Modul Pelatihan Base Isolation Stirrrd Padang

  • Uploaded by: allan subhakti
  • 0
  • 0
  • February 2021
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Modul Pelatihan Base Isolation Stirrrd Padang as PDF for free.

More details

  • Words: 25,890
  • Pages: 301
Loading documents preview...
DAFTAR ISI Dr. FEBRIN ANAS ISMAIL (UNAND) Konsep Prosedur Desain Seismic Isolator / 'SI' Bangunan PU di Sumatera Barat Dr. ABDUL HAKAM (UNAND) Foundation Review of Seismic Isolated Buildings in Sumatera Barat | Tinjauan Ulang Fondasi dari Bangunan Berisolasi Gempa di Sumatera Barat TEUKU FAISAL FATHANI, Ph. D (UGM) The Determination of Peak Ground Acceleration as the Seismic Input for Construction Design | Penentuan Percepatan Puncak Dasar Sebagai Input Gempa untuk Perancangan Konstruksi Prof. IMAN SATYARNO (UGM) Penggunaan Isolasi Dasar (Base Isolation) Berdasarkan Peraturan Gempa Indonesia SNI-1726-2012 Dr. DAVID WHITTAKER dan Ms. GEORGIA WHITLA (BECA) 1. Introduction to Seismic Isolation | Pengenalan terhadap Isolasi Gempa 2. Engineering Properties of Seismic Isolation | Sifat Teknis Isolasi Gempa 3. Design of New Isolated Buildings | Perencanaan Bangunan Baru dengan Isolasi 4. Case Studies: New Isolated Buildings – Design and Construction | Studi Kasus: Isolasi Bangunan Baru – Perencanaan dan Konstruksi 5. Isolation Design for Existing Buildings | Perencanaan Isolasi untuk Bangunan yang Telah Berdiri 6. Case Studies: Isolation of Existing Buildings – Design and Construction | Studi Kasus: Isolasi pada Bangunan Eksisting – Perencanaan dan Konstruksi 7. Isolation Location, Detailing of Building Utilities, Connections | Lokasi Isolasi, Perincian Perlengkapan Bangunan, Sambungan 8. Evaluation of Existing Base Isolated Buildings (& other things) | Evaluasi Bangunan Eksisting Berisolasi Dasar (& hal lainnya) 9. Base Isolated Building Treatment After a Large Earthquake | Perawatan Bangunan dengan Isolasi Dasar Setelah Gempa Bumi Besar

1

KONSEP PROSEDUR DISAIN SEISMIC ISOLATOR / 'SI' BANGUNAN PU DI SUMBAR

Febrin Anas Ismail Unand, 2015

USULAN KONSEP PROSEDUR DISAIN “SI”

„

1. IIDE 1 DE & MANFAAT MANFAAT “SI” SI

2. PROSEDUR DISAIN “SI” 3. SPESIFIKASI PRODUK “SI”

2

1. IDE DASAR & MANFAAT “SI”

BANGUNAN Goyangan Gempa Lemah ( a < 0,4 g )

SI

Goyangan Gempa Kuat ( a > 0,4 g )

¾

0DQIDDWಯ6,ರ'HYLFHV ƒ

Isolasi Bangunan dari tanah / pondasi

ƒ

Supporting beban Bangunan

ƒ

Reduksi Amplitudo respon goyangan / getaran Gempa kuat

ƒ

Mengembalikan posisi Bangunan setelah gempa

3

¾

-HQLVದ-HQLVಯ6,ರ ƒ

Elastomeric Sistem : (Natural Pubber, High dumping rubber, Lead Natural Rubber, Slider, Rotating Bearing)

ƒ

Dumping Sistem : (Lead dumper, Steel damper, oil damper)

ƒ

¾

Kombinasi Elastomeric Sistem & Dumping Sistem

$SOLNDVLಯ6,ರGL'81,$ ƒ

Penggunaan di USA : LNR / Lead Natural Rubber ………… Umum digunakan

ƒ

Penggunaan di JEPANG : LNR with / without Damper ………

ƒ

Umum digunakan

Penggunaan di PADANG / INDONESIA: LNR / Lead Natural Rubber ………

Lebih Efisien

(Lead Damper Æ Jumlah tingkat gedung dibatasi (max. 4 tingkat)

4

2. PROSEDUR DISAIN “SI”, BERDASARKAN :

“Ultimate Capacity of SI”

Ultimate Capacity of “SI”

Konfirmasi Kapasitas SI : 1. Allowable deformation of “SI” ƒ

ƒ

Shear Strain Maximum : —

Produk DSI

: 300% Rubber Height



Produk BS

: (300 – 400) % Rubber Height

Shear Strain design criteria : −

DSI

= 250% x Rubber height



BS = 250% x Rubber height 5

2.

Compressive and Tensile Stress

ƒ ƒ

ƒ 3.

σ ult compression Æ tergantung jenis dan dimensi “SI” σ comp. design criteria : −

DSI = (5 – 15) N/mm2



BS



Nilai

= (5 – 15) N/mm2

σcomp. = 10 N/mm2…… Nilai Moderat

σ tarik > 50 psi Isolation Gaps

ƒ

Horizontal Gaps …………… Pembatasan deformasi SI

ƒ

Vertical Gaps ………………. Pembatasan

σ tarik SI

GRAFIK : σcomp Vs Shear Strain

σcomp

<' 'LVSODFHPHQW'HVLJQ

˰ 3HUPDQHQW$OORZDEOH6WUHVV ˰' 7HPSRUDU\$OORZDEOH6WUHVV
σ σ

6KHDUVWUDLQ %6  cr

σ0 , Y1

0

σ cr , (Y) σD , YD

σD σ2

σ2 , YL Y1

YD Y 2

Shear Strain (%) / Displacement (mm)

6

Superstructure

Elastis & In Elastis In Elastis

SI

a1 < 0,4 g

Sistim SI ao ≥ 0,4 g

Superstructure : -

Kolom Balok Koneksi Kolom – Balok Sistim Lantai

Sistim SI :

Pondasi SI Balok & Kolom Sistim Lantai

-

Elastis & In Elastis

In Elastis

SPESIFIKASI PRODUK SI „

DIS (DINAMIC ISOLATION SYSTEM, USA) a.

LRB : dia = 800

Dimensi : − − − −

D1 (mm) : 800 H (mm) : 230 – 510 Number of Rubber Layer (N) : 33 Lead Dia : 0 – 230 mm

Properties : − − − −

Kd = (0,7 – 5,3) KN/mm Qd = (0 – 265) KN Dmax (Displacement Max), mm = 510. Axial Load Capacity (Max), KN = 4000.

7

b.

LRB : dia = 900 Dimensi : − − − −

D1 (mm) : 900 H (mm) : 255 – 560 Number of Rubber Layer (N) : 37 Lead Dia : 0 – 255 mm

Properties : − − − −

c.

Kd = (0,7 – 6,1) KN/mm Qd = (0 – 355) KN Dmax (Displacement Max), mm = 560. Axial Load Capacity (Max), KN = 5800.

LRB : dia = 1000

Dimensi : − − − −

D1 (mm) : 1000 H (mm) : 280 – 635 Number of Rubber Layer (N) : 40 Lead Dia : 0 – 280 mm

Properties : − − − −

Kd = (0,8 – 6,2) KN/mm Qd = (0 – 490) KN Dmax (Displacement Max), mm = 660. Axial Load Capacity (Max), KN = 7600.

8

„

BS (BRIDGE STONE, JAPAN) a.

LRB : dia = 800 Dimensi : − − −

D1 (mm) : 800 H rubber (mm) : 160 Number of Rubber Layer (N) : 37

Properties : − − − −

b.

(Y0, σ0) = (0% , 49 N/mm2) (Y1, σ1) = (Y2, σ2) = (400% , 5 N/mm2) Axial Load Capacity (Max), KN = 5070

LRB : dia = 900 Dimensi : −

D1 (mm) : 900



H rubber (mm) : 180



Number of Rubber Layer (N) : 33

Properties : −

(Y0, σ0) = (0% , 60 N/mm2)



(Y1, σ1) = (50% , 60 N/mm2)



(Y2, σ2) = (400% , 14 N/mm2)



Axial Load Capacity (Max), KN = 7940

9

b.

LRB : dia = 1000 Dimensi : −

D1 (mm) : 1000



H rubber (mm) : 200



Number of Rubber Layer (N) : 30

Properties : −

(Y0, σ0) = (0% , 60 N/mm2)



(Y1, σ1) = (150% , 60 N/mm2)



(Y2, σ2) = (400% , 23 N/mm2)



Axial Load Capacity (Max), KN = 9800

Perhitungan Struktur

10

Perhitungan Pondasi

Mengapa perlu Base SI Prasjal Tarkim SUMBAR: Ujung Tombak dalam Penanganan Tanggap Darurat „ Maka Harus Tetap ‘exist’ bila bencana terjadi „ Bencana yang diantisipasi Æ prediksi megathrust Mentawai: „

Gempa bumi: Seismic Isolator, dan „ Tsunami: Temporary Shelter „

11

Mengapa perlu Base SI Pengalaman Gempa Padang 2009, „ Pekerjaan Umum SUMBAR ’Lumpuh’ „

Struktur Gedung PU : Collapse ! „ Lokasi pada daerah likuifaksi „ Aktivitas Tanggap Darurat sangat terganggu „

http://www.bridgestone.com

12

Konsep Disain Konvensional –vs– Isolated Syatem

Konsep Disain Konvensional –vs– Isolated Syatem

13

SI yang dipakai NSO50 – Beban Seismic ringan (tengah) „ Lead Plug Æ Beban Seismic berat (tepi) „

Type SI yang dipakai

„

NS dan LRB

14

Product terpilih BS „

onstruction Materials | Seismic Isolator for BuildingsCharacteristic

„

Multi-Rubber Bearing is the example of Bridgestone's cutting-edge technology with practical safety applications. (1) High reliability

„ „ „ „ „

Proven track record: Since 1984, Bridgestone MRBs have pioneered the way in seismic isolating rubber bearings. No damage during recent large earthquake: During the Hanshin-Awaji Earthquake in 1995, Bridgestone MRB-equipped buildings withstood a large tremor, without damage - a design that lived up to the required performance.

„

(2) Superior quality

„

Since the founding of Bridgestone, the company principle requires that only the highest quality products be delivered to the market. Our MRB manufacturing line incorporates this Quality First concept.

„

All production steps from the rubber material procurement, mixing, processing, manufacturing, and inspection are checked for quality, resulting in a continuous supply of premium products. (3) High durability

„

„

Accelerated heat-aging tests have confirmed the Bridgestone MRB can be in service for a long time. (4) In-depth expertise

„

As a pioneer in the Industry, Bridgestone has been deeply involved in the research and development of seismic isolating rubber bearings.

„

Bridgestone's unprecedented number of test results put its MRB on the cutting edge of technology. (5) Wide capability of manufacturing, testing and inspection

„

„ „ „ „ „

Manufacturing; Bridgestone possesses the capacity to produce sizes from small diameters up to 1,600 mm diameters. Testing and Inspection; Bridgestone has the largest test machine for multi-layer rubber in Japan, and our quality control system ensures that only premium quality products are provided.

„

(6) An assortment of rubber bearings to choose from

„

Bridgestone offers a complete assortment of bearings to the Industry;

„ „ „ „

High Damping Rubber Natural Rubber Elastic Sliding Bearing We can produce the ideal seismic isolating system to meet your needs.

Performa SI

15

Performa SI

Terimakasih

16

Foundation Review of SEISMIC ISOLATED BUILDINGS in SUMBAR

Abdul Hakam Andalas University, 2015

„

3 building have been installed: 1. Gedung PU Prov. Sumbar 2.

Gedung Escape / Crisis Center Gubernuran

3 Hotel Ibis 3.

17

1. Pondasi Bangunan

BANGUNAN Goyangan Gempa Lemah ( a < 0,4 g )

SI

Goyangan Gempa Kuat ( a > 0,4 g )

¾

0DQIDDWಯ6,ರ'HYLFHV 0DQIDDWಯ6,ರ'HYLFHV ƒ

Isolasi Bangunan dari tanah / pondasi

ƒ

Supporting beban Bangunan

ƒ

Reduksi Amplitudo respon goyangan / getaran Gempa kuat

ƒ

Mengembalikan posisi Bangunan setelah gempa

18

Superstructure

Elastis & In Elastis

SI

In Elastis

a1 < 0,4 g

Sistim SI ao • 0,4 g

Superstructure :-

Kolom Balok Koneksi Kolom – Balok Sistim Lantai

Sistim SI :

Pondasi SI Balok & Kolom Sistim Lantai

-

Elastis & In Elastis

In Elastis

Konsep p Disain Konvensional –vs– Isolated Syatem

19

http://www.bridgestone.com

Penurunan Pondasi

20

Mengapa g p p perlu Base SI Pengalaman g Gempa p Padang g 2009, „ Pekerjaan Umum SUMBAR ’Lumpuh’ „

Struktur Gedung PU : Collapse ! „ Lokasi pada daerah likuifaksi „ Aktivitas Tanggap Darurat sangat terganggu „

Gedung g PU

21

Perhitungan g Pondasi

Gedung g Ibis Perhitungan daya dukung pondasi Data tanah: P Pengujian ji SPT Nilai SPT Pekiraan nilai

Kedalaman

Jenis Tanah

(m)

(pasir/lempung) (blows) lempung 0 lempung 25 pasir 15 pasir 26 pasir 32 pasir lempung 42 pasir lempung 9 pasir lempung 8 pasir i l lempung 8 lempung 10 pasir lempung 8 lempung 10 pasir lempung 8 pasir 35 pasir 45 pasir 50 pasir pasir pasir pasir pasir

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

kedalaman muka air tanah =

(degree)

36,75 40,6 38,8 42,8 33,6 32,2 32 2 32,2 32,2 32,2 40 44 46 25 25 25 25 25

Perkiraan qu (kg/cm2) 0 3

5,2 0,9 0,8 08 0,8 1 0,8 1 0,8

1m

22

Gedung g Crisis Center Perhitungan daya dukung pondasi (Pasir) Data tanah: Pengujian SPT Nilai SPT Pekiraan nilai E

Kedalaman

Jenis Tanah

(m)

(pasir/lempung) (blows) pasir 0 pasir 39 pasir 12 pasir 43 pasir 38 lempung 28 lempung 10 lempung 8 lempung 9 l lempung 8 lempung 10 pasir lempung 42 pasir lempung 33 pasir lempung 55 pasir lempung 30 pasir lempung 15

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

(degree) 25 41,6 35,7 43,2 41,2

42,8 39,2 48 42 36 75 36,75

kedalaman muka air tanah =

1m

Penurunan sublapisan 1 2 3

Hc

z

po = q' + (_ sat,L -

(t/m2) 7,333 3,667 11,90 = 11,900 6 10,33 10 33 16,57 16 57 = 16,567 16 567 6 16,33 20,77 = 20,767 (m)

eo

z/B

(m)

1,44 1 38 1,38 1,33

0,9 26 2,6 4,1

_ p (t/m2) (q x rasio)

rasio tekanan (Tabel 3.5) 0,50 0 10 0,10 0,04

6,125 = 1 225 = 1,225 0,49 =

6,125 1 225 1,225 0,490

po + _ p

log

(t/m2) 18,025 17 792 17,792 21,257

po + _ p po 0,180 0 031 0,031 0,010

Kode Data-data perencanaan pondasi

C9

Tabel 3.5. Rasio pertambahan tegangan dalam tanah

e0 = LL = PL = PI = Berat sendiri 2/3 Lp Panjang-tiang (Lp) Beban terpusat di pondasi

1,44 1 44 60 50 10 24 t/m2 22 m 294 t

Lebar Group Pondasi (B) Panjang Group Pondasi (L) Hc total ( = 3xB)

4m 6m 12 m

Kedalaman

dari cara alfa -sheet

z/B 0.0 0.25 0.5 1 1.5 2 3 4 5

Lp

Pondasi Menerus (L/B=~) Boussinesq-Bowles Metoda 2:1 tengah tepi rata-rata tepi=tengah 1.00 1.00 1.00 0.95 0.80 0.90 0.80 0.82 0.60 0.70 0.67 0.65 0.40 0.50 0.50 0.40 0.30 0.35 0.40 0.280 0.250 0.270 0.33 0.160 0.150 0.160 0.25

Lingkaran: B = S r

Sc(m)=

q'

1/3 Lp

Pondasi Persegi (B=L) Boussinesq-Bowles Metoda 2:1 tengah tepi rata-rata tepi=tengah 1.00 1.00 1.00 0.90 0.60 0.80 0.64 0.70 0.40 0.60 0.44 0.35 0.25 0.30 0.25 0.18 0.16 0.17 0.16 0.12 0.10 0.110 0.11 0.07 0.06 0.065 0.06

Lapisan : 1

Lapisan : 2

Lapisan :3

0.04 0.03

2

Cc Hc 1 + eo

log

0,244 0,035 0,012

0.095 0.070

0.090 0.060

0.092 0.065

' po + 'p

Sc

Sc (total)

po

(cm)

(cm)

24,4 3,5 1,2

0.20 0.17

dibadan pondasi

29 1 29,1

didasar pondasi didasar pondasi

z

23

Terimakasih

24

Strengthened Indonesian Resilience: Reducing Risks from Disasters Base Isolation Lecture Series

The Determination of Peak Ground Acceleration as the Seismic Input for Construction Design

Padang, Indonesia Teuku Faisal Fathani, Ph.D Civil and Environmental Engineering UGM 09 – 13 February 2015

Background Yogyakarta Earthquake (27-05-2006) ƒ Magnitude of 6.3 Mw with hypocenter depth of 10 km (USGS) ƒ Destroyed 60,000 houses ƒ 393 school building collapsed and 484 minor to major damaged ƒ Victims-dead: 6736 ƒ Victims-injured: 45,210 ƒ Internally Displaced persons IDPs: 33,345 in 95 temporary camps

25

Preliminary Damage Assessment

Objectives ‰

To conduct site investigation by core drilling, Standard Penetration Test (SPT) and micro-tremor survey in the area affected earthquake

‰

Determine horizontal peak ground acceleration (PGA) based on: 1. Indonesian code of SNI-1726-2002 coupled with local soil conditions determined from Standard Penetration Test (SPT) 2. Empirical prediction by using attenuation relationships 3. Dominant period at the observed sites produced by the micro-tremor survey 26

Indonesian Code of SNI-1726-2002 ƒ This code divided Indonesia into 6 seismic zones ƒ The probability of exceedance of buildings with 50 years life time is 10% and seismic design load of 500 years return period ƒ Seismic load in general is based on three factors: (a) a probability of exceedance in a certain period (b) ductility factor (c) structural over strength factor ƒ Seismic load less than suggested by the code is not permitted

Earthquake Return Period 1. Ordinary category of construction on average seismicity sites Designed based on earthquake with an approximate 10% probability of exceedance in 50 years.

2. High seismicity or essential category of construction Level 1 earthquake has a 50% probability of exceedance in 50 years. Level 2 earthquake has a 10% probability of exceedance in 100 years.

3. Facilities containing polluting or hazardous material Designed based on Level 3 earthquake having a 10% probability of exceedance in 250 years.

T

 L log e log 1  p

L = facility life time (year) p = probability of exceedance or the possibility of structure experiences higher seismic load than the design seismic load (%) T = earthquake return period

27

Seismic epicenter and tectonic plate in Indonesia

Seismic Zones in SNI-1726-2002 94

o

96

o

98 o

100 o

102 o

104 o

106 o

108 o

110 o

112 o

114 o

116 o

118 o

120 o

122 o

124 o

126 o

128 o

130 o

132 o

134 o

10 o

8o

6

Aceh 2004 (8.9Mw) Nias 2005 (8.7Mw)

o Banda Ac eh

4o

2o

1

2

3

4

5

6

o

Pada ng 5

6 4

3

4

2

1

Ternate

Palu

2

3

3

Sama rinda

1

2o

4

Manado

Pe kanbaru

0

5

Manokwari Sorong

Jambi Palangkaraya

5

2 1

Banjarmasin

Palembang

4

Bengkulu

o

Kendari

1

Ambo n

Makasar

Bandarlampung

Tual

6

o 2

Jakarta Bandung Sema rang Garut Tasikmalaya Solo Jogjakarta

Sukabumi

8o

Surabay a 3 Blitar Malang Banyuwangi

Cilacap

Denpasar

Mataram

4 5

Sumbar 2009 (7.6Mw)

6

10 o

12

o

14

o

16 o 94

o

4

1

:

0,03 g

Wilayah Wilayah

2

:

0,10 g

3 4

: :

0,15 g 0,20 g

5

:

0,25 g

Wilayah Wilayah Wilayah

:

6

96

Zone Zone Zone Zone Zone Zone

98

o

3 2 1

0,30 g

Bengkulu 2007 (8.4Mw) o

Kupang

5

Wilayah

100 o

102 o

104 o

106 o

West Java 2006 (4.9Mw)

108 o

110 o

112 o

Yogyakarta 2006 (6.3 Mw)

114 o

116 o

118 o

120 o

122 o

124 o

126 o

128 o

130 o

132 o

134 o

Situbondo 2007 (4.8Mw)

28

Seismic Zones in SNI-1726-2012

Bedrock acceleration and PGA for each seismic zones and type of soil (SNI-1726-2002) Peak ground acceleration amax (g) Bedrock Seismic acceleration Hard Soil Medium Soft Soil Special Zones (g) Soil Soil 1

0,03

0,04

0,05

0,08

2

0,10

0,12

0,15

0,20

3

0,15

0,18

0,23

0,30

4

0,20

0,24

0,28

0,34

5

0,25

0,28

0,32

0,36

6

0,30

0,33

0,36

0,38

Required special evaluation in each zone.

29

Soil Classification

¾ These three soil classifications can be determined if the top 30 m soil thickness satisfy one of the requirements listed on the table. ¾ The ground surface acceleration of special soil must be determined from weave propagation analysis.

Core Drilling at 10 sites BH #4&5 BPKP

BH #10 Segoroyoso

BH #6 Karangsemut

BH #12 Wijirejo BH #11 Bambanglipuro BH #13 Krajan

BH #3 Pranti BH #2 Tempuran

BH #1 Watu

30

Results of Standard Penetration Test (1) Standard Penetration Test (N ) 20

40

0

20

40

0

60

0

0

5

5

5

10

10

10

15 20 25

Depth (m)

0

15 20 25

35

35

35

40

40

40

20

40

Location: BH-3 Pranti N = 18.60

Location: BH-2 Tempuran N = 36.85 Standard Penetration Test (N )

60

0

20

40

Standard Penetration Test (N )

60

0

0

0

5

5

5

10

10

10

Depth (m)

20 25

Depth (m)

0

15

15 20 25

20

40

60

15 20 25

30

30

30

35

35

35

40

40

Location: BH-4 BPKP-1 N = 24.00

60

25 30

Standard Penetration Test (N )

40

20

30

0

20

15

30

Location: BH-1 Watu N = 27.53

40

Location: BH-5 BPKP-2 N = 25.90

Location: BH-6 Karangsemut N = 30.50

Results of Standard Penetration Test (2) Standard Penetration Test (N ) 20

40

Standard Penetration Test (N )

60

0

0

0

5

5

10

10

15

Depth (m)

Depth (m)

0

20 25

20

40

60

15 20 25

30

30

35

35

40

40

Location: BH-10 Segoroyoso N = 33.20

Location: BH-11 Bb.lipuro N = 26.47

Standard Penetration Test (N ) 0

20

40

Standard Penetration Test (N ) 60

0

0

20

40

60

0

5

5

10

10

15

Depth (m)

Depth (m)

Depth (m)

Standard Penetration Test (N )

Standard Penetration Test (N ) 60

Depth (m)

Depth (m)

0

20 25

15 20 25

30

30

35

35

40

40

Location: BH-12 Wijirejo N = 31.13

Location: BH-13 Krajan N = 26.93

31

Scoring system used in developing PGA distribution map No

Peak Ground Acceleration (g)

Level Score

Level of Risk

1

amax < 0.10

1

Very low risk

2

0.10 d amax < 0.20

2

Low risk

3

0.20 d amax < 0.30

3

Medium risk

4

0.30 d amax < 0.40

4

High risk

5

amax t 0.40g

5

Very high risk

• Wilayah Yogyakarta termasuk zona dengan percepatan puncak batuan dasar 0,20g – 0,25g. • Shear wave velocity ~30 meter di daerah Giwangan adalah 198,81 m/s dengan N-SPT avg = 30; di daerah Sorosutan 240,38 m/s dengan NSPT avg = 26, wilayah Yogyakarta Æ jenis tanah sedang. • Yogyakarta memiliki percepatan puncak batuan dasar 0,25g dan percepatan puncak tanah sedang sebesar 0,32g

Empirical prediction of PGA by using attenuation relations ƒ Attenuation relation Æ to estimate PGA and response spectra at bedrock for a given earthquake with certain magnitude and epicenter distance ƒ There is no attenuation relation specifically developed for Indonesia region ƒ Attenuation relation derived for other region which is similar to Indonesia region tectonically and geologically, based on earthquake mechanism (subduction zone earthquake and shallow crustal earthquake) ƒ Attenuation relation used in this study: Donovan (1973), Esteva (1974), Matuschka (1980), Campbell (1981), Fukushima & Tanaka (1990). 32

Attenuation Relations Donovan (1973) Æ on sites with 6 m or more of soil overlying the rock : 1080 ˜ e 0.5 M a max R  25 1.32 Esteva (1974) Æ based on California data Peak ground acceleration as a function of magnitude and distance from the hypocenter and valid for focal distances > 15 km : a max

or the fault (Abrahamson and Silva, 1997)

5600 ˜ e 0.8 M

R  40 2

Matuschka (1980) Æ Soft to Medium Soil :

a max

119 u e 0.81M

R  25 1.15

Campbell (1981) Æ for sites within 50 km of the fault rupture in magnitude 5.0 to 7.7 earthquakes ln a max

4.141  0.868M  1.09 ln>R  0.606 exp 0.7 M @

Fukushima & Tanaka (1990): log amax





0.41M  log R  0.032 ˜ 100.41M  0.0034 R  1.30

Earthquake magnitude, epicenter coordinate and hypocenter depth ƒ Scenario 1 : Indonesia Meteorological and Geophysical Agency (BMG) - Epicenter coordinate : 423960.78 E, 9115638.42 N - Hypocenter depth = 11.8 km - Short period body wave magnitude (mb) = 5.9, which is approximately equal to Mw = 6.3 ƒ Scenario 2 (USGS) - Epicenter coordinate : 440265.66 E, 9119863.97 N - Hypocenter depth = 10 km - Moment magnitude Mw = 6.3 33

Approximate relationships between moment magnitude scale (Mw) and other magnitude scales: Richter local magnitude (ML), surface wave magnitude (Ms), short-period body wave magnitude (mb), and Japanese Meteorological Agency magnitude (MJMA) (After Idris, 1985). Peak Ground Acceleration

PGA Map Scenario 1 (BMG)

amax < 0.10g 0.10g d amax < 0.20g 0.20g d amax < 0.30g 0.30g d amax < 0.40g amax t 0.40g

BH-4 BH-5 BH-10

BH-6

BH-12

BH-3 BH-11

BH-13

BH-2 BH-1

Epicenter (BMG Version)

34

Peak Ground Acceleration

PGA Map Scenario 2 (USGS)

amax < 0.10g 0.10g d amax < 0.20g 0.20g d amax < 0.30g 0.30g d amax < 0.40g amax t 0.40g

BH-4 BH-5 BH-10

BH-6

BH-12

BH-3 BH-11

BH-13

BH-2

Epicenter (USGS Version)

BH-1

Prediction of PGA by attenuation relationships with various soil classes and fault types (MAE Center, 2007)

35

Contour PGA maps for affected region (soft soil) using attenuation relationship (MAE Center, 2007)

Persamaan Attenuasi Boore dkk (1993) Boore dkk. (1993) mengembangkan sebuah persamaan atenuasi berdasarkan data gempa di daerah timur laut Amerika dengan magnitude gempa antara 5,0 hingga 7,7 dan jarak dengan patahan aktif kurang dari 100 km. log PHA b1  b2 ( M w  6)  b3 ( M w  6) 2  b4 R  b5 log R  b6GB  b7GC R

=

d b, h GB GC

= = = =

Kelas

d

2

 h2



0,5

jarak antara titik yang ditinjau dengan patahan aktif terdekat, koefisien yang ditetapkan Boore dkk. (1993), 0 untuk titik tinjauan kelas A dan C, 1 untuk kelas B, 1 untuk titik tinjauan kelas A dan B, 0 untuk kelas C.

vs

di atas 30 m

A

>750 m/s

B

360 – 750 m/s

C

180 – 360 m/s

Komponen

b1

b2

b3

b4

b5

b6

b7

h

ılogPHA

Random

-0,105

0,229

0,0

0,0

-0,778

0,162

0,251

5,57

0,230

Larger

0,038

0,216

0,0

0,0

-0,777

0,158

0,254

5,48

0,205

Yogyakarta Æ level risiko 2 dan 3 dengan PGA 0,14g - 0,21g

36

Pers Attenuasi Campbell & Bozorgnia (1995) Persamaan atenuasi berdasarkan data gempa yang terjadi di seluruh dunia, yaitu 2800 buah data PGA yang belum terkoreksi dari 48 gempa, dan lebih dari 1300 data response spectra dari 33 gempa. ln Y

c1  c 2 M w  c 3 (8,5  M w ) 2  c 4 ln({R s  [(c 5 S HS  c 6 {S PS  S SR }  c 7 S HR ) 2

1

exp(c8 M w  c 9 {8,5  M w }2 )] 2 } 2 )  c10 FSS  c11 FRV  c12 FTH Y = PGA (g), Mw = momen magnitude gempa, = jarak antara titik tinjauan dengan Rs • patahan aktif terdekat, SHS = 1, untuk tanah Holocene, SPS = 1, untuk tanah Pleistocene, SSR = 1, untuk batuan lunak, SHR = 1, untuk batuan keras, • SHS = SPS = SSR = SHR = 0, untuk jenis tanah lain, FSS = 1, untuk strike slip faulting, FRV = 1, untuk reverse faulting, FTH = 1, untuk thrust faulting, FSS = FRV = FTH = 0, untuk jenis patahan lain, c1 – c16 = merupakan koefisien regresi.

 c13 S HS  c14 S PS  c15 S SR  c16 S HR

Yogyakarta Æ zona dengan level risiko 2 dengan nilai PGA 0,16g 0,19g. Yang paling mempengaruhi besarnya PGA adalah jarak antara titik tinjauan dengan patahan aktif dan besarnya magnitude gempa di masa lalu.

Attenuation Relationship based on dominant period at the observed sites (Kanai, 1966) a max

5 Tg

10

3.6 · 1,83 § 0.61M ¨ 1.66  ¸ log R  0.167  R ¹ R ©

ƒ The resonant frequency calculated from the micro-tremor data has a close value with the one from the standard analysis of direct measurement of high magnitude earthquakes.

Ao = PGA di lokasi tinjauan (cm/sec2) Tg = periode dominan atau fundamental (s) R = jarak terdekat dari lokasi tinjauan ke hypocenter atau patahan (km) M = magnitude gempa dalam skala Richter.

ƒ Dominant period of the ground (Tg) is assumed as the ground period produced by a micro-tremor survey. ƒ Micro-tremor survey was conducted at 243 sites by Volcanic Survey of Indonesia 37

¾ Ground amplification is measured as the trapping of seismic waves within a soft sediment layer. ¾ It is a resonance process with a frequency of

f

2n  1 Vs

4H

VS = S-wave velocity H = sediment thickness

Amplification factor depends on the impedance contrast between basement and sediment layers >Ǐ2Vs2Ǐ1Vs1].

Peak Ground Acceleration

PGA Map Scenario 1 (BMG)

amax < 0.10g 0.10g d amax < 0.20g 0.20g d amax < 0.30g 0.30g d amax < 0.40g amax t 0.40g

From Microtremor survey

Epicenter (BMG Version)

38

Peak Ground Acceleration

PGA Map Scenario 2 (USGS)

amax < 0.10g 0.10g d amax < 0.20g 0.20g d amax < 0.30g 0.30g d amax < 0.40g amax t 0.40g

From Microtremor survey

Epicenter (USGS Version)

PENENTUAN PGA DI KOTA YOGYAKARTA

Peta geologi regional cekungan Yogyakarta (Sir M. MacDonald & Partners, 1984 dengan modifikasi)

39

Penyelidikan mikrotremor di Kota Yogyakarta dilakukan sebanyak 172 titik pengukuran: ƒ 50 titik dilakukan oleh PT ARSS BARU (titik-titik nomor ganjil mulai dari titik 71 – 171) ƒ 122 titik data tambahan (UGM – British Council, 2007) Hasil pengukuran menghasilkan beberapa peta antara lain - Peta Amplifikasi Tanah - Peta Frekuensi Tanah - Peta Perioda Tanah

40

Sayatan geologi di Kota Yogyakarta

Penampang geologi di Kota Yogyakarta1

Penentuan PGA berdasarkan Survei Mikrotremor Letak epicenter gempa pada koordinat 440265,66E; 9119863,97N dengan kedalaman 10 km dan momen magnitude Mw = 6,3 (USGS)

Hasil survei mikrotremor menghasilkan nilai PGA yang paling tinggi dari dua metode lainnya. PGA bervariasi dari 0,05g hingga 0,30g, dengan variasi zona gempa dari level risiko 1 hingga 3.

41

Penentuan PGA dengan Nonlinear Earthquake Site Response Analyses Input: profil perlapisan tanah pada titik yang ditinjau, shear wave velocity, dan nilai percepatan puncak tanah maksimal.

Penentuan PGA dengan Nonlinear Earthquake Site Response Analyses Input data soil profile pada titik uji Thickness of layer (m)

Maximum shear modulus Gmax (MPa)

Total unit weight (kN/m3)

Shear wave velocity (m/sec)

1

1,0

23,62

17,95

113,60

0,0

0,00

2

1,0

72,48

19,23

192,30

1,0

17,95

3

3

1,5

456,69

22,56

445,60

2,0

37,18

4

2

0,7

29,17

19,23

122,00

3,5

71,02

5

3

5,2

131,11

22,56

238,76

6

2

1,2

19,04

19,23

Layer Number

Soil Material Type

1 2

Number of sublayers in layer

Locatio n of water tabel

Depth at top of layer (m)

W

Vertical effective stress (kPa)

4,2

84,48

98,57

9,4

150,80

7

3

4,4

168,89

22,56

270,98

10,6

162,10

8

4

5,0

59,50

17,56

182,32

15,0

218,21

9

5

3,6

129,24

16,68

275,72

20,0

256,96

10

6

2,9

227,84

19,77

336,26

23,6

281,68

11

7

3,0

188,65

16,38

336,10

26,5

310,56

12

8

5,5

697,51

23,54

539,10

29,5

330,28

Hasil perhitungan NERA pada titik uji Sublayer Number

Type

Depth at middle of layer (m)

Maximum Strain (%)

Maximum stress (kPa)

Depth at top of layer (m)

Maximum acceleration (g)

Maximum relative velocity (cm/s)

Maximum relative displacement (cm)

1

1

0,5

0,01

2,72

0

0,303

56,69

18,42

2

2

1,5

0,01

7,12

1

0,253

56,44

18,41

3

3

2,75

0,00

13,53

2

0,229

56,27

18,40

4

2

3,85

0,16

17,79

3,5

0,252

56,22

18,40

5

3

6,8

0,03

27,28

4,2

0,259

54,42

18,33

6

2

10

11,71

34,73

9,4

0,311

53,06

18,22

7

3

12,8

0,04

43,21

10,6

0,399

39,54

6,94

8

4

17,5

1,05

61,57

15

0,406

39,40

6,75

9

5

21,8

0,36

67,17

20

0,471

20,68

1,79

10

6

25,05

0,08

93,03

23,6

0,554

9,83

0,62

11

7

28

0,13

101,14

26,5

0,530

8,58

0,38

12

8

29,5

0,02

108,71

29,5

0,371

0,00

0,00

42

Penentuan PGA dengan Nonlinear Earthquake Site Response Analyses

Malangan Æ PGA tertinggi 0,378g Sorosutan Æ PGA tertinggi 0,323g kedua nilai didapat dari hasil perhitungan dengan menggunakan ground motion Parkfield. Untuk mewakili kondisi kegempaan di Kota Yogyakarta diperlukan minimal satu titik uji tiap kecamatan

Distribusi PGA dengan Nonlinear Earthquake Site Response Analyses (NERA)

43

Percepatan Puncak Tanah Dasar ‰ Elnashai et. al. (2007) memperkirakan nilai percepatan puncak tanah dasar : amax minimum = 0,20g, amax rata-rata = 0,27g dan amax maksimum = 0,34g. ‰ Hasil analisis di atas mendekati nilai respon spektrum Wilayah 3-4 (SNI-1726-2002): nilai amax terkecil untuk wilayah ini adalah 0,18 g dan nilai terbesar = 0,34 g. ‰ Berdasarkan studi yang dilakukan oleh Fathani dkk (2008) dan Elnashai et.al. (2007) : untuk keperluan praktis diusulkan tiga tingkat kategori resiko gempa untuk DIY - resiko gempa rendah amax = 0,200g - resiko gempa sedang amax = 0,275g - resiko gempa tinggi amax = 0,350g Jenis tanah untuk semua kategori adalah tanah sedang (medium soil)

Response spectra (SNI-1726 2002)

Proposed response spectra for medium soil 1,2

Wilayah Gempa Zone 3 3 0.75

C

0.45

0.23 (Tanah keras) T (Hard soil)

C

C (g)

C (g)

0.33 (Tanah sedang) T (Medium soil)

C

0.55

1,0

High risk (amax=0.350g)

0,8

Medium risk (amax=0.275g)

0.75 (Tanah (Softlunak) soil) T

C

0,6

Low risk (amax=0.200g)

0,4

0.30 0.23

0,2

0.18

0,0 0

0.2

0.5 0.6

1.0

2.0

TT (Sec.)

3.0

0,0

0,5

1,0

1,5

2,0

2,5

3,0

T (sec.)

44

Strengthened Indonesian Resilience: Reducing Risks from Disasters Base Isolation Lecture Series

Penggunaan Isolasi Dasar (Base Isolation) Berdasarkan Peraturan Gempa Indonesia SNI-1726-2012

Prof. Iman Satyarno Jurusan Teknik Sipil dan Lingkungan Universitas Gadjah Mada 09 – 13 February 2015

Kerusakan bangunan akibat beberapa gempa terakhir di Indonesia sebelum peraturan gempa terbaru SNI-1726-2012

45

Aceh 2004

Yogyakarta 2006 46

Bengkulu 2007

Tasikmalaya 2009 47

Padang 2009

94

o

96

o

98

o

100

o

102

o

104

o

106

o

108

o

110

o

112

o

114

o

116

o

118

o

120

o

122

o

124

o

126

o

128

o

130

o

132

o

134

o

136

o

138

o

140

o

10 o

10 o

0

8o

80

200

400

8o

Kilometer

6o

6o Banda Aceh 1

2

3

4

5

6

4o

5

4

3

2

1

4o

2o

2o Manado Ternate

Pekanbaru

1

0o

Samarinda

5

6

2o

4

3

4

Palu

2

3

3

Manokwari Sorong

4

Biak

Jambi Palangkaraya

5

0o

2

1 Padang

2o

5

2

Jayapura

6

1

Banjarmasin

Palembang

5

Bengkulu

4o

Kendari

Ambon

4o

4 1

3

Makasar

Bandarlampung

Tual

6o

Bandung Semarang Garut Sukabumi Tasikmalaya Solo Jogjakarta Cilacap

8o

2

2

Jakarta

6o

1

Surabaya 3 Blitar Malang Banyuwangi

Denpasar

Mataram

8o

4 Merauke 5 6

10 o

10 o

Kupang

5 4

Wilayah

1

: 0,03 g

Wilayah Wilayah

2

: 0,10 g

3

: 0,15 g

Wilayah Wilayah Wilayah

4

: 0,20 g

5

: 0,25 g

3 2

12

14

o

o

1

12

o

14

o

: 0,30 g

6

16 o

16 o 94

o

96

o

98

o

100

o

102

o

104

o

106

o

108

o

110

o

112

o

114

o

116

o

118

o

120

o

122

o

124

o

126

o

128

o

130

o

132

o

134

o

136

o

138

o

140

o

Gambar 2.1. Wilayah Gempa Indonesia dengan percepatan puncak batuan dasar dengan perioda ulang 500 tahun

Beberapa keterbatasan peraturan gempa Indonesia yang lama (SNI-1726-2002)

48

Peraturan gempa yang lama SNI-1726-2002 tidak berlaku untuk bangunan sebagai berikut • Gedung dengan sistem struktur yang tidak umum atau yang masih memerlukan pembuktian tentang kelayakannya. • Gedung dengan sistem isolasi landasan (base isolation) untuk meredam pengaruh gempa terhadap struktur atas. • Bangunan Teknik Sipil seperti jembatan, bangunan air, dinding dan dermaga pelabuhan, anjungan lepas pantai dan bangunan non-gedung lainnya. • Rumah tinggal satu tingkat dan gedung-gedung nonteknis lainnya.

49

Faktor keutamaan dan kategori risiko struktur bangunan • Untuk berbagai kategori risiko struktur bangunan gedung dan non gedung sesuai Tabel 1 • Pengaruh gempa rencana terhadapnya harus dikalikan dengan suatu faktor keutamaan menurut Tabel 2. • Khusus untuk struktur bangunan dengan kategori risiko IV, bila dibutuhkan pintu masuk untuk operasional dari struktur bangunan yang bersebelahan, maka struktur bangunan yang bersebelahan tersebut harus didesain sesuai dengan kategori risiko IV. 50

Tabel 1 Kategori risiko bangunan gedung dan struktur lainnya untuk beban gempa Jenis pemanfaatan

Kategori risiko

Gedung dan struktur lainnya yang memiliki risiko rendah terhadap jiwa manusia pada saat terjadi kegagalan, termasuk, tapi tidak dibatasi untuk: - Fasilitas pertanian, perkebunan, perternakan, dan perikanan - Fasilitas sementara - Gudang penyimpanan - Rumah jaga dan struktur kecil lainnya

I

Tabel 1 Kategori risiko bangunan gedung dan struktur lainnya untuk beban gempa Jenis pemanfaatan Semua gedung dan struktur lain, kecuali yang termasuk dalam kategori risiko I,III,IV, termasuk, tapi tidak dibatasi untuk: - Perumahan - Rumah toko dan rumah kantor - Pasar -Gedung perkantoran - Gedung apartemen/ Rumah susun - Pusat perbelanjaan/ Mall - Bangunan industri - Fasilitas manufaktur - Pabrik

Kategori risiko II

51

Tabel 1 Kategori risiko bangunan gedung dan struktur lainnya untuk beban gempa Jenis pemanfaatan

Kategori risiko

Gedung dan struktur lainnya yang memiliki risiko tinggi terhadap jiwa manusia pada saat terjadi kegagalan, termasuk, tapi tidak dibatasi untuk: - Bioskop - Gedung pertemuan - Stadion - Fasilitas kesehatan yang tidak memiliki unit bedah dan unit gawat darurat - Fasilitas penitipan anak - Penjara - Bangunan untuk orang jompo

III

Tabel 1 Kategori risiko bangunan gedung dan struktur lainnya untuk beban gempa Jenis pemanfaatan Gedung dan struktur lainnya, tidak termasuk kedalam kategori risiko IV, yang memiliki potensi untuk menyebabkan dampak ekonomi yang besar dan/atau gangguan massal terhadap kehidupan masyarakat sehari-hari bila terjadi kegagalan, termasuk, tapi tidak dibatasi untuk: - Pusat pembangkit listrik biasa - Fasilitas penanganan air - Fasilitas penanganan limbah - Pusat telekomunikasi

Kategori risiko III

52

Tabel 1 Kategori risiko bangunan gedung dan struktur lainnya untuk beban gempa Jenis pemanfaatan

Kategori risiko

Gedung dan struktur lainnya yang tidak termasuk dalam kategori risiko IV, (termasuk, tetapi tidak dibatasi untuk fasilitas manufaktur, proses, penanganan, penyimpanan, penggunaan atau tempat pembuangan bahan bakar berbahaya, bahan kimia berbahaya, limbah berbahaya, atau bahan yang mudah meledak) yang mengandung bahan beracun atau peledak di mana jumlah kandungan bahannya melebihi nilai batas yang disyaratkan oleh instansi yang berwenang dan cukup menimbulkan bahaya bagi masyarakat jika terjadi kebocoran.

III

Tabel 1 Kategori risiko bangunan gedung dan struktur lainnya untuk beban gempa Jenis pemanfaatan

Kategori risiko

IV Gedung dan struktur lainnya yang ditunjukkan sebagai fasilitas yang penting, termasuk, tetapi tidak dibatasi untuk: - Bangunan-bangunan monumental - Gedung sekolah dan fasilitas pendidikan - Rumah sakit dan fasilitas kesehatan lainnya yang memiliki fasilitas bedah dan unit gawat darurat - Fasilitas pemadam kebakaran, ambulans, dan kantor Direkomendasikan polisi, serta garasi kendaraan darurat untuk menggunakan - Tempat perlindungan terhadap gempa bumi, angin base isolation badai, dan tempat 53

Rumah sakit harus tetap beroperasi untk menangani korban dengan jumlah yang besar setelah gempa

Tabel 1 Kategori risiko bangunan gedung dan struktur lainnya untuk beban gempa Jenis pemanfaatan

Kategori risiko

Gedung dan struktur lainnya yang ditunjukkan sebagai IV fasilitas yang penting, termasuk, tetapi tidak dibatasi untuk: - Pusat pembangkit energi dan fasilitas publik lainnya yang dibutuhkan pada saat keadaan darurat Direkomendasikan - Struktur tambahan (termasuk menara telekomunikasi, menggunakan tangki penyimpanan bahan bakar, menarauntuk pendingin, struktur stasiun listrik, tangki air pemadam kebakaran base isolation atau struktur rumah atau struktur pendukung air atau material atau peralatan pemadam kebakaran ) yang disyaratkan untuk beroperasi pada saat keadaan darurat Gedung dan struktur lainnya yang dibutuhkan untuk mempertahankan fungsi struktur bangunan lain yang masuk ke dalam kategori risiko IV.

54

Tabel 2 Faktor keutamaan gempa Kategori risiko I atau II III IV

Faktor keutamaan gempa, Ie 1,0 1,25 1,50

55

Kala ulang gempa • Gempa rencana (maksimum yang dipertimbangkan) ditetapkan sebagai gempa dengan kemungkinan terlewati besarannya selama umur struktur bangunan 50 tahun adalah sebesar 2 persen atau gempa 2500 tahunan • Gempa design ditetapkan sebesar 2/3 peta gempa rencana yang kira-kira setara dengan gempa 500 tahunan 56

SNI 2012

www.yahoo.com

See video 57

m

N

¦ ti i 1 m

¦ ti / N i i 1

Peta gempa dan besarnya beban gempa pada setiap lokasi dapat dilihat dan ditentukan pada laman berikut:

http://puskim.pu.go.id/Aplikasi/desain_spektra_indonesia_2011/

SNI 2012 58

59

60

61

Perbandingan besarnya beban gempa SNI-1726-2002 dan SNI-1726-2012

62

Arfiadi dan Sartyarno, Konferensi Nasional Teknik Sipil 7 Universitas Sebelas Maret (UNS-Solo), 24-25 Oktober 2013

Arfiadi dan Sartyarno, Konferensi Nasional Teknik Sipil 7 Universitas Sebelas Maret (UNS-Solo), 24-25 Oktober 2013

63

Arfiadi dan Sartyarno, Konferensi Nasional Teknik Sipil 7 Universitas Sebelas Maret (UNS-Solo), 24-25 Oktober 2013

Misal menentukan gempa rencana untuk Yogyakarta

64

Spektrum Respons untuk Yogyakarta 65

PGA (g) SS (g) S1 (g) CRS CR1 FPGA FA FV PSA (g) SMS (g) SM1 (g) SDS (g) SD1 (g) T0 (detik) TS (detik)

0.529 1.21 0.444 0.928 0 1 1 1 0.529 1.21 0.444 0.807 0.296 0.073 0.367

PGA (g) SS (g) S1 (g) CRS CR1 FPGA FA FV PSA (g) SMS (g) SM1 (g) SDS (g) SD1 (g) T0 (detik) TS (detik)

0.529 1.21 0.444 0.928 0 1 1 1.356 0.529 1.21 0.602 0.807 0.401 0.099 0.497

PGA (g) SS (g) S1 (g) CRS CR1 FPGA FA FV PSA (g) SMS (g) SM1 (g) SDS (g) SD1 (g) T0 (detik) TS (detik)

0.529 1.21 0.444 0.928 0 1 1.016 1.556 0.529 1.229 0.691 0.82 0.46 0.112 0.562

PGA (g) SS (g) S1 (g) CRS CR1 FPGA FA FV PSA (g) SMS (g) SM1 (g) SDS (g) SD1 (g) T0 (detik) TS (detik)

0.529 1.21 0.444 0.928 0 0.9 0.9 2.4 0.476 1.089 1.065 0.726 0.71 0.196 0.978

Spektrum Respons juga dapat dibuat secara manual dengan data yang disediakan

66

Proses pembuatan respon spektra • SMS = Fa SS , Ss = parameter respons spektral percepatan gempa MCER terpetakan untuk perioda pendek dari peta gempa • SM1 = Fv S1 , S1 = parameter respons spektral percepatan gempa MCER terpetakan untuk perioda 1,0 detik dari peta gempa

67

Pembuatan spektrum respon berdasarkan percepatan Ss (T = 0.2 det) dan S1 (T = 1 det) menurut SNI 1726-2012 S DS

2 S MS 3 Sa

§ T· S a S DS ¨¨ 0.4  0.6 ¸¸ T0 ¹ ©

S D1

T0

0.2

S D1 S DS

TS

S D1 T 2 SM 1 3

S D1 S DS

Catatan gempa • Catatan gempa diperlukan untuk melakukan analisis beban gempa dengan metode respons riwayat waktu terutama untuk analisis non linier • Sayang belum banyak catatan gempa di Indonesia yang tersedia • Bisa menggunakan catatan gempa dari berbagai tempat dengan mengikuti persyaratan SNI-1726-2012 68

Acceleration (g), EL40NSC

0.40 0.30 0.20 0.10 0.00 -0.10 -0.20 -0.30 -0.40 0.00

2.50

5.00

7.50

10.00

12.50

15.00

Period (second)

Contoh catatan gempa ElCentro 1940

Sumber catatan gempa • • • • •

Waktu terjadinya gempa Koordinat gempa Nama gempa Kedalaman gempa Besarnya gempa

69

Sumber catatan gempa • • • • •

Komponen arah Nama stasion yang merekam Jarak stasion ke pusat gempan Jenis instrumen Tipe geologi/tipe tanah (bedrock, hard soil, medium soil, soft soil) • Letak alat (di bedrok), dipermukaan tanah atau di suatu lantai bangunan)

Sumber catatan gempa • • • • •

Koordinat stasion Percepatan tak terkoreksi Percepatan terkoreksi Kecepatan maksimum Displacemen maksimum

70

Karakteristik catatan gempa • Lamanya getaran • Percepatan maksimum • Bentuk pergerakan

www.yahoo.com

71

Record gempa memiliki: • Arah : TimurBarat(EW), UtaraSelatan (NS) dan atau vertikal (UP). • Format penulisan datanya yang dapat dilihat dari extension nama file, misal *.EQB, *.EQC, *.EQN, *.EQS, *.EQF • Misal gempa Kobe tahun 1995 dengan nama: KOBE95EW.EQN (East-West, format EQN) KOBE95NS.EQN (North-South, format EQN) KOBE95UP.EQN (Vertikal, format EQN)

72

www.yahoo.com

73

20 50 12.

cel

e

0 0.1 0 0.0

00 10. 0 7.5

0 -0.1 0 0.2

0 50

www.yahoo.com

.20

on

0 0.1

ati

0 0.0 10 - 0. 0 02

l er

0 5.0 0 7.5 0

.0 10 .50 12

www.yahoo.com 74

Kerusakan struktur bangunan penting seperti rumah sakit akibat beberapa gempa terakhir di Indonesia sebelum peraturan gempa terbaru SNI-1726-2012

75

Kerusakan ringan struktur (Yogyakarta 2006)

Kerusakan sedang struktur (Bengkulu 2007)

76

Kerusakan berat struktur (Padang 2009)

Struktur roboh (Padang 2009)

77

Kerusakan non struktur bangunan penting seperti rumah sakit akibat beberapa gempa terakhir di Indonesia sebelum peraturan gempa terbaru SNI-1726-2012

Kerusakan dinding rumah sakit (Yogyakarta 2006)

78

Kerusakan dinding rumah sakit (Yogyakarta 2006)

Kerusakan dinding rumah sakit (Bengkulu 2007)

79

Kerusakan dinding rumah sakit (Padang 2009)

Kerusakan tangga rumah sakit (Yogyakarta 2006)

80

Kerusakan plafon(Yogyakarta 2006)

Kerusakan plafon (Padang 2009)

81

Kerusakan elektrikal (Padang 2009)

Kerusakan mekanikal rumah sakit (Padang 2009)

82

Kerusakan peralatan rumah sakit (Bengkulu 2007)

Pelayanan dilakukan di tenda-tenda karena bangunan rumah sakit rusak (Padang 2009)

83

Gangguan dan kerusakan isi bangunan dapat tetap terjadi karena besarnya percepatan atau getaran walaupun strukturnya kuat

Getaran akibat gempa pada lantai bangunan makin ke atas makin besar 84

Banyak peralatan mahal dalam rumah sakit yang mungkin sensitif terhadap getaran

Banyak peralatan mahal dalam rumah sakit yang mungkin sensitif terhadap getaran

85

Banyak peralatan mahal dalam rumah sakit yang mungkin sensitif terhadap getaran

Banyak peralatan mahal dalam rumah sakit yang mungkin sensitif terhadap getaran

86

Banyak peralatan mahal dalam rumah sakit yang mungkin sensitif terhadap getaran

Banyak peralatan mahal dalam rumah sakit yang mungkin sensitif terhadap getaran

87

Getaran lantai bangunan akibat gempa dapat menyebabkan • Kepanikan penghuni • Kerusakan isi bangunan Catatan: getaran akibat gempa ini hanya bisa dikurangi dengan penggunaan base isolation sebagaimana yang telah dilakukan beberapa negara lain

Bab 12 SNI-1726-2012

88

89

Perlu disediakan akses yang memadai untuk melakukan pemeriksaan base isolation secara berkala

90

Copyright © 1998-99 Energy Research, Inc. 91

92

93

Video pengujian

94

Pemodelan Base Isolation

95

ordinary building

base isolation building

A 7m

3.75 m

3m

3.75 m

7m

3.75 m

3.75 m A 7 x 4m 3.75 m

7m

column base

base isolation

3m

7m

frame member

spring member

hysteresis model

Figure 5: Modelled building and base isolation.

96

keff

El Centro 1940 North-South Corrected 0.4

0.2 0.1 0.0 -0.1 -0.2 -0.3 -0.4 0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Tim e (s)

0.90 EL40NSC

0.80

Indonesian Elastic Response Spectra (1987)

0.70 Acceleration (g )

Acceleration (g )

0.3

0.60 0.50 0.40 0.30 0.20 0.10 0.00 0.0

0.5

1.0

1.5

2.0

2.5

3.0

Period, T (second)

97

Type BI type 1 BI type 2 BI type 3 BI type 4 BI type 5 BI type 6 BI type 7 BI type 8

ko (kN/m) 8440.28 8440.28 8440.28 8440.28 8440.28 8440.28 8440.28 8440.28

Fy kN 42.2 42.2 42.2 42.2 12.2 12.2 12.2 12.2

r 0.15 0.10 0.05 0 0.15 0.10 0.05 0

Type BI type 1 BI type 2 BI type 3 BI type 4 BI type 5 BI type 6 BI type 7 BI type 8

ko (kN/m) 8440.28 8440.28 8440.28 8440.28 8440.28 8440.28 8440.28 8440.28

Fy kN 42.2 42.2 42.2 42.2 12.2 12.2 12.2 12.2

r 0.15 0.10 0.05 0 0.15 0.10 0.05 0

98

Type BI type 1 BI type 2 BI type 3 BI type 4 BI type 5 BI type 6 BI type 7 BI type 8

ko (kN/m) 8440.28 8440.28 8440.28 8440.28 8440.28 8440.28 8440.28 8440.28

Fy kN 42.2 42.2 42.2 42.2 12.2 12.2 12.2 12.2

r 0.15 0.10 0.05 0 0.15 0.10 0.05 0

Contoh respons bangunan dengan base isolation ketika terjadi gempa

99

Base isolation mampu mengurangi percepatan atau getaran akibat gempa

100

Sekian dan Terimakasih

101

Strengthened Indonesian Resilience: Reducing Risks from Disasters Base Isolation Lecture Series

Lecture 1

Introduction to Seismic Isolation Pengenalan terhadap Isolasi Gempa

Padang, Indonesia Dr David Whittaker & Ms Georgia Whitla 09 – 13 February 2015

Outline • Seismic Isolation – what is it? Apakah isolasi gempa? • Benefits of isolation Keuntungan teknik isolasi • Global take-up of Isolation technology Pengenalan umum teknologi isolasi • Codes peraturan • Suitable projects proyek yang sesuai • Simplified financial analysis analisis keuangan sederhana • Christchurch NZ earthquake response respon terhadap gempa Christchurch NZ • Discussion diskusi 102

What is seismic isolation? Apa itu isolasi gempa? • Same as your car suspension – springs and shock absorbers sama seperti suspensi mobil – pegas dan peredam goncangan • Allow the ground to move under the building memperbolehkan pergerakan tanah di bawah bangunan

Conventional – Fixed Base

Isolated

What is seismic isolation? Apa itu isolasi gempa? Terpicunya gaya yang besar

Pergerakan gedung yang besar

Gaya tidak terpicu

Tidak ada pergerakan gedung rol

(a) Bangunan terletak secara langsung di atas tanah (b) Bangunan di atas rol tanpa gesekan

Terpicunya gaya yang kecil

Pergerakan gedung yang kecil

Inti timah Material fleksibel

Pelat stainless Isolator keadaan awal

Isolator saat gempa terjadi

(c) Bangunan dengan base isolasi berupa Lead Rubber Bearing

103

What is seismic isolation? Apa itu isolasi gempa?

Conventional buildings in earthquakes bangunan konvensional saat gempa terjadi •

Ground moves during an earthquake tanah bergerak saat gempa terjadi



Ground motion transmitted to building gerakan tanah diteruskan pada bangunan



Building response to ground motion leads to large forces and displacements respon bangunan terhadap gerakan tanah memicu gaya dan perpindahan yang besar



Forces and displacements may be so severe that the building structure can not withstand them gaya dan perpindahan dapat semakin besar hingga tidak dapat ditahan struktur bangunan



Building damaged bangunan mengalami kerusakan 104

Conventional vs Isolated Konvensional vs dengan Isolasi Conventional konvensional

Isolated dengan isolasi



Shaking transmitted penerusan getaran



Less shaking felt getaran yang terasa sedikit



Large forces & displacements gaya dan perpindahan yang besar



Small forces & displacements gaya dan perpindahan yang kecil



Large floor accelerations percepatan lantai yang besar



Much reduced accelerations percepatan yang terjadi berkurang



Structural capacity exceeded kapasitas struktur terlampaui Damage to structure kerusakan struktur Disruption to contents gangguan pada isi bangunan May be unusable and unsafe menggangu fungsi dan kemanan bangunan



Structure remains elastic struktur dalam kondisi elastis Very little damage kerusakan yang terjadi sangat kecil Much less disruption gangguan yang terjadi berkurang Remains operational masih dapat berfungsi

• • •

• • •

Canterbury Earthquakes 2010-2011 Gempa Canterbury 2010-2011 ƒ Very strong shaking – 2 times design level in CBD (Central Business District) getaran yang sangat kuat – 2 kali lipat batas desain CBD ƒ 185 fatalities – mostly 2 buildings 185 korban jiwa – dari 2 bangunan ƒ US$40B cost kerugian hingga US$40M ƒ > 1500 buildings demolished in CBD (60% of buildings) > 1500 bangunan dihancurkan di CBD (60% total bangunan) ƒ Significant disruption due to non structural damage gangguan akibat kerusakan non struktural ƒ Inner city cordoned off bagian dalam kota ditutup

105

Sumatra Earthquake, 2009 Gempa Sumatera, 2009 ƒ M7.5 ƒ More than 1100 fatalities >1100 korban jiwa ƒ Significant damage to engineered structures kerusakan pada struktur ƒ Revised seismic map and code in 2012 perbaikan peta gempa dan peraturan pada 2012

Benefits of seismic isolation keuntungan isolasi gempa • Reduce floor accelerations and sway in the building mengurangi percepatan dan goyangan pada bangunan • Maximise post-earthquake operability memaksimalkan kemampuan operasi bangunan pasca gempa • Damage avoidance – protection of structure and contents menghindari kerusakan – perlindungan struktur dan isi bangunan • (eg critical equipment in hospitals misal, peralatan penting di RS) • Reduced life-cycle cost mengurangi biaya

106

Benefits of seismic isolation keuntungan isolasi gempa

Benefit - reduced floor accelerations keuntungan – mengurangi percepatan lantai • Damage caused by high accelerations or large deflections kerusakan disebabkan percepatan atau defleksi yang besar • Isolation gives much lower accelerations and drifts isolasi mengurangi percepatan dan defleksi

107

Isolated buildings – worldwide numbers bangunan dengan isolasi – jumlah di seluruh dunia

Increase in Isolation in Italy 2009 pertumbuhan bangunan dengan isolasi di Italia, 2009

108

Isolated buildings – worldwide bangunan dengan Isolasi – di dunia • Japan – around 8000 buildings Jepang – sekitar 8000 bangunan • USA – Approximately 120 buildings USA – sekitar 120 bangunan • New Zealand Selandia Baru – Approximately 20 buildings and 30 bridges sekitar 20 bangunan dan 30 jembatan

San Francisco City Hall (USA)

Oakland Cathedral of Light (USA)

Bolu Viaduct Turkey

NZ Projects with Isolation Proyek dengan isolasi di NZ

South Rangitikei Rail Bridge

William Clayton Building

Parliament Buildings

Te Papa Museum of NZ

Wgtn Regional Hospital

Chch Womens Hospital

109

Isolated buildings – Indonesia Bangunan dengan isolasi - Indonesia • Gudang Guram Office Tower – Jakarta, 26 story Menara kantor Gudang Garam – Jakarta, 26 lantai • Several other buildings under construction/design beberapa gedung dalam proses pembangunan/perancangan • Low rise buildings in Padang bangunan gedung di Padang

Isolation - How it works Isolasi – Cara kerja

Percepatan spectrum, Sa (T)

Spectral Acceleration Sa (T)

• Increase Period of vibration and effective Damping menambah periode getaran dan redaman efektif Reduction by R Factor Pengurangan oleh faktor R (for ductility) (untuk daktilitas) Elastic Design Spectrum Spektrum desain elastis Redaman 5% 5% damping Reduction due to additional Damping

5% damping 10% damping 20% damping

Sa

1s Design spectrum for conventional ductile structure Desain Spektrum untuk struktur daktil konvensional

Pengurangan akibat redaman tambahan

Increase in Period peningkatan periode

3s Period of Vibration T Periode getaran, T

110

Common Types of Isolation Jenis-jenis isolasi • Lead Rubber Bearing Bearing karet dengan timah – Invented in New Zealand ditemukan di Selandia Baru

• Elastomeric and High Damping Rubber Bearing Bearing karet elastomeric dengan redaman tinggi

Dr Bill Robinson

– Steel and rubber laminates lapisan laminasi baja dan karet

• Friction Slider Bearing bearing dengan slider gesek – Stainless dish with polymer faced puck piringan stainless dengan keeping polymer

Lead Rubber Bearings under test Pengujian Lead Rubber Bearings http://www.dis-inc.com/media/berry-street-displacement.html

111

Seismic Isolation Code Peraturan untuk Isolasi gempa SNI 1726:2012 Chap 12

SNI 1726:2012 Chapter 12 • Based on ASCE 7-10 Chapter 17 (note revision pending) berdasarkan ASCE 7-10 Chapter 17 (revisi catatan tertunda) • Maximum Considered EQ (MCE) 1 in 2,500 years MCE 1 dalam 2,500 tahun • Design Earthquake 2/3 of MCE gempa desain 2/3 MCE • All isolated structures design for same Importance Factor seluruh struktur isolasi dirancang dengan factor keutamaan yang sama • Superstructure designed for R < 2 struktur atas didesain untuk R < 2

112

SNI 1726:2012 Chapter 12 (cont.) • Considers effective structure stiffness and damping Memperhatikan kekakuan efektif bangunan dan redaman • Damping - B factor – up to 50% reduction for high damping • Equivalent Static or Dynamic Analysis procedures prosedur dapat dilakukan secara statik ekivalen atau melalui analisis dinamis • Design Review and Testing requirements diperlukan review desain dan pengujian

Pending revisions to ASCE - 1 ASCE 7-16 Chapter 17 • simplify the design/analysis process as much as possible penyederhanaan analisis • make ELF design procedure more widely applicable membuka pengaplikasian prosedur perancangan ELF secara lebih luas (ELF-equivalent lateral force) • new method for the vertical distribution of lateral forces associated with the ELF method of design metode baru untuk distribusi vertical dari gaya lateral yang berhubungan dengan metode perancangan ELF • upper & lower bound properties (AASHTO 1999 Lambda factors). 113

Pending revisions to ASCE – 1(cont.) ASCE 7-16 Chapter 17 • focus only on the MCE event fokus pada kejadian MCE • Use of a project site specific response spectra easily obtained from the USGS website penggunaan respon spektra yang dapat diperoleh dari website USGS • Enhanced definitions of design properties of isolation system peningkatan pengertian kriteria desain system isolasi

Pending revisions to ASCE - 2 ASCE 7-16 Chapter 17 • Use of nominal bearing properties in the design specified by the manufacturers based on prior prototype testing penggunaan kriteria bearing nominal yang disediakan oleh perusahaan berdasarkan uji prototip dalam desain • Continued requirement for 100% QC tests based on combined compression-shear tests kebutuhan yang menerus pada 100% hasil uji kualitas berdasarkan kombinasi uji tekan dan geser

114

Pending revisions to ASCE – 2 (cont.) ASCE 7-16 Chapter 17 • Reduction in required number of peer reviewers on a seismic isolation project from current 3-5 to minimum of one penurunan pada jumlah kebutuhan reviewer (pengawas) pada proyek isolasi gempa • Procedure to estimate permanent residual displacements in seismic isolation systems prosedur untuk memperkirakan perpindahan residu permanen pada system isolasi gempa • Consider smaller MCE event (less than 1 in 2500 yrs) menggunakan kejadian MCE yang lebih kecil

Projects suited to Isolation Proyek yang cocok menggunakan Isolasi When to consider seismic isolation? Kapan isolasi gempa perlu dipertimbangkan? • High importance structures – hospitals, bridges, embassies, government buildings Bangunan yang sangat penting; RS, jembatan, kedutaan, bangunan pemerintah • Low to medium rise buildings bangunan dengan ketinggian rendah hingga menengah • Protection of critical equipment perlindungan pada perlengkapan yang penting

115

Projects suited to Isolation (cont.) Proyek yang cocok menggunakan Isolasi When to consider seismic isolation? Kapan isolasi gempa perlu dipertimbangkan? • Retrofit of existing high importance structures retrofit pada bangunan penting yang sudah ada • Some challenges tantangan – Upfront cost high biaya yang tinggi di awal – Engineers and builders not experienced in isolation kurangnya pengalaman engineer dan tukang bangunan

When is isolation not suitable? Kapan isolasi tidak cocok digunakan? (or extra care needed) (atau diperlukan perhatian khusus) • When there is risk of resonance (period of isolation response might match response of building itself or ground) saat ada resiko terjadinya resonansi (periode isolasi cocok dengan periode bangunan atau tanah) • Lack of rattle space to adjacent buildings • Where movements can not be accepted saat bangunan tidak diperkenankan untuk mengalami pergerakan sama sekali

116

When is isolation not suitable?(cont.) Kapan isolasi tidak cocok digunakan? (or extra care needed) (atau diperlukan perhatian khusus) • Liquefiable site lokasi dengan kemungkinan likuifaksi

• Questions over pertanyaan pada – flexible or tall buildings bangunan yang fleksibel atau tinggi – deep soft soil sites lokasi dengan tanah lunak dalam – tsunami shelter buildings bangunan untuk shelter tsunami

Tsunami effects on isolated buildings pengaruh tsunami pada bangunan dengan isolasi • Can isolated buildings survive large tsunami? Apakah bangunan dengan isolasi mampu menghadapi tsunami yang besar? • M9.0 Great East Japan EQ Mar 2011 only 1 isolated building survived tsunami pada gempa M9.0 di Jepang Timur, Maret 2011, hanya 1 bangunan dengan isolasi yang bertahan setelah Tsunami

• Hydrostatic pressure up to 3 x depth tekanan hidrostatis mencapai 3 x kedalaman 117

Tsunami effects on isolated buildings (cont.) pengaruh tsunami pada bangunan dengan isolasi • Flow + bouyancy effects adanya pengaruh aliran dan gaya apung • FEMA P646 2008 Guidelines for design of structures for vertical evacuation from tsunamis (includes examples & calculations) • Ref Takayama 13 WCSI Sendai predictive method

Other issues Isu lain • Maintenance perawatan – need to have long life perlu memiliki waktu layan yang panjang – Need to be able to inspect and maintain dapat di periksa dan di rawat – high durability or else regular maintenance awet atau perawatan secara teratur • Fire Resistance ketahanan terhadap api – Rubber has high fire resistance (like timber) karet tahan terhadap api (seperti timah) – Pendulum bearings mostly steel (except liner) pendulum dari bearing terbuat dari baja (kecuali liner) 118

Other issues (cont.) Isu lain • Replacement perggantian – Ability to remove and replace bearings essential dapat di bongkar dan digantikan • Consider how to obtain replacements perlu diperhatikan cara mendapatkan pengganti • Consider specifying spare bearings perlu diperhatikan bearing cadangan

What are the coming opportunities in Indonesia? Apa peluang di Indonesia pada masa mendatang? • Critical Facilities? fasilitas penting? • Hospitals? RS? • Emergency Management Centers? Pusat penanganan bencana? • Critical Infrastructure? Infrastruktur penting? • Buildings of National Importance? • Data Centers? Pusat data? 119

Japan – Kamikuzawa City • 21 Apartment Buildings On Single“Low Seismic Plate” • 31,000sq m2 (125m x 250m)

L’Aquila, Italy 2009



Major earthquake – Abruzzo, Central Italy



April 6, 2009



Homeless 23,000 (Death & Injuries 180+1,500)



Challenge to rapidly provide housing 120

L’Aquila - Concrete Superstructure (or steel or timber)

L’Aquila - Utility Connections

121

L’Aquila - Completed Building

Cost of Isolation Biaya Isolasi • Cost of typical isolators US$4,000 to $8,000 each biaya isolator mencapai US$4,000 hingga $8,000 tiap buah • In USA and NZ initial capital cost up to 5% premium di USA dan NZ, biaya untuk modal mencapai 5% premi • Significant reduction in Earthquake damage costs pengurangan biaya akibat kerusakan akibat gempa secara signifikan Indonesia • Initial capital cost proportionally higher due to lower construction costs modal awal yang lebih besar karena biaya pembangunan yang lebih rendah • Significant reduction in Earthquake damage costs pengurangan biaya akibat kerusakan akibat gempa secara signifikan 122

Cost of seismic isolation Biaya isolasi gempa • Initial capital cost up to 5% premium in USA and NZ (3% on recent NZ hospital projects) • Suspended ground floor + isolators suspensi dan isolator • Some savings possible in superstructure kemungkinan penghematan di struktur atas • Significant reduction in EQ damage costs

Wellington Regional Hospital

Financial analysis parameters parameter analisis keuangan • Conventional or Isolated and Insured or Un-insured konvensional atau dengan isolasi, Dijamin atau tanpa penjaminan • Cost of ownership $/m2 biaya kepemilikan – conventional & isolated buildings – Insured & uninsured • Construction Cost biaya konstruksi • Insurance premiums premi asuransi • Material Damage and Business Interruption costs kerusakan material dan biaya akibat gangguan pada kegiatan bisnis • Cost of a major earthquake biaya untuk gempa yang besar • Probable Annual EQ damage costs kemungkinan biaya tahunan akibat kerusakan gempa

123

Financial analysis assumptions Asumsi analisis Keuangan (rough estimates for Indonesia perkiraan kasar u/ Indonesia) Conventional building bangunan konvensional • construction cost US$1,000/m2 (incl fitout) • business disruption conventional – 15% per annum

• major EQ – total loss • annualised loss 0.2% Isolated building • cost +15% • major EQ 1% loss • annualised loss negligible Istanbul Aircraft Hangar

Financial analysis - insurance • Premium 1% insured value per annum • Deductible 5% of capital cost

• Assume same for isolated building

Christchurch Womens Hospital

124

Financial analysis – Conventional (indicative only - based on many assumptions!) • Major EQ damage cost incl. interruption • Insured - Insurer suffers US$1,400/m2, owner US$50/m2

• Not insured – Owner sustains US$1,450/m2 • Annualised cost of damage about US$2/m2 • Annualised cost to owner $11/m2 (mostly premium)

Financial analysis – Isolated (indicative only - based on many assumptions!) •

Major EQ damage and disruption costs are small US$11/m2 biaya untuk kerusakan dan gangguan akibat gempa besar yang kecil, US$11/m2



Annualised cost of damage is very small << $1/m2 biaya tahunan untuk kerusakan sangat kecil << $1/m2



Owner would likely bear any small damage cost (insurance deductible greater than damage cost) pemilik lebih memilih biaya kerusakan yang kecil (biaya asuransi dapat berkurang drastis dibandingkan biaya kerusakan)



If insured annualised cost to owner still US$12/m2



Considerable saving to owner by self-insuring penghematan untuk pemilik



Insurer would never pay out! RoGlider

125

Financial analysis – Summary Analisis keuangan - rangkuman •

Future insurance costs unknown Biaya asuransi kedepan yang belum pasti



Insurance makes sense for conventional building Asuransi masuk akal untuk bangunan konvesionalemi



Isolation makes sense if no insurance available Isolasi masuk akal bila tidak ada asuransi yang tersedia



Earthquake damage costs very small for isolation biaya kerusakan akibat gempa pada bangunan dengan isolasi kecil



Isolation reduces risks to all parties isolasi mengurangi risiko pada semua pihak



Risk reduction for isolation should be of interest to insurers pengurangan risiko untuk isolasi menjadi daya Tarik bagi pelaku asuransi



Reduced premiums justified for isolated buildings pengurangan premi dibenarkan untuk bangunan dengan isolasi

Summary of Christchurch Earthquakes of 2010 and 2011 •

Vital statistics



Nature of the earthquakes sifat alami gempa



Insurance Asuransi



New technology teknologi baru



Use of Isolation in Rebuild penggunaan isolasi saat pembangunan kembali

126

Christchurch earthquake synopsis ringkasan gempa Christchurch • Strongest recorded shaking CBD 2 times code gempa terkuat yang mengguncang CBD, tercatat 2 kali lipat peraturan • 185 deaths (mostly 2 buildings) 185 korban meninggal • ~ US$40B damage costs • highly insured (80%) tingkat asuransi yang tinggi (80%) • > 1500 CBD buildings demolished > 1500 bangunan CBD dihancurkan

Christchurch earthquake synopsis(cont.) ringkasan gempa Christchurch • 2 serious building collapses 2 bangunan mengalami kerusakan parah • Structural engineering re-think (ductility = damage) ahli struktur berpikir ulang (daktilitas = kerusakan) • Investigation of 4 key buildings penyelidikan pada 4 bangunan penting • Royal Commission of Inquiry Pembentukan komisi khusus untuk penyelidikan

127

Major Fault & earthquake locations

Earthquake Numbers

128

Intensity of Shaking - 22 Feb 2011

Acceleration spectra vs code Christchurch CBD 22 Feb 2011

129

ADRS spectra Christchurch CBD 22 Feb 2011

Cityscape changes Oct 11 to Oct 14

130

Taken recently …

Central City – 4 km2 cordoned off!

131

Typical Damage

Response to Christchurch Eqs Tanggapan setelah Gempa Christchurch •

Owners demanding less damage less disruption pemilik menginginkan berkurangnya kerusakan dan gangguan



More resilience peningkatan ketahanan



Code increases (80% increase in design EQ loads) perbaikan peraturan (peningkatan beban gempa hingga 80%)



Make buildings Stronger bangunan yang lebih kuat



More steel structures bangunan dengan struktur baja



More Isolated buildings! Bangunan dengan isolasi!

132

New isolation projects in Christchurch Proyek isolasi baru di Christchurch Hospital Emergency Services Office buildings Retrofit Public Library

Questions & Discussion Pertanyaan & Diskusi

133

Strengthened Indonesian Resilience: Reducing Risks from Disasters Base Isolation Lecture Series

Lecture 2

Engineering Properties of Seismic Isolation Sifat Teknis Isolasi Gempa

Padang, Indonesia Dr David Whittaker & Ms Georgia Whitla 09 – 13 February 2015

Outline • Overview of how isolation works Ringkasan cara kerja isolasi • Properties of common isolator devices Sifat alat isolasi secara umum • Properties of isolators sifat-sifat alat isolasi • Study of Design Displacements & Accelerations for isolation in Christchurch Penelitian pada perancangan pergerakan dan percepatan untuk isolasi di Christchurch • Design of isolators Perancangan untuk isolasi • Testing of isolators Pengujian isolasi • Questions & Discussion Pertanyaan dan diskusi 134

What is seismic isolation? • Same as your car suspension – springs and shock absorbers sama seperti suspensi mobil – pegas dan peredam goncangan • Allow the ground to move under the building memperbolehkan pergerakan tanah di bawah bangunan • Building feels about 20% of earthquake effect bangunan hanya mendapatkan 20% dampak gempa

Isolation - How it works (diagrammatic)

Spectral Acceleration Sa (T)

• Increase Period of vibration and effective Damping meningkatkan periode getaran dan redaman efektif Reduction by R Factor (for ductility) Elastic Design Spectrum 5% damping Reduction due to additional Damping 5% damping 10% damping 20% damping

Sa Increase in Period

Design spectrum for conventional ductile structure

1s

3s Period of Vibration T 135

Objectives of isolation system ƒ Restraint for service loads (wind, small earthquake) tahan terhadap beban layan ƒ After yield flexible system to lengthen period of structure setelah menyediakan system yang fleksibel untuk memperpanjang periode bangunan ƒ Energy dissipation (damping) to limit displacement disipasi energy (redaman) untuk membatasi pergerakan ƒ Isolators accommodate displacement of large EQ Isolasi dapat mengatasi pergerakan akibat gempa besar

ƒ Structure and foundation not overloaded under large EQ Bangunan dan fondasinya tidak mengalami kelebihan beban saat gempa ƒ Restoring stiffness to re-centre system following earthquake mengembalikan kekakuan untuk menstabilkan system bangunan setelah gempa

Properties of isolation system (typical bilinear behaviour) • Qd = characteristic strength • Fy

= force at Yield displacement

• Fmax = maximum isolator force • Kd = post-elastic stiffness • Keff = effective stiffness • Dmax = maximum isolator displacement = Xmax • Area = area of hysteresis loop (energy dissipated per cycle)

136

Equivalent Linear System Period • Isolation aims to lengthen Period Ȉ ݂݂ܶ݁ ൌ ʹߨ

ெ ௄

ൌ ʹߨ

ௐ ௚௄೐೑೑

Equivalent Viscous Damping

keff

137

Common Isolation Devices Alat Isolasi secara Umum ƒ Elastomeric Systems Sistem elastomerik ─ Lead-rubber bearing – standard natural rubber with lead core karet alami standar dengan inti timah

─ High damping rubber bearing – modified natural rubber bearing with high damping rubber compound bearing karet modifikasi dengan redaman besar

ƒ Sliding systems ─ Spherical friction bearing – concave slider using PTFE and stainless steel ─ Flat plate slider – flat plate slider using PTFE and stainless steel

Lead Rubber Bearing (LRB) force-displacement properties F = Qd + Kd D Qd = yield force lead core = ALFYL

Kd = post yield shear stiffness ࡷࢊ ൌ

ீ஺್ ்ೝ

G = shear modulus of rubber Ab = bonded area of rubber

Typical Properties FyL Lead yield G Rubber modulus

7-10 MPa 0.4 – 0.7 MPa

Tr = total rubber thickness

Effective Stiffness Keff is displacement dependent 138

Pendulum sliders force-displacement properties Typical Properties P friction R Radius of curvature

F = W (P + D/R)

Sliding Friction ܳௗ ൌ ߤܹ ߤ = coefficient of friction of sliding surface W = weight on isolator

0.04 – 0.15 2–6m

Pendulum stiffness after breakaway ‫ܭ‬ௗ ൌ ܹȀܴ W = weight carried by isolator R = radius of curvature Effective Stiffness Keff is displacement dependent

Code Displacement Terminology DTD or DTM

DD or DM

DD or DM

Center of Mass

Elevation

Center of Mass

Plan

Displacement

Description

DD

Displacement at Center of Mass in Design Earthquake

DTD

Total Displacement including torsion effects in Design Earthquake

DM

Displacement at Center of Mass in Maximum Earthquake

DTM

Total Displacement including torsion effects in Maximum Earthquake

139

Engineering Properties of Isolation post-yield stiffness K2 or Kd

Shear Force F FM FD Fy

Qd

Effective Stiffness Keff = FM/DM initial stiffness K1 = Fy/Dy Dy

DD

DM

Displacement D

Hysteresis Loop • Energy Dissipated = 4Qd(DM-Dy) • Equivalent Viscous Damping EVD = 2/S [Qd(DM-Dy)/(FMDM)]

Effective Periods  ൌ ʹߨ ெΤ௄ TD = effective Period at Design EQ TM = effective Period at Maximum EQ

Overall Building Isolation System Shear Force vs Displacement Hysteresis

Isolator Properties – Lead Rubber Shear Force V

Qd = Lead Yield

post-yield stiffness – rubber only

VM VD Vy

Effective Stiffness Keff = VM/DM initial stiffness K1 = Rubber + Lead Dy

DD

DM

Displacement D

Isolator Shear Force vs Displacement Hysteresis 140

Isolator Properties – Friction Pendulum Shear Force V

Qd = Friction = PW

post-yield stiffness Kd = W/R

VM VD Vy

Effective Stiffness Keff = Vm/Dm initial stiffness K1 = large Dy

DD

DM

Displacement D

Isolator Shear Force vs Displacement Hysteresis

Isolator Properties – Flat Slider Shear Force V

post-yield stiffness = zero

Qd = Friction = Vy = VD = VM

Effective Stiffness Keff = VM/DM initial stiffness K1 = large Dy

DD

DM

Displacement D

Isolator Shear Force vs Displacement Hysteresis 141

Isolator Properties – Viscous Damper Shear Force F Damping Force Vmax = C ZDM

Dy

DD

DM

Displacement D

Isolator Shear Force vs Displacement Hysteresis

Seismic Force Calculations for Isolation Devices ƒ Equations of Motion

F = KD + CV + MA

ƒ Isolation System

Force vs Displacement F = yield force + elastic force F = QD + K2D

ƒ Friction Pendulum

F = W (P + D/R)

ƒ Lead Rubber Brg

F = ALFYL + (ArGr/Tr) D

ƒ Flat Slider

F = PW

ƒ Flat Slider + LRB

F = PW + ALFYL + (ArGr/Tr) D

ƒ Viscous Damper

F = CV = CZD

142

ADRS & Capacity Spectra methods •

Engineers familiar with Acceleration Response Spectra Ahli teknik terbiasa menggunakan respon spektrum percepatan



Displacement-based design now common perancangan berdasarkan displacement sudah umum dilakukan



Displacement spectra useful for isolation design spektrum displacement berguna untuk desain isolasi



Displacement spectra calculated from accelerograms spektrum displacement dihitung dari akselorogam ( or pseudo displacement spectrum Sd = Sa / Z2) (atau spectrum disp. semu)



Acceleration vs Displacement Response Spectrum – ADRS



Effects of additional hysteretic damping included in spectra pengaruh tambahan redaman histerisis tercakup dalam spektrum (structure + foundation + isolation)



Capacity of structure can be plotted on ADRS

Damping “B-Factors” SNI 1726:2012 • Spectra scaling factors for damping level

143

Acceleration Response Spectra (scaled for damping)

Displacement Response Spectra (scaled for damping)

144

Acceleration - Displacement (ADRS) showing MCE and DBE for damping levels

Capacity Spectrum Plot

Design EQ Operating Point MCE Operating Point

145

NZS 1170 - Christchurch spectra

ADRS & Capacity Spectrum

Durham St Capacity Spectrum (Including Bounding)

146

Recent Jakarta Building Isolation

Christchurch Displacement & Acceleration Design Spectra (Whittaker & Jones) 2014 • Standardised Displacement and Acceleration design spectra for seismic isolation standarisasi spectrum untuk perencanaan displacement dan percepatan untuk isolassi gempa • multiple projects can use same/similar seismic criteria proyek yang berbeda dapat menggunakan kriteria gempa yang sama • Design tool useful for all Christchurch projects alat perencanaan yang bermanfaat untuk proyek Christchurch

147

Time history analyses analisis Time history (sejarah waktu kejadian) • Analytical studies using typical isolator properties pendekatan secara analitik dengan sifat isolasi yang tipikal • Non-linear, time-history analyses – SDOF non-linier, analisis time-history – Single Degree of Freedom • Suite of strong motion records scaled to NZS 1170.5 cocok untuk rekaman strong motion hingga skala NZS 1170.5 • Displacement and acceleration responses charted pembuatan grafik respon displacement dan percepatan • Comparison with B-factors (EVD) perbandingan dengan factor-B • “Direct Capacity” ADRS spectra – useful design aids

Strong Motion Records (Bradley) Event

Station

Cmpnt

K1 Record

K2 Family

Scale Factor

1

ChCh 2010

CBGS

2

1.66

1.12

1.86

2

ChCh 2010

CHHC

1

1.62

1.12

1.81

3

ChCh2011

CBGS

1

1.05

1.12

1.18

4

ChCh 2011

CHHC

2

1.12

1.12

1.25

5

Chi Chi, Taiwan

CHY044

2

3.98

1.12

4.46

6

Chi Chi, Taiwan

CHY015

2

2.58

1.12

2.89

7

Kocaeli, Turkey

Zeytinburnu

1

7.08

1.12

7.93

CBD7: Spectral Match – Disp. (mm)

CBD7: Spectral Match - Acceleration (g) 1,600

2.0 1.8

1,400

5% Code D, R=1.8 Mean Envelope Tmin

1.6 1.4 1.2

1,200

5% Code D, R=1.8 Mean

1,000

1.0

800

0.8

600

0.6

400

0.4

200

0.2 0.0

0 0.0

0.5

1.0

1.5

2.0 2.5 Period (secs)

3.0

3.5

4.0

4.5

0.0

1.0

2.0 3.0 Period (secs)

4.0

148

Analysis details • Bilinear hysteresis typically assumed • Designer chooses Qd (yield), Kd (elastic period T2)

• Qd/W = 6%, 8%, 10%, 12% • T2 = 3.0, 4.0 & 5.0 sec (based on K2) • Non-linear time history analysis • Average of maxima of NLTHA using 7 scaled records • Eliminate need for iterative design • “Equivalent linear” properties response dependent.

Direct Inelastic ADRS for isolation in Christchurch

149

Design of Common Isolators • Proprietary items (supplier to design) • Specify performance requirements load and displacement menentukan batas performa untuk beban dan displ. • Codes for design of bearings eg Eurocode EN 15129 peraturan yang digunakan untuk perencanaan bearing Eurocode EN 15129 • Consider property variability in design and manufacture (apply Bounding Analysis) mempertimbangkan variabilitas sifat dalam perencanaan dan proses manufaktur (penerapan analisis Batas)

Lead Rubber Bearing Design (generally leave to supplier) •

Usually used together with Flat Sliders



Horizontal Displacement and vertical load combinations



Based on internal stresses and strains

Rules of thumb • Rubber Modulus 0.4MPa < G < 0.7 MPa • Vertical working stress < 12 MPa (or FOS = 3.0) • Vertical + MCE combination up to 20MPa • Internal shear strain Hsc = 1.5 N / (ArSG) • Seismic shear strain HM = DM/Tr < 200% • Combined internal strain Hs < 700% (allow for reduced overlap area) • Small tension capacity Tmax = 3G Ar • Bearing size about 2 x MCE displacement • Rubber layers 8-12mm thick • Steel shims 3mm • Load plates 20-30mm • Anchor bolts 8x M24/ 8.8 (check concrete bearing)

150

Example Vertical Load vs Horizontal Displacement Interaction Chart

Pendulum Bearings - Design • Generally leave to supplier secara umum dilakukan penyuplai • Select Yield, post-elastic stiffness, displacement

• Friction force center matches weight of building pusat gaya gesek berhimpit dengan pusat berat bangunan • Curvature cause bearings to lift lendutan menyebabkan bearing terangkat • Single, double or triple sliding surfaces Rules of thumb • Vertical bearing stress on puck < 50 MPa • Friction values 0.04 < P < 0.14 • Zero tension capacity • Bearing size about 2 x MCE displacement

151

Bounding Analysis •

Consider range of isolation behaviour in design memperhatikan batas perilaku Isolasi dalam perencanaan



Bounding Analysis (Lamda Factors). Consider variability, aging, strain rate, temperature etc. Analisis batas (factor Lamda). memperhatikan variabilitas, factor umur, laju peregangan, temperature, dsb



Upper Bound - greater Force. Lower Bound - larger Displ. Batas atas – gaya yang lebih besar. Batas bawah – displ. yang lebih besar



Specify range of acceptable supplier properties menentukan batas penerimaan untuk penyuplai

Testing of Isolator Devices • SNI 1726:2012 Chapter 12 Section (follows ACSE) • EN15129 (Eurocode)

• Prototype tests – generally 2 of each type – Bearings not used – Cyclic displacement tests with vertical load • Production Quality Control (QC) tests – 0 to 100% of bearings (depending on preference)

152

Test Requirements SNI 1726:2012 •

Prototype Testing at average Dead + Live Load Pengujian prototip dengan beban mati dan beban hidup rerata – Generally for 2 units and not used in construction dilakukan pada 2 unit yang tidak digunakan dalam konstruksi – May refer to similar units previously tested dapat berpedoman pada unit yang dulu pernah diuji



Testing sequence required – 20 reversed cycles at wind force – 3 reversed cycles in increments up to DM – 3 reversed cycles at DTM – 10 reversed cycles at DTD



Production Testing required by other International Standards

Typical Test of Lead Rubber Bearing

153

Typical Test of Pendulum Bearing

Summary Rangkuman • Overview of how isolation works gambaran cara kerja isolasi • Properties of common isolator devices sifat alat isolasi secara umum • Properties of isolators sifat system isolasi • Study of Design Displacements & Accelerations for isolation in Christchurch • Proprietary design of isolators • Specification & testing of Isolators spesifikasi dan pengujian isolasi 154

Questions & Discussion • What system would you choose? Sistem apa yang kamu pilih? • How should you specify bearings? Bagaimana menentukan bearing?

155

Strengthened Indonesian Resilience: Reducing Risks from Disasters Base Isolation Lecture Series

3. Design of new isolated buildings 3. Perencanaan bangunan baru dengan isolasi

Padang Indonesia Dr David Whittaker & Ms Georgia Whitla 09 – 13 February 2015

Outline •

Summarise isolation design philosophy rangkuman filosofi perancangan isolasi



Design to SNI 1726:2012 perencanaan berdasarkan SNI 1726:2012



Requirements for Isolated Buildings syarat-syarat untuk bangunan dengan isolasi



Variability in Isolator Properties variabilitas dalam karakteristik isolasi



Equivalent Lateral Force Procedure Prosedur Gaya lateral ekivalen



Upper and Lower Bound Analysis Analisis batas atas dan batas bawah



Dynamic Analysis Procedure Prosedur analisis dinamik



Worked Example contoh pekerjaan



Hospital Example contoh di RS



Questions & Discussion Pertanyaan dan diskusi

156

Seismic Isolation Philosophy Filosofi Isolasi Gempa •

Protect structure and substructure from damaging inelastic actions at Design Level earthquake (1 in 500 year event) melindungi struktur dan fondasi dari kerusakan akibat sifat inelastic pada gempa rencana (1 dalam 500 tahun)



Direct inelastic deformation primarily into flexible isolation system merubah deformasi inelastic kedalam sistem isolasi yang fleksibel



Isolation able to accommodate displacement up to Maximum Earthquake Level (1 in 2,500 year event) isolasi mampu menahan perpindahan hingga level gempa maksimum (kejadian 1 dalam 2500 tahun)



Dissipate energy in stable energy absorbing devices mendisipasi energy melalui alat peredam yang stabil



Follow a displacement-based approach to overall behaviour and forcebased approach to design of structure and substructure. Mengikuti kaidah pendekatan displacement untuk perilaku secara keseluruhan dan pendekatan gaya untuk perencanaan

Objectives of isolation system Tujuan sistem isolasi ƒ Restraint for service loads (wind, small earthquake) tahan terhadap beban layan (angin, gempa kecil) ƒ After yield flexible system to lengthen period of structure menghasilkan sistem yang fleksibel untuk memperpanjang periode struktur ƒ Energy dissipation (damping) to limit displacement disipasi energi (redaman) untuk membatasi perpindahan ƒ Isolators accommodate displacement of large EQ Isolasi memungkinkan perpindahan akibat gema yang besar ƒ Structure and foundation not overloaded under large EQ struktur dan fondasi tidak mengalami kelebihan beban akibat beban gempa yang besar ƒ Restoring stiffness to re-centre system following earthquake mengembalikan kekakuan untuk menyeimbangkan sistem setelah gempa

157

Isolation - How it works Isolasi – Cara kerja (diagram of Acceleration Response Spectrum) (gambar spektrum respon percepatan)

Percepatan spectrum, Sa (T)

Spectral Acceleration Sa (T)

• Increase Period of vibration and effective Damping menambah periode getaran dan redaman efektif Reduction by R Factor Pengurangan oleh faktor R (for ductility) (untuk daktilitas) Elastic Design Spectrum Spektrum desain elastis Redaman 5% 5% damping Reduction due to additional Damping

5% damping 10% damping 20% damping

Sa

1s Design spectrum for conventional ductile structure Desain Spektrum untuk struktur daktil konvensional

Pengurangan akibat redaman tambahan

Increase in Period peningkatan periode

3s Period of Vibration T Periode getaran, T

Isolation - How it works Isolasi – Cara kerja (diagram of Acceleration Response Spectrum) (gambar spektrum respon percepatan)

Spectral Displacement SD (T)

• Increase Period of vibration and effective Damping menambah periode getaran dan redaman efektif Reduction due to additional Damping

Elastic Design Spectrum 5% damping

5% damping

Displacement increase for Period change

10% damping 20% damping

SD Increase in Period

1s

3s Period of Vibration T 158

Establish Design Spectra 1) Ground acceleration for short period, Ss (SNI 1726:2012 Cl 6.1.1) percepatan tanah untuk periode pendek, Ss (SNI 1726:2012 Cl 6.1.1) 2) Ground acceleration for 1s period, S1 (SNI 1726:2012 Cl 6.1.1) percepatan tanah untuk periode 1s, S1 (SNI 1726:2012 Cl 6.1.1) 3) Site coefficeint for short period, Fa (SNI 1726:2012 Table 5) Koefisien lapangan untuk periode pendek, Fa (SNI 1726:2012 Table 5)

Very small Footer Text. Probably not required

Establish Design Spectra

4) Site coefficient for 1sec period, Fv(SNI 1726:2012 Table 5) koefisien lapangan untuk periode 1 detik, Fv(SNI 1726:2012 Table 5) 5) Response spectra parameters for MCE ܵெௌ ൌ  ‫ܨ‬௔ ൈ  ܵௌ respon spektrum parameter untuk MCE ܵெଵ ൌ  ‫ܨ‬௏ ൈ  ܵଵ 6) Response spectra parameters for DBE respon spektrum parameter untuk DBE

Very small Footer Text. Probably not required

ʹ ܵ஽ௌ ൌ  ൈ  ܵெௌ ͵ ʹ ܵ஽ଵ ൌ  ൈ  ܵெଵ ͵ 159

Establish Design Spectra Final design response spectra desain akhir untuk respon spektrum ܶ௢ ൌ ͲǤʹ ൈ  ܶ௦ ൌ 

1. If T
ܵ஽ଵ ܵ஽௦

ܵ஽ଵ ܵ஽௦

ܵ௔ ൌ  ܵ஽ௌ  ͲǤͶ ൅ ͲǤ͸

ܶ ܶ଴

ܵ௔ ൌ  ܵ஽ௌ  ܵ௔ ൌ 

ܵ஽ଵ ܶ

Very small Footer Text. Probably not required

Isolation System Design Perancangan sistem isolasi 1)

Establish Maximum Considered Earthquake Response Spectrum for the site and structure menciptakan respon spektrum gempa maksimum untuk lokasi dan struktur bangunan

2)

Select desirable “operating point” (i.e what force level for structure, what displacement at isolation plane) memilih “titik operasi” yang diinginkan (misal tingkatan gaya untuk struktur dan perpindahan pada bidang isolasi)

3)

Choose Isolator types (eg LRB + sliders, or pendulum) memilih tipe Isolasi (contoh LRB + sliders, atau pendulum)

4)

Obtain isolator and overall system properties (Qd, Kd) mendapatkan karakteristik Isolasi dan system keseluruhan (Qd, Kd)

5)

Determine Design & Maximum operating points by iterative procedure. Menentukan perencanaan dan titik operasi maksimal dengan iterasi DD, DM, TD, TM, VD and VM

6)

Determine design forces for structure and foundation menentukan gaya rencana untuk struktur dan fondasi

160

Analysis Procedures Prosedur Analisis to SNI 1726:2012 • Equivalent lateral force procedure (when permitted) prosedur gaya lateral ekivalen (saat diperbolehkan) • Dynamic Analysis Procedures prosedur analisis dinamik – Response Spectrum Procedure prosedur respon spektrum – Response History Procedure prosedur respon kejadian waktu

Equivalent lateral force procedure limitations of SNI 1726:2012 •

Sites with S1 less than 0.6g lokasi dengan S1 <0,6g



Soil class SA, SB, SC or SD kelas tanah SA, SB, SC or SD



Structure above the isolation interface is less than or equal to four storeys or 19.8m in height tinggi struktur d 4 lantai atau tinggi 19,8m



Effective period of the isolated structure at maximum displacement is less than 3.0s periode efektif dari struktur pada perpindahan maksimum <3,0detik



Effective period of the isolated structure at the design displacement is greater than three times the elastic fixed-based period periode efektif dari struktur yang di-isolasi pada perpindahan rencana 3 kali lipat lebih besar dari periode fixed-based elastis



Structure above the isolation plane is of regular configuration konfigurasi struktur diatas bidang isolasi dalam kondisi reguler 161

Equivalent lateral force procedure limitations to SNI 1726:2012 • Effective stiffness Keff of isolation system at the design displacement is greater than 1/3 of the effective stiffness at 20% of the design displacement. Kekakuan efektif Keff system isolasi pada perpindahan rencana > 1/3 dari kekakuan efektif pada 20% perpindahan rencana Isolator Force Gaya isolator Keff > 0.33 K0.2D K 0.2D

DD

0.2DD

Isolator Displacement perpindahan Isolator

General requirement SNI 1726:2012 - Minimum restoring force • lateral force at the total design displacement is at least 0.025W greater than the lateral force at 50% of the design displacement. Gaya lateral pada perpindahan total rencana minimal 0.025W kali lebih besar dari gaya lateral pada 50% perpindahan rencana Isolator Force > 0.025 W

0.5DTD

DTD

Isolator Displacement 162

General requirement SNI 1726:2012 - No displacement restraint • Isolation system configured so no restraint of earthquake displacement to less than the total maximum displacement DTM konfigurasi sistem isolasi sehingga perpindahan akibat gempa < perpindahan total maksimum DTM

Equivalent Lateral Force Procedure (based on Capacity Spectrum Method) • Assumes structure and substructure rigid compared with isolation system. Asumsi bahwa struktur atas dan struktur bawah lebih kaku dari system isolasi • Behaviour governed by flexible isolation system (SDOF) perilaku dikendalikan oleh system isolasi fleksibel (SDOF) • Bilinear isolators behaviour perilaku bilinear isolator • Analysis based on Capacity Spectrum Method analisis berdasarkan metode spektrum kapasitas

163

Iteration to find response level Iterasi untuk mendapatkan tingkat respon Guess Displacement D Menebak perpindahan D

Check if assumed Displacement correct Cek apakah asumsi perpindahan benar

Calculate system properties at D - effective Period & Damping Menghitung properti sistem pada D – periode efektif dan redaman

Calculate displacement given system properties Hitung perpindahan dengan properti sistem yang ada

System response calculation steps 1 Estimate

• Select preferred system properties Qd, Kd • Initial estimate of D

Calculate

• System effective stiffness Keff at assumed DD • Keff = Qd/D + Kd

Calculate

Calculate

• Effective system Period Teff

• Effective system dampingɃ݂݂݁ ൎ

ଶ ொௗ గ ௞ௗ஽

164

System response calculation steps 2 • Damping reduction factor B from Table 22 Obtain

Calculate

Check

Final Step

• D from design spectra • Compare new D calculated with initial estimate. If in agreement, go to final step. If not, got back to first step with new estimate for D.

• Calculate design base shear Vb = keff D

Design Actions Isolated Structure

Superstructure Designed for some ductility Vs = kdDD / R R<2 Isolation system - elastic Design force Vb = kdmaxDD Maximum displacement DTM Substructure Designed for Vb = kdmaxDD No ductility Note: kdmax from prototype bearing tests 165

Structure Above Isolation System Design Shear Vs • Vs = K dDD / R where R ≤ 2 • Vs must not be less than 1) Shear force for design of conventional, fixed base structure of same W and period TD 2) Shear force required for wind design 3) 1.5Qd ௏ ௪ೣ ௛ೣ ೔సభ ௪೔ ௛೔

• Vertical distribution of Force ‫ ݔܨ‬ൌ σ೙ೞ

Variability in Isolator Properties • Material properties • Manufacturing tolerances • Environmental effects • Aging • Other factors? • Increase in Keff Æ Increase in force transferred to structure • Decrease in Keff Æ Increase in displacement at isolation plane • Only manufacturing tolerances covered by SNI 1726:2012 • Refer to ASTM or Eurocode for allowances for other effects 166

Variability in Isolator Properties

Durham St Capacity Spectrum (Including Bounding)

167

Worked Example • Case study building • 4 storey hospital

• Location – Padang • Soil - Class SE

Worked Example – Building Properties • 8x8m grid • 3.5m storey height

• RC moment frame • Isolated under ground floor • Regular configuration • Isolated using double concave slider bearings

168

Building Properties • We = 10 kPa average (= 10 kN/m2) • Each floor We = 10x24x24 = 5,760 kN • Roof We = same as typical floor (concrete) • Total We = 5x5760 = 28,800 kN • Assume T1(non-isolated) = 0.5 sec Floor

Weight

Roof

5,760 kN

3

5,760 kN

2

5,760 kN

1

5,760 kN

Ground

5,760 kN

Worked Example ƒ Estimate isolator system properties ƒ Assume Double Concave Slider Bearing with μ = 0.08 and R = 3,500 mm ܳௗ ൌ ߤܹ ൌ ͲǤͲͺ ൈ ʹͺǡͺͲͲ ൌ ʹǡ͵ͲͶ݇ܰ ݇ௗ ൌ ܹȀܴ ൌ ʹͺǡͺͲͲȀ͵ͷͲͲ ൌ ͺǤʹ͵݇ܰȀ݉݉

Qd = 2,300 kN kd = 8.23 kN/mm

169

Iteration to find response level Iterasi untuk mendapatkan tingkat respon Guess Displacement D Menebak perpindahan D

Calculate system properties at D - effective Period & Damping Menghitung properti sistem pada D – periode efektif dan redaman

Check if assumed Displacement correct Cek apakah asumsi perpindahan benar

Calculate displacement given system properties Hitung perpindahan dengan properti sistem yang ada

System propeties • Guess DD (at DBE) = 0.3 m • Calculate system properties at D

ܶ஽ ൌ ʹߨ

ߞ௘௙௙ ൌ

ௐ ௄೐೑೑ವ ௚

ൌ ʹߨ

ଶ଼଼଴଴ ଵହଽ଴଴ൈଽǤ଼ଵ

ൌ ʹǤ͹‫ܿ݁ݏ‬

ʹ ߤ ʹ ͲǤͲͺ ൌ ൌ ͵ͳΨ ߨ ߤ ൅ ‫ܦ‬஽ ߨ ͲǤͲͺ ൅ ͲǤ͵ ܴ ͵Ǥͷ 170

Damping Reduction

ࣀ=31% Æ BD=1.72

Demand from design spectra Step 1 - Obtaining design response spectrum • Ground acceleration for short period, Ss (SNI 1726:2012 Cl 6.1.1) Refer to figure 9 of SNI 1726:2012

Ss

1.5 g

• Ground acceleration for 1sec period, S1 (SNI 1726:2012 Cl 6.1.1) Refer to figure 10 of SNI 1726:2012

S1

0.6 g

• Site coefficient for short period (SNI 1726:2012 Table 4) note: linear interpolation is allowed Site effect for short period, F a

Fa

0.9

• Site coefficient for 1sec period (SNI 1726:2012 Table 5) note: linear interpolation is allowed Site effect for short period, F v

Fv

2.4

• Response spectrum parameter for MCE (SNI 1726:2012 Cl 6.2) SMS ܵெௌ ൌ  ‫ܨ‬௔ ൈܵௌ ܵெଵ ൌ  ‫ܨ‬௏ ൈ ܵଵ

1.350 g

SM1

1.440 g

• Response spectrum parameter for DBE (SNI 1726:2012 Cl 6.3) ʹ SDS ܵ஽ௌ ൌ  ൈ ܵெௌ ͵ SD1

0.900 g 0.960 g

ʹ ܵ஽ଵ ൌ  ൈ ܵெଵ ͵

• Design respons spectrum (SNI 1726:2012 Cl 6.4) ܶ௢ ൌ ͲǤʹ ൈ ܶ௦ ൌ 

ܵ஽ଵ ܵ஽௦

ܵ஽ଵ ܵ஽௦

note: 1. If T
ܵ௔ ൌ  ܵ஽ௌ  ͲǤͶ ൅ ͲǤ͸

2. If To≤T≤Ts

ܵ௔ ൌ  ܵ஽ௌ 

3. If Ts
ܵ௔ ൌ 

ܵ஽ଵ ܶ

To

0.213 sec

Ts

1.067 sec

ܶ ܶ଴

171

Demand from design spectra • Extract demand from spectrum • Equation assumes that T>Ts (i.e Sa is proportional to 1/T) ‫ܦ‬஽ ൌ

݃ܵ஽ଵ ܶ஽ ͻǤͺͳ ൈ ͲǤͻ͸ ൈ ʹǤ͹ ൌ Ͷߨ ଶ ‫ܤ‬஽ Ͷߨ ଶ ൈ ͳǤ͹ʹ ൌ ͵͹Ͷ݉݉

• Check with original assumption (300mm), does not agree so re-iterate with DD=374mm

Reiterate ‫ܭ‬௘௙௙஽

ܳ஽ ʹ͵ͲͶ ͳͶǤͶ݇ܰ ൌ ൅ ‫ ݀ܭ‬ൌ ൅ ͺǤʹ͵ ൌ ͵͹Ͷ ݉݉ ‫ܦ‬

ܶ஽ ൌ ʹߨ ߞ௘௙௙

ௐ ௄ವ ௚

ൌ ʹߨ

ଶ଼଼଴଴ ଵସସ଴଴ൈଽǤ଼ଵ

ൌ ʹǤͺͶ‫ܿ݁ݏ‬

ͲǤͲͺ ʹ ߤ ʹ ൌ ൌ ൌ ʹ͹Ψ ߨ ߤ ൅ ‫ܦ‬஽ ߨ ͲǤͲͺ ൅ ͲǤ͵͹Ͷ ܴ ͵Ǥͷ

172

Damping Reduction

ࣀ=27% Æ BD=1.66

Demand from design spectra • Extract demand from spectrum • Equation assumes that T>Ts (i.e Sa is proportional to 1/T) ݃ܵ஽ଵ ܶ஽ ‫ܦ‬஽ ൌ Ͷߨ ଶ ‫ܤ‬஽ ͻǤͺͳ ൈ ͲǤͻ͸ ൈ ʹǤͺͶ ൌ Ͷߨ ଶ ൈ ͳǤ͸͸ ൌ ͶͲ͹݉݉ • Check with original assumption (374mm), does not agree so reiterate with DD=407mm

173

Iteration with spreadsheet - Design STRUCTURE AND SITE PROPERTIES Superstructure seismic weight, We Initial estimate for Dd

28800 kN 0.3 m

DESIGN SPECTRUM PROPERTIES Sd1 0.961 g

ISOLATOR PROPERTIES Friction cofficient, μ Radius of curvature, R "Yield" Base Shear. Qd Elastic Stiffness, Kd lamda lambdaQd lamdaKd Natural period of oscillation, Td

0.08 3.5 2304 8228.571 1 2304 8228.571 3.753007

STUCTURAL PROPERTIES Assumed structural damping level

m kN kN/m max kN kN/m sec

0%

ITTERATE FOR ISOLATOR DISPLACEMENT DEMAND Trial 1 Trail 2 Trail 3 Assumed displacement, Dd 0.30 0.37 0.41 Damping ratio 0.31 0.27 0.26 Effective stiffness, Keff 15908.57 14391.91 13883.79 Effective period, Teff 2.70 2.84 2.89 Dampng factor, Bd 1.72 1.66 1.64 Displacement, D 373.82 407.41 421.08 Base shear at D 5947.00 5863.42 5846.19 Base shear coefficient 0.21 0.20 0.20

Trial 4 0.42 0.25 13700.21 2.91 1.63 426.40 5841.81 0.20

Trial 5 0.43 0.25 13631.91 2.92 1.63 428.44 5840.47 0.20 OK

FINAL DESIGN PROPERTIES Design displacement, Dd Elastic stiffness, Kd Isolated structure period Base shear coefficent

428 mm 8229 2.92 sec 0.20 g

Repeat for MCE STRUCTURE AND SITE PROPERTIES Superstructure seismic weight, We Initial estimate for Dd

28800 kN 0.7 m

DESIGN SPECTRUM PROPERTIES SM1 1.44 g

ISOLATOR PROPERTIES Friction cofficient, μ Radius of curvature, R "Yield" Base Shear. Qd Elastic Stiffness, Kd lamda lambdaQd lamdaKd Natural period of oscillation, Td

0.08 3.5 2304 8228.571 1 2304 8228.571 3.753007

STUCTURAL PROPERTIES Assumed structural damping level

m kN kN/m max kN kN/m sec

0%

ITTERATE FOR ISOLATOR DISPLACEMENT DEMAND Trial 1 Trail 2 Trail 3 Assumed displacement, Dd 0.70 0.77 0.80 Damping ratio 0.18 0.17 0.17 Effective stiffness, Keff 11520.00 11219.10 11118.97 Effective period, Teff 3.17 3.21 3.23 Dampng factor, Bd 1.47 1.44 1.43 Displacement, D 770.43 797.12 806.75 Base shear at D 8875.38 8942.98 8970.25 Base shear coefficient 0.31 0.31 0.31

Trial 4 0.81 0.16 11084.47 3.23 1.43 810.17 8980.27 0.31

Trial 5 0.81 0.16 11072.43 3.24 1.43 811.37 8983.85 0.31 OK

FINAL DESIGN PROPERTIES Design displacement, Dd Elastic stiffness, Kd Isolated structure period Base shear coefficent

811 mm 8229 3.24 sec 0.31 g

174

Final isolation system response (Padang) 1.6 MCE 5% damping MCE 10% damping

1.4

MCE 20% damping MCE 30% damping

Acceleration [g]

1.2

DBE 5% damping DBE 10% damping

1.0

DBE 20% damping DBE 30% damping

0.8

T = 1 sec T = 2 sec

0.6

T = 3 sec

0.4 0.2 0.0 0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Displacement [m]

Design Shear Forces - Padang Superstructure R<2 Vs = 5760 kN (R=1) 0.2g Vs = 2880kN (R=2) Isolation system - elastic Vb =5760kN DTM > 812 mm Substructure Designed for Vb = 5760 kN No ductility

175

Distribute force up structure Floor

Weight

Height

Wxhx

Fx

Roof

5,760 kN

13.5m

77760

1126

3

5,760 kN

10.5m

60480

879

2

5,760 kN

7m

40320

585

1

5,760 kN

3.5m

20160

292

Ground

5,760 kN

0m

0

0

• Then….design as for a conventional structure

Dynamic Analysis Procedures Prosedur Analisis Dinamik •

Alternative to Equivalent Lateral Force Procedure (ELF) alternative untuk prosedur ELF



Often gives lower design forces sering menghasilkan gaya rencana yang lebih kecil



Must be used where structure is irregular, tall or very flexible where ELF can be unconservative harus digunakan saat struktur tidak teratur, tinggi, atau sangat fleksibel sehingga ELF terlalu tidak konservatif

176

Dynamic Analysis Procedures Requirements Syarat-syarat • Account for spatial distribution of isolator units Ditujukan untuk distribusi spasial dari isolator • Calculate translation and torsion allowing for eccentricity of mass menghitung translasi da torsi yang diijinkan untuk eksentrisitas masa • Assess overturning/uplift forces on individual isolators memperhitungkan gaya guling/gaya angkat pada tiap isolator • Account for effects of vertical load, bi-directional load and/or rate of loading on the isolation system Ditujukan untuk pengaruh beban vertikal, gaya bi-directional dan/atau laju pembebanan pada sistem isolasi

Response Spectrum Procedure • Equivalent linear model to approximate nonlinear isolated building: model ekivalen linier untuk memperkirakan bangunan dengan isolasi nonlinier

– Equivalent linear springs are used for isolators ekivalen pegas linier digunakan untuk isolator – Equivalent viscous damping used to modify response spectrum redaman viscous ekivalen diunakan untuk respon spectrum modifikasi 1.0 Spectral Acceleration, Sa [g]

0.9 0.8 Structural modes with 5% damping

0.7

Isolated modes with damping equal to ζeff

0.6

keff

0.5 0.4 0.3 0.2 0.1 0.0 0

Period of non-isolated structure

1

2

3

Period [sec]

4

5

Period of isolated structure

177

Response Spectrum Procedure • Iterative method • Good starting point is output of ELF Procedure Guess

• Obtain initial estimate for system properties from ELFP • Keff, D and ζeff

Model

• Construct 3D model using spring properties Keff • Use damping ratio ζeff to modify response spectrum

Analyse

Check

• Analyse using Response Spectrum Analysis as for a conventional building • Obtain isolator displacement • Compare isolator displacement with assumed values and re-iterate if required

Minimum forces and displacements from SNI 1726:2012

178

Large Displacement Effects

ETABS Isolator Element Modelling (Linear modelling)

179

ETABS Isolator Element Modelling (Linear modelling - Pdelta)

ETABS Isolator element modelling (non linear properties from manufacturers)

180

Example 2 – Palu Hospital • What if Palu Hospital was to be designed as isolated

Example 2 – Palu Hospital (unisolated design parameters) ܵ஽ௌ ͳǤ͸ͺ ‫ܥ‬௦ ൌ ൌ ൌ ͲǤ͵ͳͷ ܴ ͺȀͳǤͷ ‫ܫ‬௘ Acceleration spectrum - Palu 1.80 1.60 DBE 5% damping

Acceleration, Sa [g]

1.40 Reduced force level Æ Ductility, damage, facility unlikely to be operable following earthquake

1.20 1.00

Cs (R=8, Ie=1.5)

0.80 0.60 0.40 0.20 0.00 0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Period [sec]

181

Example 2 – Palu Hospital (Isolated design parameters) • Using the same isolation system as for example 1 • Assume We = 150000kN Capacity spectrum - Palu 1.6

MCE 5% damping

Acceleration [g]

MCE 10% damping

Operating point for isolation system at design level Sa=0.3g, Dd=0.81m

1.4 1.2

MCE 20% damping MCE 30% damping DBE 5% damping DBE 10% damping

1.0

DBE 20% damping DBE 30% damping

0.8

Possible range of operating points to utilise existing structure design, up to R=2

0.6 0.4 0.2 0.0 0.0

0.5

1.0

1.5

2.0

2.5

Displacement [m] Very small Footer Text. Probably not required

Example 2 – Palu Hospital (Conclusions) • Existing design Cs = 0.314g • Could isolate to give same base shear demand (0.3g for example system) • Use existing design, just add isolation system • Or, could have decreased demand on structure by using R=2.0 and same isolation system Æ 0.15g • Could have chosen a softer isolation system to further reduce force transferred and decrease cost of structure

Very small Footer Text. Probably not required

182

Your Examples? • Do you have a new building design that could be isolated? Apakah anda memiliki bangunan baru yang dapat bias menerapkan isolasi?

Very small Footer Text. Probably not required

Questions & Discussion

183

Strengthened Indonesian Resilience: Reducing Risks from Disasters Base Isolation Lecture Series

4. Case Studies: New Isolated Buildings – Design and Construction 4. Studi kasus: Isolasi Bangunan Baru – Perencanaan dan Konstruksi

Padang, Indonesia Dr David Whittaker & Ms Georgia Whitla 09 – 13 February 2015

Outline • Number of Isolated buildings Jumlah bangunan dengan Isolasi • Milestone projects from New Zealand proyek penting dari NZ

• Indonesia • Italy • Japan • Your case studies • Questions & Discussion

184

Isolated building numbers worldwide

Isolated buildings – worldwide • Japan – around 8000 structures including buildings • USA – around 120 buildings • New Zealand - around 20 buildings and 30 bridges

San Francisco City Hall (USA)

Oakland Cathedral of Light (USA)

Bolu Viaduct Turkey

185

NZ Projects with Isolation

South Rangitikei Rail Bridge

William Clayton Building

Parliament Buildings

Te Papa Museum of NZ

Wgtn Regional Hospital

Chch Womens Hospital

The beginning… • William Clayton building – Wellington NZ • One of the first isolated buildings in the world, 1978 salah satu bangunan pertama di dunia yang menggunakan Isolasi • Lead rubber bearings • 150 mm clearance to moat wall • Retrofit underway 2015

186

New Zealand project details • Wellington Regional Hospital • Te Papa – Museum of New Zealand

• Christchurch Women’s Hospital • Christchurch rebuild

Wellington Regional Hospital • 50 000m2 , 7 storey, 2003 • 135 LRB, 156 flat slider bearings

• 600 mm displacement

187

Wellington Regional Hospital (critical post-disaster operational facility) • Non-isolated building properties – T1 = 0.8 sec – Vb ≈ 0.8We (elastic 2500 Yr) – Reduce using ductility 4-6 in superstructure design mengurangi penggunaan daktilitas 4-6 pada desain struktur atas • Isolated building properties – UBC approach – TD = 2.7sec – Vb ≈ 0.16We – Superstructure designed R=2

Wellington Regional Hospital column and isolator layout

188

Te Papa – Museum of New Zealand ƒ 120x190m, 23m tall ƒ Opened in 1998

ƒ 152 bearings ƒ 500 mm displacement

Te Papa – Design comparison • Cost studies completed by structural designer (Holmes) studi biaya dilakukan oleh perancang struktur (Holmes) • Demonstrated – Estimated cost of damage estimasi biaya kerusakan – Relative structural performance performa struktur relatif – Cost of isolated vs non-isolated biaya isolasi vs non-isolasi structure ($15.1m vs $14.5m)

189

Christchurch Women’s Hospital (only isolated building in Chch earthquakes) • 10 storeys • 41 LRB + 13 slider bearings • 420mm displacement

Christchurch Women’s Hospital

190

Christchurch Government Building • Emergency Services • 1 in 7500 year MCE

• LRB and Flat Slider • Isolation at top of GF columns

Grand Chancellor office building • Triple Pendulum bearings (EPS) • Design to ASCE 7-10

• DTM = 750 mm • SaMCE = 0.14g

191

Grand Chancellor Office • Response Spectrum and pushover analysis analisis respon spectrum dan pushover • Localised uplift forces gaya angkat lokal • P-Delta modelling added manually pemodelan P-Delta ditambahkan secara manual • ETABS modelling pemodelan dengan ETABS

Grand Chancellor Office (ETABS modelling, response spectrum function)

192

Grand Chancellor Office (ETABS modelling)

Grand Chancellor Office (bearing testing)

193

Grand Chancellor Office (bearing testing)

Durham St Building (Beca)

194

Durham St Building

Durham St Building

195

Durham St Building (Beca)

Durham St Building (Beca) • Equivalent Lateral Force Procedure Prosedur gaya lateral ekivalen • Double Concave Sliders slider double concave • Allowance for 500mm displacement syarat perpindahan 500mm • Irregular building configuration konfigurasi bangunan tidak teratur

196

Durham St Building (Response Spectrum Analysis) • Multiple models model ganda • P-Delta modelling issues permasalahan pemodelan P-Delta

• Iterations iterasi • Isolator properties based on axial load properti isolator berdasarkan gaya aksial

Durham Street Building (Response Spectrum Analysis)

197

Durham St Building Bearing testing in NZ 1) Material testing Æ Validate friction factor assumption pengujian material Æ validasi asumsi factor gesekan

Durham St Building Bearing testing in NZ 1) Material testing Æ Validate friction factor assumption pengujian material Æ validasi asumsi factor gesekan

198

Durham St Building Bearing testing in NZ 2) Isolator testing pengujian isolator - Test rig capacity pengujian kapasitas peralatan

Durham St Building Bearing testing

• Testing in Taiwan pengujian di Taiwan • High capacity testing rig peralatan uji dengan kapasitas tinggi

199

Durham St Building (Isolator installation and construction)

Durham St Building (Construction above isolation plane)

200

ANZ Centre – new home for Beca

ANZ Centre, Christchurch ƒ Steel moment frame rangka baja ƒ Seismic isolation isolasi gempa (double concave sliders) ƒ 600 mm displacement

201

Indonesia ƒ Gudang Guram Office Tower – Jakarta, 26 story ƒ Several other buildings under construction/design ƒ Low rise buildings in Padang ƒ More information ??

Jakarta Embassy LRB + Flat Sliders (isolation design by Beca)

202

Indonesia

• West Java, Indonesia Jawa Barat, Indonesia • Test project proyek pengujian • worker housing building on LRB bangunan pekerja dengan LRB • No design changes to structure tidak ada perubahan desain struktur

Japan – Kamikuzawa City • 21 Apartment Buildings On Single “Low Seismic Plate”

203

Kamikuzawa Project • “Island” Area 31,000sq m2 (125m x 250m) • Footprint Area 12,741 m2

• Floor Area 53,000 m2 • Weight 112,000 tons • 242 Isolators

Kamikuzawa

204

Italy – growth in isolation projects

L’Aquila, Italy 2009



Major earthquake – Abruzzo, Central Italy



April 6, 2009



Homeless 23,000 (Death & Injuries 180+1,500)



Challenge to rapidly provide housing 205

L’Aquila Reconstruction Strategy Strategi rekonstruksi: menghindari kontainer untuk mengurangi perkampungan kumuh

Penggunaan container dalam keadaan darurat terdahulu di Itali menunjukkan bahwa selain dapat dimanfaatkan sebagai solusi sementara, shelter-shelter tersebut berakhir menjadi permanen dan terkadang menciptakan perkampungan kumuh yang baru Strategi tradisionil

JANGKA PENDEK Tenda

JANGKA PANJANG Rumah dengan kualitas tinggi

L’Aquila Project Schedule • Very rapid decision making and construction pengambilan keputusan dan konstruksi yang sangat cepat • Government promise – occupancy 9 months janji pemerintah – dapat ditinggali dalam 9 bulan • Permanent quality housing with temporary speed kualitas bangunan permanen dengan kecepatan bangunan sementara • Isolation seen early as a key component isolasi menjadi sebagai komponen penting • Conceptual designs by April 16th konsep desain 16 April • Construction began 4 weeks after event konstruksi dimulai 4 minggu setelah kejadian 206

L’Aquila Seismic Safety Strategy • Extreme time constraints batasan waktu ekstrim • Use existing design/construction practice penggunaan desain yang pernah dilakukan • Govt. provide “low seismic” building sites pemerintah menyediakan lokasi bangunan dengan gempa rendah • Reduce seismic demand on buildings mengurangi kebutuhan konstruksi bangunan terhadap gempa • Base-isolation an “obvious” decision isolasi dasar merupakan keputusan yang jelas • Heavy mat foundation slab dasar slab fondasi yang berat • Isolation at level of an urban block isolasi pada tingkat komplek perkotaan

L’Aquila Construction Scope • 185 Isolated foundations built • 19 different sites • 4600 apartments • Each about 20m x 60m • 40 isolators in each building • Curved sliders selected • Provide design flexibility • Use local design/construction

207

L’Aquila Isolation System • Concave Slider type selected • Provide max. freedom regarding building types

• 7,500 units, Locally produced • Very high production rate

L’Aquila Construction • Foundation plate (500mm) • 40 steel/concrete columns • Isolators on columns • Floor plate (500mm thick) • Superstructure (various materials)

208

L’Aquila Timber Superstructure

L’Aquila Concrete Superstructure

209

L’Aquila Steel Superstructure

L’Aquila Completed Buildings

210

L’Aquila In-Situ Testing

Taiwan – New Building Examples (Chang et al 13WCSi Sendai 2013 ) • Tall Buildings being isolated – 38 floors • Mid-height isolation (Level 4 of 16)

• LRB, HDR and Pendulum bearings • Passive viscous damper (PVD) & tuned mass dampers (TMD) • Use of strong motion structure monitoring

211

China (Fu Lin Zhou 13WCSI Sendai 2013) • Beijing large building platform 2000 x 1500m (48 buildings) • Kunming airport terminal

China (Fu Lin Zhou 13WCSI Sendai 2013) • Macau – Honk Kong bridge (26 km) • School retrofits (under building or in Ground Floor)

212

Japan • Greatest number isolated buildings in world • Tall buildings also isolated

• LRB, pendulum, HDR, Oil Dampers, U dampers • Many isolated buildings affected by Great East Japan EQ March 2011. • 18 Story MT building on LRB 23cm displ.

Turkey – Above “base” isolation (Sabiha Gökçen Airport, Istanbul) • 30 bearings, 10LRB, 20 rubber • Design displacement 300 mm • Thermal expansion and wind uplift

213

Case Studies - Exercise •

New building examples contoh bangunan baru



Assume you are providing a concept design for the building asumsikan anda menyediakan konsep perencanaan untuk bangunan



How would you design an isolation system for the building? Bagaimana anda akan merencanakan system isolasi untuk bangunan?



Consider pertimbangkan – What type of isolators would be most appropriate?Bagaimana tipe isolator yang sesuai? – In what plan layout?dalam layout yang bagaimana? – What would be a suitable isolation location?Dimana lokasi yang paling cocok? – Would you have to change the structure to allow for isolation?Akankah anda merubah struktur untuk pemasangan isolasi? – What would be the likely benefits to the structure if it was isolated?apa keuntungan yang ingin anda peroleh dari penggunaan isolasi?

Case Studies – Exercise (Moment Frame Building)

214

Case Studies – Exercise (Shear Wall Building)

Case Studies – Exercise (Irregular plan)

215

Case Studies – Exercise (Deep Basement)

Case Studies – Exercise (Very tall building)

216

Case Studies – Exercise (Building on a hillside)

Case Studies – Exercise (Multiple tower complex)

217

Case Studies – Exercise (Variable building layout) • Uncertain building layout • Provision for future developments

• Allow for varied structural systems

Case Studies – Exercise (Tsunami Shelter)

218

Questions & Discussion

219

Strengthened Indonesian Resilience: Reducing Risks from Disasters Base Isolation Lecture Series

5. Isolation design for existing buildings 5. Perencanaan Isolasi untuk bangunan yang telah berdiri

Padang, Indonesia Dr David Whittaker & Ms Georgia Whitla 09 – 13 February 2015

Outline • Isolation design philosophy on existing buildings Filosofi perencanaan Isolasi untuk bangunan yang sudah berdiri • Requirements for retrofitting Syarat untuk retrofit • Selecting an isolation system Pemilihan sistem isolasi • Design to SNI 1726:2012 perencanaan berdasarkan SNI 1726:2012 • Analysis and strengthening of retrofitted structure analisis dan perkuatan untuk struktur retrofit • Worked Example Contoh pengerjaan • Examples for group discussion Contoh untuk diskusi grup

220

Isolation Design Philosophy Filosofi Perencanaan Isolasi • Assess building horizontal capacity (ie ultimate strength) menilai kapasitas horizontal banguanan (kuat ultimit) • Decrease demand on structure through isolation to suit assessed capacity mengurangi kebutuhan pada struktur bangunan melalui isolasi untuk mendapatkan kapasitas yang sesuai

Isolation Retrofit – How it works Retrofit dengan Isolasi – Cara Kerja Maximum Earthquake Design Earthquake

Acceleration

Isolation System Response

Existing Building Capacity Kapasitas bangunan eksisting Range of possible isolation systems, up to R=2.0 Rentang sistem isolasi, mencapai R=2,0 Increased damping from isolation system Peningkatan redaman untuk system isolasi

Maximum displacement for seismic gap and isolation system design, R=1.0 Perpindahan maksimum untuk gap gempa dan rencana sistem isolasi, R=1,0

R≤2.0

Displacement 221

Reasons for retrofitting isolation Alasan untuk retrofit dengan isolasi ƒ Code changes perubahan peraturan ƒ Protection of monumental structures perlindungan untuk struktur monumental ─ Historical buildings bangunan bersejarah

ƒ Protection of important structures proteksi terhadap struktur penting ─ Hospitals RS

─ Airports Bandara ─ Bridges Jembatan

ƒ Structural modifications modifikasi struktur ─ Additional levels tingkat tambahan

Requirement for retrofitting Syarat untuk retrofiting • Ability to insert isolators Kemampuan untuk disisipi sistem isolasi – Subfloor?lantai bawah? – Basement – easiest basement - termudah – Above ground diatas tanah • Rigid structure directly above isolators struktur kaku langsung di atas isolator • Creation of seismic gap pembuatan gap gempa (dilatansi) – Neighbouring structures?stuktur tetangga? – Building services Layanan bangunan

No neighbouring structures

Many close neighbouring structures Difficult to create seismic gap

222

Challenges to resolve Tantangan yang dihadapi • Strengthening of structure directly above and below isolation plane often required Perkuatan untuk struktur yang secara langsung terletak di atas dan di bawah bidang isolasi seringkali dibutuhkan • Basement walls (remove prop Æ cantilever) dinding basement (menghilangkan penopang Æ kantilever) • Loss of basement floor area berkurangnya lantai daerah basement • Services reticulation across isolation plane retikulasi disepanjang bidang isolasi

Process •

Assess existing building capacity and ductility (R) penilaian kapasitas bangunan eksisting dan duktilitas (R)



Determine achievable seismic gap given site constraints penentuan celah gempa yang dapat dicapai dengan batasan lokasi



Determine “target performance” menentukan performa yang ingin dicapai



Select isolation system to “match” building capacity and within achievable seismic gap pemilihan sistem isolasi untuk menyesuaikan dengan kapasitas bangunan dan celah yang tersedia



Select isolation location pemilihan lokasi isolasi



Design strengthening works required perencanaan pekerjaan perkuatan yang diperlukan – Superstructure if required struktur atas, bila diperlukan – Diaphragms diafragma – Basement walls dinding basement – Supporting structure struktur pendukung 223

Retrofit using isolation (Indonesia example) • Hospital located in Palu RS di Palu • Assume designed 2012 using new hazard maps asumsi perencanaan 2012 dengan peta bencana terbaru

Retrofit using isolation (Indonesia example) • Hospital, designed after 2012 using Gempa SNI 1726-2012 RS, direncanakan setelah 2012 dengan Gempa SNI 1726-2012 • 5 storey 5 lantai • Reinforced concrete moment frame frame dengan beton bertulang • Objective – Isolate to increase operability of structure following earthquake tujuan – isolasi untuk meningkatkan kinerja strukur akibat gempa yang akan datang

224

Retrofit using isolation (Palu hospital example) • Known design parameters (assumed) mengetahui parameter desain (asumsi) – Risk Category IV Æ Ie=1.5 Kategori risiko IV Æ Ie=1.5 – Special reinforced concrete moment frame Æ R=8 frame penahan momen dengan beton bertulang khususÆR=8 • Structural properties (assumed) sifat struktur – We = 10kPa over all levels We = 10kPa untuk seluruh tingkat – T1=0.5sec

Retrofit using isolation (Palu hospital example) Acceleration spectrum - Palu 3.00

SMS = 2.52

MCE 5% damping

Acceleration, Sa [g]

2.50

MCE 10% damping MCE 20% damping

SDS = 1.68

2.00

MCE 30% damping DBE 5% damping

1.50 DBE 10% damping DBE 20% damping

1.00

DBE 30% damping

0.50

0.00 0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Period [sec]

225

Retrofit using isolation (Palu hospital example) Ȉ ‫ܥ‬௦ ൌ

ௌವೄ ೃ ಺೐

ൌ

ଵǤ଺଼ ଼ȀଵǤହ

ൌ ͲǤ͵ͳͷ

Acceleration spectrum - Palu 1.80 1.60 DBE 5% damping

Acceleration, Sa [g]

1.40 Reduced force level Æ Ductility, damage, facility unlikely to be operable following earthquake

1.20 1.00

Cs (R=8, Ie=1.5)

0.80 0.60 0.40 0.20 0.00 0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Period [sec]

Retrofit using isolation (selecting isolation system) Capacity spectrum - Palu 2.0

MCE 5% damping

1.8

MCE 10% damping

Possible operating point for isolation system, up to Sa = 0.63, eg Sa = 0.5g Sd =400mm

Acceleration [g]

1.6 1.4 1.2

0.8

MCE 30% damping DBE 5% damping DBE 10% damping

Structure Capacity

1.0

MCE 20% damping

DBE 20% damping DBE 30% damping

0.6 0.4 0.2 0.0 0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Displacement [m]

226

Retrofit using isolation (Indonesia hospital example) •

Select isolation system to meet strength of structure memilih sistem isolasi yang memenuhi kekuatan struktur



At DBE Sa<0.32g, Sd=550mm, Damping = 30%



No ductility required at DBE Capacity spectrum - Palu 2.0 1.8

Acceleration [g]

1.6 1.4 1.2

Possible isolation system

1.0 0.8 0.6 0.4 0.2 0.0 0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Displacement [m]

Retrofit using isolation (select an isolation system)

Select isolation system to suit required response • Can use R=2 for superstructure • Ie=1.0 for isolated building ࢑ࡰ ࡰࡰ ൑ ࡯ࢇ࢖ࢇࢉ࢏࢚࢟࢕ࢌ࢙࢚࢛࢘ࢉ࢚࢛࢘ࢋ ࢂ࢙ ൌ ࡾ ࢑ ࡰ ࡰࡰ  ൑ ૙Ǥ ૜૚૞ ૛ ࢑ࡰ ࡰࡰ ൑ ૙Ǥ ૟૜ • Very easy to achieve this performance mudah mencapai pperforma ini • Structure could be designed for less force Æ Economy in superstructure design struktur dapat direncanakan untuk gaya yang lebih kecil Æ perencanaan struktur atas lebih ekonomis

227

Retrofit using isolation (Select isolation location)

Retrofit using isolation (analyse structure, design and detail for isolation) Possible strengthening of ground floor above isolation to accommodate overturning, distribute load to isolators Possible strengthening of ground floor columns

Detailing for seismic gap

228

Retrofit using isolation (Indonesia hospital example) • What if this hospital was in another location? • Designed level would have been lower – Palu S1 = 0.9 – Padang S1 = 0.6 – Jakarta S1 = 0.3 • Select a different isolation system • Padang

ܵ஽ௌ ͲǤͻ ‫ܥ‬௦ ൌ ൌ ൌ ͲǤͳ͸ͻ ܴ ͺȀͳǤͷ ‫ܫ‬௘

Retrofit using isolation (Padang Example) Capacity spectrum - Padang 1.0 MCE 5% damping

0.9

0.7

Acceleration [g]

MCE 10% damping

Allowable acceleration through isolation system if R=2.0 used = 0.34g

0.8

MCE 20% damping

Structural Design Capacity = 0.17g

0.6

MCE 30% damping DBE 5% damping

0.5

DBE 10% damping

Possible range of isolation system responses

0.4 0.3

DBE 20% damping DBE 30% damping

0.2 0.1 0.0 0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Displacement [m]

229

Retrofit using isolation (retrofit example - an existing old building) • Process Proses – Existing building designed to some older design standards perencanaan bangunan eksisting dan beberapa standar perencanaan yang lebih lama – Seismic loadings have since increased Beban gempa yang meningkat – Structural configuration is not robust (i.e. unreinforced masonry) Æ Use R=1.0, ensure elastic behaviour konfigurasi struktur tidak kuat (misal. bangunan batu tidak bertulang) menggunakan R=1,0 untuk memastikan perilaku elastis – Choose limit state (return period earthquake) at which elastic behaviour is desired, maybe higher than “design level”. MCE? Tentukan batas (periode kembali gempa) pada perilaku elastis yang diinginkan, mungkin lebih tinggi dari tingkat rencana. MCE? – Select isolation system to limit force transferred to structure to within structural capacity at chosen limit state pilih sistem isolasi untuk membatasi gaya yang dipindahkan ke struktur dalam batasan kapasitas bangunan yang dipilih

1980s or 1990s building designed to SNI 03-1726-1987 • V = C I K Wt • C = Basic Coefficient

• I = Importance Factor • K = Structural Type Factor

Seismic Zone Map

230

1980s or 1990s building designed to SNI 03-1726-1987 •

V = C I K Wt

Location

Zone

Firm/Soft

C

I

Ductility

K

V/Wt Capacity

v seismic

1

Soft

Firm

Padang

3

Soft

Firm

Jakarta

4

Soft

Firm

0.13

1.0

high

1

0.13

0.13

1.0

low

4

0.52

0.09

1.0

high

1

0.09

0.09

1.0

low

4

0.36

0.07

1.0

high

1

0.07

0.07

1.0

low

4

0.28

0.05

1.0

high

1

0.05

0.05

1.0

low

4

0.20

0.05

1.0

high

1

0.05

0.05

1.0

low

4

0.20

0.03

1.0

high

1

0.03

0.03

1.0

low

4

0.12

Retrofit using isolation (retrofit example - an existing old building) •

Assume this building is in Padang (actually Dunedin Law Courts NZ) asumsikan bangunan ini terletak di Padang (sesungguhnya Dunedin Law Courts NZ)



Unreinforced masonry building, important historical structure bangunan batu tak bertulang, bangunan penting dan bersejarah



Assessed capacity ≈ 0.12g as fixed based structure, T = 0.3sec kapasitas hasil penilaian ≈ 0.12g dengan fondasi jepit, T = 0.3sec



Same approach as for new building however select R=1.0 pendekatan sama sperti bangunan baru, dengan R=1.0 231

Retrofit using isolation (retrofit example - an existing old building) • Worked example using NZ Parliament Buildings contoh menggunakan bangunan parlemen NZ • Can be applied to existing historic building in Indonesia dapat diaplikasikan pada bangunan bersejarah eksisting di Indonesia

• Historically significant – early 1900s (modern part 1970s) • Unreinforced masonry – existing capacity ≈ 0.08g

Retrofit using isolation (retrofit example - an existing old building) • Existing capacity ≈ 0.08g kapasitas eksisiting ≈ 0.08g • Limit force transferred to less than 0.08g at Design EQ batas gaya yang disalurkan kurang dari 0.08g pada Design EQ • Very low level, achievable given wind load?

232

Retrofit using isolation (retrofit example - an existing old building)

Questions and Discussion

233

Strengthened Indonesian Resilience: Reducing Risks from Disasters Base Isolation Lecture Series

6. Case Studies: Isolation of Existing Buildings – Design and Construction 6. Studi Kasus: Isolasi pada Bangunan Eksisting – Perencanaan dan Konstruksi

Padang, Indonesia Dr David Whittaker & Ms Georgia Whitla 09 – 13 February 2015

Outline • New Zealand retrofit design and construction case studies studi kasus perencanaan dan konstruksi retrofit di NZ • Other international case studies studi kasus lingkup Internasional yang lain • Your case studies?Studi kasus anda? • Questions & Discussion

234

New Zealand Parliament Buildings

• Historically significant – early 1900s (modern part 1970s) • Unreinforced masonry – existing capacity ≈ 0.08g bangunan batu tak bertulang – kapasitas eksisting ≈ 0.08g • Isolated and strengthened in 1990s. Diperkuat dan diberi Isolasi pada 1990an

NZ Parliament Buildings Design criteria Kriteria Desain Gedung Parlemen NZ • Fixed Base Period 0.45s Periode dari fondasi terjepit 0,45det • Isolated Behaviour (Maximum Earthquake MCE - 1 in 500 years) Perilaku isolasi (Gempa maksimum MCE – 1 dalam 500tahun) – Displacement DM = 450mm, perpindahan DM = 450mm – Acceleration SaM = 0.22g, percepatan SaM = 0.22g – Period TM = 2.5s Periode TM = 2.5s

Isolation plane

235

NZ Parliament Buildings (Strengthening and Isolation) • SaM = 0.22g, • 417 isolators

• Structure strengthened struktur diperkuat – Additional concrete shear walls dinding geser beton tambahan – Steel plates on floors (diaphragm) plat baja pada lantai (diafragma) – Foundations fondasi

NZ Parliament Buildings Design Acceleration Spectra

236

NZ Parliament Buildings Isolator installation “sandwich beams” cast each side “balok lapis” Dipasang di kedua sisi Isolation Plane LRB isolators and flat-jacks Bidang isolasi Isolator LRB dan flat-jack

NZ Parliament Buildings Isolator installation

Isolation Plane 20 mm sawcut slot Bidang isolasi 20 mm slot irisan

237

New Zealand Parliament Buildings

Rankine Brown Building • Victoria University, Wellington, NZ • 10 storey Library building (remained in use)

• Un-isolated period T1=1.4-1.8sec

238

Rankine Brown Building (Isolation design) •

16 LRB positioned at the base of basement columns 16 LRB dipasang di bawah kolom basement



Maximum earthquake displacement 600mm perpindahan gempa maksimum 600mm



Teff approximately 3sec Teff kira-kira 3det



Time history analysis analisis sejarah waktu



Strengthening of building - carbon fibre wrapping, sway podium columns (existing column too small to fit a sliding bearing to cater for 600mm disp and axial load) perkuatan bangunan – pelapisan dengan serat karbon, podium kolom bergoyang (kolom eksisting terlalu kecil dibandingkan sliding bearing untuk memenuhi perpindahan 600mm dan gaya aksial)



Building fully occupied and operational throughout construction bangunan yang beroperasi dan sibuk selama konstruksi – Minimise noise and dust meminimalkan suara bising dan debu

Rankine Brown Building (Construction Sequence) 1) Install temporary props at levels 0,1,2 and 3 to take full axial load of columns. Jack props to take load pemasangan penopang sementara pada tingkat 0,1,2,3 untuk menahan beban axial kolom. Penopang didongkrak untuk memikul gaya 2) Protection barriers and environmental controls installed around columns (library) pemasangan pelindung dan pengontrol untuk lingkungan di sekitar kolom (perpustakaan) 3) Wire saw cutting of columns (quiet) pemotongan kolom dengan gergaji kawat baja (tenang) 239

Rankine Brown Building (Construction Sequence) 1) Removal of section of column pemotongan bagian kolom 2)

3)

Steel “shoe” fitted around top section of column (shear connection between bearing and column) “sepatu” baja yang dipasang disekitar bagian atas kolom (hubungan geser antara bearing dan kolom) Bearing installed into gap. Steel “shoe” lowered to top surface of bearing and bolted into place. Bearing dipasang pada celah. Sepatu baja diturunkan hingga mencapai permukaan atas bearing dan kemudian dibaut.

4)

Grout gap between shoe and column above, and between bearing and column below celah antara sepatu dan kolom, dan antara bearing dan kolom di-grout

5) 6)

De-stressing and removal of props peregangan dan pelepasan penyangga Bearing installation done one column at a time working from the centre out towards each end instalasi bearing dilakukan pada kolom, satu persatu dari pusat menuju masing-masing ujung

Christchurch Art Gallery • Christchurch, New Zealand • Constructed in 2001

• Concrete shear walls

240

Christchurch Art Gallery • 142 double concave slider bearings • Design EQ 1 in 1000 year • Vb = 0.18We • 530 mm displacement

Christchurch Art Gallery

Christchurch Art Gallery New sandwich beam and seismic trench to perimeter

Balok lapis dan parit untuk gempa (dilatansi)

Modify stairs to accommodate 550mm movement in Basement only

Modifikasi tangga untuk mengakomodasi pergerakan 550mm pada basement

Montreal Street

Basement columns fattened to support new bearings

Kolom basement diperbesar untuk mendukung bearing yang baru

Dinding pengaku di basement

New bracing walls in Basement only

New isolation plane (dashed)

New steel suspension frames for lifts in Basement only Rangka baja suspensi

Bidang isolasi (garis putus-putus)

241

Christchurch Art Gallery New lift steelwork hangs below isolation plane

Christchurch Art Gallery Isolation trench around building New seismic service trench

242

Christchurch Art Gallery Isolation trench at building perimeter

Worcester Boulevard

Christchurch Art Gallery cover plate over isolation & enlarged columns

243

Christchurch Art Gallery displacement of pendulum isolators

Art Gallery (Construction – Isolator on column) • Temporary propping and cutting of structure for isolator installation penyangga sementara dan pemotongan struktur untuk instalasi isolator

Existing column, strengthened externally

Temporary propping, existing column cut

Isolator installed, Propping removed 244

William Clayton Building, NZ 2015 building extension & seismic upgrade • 1978 - first LRBs in world, - structure ductile just in case! • 150 mm clearance to moat wall • Bearing unbonded with steel dowels • 200m from active Wellington Fault • Refurbishment & extension

William Clayton Building 2015 building extension & seismic upgrade • Floors extended and new floor added perluasan dan penambahan lantai • All original LRBs retained (sample removed easily and tested - little change over 35 years) • Seismic gap increased to around 250 mm celah gempa ditambah sekitar 250 mm • Ringfeder springs added to stop building in large EQ. pegas ringfeder ditambah untuk menghentikan bangunan pada gempa yang besar

245

William Clayton Building Bearing removal for testing • Check for change in stiffness after 40years pengecekan untuk perubahan kekakuan setelah 40tahun • Small jacks to allow removal dongkrak kecil untuk pelepasan

William Clayton Building Bearing removal for testing • Flat slider in place following bearing removal slider datar diletakkan setelah pelepasan bearing

246

William Clayton Building Bearing testing comparisons 1980 vs 2014

William Clayton Building Capacity Spectrum analysis

247

Industrial Boiler retrofit - NZ •



• •

• •

Industrial Boiler 1000 tonne weight boiler industri dengan berat 1000ton Original design by Rolls Royce, but inadequate for modern EQ standards desain awal oleh Rolls Royce, tidak memenuhi untuk peraturan gempa baru 4 LRBs installed - 1 in each corner. Pemasangan 4LRB pada tiap ujung Installed during annual 1-week shutdown – no lost time. Pemasangan selama 1-minggu penutupan – tidak ada waktu hilang water-cooling to stop boiler heat affecting bearings. Air-pendingin untuk menghentikan pengaruh panas pada bearing Greatly increased seismic safety peningkatan keamanan terhadap gempa secara signifikan

Pasadena City Hall • Monumental civic structure bangunan monumental • Constructed 1927 dibangun pada 1927 • Cultural Heritage Landmark • Lateral structure mix of concrete walls, piers and frames struktur lateral gabungan antara dinding beton, tiang dan rangka

• Seismic performance under 475yr return period event evaluated as very poor performa gempa peridoe 475tahunan dievaluasi dengan hasil sangat buruk 248

Pasadena City Hall • Retrofit options pilihan retrofit • Isolation reduced demand to within existing capacity isolasi mengurangi kebutuhan untuk kapasitas eksisting

Pasadena City Hall • 240 Friction Pendulum bearings • New foundations • Fibre wrapping

249

Basilica del Salvador - Chile • Constructed 1863 • Severely damaged in March 1985 (M7.8) and February 2010 (M8.8) earthquakes • Closed since 1985

Basilica del Salvador

250

Basilica del Salvador

Gambar 5. Kebutuhan pengurangan elastik gempa dari isolasi gempa (arah melintang)

Gambar 6. bidang dan elevasi perencanaan isolasi gempa

Basilica del Salvador (Proposed construction sequence) • Construction of isolation beneath highly damaged structure konstruksi isolasi dibawah struktur yang rusak parah • Expected to take approximately 5 years diharapkan selesai dalam 5tahun • Install micropiles pemancangan micropile • Prestress micropiles to remove load from existing foundation tiang micropile prategang untuk mengurangi beban fondasi eksisting •

Jacket base of columns and walls that will be supported on isolators selubung kolom bagian bawah dan didnding yang akan didukung isolator



Excavate small area to construct new ground floor beams penggalian area kecil untuk konstruksi balok lantai yang baru 251

Basilica del Salvador (Proposed construction sequence) • Progress excavation proses penggalian • Brace micropiles to prevent buckling pengekangan micropile untuk mencegah buckling

• Construct underground structure konstruksi struktur bawah tanah • Install isolators pemasangan isolator • Weight of structure still supported on micropiles berat struktur didukung oleh micropile

Basilica del Salvador (Proposed construction sequence) • Transfer load from piles to isolators using flat jacks penyaluran beban dari tiang ke isolator dengan dongkrak rata • Fill any gap with grout pengisian celah yang ada dengan grout • Cut and remove piles pemotongan dan pelepasan tiang

252

Antalya International Airport Turkey • Constructed 1998 • Designed 1996 based on 1975 Turkish Earthquake Code

• Reinforced concrete moment frames and shear walls • Major code revision 1998 – seismic increased by 3 • Strengthened with isolation • Isolated at 1.2m above ground • LRB / flat sliders in columns • Isolated behaviour: Teff = 2.7s 200mm displacement

Bridges in Turkey Bolu Viaduct retrofit • 2.3km - 59 spans

• Badly damaged in 1999 M7.2 Duzce EQ. • Fault rupture movement • Retrofit with pendulum brgs • Design to AASHTO 2000 • DM = 900 mm

Bolu Viaduct Turkey

253

Mid-height isolation Wellington Office Building Extension • 8 storey addition • Isolation at mid-height

41

Rikkyo University, Tokyo, Japan (masonry chapel building)



Chapel of Rikkyo University



Constructed 1920



Unreinforced masonry walls dinding pasangan batu tak bertulang



First historical masonry building in Japan to be retrofit using isolation bangunan pasangan batu bersejarah pertama di Jepang yang diretrofit dengan Isolasi

254

Rikkyo University, Tokyo, Japan (masonry chapel building) • Retrofit to not change exterior or interior due to historical value retrofit agar tidak merubah eksterior dan interior karena nilai sejarah • Isolation System sistem isolasi – LRB combined with lead bar damper LRB dikombinasi dengan peredam batangan timah

Rikkyo University, Tokyo, Japan (masonry chapel building – retrofit construction) • Existing beams at ground level considered very weak and require strengthening balok eksisting pada level muka tanah lemah dan perlu perkuatan • Removal of the need for temporary jacking by constructing new footings on an area by area basis so that the building was always supported on either the new or old bearing layer konstruksi telapak baru pada area tertentu untuk dongkrak sementara, sehingga bangunan dapat didukung baik pada bearing yang baru maupun yang lama

255

Rikkyo University, Tokyo, Japan (masonry chapel building – retrofit construction)

(1) Penghancuran dan pengambilan slab eksisting. Penggalian disekitar fondasi eksisting. Penghancuran dan pengambilan telapak fondasi

(2) Penghancuran dan pengambilan slab eksisting. Penggalian disekitar fondasi eksisting. Penghancuran dan pengambilan telapak fondasi

Rikkyo University, Tokyo, Japan (masonry chapel building – retrofit construction)

(3) Penggalian di atas balok fondasi baru dan pembuatan slab beton penahan tekanan. Pengaturan bearing karet diantara fondasi dan slab beton

(4) Konstruksi balok dan slab beton bertulang baru dalam bangunan. Pengaturan bar peredam disekitar bangunan

256

Rikkyo University, Tokyo, Japan (masonry chapel building – retrofit construction)

(5) Pengisian celah antara dinding penahan dengan tanah. Konstruksi scarcement disekitar bangunan.

Rikkyo University, Tokyo, Japan (masonry chapel building – associated strengthening)

257

Rikkyo University, Tokyo, Japan (Verification tests after construction) • Confirm isolation system response through in situ testing

Rikkyo University, Tokyo, Japan (Measured response in 2011 Tohoku earthquake) • 11th March 2011, M9 at epicentre. • Rikkyo university – 300km from epicentre

258

Rikkyo University, Tokyo, Japan (Measured response in 2011 earthquake)

International Library of Children’s Literature (Tokyo) • Original unreinforced masonry structure 1906 struktur pasangan batu tak bertulang tahun 1906 • Extended (RC) 1929 • Strengthening required to preserve architecture perkuatan diperlukan untuk menjaga arsitektural • Isolation to minimise bracing in the building isolasi untuk mengurangi pengaku pada bangunan • 4 stories above ground, existing basement 4 lantai dan basement eksisiting • Retrofit to include additions and architectural modifications retrofit untuk modifikasi dan tambahan arsitektural

259

International Library of Children’s Literature (Tokyo) • Natural rubber bearings + lead dampers

International Library of Children’s Literature (Tokyo) •

First floor beams cast beside brick walls balok lantai satu dicor disamping tembok bata



Brick walls partially demolished and removed under concrete beams between bearing locations tembok bata dihancurkan sebagian dan dibuang



New concrete foundation set pemasangan fondasi beton baru



Temporary jacks installed between new beams and new foundation and jacked to support building dongkrak sementara dipasang diantara balok baru dan fondasi baru dan didongkrak untuk menopang bangunan



Remainder of brick walls and demolished penghancuran sisa tembok bata



Remainder of foundations constructed and bearings installed sisa fondasi dibangun dan bearing dipasang Jacks removed pelepasan dongkrak Lead dampers installed pemasangan timah peredam

• •

260

International Library of Children’s Literature (Tokyo)



Vertical displacement of building constantly monitored during construction to avoid damage to superstructure. Perpindahan vertikal bangunan secara konstan dimonitor selama konstruksi untuk menghindari kerusakan pada struktur atas



Automatic control of jack force kontrol gaya dongkrak otomatis



Steel rings and bracing around isolators to prevent lateral movement during construction cincin baja dan pengaku sepanjang isolator untuk mencegahpergerakan lateral selama konstruksi

Questions & Discussion • Please discuss your case studies

261

Strengthened Indonesian Resilience: Reducing Risks from Disasters Base Isolation Lecture Series

7. Isolation Location, Detailing of Building Utilities, Connections 7. Lokasi Isolasi, Perincian Perlengkapan Bangunan, Sambungan

Padang, Indonesia Dr David Whittaker & Ms Georgia Whitla 09 – 13 February 2015

Outline | Ikhtisar • Overview of Isolation Locations | Ikhtisar Lokasi Isolasi • Details and Design Consequences | Detail dan Konsekuensi Perancangan • Stairs and Lifts | Tangga dan Lift • Access Ramps | Landaian Akses • Mechanical, Electrical and other services | Mekanikal, Elektrikal, dan layanan lainnya • Moat Covers | Tutup Parit • Connection Design | Perancangan Sambungan • Exercise and Discussion | Latihan dan Diskusi

262

Overview of Isolation Locations | Ikhtisar Lokasi Isolasi • Allow building to move horizontally (possibly up to 1m) | Bangunan dapat bergerak secara horizontal (hingga 1 m) • Depends on structure and architectural requirements | Tergantung persyaratan struktural dan arsitektural • Design consequences of location selection | Konsekuesi perancangan di lokasi pilihan

Isolation under ground floor

Isolation under first floor

Mid-height isolation

Isolation with no basement | Isolasi tanpa ruang bawah tanah

• Advantages | Keuntungan – Minimal added structural cost | Pertambahan biaya struktural tidak terlampau banyak – Separation at ground level is simple to detail | Pemisahan di bagian dasar mudah dirinci – Base of columns connected by diaphragm | Dasar kolom tersambung dengan diafragma • Disadvantages | Kerugian – “Double foundation” | Fondasi ganda – May require large pits to suspend lift / elevator | Mungkin membutuhkan galian besar untuk pengangkatan 263

Isolation with basement | Isolasi dengan ruang bawah tanah • Options for isolation plane location | Pilihan untuk lokasi bidang isolasi • Option to also isolate basement level if required | Pilihan untuk mengisolasi ruang bawah tanah jika diperlukan • Advantages | Keuntungan – Useable sub-floor space | Lantai antara dapat digunakan – No special cladding separation | Tidak membutuhkan penutup khusus

Isolation with basement | Isolasi dengan ruang bawah tanah Design Issues/Disadvantages | Masalah perancangan/kerugian – Cantilever retaining walls, high water table? | Dinding penahan tanah kantilever, permukaan air tinggi? – Design for large displacement effects from isolators | Perancangan untuk efek perpindahan besar dari isolator – Substantial column sizes and/or pilasters | Ukuran kolom yang besar dan/atau kolom praktis – Flexible columns can modify performance of isolation system | Kolom fleksibel dapat memodifikasi performa sistem isolasi

264

Isolation with basement | Isolasi dengan ruang bawah tanah

• Typical arrangements of isolation plane and retaining walls | Susunan tipikal untuk bidang isolasi dan dinding penahan tanah

• Can isolate basement – reduce floor accelerations in basement (eg library, museum or important equipment) | Dapat mengisolasi ruang bawah tanah – mengurangi percepatan lantai di ruang bawah tanah (contoh perpustakaan, museum, atau peralatan penting)

Above ground floor isolation | Isolasi diatas permukaan tanah Advantages | Keuntungan – Top of first story columns | Bagian atas dari kolom lantai pertama – Minimal added structural cost | Pertambahan biaya struktural minimal – Economic if first level is parking | Ekonomis bila lantai pertama adalah tempat parkir Disadvantages | Kerugian – Difficult if floor space occupied | Rumit apabila lantai digunakan – Special detail for lifts and stairs | Detail khusus untuk lift dan tangga – Special cladding details required if first level is not open | Detail penutup khusus diperlukan apabila lantai pertama tidak terbuka – Special details required for vertical services | Detail khusus dibutuhkan untuk layanan vertikal

265

Mid-height isolation | Isolasi di tengah bangunan • 8 storey addition to existing building | 8 lantai tambahan terhadap bangunan eksisting • Isolation at mid-height | Isolasi di tengah bangunan • Concept of a tuned mass damper | Memiliki konsep peredam penyesuaian massa • Complex to get reliable performance | Sulit untuk mendapatkan performa andalan • Would need very careful design | Sangat memerlukan perancangan yang hati-hati 9

Stairs crossing isolation plane | Bidang isolasi melintasi tangga • Suspend or provide gap and support from below | Menyingkirkan atau menyediakan jarak dan sokongan dari bawah • Requires break in stair and balustrade | Perlu menembus tangga dan balkon

Isolation Plane

266

Stairs | Tangga • Cross isolation plane | Bidang isolasi menyilang

• Options – hanging or gap | Pilihan – menggantung atau jarak

Elevators/Lifts • Suspend from above isolation plane | menggantung dari atas bidang isolasi • or set structure and isolation plane down | atau mengatur struktur dan isolasi kebawah

267

Vehicle Ramps | Landaian Kendaraan • Provide breaks between floors| Menyediakan patahan antar lantai

Utilities | Perlengkapan • Rainwater pipes | Pipa air hujan • Lightning conductors | Konduktor petir

268

Fire protection system | Sistem perlindungan kebakaran • Pipes crossing isolation plane | Pipa memotong bidang isolasi

Utilities – Flexible connections | Perlengkapan – Sambungan fleksibel

269

Moat Covers | Penutup Parit

Connection Design | Perancangan Sambungan (Anchor Bolts) | Baut Angker • Design Basis | Dasar Perancangan – Minimum design actions Vb=kDmaxDD | Aksi perancangan minimum Vb=kDmaxDD – Have capacity to transfer maximum force between substructure and superstructure | Memiliki kapasitas untuk mengalihkan gaya maksimum diantara struktur bagian atas dan bawah • Ease of construction, retrofit, temporary support, replacement | Kemudahan konstruksi, retrofit, dukungan sementara, penggantian • Make clear designs and who supplies anchor bolts | Membuat perancangan yang jelas dan siapa yang menyuplai baut angker – Embedment in concrete structure normally governs (building designer needs to be involved) | Bagian yang tertanam di struktur beton biasanya ditentukan (perancang bangunan perlu dilibatkan) 270

Connection Design – LRB | Perancangan Sambungan - LRB

• Design actions | Aksi perancangan • 2 cases – maximum and minimum vertical load | 2 kasus – beban vertikal maksimum dan minimum • Fixed end equivalent column | Kolom jepit ekuivalen • M = 0.5(VH+P∆)

Connection Design – LRB | Perancangan Sambungan – LRB 1) Shear force per bolt | Gaya geser per baut Vf=V/n 2) Direct axial load per bolt | Beban geser per baut Nf=P/A 3) Tension per bolt due to M. | Tegangan per baut T=M/S 4) Net tension per bolt | Tegangan bersih Tf=P/A-M/S 5) Design bolt for combined shear and tension loads Vf and Tf | Perancangan baut untuk kombinasi beban dan geser dan tegangan Vf and Tf

271

Connection Design – LRB | Perancangan Sambungan – LRB • Load plate design | Perancangan pelat beban • Conservatively assumed that all bolts in tension are carrying maximum tension | Secara tradisional diasumsikan bahwa semua baut adalah tegang dan menanggung tegangan maksimum

Connection Design – LRB | Perancangan Sambungan – LRB

272

Connection Design – LRB | Perancangan Sambungan – LRB

Connection Design – Slider | Perancangan Sambungan - Peluncur • Sliding surface location determines eccentricity of load at maximum displacement | Lokasi bidang peluncur menentukan eksentrisitas beban pada perpindahan maksimum • slide plate make be on top or below P∆ moment to structure above or below | Pelat peluncur dapat dibuat dibawah atau diatas P∆ momen kepada struktur dibawah atau diatas • If μbearing<μsurface is a shear connection required? | Jika μbearing<μsurface apakah sambungan geser diperlukan? • Nominal connections always provided | Sambungan tambahan selalu disediakan 273

Connection Design – Slider | Perancangan Sambungan - Peluncur

Connection Design – Slider | Perancangan Sambungan - Peluncur

274

Case Study – William Calyton | Studi Kasus – William Calyton (Increasing the seismic gap) | (Meningkatkan jarak gempa) • Open PDF drawings |buka gambar PDF

Exercise | Latihan • Building to be designed as isolated – currently documented as conventional structure | Bangunan dirancang dengan isolasi – sekarang dicatat sebagai struktur biasa • Identify locations that will require special detailing to accommodate isolation system | Mengidentifikasikan lokasi yang akan membutuhkan perincian khusus untuk menerapkan sistem isolasi • Sketch conceptual details | Melakukan sketsa detail konseptual • Consider: | Mempertimbangkan: – Lifts | Lift – Stairs | Tangga – Rattle room cover | Penutup ruang perlengkapan – Isolator connections – consider LRB and slider | Sambungan isolator – pertimbangkan LRB dan peluncur – Basement walls and columns | Dinding ruang bawah tanah dan kolom 275

Questions & Discussion | Pertanyaan dan Diskusi

276

Strengthened Indonesian Resilience: Reducing Risks from Disasters Base Isolation Lecture Series

8. Evaluation of existing base isolated buildings (& other things) 8. Evaluasi bangunan eksisting berisolasi dasar (& hal lainnya)

Padang Indonesia Dr David Whittaker & Ms Georgia Whitla 09 – 13 February 2015

Outline | Ikhtisar • Example assessment of existing isolated building | Contoh penilaian bangunan eksisting berisolasi • Isolation devices (hardware) | Alat isolasi (perangkat keras) • Tsunami vs isolation | Tsunami vs. isolasi • Questions and Discussion | Pertanyaan dan Diskusi

277

Evaluation of isolated buildings | Evaluasi bangunan berisolasi • Few buildings designed to specific standard | Beberapa bangunan dirancang terhadap standar tertentu • Standards did not address isolated structures | Standar pada umumnya tidak menyebut bangunan berisolasi • Standards have increased a lot over time | Standar telah berkembang dari waktu ke waktu • Understanding on design of isolated buildings has changed | Pemahaman mengenai perancangan bangunan berisolasi telah berubah • Analysis has become simpler! | Analisis menjadi lebih sederhana! • Few examples of isolated buildings to demonstrate performance | Beberapa contoh bangunan berisolasi untuk menunjukkan performa

Example | Contoh: William Clayton Building, NZ

• 1978 - first in world - but how does it rate now? | Pertama di dunia – namun bagaimana kondisinya sekarang? • 79 LRB & 150 mm clearance to moat wall | 79 LRB dan 150 mm jarak bersih dari dinding • Superstructure designed as ductile beyond Vb = 0.2Wt | Bangunan bagian atas dirancang daktil melebihi Vb = 0.2Wt • Bearings unbonded with steel dowels | Tumpuan tanpa pengencang dengan keling baja • 200m from active Wellington Fault | 200 m dari Patahan Wellington

278

William Clayton Building Bearing removal for testing | Pemindahan tumpuan untuk pengetesan • Check for change in stiffness after 40 years | Pengecekan perubahan kekakuan setelah 40 tahun

• Small jacks to allow removal | Dongkrak kecil untuk pemindahan

William Clayton Building Bearing removal for testing | Pemindahan tumpuan untuk pengetesan • Flat slider in place following bearing removal | Peluncur datar setelah pemindahan tumpuan

279

William Clayton Building Bearing testing comparisons 1980 vs 2014 | Perbandingan pengujian tumpuan 1980 vs 2014

William Clayton Building Capacity Spectrum analysis | Analisa Kapasitas Spektra

280

William Clayton Building Pushover Displacement capacity | Kapasitas Perpindahan Pushover

LRB at 150mm displacement

Plastic Hinges

Discussion | Diskusi • Examples from Indonesia? | Contoh dari Indonesia?

281

Seismic Isolation Devices | Alat Isolasi Seismik • Elastomeric Systems | Sistem Elastomerik – Lead-rubber bearing – natural rubber layers and steel shims with lead core | Tumpuan karet timah – lapisan karet alami dan cincin penutup baja dengan inti timah – High damping rubber bearing – modified natural rubber bearing with high damping rubber compound | Tumpuan karet peredam tinggi – tumpuan karet alami modifikasi dengan karet peredam tinggi campuran • Sliding systems | Sistem Geser – Spherical friction bearing – concave slider using PTFE (or sim.) and stainless steel | Tumpuan geser berbentuk bola - peluncur cekung menggunakan PTFE (atau sim.) dan stainless steel – Flat plate slider – flat plate slider using PTFE and stainless steel | Plat peluncur datar – plat peluncur datar menggunakan PTFE dan stainless steel

Elastomeric Isolators | Isolator Elastomerik (Advantages and complexities) | (Keuntungan dan kerumitan) • Advantages | Keuntungan – Maintenance free (no moving parts) | Bebas perawatan (tanpa bagian bergerak) – Reserve capacity beyond design displacement | Kapasitas cadangan melebihi perpindahan rancangan – Required installation tolerances within typical construction practice | Membutuhkan toleransi pemasangan dibandingkan praktik konstruksi umum – Generally, smaller footprint than slider | Umumnya, memiliki bekas yang lebih kecil dibanding peluncur • Complexities | Kerumitan – May not be stable at large displacements for light weight structures | Mungkin tidak stabil pada perpindahan yang besar untuk bangunan ringan – High quality materials required | Membutuhkan material kualitas tinggi – Connections to structure | Sambungan dengan struktur – Generally, larger profile than slider | Pada umumnya, memiliki ukuran lebih besar dibanding peluncur 282

Friction Isolators | Isolator Gesek (Advantages and complexities) | Keuntungan dan kerumitan Advantages | Keuntungan – Once sliding. period is a function of radius of curvature only and independent of mass | Ketika meluncur, periode adalah hanya fungsi radius kurva dan dipengaruhi massa – Stiffness proportional to mass Æ Eliminates torsion at isolation plane. Suitable for irregular structures. | Kekakuan sebanding dengan massa Æ Menghilangkan torsi pada bidang isolasi. Cocok untuk bangunan tak beraturan. – Low profile makes device attractive for retrofit applications | Tidak menarik perhatian sehingga cocok untuk pekerjaan retrofit. – High load capacity | Kapasitas beban tinggi. Complexities | Kerumitan – Coefficient of friction depends on contact pressure, velocity of sliding, material type and surface finish | Koefisien gesek tergantung oleh tekanan kontak, kecepatan luncur, tipe material, dan lapisan permukaan – Ageing? | Penuaan? – Must be installed with high level of accuracy | Harus dipasang dengan akurasi tinggi – Vertical ground motion sensitivity? | Sensitivitas gerakan permukaan vertikal?

Isolation Devices - Exercise | Latihan (Which device for which building?) | Alat yang mana untuk bangunan seperti apa? Discuss which device would be suitable for the following buildings. New? Existing? | Diskusikan alat mana yang cocok untuk bangunan berikut. Bangunan baru? Eksisting? - Moment frame – no basement | Frame momen – tidak ada ruang bawah tanah - Moment frame – basement | Frame momen – dengan ruang bawah tanah - Shear wall | Dinding geser - Deep basement | Ruang bawah tanah dalam - Irregular floor plate | Plat lantai tidak beraturan - Building on a hill | Bangunan di bukit - Very tall building | Bangunan sangat tinggi - Flexible building layout | Denah bangunan yang fleksibel - Existing unreinforced masonry building (church? Other historical?) | Bangunan eksisting dengan pasangan batu tanpa tulangan (gereja? Bangunan bersejarah?) 283

Specifications for Isolation Systems | Spesifikasi untuk sistem isolasi • What do you need to specify? | Apa yang perlu dirinci? – Type of isolator | Tipe isolator – Slider – R, μ, vertical loads | Peluncur - R, μ, beban vertikal – LRB – Qd, Kd, vertical loads | LRB – Qd, Kd, beban vertikal • Performance specification | Spesifikasi performa – Design parameters | Parameter perancangan – Force transferred through isolation system | Gaya ditransfer melalui sistem isolasi – Displacement capacity | Kapasitas perpindahan – Allowance for manufacturing tolerances? | Peluang untuk toleransi pembuatan

Tsunami vs isolation Tsunami vs isolasi •

Is seismic isolation compatible with tsunami resistance? | Apakah isolasi gempa cocok dengan ketahanan tsunami



Padang at high risk from tsunami | Padang terletak di lokasi risiko tinggi tsunami



Need for vertical evacuation structures | Memerlukan bangunan evakuasi vertikal



Some isolated buildings in lost in Great East Japan EQ of 2011 \ Beberapa bangunan berisolasi rusak saat gempa besar di Jepang tahun 2011 284

FEMA P646 2008 • Guidelines for Design of Structures for Vertical Evacuation from Tsunamis | Petunjuk untuk Perancangan Struktur Bangunan Evakuasi Vertikal Tsunami • Tsunami hazard assessment | Penilaian bahaya tsunami • Vertical evacuation options | Pilihan evakuasi vertikal • Siting, spacing, sizing and elevation considerations | Pertimbangan tapak, jarak, ukuran, dan ketinggian • Load determination and structural design | Penentuan beban dan perancangan struktural • Appendix C – Example calculation | Lampiran C – Contoh perhitungan

FEMA P646 2008 (Tsunami Load Effects) | Efek Beban Tsunami •

Hydrostatic forces | Gaya hidrostatis



Buoyant forces | Gaya apung



Hydrodynamic | Hidrodinamis



Impulsive | Impulsif



Debris impact | Tumbukan puing-puing



Debris damming | Pembendungan puing-puing



Uplift forces on floors | Gaya angkat di dasar



Additional gravity loads from water retained | Tambahan beban gravitasi dari air yang tertampung

285

Padang tsunami report Stanford Univ. 2009 CEE 177S/277S •

• • •





Source EQ on Mentawai Patch (Sunda Trench) | Sumber gempa bumi di Tambalan Mentawai (Parit Sunda) 33 min travel time to Padang | Waktu perjalanan 33 menit Inundation (run up) modelling | Pemodelan genangan (run up) Max flow depth estimated up to 17 m in worst case event | Diperkirakan kedalaman aliran maksimum adalah 17 m di kejadian paling buruk 4-5m depth in Masjid Nurul Iman area | Kedalaman 4-5 m di area Masjid Nurul Iman Max flow velocity 5 m/s | Kecepatan maksimum 5m/s

Padang tsunami inundation modelling | Pemodelan penggenangan tsunami Padang (Stanford 2008)

286

Stanford Padang tsunami Scenario | Skenario Tsunami Padang oleh Stanford (Suggested evacuation structures) | (Struktur bangunan evakuasi yang disarankan)

Stanford Padang tsunami Scenario | Skenario Tsunami Padang oleh Stanford (Suggested evacuation structures) | (Struktur bangunan evakuasi yang disarankan) • Building system material weight | Beban material sistem banguan • • 287

Padang vertical evacuation structures – equivalent EQ base shear | Struktur Bangunan Evakuasi Vertikal Padang – pergeseran dasar gempa bumi ekuivalen

Weight (MN)

21

31

18

15

Tsunami force (MN

4.9

4.9

5.3

4.2

Equivalent base shear SaM

0.23

0.16

0.29

0.28

Conclusions – Isolation of tsunami vertical evacuation structures | Kesimpulan – isolasi bangunan evakuasi vertikal tsunami •

Refuge levels high enough above inundation level | Lantai pengungsian cukup tinggi diatas level genangan



Tsunami hazard needs to be determined | Bahaya tsunami perlu ditentukan



FEMA guidelines available for structural design | Petunjuk FEMA tersedia untuk perancangan struktur



Lower level walls should be designed to break away | Dinding bagian bawah perlu dirancang untuk lepas



Base- isolation feasible but must be designed to carry tsunami loads (horizontal and vertical) | Isolasi dasar layak namun perlu dirancang agar dapat menanggung beban tsunami (horizontal dan vertikal)



Padang example suggests FM > 0.3Wt | Contoh di Padang menyarankan FM > 0.3Wt



Buoyancy effects means rubber bearings preferable to friction or pendulum bearings | Efek apung berarti tumpuan karet lebih baik dibanding tumpuan geser atau pendulum



Provide displacement limited “fail-safe” devices | Menyediakan perpindahan terbatas sebagai alat “kegagalan-aman”

288

Questions & Discussion | Pertanyaan dan Diskusi

289

Strengthened Indonesian Resilience: Reducing Risks from Disasters Base Isolation Lecture Series

9. Base Isolated building treatment after a large earthquake 9. Perawatan bangunan dengan isolasi dasar setelah gempa bumi besar

Padang, Indonesia Dr David Whittaker & Ms Georgia Whitla 09 – 13 February 2015

Outline • Overview | Ikhtisar • Likely effects of a large earthquake | Kemungkinan efek gempa bumi besar • Inspection | Inspeksi • Assessment | Pemeriksaan • Placarding | Pemberian Label • Special issues for isolation | Kasus khusus untuk isolasi • Monitoring isolated buildings | Monitoring bangunan berisolasi • Discussion | Diskusi 290

Experience with post-earthquake inspections of buildings | Pengalaman inspeksi bangunan setelah gempa bumi • What was your experience? | Apakah pengalaman anda?

Effects of Large EQ on isolated building | Efek gempa bumi besar terhadap bangunan dengan isolasi Isolated buildings compared with conventional | Bangunan dengan isolasi dibandingkan dengan bangunan biasa – Large movement should be mostly confined to isolation plane | Sebagian besar gerakan harus dibatasi pada bidang isolasi – Items crossing isolation plane sustain large movement | Bidang isolasi menopang gerakan besar – Possible residual offset of bearings | Kemungkinan sisa reaksi bearing • LRB • Pendulum – Should be less building damage than non-isolated (ie superstructure, building fabric, fitout) | Memiliki tingkat kerusakan yang lebih rendah dibandingkan dengan bangunan tanpa isolasi (yaitu bangunan bagian atas, rangka bangunan, dan perlengkapan bangunan) 291

EQ affected isolated building Hospital in Christchurch Bangunan dengan isolasi yang terkena gempa bumi Rumah sakit di Christchurch •

Continued (almost) uninterrupted | Hampir tidak terganggu



Approx 200 mm movement | Pergerakan sebesar 200 mm



Cover plates dislodged | Pelat penutup lepas



Some cracking in building | Beberapa keretakan terjadi

Christchurch Womens Hospital

Christchurch CBD 22 Feb 2011 Acceleration Response spectra | Respon Spektrum Percepatan di Christchruch CBD • GNS maps EQ records and charts (from Royal Comm report)

292

ADRS spectra | Spektra ADRS Christchurch CBD 22 Feb 2011

Assessment after an earthquake generally | Pemeriksaan setelah gempa bumi secara umum • Inspection and Observation (preferably by designer) | Inspeksi dan pengamatan (lebih baik oleh perancang) • Obtain ground shaking information – compare with design | Mendapatkan informasi getaran tanah – dibandingkan dengan perancangan • If necessary | Jika perlu – Survey (tilt and level) | Survei (kemiringan dan kedataran) – Testing and Measurement | Pengujian dan Pengukuran – Modelling & Prediction & correlation with observed | Pemodelan & Prediksi & Korelasi dengan pengamatan • Document assessments done | Pemeriksaan dokumen selesai • Recommend safety for occupancy | Rekomendasi keamanan penghuni • Advise owner, occupants and authorities | Saran pemilik, penghuni, dan yang berwenang 293

ATC-20 Building Inspection process | Proses Inspeksi Bangunan ATC-20 • ATC-20 – Procedures for post-earthquake evaluation of buildings | Prosedur evaluasi bangunan setelah gempa bumi ATC-20 • Rapid Evaluation Safety Assessment Form | Formulir Pemeriksaan Cepat mengenai Evaluasi Keamanan • Detailed Evaluation Safety Assessment Form | Formulir Pemeriksaan Detail mengenai Evaluasi Keamanan • Placards | Label

ATC-20 Rapid Inspection Form | Formulir Inspeksi Cepat ATC-20

294

ATC-20 Detailed Inspection Forms | Formulir Inspeksi Detail ATC-20

ATC-20 Placards | Label ATC-20

295

New Zealand Placards | Label New Zealand • Used in the Canterbury Earthquakes | Digunakan saat Gempa Bumi Canterbury • Note the colours! | Perhatikan warnanya! • Placed by inspecting engineers | Dipasang oleh insinyur inspeksi • Important that inspection engineers record their contact details! | Penting bagi seorang insinyur inspeksi untuk memberikan kontak mereka!

Plan ahead | Merencanakan lebih dulu • Design engineer to document the building design basis | Insinyur perencana mendokumentasikan dasar perancangan bangunan • Have drawings ready | Gambar telah siap • Identify possible hot-spots & vulnerabilities | Mengidentifikasi kemungkinan titik bahaya dan kerentanan • Understand levels of shaking that trigger isolation / damage | Memahami tingkat getaran yang memicu isolasi • Survey the building before EQ including reference photos bearing geometry (verticality & any offsets) | melakukan survey pada bangunan sebelum gempa bumi, termasuk foto pembanding geometri tumpuan (kelurusan dan kemiringan) • Measure clearances around building | Mengukur jarak aman disekitar bangunan • Prepare inspection checklists | Menyiapkan daftar pemeriksaan inspeksi

296

After event | Setelah kejadian • Get EQ details from USGS or BMGK (tsunami risk?) | Dapatkan detail gempa bumi dari USGS atau BMGK (risiko tsunami?) • Expect aftershocks | Mengantisipasi gempa susulan • “Triage” inspections – Structural, MEP & building manager | Tiga inspeksi wajib (struktur, MEP, dan manajer bangunan) • Was isolation system activated or over-extended? | Apakah sistem isolasi teraktifasi atau terlalu regang? • Record visible damage and signs of movement | Merekam kerusakan yang terlihat dan tanda gerakan • Photograph measure isolation plane (bearings, covers etc) | Memotret pengukuran bidang isolasi (tumpuan, penutup, dll) • Check any instrumentation (eg scratch-plates | Mengecek instrumentasi • Interview occupants | Wawancara penghuni • Carry out a safety assessment – is it safe to occupy? | Melaksanakan penilaian keamanan – apakah aman untuk dihuni?

Isolated building inspection items | Hal yang diinspeksi pada bangunan berisolasi •

Inspect bearings fixings and adjacent structure | Memeriksa pengekang tumpuan dan gedung terdekat



Look for signs of movement including ground | Mencari tanda gerakan termasuk permukaan dasar



Look for signs of distress (cracks, spalling splitting etc) | Mencari tanda bahaya (retak, kepingan, terbelah, dll)



Inspect superstructure | Memeriksa bangunan bagian atas



Inspect substructure (underground impossible to see!) | Memeriksa bangunan bagian bawah (bawah tanah tidak mungkin terlihat!)



Inspect non-structural items especially at isolation plane | Memeriksa bagian non struktural terutama di bidang isolasi

• •

Survey for level and tilt if necessary | Survei untuk kedataran dan kemiringan Keep records, including areas inspected but not damaged | Menyimpan cacatan, termasuk area inspeksi namun tidak rusak 297

Isolated building post-EQ assessment | Penilaian bangunan berisolasi setelah gempa bumi •

Obtain estimated of ground shaking intensity | Memperoleh perkiraan intensitas gerakan permukaan tanah



Preferably seek assistance from design engineer | Lebih baik mencari bantuan dari insinyur perancang



Obtain building & isolation drawings and design records | Memperoleh gambar bangunan dan isolasi serta catatan perancangan



Estimate building response by calculation (eg Capacity Spectrum method) and matching observations | Memperkiraan respon bangunan dengan perhitungan (contoh: metode kapasitas spektra dan pengamatan serupa)



Predict isolation displacements and building accelerations | Memprediksikan perpindahan isolasi dan percepatan bangunan



Inspect predicted highly stressed areas | melakukan inspeksi terhadap area yang sangat mungkin terkena tekanan



Keep records of assessments done and conclusions made | Menyimpan catatan pemeriksaan dan kesimpulan yang dihasilkan



Notify owner and authorities | Menginformasikan pemilik dan yang berwenang

Possible issues for isolated buildings | Permasalahan yang mungkin dimiliki bangunan berisolasi • Possible re-centering – is it necessary? | Kemungkinan dihuni kembali – apakah perlu? • Bearing replacement if damaged | Mengganti penumpu apabila rusak • Need for Re-levelling | Perlu didatarkan kembali

298

Earthquake monitoring systems | Sistem monitoring gempa bumi •

Eg | Contoh Canterbury Seismic Instruments http://www.csi.net.nz/



Multi-channel sensors (eg accelerometers in building) | Sensor multi-channel (contoh: akselerometer di bangunan)



Acceleration, weather, strain, displacement | Percepatan, cuaca, regangan, perpindahan



Can be remotely monitored or push message alerts | Bisa dimonitor jarak jauh atau pesan peringatan



Can set thresholds of level of shaking measured and alert (eg 1 >0.05g low, 2 >0.15g – inspect, 3 >0.3g evacuate) enables facility manager to take action immediately | Bisa mengatur batas getaran terukur dan peringatan (contoh: >0.05g rendah, 2 >0.15g – inspeksi, 3 >0.3g evakuasi)



Available for design engineer to review | Tersedia agar dapat diperiksa oleh insinyur perancang



Installed in many intelligent and isolated buildings | Dipasang di banyak bangunan pintar dan berisolasi

Earthquake monitoring systems | Sistem monitoring gempa bumi examples | contoh • Wellington Regional Hospital • Port facility • NZ airports • Major bridges Lyttelton Port

Wgtn Regional Hospital

Christchurch Civic Office

Christchurch Intl Airport

Hardanger Bridge Norway

299

Exercise | Latihan • How would you go about inspecting and assessing an isolated building? | Bagaimana cara anda menginspeksi dan menilai bangunan berisolasi?

Questions & Discussion | Pertanyaan dan Diskusi

300

Related Documents


More Documents from "Heribertus Dwi Hartanto"