆ†π’™π’Š π’Š=𝟏

πŸπŸ‘. 14 + 24 + 34 + β‹― + 𝑛4 𝒏

π’ŠπŸ’

= π’Š=𝟏

πŸπŸ“. π‘Ž1 𝑏1+π‘Ž2 𝑏2+π‘Ž3 𝑏3 + β‹― + π‘Žπ‘› 𝑏𝑛 𝒏

=

π’‚π’Š π’ƒπ’Š π’Š=𝟏

πŸπŸ•. 𝑒13 + 𝑒23 + 𝑒33 + β‹― + 𝑒𝑛3 𝒏

π’–πŸ‘π’Š

= π’Š=𝟏

DIFFERENTIAL & INTEGRAL CALCULUS | Feliciano & Uy

50

EXERCISE 11.2

𝟏.

THE DEFINITE INTEGRAL

2 3π‘₯ 2 𝑑π‘₯ 1

π‘Ž = 0 ;𝑏 = 2 βˆ†π‘₯ = =

(π‘₯ βˆ’ 1)𝑑π‘₯

π‘Ž=0

;

2βˆ’0 𝑛

βˆ†π‘₯ =

1βˆ’0 𝑛

2 𝑛

= π‘™π‘–π‘š 2

= π‘™π‘–π‘š 3

4𝑖 2 2 ( ) 𝑛2 𝑛

= π‘™π‘–π‘šβ‘3

8𝑖 2 𝑛3

π‘›β†’βˆž

= π‘™π‘–π‘š 24 π‘›β†’βˆž

= π‘™π‘–π‘šπ‘›β†’βˆž 24

𝑛 2 +1 2𝑛+1 6 𝑛3 1 0 0 0 2𝑛 3 +𝑛 2 +2𝑛 2 +𝑛 6𝑛 3

} 1 𝑛

βˆ’

1 2𝑛3 + 𝑛2 + 2𝑛2 + 𝑛 𝑛3 6

1 0 𝑛 2 βˆ’π‘› 𝑛2

βˆ’1

2 3

= βˆ’1 =βˆ’

𝟏 πŸ‘

5 2π‘₯ 1

5.

𝑛(𝑛 + 1)(2𝑛 + 1) 1 6 𝑛3

𝑖 𝑛3

]βˆ’

1 𝑛 𝑛+1 2𝑛+ 𝑛2 6

= π‘™π‘–π‘šπ‘›β†’βˆž 2

π‘›β†’βˆž

π‘›β†’βˆž

1 𝑛

π‘›β†’βˆž

2𝑖 2 ( ) 𝑛 𝑛

𝑖 𝑛

π‘₯ 2 βˆ’ π‘₯𝑑π‘₯

= π‘™π‘–π‘š 2

𝑖=1

𝑍𝑖 =

𝑖2

2𝑖 𝑛 3

;

= { π‘™π‘–π‘š 2 [ ( 2 )

2 =0+𝑖 𝑛

= π‘™π‘–π‘š 𝑛=∞

𝑏=1

π‘›β†’βˆž

𝑍𝑖 = π‘Ž + π‘–βˆ†π‘₯

=

1 2π‘₯ 0

3.

βˆ†π‘₯ =

+ 3𝑑π‘₯

5βˆ’1 𝑛

;

𝑍𝑖 = 1 + 𝑖

4 𝑛

4

=𝑛

1

= π‘™π‘–π‘šπ‘›β†’βˆž 24 =πŸ–

4𝑖

4

=π‘™π‘–π‘šπ‘›=∞ (1 + 𝑛 ) βˆ™ 𝑛 + 3𝑛 4 𝑛

=π‘™π‘–π‘šπ‘›=∞ =π‘™π‘–π‘šπ‘›=∞

4𝑛 𝑛

+ 16

16𝑖 𝑛2

+ 𝑛2 +

+

3𝑛

𝑛(𝑛+1) 2

+ 3𝑛

= πŸ‘πŸ”

DIFFERENTIAL & INTEGRAL CALCULUS | Feliciano & Uy

51

EXERCISE 11.2

2

πŸ•.

THE DEFINITE INTEGRAL

π‘₯ 3 𝑑π‘₯

0

βˆ†π‘₯ =

2 2𝑖 ; 𝑍𝑖 = 𝑛 𝑛 3

= π‘™π‘–π‘š

2𝑖 𝑛

= π‘™π‘–π‘š

8𝑖 3 𝑛3

π‘›β†’βˆž

π‘›β†’βˆž

2 𝑛 2 𝑛

16 𝑛2 𝑛 + 1 π‘›β†’βˆž 𝑛 4 4

2

= π‘™π‘–π‘š

𝑖3

4 2 2 (𝑛 (𝑛 + 2𝑛 + 1) π‘›β†’βˆž 𝑛 4

= π‘™π‘–π‘š

= π‘™π‘–π‘šπ‘›β†’βˆž

4𝑛 4 𝑛4

8

+ 𝑛3 +

4𝑛 2 𝑛3

=4+0+0 = 4

DIFFERENTIAL & INTEGRAL CALCULUS | Feliciano & Uy

52

EXERCISE 11.3

2

𝟏.

SOME PROPERTIES OF THE DEFINITE INTEGRAL

3π‘₯ 2 βˆ’ 2π‘₯ + 1 𝑑π‘₯

3

πŸ•.

1

2

3π‘₯ 3 2π‘₯ 2 + +π‘₯ 3 2

=

𝑒 = π‘₯2 + 1 𝑑𝑒 = 2π‘₯𝑑π‘₯

=8βˆ’4+2βˆ’1+1βˆ’1 =

=5

π‘₯𝑑π‘₯ π‘₯2 + 1

=

1 2 1 2

3 2

𝑑𝑒 𝑒

𝑙𝑛 10 βˆ’ 𝑙𝑛 5

= 𝟎. πŸ‘πŸ’πŸ• 3

3π‘₯ 2 +

πŸ‘. 1

4 𝑑π‘₯ π‘₯2 9.

3

3π‘₯ 4 + 3 π‘₯

=

0

=

4

= 27 βˆ’ 3 βˆ’ 1 + 4 =

0 𝑑𝑦 βˆ’1 βˆ’(π‘₯ 2 +2π‘₯βˆ’1)

βˆ’1

𝑑𝑦 βˆ’(π‘₯ + 2π‘₯ + 1 βˆ’ 1 βˆ’ 1)

0

πŸ–πŸ” πŸ‘

= βˆ’1

𝑑𝑦 βˆ’[ π‘₯ + 1

0

= βˆ’1 7

πŸ“.

3

1+

π‘₯2

𝑑π‘₯

𝑒 = 1 + π‘₯2 𝑑𝑒 = 2π‘₯𝑑π‘₯ 1

=2 =

3

4 1+π‘₯ 2 3

4

+ 2]

𝑑𝑦 βˆ’ π‘₯+1

2

0

𝑑𝑦

βˆ’1

2βˆ’ π‘₯+1

=

0

2

+2

2

𝑙𝑒𝑑 π‘Ž = 2 ; 𝑒 = (π‘₯ + 1) = π΄π‘Ÿπ‘π‘ π‘–π‘› =

π‘₯+1 2

+𝑐

𝝅 πŸ’

πŸ’πŸ“ πŸ–

DIFFERENTIAL & INTEGRAL CALCULUS | Feliciano & Uy

53

EXERCISE 11.3 𝑒

𝟏𝟏. 0

SOME PROPERTIES OF THE DEFINITE INTEGRAL 1

π‘₯𝑑π‘₯ π‘₯2 + 𝑒

0

𝑙𝑒𝑑 𝑒 = π‘₯ 2 + 𝑒 ; 𝑑𝑒 = 2π‘₯𝑑π‘₯ ; 𝑑𝑒 𝑒 2

= 1 2

𝑑𝑒 = π‘₯𝑑π‘₯ 2

1

π‘₯ βˆ™ 2 βˆ’ π‘₯ 𝑑π‘₯ 0

𝑒

π‘œ

=

2π‘₯ βˆ’ π‘₯ 2 𝑑π‘₯

πŸπŸ“.

𝑒 π‘œ

𝑑𝑒 𝑒

=

1 𝑒 𝑙𝑛𝑒 0 2

=

1 𝑒 ln π‘₯ 2 + 𝑒 0 2

1 = ln 𝑒 2 + 𝑒 βˆ’ 𝑙𝑛 0 + 𝑒 2

π‘Ž ; π‘™π‘›π‘Ž βˆ’ 𝑙𝑛𝑏 = 𝑙𝑛 𝑏

1 𝑒2 + 𝑒 1 𝑒 𝑒+1 = 𝑙𝑛 = 𝑙𝑛 2 𝑒 2 𝑒 1

= 2 𝑙𝑛 𝑒 + 1 = 𝑙𝑛 𝑒 + 1

π‘ π‘–π‘›πœƒ =

πœ‹

4

=

πœ‹

=8

1 π‘Žπ‘Ÿπ‘π‘‘π‘Žπ‘› 1 2

=

𝝅 πŸ–

4

4

0

u= x; du=dx; a=2

=

2π‘π‘œπ‘ πœƒ βˆ™ 2π‘ π‘–π‘›πœƒ βˆ™ 4π‘ π‘–π‘›πœƒπ‘π‘œπ‘ πœƒπ‘‘πœƒ

𝑠𝑖𝑛2 πœƒπ‘π‘œπ‘  2 πœƒ π‘‘πœƒ

0 πœ‹

1 π‘₯ = π‘Žπ‘Ÿπ‘π‘‘π‘Žπ‘› 2 2

2π‘ π‘–π‘›πœƒ = π‘₯

π‘œ

=8 2 𝑑π‘₯ 0 π‘₯ 2 +4

; 2π‘π‘œπ‘ πœƒ = 2 βˆ’ π‘₯

π‘₯ = 2𝑠𝑖𝑛 πœƒ ; 𝑑π‘₯ = 4π‘ π‘–π‘›πœƒπ‘π‘œπ‘ πœƒπ‘‘πœƒ 𝐴𝑑 π‘₯ = 1, πœƒ = πœ‹ 4 ; π‘₯ = 0, πœƒ = 0

1 2

= 𝒍𝒏 𝒆 + 𝟏

πŸπŸ‘.

2βˆ’π‘₯ 2 π‘₯ ; 2 2

cos πœƒ =

=2

πœ‹ 0

4

1 βˆ’ π‘π‘œπ‘ 2πœƒ 2

1 + π‘π‘œπ‘ 2πœƒ π‘‘πœƒ 2

1 βˆ’ π‘π‘œπ‘  2 2πœƒ π‘‘πœƒ

=𝝅 πŸ’

1

πŸπŸ•.

π‘₯𝑒 π‘₯ 𝑑π‘₯

0

𝑒=π‘₯ ; 𝑑𝑒 = 𝑑π‘₯ ; = π‘₯𝑒 π‘₯ βˆ’

𝑑𝑣 = 𝑒 π‘₯ 𝑑π‘₯ 𝑣 = 𝑒π‘₯

1 π‘₯ 𝑒 𝑑π‘₯ 0

= π‘₯𝑒 π‘₯ βˆ’ 𝑒 π‘₯

= 1βˆ’1+0βˆ’1 = 1

DIFFERENTIAL & INTEGRAL CALCULUS | Feliciano & Uy

54

EXERCISE 11.3

πœ‹ 2

πŸπŸ—.

SOME PROPERTIES OF THE DEFINITE INTEGRAL

πœ‹

𝑠𝑖𝑛 π‘₯π‘π‘œπ‘₯𝑑π‘₯

0

𝑙𝑒𝑑 𝑒 = 𝑠𝑖𝑛π‘₯ ; 𝑑𝑒 = π‘π‘œπ‘ π‘₯𝑑π‘₯ 𝑒2 𝑑𝑒

=

6βˆ’1 6βˆ’3 6βˆ’5 2βˆ’1 6+2 6+2βˆ’2 6+2βˆ’4 6+2βˆ’6

=2

𝑒3 3

=

𝑠𝑖𝑛 3 π‘₯ 3

=

𝑠𝑖𝑛6 𝑒 π‘π‘œπ‘  2 𝑒 𝑑𝑒

π‘œ

π‘œ

=

πœ‹

=2

πœ‹ 2

=

π‘₯ π‘₯ 𝑠𝑖𝑛6 π‘π‘œπ‘  2 𝑑π‘₯ 2 2 0 π‘₯ 𝑑π‘₯ 𝑒 = ; 𝑑𝑒 = 2 2 πŸπŸ“.

2

𝟏 πŸ‘

πœ‹ 2

πŸ“π… πŸπŸπŸ–

πœ‹ 4

πŸπŸ•.

𝑠𝑖𝑛2 4π‘₯ π‘π‘œπ‘  2 2π‘₯ 𝑑π‘₯

8

πœ‹ 2

𝟐𝟏.

𝑠𝑖𝑛6 π‘₯π‘π‘œπ‘  4 π‘₯ 𝑑π‘₯

π‘œ

=

2βˆ’1 2βˆ’1 2+2 2+2βˆ’2

=4

1 2

πœ‹

=

6βˆ’1 6βˆ’3 6βˆ’5 (4βˆ’1)(4βˆ’3)( 2 ) (6+4)(6+4βˆ’2)(6+4βˆ’4)(6+4βˆ’6)(6+4βˆ’8)

=

πŸ‘π… πŸ“πŸπŸ

=

πœ‹ 2

𝝅 πŸπŸ”

2

πŸπŸ—.

4 βˆ’ π‘₯2

3 2

𝑑π‘₯ ; 𝑙𝑒𝑑 π‘₯ = 2π‘ π‘–π‘›βˆ…

0

𝑑π‘₯ = 2π‘π‘œπ‘ βˆ…π‘ π‘–π‘›βˆ… πœ‹ 2

πŸπŸ‘.

2

𝑠𝑖𝑛7 π‘₯

=

4 βˆ’ 2π‘ π‘–π‘›βˆ…

=

πŸπŸ” = πŸ‘πŸ“

(2π‘π‘œπ‘ βˆ…π‘‘βˆ…)

0

π‘œ (4βˆ’1)(7βˆ’3)(7βˆ’5) 7(7βˆ’2)(7βˆ’4)(7βˆ’6)

3

2 2

2

=

3

(4 π‘π‘œπ‘  2 βˆ…)2 2π‘π‘œπ‘ βˆ…π‘π‘œπ‘ βˆ…π‘‘βˆ…

0 2

=

8 π‘π‘œπ‘  3 βˆ… 2π‘π‘œπ‘ βˆ… π‘‘βˆ…

0

=( =

4βˆ’1

4βˆ’3

4 4βˆ’2

πœ‹ 2

πŸ‘π… πŸπŸ”

DIFFERENTIAL & INTEGRAL CALCULUS | Feliciano & Uy

55

EXERCISE 12.1

1. 𝑦 = 3π‘₯ 2 ;

AREA UNDER A CURVE

π‘“π‘Ÿπ‘œπ‘š π‘₯ = 1 π‘‘π‘œ π‘₯ = 2

3. π‘₯𝑦 = βˆ’1 ; π‘“π‘Ÿπ‘œπ‘š π‘₯ = 1 π‘‘π‘œ π‘₯ = 2 𝑦=βˆ’

1 π‘₯

2

𝐴=

2

𝑦𝑑π‘₯

𝐴=

1

𝐴=

2 3π‘₯ 2 𝑑π‘₯ 1 2 3

𝐴= π‘₯

𝐴= 2

𝑦𝑑π‘₯ 1

1 3

βˆ’ 1

𝐴=

2 1 βˆ’ 𝑑π‘₯ 1 π‘₯ 2

𝐴 = [βˆ’ 𝑙𝑛 π‘₯] 3

𝑨 = πŸ• 𝒔𝒒. π’–π’π’Šπ’•π’”

1

𝐴 = {[βˆ’ 𝑙𝑛 2] βˆ’ [βˆ’ 𝑙𝑛 1]} 𝐴 = βˆ’ 𝑙𝑛 2; 𝑏𝑒𝑑 π‘‘π‘•π‘’π‘Ÿπ‘’ 𝑖𝑠 π‘›π‘œ π‘›π‘’π‘”π‘Žπ‘‘π‘–π‘£π‘’ π‘Žπ‘Ÿπ‘’π‘Ž, 𝑕𝑒𝑛𝑐𝑒, 𝑨 = π’π’πŸ 𝒔𝒒. π’–π’π’Šπ’•π’”

DIFFERENTIAL & INTEGRAL CALCULUS | Feliciano & Uy

56

EXERCISE 12.1

AREA UNDER A CURVE

5. 𝑦 = 3𝑙𝑛π‘₯, π‘₯ = 2 π‘‘π‘œ 𝑦 = 4

9. π‘₯ + 𝑦 = 3 & 𝑑𝑕𝑒 π‘π‘œπ‘œπ‘Ÿπ‘‘π‘–π‘›π‘Žπ‘‘π‘’ π‘Žπ‘₯𝑒𝑠

π‘Ž

𝑑𝐴 =

𝑦𝑑π‘₯

0 4

𝐴= 3

𝑙𝑛π‘₯𝑑π‘₯ 2

= 3[π‘₯𝑙𝑛π‘₯ – π‘₯] = 3[4 𝑙𝑛 4 βˆ’ 4] βˆ’ 3[2 𝑙𝑛 2 βˆ’ 2] = 3[4 𝑙𝑛 4 βˆ’ 4 βˆ’ 2𝑙𝑛 2 + 2] = 3[8𝑙𝑛2 βˆ’ 2𝑙𝑛2 βˆ’ 2] 𝐴=

= 3[6𝑙𝑛2 βˆ’ 2] = 6[3𝑙𝑛2 βˆ’ 1]

3 0

3 βˆ’ π‘₯ 𝑑π‘₯

𝐴 = 3π‘₯ βˆ’

𝑨 = πŸ”[π’π’πŸ– βˆ’ 𝟏] 𝒔𝒒. π’–π’π’Šπ’•π’”

π‘₯3 2

𝐴= 3 3 βˆ’ 𝑨= 7. 𝑦 = 9 βˆ’ π‘₯ 2 𝐴=

3 βˆ’3

; π‘₯ = βˆ’3 π‘‘π‘œ π‘₯ = 3

3 0 3 2 2

πŸ— 𝒔𝒒. π’–π’π’Šπ’•π’” 𝟐

4 βˆ’ π‘₯ 2 𝑑π‘₯

𝑨 = πŸ” 𝒔𝒒𝒖𝒂𝒓𝒆 π’–π’π’Šπ’•π’”

DIFFERENTIAL & INTEGRAL CALCULUS | Feliciano & Uy

57

EXERCISE 12.1

AREA UNDER A CURVE

11. 𝑦 2 = 4π‘₯, π‘₯ = 1 π‘Žπ‘›π‘‘ π‘₯ = 4

πŸπŸ‘. π‘₯𝑦 = 1, 𝑦 = π‘₯, π‘₯ = 2, 𝑦 = 0

4

𝐴=

4π‘₯𝑑π‘₯ 1 4

𝐴= 𝐴=

1

4π‘₯ 2 𝑑π‘₯ 1

π‘₯𝑦 = 1; 𝑦 = π‘₯

8 3 π‘₯4 3

π‘₯(π‘₯) = 1

8(4)3/2 8(1)3/2 𝐴= βˆ’ 3 3 𝐴=

64 3

βˆ’

8 3

πŸ“πŸ” 𝑨= 𝒔𝒒. π’–π’π’Šπ’•π’” πŸ‘

π‘₯=1 ; 𝑦=1 2

𝐴1 = 1

; (1,1)

1 𝑑π‘₯ π‘₯

= (𝑙𝑛 π‘₯) = 𝑙𝑛 2 βˆ’ 𝑙𝑛 1 𝐴1 = 𝑙𝑛 2 π‘ π‘ž. 𝑒𝑛𝑖𝑑𝑠 𝐴2 = =

1 𝑏𝑕 2

1 1 1 2

𝐴2 =

1 π‘ π‘ž. 𝑒𝑛𝑖𝑑𝑠 2

𝐴𝑑 = 𝐴1 + 𝐴2 𝟏 𝑨 = (𝒍𝒏 𝟐 + )𝒔𝒒. π’–π’π’Šπ’•π’” 𝟐

DIFFERENTIAL & INTEGRAL CALCULUS | Feliciano & Uy

58

EXERCISE 12.2

AREA BETWEEN TWO CURVES

5. y = x 2 ; y = 2 βˆ’ x 2

1. 𝑦 = π‘₯ 2 ; 𝑦 = 2π‘₯ + 3 𝑦 = 2π‘₯ + 3 π‘₯ 2 = 2π‘₯ + 3 π‘₯ 2 βˆ’ 2π‘₯ βˆ’ 3 = 0 π‘₯βˆ’3 π‘₯+1 = 0 π‘₯ = 3, π‘₯ = βˆ’1 𝐴=

3 βˆ’1

𝑑𝑦 = 2π‘₯ ; (0,0) 𝑑π‘₯ π‘₯ = 0 ,𝑦 = 0 𝑑2 𝑦 = 2 (π‘π‘œπ‘›π‘π‘Žπ‘£π‘’ π‘’π‘π‘€π‘Žπ‘Ÿπ‘‘) 𝑑π‘₯ 2

2π‘₯ + 3 βˆ’ π‘₯ 2 𝑑π‘₯

= [π‘₯ 2 + 3π‘₯ βˆ’

π‘₯3 ] 3 3 -1

= 32 + 3(3) βˆ’

(3)3

π‘π‘œπ‘–π‘›π‘‘ π‘œπ‘“ π‘–π‘›π‘‘π‘’π‘Ÿπ‘ π‘’π‘π‘‘π‘–π‘œπ‘›: βˆ’ (βˆ’1)2 + 3(βˆ’1) βˆ’

3

(βˆ’1)3 3

5

= 9+3 𝑨=

3. π‘₯ 2 = 𝑦 βˆ’ 1

(2π‘₯ + 2)(π‘₯ βˆ’ 1) 2π‘₯ + 2 = 0π‘₯ βˆ’ 1 = 0 2 2π‘₯ = βˆ’ π‘₯ = 1 2

; π‘₯ =π‘¦βˆ’3

π‘₯ = βˆ’1 𝑦 = 1

Y1=Y2 π‘¦βˆ’3 2 =π‘¦βˆ’1 𝑦 2 βˆ’ 6𝑦 + 9 = 𝑦 βˆ’ 1 π‘¦βˆ’5 π‘¦βˆ’2 =0 𝑦 = 5 ,𝑦 = 2 π‘₯ =5βˆ’3=2 2

π‘₯2 = 2 βˆ’ π‘₯2 π‘₯2 βˆ’ 2 + π‘₯2 = 0

πŸ‘πŸ 𝒔𝒒. π’–π’π’Šπ’•π’” πŸ‘

𝐴=

y1= y2

𝑑𝐴 = [π‘Œ1 βˆ’ π‘Œ2]𝑑π‘₯ 1 βˆ’1 1

=

π‘₯ + 3 βˆ’ (π‘₯ 2 + 1) 𝑑π‘₯

2 βˆ’1

=

π‘₯2 π‘₯3 + 2π‘₯ βˆ’ 2 3

π‘₯ + 2 βˆ’ π‘₯ 2 𝑑π‘₯

=

22 2

+ 2(2) βˆ’

=

10 3

+6 =A=

7

23 3

= 2π‘₯ βˆ’ 2 3

2

2π‘₯ 3 3

βˆ’ =

βˆ’1 2 2 πŸ— 𝟐

+ 2(βˆ’1) βˆ’

(βˆ’1)3 3

=

2

2

= 2 βˆ’ 3 βˆ’ [βˆ’2 + 3]

=2βˆ’ +2βˆ’

-1

27 6

(2 βˆ’ 2π‘₯ 2 ) 𝑑π‘₯

βˆ’1

βˆ’1

=

(2 βˆ’ π‘₯ 2 βˆ’ π‘₯ 2 ) 𝑑π‘₯

𝑑𝐴 =

2 3

=

12βˆ’4 3

πŸ– 𝒔𝒒. π’–π’π’Šπ’•π’” πŸ‘

𝒔𝒒. π’–π’π’Šπ’•π’”

DIFFERENTIAL & INTEGRAL CALCULUS | Feliciano & Uy

59

EXERCISE 12.2

AREA BETWEEN TWO CURVES

7. 𝑦 = 𝑠𝑖𝑛π‘₯ ; π‘₯ = π‘π‘œπ‘ π‘₯ ; π‘₯ = x 0 90 180 270 360

y 0 1 0 -1 0

𝐴2 =

x 0 90 180 270 360

πœ‹ 2 πœ‹ 4

π‘Žπ‘›π‘‘ π‘₯ =

πœ‹ 2

11. 𝑦 = π‘₯ 3 , 𝑦 = 8, π‘₯ = 0 𝑑𝑦 = 3π‘₯ 2 𝑑π‘₯

y 1 0 -1 0 1

, 0 = 3π‘₯ 2

𝑦 = 0 ,π‘₯ = 0 𝑑2 𝑦 = 6π‘₯(π‘π‘œπ‘›π‘π‘Žπ‘£π‘’ π‘’π‘π‘€π‘Žπ‘Ÿπ‘‘) 𝑑π‘₯ 2 π‘π‘œπ‘–π‘›π‘‘ π‘œπ‘“ π‘–π‘›π‘‘π‘’π‘Ÿπ‘ π‘’π‘π‘‘π‘–π‘œπ‘›:

𝑠𝑖𝑛π‘₯𝑑π‘₯ = [-π‘π‘œπ‘ π‘₯]

y1= y2

πœ‹ 4

πœ‹ 2

= [-π‘π‘œπ‘  ] βˆ’ [-π‘π‘œπ‘  ] = 𝐴1 =

πœ‹ 4

πœ‹ 2 πœ‹ 4

2 2

π‘₯3 = 8

πœ‹ πœ‹ π‘π‘œπ‘ π‘₯𝑑π‘₯ = 𝑠𝑖𝑛π‘₯ = 𝑠𝑖𝑛π‘₯ βˆ’ 𝑠𝑖𝑛 2 4

π‘₯3 βˆ’ 8 = 0 π‘₯3 = 8 π‘₯=

2 = 1βˆ’ 2

3

8

π‘₯=2

π‘¨πŸ βˆ’ π‘¨πŸ = 𝟐 βˆ’ 𝟏 𝒔𝒒. π’–π’π’Šπ’•π’”

𝑀𝑕𝑒𝑛 π‘₯ = 2 𝑦 = 8 , (2,8) 𝑀𝑕𝑒𝑛 π‘₯ = βˆ’2

9. π‘₯ 2 = 4𝑦 , 𝑦 = 𝑦=

π‘₯2

8 π‘₯ 2 +4

4

π‘₯ 2 π‘₯ 2 + 4 = 32 2 8 π‘₯2 𝐴= βˆ’ 𝑑π‘₯ 2 4 βˆ’2 π‘₯ + 4 𝐴 = 4.95

𝑦 = βˆ’2

3

, 𝑦 = βˆ’8

(-2,-8) 𝑑𝐴 = [π‘Œ1 βˆ’ π‘Œ2]𝑑π‘₯ 2

𝑑𝐴 =

(8 βˆ’ π‘₯ 3 ) 𝑑π‘₯

0

= πŸπŸ” βˆ’ πŸ’ = 𝟏𝟐 𝒔𝒒. π’–π’π’Šπ’•π’”

DIFFERENTIAL & INTEGRAL CALCULUS | Feliciano & Uy

60

EXERCISE 12.2

AREA BETWEEN TWO CURVES

13. 𝑦 = 2π‘₯ + 1 , 𝑦 = 7 βˆ’ π‘₯ , π‘₯ = 8

𝑒

8

𝐴=

15. 𝑦 = 𝑙𝑛π‘₯ 3 , 𝑦 = 𝑙𝑛π‘₯; π‘₯ = 𝑒

2π‘₯ + 1 βˆ’ 7 βˆ’ π‘₯ 𝑑π‘₯

𝐴= 1

2

𝑒

8

=

2π‘₯ + 1 βˆ’ 7 + π‘₯ 𝑑π‘₯

=

8 2

3π‘₯ βˆ’ 6 𝑑π‘₯

=

3π‘₯ 2 = βˆ’ 6π‘₯ 2 =

3(8)2 2

𝑒 𝑙𝑛π‘₯ 3 1

𝑒 = 𝑙𝑛π‘₯ 3

8 2

βˆ’ 6(8) βˆ’

[(𝑙𝑛π‘₯ 3 ) βˆ’ (𝑙𝑛π‘₯)]𝑑π‘₯

1

2

=

(𝑦2 βˆ’ 𝑦1 )𝑑π‘₯

𝑑𝑒 = 3(2)2 2

βˆ’ 6(2)

= 𝑑π‘₯ ; 𝑑𝑒 = 𝑒

1

= πŸ“πŸ’ 𝒔𝒒 π’–π’π’Šπ’•π’”

𝑙𝑛π‘₯

; 𝑣 = π‘₯ ; 𝑒 = 𝑙𝑛π‘₯ ; 𝑑𝑣 = 𝑑π‘₯

3π‘₯ 2 𝑑𝑣 π‘₯3

= π‘₯𝑙𝑛π‘₯ 3 βˆ’

𝑒 1

βˆ’

= π‘₯𝑙𝑛π‘₯ 3 βˆ’

3π‘₯ 2 π‘₯( 3 ) π‘₯ 3π‘₯

= π‘₯𝑙𝑛π‘₯ 3 βˆ’ 3π‘₯

𝑒 1

𝑑π‘₯ π‘₯

𝑒 – [π‘₯𝑙𝑛π‘₯ βˆ’ 1

;

𝑣=π‘₯

𝑑π‘₯ 𝑒 π‘₯( )] π‘₯ 1

βˆ’ [π‘₯𝑙𝑛π‘₯ βˆ’ π‘₯] 𝑒1

= 𝟐 𝒔𝒒. π’–π’π’Šπ’•π’”

DIFFERENTIAL & INTEGRAL CALCULUS | Feliciano & Uy

61

EXERCISE 12.2

AREA BETWEEN TWO CURVES

17. 𝑦 2 = 2π‘Žπ‘₯ , 𝑦 2 = 4π‘Žπ‘₯ βˆ’ π‘Ž2

𝑀𝑕𝑒𝑛 π‘₯ = βˆ’4π‘Ž

𝑦 2 = 2π‘Žπ‘₯𝑦 2 = 4π‘Žπ‘₯ βˆ’ π‘Ž2

π‘₯ = (βˆ’4π‘Ž)2

π‘₯= 𝑑π‘₯ 𝑑𝑦

𝑦2 2π‘Ž

;x=

𝑦 2 +π‘Ž 2 4π‘Ž

2𝑦

=

16π‘Ž2 2π‘Ž

= 8π‘Ž

= 2π‘Ž

𝑑π‘₯ 𝑦 = 𝑑𝑦 π‘Ž

𝐴

π‘Ž

𝑑𝐴 =

0 = 0 ; (0,0)

π‘œ

[ βˆ’π‘Ž

𝑦 2 + π‘Ž2 𝑦 2 βˆ’ ]𝑑𝑦 4π‘Ž 2π‘Ž

𝑑2 π‘₯ 1 = π‘œπ‘π‘’π‘› π‘‘π‘œ 𝑑𝑕𝑒 π‘Ÿπ‘–π‘”π‘•π‘‘ 𝑑𝑦 2 π‘Ž

=

π‘Ž 𝑦 2 +π‘Ž 2 βˆ’π‘¦ 2 ( 4π‘Ž )𝑑𝑧 βˆ’π‘Ž

π‘π‘œπ‘–π‘›π‘‘ π‘œπ‘“ π‘–π‘›π‘‘π‘’π‘Ÿπ‘ π‘’π‘π‘‘π‘–π‘œπ‘›:

=

𝑦3 π‘Ž2 𝑦 2𝑦 3 + βˆ’ 12π‘Ž 4π‘Ž 12π‘Ž

=

π‘Ž3 π‘Ž2 π‘Ž 2π‘Ž3 (βˆ’π‘Ž)3 π‘Ž2 (βˆ’π‘Ž) 2(βˆ’π‘Ž)3 + βˆ’ βˆ’ + βˆ’ 12π‘Ž 4π‘Ž 12π‘Ž 12π‘Ž 4π‘Ž 12π‘Ž

=

π‘Ž3 βˆ’ 2π‘Ž3 + π‘Ž3 βˆ’ 2π‘Ž3 π‘Ž3 + π‘Ž3 + 12π‘Ž 4π‘Ž

=

βˆ’2π‘Ž 3 12π‘Ž

X1 = X2 𝑦 2 𝑦 2 + π‘Ž2 = 2π‘Ž 4π‘Ž 4π‘Žπ‘¦ 2 = 2π‘Žπ‘¦ 2 + 2π‘Ž3 4π‘Žπ‘¦ 2 βˆ’ 2π‘Žπ‘¦ 2 βˆ’ 2π‘Ž3 = 0 2π‘Žπ‘¦ 2 βˆ’ 2π‘Ž3 = 0 2π‘Žπ‘¦ 2 = 2π‘Ž3 2π‘Ž3 𝑦2 = 2π‘Ž 2 𝑦 = π‘Ž2 𝑦 = π‘Ž2 𝑦 = Β±π‘Ž π‘Ž2

+

2π‘Ž 3 4π‘Ž

=

a -a

βˆ’2π‘Ž 3 +6π‘Ž 3 12π‘Ž

4π‘Ž 3

= 12π‘Ž A=

a2 sq. 3

units

π‘Ž

X1 = X2=2π‘Ž = 2 𝑀𝑕𝑒𝑛 π‘₯ = 4π‘Ž π‘₯= =

(4π‘Ž)2 2π‘Ž

16π‘Ž2 2π‘Ž

= 8π‘Ž DIFFERENTIAL & INTEGRAL CALCULUS | Feliciano & Uy

62

EXERCISE 12.2

AREA BETWEEN TWO CURVES

πŸπŸ—. 𝑦 2 = π‘₯ + 1 ; 𝑦 = 1 βˆ’ π‘₯

𝟐𝟏. 𝑦 2 = 4π‘₯ ; 𝑦 = 4π‘₯ βˆ’ 4

𝑣1= 𝑦 2 βˆ’ 1; 𝑦π‘₯ = 1 𝑑π‘₯ = 2𝑦 ; π‘₯2 = 1 βˆ’ 𝑦 𝑑𝑦 π‘₯ = 0; 𝑦 = 0 𝑑2 π‘₯ = 2 (π‘π‘œπ‘›π‘π‘Žπ‘£π‘’ π‘‘π‘œ 𝑑𝑕𝑒 π‘Ÿπ‘–π‘”π‘•π‘‘) 𝑑𝑦 2 π‘π‘œπ‘–π‘›π‘‘ π‘œπ‘“ π‘–π‘›π‘‘π‘’π‘Ÿπ‘ π‘’π‘π‘‘π‘–π‘œπ‘› 1 π‘₯1= 𝑦2 ; 𝑦 2 βˆ’ 1 = 𝑦 𝑦2 + 𝑦 βˆ’ 2 = 0 (𝑦 βˆ’ 1)(𝑦 + 2) π‘¦βˆ’1=0 𝑦+2=0

4π‘₯ = 𝑦 2 2π‘₯ = 𝑦 + 4

y=1

π‘₯=

𝑑π‘₯ 1 = 2𝑦 𝑑𝑦 4 1 0 = 2𝑦 4 0=0 0,0

y=-2

𝑣=0

𝑦2 𝑦+4 π‘₯= 4 2

𝑑2π‘₯ 𝑑𝑦 2

𝑦=3

𝑀𝑕𝑒𝑛 π‘₯ = 1, 𝑦 = 2

= (concave to the right)

π‘π‘œπ‘–π‘›π‘‘ π‘œπ‘“ π‘–π‘›π‘‘π‘’π‘Ÿπ‘ π‘’π‘π‘‘π‘–π‘œπ‘› 𝑦2 𝑦 + 4 = 4 2

𝑀𝑕𝑒𝑛 π‘₯ = 2, 𝑦 = 5 𝑀𝑕𝑒𝑛 𝑦 = 1, π‘₯ = 0 𝑀𝑕𝑒𝑛 𝑦 = 2, π‘₯ = 3 𝑀𝑕𝑒𝑛 𝑦 = 3, π‘₯ = 8 𝑑𝑕𝑒𝑛;

2𝑦 2 βˆ’ 4𝑦 + 4(4) 2𝑦 2 βˆ’ 4𝑦 βˆ’ 16 = 0

𝑑𝐴 = 𝑋2 βˆ’ 𝑋1 𝑑𝑦 1

1

1 βˆ’ 𝑦 βˆ’ 𝑦 2 βˆ’ 1 𝑑𝑦

𝑑𝐴 = βˆ’2

2𝑦 βˆ’ 8 𝑦 + 2 2𝑦 βˆ’ 8 = 0𝑦 + 2 = 0 𝑦 = 4; π‘₯ = 4(1, 2)

βˆ’2

𝐴 = 1 βˆ’ 𝑦 βˆ’ 𝑦2 + 1 𝐴 = 2βˆ’π‘¦βˆ’

1 βˆ’2

(4, 4)

𝑦 2 1βˆ’2

𝑑𝐴 = (π‘₯2 βˆ’ π‘₯1 )𝑑𝑦

3 1

𝐴 = 2𝑦 βˆ’

𝐴 = 2(1) βˆ’

𝑦2 𝑦 βˆ’ 2 3

(1)2 (1)3 βˆ’ 2 3

1

1

𝐴= βˆ’2 βˆ’ 𝐴 = 2(βˆ’2) βˆ’

(βˆ’2)2 (βˆ’2)3 βˆ’ 2 3

4 𝑦+4 βˆ’2 2

βˆ’

𝑦2 4

𝑑𝑦

𝑨 = πŸ— 𝒔𝒒. π’–π’π’Šπ’•π’”

8

𝐴=2βˆ’2βˆ’3+4+2βˆ’3 𝑨=

πŸ— 𝒔𝒒. π’–π’π’Šπ’•π’” 𝟐

DIFFERENTIAL & INTEGRAL CALCULUS | Feliciano & Uy

63

EXERCISE 12.2

AREA BETWEEN TWO CURVES

23. 𝑦 2 = π‘₯ + 4 , π‘₯ βˆ’ 2𝑦 + 1 = 0

3

𝐴=

2𝑦 βˆ’ 1 βˆ’ 𝑦 2 βˆ’ 4 𝑑𝑦

βˆ’1 3

3 + 2𝑦 βˆ’ 𝑦 2 𝑑𝑦

= βˆ’1

= 3𝑦 + 𝑦 2 βˆ’ =

3 𝑦3 3 βˆ’1

πŸ‘πŸ πŸ‘

25. 𝑦 = 𝑒 2π‘₯ , 𝑦 = 𝑒 , π‘₯ = 2

2

𝐴=

𝑒 2π‘₯ βˆ’ 𝑒 π‘₯ 𝑑π‘₯

0

= =

𝑒 2π‘₯ βˆ’ 𝑒π‘₯ 2 𝑒4 2

2 0 1

βˆ’ 𝑒2 βˆ’ 2 + 1

= 𝟏 𝟐 π’†πŸ βˆ’ 𝟏

𝟐

DIFFERENTIAL & INTEGRAL CALCULUS | Feliciano & Uy

64

EXERCISE 12.4

VOLUME OF A SOLID OF REVOLUTION

1. 𝑦 = π‘₯ 2 βˆ’ 2π‘₯ , π‘₯ βˆ’ π‘Žπ‘₯𝑖𝑠, π‘Žπ‘π‘œπ‘’π‘‘ 𝑑𝑕𝑒 π‘₯ βˆ’ π‘Žπ‘₯𝑖𝑠 𝑑𝑦 = 2π‘₯ βˆ’ 2 , π‘’π‘žπ‘’π‘Žπ‘‘π‘’ π‘‘π‘œ π‘§π‘’π‘Ÿπ‘œ 𝑑π‘₯ 0 = 2π‘₯ βˆ’ 2 ; 𝑦 = 12 βˆ’ 2(1) π‘₯=1

;

𝑦 = βˆ’1

𝑑2𝑦 =2 𝑑π‘₯ 2

𝑦 = π‘₯ 2 βˆ’ 2π‘₯

𝑣 1, βˆ’1 x y

0 0

1 -1

2 0

3 3

1 -1

𝑑𝑣 = πœ‹π‘¦ 2 𝑑π‘₯

dx

𝑑𝑣 = πœ‹ π‘₯ 2 βˆ’ 2π‘₯ 2 𝑑π‘₯

2

y (1,-1)

-2

ʃ𝑑𝑣 = πœ‹Κƒ π‘₯ 4 βˆ’ 4π‘₯ 3 + 4π‘₯ 2 𝑑π‘₯ 𝑣=πœ‹ =πœ‹

π‘₯5 5

βˆ’

1 2 5

4π‘₯ 4 4

5

+

4π‘₯ 3 3

βˆ’ 24 +

4 2 3

=πœ‹

32 32 βˆ’ 16 + 5 3

=πœ‹

96 βˆ’ 240 + 160 15

=πœ‹

16 15

𝑽=

3

βˆ’ 0

πŸπŸ”π… π’–π’π’Šπ’•π’”πŸ‘ πŸπŸ“

DIFFERENTIAL & INTEGRAL CALCULUS | Feliciano & Uy

65

EXERCISE 12.4

VOLUME OF A SOLID OF REVOLUTION

πŸ‘. π‘₯ + 𝑦 = 5 ; 𝑦 = 0 ; π‘₯ = 0 ; π‘Žπ‘π‘œπ‘’π‘‘ 𝑦 = 0

πŸ“. π‘₯ + 𝑦 = 6 ; 𝑦 = 3 ; π‘₯ = 0 ; π‘Žπ‘π‘œπ‘’π‘‘ 𝑦 βˆ’ π‘Žπ‘₯𝑖𝑠

𝑀𝑕𝑒𝑛 π‘₯ = 0 ; 𝑦 = 5

π‘₯ = (6 βˆ’ 𝑦)

𝑀𝑕𝑒𝑛 𝑦 = 0 ;

π‘₯=5

𝑑𝑣 = πœ‹π‘₯ 2 𝑑𝑦

𝑑𝑣 = πœ‹π‘¦ 2 𝑑π‘₯

; 𝑏𝑒𝑑 𝑦 = 5 βˆ’ π‘₯

𝑑𝑣 = πœ‹ 6 βˆ’ 𝑦 𝑑𝑦

𝑦2 = 5 βˆ’ π‘₯

2

𝑑𝑣 = πœ‹ 36 βˆ’ 12𝑦 + 𝑦 2 𝑑𝑦

𝑑𝑣 = πœ‹ 5 βˆ’ π‘₯ 2 𝑑π‘₯ 𝑣

5

𝑑𝑣 = πœ‹ 0

𝑣 0

25 βˆ’ 10π‘₯ + π‘₯ 2 𝑑π‘₯

𝑉=πœ‹

10π‘₯ 2 π‘₯ 3 + 2 3

25 5 βˆ’ 5 5

𝑉 = πœ‹ 125 βˆ’ 125 + 𝑽=

2

125 3

0

𝑉=

+

1 5 3

3

36 βˆ’ 12𝑦 + 𝑦 2 𝑑𝑦

𝑦2 𝑦3 𝑉 = πœ‹ 36𝑦 βˆ’ 12 + 2 3

0

𝑉 = πœ‹ 25π‘₯ βˆ’

3

𝑑𝑣 =

βˆ’ 0

36 3 βˆ’ 6 3

2

+

𝑉 = πœ‹ 36 3 βˆ’ 6 9 +

βˆ’0

1 3 3

2

βˆ’ 0

1 3 27

𝑉 = πœ‹[ 36 3 βˆ’ 6 9 + 9]

πŸπŸπŸ“π… π’–π’π’Šπ’•π’”πŸ‘ πŸ‘

𝑉 = πœ‹(9)(12 βˆ’ 6 + 1) 𝑉 = πœ‹(9)(7)

y

𝑽 = πŸ”πŸ‘π… π’–π’π’Šπ’•π’”πŸ‘

π‘₯=0

𝑦π‘₯ = 0 5

(0,6)

3 2 1 𝑑π‘₯

π‘₯+𝑦 =6

5 y

𝑦=3

3 3

5

x 𝑦=0

𝑑𝑦 1 0

(6,0) π‘₯ 1

3

5

π‘₯

DIFFERENTIAL & INTEGRAL CALCULUS | Feliciano & Uy

66

EXERCISE 12.4

VOLUME OF A SOLID OF REVOLUTION

πŸ•. π‘₯𝑦 = 4, π‘₯ = 2, 𝑦 = 4; π‘Žπ‘π‘œπ‘’π‘‘ 𝑦 = 4

9. 𝑦 2 = 4π‘Žπ‘₯, π‘₯ = π‘Ž; π‘Žπ‘π‘œπ‘’π‘‘ π‘₯ = π‘Ž

𝑉 = πœ‹π‘Ÿ 2 𝑕

2

𝑉 = πœ‹π‘Ÿ 𝑕 𝑉 = πœ‹(4 βˆ’ 𝑦)2 𝑑π‘₯

𝑉 = πœ‹(π‘Ž βˆ’ π‘₯)2 𝑕 𝑣

𝑉 = πœ‹ 4βˆ’ 𝑣

4 π‘₯ 2

𝑑𝑣 = πœ‹ 0

0

𝑑π‘₯ 32 16 (16 βˆ’ + 2 ) 𝑑π‘₯ π‘₯ π‘₯

2π‘Ž

𝑑𝑣 =

2 0

βˆ’2π‘Ž 2π‘Ž

𝑉= πœ‹

πœ‹(π‘Ž βˆ’

(π‘Ž2 βˆ’

βˆ’2π‘Ž

16 𝑉 = πœ‹ 16 2 βˆ’ 32𝑙𝑛2 βˆ’ βˆ’0 2

𝑉 = πœ‹ π‘Ž2 𝑦 βˆ’

𝑉 = 8πœ‹ 4 βˆ’ 4 𝑙𝑛 2 βˆ’ 1

𝑉 = π‘Ž2 2π‘Ž βˆ’

𝑽 = πŸ–π… πŸ‘ βˆ’ πŸ’ 𝒍𝒏 𝟐 𝒄𝒖. π’–π’π’Šπ’•π’”

𝑦2 2 ) 𝑑𝑦 4π‘Ž

𝑦2 𝑦4 + ) 𝑑𝑦 2 16π‘Ž2

𝑦3 𝑦5 + 6 16 5 π‘Ž2

2π‘Ž3 2π‘Ž5 βˆ’2π‘Ž3 βˆ’2π‘Ž5 + βˆ’ π‘Ž2 βˆ’2π‘Ž βˆ’ + 6 16(5)π‘Ž2 16 16(5)π‘Ž2 2

1

𝑉 = 4π‘Ž3 πœ‹ 1 βˆ’ 3 + 5 𝑽=

πŸ‘πŸπ’‚πŸ‘ 𝝅 𝒄𝒖. π’–π’π’Šπ’•π’” πŸπŸ“

DIFFERENTIAL & INTEGRAL CALCULUS | Feliciano & Uy

67

EXERCISE 12.4

VOLUME OF A SOLID OF REVOLUTION

𝟏𝟏. 𝑦 = 𝑠𝑖𝑛 π‘₯, π‘₯ = 0, 𝑦 = 1; π‘Žπ‘π‘œπ‘’π‘‘ 𝑦 = 1

𝑉 = πœ‹π‘Ÿ 2 𝑕 𝑉 = πœ‹(1 βˆ’ 𝑦)2 𝑑π‘₯ πœ‹ 2

𝑣

𝑣= 0

πœ‹ (1 βˆ’ 𝑠𝑖𝑛 π‘₯ )2 𝑑π‘₯

0 πœ‹ 2

𝑉= πœ‹

0

1 βˆ’ 2𝑠𝑖𝑛π‘₯ + 𝑠𝑖𝑛2 π‘₯ 𝑑π‘₯

𝑉 = πœ‹[π‘₯ + 2 π‘π‘œπ‘  π‘₯ +

π‘₯ 𝑠𝑖𝑛2π‘₯ βˆ’ ] 2 4

𝑉= πœ‹

3π‘₯ π‘₯ 𝑠𝑖𝑛 2π‘₯ + 2 π‘π‘œπ‘  π‘₯ + βˆ’ 2 2 4

𝑉= πœ‹

3π‘₯ 𝑠𝑖𝑛 2π‘₯ + 2 π‘π‘œπ‘  π‘₯ βˆ’ 2 4

𝑉= πœ‹

3πœ‹ + 0 βˆ’ 4(0) βˆ’ 0 + 2 + 0 4

𝑉= 𝑽=

3πœ‹ 2 4

βˆ’ 2πœ‹

𝝅 πŸ‘π… βˆ’ πŸ– 𝒄𝒖. π’–π’π’Šπ’•π’” πŸ’

DIFFERENTIAL & INTEGRAL CALCULUS | Feliciano & Uy

68

EXERCISE 12.5

THE WASHER METHOD 9

1. 𝑦 = π‘₯ 2 , π‘₯ = 3, 𝑦 = 0; π‘Žπ‘π‘œπ‘’π‘‘ 𝑑𝑕𝑒 𝑦 βˆ’ π‘Žπ‘₯𝑖𝑠

𝑉=πœ‹

32 βˆ’ π‘₯ 2 𝑑𝑦

0 9

𝑉=πœ‹

9 βˆ’ 𝑦 𝑑𝑦 0

𝑉 = πœ‹ 9𝑦 βˆ’

𝑦2 9 2 0

𝑉 = πœ‹ 9(9) βˆ’ 𝑽=

(9)2 9 2 0

πŸ–πŸπ… π‘ͺ𝑼𝑩𝑰π‘ͺ 𝑼𝑡𝑰𝑻𝑺 𝟐

3. 𝑦 2 = 4π‘Žπ‘₯, π‘₯ = π‘Ž; π‘Žπ‘π‘œπ‘’π‘‘ 𝑑𝑕𝑒 𝑦 βˆ’ π‘Žπ‘₯𝑖𝑠 x 0 a

𝑦 2 = 4π‘Žπ‘₯

y 0 2a

dy x 2π‘Ž

X=a

π‘Ž2 βˆ’ π‘₯ 2 𝑑𝑦

𝑉= πœ‹ βˆ’2π‘Ž 2π‘Ž

𝑦2 = πœ‹ (π‘Ž βˆ’ 4π‘Ž βˆ’2π‘Ž 2π‘Ž

= πœ‹

2

π‘Ž2 βˆ’

βˆ’2π‘Ž

2

)𝑑𝑦

𝑦4 𝑑𝑦 16π‘Ž2

𝑦5 2π‘Ž = πœ‹ π‘Ž π‘¦βˆ’ 80π‘Ž2 βˆ’2π‘Ž 2

= πœ‹ (2π‘Ž3 βˆ’

32π‘Ž5 32π‘Ž5 3 ) βˆ’ (βˆ’2π‘Ž + ) 80π‘Ž2 80π‘Ž2

= πœ‹ (2π‘Ž3 βˆ’

2π‘Ž 3 )βˆ’ 5

𝑽=

(2π‘Ž3 +

2π‘Ž 3 ) 5

πŸπŸ”π…π’‚πŸ‘ πŸ“

DIFFERENTIAL & INTEGRAL CALCULUS | Feliciano & Uy

69

EXERCISE 12.5

THE WASHER METHOD

5. π‘₯ 2 +𝑦 2 = π‘Ž2 , π‘₯ = 𝑏 π‘Ž 𝑉 = 4πœ‹ 0 π‘Ž2 βˆ’ 𝑦 2 + 𝑏 𝑑𝑦 𝑉 = 4πœ‹ π‘Ž2 𝑦 βˆ’ 𝑉 = 4πœ‹ 𝑉 = 4πœ‹ 𝑽=

𝑦3 3

+ 𝑏𝑦

π‘Ž3 π‘Ž3 βˆ’ 3 βˆ’ 2π‘Ž 3 βˆ’ π‘Žπ‘ 3

π‘Žπ‘

a

(-a,0)

o

(a,0)

x=b

πŸ–π…π’‚πŸ‘ πŸ‘

7. π‘₯ 2 + 𝑦 2 = 25 , π‘₯ + 𝑦 = 5 ; 𝑦 = 0 𝑉= πœ‹ 𝑽=

5 0

25 βˆ’ π‘₯ 2 βˆ’ 5 βˆ’ π‘₯

2

𝑑π‘₯

πŸπŸπŸ“π… 𝒄𝒖. π’–π’π’Šπ’•π’” πŸ‘

DIFFERENTIAL & INTEGRAL CALCULUS | Feliciano & Uy

70

EXERCISE 12.5

THE WASHER METHOD

9. 𝑦 2 = 4π‘₯, π‘₯ 2 = 4𝑦; π‘Žπ‘π‘œπ‘’π‘‘ 𝑑𝑕𝑒 π‘₯ βˆ’ π‘Žπ‘₯𝑖𝑠

𝑦2 = 𝑦1

2

π‘₯2 4π‘₯ = 4 3 64π‘₯ = π‘₯ π‘₯ = 4, 𝑦 = 4: 𝑃𝑂𝐼 (4,4) 4

𝑉=πœ‹

4π‘₯

2

βˆ’

0 4

π‘₯2 4

2

𝑑π‘₯

π‘₯4 𝑑π‘₯ 16 0 π‘₯5 4 𝑉 = πœ‹ 2π‘₯ 2 βˆ’ 80 0 (4)5 𝑉 = πœ‹ 2(4)2 + 80 πŸ—πŸ”π… 𝑽= π‘ͺ𝑼𝑩𝑰π‘ͺ 𝑼𝑡𝑰𝑻𝑺 πŸ“ 𝑉=πœ‹

11. 𝑦 2 = 8π‘₯, π‘Œ = 2π‘₯; π‘Žπ‘π‘œπ‘’π‘‘ 𝑦 = 4

4π‘₯ βˆ’

𝑦2 = 𝑦1 8π‘₯ = 2π‘₯

2

8π‘₯ = 4π‘₯ 2 π‘₯ = 2, 𝑦 = 4: 𝑃𝑂𝐼 (2,4) 4π‘₯ 3 2 𝑉 = πœ‹ 4π‘₯ 2 βˆ’ 3 0 4(2)3 𝑉 = πœ‹ 4(2) + 3 2

𝑽=

πŸπŸ”π… π‘ͺ𝑼𝑩𝑰π‘ͺ 𝑼𝑡𝑰𝑻𝑺 πŸ‘

DIFFERENTIAL & INTEGRAL CALCULUS | Feliciano & Uy

71

EXERCISE 12.6

THE CYLINDRICAL SHELL METHOD

𝟏. 4𝑦 = π‘₯ 3 , 𝑦 = 0, π‘₯ = 2, ; π‘Žπ‘π‘œπ‘’π‘‘ π‘₯ = 2

V = 2Ο€

2 π‘₯𝑦𝑑π‘₯ 0

V = 2Ο€

2 0

V = 2Ο€

2 π‘₯2 [ 0 2

V = 2Ο€ V = 2Ο€ V = 2Ο€ V=

2βˆ’π‘₯

π‘₯4 4

βˆ’

βˆ’

(2)4 4

βˆ’

π‘₯3 4

dx

π‘₯4 ]𝑑π‘₯ 4

π‘₯5 20

2 0

(2)5 20

3 5

πŸ’π… cubic units πŸ“

2 0

3. π‘₯ = 4𝑦 – 𝑦 2 , 𝑦 = π‘₯ , π‘Žπ‘π‘œπ‘’π‘‘ 𝑦 = 0

V = 2Ο€

3 π‘₯𝑦𝑑𝑦 0

V = 2Ο€

3 0

V = 2Ο€

3 0

V = 2Ο€

4𝑦 βˆ’ 𝑦 2 βˆ’ 𝑦 𝑦𝑑𝑦 4𝑦 2 βˆ’ 𝑦 3 βˆ’ 𝑦 2 𝑑𝑦

4 2 𝑦 3

V = 2Ο€ 𝑦 3 βˆ’

𝑦4 4

V = 2Ο€ (3)3 βˆ’ V=

πŸπŸ•π… π’„π’–π’ƒπ’Šπ’„ 𝟐

1 4 𝑦 4

βˆ’

1

βˆ’ 3 𝑦3

3 0

(3)4 4

3 0

π’–π’π’Šπ’•π’”

DIFFERENTIAL & INTEGRAL CALCULUS | Feliciano & Uy

72

3 0

EXERCISE 12.6

THE CYLINDRICAL SHELL METHOD

πœ‹

5. 𝑦 = 𝑠𝑖𝑛π‘₯, 𝑦 = π‘π‘œπ‘ π‘₯, π‘₯ = 2 𝑉 = 2πœ‹ 𝑽=

πœ‹ 2 πœ‹ 4

π‘₯ 𝑠𝑖𝑛π‘₯ βˆ’ π‘π‘œπ‘ π‘₯ 𝑑π‘₯

𝝅 πŸ’ + πŸπ… βˆ’ πŸπ… 𝒄𝒖. π’–π’π’Šπ’•π’” 𝟐

7. π‘₯ = 2 𝑦 𝑉 = 2πœ‹ 𝑽=

9 0

πœ‹ 2

,π‘₯ = 0 ,𝑦 = 0

Y=9

9 βˆ’ 𝑦 2 𝑦 𝑑𝑦

πŸπŸπŸ—πŸ”π… 𝒄𝒖. π’–π’π’Šπ’•π’” πŸ“

9.𝑦 = 𝑙𝑛π‘₯ , π‘₯ = 𝑒 , 𝑦 = 0 𝑉 = 2πœ‹

𝑒 π‘₯ 1

𝑙𝑛π‘₯ 𝑑π‘₯ (e,1)

𝑽 = πŸπŸ‘. πŸ•πŸ• 𝒄𝒖. π’–π’π’Šπ’•π’”

(1,0) X=e

DIFFERENTIAL & INTEGRAL CALCULUS | Feliciano & Uy

73

EXERCISE 12.6

THE CYLINDRICAL SHELL METHOD

11. 𝑦 2 = 8π‘₯ , π‘₯ = 0 , 𝑦 = 4 ; about 𝑦 = 4

4

𝑉 = 2πœ‹

4βˆ’π‘¦ 0

=

πœ‹ 4

4

𝑦2 𝑑𝑦 8

4𝑦 2 βˆ’ 𝑦 3 𝑑𝑦

0

=

πœ‹ 4𝑦 3 4 3

=

πŸπŸ”π… πŸ‘

βˆ’

4 𝑦4 4 0

13. ( π‘₯ – 3 ) 2 + 𝑦 2 = 9; π‘Žπ‘π‘œπ‘’π‘‘ 𝑑𝑕𝑒 𝑦 – π‘Žπ‘₯𝑖𝑠. 3

𝑉 = 8πœ‹

2 x 9 ο€­ ( x ο€­ 3) dx

0 𝑉 = 8πœ‹(

βˆ’ ( 9 – ( x βˆ’ 3 ) 2 3 27 𝑠𝑖𝑛π‘₯ βˆ’ 3 9 )2 + + (π‘₯ βˆ’ 3)( 9 βˆ’ π‘₯ βˆ’ 3 3 2 3 2

𝑉 = 8πœ‹(27π‘ π‘–π‘›πœƒ βˆ’

2

3 0

27 𝑠𝑖𝑛 βˆ’ 1) 2

27 𝑉 = 8πœ‹( )(βˆ’π‘ π‘–π‘› βˆ’ 1 + π‘ π‘–π‘›πœƒ) 2 πœ‹ 𝑉 = 108πœ‹( ) 2 𝑽 = πŸ“πŸ’π…πŸ

DIFFERENTIAL & INTEGRAL CALCULUS | Feliciano & Uy

74

EXERCISE 12.6

THE CYLINDRICAL SHELL METHOD

15. π‘₯ 2 + 𝑦 2 = π‘Ž2 ; π‘Žπ‘π‘œπ‘’π‘‘ π‘₯ = 𝑏 𝑏 > π‘Ž π‘Ž

𝑉= πœ‹

π‘βˆ’π‘₯ βˆ’π‘Ž π‘Ž

𝑉= πœ‹

2

βˆ’ π‘βˆ’π‘₯

2

𝑑𝑦

𝑏 2 βˆ’ 𝑏π‘₯ + π‘₯ 2 βˆ’ 𝑏 2 βˆ’ 𝑏π‘₯ + π‘₯ 2 𝑑𝑦

βˆ’π‘Ž π‘Ž

𝑉= πœ‹

4𝑏π‘₯𝑑𝑦 βˆ’π‘Ž

π‘›π‘œπ‘‘π‘’: π‘₯ 2 + 𝑦 2 = π‘Ž2 𝑉 = 4π‘πœ‹ 𝑉 = 4π‘πœ‹

π‘Ž βˆ’π‘Ž

𝑦 2 βˆ’ π‘Ž2

=π‘₯=

𝑦 2 βˆ’ π‘Ž2 𝑑𝑦

𝑦 π‘Ž2 π‘Ž 𝑦 2 βˆ’ π‘Ž2 βˆ’ ln 𝑦 + 𝑦 2 βˆ’ π‘Ž2 + 𝑐 βˆ’π‘Ž 2 2

𝑽 = πŸπ…πŸ π’‚πŸ 𝒃 π‘₯ 2 + 𝑦 2 = π‘Ž2

a

a

a

a

DIFFERENTIAL & INTEGRAL CALCULUS | Feliciano & Uy

75

EXERCISE 12.7

𝟏.

VOLUME OF SOLIDS WITH KNOWN CROSS SECTIONS

π‘₯ 2 + 𝑦 2 = 36

πŸ‘. 9π‘₯ 2 + 16𝑦 2 = 144

𝑆2 𝐴 π‘₯ = , 2

𝑆 = 2𝑦

𝐴 π‘₯ = 2𝑦 2 ,

𝑦=

36 βˆ’ π‘₯ 2

6

𝑣=

𝐴 π‘₯ 𝑑π‘₯ βˆ’6

1 𝐴 π‘₯ = (2𝑦)(𝑦) 2 𝐴 π‘₯ = 𝑦2 8

0

2π‘₯ 2 𝑑π‘₯

𝑣=

𝑦 2 𝑑π‘₯

𝑉=2

6

𝑉=2

βˆ’6

𝑣=

1 𝐴 π‘₯ = 𝑏𝑕 2

6 2(3π‘₯ βˆ’6

βˆ’ π‘₯ 2 )𝑑π‘₯

8 144βˆ’9π‘₯ 2 0 16

𝑑π‘₯

𝑽 = πŸ’πŸ– 𝒄𝒖. π’–π’π’Šπ’•π’”

𝒗 = πŸ“πŸ•πŸ” 𝒄𝒖. π’–π’π’Šπ’•π’”

DIFFERENTIAL & INTEGRAL CALCULUS | Feliciano & Uy

76

EXERCISE 12.7

VOLUME OF SOLIDS WITH KNOWN CROSS SECTIONS

πŸ“.

𝐴 𝑦 = (1 βˆ’ π‘₯)(2𝑦 2 ) 2

𝑉 = 2 (1 βˆ’ π‘₯ )2𝑦 2 𝑑𝑦 0 2

𝑉 = 2 (1 βˆ’ 0

𝑦2 2 )𝑦 𝑑𝑦 4

64

𝑉 = 15 𝑽 = πŸ’. πŸπŸ”πŸ”πŸ• 𝒄𝒖. π’–π’π’Šπ’•π’”

DIFFERENTIAL & INTEGRAL CALCULUS | Feliciano & Uy

77

EXERCISE 12.8

LENGTH OF AN ARC

3

𝟏. 𝑦 = π‘₯ 2 π‘“π‘Ÿπ‘œπ‘š π‘₯ = 0 π‘‘π‘œ π‘₯ = 5

2

2

3

𝑦 = π‘₯2 3 1 𝑑𝑦 = π‘₯ 2 𝑑π‘₯ 2 𝑑𝑦 3 1 = π‘₯2 𝑑π‘₯ 2 𝑠= 0

𝑆=

=

𝑑𝑦 1 + ( )2 𝑑π‘₯ 𝑑π‘₯

=

5 0

1+

1+ βˆ’ 0

2

𝑆=

π‘₯

0

𝑦3 1

π‘₯3

2

𝑑π‘₯

1

π‘₯3 + 𝑦3

2

5 0

1

9

9 5

2

3. 𝑑𝑕𝑒 π‘’π‘›π‘‘π‘–π‘Ÿπ‘’ π‘•π‘¦π‘π‘œπ‘π‘¦π‘π‘™π‘œπ‘–π‘‘ π‘₯ 3 + 𝑦 3 + π‘Ž3

2 3

2

𝑑π‘₯

2

π‘π‘œπ‘‘π‘’: π‘Ž3 = π‘₯3 + 𝑦3

3 1 ( π‘₯ 2 )2 dx 2

2

9

9 4

π‘Ž3

𝑆=

1 + π‘₯ 𝑑π‘₯

2

π‘₯3

0

𝒔 = 𝟏𝟐. πŸ’πŸŽπŸ• π’–π’π’Šπ’•π’”

9

𝑆= 0

𝑑π‘₯

1

π‘Ž3 1

π‘₯3

𝑑π‘₯ 2

3π‘₯ 3 9 𝑆= π‘Ž 2 0 1 3

𝑆=

3π‘Ž 2

𝑆=4

3π‘Ž 2

𝑺 = πŸ”π’‚

X=0

x=5

DIFFERENTIAL & INTEGRAL CALCULUS | Feliciano & Uy

78

EXERCISE 12.8

LENGTH OF AN ARC

5. 𝑦 = π΄π‘Ÿπ‘π‘ π‘–π‘›π‘’ π‘₯ , π‘“π‘Ÿπ‘œπ‘š 𝑦 =

πœ‹ 6

π‘‘π‘œ 𝑦 =

πœ‹ 2

𝑦 = π΄π‘Ÿπ‘π‘ π‘–π‘›π‘’ π‘₯ ; 𝑙𝑛 𝑠𝑖𝑛𝑦 = π‘₯ 1 π‘π‘œπ‘ π‘¦π‘‘π‘¦ = 𝑑π‘₯ 𝑠𝑖𝑛𝑦

7. π‘œπ‘›π‘’ π‘Žπ‘Ÿπ‘’π‘Ž π‘œπ‘“ 𝑑𝑕𝑒 π‘π‘¦π‘π‘™π‘œπ‘–π‘‘ π‘₯ = π‘Ž πœƒ βˆ’ π‘ π‘–π‘›πœƒ , 𝑦 = π‘Ž(1 βˆ’ π‘π‘œπ‘ πœƒ) π‘₯ = π‘Ž(πœƒ βˆ’ π‘ π‘–π‘›πœƒ) 𝑑π‘₯ = π‘Ž(π‘‘πœƒ βˆ’ π‘π‘œπ‘ πœƒπ‘‘πœƒ)

𝑦 = π‘Ž(1 βˆ’ π‘π‘œπ‘ πœƒ) 𝑑𝑦 = π‘Ž(π‘ π‘–π‘›πœƒπ‘‘πœƒ)

𝑑π‘₯ π‘‘πœƒ

𝑑𝑦 π‘‘πœƒ

= π‘Ž(1 βˆ’ π‘π‘œπ‘ πœƒ)

𝑑π‘₯ π‘π‘œπ‘ π‘¦ = 𝑑𝑦 𝑠𝑖𝑛𝑦

2πœ‹

𝑠=

𝑑π‘₯ = π‘π‘œπ‘‘π‘¦ 𝑑𝑦 𝑆= =

πœ‹ 2 πœ‹ 6

πœ‹ 2 πœ‹ 6

2

+ π‘Ž2 sin2 πœƒ

0

𝑠=π‘Ž 1+

π‘Ž2 1 βˆ’ π‘π‘œπ‘ πœƒ

= π‘Žπ‘ π‘–π‘›πœƒ

𝑑π‘₯ 2 𝑑𝑦

𝑑𝑦

2πœ‹ 0

1 βˆ’ π‘π‘œπ‘ πœƒ

2

+ sin2 πœƒ

𝒔 = πŸ–π’‚

1 + π‘π‘œπ‘‘ 2 𝑦 𝑑𝑦

𝑺 = 𝟏. πŸ‘πŸπŸ”πŸ—πŸ” π’–π’π’Šπ’•π’”

9. 𝑇𝑕𝑒 πΆπ‘Žπ‘Ÿπ‘‘π‘–π‘œπ‘–π‘‘ π‘Ÿ = 2 1 βˆ’ π‘π‘œπ‘ πœƒ

πœ‹ 2

π‘Ÿ = 2 1 βˆ’ π‘π‘œπ‘ πœƒ π‘‘π‘Ÿ = 2 π‘ π‘–π‘›πœƒ π‘‘πœƒ π‘‘π‘Ÿ = 2π‘ π‘–π‘›πœƒ π‘‘πœƒ π‘Ÿ 2 = 4(1 βˆ’ π‘π‘œπ‘ πœƒ)2 2πœ‹

𝑆=

4(1 βˆ’ π‘π‘œπ‘ πœƒ)2 + 4𝑠𝑖𝑛2 πœƒ π‘‘πœƒ

0

𝑆=2 πœ‹ 6

2πœ‹ 0

(1 βˆ’ π‘π‘œπ‘ πœƒ)2 + 𝑠𝑖𝑛2 πœƒ π‘‘πœƒ

𝑺 = πŸπŸ” π’–π’π’Šπ’•π’”

DIFFERENTIAL & INTEGRAL CALCULUS | Feliciano & Uy

79

EXERCISE 12.9

AREA OF A SURFACE OF REVOLUTION

1. π‘₯ 2 + 𝑦 2 = 16 ; π‘“π‘Ÿπ‘œπ‘š π‘₯ = 2 π‘‘π‘œ π‘₯ = 4

3. 𝑦 2 = 12π‘₯ ; π‘“π‘Ÿπ‘œπ‘š π‘₯ = 0 π‘‘π‘œ π‘₯ = 3

4

𝑆 = 2πœ‹

3

𝑦𝑑𝑠

𝑆 = 2πœ‹

2

𝑦=

𝑦 = 12π‘₯

16 βˆ’ π‘₯ 2

𝑑𝑦 1 = 16 βˆ’ π‘₯ 2 𝑑π‘₯ 2

1 2

βˆ’

𝑑𝑦 1 = 12π‘₯ 𝑑π‘₯ 2

(βˆ’2π‘₯)

2

𝑑𝑠 =

𝑑𝑦 1+ 𝑑π‘₯

𝑑𝑠 =

π‘₯2 1+ 𝑑π‘₯ 16 βˆ’ π‘₯ 2

𝑑𝑠 =

16 βˆ’ + 16 βˆ’ π‘₯ 2

16 βˆ’ π‘₯ 2

𝑆 = 2πœ‹

π‘₯2

(12)

𝑑𝑠 =

16 βˆ’ π‘₯ 2

36 𝑑π‘₯ 12π‘₯

12π‘₯ + 36

𝑑𝑠 =

12π‘₯ 2 3π‘₯ + 9

𝑑π‘₯

12π‘₯

𝑑π‘₯

𝑑π‘₯

3

12π‘₯

2 3π‘₯ + 9

0

𝑑π‘₯

2

𝑆 = 2πœ‹

1+

𝑆 = 2πœ‹

4 4

𝑑𝑠 =

𝑑π‘₯

π‘₯2

1 2

𝑑𝑦 6 = 𝑑π‘₯ 12π‘₯

𝑑𝑦 π‘₯ =βˆ’ 𝑑π‘₯ 16 βˆ’ π‘₯ 2

𝑑𝑠 =

𝑦𝑑𝑠 0

4 16 βˆ’ π‘₯ 2

𝑆 = 4πœ‹ 𝑑π‘₯

3 0

12π‘₯

𝑑π‘₯

3π‘₯ + 9 𝑑π‘₯

𝑺 = πŸπŸ‘πŸ•. πŸ–πŸ”πŸŽ 𝒔𝒒. π’–π’π’Šπ’•π’”

4 4𝑑π‘₯ 2

𝑺 = πŸπŸ”π… 𝒔𝒒. π’–π’π’Šπ’•π’”

5. 𝑦 = π‘₯ 3 ; π‘“π‘Ÿπ‘œπ‘š π‘₯ = 0 π‘‘π‘œ π‘₯ = 1 𝑑𝑦 = 3π‘₯ 2 𝑑π‘₯ 𝑑𝑠 = 𝑆 = 2πœ‹

1 + 9π‘₯ 4 𝑑π‘₯ 1 3 π‘₯ 0

1 + 9π‘₯ 4 𝑑π‘₯

𝑺 = πŸ‘. πŸ“πŸ”πŸ‘πŸ 𝒔𝒒. π’–π’π’Šπ’•π’”

DIFFERENTIAL & INTEGRAL CALCULUS | Feliciano & Uy

80

EXERCISE 12.9

AREA OF A SURFACE OF REVOLUTION

7. π‘₯ = π‘π‘œπ‘ 2𝑦 ; π‘“π‘Ÿπ‘œπ‘š 𝑦 = 0 π‘‘π‘œ 𝑦 = πœ‹ 4

𝑆 = 2πœ‹

πœ‹ 4

π‘₯𝑑𝑠

0

𝑑π‘₯ = βˆ’ 𝑠𝑖𝑛 2𝑦(2) 𝑑𝑦 𝑑𝑠 = 𝑆 = 2πœ‹

1 + 4 𝑠𝑖𝑛2 2𝑦 πœ‹ 4

0

π‘π‘œπ‘  2𝑦 1 + 4 𝑠𝑖𝑛2 2𝑦 𝑑𝑦

𝑺 = πŸ’. πŸ—πŸ‘πŸ”πŸ”πŸ“ 𝒔𝒒. π’–π’π’Šπ’•π’”

9. 4 βˆ’ π‘₯ 2 π‘“π‘Ÿπ‘œπ‘š π‘₯ = 0 π‘‘π‘œ π‘₯ = 2 2

𝑆 = 2πœ‹

π‘₯𝑑𝑠 0

𝑑𝑦 = βˆ’2π‘₯ 𝑑π‘₯ 𝑑𝑠 = 1 + 4π‘₯^2 𝑑π‘₯ 𝑆 = 2πœ‹

2 π‘₯ 0

1 + 4π‘₯ 2 𝑑π‘₯

𝑺 = πŸ‘πŸ”. πŸπŸ•πŸ”πŸ— 𝒔𝒒. π’–π’π’Šπ’•π’”

DIFFERENTIAL & INTEGRAL CALCULUS | Feliciano & Uy

81

EXERCISE 12.9

AREA OF A SURFACE OF REVOLUTION

13. 𝑦 = π‘šπ‘₯ ; π‘₯ = 0 ; π‘₯ = 1 ; π‘Žπ‘π‘œπ‘’π‘‘ 𝑑𝑕𝑒 π‘₯ βˆ’ π‘Žπ‘₯𝑖𝑠 1

𝑆 = 2πœ‹

π‘šπ‘₯

1 + π‘š2

𝑑π‘₯

0 1

𝑆 = 2πœ‹ π‘š

1 + π‘š2 =

π‘₯ 𝑑π‘₯ 0

𝑆 = 2πœ‹ π‘š 𝑆 = 2πœ‹ π‘š

1 + π‘š2( π‘₯2/2 )

1 0

1 + π‘š2( Β½ )

𝑺 = 𝝅 π’Ž 𝟏 + π’ŽπŸ

DIFFERENTIAL & INTEGRAL CALCULUS | Feliciano & Uy

82

EXERCISE 13.1

1.

FORCE OF FLUID PRESSURE

𝐹 = 𝑀𝐴π‘₯ = (62.5𝑙𝑏/𝑓𝑑 3 )(96𝑓𝑑 2 )(4𝑓𝑑) = 24000𝑙𝑏

𝑃=

𝐹 𝐴

𝑃=

𝑀𝐴π‘₯ 𝐴

3. 𝐹 = 𝑀𝐴π‘₯ 1 𝐹=𝑀 5 3 2

2 2 + ( )(3) 3

𝑭 = πŸ‘πŸŽπ’˜ 𝒍𝒃

2 3

𝑃 = 𝑀π‘₯

5

62.5𝑙𝑏3 1𝑓𝑑 2 𝑃=( )(4𝑓𝑑)( ) 𝑓𝑑 144𝑖𝑛 2 𝑃=

3 5

(625)(4) 144

5 3

𝑷 = 𝟏. πŸ•πŸ’ π’‘π’”π’Š

5

5. 𝐹 = 50𝑀

12ft

π‘π‘Žπ‘ π‘’ = 3𝑓𝑑 8ft

π‘₯

𝐹 = 𝑀𝐴π‘₯ 50 =

1 𝑕 3 2

50 =

𝑕2 2

1 𝑕 3

100 = 𝑕2 𝒉 = πŸπŸŽπ’‡π’•

3 5

h 5

DIFFERENTIAL & INTEGRAL CALCULUS | Feliciano & Uy

83

EXERCISE 13.1

FORCE OF FLUID PRESSURE

7. 𝐹 = 𝑀𝐴π‘₯ = 𝑀[(πœ‹)(3)(2)](2) 𝑭 = πŸπŸπ… π’˜ 𝑏 = 6 = major axis π‘Ž = 4 = π‘šπ‘–π‘›π‘œπ‘Ÿ π‘Žπ‘₯𝑖𝑠

0

y π‘₯

b a

A=πœ‹π‘Žπ‘

x

DIFFERENTIAL & INTEGRAL CALCULUS | Feliciano & Uy

84

EXERCISE 13.2

WORK

1.

𝑏

𝑀=

𝑓 π‘₯ 𝑑π‘₯ π‘Ž

𝑓 π‘₯ = π‘˜π‘₯ 40 𝑙𝑏 = π‘˜ 𝑀=

;

π‘€π‘•π‘’π‘Ÿπ‘’ π‘₯ =

1 𝑓𝑑, 2

𝑓 π‘₯ = 40 𝑙𝑏 ; π‘Ž = 0,

𝑏 = 14 βˆ’ 10 = 4

1 𝑓𝑑 , π‘˜ = 80 2

4 80π‘₯𝑑π‘₯ 0

π’˜ = πŸ”πŸ’πŸŽ 𝒍𝒃 βˆ’ 𝒇𝒕

3.

𝑏

𝑀=

𝑓 π‘₯ 𝑑π‘₯ π‘Ž

𝑓 π‘₯ = π‘˜π‘₯ ; π‘€π‘•π‘’π‘Ÿπ‘’ π‘₯ = 𝑀=

1 𝐿 𝑓𝑑, 10

𝑓 π‘₯ = 5 𝑙𝑏

π‘Ž = 0, 𝑏 = 𝐿

𝐿 50 π‘₯𝑑π‘₯ 0 𝐿

π’˜ = πŸπŸ“π‘³ 𝒇𝒕 βˆ’ 𝒍𝒃

DIFFERENTIAL & INTEGRAL CALCULUS | Feliciano & Uy

85

EXERCISE 13.2

WORK

5. π‘Š = 𝐹𝑆 𝑑𝑀 = 𝑀 𝑑𝑣 60 βˆ’ π‘₯ 𝑑𝑀 = πœ‹π‘Ÿ 2 𝑀 60 βˆ’ π‘₯ 𝑑π‘₯ 𝑑𝑀 = 9πœ‹π‘€(60 βˆ’ π‘₯)𝑑π‘₯ 𝑀

10

𝑑𝑀 = 9πœ‹π‘€ 0

60 βˆ’ π‘₯ 𝑑π‘₯ 0

𝑀 = 9πœ‹π‘€ 60π‘₯ βˆ’ π‘₯ 2 𝑀 = 9πœ‹π‘€ 60π‘₯ βˆ’

10 0

π‘₯ 2 10 2 0

𝑀 = 9πœ‹π‘€ 600 βˆ’ 50 π’˜ = πŸ’πŸ—πŸ“πŸŽπ’˜π… 𝒇𝒕. 𝒍𝒃

DIFFERENTIAL & INTEGRAL CALCULUS | Feliciano & Uy

86

EXERCISE 13.2

WORK

9.

𝑏

𝑀=𝑀

𝑕𝑑𝑉 π‘Ž

π‘‰π‘Ÿπ‘’π‘π‘‘π‘Žπ‘›π‘”π‘™π‘’ = 𝑙 π‘₯ 𝑀 π‘₯ 𝑕; π‘€π‘•π‘’π‘Ÿπ‘’ 𝑙 = 10 𝑓𝑑, 𝑀 = 2π‘₯, 𝑕 = 𝑑𝑦 π‘₯2 + 𝑦2 = π‘Ÿ2 ; π‘₯ =

π‘Ÿ 2 βˆ’ 𝑦 2 ; π‘€π‘•π‘’π‘Ÿπ‘’ π‘Ÿ = 2

2

𝑀=πœ‹

6βˆ’π‘¦

10 𝑓𝑑 2π‘₯ 𝑑𝑦

βˆ’2

2

𝑀 = 20πœ‹

6βˆ’π‘¦

22 βˆ’ 𝑦 2 𝑑𝑦

βˆ’2

π’˜ = πŸπŸ’πŸŽπ…π’˜ 𝒇𝒕 βˆ’ 𝒍𝒃

DIFFERENTIAL & INTEGRAL CALCULUS | Feliciano & Uy

87

EXERCISE 13.3

FIRST MOMENT OF A PLANE AREA

1. 𝑦 2 = 4π‘₯, 𝑑𝑕𝑒 π‘₯ βˆ’ π‘Žπ‘₯𝑖𝑠 π‘Žπ‘›π‘‘ π‘₯ = 4 𝑀π‘₯ =

5. 𝑦 2 = 4π‘₯ π‘Žπ‘›π‘‘ π‘₯ 2 = 4𝑦

1 4 4π‘₯𝑑π‘₯ 2 0

𝑴𝒙 = πŸπŸ” 𝑀𝑦 =

4 π‘₯ 0

4π‘₯ 𝑑π‘₯

π‘΄π’š = πŸπŸ“. πŸ”

𝑦2 = 4π‘₯

4π‘₯ =

π‘₯4 16

64π‘₯ βˆ’ π‘₯ 4 = 0

π‘₯=4

π‘₯ 64 βˆ’ π‘₯ 3 = 0 π‘₯1 = 0, π‘₯2 = 4 1

𝑀𝒙 = 2 3. π‘₯ = 4

𝑴𝒙 =

4 π‘œ

4π‘₯ βˆ’

π‘₯4 16

𝑑𝑦

πŸ’πŸ– πŸ“

𝑏

π‘€π›Œ = π‘€π›Œ = π‘€π›Œ = π‘€π›Œ = π‘΄π›Œ =

𝑙𝑑𝐴 π‘Ž 4

π‘₯ 4 βˆ’ π‘₯ 𝑑𝑦 π‘œ 4 π‘œ 4

4π‘₯ βˆ’ π‘₯ 2 𝑑𝑦 𝑦2 βˆ’

π‘œ

𝑦4 𝑑𝑦 16

πŸπŸ“πŸ” πŸπŸ“ DIFFERENTIAL & INTEGRAL CALCULUS | Feliciano & Uy

88

EXERCISE 13.3

FIRST MOMENT OF A PLANE AREA

7. 𝑀 =

3 0

3βˆ’π‘¦ [

=

3 0

3βˆ’π‘¦

27πœ‹ βˆ’9βˆ’9 4 27πœ‹ 𝑀= βˆ’ 18 4 27πœ‹βˆ’72 𝑀= 4

9 βˆ’ 𝑦 2 βˆ’ 3 βˆ’ 𝑦 𝑑𝑦

𝑀=

3 + 𝑦 3 βˆ’ 𝑦 βˆ’ (3 βˆ’ 𝑦)2 𝑑𝑦

3 1 3 (3 βˆ’ 𝑦)2 (3 + 𝑦)2 βˆ’ (3 βˆ’ 𝑦)2 𝑑𝑦 0 3 3 3 = 0 3 9 βˆ’ 𝑦 2 𝑑𝑦 βˆ’ 0 𝑦 9 βˆ’ 𝑦 2 𝑑𝑦 βˆ’ 0 (3 βˆ’ 𝑦)2 𝑑𝑦

=

3 9 0 9βˆ’π‘¦ 2 3

*𝐴 =3 π‘π‘œπ‘ πœƒ =

βˆ’ 𝑦2

𝑑𝑦

πŸ— [πŸ‘π… βˆ’ πŸ–] πŸ’

𝑦

π‘ π‘–π‘›πœƒ = 3

9 βˆ’ 𝑦2

3π‘π‘œπ‘ πœƒ =

𝑴=

𝑦

3π‘ π‘–π‘›πœƒ = 𝑦; πœƒ = π‘Žπ‘Ÿπ‘π‘ π‘–π‘› 3

3π‘π‘œπ‘ πœƒπ‘‘πœƒ = 𝑑𝑦 πœ‹ 𝑦 = 3; πœƒ = 2

πŸ—. π‘₯ = 4𝑦 βˆ’ 𝑦 2 , 𝑦 = π‘₯

𝑦 = 0; πœƒ = 0 =3 = 27

πœ‹ 2

0

πœ‹ 2

3π‘π‘œπ‘ πœƒπ‘π‘œπ‘ πœƒπ‘‘πœƒ

0

= 27

πœ‹ 2

π‘π‘œπ‘  2 πœƒπ‘‘πœƒ = 27

0

πœ‹

1 + π‘π‘œπ‘ 2πœƒ π‘‘πœƒ 2

πœƒ 𝑠𝑖𝑛2πœƒ 2 πœ‹ 27πœ‹ + = 27 = 2 4 4 4 0 3

*𝐡 = βˆ’

𝑦 9 βˆ’ 𝑦 2 𝑑𝑦

0

𝑒 = 9 βˆ’ 𝑦2 𝑑𝑒 = βˆ’2𝑦𝑑𝑦 βˆ’ = = =

1 2

𝑑𝑒 2

9βˆ’π‘¦ 2 3 2

= 𝑦𝑑𝑦 | 30 3 2

1 2 ( )[(9 βˆ’ 9) βˆ’ 2 3 1 βˆ’27 = βˆ’9 3

*𝐢 =βˆ’

@ 𝑦 = 3; 𝑒 = 0 𝑦 = 0; 𝑒 = 9

3 (3 βˆ’ 0

3 2

𝑑

𝑀𝑦 =

1 2

𝑀𝑦 =

1 3 2 0

π‘΄π’š =

πŸ“πŸ’ πŸ“

(9 βˆ’ 0) ]

𝑐

π‘₯π‘Ÿ2 βˆ’ π‘₯𝑙2 𝑑𝑦 4𝑦 βˆ’ 𝑦 2

2

βˆ’ 𝑦 2 𝑑𝑦

𝑦)2 𝑑𝑦

𝑒 =3βˆ’π‘¦ 𝑑𝑒 = βˆ’π‘‘π‘¦ = =

(3βˆ’π‘¦)3 3 |0 3 3 0 3 βˆ’ 3 3

= βˆ’9

DIFFERENTIAL & INTEGRAL CALCULUS | Feliciano & Uy

89

EXERCISE 13.4

CENTROID OF A PLANE AREA

1. π‘₯ + 2𝑦 = 6, π‘₯ = 0, 𝑦 = 0 Solving for A 𝑑𝐴 = 𝑦𝑑π‘₯ 6 𝑑𝐴 0

=

6 0

𝐴 = [3π‘₯ βˆ’

π‘₯

3 βˆ’ 2 𝑑π‘₯

π‘₯2 6 ] 4 0

𝐴= 3 6 βˆ’

36 4

𝑨 = πŸ— 𝒔𝒒. π’–π’π’Šπ’•π’”

Solving for π‘₯

Solving for 𝑦

𝐴π‘₯ =

6 𝑋𝑐 0

𝑑𝐴

𝐴π‘₯ =

6 π‘₯ 0

3βˆ’

π‘₯2 2

𝑑π‘₯

𝐴𝑦 = 2

𝐴π‘₯ =

6 0

3π‘₯ βˆ’

π‘₯2 2

𝑑π‘₯

𝐴𝑦 =

3π‘₯ 2 2

𝐴π‘₯ = [

βˆ’

𝐴𝑦 =

6 π‘Œπ‘ 0 1

π‘₯3 6 ] 3 0

𝑑𝐴

6 π‘₯ π‘₯ (3 βˆ’ 2 ) (3 βˆ’ 2 )𝑑π‘₯ 0

1 6 (9 βˆ’ 2 0 1

3

3π‘₯ +

π‘₯2 )𝑑π‘₯ 4 π‘₯3

𝐴𝑦 = 2 [9π‘₯ βˆ’ 2 π‘₯ 2 + 12 ] 60 1

9π‘₯ = 18

𝑦 = 3 (3)

𝒙 = 𝟐 π’–π’π’Šπ’•π’”

π’š = 𝟏 π’–π’π’Šπ’•

Centroid: (2,1)

DIFFERENTIAL & INTEGRAL CALCULUS | Feliciano & Uy

90

EXERCISE 13.4

CENTROID OF A PLANE AREA

3. 𝑦 = 𝑠𝑖𝑛π‘₯, 𝑦 = 0 π‘“π‘Ÿπ‘œπ‘š π‘₯ = 0 βˆ’ πœ‹

A= 𝑦𝑑π‘₯ =

πœ‹ 0

𝑠𝑖𝑛π‘₯𝑑π‘₯

= βˆ’π‘π‘œπ‘ π‘₯ A=2 𝑦

𝑀π‘₯ = =

1

πœ‹ 0

1

πœ‹ 0

=2

π‘₯π‘π‘‘π‘Ž; π‘₯𝑐 = π‘₯

=

πœ‹ 0

𝑦 2 𝑑π‘₯

=

πœ‹ 0

𝑠𝑖𝑛2 π‘₯ 𝑑π‘₯

𝑒 = π‘₯ ; 𝑑𝑣 = 𝑠𝑖𝑛π‘₯

1 πœ‹ 1βˆ’π‘π‘œπ‘  2π‘₯ ( ) 𝑑π‘₯ 2 0 2 1 π‘₯

= 2 (2 βˆ’ 2 1 π‘₯

= 2 (2 βˆ’

𝑠𝑖𝑛 2π‘₯ 2

π‘₯𝑦𝑑𝐴 π‘₯𝑠𝑖𝑛π‘₯𝑑π‘₯

𝑑𝑒 = 𝑑π‘₯ ; 𝑣 = βˆ’π‘π‘œπ‘ π‘₯ 𝑑π‘₯

= βˆ’π‘π‘œπ‘ π‘₯ βˆ’ βˆ’π‘π‘œπ‘ π‘₯𝑑π‘₯

𝑠𝑖𝑛 2π‘₯ ) 4

= [βˆ’π‘₯π‘π‘œπ‘ π‘₯ + 𝑠𝑖𝑛π‘₯]

πœ‹ 4

𝑀π‘₯ = (2) π‘₯ =

πœ‹ 0

𝑀𝑦 =

πœ‹ 𝑦 ( )𝑦𝑑π‘₯ 0 2

=2

=

π‘¦π‘π‘‘π‘Ž; 𝑦𝑐 = 2

= βˆ’πœ‹π‘π‘œπ‘ πœ‹ + π‘ π‘–π‘›πœ‹ + 0 βˆ’ 𝑠𝑖𝑛0

πœ‹ 2

=πœ‹ πœ‹

𝑦 = ( 4 )(2) =

Centroid:

πœ‹ 8

𝝅 𝝅 , 𝟐 πŸ–

DIFFERENTIAL & INTEGRAL CALCULUS | Feliciano & Uy

91

EXERCISE 13.4

CENTROID OF A PLANE AREA

7. 𝑦 2 = π‘₯ 3 , 𝑦 = 2π‘₯ 4

𝐴=

3

(2π‘₯ βˆ’ π‘₯ 2 )𝑑π‘₯ 0

2 5 𝐴 = [π‘₯ 2 βˆ’ π‘₯ 2 ] 5 𝐴 = [16 βˆ’ 𝐴=

64 ] 5

16 π‘ π‘ž. 𝑒𝑛𝑖𝑑𝑠 5

4

𝐴π‘₯ =

𝑦π‘₯𝑑π‘₯

𝐴𝑦 =

0 4

𝐴π‘₯ =

3

(2π‘₯ βˆ’ π‘₯ 2 )π‘₯𝑑π‘₯

𝐴𝑦 =

0 4

𝐴π‘₯ =

5

(2π‘₯ 2 βˆ’ π‘₯ 2 )𝑑π‘₯

𝐴𝑦 =

0

2 2 7 𝐴π‘₯ = [ π‘₯ 3 βˆ’ π‘₯ 2 ] 3 7 π‘₯ =

𝐴𝑦 =

7 5 2 2 [ (4)3 βˆ’ (4)2 16 3 7

π‘₯=

5 128 257 [ βˆ’ ] 16 3 7

π‘₯=

40 𝑒𝑛𝑖𝑑𝑠 21

𝑦=

π‘ͺπ’†π’π’•π’“π’π’Šπ’…:

1 2 1 2 1 2

4

𝑦 2 𝑑π‘₯

0 4

5

[(2π‘₯)2 βˆ’ π‘₯ 2 ]𝑑π‘₯

0 4

(4π‘₯ 2 βˆ’ π‘₯ 3 ) 𝑑π‘₯

0

1 4 3 π‘₯4 4 π‘₯ βˆ’ 2 3 4 0

10 𝑒𝑛𝑖𝑑𝑠 3

πŸ’πŸŽ 𝟏𝟎 , 𝟐𝟏 πŸ‘

DIFFERENTIAL & INTEGRAL CALCULUS | Feliciano & Uy

92

EXERCISE 13.4

CENTROID OF A PLANE AREA

9. π‘₯ 2 + 𝑦 2 = 25,

π‘₯+𝑦 =5

25πœ‹ βˆ’ 50 4 25 𝐴= (πœ‹ βˆ’ 2) 4 𝐴=

5

𝑀𝑦 = 5

=

25 βˆ’ π‘₯ 2 βˆ’ 5π‘₯ 𝑑π‘₯

π‘₯ 0

π‘₯ 25 βˆ’

π‘₯ 2 𝑑π‘₯

5

βˆ’

0

5 x 25 βˆ’ π‘₯ 2 βˆ’ 5π‘₯ 𝑑π‘₯

𝐴= 𝐴=

0 5 0

25 βˆ’ π‘₯ 2 𝑑π‘₯ βˆ’ 5

𝐴∢

5 0

A 25 βˆ’ π‘₯ 2 𝑑π‘₯

5 𝑑π‘₯ 0

+

B

25 βˆ’ 5 π‘₯𝑑π‘₯ 0

C

25 βˆ’ π‘₯ 2

5 cos πœƒ =

π‘₯ 5 sin πœƒ = π‘₯ ; πœƒ = arcsin 5 πœ‹ 5 cos πœƒ = 𝑑π‘₯ @π‘₯ = 5 ; πœƒ = 2 π‘₯ =0; πœƒ =0 =

πœ‹ 2

5 cos πœƒ βˆ™ 5 cos πœƒ

0

= 25

πœ‹ 2

0

1 = 25 2

1 + π‘π‘œπ‘ 2πœƒ cos πœƒπ‘‘πœƒ β†’ cos πœƒ = 2 2

πœ‹ 2

0

1 π‘‘πœƒ + 2

2

πœ‹ 2

0

∏/2 πœ‹ +0 4 0 25πœ‹ = 4 5 𝐡 ∢ βˆ’ 5 0 𝑑π‘₯ 5 = βˆ’5π‘₯ 0 = βˆ’25

= 25

π‘₯2

𝐢∢ 2 25 = 2

5 0

25πœ‹ 25 βˆ’ 25 + 4 2 25 𝐴 = 25πœ‹ βˆ’ 2 ∴𝐴=

cos 2πœƒπ‘‘πœƒ

π‘₯2

𝑒 = 25 βˆ’ π‘₯ 2 𝑑𝑒 = βˆ’2π‘₯𝑑π‘₯ =

1 25βˆ’π‘₯ 2 2 βˆ’2 3

βˆ’

2

3

=βˆ’

25βˆ’π‘₯ 2 2

5π‘₯𝑑π‘₯ + 0

3

5

5

5π‘₯ 2 2

+

π‘₯3 3

5

5π‘₯ 2 2

π‘₯ 2 𝑑π‘₯

0

5 0

π‘₯3 3 0

βˆ’ + 0 125 125 125 = βˆ’ βˆ’ + βˆ’ βˆ’ βˆ’0+0 3 2 3 3 125 250 375 + 500 =βˆ’ + = βˆ’ 2 3 6 125 𝑀𝑦 = 6 2 1 5 𝑀π‘₯ = 25 βˆ’ π‘₯ 2 βˆ’ 5π‘₯ 2 𝑑π‘₯ 2 0 5 1 1 5 = 25 βˆ’ π‘₯ 2 𝑑π‘₯ βˆ’ 5 βˆ’ π‘₯ 2 𝑑π‘₯ 2 0 2 0 1 π‘₯3 π‘₯3 = 25π‘₯ βˆ’ βˆ’ 1/2 25π‘₯ + βˆ’ 5π‘₯ 2 3 3 =

3

1 125 1 125 125 βˆ’ βˆ’ 125 + βˆ’ 125 2 3 2 3

βˆ’ 0

125 6 ∴ π‘†π‘œπ‘™π‘£π‘–π‘›π‘” π‘“π‘œπ‘Ÿ π‘π‘’π‘›π‘‘π‘Ÿπ‘œπ‘–π‘‘: 𝑀π‘₯ =

𝑀π‘₯ π‘₯= = 𝐴 π‘₯=

125 6 25 πœ‹βˆ’2 4

=

125 4 βˆ™ 6 25 πœ‹ βˆ’ 2

10 3 πœ‹βˆ’2

𝑀π‘₯ 𝑦= = 𝐴 𝑦=3

10 πœ‹βˆ’2

125 6 25 πœ‹βˆ’2 4

π‘ͺπ’†π’π’•π’“π’π’Šπ’… π’Šπ’” 𝒂𝒕

𝟏𝟎 𝟏𝟎 , πŸ‘ π…βˆ’πŸ πŸ‘ π…βˆ’πŸ

DIFFERENTIAL & INTEGRAL CALCULUS | Feliciano & Uy

2

93

EXERCISE 13.5

CENTROID OF A SOLID OF REVOLUTION

1. 𝑦 2 = π‘₯ ; 𝑦 = 3 ; π‘₯ = 0 ; π‘Žπ‘π‘œπ‘’π‘‘ 𝑑𝑕𝑒 𝑦 βˆ’ π‘Žπ‘₯𝑖𝑠

πŸ‘. π‘₯ 2 𝑦 = 4, π‘₯ = 1, π‘₯ = 4, 𝑦 = 0 π‘Žπ‘π‘œπ‘’π‘‘ π‘₯ βˆ’ π‘Žπ‘₯𝑖𝑠 𝑏

3βˆ’π‘¦

𝑀π‘₯𝑧 =

π‘Œπ‘π‘‘π‘£ π‘Ž

𝑦

𝑦2 = π‘₯ 𝑑π‘₯

4

𝑦 2πœ‹ π‘₯𝑦𝑑π‘₯ = 2 2

= 2πœ‹ 1 4

=πœ‹ 1

= 16πœ‹ 𝑀π‘₯𝑧 =

π‘Œπ‘ 𝑑𝑉

;

1

=

π‘₯ 𝑦 0 0 9 3

4

𝑦 π‘₯𝑑π‘₯ = πœ‹ 1

1

𝑑π‘₯ π‘₯ βˆ’2 = 16πœ‹ π‘₯3 βˆ’2

4

1

2

4 π‘₯2

2

16 π‘₯ 4 π‘₯𝑑π‘₯ = 16πœ‹ π‘₯ 4

𝑀π‘₯𝑧 𝑦= 𝑉

4

π‘₯𝑑π‘₯

π‘₯ π‘₯𝑑π‘₯ π‘₯4

4

βˆ’8πœ‹ π‘₯2

= 1

4 1

15πœ‹ 2 𝑏

𝑙 2 𝑑π‘₯

𝑉=πœ‹ 9

𝑉 = 2πœ‹

π‘₯𝑦𝑑π‘₯ = 2πœ‹ 0

π‘Œπ‘ 𝑑𝑉 = 2πœ‹

𝑀π‘₯𝑧 = 381.70

4

π‘₯ 3 βˆ’ 𝑦 𝑑π‘₯ 0

9

𝑀π‘₯𝑧 =

π‘Ž

9

0

3+𝑦 2

4 π‘₯2

=πœ‹ 1

π‘₯

π‘₯ 𝑑π‘₯

π‘₯ 1

𝑀π‘₯𝑧 381.70 𝑦= = 𝑉 152.68 𝑦 = 2.5 𝟎, 𝟐. πŸ“, 𝟎

𝑑π‘₯ = πœ‹ 1

4

= 16πœ‹

𝑉=

21πœ‹ 4

𝑦=

𝑀π‘₯𝑧 𝑉

= 0,

10 , 7

=

4

2

βˆ’4

16 𝑑π‘₯ = 16πœ‹ π‘₯4

π‘₯ βˆ’3 𝑑π‘₯ = 16πœ‹ βˆ’3

4

= βˆ’ 1

4

1

𝑑π‘₯ π‘₯2

16πœ‹ 3π‘₯ 3

4 1

15πœ‹ 2 21πœ‹ 4

0

DIFFERENTIAL & INTEGRAL CALCULUS | Feliciano & Uy

94

EXERCISE 13.5

πŸ•. π‘₯ 2 = 4𝑦 x 0 1 2 4

,

4

4π‘₯

2

0 4

=πœ‹ 0

=

π‘₯2 βˆ’ 4

y 0 1 2 4

2

𝑑π‘₯

π‘₯4 4π‘₯ βˆ’ 𝑑π‘₯ 16

96πœ‹ 5 4

𝑀π‘₯𝑧 = 2πœ‹ 0

=

𝑦 2 = 4π‘₯ π‘Žπ‘π‘œπ‘’π‘‘ π‘₯ βˆ’ π‘Žπ‘₯𝑖𝑠 x 0 1/4 1 4

y 0 ΒΌ 1 4

=πœ‹

CENTROID OF A SOLID OF REVOLUTION

4π‘₯ + 2

π‘₯2 4

π‘₯

4π‘₯ βˆ’

π‘₯2 𝑑π‘₯ 4

128πœ‹ 3

𝑀π‘₯𝑧 𝑉

=𝑦=

π’š = 𝟎,

128 πœ‹ 3 96πœ‹ 5

𝟐𝟎 ,𝟎 πŸ—

DIFFERENTIAL & INTEGRAL CALCULUS | Feliciano & Uy

95

EXERCISE 13.5

CENTROID OF A SOLID OF REVOLUTION

𝟏𝟏. 𝑦 2 = 4π‘₯, 𝑦 = π‘₯ π‘Žπ‘π‘œπ‘’π‘‘ π‘₯ = 0

X 0 1/4 1 4

Y 0 1 2 4

X 1 2 3 4

Y 1 2 3 4

4

𝑉 = 2πœ‹

𝑋( 4𝑋 βˆ’ 𝑋)𝑑π‘₯ 0

𝑉 = 26.80829731 𝑐𝑒. 𝑒𝑛𝑖𝑑𝑠 𝑀π‘₯𝑧 = 2πœ‹

𝑦𝑐 π‘₯𝑑π‘₯ 4

𝑀π‘₯𝑧 = 2πœ‹ ( 0

4π‘₯ + π‘₯ )π‘₯ 2

4π‘₯ βˆ’ π‘₯ 𝑑π‘₯

𝑀π‘₯𝑧 = 64πœ‹/3 𝑦=

𝑀π‘₯𝑧 𝑉

= 2.5

y=(0, 2.5, 0)

DIFFERENTIAL & INTEGRAL CALCULUS | Feliciano & Uy

96

EXERCISE 13.6

MOMENT OF INERTIA OF A PLANE AREA

1. 2π‘₯ + 𝑦 = 6 , π‘₯ = 0 , 𝑦 = 0 ; π‘Žπ‘π‘œπ‘’π‘‘ π‘₯ βˆ’ π‘Žπ‘₯𝑖𝑠

5. π‘₯ = 2 𝑦 , π‘₯ = 0, 𝑦 = 4

dy

x

y

4-y

(4,4)

dx π‘₯ 0 3

𝑦 6 0

𝐼π‘₯ =

6 2 𝑦 π‘₯𝑑𝑦 0

= 6

6 2 6βˆ’π‘¦ 𝑦 0 2

π‘₯ 0 4

𝑑𝑦

1 6𝑦 2 βˆ’ 𝑦 3 𝑑𝑦 2 0 1 𝑦4 = 2𝑦 3 βˆ’ 2 4

𝑦 0 4

=

1 = 2 6 2

6 3 βˆ’ 4

4

𝐼𝑦 =

0 4

4

π‘Ÿ 2 𝑑𝐴

=

π‘₯ 2 4 βˆ’ 𝑦 𝑑π‘₯

0

= πŸ“πŸ’

=

3

3. 𝑦 = π‘₯ , π‘₯ = 8 , 𝑦 = 0 ; 𝑀𝑖𝑑𝑕 π‘Ÿπ‘’π‘ π‘π‘’π‘π‘‘ π‘‘π‘œ 𝑦 = 0

4 2 π‘₯ 0

π‘°π’š =

π‘₯2

4βˆ’2

𝑑π‘₯

πŸ“πŸπŸ πŸπŸ“

dy x

𝐼π‘₯ = =

2 2 𝑦 π‘₯𝑑𝑦 0 2 5

𝑦 𝑑𝑦

0

𝑰𝒙 =

= =

2 2 3 𝑦 (𝑦 )𝑑𝑦 0 6 6

𝑦 6

=

2 6

πŸ‘πŸ πŸ‘ DIFFERENTIAL & INTEGRAL CALCULUS | Feliciano & Uy

97

EXERCISE 13.6

MOMENT OF INERTIA OF A PLANE AREA

7. 𝑦 2 = 8π‘₯ , 𝑦 = 2π‘₯

9. 𝑦 = 4π‘₯ 2 , 𝑦 = 4π‘₯ ; 𝑀𝑖𝑑𝑕 π‘Ÿπ‘’π‘ π‘π‘’π‘π‘‘ π‘‘π‘œ 𝑦 βˆ’ π‘Žπ‘₯𝑖𝑠 𝑦 = 4π‘₯ 2 𝑦 = 4π‘₯

X1 X2

(1,4) dy

dx

y (0,0)

π‘₯ 0 1

π‘₯ 𝑦 π‘₯ 𝑦 0 0 0 0 1 2 2 1 2 2 4 2 4

𝑦 0 4

𝑏

𝐼𝑦 = 4

𝐼π‘₯ =

0

𝑦 2 (π‘₯π‘Ÿ βˆ’ π‘₯𝑙 ) 𝑑𝑦

4

𝐼π‘₯ = 𝐼π‘₯ = 𝑰𝒙 =

0

2

𝑦 𝑦 𝑦 2 ( βˆ’ ) 𝑑𝑦 2 8

4 𝑦3 ( 0 2

βˆ’

π‘₯ 𝑦 0 0 1 4

𝐼𝑦 = Iy =

π‘Ž

π‘₯ 2 (𝑦𝑒 βˆ’ 𝑦𝑙 ) 𝑑π‘₯

1 2 π‘₯ (4π‘₯ 0

βˆ’ 4π‘₯ 2 ) 𝑑π‘₯

1 5

𝑦4 ) 𝑑𝑦 8

πŸ‘πŸ πŸ“

DIFFERENTIAL & INTEGRAL CALCULUS | Feliciano & Uy

98

EXERCISE 13.6

MOMENT OF INERTIA OF A PLANE AREA

11. 𝑦 2 = 8π‘₯ , π‘₯ = 0 , 𝑦 = 4 , with respect to 𝑦 = 4

13. 𝑦 = π‘₯ , 𝑦 = 2π‘₯ , π‘₯ + 𝑦 = 6, 𝑀𝑖𝑑𝑕 π‘Ÿπ‘’π‘ π‘π‘’π‘π‘‘ π‘‘π‘œ π‘₯ = 0 π‘₯+𝑦 = 6

(6 βˆ’ π‘₯ βˆ’ 2π‘₯) 6 βˆ’ 3π‘₯ =

4

𝐼π‘₯ = =

1 8

4βˆ’π‘¦

2

0 4

𝑦2 𝑑𝑦 8

16𝑦 2 βˆ’ 8𝑦 3 + 𝑦 4 𝑑𝑦

0

=

1 16𝑦3 8 3

=

πŸ”πŸ’ πŸπŸ“

βˆ’ 2𝑦 4 +

4 𝑦5 5 0

π‘₯ 𝑦 0 0 1 1 2 2

𝑦 = 2π‘₯

π‘₯ 𝑦 0 0 1 2 2 4

π‘₯ 0 1 2

𝑦 0 5 4

𝒃

π‘°π’š = π‘°π’š = π‘°π’š =

𝒂

π’™πŸ 𝒀𝒖 βˆ’ 𝒀𝒍 𝒅𝒙

𝒃 𝟐 𝒙 𝒂

πŸ”βˆ’π’™ βˆ’

𝒙 𝟐

𝒅𝒙

πŸπŸ— 𝟐

DIFFERENTIAL & INTEGRAL CALCULUS | Feliciano & Uy

99

EXERCISE 13.7

MOMENT OF INERTIA OF A SOLID OF REVOLUTION

1. 𝑦 = 2 π‘₯ , 𝑦 = 0 , π‘₯ = 4 ;about π‘₯ = 0

3. 𝑏π‘₯ + π‘Žπ‘¦ = π‘Žπ‘ , π‘₯ = 0 , 𝑦 = 0 ;about the y-

axis

4

𝐼𝑦 = 2πœ‹ 4

= 4πœ‹

π‘₯ 3 2 π‘₯ βˆ’ 0 𝑑π‘₯

0

π‘₯

7

2 𝑑π‘₯

=

0 9

2π‘₯ = 4πœ‹ 9

= 4πœ‹

= 4πœ‹ =

2 4 9 1024 9

πŸ’πŸŽπŸ—πŸ”π… πŸ—

2

π‘Ž

𝐼𝑦 = 2πœ‹

4

= 0

9

2

βˆ’

2 0 9

9

2

4

2π‘πœ‹ π‘Ž

0 π‘Ž

π‘₯ 3 π‘Ž βˆ’ π‘₯ 4 𝑑π‘₯

0

2π‘πœ‹ π‘Ž π‘Ž

π‘Ž

π‘Ž

π‘₯ 3 𝑑π‘₯ βˆ’

0

2π‘πœ‹ π‘₯4 = π‘Ž π‘Ž 4

0

π‘Žπ‘ βˆ’ 𝑏π‘₯ βˆ’ 0 𝑑π‘₯ π‘Ž

π‘₯3

π‘₯ 4 𝑑π‘₯

0 π‘Ž 0

=

2π‘πœ‹ π‘Ž5 π‘Ž5 βˆ’ π‘Ž 4 5

=

2π‘πœ‹ π‘Ž

=

π’‚πŸ’ 𝒃𝝅 𝟏𝟎

π‘₯5 βˆ’ 5

π‘Ž 09

π‘Ž5 20

DIFFERENTIAL & INTEGRAL CALCULUS | Feliciano & Uy

100

EXERCISE 13.7

MOMENT OF INERTIA OF A SOLID OF REVOLUTION

5. 2π‘₯ + 3𝑦 = 6 , π‘₯ = 0 , 𝑦 = 0 ; about the x-

9. π‘₯𝑦 = 4 , 𝑦 = π‘₯ , 𝑦 = 1 ; about𝑦 = 0

axis

𝐼π‘₯ =

3

πœ‹ 2

4

6 βˆ’ 2π‘₯ 3

0

βˆ’ 0 𝑑π‘₯ 2

3 16π‘₯ 4 βˆ’192π‘₯ 3 +864π‘₯ 2 βˆ’1728π‘₯+1296

=

πœ‹ 2 0

=

πŸπŸ’π… πŸ“

81

𝑑π‘₯

𝐼π‘₯ = 2πœ‹ 2

= 2πœ‹

𝑦3

1

4 βˆ’ 𝑦 𝑑𝑦 𝑦

4𝑦 2 βˆ’ 𝑦 4 𝑑𝑦

1

7. 𝑦 2 = 3π‘₯ , 𝑦 = π‘₯ ; aboutπ‘₯ = 0

𝑦3 = 2πœ‹ 4 3 = 2πœ‹ =

3

𝐼𝑦 = 2πœ‹

28 3

βˆ’

2

𝑦5 βˆ’ 5 1

2 1

31 5

πŸ—πŸ’π… πŸπŸ“

π‘₯ 3 π‘₯ 3 βˆ’ π‘₯ 𝑑π‘₯

0

3

= 2πœ‹

π‘₯

7

3 βˆ’ π‘₯ 4 𝑑π‘₯

2

0 3

= 2πœ‹

3

π‘₯

7

0

= 2πœ‹ 54 βˆ’ =

3 2 𝑑π‘₯

βˆ’

π‘₯ 4 𝑑π‘₯

0

243 5

πŸ“πŸ’π… πŸ“

DIFFERENTIAL & INTEGRAL CALCULUS | Feliciano & Uy

101

EXERCISE 13.7

MOMENT OF INERTIA OF A SOLID OF REVOLUTION

11. 𝑦 = π‘₯ 2 , 𝑦 = 2π‘₯ ;about the y-axis

2

𝐼𝑦 = 2πœ‹ 2

= 2πœ‹

π‘₯ 3 2π‘₯ βˆ’ π‘₯ 2 𝑑π‘₯

0 1

2π‘₯ 4 βˆ’ π‘₯ 5 𝑑π‘₯

𝐼𝑦 = 2πœ‹

0 2

= 2πœ‹ 2

π‘₯ 4 𝑑π‘₯ βˆ’

0

=

64 5

βˆ’

2 0

π‘₯5 = 2πœ‹ 2 5 = 2πœ‹

13. 𝑦 = π‘₯ 3 , π‘₯ = 1 , 𝑦 = 0 ; about π‘₯ = βˆ’1

2

π‘₯6 βˆ’ 6 0

32 3

2

π‘₯ 5 𝑑π‘₯

1

= 2πœ‹

π‘₯+1

3

π‘₯ 3 βˆ’ 0 𝑑π‘₯

0

π‘₯ 6 + 3π‘₯ 5 + 3π‘₯ 4 + π‘₯ 3 𝑑π‘₯

0

= 2πœ‹

π‘₯7 7

0

=

+

π‘₯6 2

+

3π‘₯ 5 5

+

1 π‘₯4 4 0

πŸπŸŽπŸ—π… πŸ•πŸŽ

πŸ”πŸ’π… πŸπŸ“

DIFFERENTIAL & INTEGRAL CALCULUS | Feliciano & Uy

102

EXERCISE 13.7

MOMENT OF INERTIA OF A SOLID OF REVOLUTION

15. 𝑦 = 2π‘₯ , π‘₯ = 1 , 𝑦 = 0 ; about π‘₯ = 2

1

𝐼𝑦 = 2πœ‹ 1

= 4πœ‹

2βˆ’π‘₯

3

2π‘₯ 𝑑π‘₯

0

8π‘₯ βˆ’ 12π‘₯ 2 + 6π‘₯ 3 βˆ’ π‘₯ 4

0

= 4πœ‹ 4π‘₯ 2 βˆ’ 4π‘₯ 3 + =

3π‘₯ 4 2

βˆ’

1 π‘₯5 5 0

πŸπŸ”π… πŸ“

DIFFERENTIAL & INTEGRAL CALCULUS | Feliciano & Uy

103

Related Documents


More Documents from "Christelle Cha Lota"

Joint Cost
January 2021 1
January 2021 6
Obtencion De Glucogeno
February 2021 1
February 2021 2