Particle Size Distribution Example

  • Uploaded by: Anonymous uURFSSl
  • 0
  • 0
  • January 2021
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Particle Size Distribution Example as PDF for free.

More details

  • Words: 1,139
  • Pages: 13
Loading documents preview...
1

1. Seminar: Particle size distribution

Exercise sheet:

particle size

mass

mass fraction cumulative interval

fraction

fraction

width

frequency

mean

distribution

interval diameter

i

di-1 - di

mi

μ3,i

Q3,i

Δ di

q3,i

dm,i

d m,i ⋅ μ3,i

μ3,i

100

d m,i ⋅ 100

1 μ3 , i ⋅ d m3 ,i 100

n

∑d i =1

μ 3, i 3 m ,i

Q0(d)

q0(d)

⋅100

[mm]

[g]

[%]

[%]

[mm]

[%mm-1]

[mm]

[mm]

[mm-1]

[mm-3]

[mm-3]

[-]

[mm-1]

1

0-0,04

2,27

1,20

1,20

0,04

29,98

0,020

0,00024

0,6

1500

1500

0,797

20

2

0,04-0,063

5,31

2,80

4,00

0,023

121,91

0,0515

0,00144

0,544

205,0

1705,0

0,906

4,74

3

0,063-0,1

10,79

5,70

9,70

0,037

154,03

0,0815

0,00465

0,699

105,3

1810,3

0,962

1,51

4

0,1-0,25

64,02

33,80

43,50

0,15

225,34

0,175

0,0592

1,932

63,1

1873,4

0,996

0,22

5

0,25-0,4

40,34

21,30

64,80

0,15

141,99

0,325

0,0692

0,655

6,20

1879,7

0,999

0,02

6

0,4-0,63

36,56

19,30

84,10

0,23

83,93

0,515

0,0995

0,375

1,41

1881,0

1,000

0

7

0,63-1,0

13,44

7,10

91,20

0,37

19,18

0,815

0,0579

0,087

0,13

1881,1

1,000

0

8

1,0-2,5

15,34

8,10

99,30

1,5

5,40

1,750

0,142

0,046

0,02

1881,1

1,000

0

9

2,5-6,0

1,33

0,70

100,00

3,5

0,20

4,250

0,0298

0,002

0

1881,1

1,000

0

189,40

100,00

4,94

1881,1

1881,1

Σ

© Dr. Werner Hintz

2

1. Seminar: Particle size distribution

1) Calculation of the cumulative particle size distribution Q3(d) do

Q3 (d ) = ∫ q3 (d )d (d ) du

to sum up numerically in discrete intervals n

Q3 ( d ) = ∑ i =1

μ3,i

⋅ Δd i Δd i { { d (d ) q3 ( d )

μ3,i =

if

mi

- mass fraction,

mges

Δd i = d i − d i −1

- interval width,

n

Q3 ( d ) = ∑ μ3,i

summation from i=1...n...N

i =1

N – overall number of the intervals



results : see exercise sheet

Distribution functions are :

• monotone not decreasing, i.e. for d1 ≤ d2 is Q(d1) ≤ Q(d2), • steady, • scaling : for d ≤ du :

Q3(d) = 0

lower particle size limit

for d ≥ do :

Q3(d) = 1

upper particle size limit

Calculation of the particle size frequency distribution q3(d)

q3 ( d ) =

dQ3 ( d ) d(d )

numerically in discrete interval

q 3 (d i −1 ... d i ) =

Q3 (d i ) − Q3 (d i −1 ) d i − d i −1

=

μ3,i Δd i

2) normal and log – normal diagram of Q3(d) and q3(d) : see pictures

© Dr. Werner Hintz

3

1. Seminar: Particle size distribution

3) Calculation of the median particle size d50

read from the graphical diagram of Q3(d) :

d50 = 0,296 mm

Calculation of the modal particle size dh

read from the graphical diagram of q3(d) :

dh = 0,175 mm

4) Calculation of the mean particle size dm,3 do

d m,r = M r = ∫ dq r (d )d (d ) ( 1)

du

for a distribution related to the quantity mass r = 3 do

d m,3 = M 3 = ∫ dq 3 ( d ) d ( d ) (1)

du

in numerically form N

d m,3 = ∑ d m,i ⋅ μ3,i i =1

if the mean interval diameter is d m,i =

d i −1 + d i 2

see exercise sheet : dm,3 = 0,463 mm

5) from the graphics of Q3(d) in a logarithmical probability diagram

μln,3 = ln d 50,3 = ln 0,296 = − 1,217 σ ln,3 =

1 d 84( 3) 1 0,629 ln = ln = 0,796 2 d 16( 3) 2 0,128

graphical picture of Q3(d) in a RRSB – diagram

- linear correlation, curve is snapping off in the upper particle size range, not considered

d ′ = d 63 = 0,387 mm n = 1,84

by parallel displacement

n = tan α = tan 53,5° = 1,35 © Dr. Werner Hintz

determination of the slope angle --- deviation ???

4

1. Seminar: Particle size distribution

⎛ AS ,V , K ⋅ d ′ ⎞ using scale ⎜ ⎟ for calculating surface area ⎝ 1000 ⎠ i.e. specific surface area related to volume AS ,V , K AS ,V , K

(A =

S ,V , K

)

⋅ d ′ 1000 ⋅ 1000 d′

0,0107 ⋅ 10 3 0,0107 ⋅ 10 3 = = 0,387mm 0,387 ⋅ 10 − 3 m

m2 cm 2 = 27649 3 = 276,49 3 m cm

for Quarzit is ρs = 2650 AS ,m, K =

AS ,V , K

ρs

kg m3

= 10,4

m2 kg

Calculation of the Sauter - diameter dST and the specific surface area related the mass AS,m volume equivalent spheres d ST =

6 ⋅V AS , K

⇒ →

monodisperse particle collective



with equal specific surface area like real polydisperse particles d ST =

1 N

μ3,i

∑d i =1

=

1 = 0,202mm 4,94mm −1

m ,i

→ see exercise sheet

characteristic particle sizes :



∗ median particle size

d50,3 = 0,296 mm

∗ modal particle size

dh,3 = 0,175 mm

∗ mean particle size

dm,3 = 0,464 mm

∗ Sauter - diameter

dST = 0,202 mm

values of particle sizes are different !

© Dr. Werner Hintz

dST

5

1. Seminar: Particle size distribution

specific surface area

1 6 = d ST ψ A ⋅ d ST

AS ,V = f ⋅

N

μ3,i

i =1

d m,i

AS ,V = 6 ⋅ ∑

with ψ A ≈ 1 for spheres

= 6 ⋅ 4,94mm −1 = 29640

m2 m3

respectively: AS ,m =

AS ,V

m2 29640m 2 m 3 ρs = m 3 ⋅ 2650kg = 11,2 kg

in a good accordance with AS ,m = 10,9

m2 , see RRSB - diagram kg

7) Calculation of Q0(d) and q0(d)

∫ Q (d ) = ∫

d

du do

0

du

d −3 q3 (d )d (d ) d −3

∑ = q (d )d (d ) ∑ 3

n

i =1 N i =1

d m−3,i ⋅ μ 3 ,i d m−3,i ⋅ μ 3 ,i

i = 1...n...N

n – running number of intervals N – overall number of intervals

q0 ( d ) =

dQ0 ( d ) Q0 (d i ) − Q0 (d i −1 ) = Δd i d (d )

see working sheet

logarithmical probability diagram

μln,0 = ln d 50,0 = ln 0,022mm = − 3,82 σ ln,0 =

1 d 84 ,0 1 50μm = ln = 0,942 ln 2 d 16,0 2 7,6μm

not exact σ ln,0 = σ ln,3 = 0,882 caused by numerical deviations

− number distributions are shifted to the left, i.e. a lot of fine particles,

© Dr. Werner Hintz

Related Documents

Size Reduction
March 2021 0
Wave-particle Duality
January 2021 2
Laporan Particle Density
January 2021 1
Hazop Example
January 2021 1

More Documents from "Anonymous QqE5tcEa"