State Of Art Universal Impulse Current Test System.pdf

  • Uploaded by: achalconst
  • 0
  • 0
  • February 2021
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View State Of Art Universal Impulse Current Test System.pdf as PDF for free.

More details

  • Words: 2,555
  • Pages: 36
Loading documents preview...
STATE OF THE ART UNIVERSAL IMPULSE CURRENT TEST SYSTEMS Mr. Carl-Hendrik Stuckenholz Mr. Michael Gamlin Mr. Carl-Hendrik Stuckenholz April 29th, 2016

OUTLINE 1. 2. 3. 4. 5.

Overview of Exponential Wave Shapes Basic Prinicple of Impulse Current Generation Universal Impulse Current Generator for IEC 62305-1 Universal Impulse Current Generator for IEC 60099-4 Conclusion

OVERVIEW EXPONENTIAL WAVE SHAPES Wave Shape 0.25/100

Specifications and Appearance T1 in µs T2 in µs IEC 0.25 100 62305-1

1 / ≤ 20

1

≤ 20

60099-4

1/200

1

200

62305-1

2 / 20

2

20

4 / 10

4

10

5 / 300

5

300

6 / 310

6

310

8 / 20

8

20

10 / 250

10

250

10 / 350

10

350

10 / 1000

10

1000

30 / 60

30 < T1 < 100

2 ∙ T1

60099-8 60099-4 60099-8 61000-4-5 61643-21 61643-311 60099-4 60099-8 61000-4-5 61643-11 61643-21 61643-311 61643-331 61643-21 61643-11 61643-21 61643-311 61643-331 62305-1 61643-21 61643-311 60099-4

30 / 80

30

80

60099-4

OVERVIEW EXPONENTIAL WAVE SHAPES Wave Shape 0.25/100

Specifications and Appearance T1 in µs T2 in µs IEC 0.25 100 62305-1

1 / ≤ 20

1

≤ 20

60099-4

1/200

1

200

62305-1

2 / 20

2

20

4 / 10

4

10

5 / 300

5

300

6 / 310

6

310

8 / 20

8

20

10 / 250

10

250

10 / 350

10

350

10 / 1000

10

1000

30 / 60

30 < T1 < 100

2 ∙ T1

60099-8 60099-4 60099-8 61000-4-5 61643-21 61643-311 60099-4 60099-8 61000-4-5 61643-11 61643-21 61643-311 61643-331 61643-21 61643-11 61643-21 61643-311 61643-331 62305-1 61643-21 61643-311 60099-4

30 / 80

30

80

60099-4

IEC 62475 61643-21 61000-4-5 60099-4 60099-8 61643-11 61643-311 61643-331

8/20 T1

T2

8 µs ± 20 %

20 µs ± 20 %

8 µs ± 1 µs

20 µs ± 2 µs

8 µs ± 10 %

20 µs ± 10 %

OVERVIEW EXPONENTIAL WAVE SHAPES Wave Shape 0.25/100

Specifications and Appearance T1 in µs T2 in µs IEC 0.25 100 62305-1

1 / ≤ 20

1

≤ 20

60099-4

1/200

1

200

62305-1

2 / 20

2

20

4 / 10

4

10

5 / 300

5

300

6 / 310

6

310

8 / 20

8

20

10 / 1000

10

1000

30 / 60

30 < T1 < 100

2 ∙ T1

60099-8 60099-4 60099-8 61000-4-5 61643-21 61643-311 60099-4 60099-8 61000-4-5 61643-11 61643-21 61643-311 61643-331 61643-21 61643-11 61643-21 61643-311 61643-331 62305-1 61643-21 61643-311 60099-4

30 / 80

30

80

60099-4

10 / 250

10 / 350

10

10

250

350

IEC 62475 61643-21 61000-4-5 60099-4 60099-8 61643-11 61643-311 61643-331

8/20 T1

T2

8 µs ± 20 %

20 µs ± 20 %

8 µs ± 1 µs

20 µs ± 2 µs

8 µs ± 10 %

20 µs ± 10 %

10/350 IEC 62475a 61643-21

61643-11

61643-1b

62305-1

a b

T1 = 10 µs ± 30 % T2 = 350 µs ± 20 % (± 50 %)a T2 Tpeak ≤ 50 µs (minor interest) Ttransfer < 5 ms Q = Iimp∙5∙10-4 s – 10/+ 20 % W/R = Iimp∙2.5∙10-4 s -10/+ 45 % Tpeak ≤ 50 µs (minor interest) Ttransfer < 10 ms Q = Iimp∙5∙10-4 s ± 20 % W/R = Iimp∙2.5∙10-4 s ± 35 % ∆t = 10 µs ± 20 % Q = Iimp∙5∙10-4 s ± 20 % W/R = Iimp∙2.5∙10-4 s ± 35 % in case of energy requirement replaced by IEC 61643-11

OUTLINE 1. 2. 3. 4. 5.

Overview of exponential wave shapes Basic Prinicple of Impulse Current Generation Universal Impulse Current Generator for IEC 62305-1 Universal Impulse Current Generator for IEC 60099-4 Conclusion

BASIC PRINCIPLE Periodically Damped Impulse

i (t ) 



U ch U arctan     di   sin (  t )  e t / ;    ch @ timax  L L   dt  max

2 L , R 



1 R2 L  , R2 2 L C 4 L C

U /L  2  Q   i (t )  dt  2 ch   1; 2   /(  )  1/  1 e  0



2

U ch2  0 i(t )  dt  4   2  L2  1  1 /  2

BASIC PRINCIPLE Aperiodically Damped Impulse - Overdamping

i (t ) 

1 

U     di   (e t /1  e t / 2 );    ch ; timax  1 2  ln 1 2 L 1  2  2  dt  max R  4 L / C U ch

1 R k 2 L

, 2 

1 R k 2 L

2

1  R  , k  ,    2 L  L C

R2

    U ch2 / 2 Q   i (t )  dt  U ch  C ;  i (t )   dt  2  1 2 R  4  L / C 1   2 0 0 



2

2





L C

BASIC PRINCIPLE Aperiodically Damped Impulse - Crowbar

 U ch U ch   i (t )   sin(  t ) for 0  t  ; i (t )   e  for t    ( L1  L2 ) 2    ( L1  L2 ) 2  t

1 ; C  L1  L2 

 



U ch U ch L2   di  , imax  @t  ,    @t 0 R   L1  L2  2    dt  max L1  L2 

U ch Q   i (t )  dt  U ch  C   ;     L  L 1 2 0



2

 i(t ) 0

 dt 

U ch2       2  2   L1  L2   4   2 

BASIC PRINCIPLE Aperiodically Damped Impulse - Crowbar Systems Crowbar with spark gap

BASIC PRINCIPLE Aperiodically Damped Impulse - Crowbar Systems Crowbar with spark gap

Crowbar with diode

BASIC PRINCIPLE Aperiodically Damped Impulse - Crowbar Systems Crowbar with spark gap

Efficiency Peak amplitude 10/350 Back coupling DUT Handling Acoustic noise Electric noise Degree of freedom

Crowbar with diode

Crowbar

Crowbar

Overdamped

Spark gap High Resistance .. mW High 250 kA High Complicated High High High

Diode High Resistance .. mW Medium 50 kA High Intermediate Low Low Low

Low Resistance .. W Low … 10 kA Low Easy Low Low Low

BASIC PRINCIPLE Comparison Crowbar / Overdamped Circuit Identical capacitor bank, time to half value T2 = 350 ms Crowbar

Overdamped

Charging voltage

kV

100

100

Capacitance

mF

30

30

Resistance Inductance L1 Inductance L2 T1 T2 Peak Current

W mH mH ms ms kA % kA

0.036 1 18 29.6 350 125.7 100 62.4

17

Current @ T2

2.1 0.83 350 5.9 4.7 3.0

BASIC PRINCIPLE Comparison Crowbar / Overdamped Circuit Identical capacitor bank, time to half value T2 = 350 ms Crowbar

Overdamped

Charging voltage

kV

100

100

Capacitance

mF

30

30

Resistance Inductance L1 Inductance L2 T1 T2 Peak Current

W mH mH ms ms kA % kA

0.036 1 18 29.6 350 125.7 100 62.4

17

Current @ T2

2.1 0.83 350 5.9 4.7 3.0

Peak current amplitude approx. 20 x higher for the crowbar arrangement!

BASIC PRINCIPLE Adjusting exponential impulses Charging voltage

Capacitance

Inductance

Resistance

Change









Ipeak









T1









T2









General guidelines for linear loads without consideration of mutual interactions Variable impact of parameters depending on load point and mutual interactions Change in behaviour possible! Examples: 1. Reduction of capacitors  increase of generator self inductance; non-linear! 2. Increase of system voltage  increase of generator self inductance

BASIC PRINCIPLE Sine Half Wave Diode or crowbar to limit current reversal

i (t ) 

U ch   sin (  t ); 0  t  ;   ( L1  L2 ) 

imax 

U ch  @ timax  ;   ( L1  L2 ) 2 

 

Q   i (t )  dt  2  U ch  C ; 0

 



1 ( L1  L2 )  C

U ch  di  @ t 0     dt  max ( L1  L2 )

U ch2   W   i (t ) 2  dt  R 0 2   2  ( L1  L2 )

Switching @ i(t) = 0; u(t) =-upeak

BASIC PRINCIPLE Comparison Aperiodically Damped / Sine Half Wave Identical capacitor bank and test object

BASIC PRINCIPLE Comparison Aperiodically Damped / Sine Half Wave Identical capacitor bank and test object

Aperiodically damped with crowbar

Sine half wave

Switching at I = Imax Switching at Uch = 0 Ipeak = 68 kA Q = 55 As W/R = 2000 kJ/W

Switching at I = Imin Switching at Uch = - Upeak (~½ Upeak) Ipeak = 68 kA Q = 10 As W/R = 502 kJ/W

BASIC PRINCIPLE Comparison Aperiodically Damped / Sine Half Wave Identical capacitor bank and test object

Aperiodically damped with crowbar

Sine half wave

Switching at I = Imax Switching at Uch = 0 Ipeak = 68 kA Q = 55 As W/R = 2000 kJ/W

Switching at I = Imin Switching at Uch = - Upeak (~½ Upeak) Ipeak = 68 kA Q = 10 As W/R = 502 kJ/W

Charge Q approx. 5.5 x higher for crowbar arrangement!

IMPULSE CURRENT GENERATOR BASIC PRINCIPLE – Rectangular Impulse

n 1.1  T90%  Ltot  Ctot ; 2  (n  1) n

Ltot   Li , Ctot  n  C , n  8 ..12 i 1

ip 

U0 Rtot 

Ltot Ctot

; Rtot  Rs  RMOA 

Ltot Ctot

OUTLINE 1. 2. 3. 4. 5.

Overview of exponential wave shapes Basic Prinicple of Impulse Current Generation Universal Impulse Current Generator for IEC 62305-1 Universal Impulse Current Generator for IEC 60099-4 Conclusion

ICG FOR IEC 62305-1 Requirements IEC 62305-1 general wave shapes

IEC 62305-1 wave shapes for test First positive impulse energy

First positive Impulse

Subsequent negative impulse

10/350

10/350

0.25/100

∆i

200 kA

50 kA

∆t

10 µs

0.25 µs

Positive impulse

First negative impulse

Subsequent impulse

10/350

1/200

0.25/100

Ipeak

200 kA

100 kA

50 kA

Ipeak

200 kA

di/dt

20 kA/µs

100 kA/µs

200 kA/µs

Qshort

100 C

T1

10 µs

1 µs

0.25 µs

W/R

10 MJ/Ω

T2

350 µs

200 µs

100 µs

Qshort

100 C

W/R

10 MJ/Ω

LPL I

ICG FOR IEC 62305-1 Customer specification Customer specification Positive impulse

First negative impulse

Subsequent impulse

10/350

1/200

0.25/100

Ipeak

200 kA ± 10 %

100 kA ± 10 %

20 kA ± 10 %

T1

10 µs ± 10 %

4 µs ± 10 %

0.25 µs ± 20 %

T2

350 µs ± 10 %

200 µs ± 10 %

100 µs ± 10 %

Qshort

100 C ± 20 %

W/R

10 MJ/Ω ± 35 %

ICG FOR IEC 62305-1 Layout charging rectifier ICG capacitor bank ICG spark gap ICG crowbar charging rectifier IVG IVG

ICG FOR IEC 62305-1 Sphere gaps

peaking spark gap

crowbar spark gap

central spark gap

ICG FOR IEC 62305-1 Results 10/350 1 220 kA

10/350

Positive impulse

No. 3 LCI Ipk di dt di/dt T1 T2 (Qs (W/R

200 kA

180 kA

160 kA

10/350 140 kA

Ipeak

209 kA

di/dt

19 kA/µs

100 kA

T1

10.9 µs

80 kA

T2

366 µs

60 kA

Qshort

131 C

40 kA

W/R

11.4 MJ/Ω

20 kA

120 kA

100 us -20 kA

200 us

300 us

400 us

500 us

: 208.842 kA : 168.626 kA : 8.847 us : 19.060 kA/us : 10.887 us : 366.440 us : 131.056 As) : 11.363 MJ/Ohm)

600 us

CH1 : (Pearson) Shunt:4.000 mOhm Level:100% Sampling:120.000 Ms/s Range:1.00 kVpp Trigger:Level 10%

700 us

ICG FOR IEC 62305-1 Results 1/200 1 120 kA

1/200

T1/T2

Imax@1 µs

No. 6 ECI Ipk T1 T2

Imax 100 kA

Ipeak

11.0 kA

53.0 kA

94.4 kA

T1

1.0 µs

1.0 µs

4.37 µs

T2

190.0 µs

40.0 µs

192.0 µs

: 94.361 kA : 4.370 us : 192.060 us

80 kA

60 kA

40 kA

20 kA

Setup

Crowbar 100 us

200 us

300 us

-20 kA CH1 : (Pearson) Shunt:4.000 mOhm Level:100% Sampling:120.000 Ms/s Range:640.0 Vpp Trigger:Level 10%

ICG FOR IEC 62305-1 Results 0.25/100 1 25 kA

1/100

No. 10 ECI Ipk T1 T2

Subseqeunt impulse 20 kA

1/100

: 21.791 kA : 284.000 ns : 97.579 us

15 kA

Ipeak

21.8 kA

T1

0.28 ns

T2

97.6 µs

10 kA

5 kA

100 us

200 us

300 us

400 us

500 us

600 us

CH1 : (Pearson) Shunt:6.500 mOhm Level:100% Sampling:120.000 Ms/s Range:200.0 Vpp Trigger:Level 17%

700 us

OUTLINE 1. 2. 3. 4. 5.

Overview of exponential wave shapes Basic Prinicple of Impulse Current Generation Universal Impulse Current Generator for IEC 62305-1 Universal Impulse Current Generator for IEC 60099-4 Conclusion

ICG FOR IEC 60099-4 Customer specification Exponential wave shapes

Impulse

Sine half wave / rectangular wave

Ipeak

T1

T2

kA

µs

µs

0.5/<20

30

0.5

<20

1/<20

50

1

< 20

8/20

75

8

20

4/10

150

4

10

30/80

50

30

80

30/60

45

30

≈ 2x T1

Sine Half Wave

Ipeak

Tduration

kA

ms

0.2

48

0.2

2

5.8

2

4

3

4

Rectangular

Ipeak

Tduration

kA

ms

2

2.8

2

4

1.5

4

ICG FOR IEC 60099-4 Layout inductances for rectangular wave

capacitor bank

damping elements

central spark gap

ICG FOR IEC 60099-4 Special Wave Shapes – 0.5/<20 Combination of capacitors with different capacitance value Superposition of currents

1

35 kA

ECI Ipk T1 T2

30 kA

: 36.460 kA : 492.762 ns : 7.423 us

25 kA

20 kA

15 kA

10 kA

5 kA

20 us

40 us

60 us

80 us

100 us

ICG FOR IEC 60099-4 Special Wave Shapes – Sine Half Wave First time with diode Up to 50 kA

3.5 kA

1

RCI Ipk Td Tt

3.0 kA

2.5 kA

: 3.100 kA : 1.386 ms : 3.959 ms

2.0 kA

1.5 kA

1.0 kA

500.0 A

1 ms

2 ms

3 ms

4 ms

5 ms

OUTLINE 1. 2. 3. 4. 5.

Overview of exponential wave shapes Basic Prinicple of Impulse Current Generation Universal Impulse Current Generator for IEC 62305-1 Universal Impulse Current Generator for IEC 60099-4 Conclusion

Conclusion • Universal impulse current generators for almost all waveforms possible with optimally chosen components/extensions • Crowbars can be built for highest current levels up to 250 kA • Aperiodically damped impulses using crowbars beneficial for high energy / charge impulses • Time parameters (especially front times) critical for high energy / charge impulses (10/350) due to necessary inductance values

Thank you for your attention!

Related Documents


More Documents from "Efthymios Tatsis"