Worked Example Moment Distribution

  • Uploaded by: Mohamed
  • 0
  • 0
  • January 2021
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Worked Example Moment Distribution as PDF for free.

More details

  • Words: 1,898
  • Pages: 12
Loading documents preview...
Beam Moment Distribution: Worked Example

1.22

Beam Moment Distribution Worked Examples Question 1 Use the moment distribution method to draw a dimensioned sketch of the bending moment diagram for the following beam. The section is uniform.

40 kN 36 kN/m

A

B

C

D

4m

4m

2m

2m

Solution 1 Working in units of kN and m: FEMs: BC = 

wL2 36  4 2   48 12 12

CB =

wL2 36  4 2   48 12 12

CD = 

WL 40  4   20 8 8

DC =

WL 40  4   20 8 8

Distribution factors: Joint B

Joint C

BA K

1

I I  4 4

1

1 4

DF 1 4

 14 1 2

© M DATOO

BC I I  4 4

CB 1

1 4 1 4

 14 1 2

I I  4 4

CD 1

1 4 1 4

 14 1 2

I I  4 4 1 4

1 4

 14 1 2

Beam Moment Distribution: Worked Example

1.23

Distribution table: Joint

A

End

AB

B BA

C BC

 DF

1 2

-48

48

-20

24

-14

-14

-7

12

3.5

-6

-3

1.8

1.5

-0.9

-0.5

0.8

0.3

0.2

-0.4

-0.4

29

-29

41

-41

12 3.5

CO

1.8

Bal

1.5

CO

0.8

Bal Final EM

15

DC

 1 2

24

Bal

CD

1 2

FEM CO

CB

 1 2

Bal

D

20 -7

-6 -3 -0.9 -0.5 10

The maximum free moments, which are sagging (that is tension on the bottom of the member) are: BC =

wL2 36  4 2   72 8 8

CD = 20  2  40

(maximum at mid-span; parabolic in-between) (maximum at mid-span; linear in-between)

The final bending moments are: In AB:

at A = 15 (tension on bottom)

at B = 29 (tension on top)

In BC:

at B = 29 (tension on top)

at C = 41 (tension on top)

 29  41  at mid-span = 72     37 (tension on bottom)  2 

In CD:

at C = 41 (tension on top)

at D = 10 (tension on top)

 41  10  under point load = 40     15 (tension on bottom)  2 

© M DATOO

Beam Moment Distribution: Worked Example

1.24

Drawing the bending moment diagram (kN m) on the tension side: 41 29 10

15

15 37

Shear calculations: In AB: 15

29

RA

RB 4

R A  4  15  29  0

 R A  11.0

RB  0  (11.0)  11.0 In BC: 29

41 36

RB

RC 4

RB  4  41  36  4  2  29

 RB  69.0

RC  (36  4)  69.0  75.0

© M DATOO

Beam Moment Distribution: Worked Example

1.25

In CD: 40

41

10

RC

RD 4

RC  4  10  40  2  41

 RC  27.8

RD  40  27.8  12.2

Shear table: Span

AB

End

AB

Shears

-11.0

BC

Reaction -11

CD

BA BC

CB CD

DC

11.0 69.0

75.0 27.8

12.2

80

103

12

Shear force diagram (kN):

69 28

11

12

75

© M DATOO

Beam Moment Distribution: Worked Example

1.26

Question 2 Use the moment distribution method to draw a dimensioned sketch of the bending moment diagram for the following beam:

100 kN

80 kN

40 kN

30 kN/m

A

2I

B

2.5 m 2.5 m

3I

C

6m

1.25 m

4I 2.5 m

D 1.25 m

Solution 2 Working in units of kN and m: FEMs: AB = 

WL 100  5   62.5 8 8

BA =

WL 100  5   62.5 8 8

BC = 

wL2 30  6 2   90 12 12

CB =

wL2 30  6 2   90 12 12

CD = 

Wab 2 80  1.25  3.75 2 40  3.75  1.25 2     65.6 L2 52 52

Wa 2 b 80  1.25 2  3.75 40  3.75 2  1.25    46.9 DC = L2 52 52

Distribution factors: Joint B BA K

1

2I 2I  5 5

DF

BC 1

3I I  6 2

2 5 2 5

 4 9

© M DATOO

Joint C CB 1

3I I  6 2

1 2 1 2

2 5

 5 9

CD 3 4 I 3I   4 5 5 3 5

1 2 1 2

1 2

 5 11

3 5

1 2

 6 11

3 5

Beam Moment Distribution: Worked Example

1.27

Distribution table: Joint

A

End

AB

B BA

C BC



-62.5

CB

CD

4 9

5 9

5 11

6 11

62.5

-90

90

-65.6

46.9

-23.5

-46.9 0

Pin at D FEM*

-62.5

Bal CO

62.5

-90

90

-89.1

12.2

15.3

-0.4

-0.5

-0.2

7.7

0.1

-3.5

-4.2

94

-94

6.1

Bal

DC



DF FEM

D

0.1

CO

-1.8

Bal Final EM

0.8

1.0

76

-76

-56

0

The maximum free moments, which are sagging (that is tension on the bottom of the member) are: AB = 100 1.25  125 BC = RC 

wL2 30  6 2   135 8 8

(maximum at mid-span; linear in-between) (maximum at mid-span; parabolic in-between)

40  1.25  80  3.75  70 5

M 80  RC  1.25  70  1.25  88

RD 

80  1.25  40  3.75  50 5

M 40  RD  1.25  50  1.25  63

The final bending moments are: In AB:

at A = 56 (tension on top)

at B = 76 (tension on top)

 56  76  Under point load = 125     59 (tension on bottom)  2 

In BC:

at B = 76 (tension on top)

at C = 94 (tension on top)

 76  94  at mid-span = 135     50 (tension on bottom)  2 

© M DATOO

Beam Moment Distribution: Worked Example

In CD:

1.28

at C = 94 (tension on top)

at D = 0

 94  under 80 kN point load = 88    3.75   17 (tension on bottom)  5   94  under 40 kN point load = 63    1.25   39 (tension on bottom)  5 

Drawing the bending moment diagram (kN m) on the tension side: 94 76 56

17 59

© M DATOO

50

39

Beam Moment Distribution: Worked Example

1.29

Question 3 Use the moment distribution method to draw a dimensioned sketch of the bending moment diagram. Hence, draw a dimensioned sketch of the shear force diagram.

80 kN

160 kN

12 kN/m

A

24 kN/m

B

I

2m

1.5 m

C

I

1.5 m

D

2I

1m

E

3I

3m

6m

Solution 3 Working in units of kN and m:

M BA  12  2  1  24

Cantilever action at BA

 M BC  24

FEMs: BC = 

WL 80  3   30 8 8

CB =

WL 80  3   30 8 8

CD = 

Wab 2 160  1  3 2    90 L2 42

DC =

Wa 2 b 160  12  3   30 L2 42

DE = 

wL2 24  6 2   72 12 12

ED =

wL2 24  6 2   72 12 12

Distribution factors: Joint C CB K

3 I I   4 3 4

DF

1 4 1 4

 1 3

© M DATOO

Joint D CD

1

2I I  4 2

DC 1

2I I  4 2

1 2 1 2

1 4

 2 3

DE 1

3I I  6 2

1 2 1 2

1 2

 1 2

1 2 1 2

1 2

 1 2

1 2

Beam Moment Distribution: Worked Example

1.30

Distribution table: Joint

B

End

BC

C CB

D CD

DC

E DE

 DF



1 3

2 3

1 2

1 2

-90

30

-72

72 72

FEM

-30

30

MBA=-24

+6

+3

FEM*

-24

33

-90

30

-72

19

38

21

21

10.5

19

-7.0

-9.5

-4.8

-3.5

3.2

1.8

0.9

1.6

-0.3

-0.6

-0.8

-0.8

50

-50

60

-60

Bal CO Bal

-3.5

CO Bal

1.6

CO Bal Final EM

-24

Ed

10.5 -9.5 -4.8 1.7 0.9 79

The maximum free moments, which are sagging (that is tension on the bottom of the member) are: BC = 40  1.5  60

RC 

(maximum at mid-span; linear in-between)

160  3  120 4

M 160  RC  1  120  1  120

(maximum under point load; linear in-between)

wL2 24  6 2   108 DE = 8 8

(maximum at mid-span; parabolic in-between)

The final bending moments are: In AB:

at A = 0

at B = 24 (tension on top)

In BC:

at B = 24 (tension on top)

at C = 50 (tension on top)

 24  50  Under point load = 60     23 (tension on bottom)  2 

In CD: © M DATOO

at C = 50 (tension on top)

at D = 60 (tension on top)

Beam Moment Distribution: Worked Example

1.31

(60  50)   under point load = 120   50   1  68 (tension on bottom) 4  

In DE:

at D = 60 (tension on top)

at E = 79 (tension on top)

 60  79  at mid-span = 108     39 (tension on bottom)  2 

Drawing the bending moment diagram (kN m) on the tension side:

79 60 50

24

23 39

68

Shear calculations: In AB: 0

24 12

RA

RB 2

R A  2  24  12  2  1 RB  24  0  24 In BC: © M DATOO

 RA  0

Beam Moment Distribution: Worked Example

1.32

24

50

80

RB

RC 1.5

1.5

RB  3  50  80  1.5  24

 RB  31.3

RC  80  31.3  48.7

In CD: 50

60

160

RC

RD 1

3

RC  4  60  160  3  50

 RC  117.5

RD  160  117.5  42.5 In DE: 60

79 24

RE

RD 6

RD  6  79  24  6  3  60

 RD  69.0

RE  24  6  69  75.0

© M DATOO

Beam Moment Distribution: Worked Example

1.33

Shear table: Span

AB

End

AB

Shears

0

BC

CD

DE

BA BC

CB CD

DC DE

ED

24.0 31.3

48.7 117.5

42.5 69.0

75.0

55

166

112

Reaction 0

75

Shear force diagram (kN): 117 69 31 E B

A

D

C

24 49

43 75

© M DATOO

Related Documents


More Documents from "yayasan"