Structural Calculation Of Curtain Wall

  • Uploaded by: zfrl
  • 0
  • 0
  • January 2021
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Structural Calculation Of Curtain Wall as PDF for free.

More details

  • Words: 17,228
  • Pages: 118
Loading documents preview...
ACACIA - 1, B+G+9 RES., MIDRISE BLOCK (3 Nos.) WITH RETAIL SPACES

STRUCTURAL CALCULATION OF CURTAIN WALL Rev.00

LOCATION :

DUBAI, UAE

CLIENT

:

EMAAR PROPERTIES PJSC

CONSULTANT

:

NATIONAL ENGINEERING BUREAU

CONTARCTOR :

SOBHA ENGINEERING AND CONTRACTING LLC

SOBHA GLAZING AND METAL SYSTEMS FZCO P.O.Box.No.263247, Dubai, United Arab Emirates

ACACIA - 1, B+G+9 RES., MIDRISE BLOCK (3 Nos.) WITH RETAIL SPACES

CONTENTS -

INTRODUCTION AND SPECIFICATIONS PROFILE DETAILS DESIGN OF MULLION DESIGN OF TRANSOM CURTAIN WALL ANALYSIS 2.9M HEIGHT CURTAIN WALL ANALYSIS 3.5M HEIGHT BOTTOM BRACKET DESIGN TOP BRACKET DESIGN ANALYSIS OF GLASS TECHNICAL REFERENCE DRAWING REFERENCE

SOBHA GLAZING AND METAL SYSTEMS FZCO P.O.Box.No.263247, Dubai, United Arab Emirates

PAGES 001 008 011 018 025 035 048 061 072 075 113

1.0 Introduction & Specification

Page 1

DESIGN CRITERIA General The structural performance of Stick curtain wall system for the above mentioned project shall be checked using the following design codes and standards: Wind load according  to ASCE 7 ‐05 ASTM E 1300‐03: for glazing members Structural use of aluminum, Part 1: Code of practice for design BS 8118:Part 1:1991 Structural use of steelwork in building, Part 1: Code of practice for design rolled and welded sections BS 5950‐1:2000 Mechanical Properties of Material Properties of Glass (Based on ASTM E1300‐03 Standard Practice for Determining Load Resistance of Glass in Buildings) Modulus of Elasticity

Eg :=

71700 Mpa

Shear Modulus

Gg :=

28300 Mpa

Coefficient of Linear expansion

Ɛg :=

8.30E‐06 Δ ̊C‐1

Density

ωg :=

2500 Kg.m‐3

Properties of 6063‐T6 Aluminium Alloy (Based on ASTM B 221M‐02) Modulus of Elasticity

E :=

70000 Mpa

Shear Modulus

G :=

26600 Mpa

Coefficient of Linear expansion

Ɛ :=

2.30E‐05 Δ ̊C‐1

Density

ωg :=

Yield Strength (Extrusion)

Y :=

160 Mpa

Tensile Strength (Extrusion)

Ta :=

175 Mpa

2710 Kg.m‐3

Properties of Grade S275 Steel Material Modulus of Elasticity

E :=

205000 Mpa

Coefficient of Linear expansion

Ɛ :=

1.20E‐05 Δ ̊C‐1

Design Strength

Py :=

275 Mpa

Bearing Strength

Pbs :=

460 Mpa

Properties of GI Bolts (Grade 8.8) and Stainless Steel Bolts (Grade A4‐70) 1) GI Bolts Yield Strength Ultimate Tensile Strength

Yb := Ub :=

520 Mpa 800 Mpa

Page 2

2) SS Bolts Yield Strength Ultimate Tensile Strength

Yb := Ub :=

450 Mpa 700 Mpa

Anchor Fixing Materials Fischer Fixing System Design Criteria for Wind Load Based  from the project specification, glazed aluminium curtain wall Basic Wind Speed

Vb := 

45 m/s

Exposure =

C

Building Height (Roof Deck)

H :=

46.5 m

Building length

L :=

106.5 m

Building Width

W :=

100.5 m

Clear Height of Mullion

h :=

Tributary Width ‐1

tw1 :=

1.08 m

Tributary Width‐2

tw1 :=

0.99 m

tw :=

1.035 m

Mean Tributary Width

tw = (tw1+tw2)/2

13.52 mm laminated glass (inner) + 18mm air gap+ 6mm tempered glass (outer) tg =

2.9 m

19.52 mm

Design Criteria for Dead Load Dead Loads (i.e, extrusions, glass) shall be incorporated within the calculation set. STAAD Pro automatically computes the self weight of the member being analyzed Deflection Limits under Serviceability Loading Deflection limits shall be according to the project specification and AAMA code Deflection of Framing members: Allowable deflection of framing members perpendicular to the plane of the wall shall not exceed Span / 175 or 19mm whichever is lesser  as per project specification Allowable deflection of framing members parallel to the plane of the wall shall not exceed 3.20mm (Do not deflect an amount which will reduce glazing bit below 75% of design dimension =15*75%=11.25mm. The allowable deflection is 15‐11.25 = 3.75mm. minimum value taken for allowable deflection 3.75 or 3.20mm) Deflection of glass: Maximum allowable lateral centre deflection of glass at design wind pressure limits to 1/50 of short side length or 25 mm whichecer is less

Load Combinations For Aluminium members and glazing: The following combination according to BS 8118: Part 1: 1991 code & BS 5950‐1:2000 code &  ASTM E1300 ‐ 03 ‐ STANDARD I. Serviceability limit state: 1.0 (Self Weight + Dead Load + Wind Load) II. Ultimate limit state: 1.2 (Self Weight + Dead Load + Wind Load) For Brackets: 1.4 ( Self Weight + Dead Load + Wind Load)

Page 3

PROJECT : CLIENT : JOB NO. :

PAGE : DESIGN BY : REVIEW BY :

DATE :

Wind Analysis for Building with h > 60 ft, Based on ASCE 7-05 / IBC 2006 / CBC 2007

INPUT DATA Exposure category (B, C or D) Importance factor (0.87, 1.0 or 1.15) Basic wind speed (IBC Tab 1609.3.1V 3S)

I = V =

C 1.00 101

Category II, page 77 mph

Building height to roof

Kzt = H =

1 152

Flat, page 26 & 45 ft

Parapet height Building length Building width Natural frequency (Sec.6.2 & 6.5.8.2)

HP L B n1

Effective area of mullion

AM =

Topographic factor (Sec.6.5.7.2)

= 4 = 350 = 329 = 0.98684

AP =

Effective area of panel

ft ft ft Hz, (1 / T)

550

ft2

3675

ft2

DESIGN SUMMARY Max building horizontal force normal to building length, L, face Max overturning moment at wind normal to building length, L, face Max building horizontal force normal to building length, B, face Max overturning moment at wind normal to building length, B, face Max building upward force Max building torsion force

= = = = = =

1661.3 413748.3 1544.8 405736.0 2972.4 92024.4

kips ft - kips kips ft - kips kips ft - kips

ANALYSIS Velocity pressures

qz = 0.00256 Kz Kzt Kd V2 I where:

qz = velocity pressure at height, z. (Eq. 6-15, page 27)

pmin =

10

psf (Sec. 6.1.4.1 & 6.1.4.2)

Kz = velocity pressure exposure coefficient evaluated at height, z. (Tab. 6-3, Case 2, page 79) Kd = wind directionality factor. (Tab. 6-4, for building, page 80) z = height above ground

=

0.85

z (ft) Kz

0 - 15

20

25

30

40

50

60

70

80

90

100

120

0.85

0.90

0.94

0.98

1.04

1.09

1.13

1.17

1.21

1.24

1.26

1.31

qz (psf)

18.87

19.98

20.87

21.75

23.09

24.20

25.08

25.97

26.86

27.52

27.97

29.08

z (ft) Kz

140

156

156

156

156

156

156

156

156

156

1 36 1.36

1 38 1.38

1 38 1.38

1 38 1.38

1 38 1.38

1 38 1.38

1 38 1.38

1 38 1.38

1 38 1.38

1 38 1.38

qz (psf)

30.19

30.72

30.72

30.72

30.72

30.72

30.72

30.72

30.72

30.72

0.18

or

Design pressures for MWFRS

p = q G Cp - qh (G Cpi) where:

p = pressure on surface for rigid building with all h. (Eq. 6-17, page 28). q = qz for windward wall at height z above the ground, see table above. G Cp i = internal pressure coefficient. (Fig. 6-5, Enclosed Building, page 47)

=

-0.18

qh = qz value at mean roof height, h, for leeward wall, side walls, and roof. Cp = external pressure coefficient, see right down tables. G = gust effect factor (Sec. 6.5.8.1 & 6   1  1.7 I g 2 Q 2  g 2 R 2  z Q R 0.925   , for n1  1.0    1  1.7 g v I z   G   1  1.7 g Q I zQ  0.925   , for n1  1.0   1  1.7 g v I z 

= 0.839

Iz =

0.17

z =

91.2

Q=

0.81

z min =

15

gQ =

3.4

613

c=

0.2

gR =

4.19

Lz =  =

Rh =

0.150

RB =

0.073

RL =

0.021

N1 =

5.37

Rn =

0.048

R =

0.075

h=

152

gv =

3.4

Vz =

112.6

Fig. 6-6 fo  < 10o, page 48 Roof To L Face To L Face To L Face To L Face

Roof

q G Cp Figure for Gable, Hip Roof, page 48 Fig. 6-6, page 48 Wall Windward Wall Leeward Wall Leeward Wall Side Wall

Direction All To L Dir To B Dir All

L/B All 0.94 1.06 All

Cp 0.80 -0.50 -0.49 -0.70

h/B 0.47 0.47 0.47 0.47 h/L

Distance 78 156 312 329 Distance

Cp -0.90 -0.90 -0.50 -0.30 Cp

To B Face

0.45

78

-0.90

To B Face

0.45 0.45 0.45

156 312 350

-0.90 -0.50 -0.30

To B Face To B Face

Page 4

0.05

(cont'd) Hence, MWFRS Net Pressures are given by following tables (Sec. 6.5.12.2.1, Page 28)

Windward Wall

Surface

z (ft)

P (psf) with GCPi - GCPi

0 - 15 20 25 30

7.13 7.87 8.47 9.06

40

Surface

z (ft)

18.19 18.93 19.53 20.12

Side Wall

All

9.96

21.02

Surface

z (ft)

50 60 70 80

10.70 11.30 11.89 12.49

21.76 22.36 22.95 23.55

Leeward

All

90

12.94

24.00

Surface

Dist. (ft)

100 120 140 156

13.23 13.98 14.72 15.08

24.29 25.04 25.78 26.14

Roof

0 - 78 156 312 329

Normal to L Face

Normal to L Face

P (psf) with GCPi - GCPi -23.56

-12.50

P (psf) with GCPi - GCPi -18.41

-7.35

P (psf) with GCPi - GCPi -28.72 -28.72 -18.41 -13.26

-17.66 -17.66 -7.35 -2.20

Normal to B Face

Surface

z (ft)

Leeward

All

Normal to B Face

Surface

Dist. (ft)

Roof

0 - 78 156 312 350

P (psf) with GCPi - GCPi -18.08

-7.02

P (psf) with GCPi - GCPi -28.72 -28.72 -18.41 -13.26

-17.66 -17.66 -7.35 -2.20

Figure 6-9, page 54 Base Forces

Normal to L Face Case 1 Case 2

Normal to B Face Case 1 Case 2

Wind with Angle Case 3 Case 4

ASCE-7

VBase

(kips)

1661

1246

1545

1159

2405

1277

MBase

(ft - kips)

413748

310311

405736

304302

614613

326253

Fig. 6-9

MT

(ft - kips)

0

65415

0

57176

0

92024

Page 52

1578

FUpward (kips)

2015

1512

1948

1461

2972

(kips)

546

546

513

513

794

749

Min. wind

FUp,min (kips)

1152

1152

1152

1152

1152

1152

Sec. 6.1.4.1

Vmin

Design pressures for components and cladding

p = q (G Cp) - qi (G Cpi) where:

p = pressure on component for building with h > 60 ft. (Eq. 6-23, page 29). pmin =

10.00

psf (Sec. 6.1.4.2, pg 21)

q = qz for windward wall at height z above the ground, see table above. qh = qz value at mean roof height, h, for leeward wall, side walls, and roof. G Cp i = internal pressure coefficient. (Fig. 6-5) = a = Zone width = MAX[ MIN(0.1B, 0.1L), 3] = 32.9 G Cp = external pressure coefficient. (Fig. 6-17, page 65) Wall Comp.

Actual Effective Area ( ft2 )

Mullion Panel

z (ft)

0 - 15 20 25 30 40 50 60 70 80 90 100 120 140 156

550 3675

0.18 or -0.18 ft, (Fig 6-17 note 8, pg 65)

Zone 4 GCP - GCP

GCP

- GCP

0.60 0.60

0.60 0.60

-1.00 -1.00

-0.70 -0.70

Zone 5

Mullion Pressure (psf) Zone 4 Zone 5

Panel Pressure (psf) Zone 5 Zone 4

Positive

Negative

Positive

Negative

Positive

Negative

Positive

Negative

14.72 15.58 16.28 16.97 18.01 18.87 19.56 20.26 20.95 21.47 21.82 22.68 23.55 23.96

-27.03 -27.03 -27.03 -27.03 -27.03 -27.03 -27.03 -27.03 -27.03 -27.03 -27.03 -27.03 -27.03 -27.03

14.72 15.58 16.28 16.97 18.01 18.87 19.56 20.26 20.95 21.47 21.82 22.68 23.55 23.96

-36.25 -36.25 -36.25 -36.25 -36.25 -36.25 -36.25 -36.25 -36.25 -36.25 -36.25 -36.25 -36.25 -36.25

14.72 15.58 16.28 16.97 18.01 18.87 19.56 20.26 20.95 21.47 21.82 22.68 23.55 23.96

-27.03 -27.03 -27.03 -27.03 -27.03 -27.03 -27.03 -27.03 -27.03 -27.03 -27.03 -27.03 -27.03 -27.03

14.72 15.58 16.28 16.97 18.01 18.87 19.56 20.26 20.95 21.47 21.82 22.68 23.55 23.96

-36.25 -36.25 -36.25 -36.25 -36.25 -36.25 -36.25 -36.25 -36.25 -36.25 -36.25 -36.25 -36.25 -36.25

Page 5

2.0 Load Computation

Page 6

Glass Load Computation (Dead Load):

Density of glass,  

d =

2500 Kg/m³

Thickness of Internal glass 

t1 = 

13.52 mm

Thickness of external glass

t2 =

6 mm

Total thickness of glass

Tthick =

Total weight of glass 

Tglass =

19.52 mm 48.8 Kg/m²

Glass adopter provided on both side to transfer load of glass on transom, so considering point load on both  side @ 150mm from the ends

SI No. 1 2 3 4 5 6

Width of Glass meter 1.08 1.08 1.08 0.99 0.99 0.99

Height of Glass  (clear opening) meter 1.17 1.26 0.47 1.17 1.26 0.47

Weight of Glass Kg 61.664 66.407 24.771 56.525 60.873 22.707

10% additional  weight of glass  (Accessories) Kg 6.166 6.641 2.477 5.653 6.087 2.271

Load distribution on  transom on both side  (D/2) KN 0.333 0.358 0.134 0.305 0.328 0.123

Tributary width m 0.540 1.035 1.035 0.540

Wind Pressure on  Mullion Kpa 1.300 1.300 1.300 1.300

Uniform load on  Mullion KN 0.702 1.346 1.346 0.702

Wind Load Computation:

SI No. 1 2 3 4

Width of Panel  1 Width of Panel 2 m m 0 1.08 1.08 0.99 0.99 1.08 1.08 0

Page 7

3.0 Profile Details

Page 8

Page 9

Page 10

4.0 Design of Mullion

Page 11

MULLION PROFILE  "100*45" TAKEN FOR DESIGN Material type (BS 8118: Part1: 1991) Alloy 6063 ‐ T6 Ea := 

70000 Mpa

Modulus of Elasticity

Eg :=

70000 Mpa

Shear Modulus

Gg :=

26600 Mpa

Coefficient of Linear expansion

Ɛg :=

2.30E‐05 Δ ̊C‐1

Density

ωg :=

2710 Kg.m‐3

̊ρ0 :=

160 Mpa

BS ‐ 8118 table 4.1

limiting stress for bending and over all yielding

̊ρV :=

95 Mpa

BS ‐ 8118 table 4.1

limiting stress for shear

̊ρa :=

175 Mpa

BS ‐ 8118 table 4.1

limiting stress for local capacity

Section Properties b = 

45 mm

Profile Width

d = 

100 mm

Profile Depth

bf =

40.3 mm

Element Width

tf =

3.5 mm

Profile Flange Thickness

dw =

80.3 mm

Element Depth

tw =

1.8 mm

Profile Web Thickness

gr =

0.5

Stress gradient coefficient, figure 4.2

CX =

22.5 mm

Distance from neutral Y‐axis to extreme fibers

CY =

55.5 mm

Distance from neutral X‐axis to extreme fibers

IX =

114.9 cm4

Moment of inertia at major axis

IY =

22.15 cm4

Moment of inertia at minor axis

WX = IX/CY

20.703 cm3

Elastic section modulus at x‐x axis

WY = IY/CX

9.844 cm3

Elastic section modulus at y‐y axis

A =

7.63 cm2

Cross ‐ Section area

Check for deflection Applying wind load

WL :=

Profile "100*45" it had max. deflection

1.3 kNm‐1

(uniformly distributed load) at mullion δ max :=

14.092 mm

Page 12

L = 

2900 mm

δ allow =  min (L/175, 19mm) δ allow =

16.571 mm

Since:  δ max =

refer to project specification  and AAMA code

14.092 mm

<

δ allow =

16.57143 mm

OK

Section Classification β < β1

fully compact

β1 < β < β0

semi compact

β > β0

slender

Ɛ := sqrt(250/ρ0) β0 = 

22 Ɛ

β0 = 

27.5

β1 = 

18 Ɛ

β1 = 

22.5

Ɛ = 1.25

Slenderness limit constant

Upper limit for a semi‐compact section

Upper limit for a fully compact section

Element clacification for web element dW = 

80.3 mm

tw = 

1.8 mm

gr =  βW =  βW =  β1 =

width of the web element thickness of the web element

0.55

stress gradient coefficient (figure 4.2)

gr.dW.tw‐1

Slenderness parameter

24.536 22.5 <

βW =

24.536 >

β0 =

27.5 Semi Compact

Element clacification for flange element bf =

40.3 mm

tf =

3.5 mm

βf = βf = β1 =

width of the compression flange thickness of the compression flange

bf.tf‐1

slenderness parameter

11.514 22.5 >

βf =

11.514 <

β0 =

27.5

Thus the section is Fully compact

Page 13

Effective section determination for web element βW/Ɛ = 

19.629

According BS8118: part1: 1991 ‐ table 4.4, Curve selection for international elements "C" kL =  twe =

1

local buckling factor

kL.tW

according to figure 4.5 curve c

twe =

1.8 mm

Effective section thickness

Cxe =

22.5 mm

distance from neutral y‐axis to extreme fibers

Cye =

55.5 mm

distance from neutral x‐axis to extreme fibers

Ixe =

114.9 cm4

Effective moment of inertia at major axis

Iye =

22.15 cm4

Effective moment of inertia at minor axis

Wxe =

Ixe/Cye =

20.703 cm3

Effective elastic section modulus at x‐x axis

Wye =

Iye/Cxe =

9.844 cm3

Effective elastic section modulus at y‐y axis

Ae =

7.63 cm2

r = sqrt(Ixe/Ae) =

Effective cross section area

38.806 mm

radius of gyration

Check for bending moments resistance γm =

1.2

MZ = MRx =

material factor clause 4.5.5 table 3.3

1.794 kNm (ρ0.Wxe/γm)=

since:  Mz

1.794 kNm

My =

0.023 kNm

MRy =

factored max. BM generated from staad 2.760 kNm

<

0.023 kNm

2.760 kNm

OK

factored max. BM generated from staad

(ρ0.Wye/γm) =

since:  My =

MRx =

factored moment resistance at major axis

1.313 kNm

<

MRy =

factored moment resistance at minor axis 1.313 kNm

OK

Check for shear resistance according to BS 8118 part 1: 1991 ‐ section 4.5.3 dw/tw



49Ɛ

fully compact

Page 14

dw/tw

>

49Ɛ

Ɛ := sqrt(250/ρ0) dw/twe = 49Ɛ = dw/twe =

slender

Ɛ =

1.25

Slenderness limit constant

44.611 61.25 44.611 >

49Ɛ =

61.25

SLENDER

Vy =

2.755 kN

factored max shear (Fy) generated from staad

Vz =

0.048 kN

factored max shear (Fz) generated from staad

NW =

2

number of webs

Nf =

2

number of flange

Yielding check for Fy Avw =  Avw = 

0.8.Nw.dw.twe

effective shear area

231.264 mm2

VRSWY = ρV.Avw/γm = Vy =

2.755 kN

18.308 kN <

VRSWY =

factored shear resistance 18.308 kN

OK

Buckling check for Fy VRSWY = 340kN/mm2.Nw.twe³/dw.γm VRSWY = Vy =

factored buckling resistance

41.156 kN 2.755 kN

<

VRSWY =

41.156 kN

OK

Yielding check for Fz Avf =  Avf = 

0.8.Nf.bf.tf

effective shear area

225.68 mm2

VRSWY = ρV.Avw/γm = Vz =

0.048 kN

17.866 kN <

VRSWY =

factored shear resistance 17.866 kN

OK

Buckling check for Fz VRSWY = 340kN/mm2.Nf.tf³/2.bf.γm VRSWY = Vz =

factored buckling resistance

301.437 kN 0.048 kN

<

VRSWY =

301.437 kN

OK

Page 15

Check for tension resistance According to BS 8118: part 1: 1991 ‐ 4.6.2 P =

1.464 kN

γm = PRS =

Factored max axial force due to dead load generated from STAAD

1.2

Material factor clause 4.5.5 table 3.3

(ρo.Ae/γm) =

P =

101.733 KN

1.464 KN 

<

factored tension resistance

PRS =

101.733 kN

OK

Section check for bending with axial force (tension) According to BS 8118 part 1: 1991 4.8 P = PRS = My = MRy = MZ = MRx = SC =

1.464 101.733 0.023 1.313 1.794 2.760

(P/PR + My/Mry + Mz/Mrx)

SC = Since

KN KN kNm kNm kNm kNm

0.682 SC =



1

0.682 ≤

1

OK

Check for compression resistance According to BS 8118: part 1: 1991 ‐ 4.7.3 P =

1.464 kN

γm =

1.2

Material factor clause 4.5.5 table 3.3

r = sqrt(Ixe/Ae) = l = ̊ρs := PRS = P =

Factored max axial force due to dead load generated from STAAD

L/r =

38.806 mm

radius of gyration

74.73091 80 Mpa

(ρs.Ae/γm) = 1.464 KN 

figure 4.10 (b) Column buckling  stress 50.86667 KN <

PRS =

factored compression resistance 50.867 kN

OK

Page 16

Section check for bending with axial force (Compression) According to BS 8118 part 1: 1991 4.8 P = PRS = My = MRy =

1.464 50.867 0.023 1.313

MZ = MRx = SC =

1.794 kNm 2.760 kNm (P/PR + My/Mry + Mz/Mrx)

SC = Since

KN KN kNm kNm

0.696 SC =



1

0.696 ≤

1

OK

Page 17

5.0 Design of Transom

Page 18

TRANSOM "100*45" TAKEN FOR DESIGN Material type (BS 8118: Part1: 1991) Alloy 6063 ‐ T6 Wp =

1.3 kPa

TW max. =

1080 mm

b = Ltran =

design wind pressure Max. width of panel

45 mm

mullion width

Tw max.‐b

Ltran =

length of transom

1035 mm

Material Type (BS8118:part1:1991) Alloy 6063‐T6 Ea := 

70000 Mpa

Modulus of Elasticity

Eg :=

70000 Mpa

Shear Modulus

Gg :=

26600 Mpa

Coefficient of Linear expansion

Ɛg :=

2.31E‐05 Δ ̊C‐1

Density

ωg :=

2710 Kg.m‐3

̊ρ0 :=

160 Mpa

BS ‐ 8118 table 4.1

limiting stress for bending and over all yielding

̊ρV :=

95 Mpa

BS ‐ 8118 table 4.1

limiting stress for shear

̊ρa :=

175 Mpa

BS ‐ 8118 table 4.1

limiting stress for local capacity

Section Properties b = 

45 mm

Profile Width

d = 

100 mm

Profile Depth

bf =

40.3 mm

Element Width

tf =

3.5 mm

Profile Flange Thickness

dw =

80.3 mm

Element Depth

tw =

1.8 mm

Profile Web Thickness

gr =

0.5

Stress gradient coefficient, figure 4.2

CX =

55.5 mm

Distance from neutral Y‐axis to extreme fibers

CY =

22.5 mm

Distance from neutral X‐axis to extreme fibers

IX =

22.15 cm4

Moment of inertia at major axis

Page 19

IY =

114.9 cm4

Moment of inertia at minor axis

WX = IX/CY

9.844 cm3

Elastic section modulus at x‐x axis

WY = IY/CX

20.703 cm3

Elastic section modulus at y‐y axis

A =

7.63 cm2

Cross ‐ Section area

Load analysis due to wind load h1 =

1260 mm

height of glass above transom

h2 =

1170 mm

height of glass below transom

a1 =

1215 mm

Refer to elevation figure

γf = W =

1.2 Wp.a1

W = Wf =

W.γf

factored wind load 1.895 kNm‐1

Wf.Ltran/2

Vz = MZ =

Wind Load

1.580 kNm‐1

Wf = VZ =

Load factor table 3.1

Max. design shear due to wind load

0.981 kN Wf.Ltran²/8

Mz =

Max. design moment due to wind load

0.254 kNm

Section Classification β < β1

fully compact

β1 < β < β0

semi compact

β > β0

slender

Ɛ := sqrt(250/ρ0) β0 = 

22 Ɛ

β0 = 

27.5

β1 = 

18 Ɛ

β1 = 

22.5

Ɛ = 

1.25

Slenderness limit constant

limit for a semi‐compact section

limit for a fully compact section

Element clacification for web element dW = 

80.3 mm

width of the web element

Page 20

tw = 

1.8 mm

thickness of the web element

gr = 

0.5

stress gradient coefficient (figure 4.2)

βW = 

gr.dW.tw‐1

βW = 

22.30556

β1 =

Slenderness

22.5 >

βW =

22.30556 <

β0 =

27.5 Fully Compact

Element clacification for flange element bf =

40.3 mm

tf =

3.5 mm

βf = βf =

width of the compression flange thickness of the compression flange

bf.tf‐1

slenderness parameter

11.51429

β1 =

22.5 >

βf =

11.51429 <

β0 =

27.5

Thus the section is fully Compact Effective section determination for web element βW/Ɛ = 

17.84444

According BS8118: part1: 1991 ‐ table 4.4, Curve selection for international elements "C" kL =  twe =

1

local buckling factor according figure 4.5 curve c

kL.tW

according to figure 4.5 curve c

twe =

1.8 mm

effective thickness

bfe =

40.3 mm

Cxe =

55.5 mm

distance from neutral y‐axis to extreme fibers

Cye =

22.5 mm

distance from neutral x‐axis to extreme fibers

Ixe =

22.15 cm4

Effective moment of inertia at x‐x axis

Iye =

114.9 cm4

Effective moment of inertia at y‐y axis

effective width

Wxe =

Ixe/Cye =

9.844 cm3

Effective elastic section modulus at x‐x axis

Wye =

Iye/Cxe =

20.703 cm3

Effective elastic section modulus at y‐y axis

Ae = r = sqrt(Ixe/Ae) =

7.63 cm2 17.038 mm

Effective cross section area radius of gyration

Page 21

Check for bending moments resistance γm =

1.2

MZ = MRz =

material factor clause 4.5.5 table 3.3

0 kNm

factored max. BM generated from staad

(ρ0.Wye/γm) =

since:  Mz =

0 kNm

2.760 kNm

<

factored moment resistance at major axis

MRz =

2.760 kNm

OK

Check for shear resistance according to BS 8118 part 1: 1991 ‐ section 4.5.3 γm =

1.2

Material factor clause 4.5.5 table 3.3

Vz =

0.517 KN

Max. design shear due to wind load

dw/tw



49Ɛ

fully compact

dw/tw

>

49Ɛ

slender

Ɛ = sqrt(250/ρ0) dw/twe =

Ɛ =

1.25

Slenderness limit constant

44.611

49Ɛ =

61.25

dw/twe =

44.611 >

49Ɛ =

61.25

SLENDER

Yielding check  Nw=  Avw =  Av =  VRSY =

2

number of webs

0.8.Nw.dw.twe

effective shear area

231.264 mm2 ρV.Av/γm =

Vz =

0.517 kN

18.308 kN <

VRSY =

factored shear resistance 18.308 kN

OK

Buckling check VRSWY = 340kN/mm2.Nw.twe³/dw.γm VRSB = Vz =

factored buckling resistance

41.156 kN 0.517 kN

<

VRSB =

41.156 kN

OK

Load analysis due to dead load ρg =

24.525 kNm‐3

Unit weight of glass

Page 22

̊tg =

19.52 mm

Thickness of glass at vision area

h1 =

1260 mm

Max. height of glass panel

Ltran =

1035 mm

length of transom

a = 

150 mm

location of setting block

γf =

1.2

Load factor table 3.1

DLg =

̊ρg.Ltran.h1.tg

DLg = 

0.624 kN

DLgf = DLgf =

DLg.γf

Factored load of glass

0.749 N

Pg1 =

Pg2 =

Pg =

DLgf/2 =

Swtran =

ωa.g.A.1.1

Swtran =

Dead load due to glass weight

Pg 0.375 kN Self weight of transom (10% additional for accessories)

0.412 kNm‐1

DL tran = Swtran.γf

0.494 kNm‐1

Vy =

DLtran.Ltran/2 + Pg

Vy =

0.630 kN

My =

DLtran.Ltran²/8 + Pg.a

My =

0.122 kNm

Factored self weight of transom Max design shear due to dead load

Max design bending due to dead load

Check for bending moment resistance γm = My = MRx = MRX = Since

1.2

Material factor clause 4.5.5 table 3.3

0.079 kNm

Factored max bending moment generated from staad

ρ0.Wxe/γm

Factored moment resistance at major axis

1.313 kNm My =

0.079 kNm

<

MRX =

1.313 kNm

OK

Check for shear resistance according to BS8118 part1: 1991 ‐ table 4.3 γm =

1.2

Material factor clause 4.5.5 table 3.3

Page 23

Vy =

0 kN

Max design shear due to dead load

bfe/tf



49Ɛ

fully compact

bfe/tf

>

49Ɛ

slender

Ɛ = sqrt(250/ρ0) bfe/tf =

Av =  VRS =

Slenderness limit constant

61.25 11.51429 <

Nf=  Av = 

1.25

11.51429

49Ɛ = bfe/tf =

Ɛ =

49Ɛ =

61.25

2

Thus the section is Fully Compact Number of elements

0.8.Nf.bfe.tf

effective shear area

225.68 mm2 ρV.Av/γm =

Vy =

17.86633 kN

0 kN

<

factored shear resistance

VRS =

17.86633 kN

OK

Section check for bending with axial force  According to BS 8118 part 1: 1991 4.8 MZ = MRz = My = MRx = SC =

0 2.760 0.122 1.313

(Mz/Mrz + My/Mrx)

SC = Since

KN kNm kNm kNm

0.093 SC =



1

0.093 ≤

1

OK

Page 24

6.1 Curtain wall Analysis 2.9m height.

Page 25

Job No

Sheet No

Rev

1 Part

Software licensed to Hewlett-Packard Company Job Title

Ref By

Client

File

Date07-Dec-17

Curtain wall 2.9 m Height

Chd

Date/Time

21-Dec-2017 10:50

Job Information Engineer

Checked

Approved

Name: 07-Dec-17

Date: Structure Type

SPACE FRAME

Number of Nodes

16

Highest Node

16

Number of Elements

24

Highest Beam

24

Number of Basic Load Cases

2

Number of Combination Load Cases

3

Included in this printout are data for: The Whole Structure All Included in this printout are results for load cases: Type L/C

Name

Primary

1

DEAD LOAD

Primary

2

WIND LOAD

Combination

3

LOAD COMBINATION FOR DEFELCTION

Combination

4

LOAD COMBINATION FOR LIMIT STATE

Combination

5

LOAD COMBINATION FOR ANCHOR DES

Nodes Node

X

Y

Z

(m)

(m)

(m)

1

0.000

0.000

0.000

2

1.080

0.000

0.000

3

2.070

0.000

0.000

4

3.150

0.000

0.000

5

0.000

1.170

0.000

6

1.080

1.170

0.000

7

2.070

1.170

0.000

8

3.150

1.170

0.000

9

0.000

2.430

0.000

10

1.080

2.430

0.000

11

2.070

2.430

0.000

12

3.150

2.430

0.000

13

0.000

2.900

0.000

14

1.080

2.900

0.000

15

2.070

2.900

0.000

16

3.150

2.900

0.000

Print Time/Date: 21/12/2017 11:49

STAAD.Pro for Windows 20.07.04.12

Print Run 1 of 3

Page 26

Job No

Sheet No

Rev

2 Part

Software licensed to Hewlett-Packard Company Job Title

Ref By

Client

File

Date07-Dec-17

Curtain wall 2.9 m Height

Chd

Date/Time

21-Dec-2017 10:50

Beams Beam

Node A Node B

Length



Property

(m)

(degrees)

1

1

2

1.080

2

90

2

2

3

0.990

2

90

3

3

4

1.080

2

90

4

5

6

1.080

2

90

5

6

7

0.990

2

90

6

7

8

1.080

2

90

7

9

10

1.080

2

90

8

10

11

0.990

2

90

9

11

12

1.080

2

90

10

13

14

1.080

2

90

11

14

15

0.990

2

90

12

15

16

1.080

2

90

13

1

5

1.170

1

90

14

5

9

1.260

1

90

15

9

13

0.470

1

90

16

2

6

1.170

1

90

17

6

10

1.260

1

90

18

10

14

0.470

1

90

19

3

7

1.170

1

90

20

7

11

1.260

1

90

21

11

15

0.470

1

90

22

4

8

1.170

1

90

23

8

12

1.260

1

90

24

12

16

0.470

1

90

Section Properties Prop

Section

Area

Iyy

Izz

J

(cm2)

(cm4)

(cm4)

(cm4)

Material

1

MULLION100X45

7.630

22.154

114.900

81.352

ALUMINUM

2

TRANSOM100X45

7.630

22.154

114.900

81.352

ALUMINUM

Materials Mat

Name

E



(kN/mm2)

Density



(kg/m3)

(1/°K)

1

STEEL

205.000

0.300

7.83E+3

12E -6

2

STAINLESSSTEEL

197.930

0.300

7.83E+3

18E -6

3

ALUMINUM

68.948

0.330

2.71E+3

23E -6

4

CONCRETE

21.718

0.170

2.4E+3

10E -6

Print Time/Date: 21/12/2017 11:49

STAAD.Pro for Windows 20.07.04.12

Print Run 2 of 3

Page 27

Job No

Sheet No

Rev

3 Part

Software licensed to Hewlett-Packard Company Job Title

Ref By

Client

File

Date07-Dec-17

Curtain wall 2.9 m Height

Chd

Date/Time

21-Dec-2017 10:50

Supports Node

X

Y

Z

(kN/mm)

(kN/mm)

(kN/mm)

rX

rY

rZ

1

Fixed

Fixed

Fixed

-

-

-

2

Fixed

Fixed

Fixed

-

-

-

3

Fixed

Fixed

Fixed

-

-

-

4

Fixed

Fixed

Fixed

-

-

-

13

Fixed

-

Fixed

-

-

-

14

Fixed

-

Fixed

-

-

-

15

Fixed

-

Fixed

-

-

-

16

Fixed

-

Fixed

-

-

-

(kN-m/deg) (kN-m/deg) (kN-m/deg)

Basic Load Cases Number

Name

1

DEAD LOAD

2

WIND LOAD

Combination Load Cases Comb.

Combination L/C Name

Primary

3

LOAD COMBINATION FOR DEFELCTION

1

DEAD LOAD

2

WIND LOAD

1.00

1

DEAD LOAD

1.20

2

WIND LOAD

1.20

1

DEAD LOAD

1.40

2

WIND LOAD

1.40

4

LOAD COMBINATION FOR LIMIT STATE

5

LOAD COMBINATION FOR ANCHOR DES

Print Time/Date: 21/12/2017 11:49

Primary L/C Name

STAAD.Pro for Windows 20.07.04.12

Factor 1.00

Print Run 3 of 3

Page 28

Job No

Sheet No

Rev

1 Part

Software licensed to Hewlett-Packard Company Job Title

Ref By

Client

File

Date07-Dec-17

Curtain wall 2.9 m Height

Chd

Date/Time

21-Dec-2017 11:51

Entity Color Legend MULLION100X45 TRANSOM100X45 Default Plate Color Default Solid Color

Y X Z

Load 3

Whole Structure

Print Time/Date: 21/12/2017 11:52

STAAD.Pro for Windows 20.07.04.12

Print Run 1 of 2

Page 29

Job No

Sheet No

Rev

2 Part

Software licensed to Hewlett-Packard Company Job Title

Ref By

Client

File

Date07-Dec-17

Curtain wall 2.9 m Height

Chd

Date/Time

21-Dec-2017 11:51

Y X Z

Load 1

Self weight. Print Time/Date: 21/12/2017 11:52

STAAD.Pro for Windows 20.07.04.12

Print Run 2 of 2

Page 30

Job No

Sheet No

Rev

1 Part

Software licensed to Hewlett-Packard Company Job Title

Ref By

Client

File

Date07-Dec-17

Curtain wall 2.9 m Height

Chd

Date/Time

20-Dec-2017 14:26

Node Displacement Summary Node

L/C

X

Y

Z

Resultant

rX

rY

rZ

(mm)

(mm)

(mm)

(mm)

(rad)

(rad)

(rad)

Max X

1

3:LOAD COMB

0.000

0.000

0.000

0.000

-0.011

0.000

0.000

Min X

1

3:LOAD COMB

0.000

0.000

0.000

-0.011

0.000

0.000

Max Y

1

3:LOAD COMB

0.000 0.000

0.000

0.000

0.000

-0.011

0.000

0.000

Min Y

14

3:LOAD COMB

0.000

0.000

0.031

0.015

0.000

0.000

Max Z

1

3:LOAD COMB

0.000

-0.031 0.000

0.000

0.000

-0.011

0.000

0.000

Min Z

6

3:LOAD COMB

0.000

-0.023

13.524

-0.004

0.000

0.000

Max rX

14

3:LOAD COMB

0.000

-0.031

-13.524 0.000

0.031

0.015

0.000

0.000

Min rX

2

3:LOAD COMB

0.000

0.000

0.000

0.000

0.000

0.000

Max rY

1

3:LOAD COMB

0.000

0.000

0.000

0.000

-0.015 -0.011

0.000

0.000

Min rY

1

3:LOAD COMB

0.000

0.000

0.000

0.000

-0.011

0.000

Max rZ

1

3:LOAD COMB

0.000

0.000

0.000

0.000

-0.011

0.000 0.000

Min rZ

1

3:LOAD COMB

0.000

0.000

0.000

0.000

-0.011

0.000

Max Rst

6

3:LOAD COMB

0.000

-0.023

-13.524

13.524

-0.004

0.000

0.000 0.000

0.000

Beam Displacement Detail Summary Displacements shown in italic indicate the presence of an offset Beam L/C d X (m)

(mm)

Y

Z

Resultant

(mm)

(mm)

(mm)

Max X

3

3:LOAD COMB

0.216

0.000

-0.301

0.000

0.301

Min X

3

3:LOAD COMB

0.864

-0.301

0.000

0.301

Max Y

1

3:LOAD COMB

0.000

-0.000 0.000

0.000

0.000

0.000

Min Y

6

3:LOAD COMB

0.540

-0.000

-11.432

11.444

Max Z

1

3:LOAD COMB

0.000

0.000

-0.538 0.000

0.000

0.000

Min Z

17

3:LOAD COMB

0.252

0.000

-0.025

14.092

Max Rst

17

3:LOAD COMB

0.252

0.000

-0.025

-14.092 -14.092

Print Time/Date: 20/12/2017 15:13

STAAD.Pro for Windows 20.07.04.12

14.092

Print Run 1 of 1

Page 31

Job No

Sheet No

Rev

1 Part

Software licensed to Hewlett-Packard Company Job Title

Ref By

Client

Date07-Dec-17

File

Curtain wall 2.9 m Height

Chd

Date/Time

21-Dec-2017 10:50

Beam Maximum Forces by Section Property Axial Max Fx

Section

Shear Max Fy Max Fz

(kN) MULLION100X45

Max +ve

(kN)

1.464

Max -ve TRANSOM100X45

Print Time/Date: 21/12/2017 10:51

(kN)

Torsion Max Mx (kNm)

Bending Max My Max Mz (kNm)

(kNm)

2.710

0.044

0.000

0.023

0.119

-2.755

-0.048

0.000

-0.021

-1.794

Max +ve

0.000

0.000

0.517

0.119

0.032

0.000

Max -ve

-0.039

-0.000

-0.517

-0.119

-0.079

-0.000

STAAD.Pro for Windows 20.07.04.12

Print Run 1 of 1

Page 32

Job No

Bottom reaction summary

Sheet No

Rev

1 Part

Software licensed to Hewlett-Packard Company Job Title

Ref By

Client

File

Date07-Dec-17

Curtain wall 2.9 m Height

Chd

Date/Time

21-Dec-2017 11:51

Reaction Summary Node

L/C

Horizontal FX

Vertical FY

Horizontal FZ

MX

Moment MY

MZ

(kN)

(kN)

(kN)

(kNm)

(kNm)

(kNm)

Max FX

4

5:LOAD COMB

0.002

1.327

1.447

0.000

0.000

0.000

Min FX

1

5:LOAD COMB

1.327

1.447

0.000

0.000

0.000

Max FY

2

5:LOAD COMB

-0.002 0.000

2.387

2.710

0.000

0.000

0.000

Min FY

4

4:LOAD COMB

0.002

1.241

0.000

0.000

0.000

Max FZ

2

5:LOAD COMB

0.000

1.137 2.387

2.710

0.000

0.000

0.000

Min FZ

1

4:LOAD COMB

-0.002

1.138

0.000

0.000

0.000

Max MX

1

4:LOAD COMB

-0.002

1.138

1.241 1.241

0.000

0.000

0.000

Min MX

1

4:LOAD COMB

-0.002

1.138

1.241

0.000

0.000

Max MY

1

4:LOAD COMB

-0.002

1.138

1.241

0.000 0.000

0.000

0.000

Min MY

1

4:LOAD COMB

-0.002

1.138

1.241

0.000

0.000

Max MZ

1

4:LOAD COMB

-0.002

1.138

1.241

0.000

0.000 0.000

Min MZ

1

4:LOAD COMB

-0.002

1.138

1.241

0.000

0.000

0.000

Print Time/Date: 21/12/2017 11:58

STAAD.Pro for Windows 20.07.04.12

0.000

Print Run 1 of 1

Page 33

Job No

Top bracket reaction summary

Sheet No

Rev

1 Part

Software licensed to Hewlett-Packard Company Job Title

Ref By

Client

File

Date07-Dec-17

Curtain wall 2.9 m Height

Chd

Date/Time

21-Dec-2017 11:51

Reaction Summary Node

L/C

Horizontal FX

Vertical FY

Horizontal FZ

MX

Moment MY

MZ

(kN)

(kN)

(kN)

(kNm)

(kNm)

(kNm)

Max FX

16

5:LOAD COMB

0.048

0.000

1.403

0.000

0.000

0.000

Min FX

13

5:LOAD COMB

0.000

1.403

0.000

0.000

0.000

Max FY

13

4:LOAD COMB

-0.044 -0.038

0.000

1.202

0.000

0.000

0.000

Min FY

13

4:LOAD COMB

-0.038

1.202

0.000

0.000

0.000

Max FZ

14

5:LOAD COMB

-0.002

0.000 0.000

2.755

0.000

0.000

0.000

Min FZ

13

4:LOAD COMB

-0.038

0.000

0.000

0.000

0.000

Max MX

13

4:LOAD COMB

-0.038

0.000

1.202 1.202

0.000

0.000

0.000

Min MX

13

4:LOAD COMB

-0.038

0.000

1.202

0.000

0.000

Max MY

13

4:LOAD COMB

-0.038

0.000

1.202

0.000 0.000

0.000

0.000

Min MY

13

4:LOAD COMB

-0.038

0.000

1.202

0.000

0.000

Max MZ

13

4:LOAD COMB

-0.038

0.000

1.202

0.000

0.000 0.000

Min MZ

13

4:LOAD COMB

-0.038

0.000

1.202

0.000

0.000

0.000

Print Time/Date: 21/12/2017 11:59

STAAD.Pro for Windows 20.07.04.12

0.000

Print Run 1 of 1

Page 34

6.2 Curtain wall Analysis 3.5m height.

Page 35

Page 36

Page 37

Glass Load Computation (Dead Load):

Density of glass,  

d =

2500 Kg/m³

Thickness of Internal glass 

t1 = 

13.52 mm

Thickness of external glass

t2 =

6 mm

Total thickness of glass

Tthick =

Total weight of glass 

Tglass =

19.52 mm 48.8 Kg/m²

Glass adopter provided on both side to transfer load of glass on transom, so considering point load on both  side @ 150mm from the ends

SI No. 1 2 3 4 5 6

Width of Glass meter 1.5 1.5 1.5 1.53 1.53 1.53

Height of Glass  (clear opening) meter 2.43 0.44 0.63 2.43 0.44 0.63

Weight of Glass Kg 177.876 32.208 46.116 181.434 32.852 47.038

10% additional  weight of glass  (Accessories) Kg 17.788 3.221 4.612 18.143 3.285 4.704

Load distribution on  transom on both side  (D/2) KN 0.960 0.174 0.249 0.979 0.177 0.254

Tributary width m 0.765 1.515 1.515 0.765

Wind Pressure on  Mullion Kpa 1.740 1.740 1.740 1.740

Uniform load on  Mullion KN 1.331 2.636 2.636 1.331

Wind Load Computation:

SI No. 1 2 3 4

Width of Panel  1 Width of Panel 2 m m 0 1.53 1.53 1.5 1.5 1.53 1.53 0

Page 38

Job No

Sheet No

Rev

1 Part

Software licensed to Hewlett-Packard Company Job Title

Ref By

Client

File

Date19-Dec-17

Chd

Curtain wall 3.5m Height GDate/Time 21-Dec-2017 13:22

Job Information Engineer

Checked

Approved

Name: 19-Dec-17

Date: Structure Type

SPACE FRAME

Number of Nodes

20

Highest Node

20

Number of Elements

31

Highest Beam

31

Number of Basic Load Cases

2

Number of Combination Load Cases

3

Included in this printout are data for: The Whole Structure All Included in this printout are results for load cases: Type L/C

Name

Primary

1

DEAD LOAD

Primary

2

WIND LOAD

Combination

3

LOAD COMBINATION FOR DEFELCTION

Combination

4

LOAD COMBINATION FOR LIMIT STATE

Combination

5

LOAD COMBINATION FOR ANCHOR DES

Nodes Node

X

Y

Z

(m)

(m)

(m)

1

0.000

0.000

0.000

2

1.530

0.000

0.000

3

3.030

0.000

0.000

4

4.530

0.000

0.000

5

0.000

2.430

0.000

6

1.530

2.430

0.000

7

3.030

2.430

0.000

8

4.530

2.430

0.000

9

0.000

2.870

0.000

10

1.530

2.870

0.000

11

3.030

2.870

0.000

12

4.530

2.870

0.000

13

0.000

3.500

0.000

14

1.530

3.500

0.000

15

3.030

3.500

0.000

16

4.530

3.500

0.000

17

6.060

0.000

0.000

18

6.060

2.430

0.000

19

6.060

2.870

0.000

20

6.060

3.500

0.000

Print Time/Date: 21/12/2017 13:23

STAAD.Pro for Windows 20.07.04.12

Print Run 1 of 3

Page 39

Job No

Sheet No

Rev

2 Part

Software licensed to Hewlett-Packard Company Job Title

Ref By

Client

File

Date19-Dec-17

Chd

Curtain wall 3.5m Height GDate/Time 21-Dec-2017 13:22

Beams Beam

Node A Node B

Length



Property

(m)

(degrees)

1

1

2

1.530

2

90

2

2

3

1.500

2

90

3

3

4

1.500

2

90

4

5

6

1.530

2

90

5

6

7

1.500

2

90

6

7

8

1.500

2

90

7

9

10

1.530

2

90

8

10

11

1.500

2

90

9

11

12

1.500

2

90

10

13

14

1.530

2

90

11

14

15

1.500

2

90

12

15

16

1.500

2

90

13

1

5

2.430

1

90

14

5

9

0.440

1

90

15

9

13

0.630

1

90

16

2

6

2.430

1

90

17

6

10

0.440

1

90

18

10

14

0.630

1

90

19

3

7

2.430

1

90

20

7

11

0.440

1

90

21

11

15

0.630

1

90

22

4

8

2.430

1

90

23

8

12

0.440

1

90

24

12

16

0.630

1

90

25

17

18

2.430

1

90

26

18

19

0.440

1

90

27

19

20

0.630

1

90

28

4

17

1.530

2

90

29

8

18

1.530

2

90

30

12

19

1.530

2

90

31

16

20

1.530

2

90

Section Properties Prop

Section

Area

Iyy

Izz

J

(cm2)

(cm4)

(cm4)

(cm4)

Material

1

MULLION120X45

18.260

46.466

480.200

103.559

ALUMINUM

2

TRANSOM120X45

8.580

178.900

26.433

103.559

ALUMINUM

Materials Mat

Name

E



(kN/mm2)

Density



(kg/m3)

(1/°K)

1

STEEL

205.000

0.300

7.83E+3

12E -6

2

STAINLESSSTEEL

197.930

0.300

7.83E+3

18E -6

3

ALUMINUM

68.948

0.330

2.71E+3

23E -6

4

CONCRETE

21.718

0.170

2.4E+3

10E -6

Print Time/Date: 21/12/2017 13:23

STAAD.Pro for Windows 20.07.04.12

Print Run 2 of 3

Page 40

Job No

Sheet No

Rev

3 Part

Software licensed to Hewlett-Packard Company Job Title

Ref By

Client

File

Date19-Dec-17

Chd

Curtain wall 3.5m Height GDate/Time 21-Dec-2017 13:22

Supports Node

X

Y

Z

(kN/mm)

(kN/mm)

(kN/mm)

rX

rY

rZ

1

Fixed

Fixed

Fixed

-

-

-

2

Fixed

Fixed

Fixed

-

-

-

3

Fixed

Fixed

Fixed

-

-

-

4

Fixed

Fixed

Fixed

-

-

-

13

Fixed

-

Fixed

-

-

-

14

Fixed

-

Fixed

-

-

-

15

Fixed

-

Fixed

-

-

-

16

Fixed

-

Fixed

-

-

-

17

Fixed

Fixed

Fixed

-

-

-

20

Fixed

-

Fixed

-

-

-

(kN-m/deg) (kN-m/deg) (kN-m/deg)

Basic Load Cases Number

Name

1

DEAD LOAD

2

WIND LOAD

Combination Load Cases Comb.

Combination L/C Name

Primary

3

LOAD COMBINATION FOR DEFELCTION

1

DEAD LOAD

2

WIND LOAD

1.00

1

DEAD LOAD

1.20

2

WIND LOAD

1.20

1

DEAD LOAD

1.40

2

WIND LOAD

1.40

4

LOAD COMBINATION FOR LIMIT STATE

5

LOAD COMBINATION FOR ANCHOR DES

Print Time/Date: 21/12/2017 13:23

Primary L/C Name

STAAD.Pro for Windows 20.07.04.12

Factor 1.00

Print Run 3 of 3

Page 41

Job No

Sheet No

Rev

1 Part

Software licensed to Hewlett-Packard Company Job Title

Ref By

Client

File

Date19-Dec-17

Chd

Curtain wall 3.5m Height GDate/Time 21-Dec-2017 13:22

Entity Color Legend MULLION120X45 TRANSOM120X45 Default Plate Color Default Solid Color

Y X Z

Load 3

Whole Structure

Print Time/Date: 21/12/2017 13:36

STAAD.Pro for Windows 20.07.04.12

Print Run 1 of 2

Page 42

Job No

Sheet No

Rev

2 Part

Software licensed to Hewlett-Packard Company Job Title

Ref By

Client

File

Date19-Dec-17

Chd

Curtain wall 3.5m Height GDate/Time 21-Dec-2017 13:22

Y X Z

Load 1

Self weight

Print Time/Date: 21/12/2017 13:36

STAAD.Pro for Windows 20.07.04.12

Print Run 2 of 2

Page 43

Job No

Sheet No

Rev

1 Part

Software licensed to Hewlett-Packard Company Job Title

Ref By

Client

File

Date19-Dec-17

Chd

Curtain wall 3.5m Height GDate/Time 21-Dec-2017 13:22

Node Displacement Summary Node

L/C

X

Y

Z

Resultant

rX

rY

rZ

(mm)

(mm)

(mm)

(mm)

(rad)

(rad)

(rad)

Max X

1

3:LOAD COMB

0.000

0.000

0.000

0.000

-0.008

0.002

0.000

Min X

5

3:LOAD COMB

-0.012

-7.145

7.146

0.004

0.002

-0.000

Max Y

1

3:LOAD COMB

-0.073 0.000

0.000

0.000

0.000

-0.008

0.002

0.000

Min Y

15

3:LOAD COMB

0.000

0.000

0.023

0.014

-0.000

-0.000

Max Z

1

3:LOAD COMB

0.000

-0.023 0.000

0.000

0.000

-0.008

0.002

0.000

Min Z

7

3:LOAD COMB

-0.071

-0.021

12.856

0.008

-0.000

-0.000

Max rX

15

3:LOAD COMB

0.000

-0.023

-12.855 0.000

0.023

0.014

-0.000

-0.000

Min rX

3

3:LOAD COMB

0.000

0.000

0.000

0.000

-0.000

0.000

Max rY

1

3:LOAD COMB

0.000

0.000

0.000

0.000

-0.014 -0.008

0.002

0.000

Min rY

17

3:LOAD COMB

0.000

0.000

0.000

0.000

-0.008

0.000

Max rZ

2

3:LOAD COMB

0.000

0.000

0.000

0.000

-0.014

-0.002 0.000

Min rZ

9

3:LOAD COMB

-0.038

-0.013

-4.712

4.712

0.007

0.002

Max Rst

7

3:LOAD COMB

-0.071

-0.021

-12.855

12.856

0.008

-0.000

-0.000 -0.000

0.001

Beam Displacement Detail Summary Displacements shown in italic indicate the presence of an offset Beam L/C d X (m)

(mm)

Y

Z

Resultant

(mm)

(mm)

(mm)

Max X

28

3:LOAD COMB

0.765

0.000

-0.355

0.000

0.355

Min X

16

3:LOAD COMB

0.972

-0.008

-11.504

11.508

Max Y

1

3:LOAD COMB

0.000

-0.303 0.000

0.000

0.000

0.000

Min Y

28

3:LOAD COMB

0.765

0.000

0.000

0.355

Max Z

12

3:LOAD COMB

0.600

-0.000

-0.355 -0.027

0.019

0.033

Min Z

19

3:LOAD COMB

1.701

-0.079

-0.014

15.445

Max Rst

19

3:LOAD COMB

1.701

-0.079

-0.014

-15.445 -15.445

Print Time/Date: 21/12/2017 13:22

STAAD.Pro for Windows 20.07.04.12

15.445

Print Run 1 of 1

Page 44

Job No

Sheet No

Rev

1 Part

Software licensed to Hewlett-Packard Company Job Title

Ref By

Client

Date19-Dec-17

File

Chd

Curtain wall 3.5m Height GDate/Time 21-Dec-2017 13:22

Beam Maximum Forces by Section Property Axial Max Fx

Section

Shear Max Fy Max Fz

(kN) MULLION120X45

Max +ve

(kN)

1.577

Max -ve TRANSOM120X45

Print Time/Date: 21/12/2017 13:27

(kN)

Torsion Max Mx (kNm)

Bending Max My Max Mz (kNm)

(kNm)

6.448

0.031

0.000

0.045

0.126

-6.512

-0.100

-0.003

-0.037

-5.597

Max +ve

0.059

0.002

1.424

0.139

0.063

0.003

Max -ve

-0.110

-0.002

-1.395

-0.139

-0.215

-0.003

STAAD.Pro for Windows 20.07.04.12

Print Run 1 of 1

Page 45

Job No

Bottom bracket reaction summary

Sheet No

Rev

1 Part

Software licensed to Hewlett-Packard Company Job Title

Ref By

Client

File

Date19-Dec-17

Chd

Curtain wall 3.5m Height GDate/Time 21-Dec-2017 16:10

Reaction Summary Node

L/C

Horizontal FX

Vertical FY

Horizontal FZ

MX

Moment MY

MZ

(kN)

(kN)

(kN)

(kNm)

(kNm)

(kNm)

Max FX

17

5:LOAD COMB

0.003

2.351

3.317

0.000

0.000

0.000

Min FX

2

5:LOAD COMB

4.349

6.407

0.000

0.000

0.000

Max FY

2

5:LOAD COMB

-0.024 -0.024

4.349

6.407

0.000

0.000

0.000

Min FY

1

4:LOAD COMB

0.001

2.843

0.000

0.000

0.000

Max FZ

3

5:LOAD COMB

0.002

1.974 4.313

6.448

0.000

0.000

0.000

Min FZ

1

4:LOAD COMB

0.001

1.974

0.000

0.000

0.000

Max MX

1

4:LOAD COMB

0.001

1.974

2.843 2.843

0.000

0.000

0.000

Min MX

1

4:LOAD COMB

0.001

1.974

2.843

0.000

0.000

Max MY

1

4:LOAD COMB

0.001

1.974

2.843

0.000 0.000

0.000

0.000

Min MY

1

4:LOAD COMB

0.001

1.974

2.843

0.000

0.000

Max MZ

1

4:LOAD COMB

0.001

1.974

2.843

0.000

0.000 0.000

Min MZ

1

4:LOAD COMB

0.001

1.974

2.843

0.000

0.000

0.000

Print Time/Date: 23/12/2017 12:55

STAAD.Pro for Windows 20.07.04.12

0.000

Print Run 1 of 1

Page 46

Job No

Top bracket reaction summary

Sheet No

Rev

1 Part

Software licensed to Hewlett-Packard Company Job Title

Ref By

Client

File

Date19-Dec-17

Chd

Curtain wall 3.5m Height GDate/Time 21-Dec-2017 16:10

Reaction Summary Node

L/C

Horizontal FX

Vertical FY

Horizontal FZ

MX

Moment MY

MZ

(kN)

(kN)

(kN)

(kNm)

(kNm)

(kNm)

Max FX

20

5:LOAD COMB

0.040

0.000

3.205

0.000

0.000

0.000

Min FX

13

5:LOAD COMB

0.000

3.205

0.000

0.000

0.000

Max FY

13

4:LOAD COMB

-0.028 -0.024

0.000

2.747

0.000

0.000

0.000

Min FY

13

4:LOAD COMB

-0.024

2.747

0.000

0.000

0.000

Max FZ

14

5:LOAD COMB

0.000

0.000 0.000

6.510

0.000

0.000

0.000

Min FZ

20

4:LOAD COMB

0.034

0.000

0.000

0.000

0.000

Max MX

13

4:LOAD COMB

-0.024

0.000

2.747 2.747

0.000

0.000

0.000

Min MX

13

4:LOAD COMB

-0.024

0.000

2.747

0.000

0.000

Max MY

13

4:LOAD COMB

-0.024

0.000

2.747

0.000 0.000

0.000

0.000

Min MY

13

4:LOAD COMB

-0.024

0.000

2.747

0.000

0.000

Max MZ

13

4:LOAD COMB

-0.024

0.000

2.747

0.000

0.000 0.000

Min MZ

13

4:LOAD COMB

-0.024

0.000

2.747

0.000

0.000

0.000

Print Time/Date: 23/12/2017 12:55

STAAD.Pro for Windows 20.07.04.12

0.000

Print Run 1 of 1

Page 47

7.0 Bottom Bracket design

Page 48

Page 49

Job No

Bottom reaction summary

Sheet No

Rev

1 Part

Software licensed to Hewlett-Packard Company Job Title

Ref By

Client

File

Date07-Dec-17

Curtain wall 2.9 m Height

Chd

Date/Time

21-Dec-2017 11:51

Reaction Summary Node

L/C

Horizontal FX

Vertical FY

Horizontal FZ

MX

Moment MY

MZ

(kN)

(kN)

(kN)

(kNm)

(kNm)

(kNm)

Max FX

4

5:LOAD COMB

0.002

1.327

1.447

0.000

0.000

0.000

Min FX

1

5:LOAD COMB

1.327

1.447

0.000

0.000

0.000

Max FY

2

5:LOAD COMB

-0.002 0.000

2.387

2.710

0.000

0.000

0.000

Min FY

4

4:LOAD COMB

0.002

1.241

0.000

0.000

0.000

Max FZ

2

5:LOAD COMB

0.000

1.137 2.387

2.710

0.000

0.000

0.000

Min FZ

1

4:LOAD COMB

-0.002

1.138

0.000

0.000

0.000

Max MX

1

4:LOAD COMB

-0.002

1.138

1.241 1.241

0.000

0.000

0.000

Min MX

1

4:LOAD COMB

-0.002

1.138

1.241

0.000

0.000

Max MY

1

4:LOAD COMB

-0.002

1.138

1.241

0.000 0.000

0.000

0.000

Min MY

1

4:LOAD COMB

-0.002

1.138

1.241

0.000

0.000

Max MZ

1

4:LOAD COMB

-0.002

1.138

1.241

0.000

0.000 0.000

Min MZ

1

4:LOAD COMB

-0.002

1.138

1.241

0.000

0.000

0.000

Print Time/Date: 21/12/2017 11:58

STAAD.Pro for Windows 20.07.04.12

0.000

Print Run 1 of 1

Page 50

ANALYSIS OF STEEL BRACKET: Rwind =

2.71 KN

Fz

Support reactions due to wind load  STAAD output file (factorized load)

Rdead =

2.387 KN

FY

Support reactions due to dead load  STAAD output file (factorized load)

Horizon =

0.002 kN

Fx

Check for Fin Bolt(s) as per BS 8118‐1: 1991 Size =

M10 

Bolt Size

grade =

A4‐70

Grade Considered

Vbolt =

sqrt(Rwind² + Rdead²)/2 =

1.806 kN

Vbolt =

1.806 kN

Shear Load at bolt cross‐section double shear (factored)

VR =

15.53 kN

Shear capacity of chosen bolt size/grade

Since; Vbolt =

1.806 KN

<

VR =

15.53 kN

OK

Check for Tension T1bolt =

Fx =

TR =

0.002 kN 26.1 kN

Since; Tbolt =

Tension capacity of chosen bolt size/grade 0.002 KN

<

TR =

26.1 kN

OK

Combined check for Tension & shear (Tbolt/TR)² + (Vbolt/VR)² =

0.014 <

1.4

OK

Check for bearing df =

10 mm

Fastener diameter (nominal)

t =

1.8 mm

Bearing thickness (mullion)

γm =

1.2

Material factor 

Pa =

460 Mpa

Limiting stress for local capacity

BRP =

10.35 KN

Bearing capacity (as per BS 8118: part1 & BS‐5950)

Page 51

Since; Vbolt =

1.806 KN

<

BRP =

10.35 kN

OK

Thus the strength requirements for the fin bolt are satisfied Check for built‐up  Steel bracket (fin plate) as per BS 5950:part1:2000 Py =

275 Mpa

tf =

6 mm

bf =

70 mm

Zzf =

Section thickness Section width

2*tf.bf²/6

Zzf = Mrzf =

Design strength

Elastic Section Modulus

9800 mm3

Bending moment capacity

py.Zzf/γm

Mrzf =

2.246 kNm

Mzf =

0.11935

Since;  Mzf = 

Actual moment 0.119 KNm

<

Mrzf =

2.246 KNm

OK

The strength requirements for the fin plates and welds are satisfied Computation for width of compression triangle mr =

70000 Mpa/29000 Mpa =

pg =

30 Mpa

pt =

600 Mpa

2.414

Modular Ratio Concrete strength Bolt Strength

n =

mr.pg.40 mm/mr.pg+pt =

Tbolt=

[Rdead (40+ 10)mm + Rwind(40 mm ‐ n/3)]/2 . ( 40 mm ‐ n/3)

Tbolt=

2.902 KN

Py =

275 Mpa

tb =

8 mm

bb =

215 mm

sxb =

0.25.bb.tb² =

4.308

Width of compression Triangle refer to figure

tensile load on anchor bolts considering 20mm tolerence Design strength Section thickness Section width 3440 mm3

Plastic section capacity

Page 52

MRb =

py.sxb/γm =

0.788 kNm

Mb =

Tbolt. 50mm =

0.145 kNm

Since;  Mb =

0.145 KNm

<

Bending moment capacity Local bending moment at base plate MRb =

0.788 KNm

OK

The strength requirement for the base plate is satisfied Check for Anchor bolts  at Steel Bracket Vabolt= Rdead Vabolt=

2.387 kN

Tabolt= Rwind Tabolt=

2.71 kN

Mabolt= Rdead(40+10) mm Mabolt=

0.11935

use anchor bolt 2 M‐10 for detail refer the anchor design.

Page 53

C-FIX 1.63.0.0 Database version 2017.10.16.9.12 Date 23/12/2017

fischer FZE Jebel Ali Free Zone Warehouse No XB 01 P.O. Box 261738 Dubai [email protected] www.fischer.ae

Design Specifications Anchor Anchor system Anchor Anchorage depth

fischer Bolt anchor FAZ II Bolt anchor FAZ II 10/10, zinc plated steel 40 mm

Design Data

Anchor design in Concrete according European Technical Assessment ETA-05/0069, Option 1, Issued 03/07/2017

Geometry / Loads / Scale units mm, kN, kNm

Value of design actions (including partial safety factor for the load)

Static

Not drawn to scale

The input values and the design results should be checked against local valid standards and approvals. Please respect the disclaimer of warranty in the license agreement of the Software.

Page 54

Page 1

C-FIX 1.63.0.0 Database version 2017.10.16.9.12 Date 23/12/2017

Input data Design method Base material Concrete condition Reinforcement

TR055/ETAG 001, Annex C, Method A Normal weight concrete, C30/37, EN 206 Cracked, dry hole No or standard reinforcement. Edge reinforcement with stirrups. With reinforcement against splitting hammer drilling Push-through installation Annular gap not filled Static or quasi-static Base plate flush installed on base material 70 mm x 215 mm x 8 mm Customized profile

Drilling method Installation type Annular gap Type of loading Base plate location Base plate geometry Profile type

Design actions *⁾ # 1

NSd kN

VSd,x kN

VSd,y kN

MSd,x kNm

MSd,y kNm

MT,Sd kNm

Type of loading

2.39

0.00

2.71

0.00

-0.12

0.00

Static or quasi-static

*⁾ The required partial safety factors for actions are included

Resulting anchor forces Tensile action kN

Shear Action kN

Shear Action x kN

Shear Action y kN

1

3.09

1.36

0.00

1.36

2

3.09

1.36

0.00

1.36

Anchor no.

max. concrete compressive strain : max. concrete compressive stress : Resulting tensile actions : Resulting compression actions :

0.11 3.5 6.19 3.80

‰ N/mm² kN , X/Y position ( 0 / 0 ) kN , X/Y position ( -32 / 0 )

Resistance to tension loads Action kN

Capacity kN

Utilisation βN %

Steel failure *

3.09

18.87

16.4

Pullout failure *

3.09

10.57

29.3

Concrete cone failure

3.09

7.39

41.9

Proof

* Most unfavourable anchor

The input values and the design results should be checked against local valid standards and approvals. Please respect the disclaimer of warranty in the license agreement of the Software.

Page 55

Page 2

C-FIX 1.63.0.0 Database version 2017.10.16.9.12 Date 23/12/2017

Steel failure ( NRd,s )

NRk,s kN

γMs

NRd,s kN

NSd kN

βN,s %

28.30

1.50

18.87

3.09

16.4

Anchor no.

βN,s %

Group N°

Decisive Beta

1

16.4

1

βN,s;1

2

16.4

2

βN,s;2

NRk,p kN

Ψc

γMp

NRd,p kN

NSd kN

βN,p %

15.86

1.220

1.50

10.57

3.09

29.3

Pullout failure ( NRd,p )

The given Psi,c-factor may has been determined by interpolation.

Anchor no.

βN,p %

Group N°

Decisive Beta

1, 2

29.3

1

βN,p;1

Concrete cone failure ( NRd,c )

Eq. (5.2)

Eq. (5.2a)

Eq. (5.2c)

Eq. (5.2d)

The input values and the design results should be checked against local valid standards and approvals. Please respect the disclaimer of warranty in the license agreement of the Software.

Page 56

Page 3

C-FIX 1.63.0.0 Database version 2017.10.16.9.12 Date 23/12/2017

Eq. (5.2e)

NRk,c kN

γMc

NRd,c kN

NSd kN

βN,c %

11.08

1.50

7.39

3.09

41.9

Anchor no.

βN,c %

Group N°

Decisive Beta

1

41.9

1

βN,c;1

2

41.9

2

βN,c;2

Resistance to shear loads Proof

Action kN

Capacity kN

Utilisation βV %

Steel failure without lever arm *

1.36

17.12

7.9

Concrete pry-out failure

1.36

19.20

7.1

* Most unfavourable anchor

Steel failure without lever arm ( VRd,s )

VRk,s kN

γMs

VRd,s kN

VSd kN

βVs %

21.40

1.25

17.12

1.36

7.9

Anchor no.

βVs %

Group N°

Decisive Beta

1

7.9

1

βVs;1

2

7.9

2

βVs;2

Concrete pry-out failure ( VRd,cp )

Eq. (5.6)

The input values and the design results should be checked against local valid standards and approvals. Please respect the disclaimer of warranty in the license agreement of the Software.

Page 57

Page 4

C-FIX 1.63.0.0 Database version 2017.10.16.9.12 Date 23/12/2017

Eq. (5.2)

Eq. (5.2a)

Eq. (5.2c)

Eq. (5.2d) Eq. (5.2e)

VRk,cp kN

γMc

VRd,cp kN

VSd kN

βV,cp %

28.81

1.50

19.20

1.36

7.1

βV,cp %

Group N°

Decisive Beta

1

7.1

1

βV,cp;1

2

7.1

2

βV,cp;2

Anchor no.

Utilization of tension and shear loads Tension loads

Utilisation βN %

Shear Loads

Utilisation βV %

Steel failure *

16.4

Steel failure without lever arm *

7.9

Pullout failure *

29.3

Concrete pry-out failure

7.1

Concrete cone failure

41.9

* Most unfavourable anchor

Resistance to combined tensile and shear loads Eq. (5.8a)

Proof successful

Eq. (5.8b) Eq. (5.9)

Information concerning the anchor plate Base plate details Plate thickness specified by user without proof Profile type

t = 8 mm Customized profile

The input values and the design results should be checked against local valid standards and approvals. Please respect the disclaimer of warranty in the license agreement of the Software.

Page 58

Page 5

C-FIX 1.63.0.0 Database version 2017.10.16.9.12 Date 23/12/2017

Technical remarks All data and information in the software is based on fischer products and common engineering knowledge. Please check all the proof results against local valid standards and approvals. As fischer is not the design office, the attached is no guarantee for incorrect input or assumptions. Any recommendations have to be approved by the building-authority or project engineer. Results are valid only for anchor system calculated in the attached. If any part of the system is changed, it will invalidate this report and new calculations would be required. The calculation was done under the assumption that a sufficient splitting reinforcement is available. In this case the spliiting failure can be omitted. The transmission of the anchor loads to the supports of the concrete member shall be shown for the ultimate limit state and the serviceability limit state; for this purpose, the normal verifications shall be carried out under due consideration of the actions introduced by the anchors. For these verifications the additional provisions given in the current design method shall be taken into account. As a pre-condition the anchor plate is assumed to be flat when subjected to the actions. Therefore, the plate must be sufficiently stiff. The C-Fix anchor plate design is based on a proof of stresses and does not allow a statement about the stiffness of the plate. The proof of the necessary stiffness is not carried out by C-Fix.

The input values and the design results should be checked against local valid standards and approvals. Please respect the disclaimer of warranty in the license agreement of the Software.

Page 59

Page 6

C-FIX 1.63.0.0 Database version 2017.10.16.9.12 Date 23/12/2017

Installation data Anchor Anchor system Anchor

fischer Bolt anchor FAZ II Bolt anchor FAZ II 10/10, zinc plated steel

Accessories

Blow-out pump ABG big Hammer drill bit SDS Plus IV 10/100/160

Art.-No. 94981 Art.-No. 89300 Art.-No. 504140

Installation details Thread diameter Drill hole diameter Drill hole depth Anchorage depth Drilling method Drill hole cleaning Installation type Annular gap Installation torque Socket size Base plate thickness Total fixing thickness Tfix,max

M 10 d0 = 10 mm h2 = 65 mm hef = 40 mm hammer drilling only blow out by hand Push-through installation Annular gap not filled Tinst = 45.0 Nm 17 mm t = 8 mm tfix = 8 mm tfix, max = 30 mm

Base plate details Base plate material Base plate thickness Clearance hole in base plate

S 275 t = 8 mm df=12 mm

Attachment Profile type Distance between profiles

Customized profile 15 mm

Profile dimensions

mm

Height

6

Width

70

Anchor coordinates Anchor no.

x mm

y mm

1

0

72.5

2

0

-72.5

The input values and the design results should be checked against local valid standards and approvals. Please respect the disclaimer of warranty in the license agreement of the Software.

Page 60

Page 7

8.0 Top Bracket design

Page 61

Page 62

Job No

Top bracket reaction summary

Sheet No

Rev

1 Part

Software licensed to Hewlett-Packard Company Job Title

Ref By

Client

File

Date07-Dec-17

Curtain wall 2.9 m Height

Chd

Date/Time

21-Dec-2017 11:51

Reaction Summary Node

L/C

Horizontal FX

Vertical FY

Horizontal FZ

MX

Moment MY

MZ

(kN)

(kN)

(kN)

(kNm)

(kNm)

(kNm)

Max FX

16

5:LOAD COMB

0.048

0.000

1.403

0.000

0.000

0.000

Min FX

13

5:LOAD COMB

0.000

1.403

0.000

0.000

0.000

Max FY

13

4:LOAD COMB

-0.044 -0.038

0.000

1.202

0.000

0.000

0.000

Min FY

13

4:LOAD COMB

-0.038

1.202

0.000

0.000

0.000

Max FZ

14

5:LOAD COMB

-0.002

0.000 0.000

2.755

0.000

0.000

0.000

Min FZ

13

4:LOAD COMB

-0.038

0.000

0.000

0.000

0.000

Max MX

13

4:LOAD COMB

-0.038

0.000

1.202 1.202

0.000

0.000

0.000

Min MX

13

4:LOAD COMB

-0.038

0.000

1.202

0.000

0.000

Max MY

13

4:LOAD COMB

-0.038

0.000

1.202

0.000 0.000

0.000

0.000

Min MY

13

4:LOAD COMB

-0.038

0.000

1.202

0.000

0.000

Max MZ

13

4:LOAD COMB

-0.038

0.000

1.202

0.000

0.000 0.000

Min MZ

13

4:LOAD COMB

-0.038

0.000

1.202

0.000

0.000

0.000

Print Time/Date: 21/12/2017 11:59

STAAD.Pro for Windows 20.07.04.12

0.000

Print Run 1 of 1

Page 63

ANALYSIS OF STEEL BRACKET: Rwind =

2.755 KN

Fz

Rdead =

0 KN

FY

0.048 kN

Fx

Horizon =

Support reactions due to wind load  STAAD output file (factorized load)

Check for Fin Bolt(s) as per BS 8118‐1: 1991 Size =

M10 

Bolt Size

grade =

A4‐70

Grade Considered

Vbolt =

sqrt(Rwind² + Rdead²)/2 =

1.378 kN

Vbolt =

1.378 kN

Shear Load at bolt cross‐section double shear (factored)

VR =

15.53 kN

Shear capacity of chosen bolt size/grade

Since; Vbolt =

1.378 KN

<

VR =

15.53 kN

OK

Check for Tension Tbolt =

Fx =

TR =

0.048 kN 26.1 kN

Since; Tbolt =

Tension capacity of chosen bolt size/grade 0.048 KN

<

TR =

26.1 kN

OK

Combined check for Tension & shear (Tbolt/TR)² + (Vbolt/VR)² =

0.008 <

1.4

OK

Check for bearing df =

10 mm

Fastener diameter (nominal)

t =

1.8 mm

Bearing thickness

γm =

1.2

Material factor table 3.3 of BS8118: part1

Pa =

460 Mpa

Limiting stress for local capacity

BRP =

13.8 KN

Bearing capacity (as per BS 8118: part1)

Page 64

Since; Vbolt =

1.378 KN

<

BRP =

13.8 kN

OK

Thus the strength requirements for the fin bolt are satisfied Check for built‐up steel bracket (fin plate) as per BS 5950:part1:2000 Py =

275 Mpa

tf =

6 mm

bf =

70 mm

Zzf =

Section width Elastic Section Modulus

9800 mm3

Bending moment capacity

py.Zzf/γm

Mrf = Mf =

Section thickness

2*tf.bf²/6

Zzf = Mrf =

Design strength

2.246 kNm Rwind (40+ 20)

Mf =

Bending Moment at Fin Plate

0.220 kNm

Since;  Mf = 

Considering 20mm tolerence 0.220 KNm

<

Mrf =

2.246 KNm

OK

The strength requirements for the fin plates and welds are satisfied Computation for width of compression triangle mr =

70000 Mpa/29000 Mpa =

pg =

30 Mpa

pt =

600 Mpa

2.414

Modular Ratio Concrete strength Bolt Strength

n =

mr.pg.40 mm/mr.pg+pt =

Tbolt=

[Rwind (40 + 20)mm + Rdead(40 mm ‐ n/3)]/2 . ( 40 mm ‐ n/3)

Tbolt=

2.143 KN

Py =

275 Mpa

tb =

8 mm

bb =

215 mm

4.308

Width of compression Triangle refer to figure

tensile load on anchor bolts considering 20mm tolerence Design strength Section thickness Section width

Page 65

sxb =

0.25.bb.tb² =

3440 mm3

Plastic section capacity

MRb =

py.sxb/γm =

0.788 kNm

Bending moment capacity

Mb =

Tbolt.55mm =

0.118 kNm

Since;  Mb =

0.118 KNm

<

Local bending moment at base plate MRb =

0.788 KNm

OK

The strength requirement for the  base plate is satisfied Check for Anchor bolts  at Steel Bracket Tabolt= Rwind Tabolt=

2.755 kN

Mabolt= Rwind(40+20) mm Mabolt=

0.1653

use anchor bolt 2 M‐10 for detail refer the anchor design.

Page 66

C-FIX 1.63.0.0 Database version 2017.10.16.9.12 Date 23/12/2017

fischer FZE Jebel Ali Free Zone Warehouse No XB 01 P.O. Box 261738 Dubai [email protected] www.fischer.ae

Design Specifications Anchor Anchor system Anchor Anchorage depth

fischer Bolt anchor FAZ II Bolt anchor FAZ II 10/10, zinc plated steel 40 mm

Design Data

Anchor design in Concrete according European Technical Assessment ETA-05/0069, Option 1, Issued 03/07/2017

Geometry / Loads / Scale units mm, kN, kNm

Value of design actions (including partial safety factor for the load)

Static

Not drawn to scale

The input values and the design results should be checked against local valid standards and approvals. Please respect the disclaimer of warranty in the license agreement of the Software.

Page 67

Page 1

C-FIX 1.63.0.0 Database version 2017.10.16.9.12 Date 23/12/2017

Input data Design method Base material Concrete condition Reinforcement

TR055/ETAG 001, Annex C, Method A Normal weight concrete, C30/37, EN 206 Cracked, dry hole No or standard reinforcement. Edge reinforcement with stirrups. With reinforcement against splitting hammer drilling Push-through installation Annular gap not filled Static or quasi-static Base plate flush installed on base material 70 mm x 215 mm x 8 mm Customized profile

Drilling method Installation type Annular gap Type of loading Base plate location Base plate geometry Profile type

Design actions *⁾ # 1

NSd kN

VSd,x kN

VSd,y kN

MSd,x kNm

MSd,y kNm

MT,Sd kNm

Type of loading

2.76

0.00

0.00

0.00

-0.16

0.00

Static or quasi-static

*⁾ The required partial safety factors for actions are included

Resulting anchor forces Tensile action kN

Shear Action kN

Shear Action x kN

Shear Action y kN

1

3.92

0.00

0.00

0.00

2

3.92

0.00

0.00

0.00

Anchor no.

max. concrete compressive strain : max. concrete compressive stress : Resulting tensile actions : Resulting compression actions :

0.14 4.5 7.84 5.08

‰ N/mm² kN , X/Y position ( 0 / 0 ) kN , X/Y position ( -32 / 0 )

Resistance to tension loads Action kN

Capacity kN

Utilisation βN %

Steel failure *

3.92

18.87

20.8

Pullout failure *

3.92

10.57

37.1

Concrete cone failure

3.92

7.39

53.1

Proof

* Most unfavourable anchor

The input values and the design results should be checked against local valid standards and approvals. Please respect the disclaimer of warranty in the license agreement of the Software.

Page 68

Page 2

C-FIX 1.63.0.0 Database version 2017.10.16.9.12 Date 23/12/2017

Steel failure ( NRd,s )

NRk,s kN

γMs

NRd,s kN

NSd kN

βN,s %

28.30

1.50

18.87

3.92

20.8

Anchor no.

βN,s %

Group N°

Decisive Beta

1

20.8

1

βN,s;1

2

20.8

2

βN,s;2

NRk,p kN

Ψc

γMp

NRd,p kN

NSd kN

βN,p %

15.86

1.220

1.50

10.57

3.92

37.1

Pullout failure ( NRd,p )

The given Psi,c-factor may has been determined by interpolation.

Anchor no.

βN,p %

Group N°

Decisive Beta

1, 2

37.1

1

βN,p;1

Concrete cone failure ( NRd,c )

Eq. (5.2)

Eq. (5.2a)

Eq. (5.2c)

Eq. (5.2d)

The input values and the design results should be checked against local valid standards and approvals. Please respect the disclaimer of warranty in the license agreement of the Software.

Page 69

Page 3

C-FIX 1.63.0.0 Database version 2017.10.16.9.12 Date 23/12/2017

Eq. (5.2e)

NRk,c kN

γMc

NRd,c kN

NSd kN

βN,c %

11.08

1.50

7.39

3.92

53.1

Anchor no.

βN,c %

Group N°

Decisive Beta

1

53.1

1

βN,c;1

2

53.1

2

βN,c;2

Resistance to combined tensile and shear loads Proof successful

(5.8a)

Information concerning the anchor plate Base plate details Plate thickness specified by user without proof Profile type

t = 8 mm Customized profile

Technical remarks All data and information in the software is based on fischer products and common engineering knowledge. Please check all the proof results against local valid standards and approvals. As fischer is not the design office, the attached is no guarantee for incorrect input or assumptions. Any recommendations have to be approved by the building-authority or project engineer. Results are valid only for anchor system calculated in the attached. If any part of the system is changed, it will invalidate this report and new calculations would be required. The calculation was done under the assumption that a sufficient splitting reinforcement is available. In this case the spliiting failure can be omitted. The transmission of the anchor loads to the supports of the concrete member shall be shown for the ultimate limit state and the serviceability limit state; for this purpose, the normal verifications shall be carried out under due consideration of the actions introduced by the anchors. For these verifications the additional provisions given in the current design method shall be taken into account. As a pre-condition the anchor plate is assumed to be flat when subjected to the actions. Therefore, the plate must be sufficiently stiff. The C-Fix anchor plate design is based on a proof of stresses and does not allow a statement about the stiffness of the plate. The proof of the necessary stiffness is not carried out by C-Fix.

The input values and the design results should be checked against local valid standards and approvals. Please respect the disclaimer of warranty in the license agreement of the Software.

Page 70

Page 4

C-FIX 1.63.0.0 Database version 2017.10.16.9.12 Date 23/12/2017

Installation data Anchor Anchor system Anchor

fischer Bolt anchor FAZ II Bolt anchor FAZ II 10/10, zinc plated steel

Accessories

Blow-out pump ABG big Hammer drill bit SDS Plus IV 10/100/160

Art.-No. 94981 Art.-No. 89300 Art.-No. 504140

Installation details Thread diameter Drill hole diameter Drill hole depth Anchorage depth Drilling method Drill hole cleaning Installation type Annular gap Installation torque Socket size Base plate thickness Total fixing thickness Tfix,max

M 10 d0 = 10 mm h2 = 65 mm hef = 40 mm hammer drilling only blow out by hand Push-through installation Annular gap not filled Tinst = 45.0 Nm 17 mm t = 8 mm tfix = 8 mm tfix, max = 30 mm

Base plate details Base plate material Base plate thickness Clearance hole in base plate

S 275 t = 8 mm df=12 mm

Attachment Profile type Distance between profiles

Customized profile 15 mm

Profile dimensions

mm

Height

6

Width

70

Anchor coordinates Anchor no.

x mm

y mm

1

0

72.5

2

0

-72.5

The input values and the design results should be checked against local valid standards and approvals. Please respect the disclaimer of warranty in the license agreement of the Software.

Page 71

Page 5

9.0 Analysis of Glass

Page 72

ANALYSIS OF CURTAIN WALL GLASS 13.52mm laminated  (glass inner) + 18 mm Air gap + 6mm fully tempered glass (outer) Reference Drawings and Pane a =

1260 mm

Long side

b =

1080 mm

Short side

t1 =

13.52 mm

Interior Lite Thickness LG

t2 =

6 mm

Exterior Lite Thickness FT

AR =

a/b =

1.167 Aspect Ratio

Computation for Load Resistance Capacity As per ASTME 1300‐03 qw = NFL1 =

1.3 kPa 8 kPa

Design wind pressure Non factored load for 13.52mm interior lite‐figureA1.9

GT1 =

3.6

Glass type factor for interior lite‐FT (Table 2)

LS1 =

1.1

Load share factor for interior lite ‐ table 5

LR1 = LR1 =

NFL1.GT1.LS1 31.68

NFL2 =

2.6 kPa

GT2 =

3.6

LS2 =

10.8

kPa kPa

Non factored load for 6mm Exterior lite‐figureA1.6 Glass type factor for interior lite‐FT (Table 2) Load share factor for interior lite ‐ table 5

LR2 =

NFL2.GT2.LS2

kPa

LR2 =   LR =

101.088

kPa

LR = Since qw = 

Load Resistance Capacity ‐ for interior Lite

Load Resistance Capacity ‐ for interior Lite

min(LR1,LR2) 31.68 kPa 1.3 Kpa

<

LR = 

31.68 Kpa

OK

Ok for 13.52mm laminated  FT glass  +  6mm fully tempered glass in strength

Page 73

Computation for Center of Glass Deflection using alternate analysis prescribed by ASTM E1300‐03 qdef = qw

Design wind pressure

qdef =

1.3 Kpa

E =

71700 Mpa

Modulus of Elasticity for Glass

AR = 

1.167

Aspect Ratio

r0 =

0.553 ‐ 3.83 AR + 1.11 AR² ‐ 0.0969 AR³

r0 = r1 =

‐2.558  ‐2.29 + 5.83 AR ‐ 2.17 AR² + 0.2067 AR³

r1 = r2 =

Calculation Parameters 

1.886

Calculation Parameter

 1.485 ‐ 1.91 AR + 0.82 AR² ‐ 0.0822 AR³

r2 =

0.242

Calculation Parameter

Ls1 =

t1³/(t1³+t2³) =

0.919623 Deflection load share factor for interior lite

Ls2 =

t2³/(t1³+t2³) =

0.080377 Deflection load share factor for exterior lite

X1 =

ln[ ln {Ls1.qdef.((a.b)²/(E.t14))}] =

0.790 For interior lite

X2 =

ln[ ln {Ls2.qdef.((a.b)²/(E.t24))}] =

0.316 For interior lite

δ1 =

t1.e 

δ2 =

t2.e 

δmax =

r0+r1.X1+r2.X1² 

=

4.790 mm

r0+r1.X2+r2.X2² 

=

4.950 mm

4.950 mm

Allowable Glass Deflection δallow =

min (b/50, 25mm) =

Since: δmax =

4.950 mm

21.6 mm <

δallow =

Since the maximum center of glass deflection δmax = 4.950 mm is less than the allowable

21.6 mm

δallow = 

OK

21.6 mm

Ok for 13.52mm laminated  FT glass  +  6mm fully tempered glass in deflection

Page 74

10.0 Technical References

Page 75

Page 76

Page 77

STRUCTURAL CAPACITIES OF GRADE 8.8 BOLTS AS PER BS 8118 - 1 : 1991 TABLE S1. Tension, Shear & Bearing Capacity Size M6

Nominal Tensile Diameter Stress area

Bolt Capacity Tensile

Shear

Bearing Capacity, min (VRF, VRP) < VRS (KN) Aluminum ply thickness, t (mm)

df (mm)

As (mm²)

PRT (KN)

VRS (KN)

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

8.0

8.5

9.0

9.5

10.0

6.00

20.10

16.75

9.97

1.75

2.63

3.5

4.38

5.25

6.13

7

7.88

8.75

9.63

10.5

11.38

12.25

13.13

14

14.88

15.75

16.63

17.5

M8

8.00

36.60

30.5

18.15

2.33

3.5

4.67

5.83

7

8.17

9.33

10.5

11.67

12.83

14

15.17

16.33

17.5

18.67

19.83

21

22.17

23.33

M10

10.00

58.00

48.33

28.76

2.92

4.38

5.83

7.29

8.75

10.21

11.67

13.13

14.58

16.04

17.5

18.96

20.42

21.88

23.33

24.79

26.25

27.71

29.17

M12

12.00

84.30

70.25

41.8

2.92

5.25

7

8.75

10.5

12.25

14

15.75

17.5

19.25

21

22.75

24.5

26.25

28

29.75

31.5

33.25

35

M14

14.00

115.00

95.83

57.02

3.06

6.13

8.17

10.21

12.25

14.29

16.33

18.38

20.42

22.46

24.5

26.54

28.58

30.63

32.67

34.71

36.75

38.79

40.83 46.67

M16

16.00

157.00

130.83

77.85

3.5

6.58

9.33

11.67

14

16.33

18.67

21

23.33

25.67

28

30.33

32.67

35

37.33

39.67

42

44.33

M18

18.00

192.00

160

95.2

3.94

6.58

10.5

13.13

15.75

18.38

21

23.63

26.25

28.88

31.5

34.13

36.75

39.38

42

44.63

47.25

49.88

52.5

M20

20.00

245.00

204.17

121.48

4.38

6.56

11.67

14.58

17.5

20.42

23.33

26.25

29.17

32.08

35

37.92

40.83

43.75

46.67

49.58

52.5

55.42

58.33

M22

22.00

303.00

252.5

150.24

4.81

7.22

11.68

16.04

19.25

22.46

25.67

28.88

32.08

35.29

38.5

41.71

44.92

48.13

51.33

54.54

57.75

60.96

64.17

M24

24.00

353.00

294.17

175.03

5.25

7.88

11.69

17.5

21

24.5

28

31.5

35

38.5

42

45.5

49

52.5

56

59.5

63

66.5

70

=

1.00

=

2

WHERE : α c

; For steel and stainless steel bolts and rivets ; When df/t<10

(BS 8118 : Part 1:1991 Section 6.4.3) (BS 8118 : Part 1:1991 Section 6.4.4)

; When 10
(BS 8118 : Part 1:1991 Section 6.4.4)

c

=

20t / df

c

=

1.5

; When df/t>13

(BS 8118 : Part 1:1991 Section 6.4.4)

αs

=

0.7

; For steel bolts or rivets

(BS 8118 : Part 1:1991 Section 6.4.2)

K1

=

0.85

; For Normal Clearance bolts

(BS 8118 : Part 1:1991 Section 6.4.2)

γm

=

1.2

; Material factor

(BS 8118 : Part 1:1991 Section 3.3.3 Table 3.3)

pa

=

175

pf

=

1000 N/mm² ; yield strength of bolts (bearing)

N/mm² ; Limiting stress for local Capacity (Alum. Alloy 6063-T6)

(BS 8118 : Part 1:1991 Section 4.2 Table 4.1) (BS 8118 : Part 1:1991 Section 6.4.1)

PRT

=

αpf As / γm

; Tensile Capacity

(BS 8118 : Part 1:1991 Section 6.4.3)

VRS

=

αspf As K1 / γm

; Shear Capacity

(BS 8118 : Part 1:1991 Section 6.4.2)

BRF

=

df t 2 pf / γm

; Bearing Capacity of fastener

(BS 8118 : Part 1:1991 Section 6.4.4)

BRP

=

c df t pa / γm

; Bearing Capacity of connected ply

(BS 8118 : Part 1:1991 Section 6.4.4)

NOTES : *Shaded bearing capacity values are greater than the shear capacity of bolt Hence, use minimum shear capacity of bolt

Page 78

Page 79

EXCEPTION: For buildings whose mean roof height is less than or equal to 30 ft, the upwind distance may be reduced to 1,500 ft (457 m).

Exposure C: Exposure C shall apply for all cases where Exposures B or D do not apply. Exposure D: Exposure D shall apply where the ground surface roughness, as defined by Surface Roughness D, prevails in the upwind direction for a distance greater than 5,000 ft (1,524 m) or 20 times the building height, whichever is greater. Exposure Dshall extend into downwind areas of Surface Roughness B or C for a distance of 600 ft (200 m) or 20 times the height of the building, whichever is greater. For a site located in the transition zone between exposure categories, the category resulting in the largest wind forces shall be used. EXCEPTION: An intermediate exposure between the preceding categories is pennitted in a transition zone provided that it is detennined by a rational analysis method defined in the recognized literature.

4. HILj, 2 0.2. 5. H is greater than or equal to 15 ft (4.5 m) for Exposures C and D and 60 ft (18 m) for Exposure B.

6.5.7.2 Topographic Factor. The wind speed-up effect shall be included in the calculation of design wind loads by using the factor K,,:

where K I , K2, and K3 are given in Fig. 6-4. If site conditions and locations of structures do not meet all the conditions specified in Section 6.5.7.1 then K, = 1.0.

6.5.8 Gust Effect Factor. 6.5.8.1 Rigid Structures. For rigid structures as defined in Section 6.2, the gust-effect factor shall be taken as 0.85 or calculated by the formula:

6.5.6.4 Exposure Category for Main Wind-Force Resisting System. 6.5.6.4.1 Buildings and Other Structures. For each wind direction considered, wind loads for the design of the MWFRS determined from Fig. 6-6 shall be based on the exposure categories defined in Section 6.5.6.3. 6.5.6.4.2 Low-Rise Buildings. Wind loads for the design of the MWFRSs for low-rise buildings shall be determined using a velocity pressure qj, based on the exposure resulting in the highest wind loads for any wind direction at the site where external pressure coefficients GCPj given in Fig. 6-10 are used.

I

6.5.6.5 Exposure Category for Components and Cladding. Components and cladding design pressures for all buildings and other structures shall be based on the exposure resulting in the highest wind loads for any direction at the site. 6.5.6.6 Velocity Pressure Exposure Coefficient. Based on the exposure category determined in Section 6.5.6.3, a velocity pressure exposure coefficient K, or Kj,, as applicable, shall be determined from Table 6-3. For a site located in a transition zone between exposure categories, that is, near to a change in ground surface roughness, intermediate values of K, or Kj,, between those shown in Table 6-3, are permitted, provided that they are determined by a rational analysis method defined in the recognized literature. 6.5.7 Topographic Effects.

6.5.7.1 Wind Speed-Up over Hills, Ridges, and Escarpments. Wind speed-up effects at isolated hills, ridges, and escarpments constituting abrupt changes in the general topography, located in any exposure category, shall be included in the design when buildings and other site conditions and locations of structures meet all of the following conditions:

where I: = the intensity of turbulence at height 7 where 7 = the equivalent height of the structure defined as 0.6h, but not less than z,,, for all building heights h. z,,, and c are listed for each exposure in Table 6-2; g g and g , shall be taken as 3.4. The background response Q is given by

where B, h are defined in Section 6.3; and L: = the integral length scale of turbulence at the equivalent height given by

InSI:

L: = l

(fo)?

in which ! and C are constants listed in Table 6-2.

6.5.8.2 Flexible or Dynamically Sensitive Structures. Forflexible or dynamically sensitive structures as defined in Section 6.2, the gust-effect factor shall be calculated by

G j = 0.925

(6-8) /

1. The hill, ridge, or escarpment is isolated and unobstructed upwind by other similar topographic features of comparable height for 100 times the height of the topographic feature (100H) or 2 mi (3.22 km), whichever is less. This distance shall be measured horizontally from the point at which the height H of the hill, ridge, or escarpment is determined. 2. The hill, ridge, or escarpment protrudes above the height of upwind terrain features within a 2-mi (3.22 km) radius in any quadrant by a factor of two or more. 3. The structure is located as shown in Fig. 6-4 in the upper one-half of a hill or ridge or near the crest of an escarpment.

g g and g , shall be taken as 3.4 and g ~ is given by

R , the resonant response factor, is given by R = / $ i i E z l

(6- 10) (6- 11) ASCE 7-05

Page 80

Page 81

Page 82

Page 83

Page 84

Page 85

Page 86

Page 87

Page 88

Page 89

!NOTE 1 The imposed loads are the imposed floor loads and the imposed roof loads. NOTE 2 The crane loads are the self-weight of the crane, the lifted load and the allowances for dynamic effects."

Page 90

Page 91

Page 92

Page 93

Page 94

Page 95

Page 96

Page 97

Page 98

Page 99

Page 100

Page 101

Page 102

Page 103

E 1300 – 03 TABLE 1 Glass Type Factors (GTF) for a Single Lite of Monolithic or Laminated Glass

3.2.4.1 annealed (AN) glass, n—a flat, monolithic, glass lite of uniform thickness where the residual surface stresses are nearly zero as defined in Specification C 1036. 3.2.4.2 fully tempered (FT) glass, n—a flat, monolithic, glass lite of uniform thickness that has been subjected to a special heat treatment process where the residual surface compression is not less than 69 MPa (10 000 psi) or the edge compression not less than 67 MPa (9 700 psi) as defined in Specification C 1048. 3.2.4.3 heat strengthened (HS) glass, n—a flat, monolithic, glass lite of uniform thickness that has been subjected to a special heat treatment process where the residual surface compression is not less than 24 MPa (3 500 psi) or greater than 52 MPa (7 500 psi) as defined in Specification C 1048. 3.2.4.4 insulating glass (IG) unit, n—any combination of two glass lites that enclose a sealed space filled with air or other gas. 3.2.4.5 laminated glass (LG), n—a flat lite of uniform thickness consisting of two monolithic glass plies bonded together with an interlayer material as defined in Specification C 1172. Discussion—Many different interlayer materials are used in laminated glass. The information in this practice applies only to polyvinyl butyral (PVB) interlayers. 3.2.5 glass type (GT) factor, n—a multiplying factor for adjusting the load resistance of different glass types, that is, annealed, heat-strengthened, or fully tempered in monolithic, LG or IG constructions. 3.2.6 lateral, adj—perpendicular to the glass surface. 3.2.7 load, n—a uniformly distributed lateral pressure. 3.2.7.1 specified design load, n—the magnitude in kPa (psf), type (for example, wind or snow) and duration of the load given by the specifying authority. 3.2.7.2 load resistance (LR), n—the uniform lateral load that a glass construction can sustain based upon a given probability of breakage and load duration. (a) Discussion—Multiplying the non-factored load from figures in Annex A1 by the relevant GTF and load share (LS) factors gives the load resistance associated with a breakage probability less than or equal to 8 lites per 1 000. 3.2.7.3 long duration load, n—any load lasting approximately 30 days. Discussion—For loads having durations other than 3 s or 30 days, refer to Table X6.1. 3.2.7.4 non-factored load (NFL), n—three second duration uniform load associated with a probability of breakage less than or equal to 8 lites per 1 000 for monolithic annealed glass as determined from the figures in Annex A1. 3.2.7.5 glass weight load, n—the dead load component of the glass weight. 3.2.7.6 short duration load, n—any load lasting 3 s or less. 3.2.8 load share (LS) factor, n—a multiplying factor derived from the load sharing between the two lites, of equal or different thicknesses and types (including the layered behavior of laminated glass under long duration loads), in a sealed IG unit.

GTF Glass Type

Short Duration Load

Long Duration Load

AN HS FT

1.0 2.0 4.0

0.5 1.3 3.0

TABLE 2 Glass Type Factors (GTF) for Insulating Glass (IG), Short Duration Load Lite No. 2 Monolithic Glass or Laminated Glass Type

Lite No. 1 Monolithic Glass or Laminated Glass Type AN HS FT

AN

HS

FT

GTF1

GTF2

GTF1

GTF2

GTF1

GTF2

0.9 1.9 3.8

0.9 1.0 1.0

1.0 1.8 3.8

1.9 1.8 1.9

1.0 1.9 3.6

3.8 3.8 3.6

TABLE 3 Glass Type Factors (GTF) for Insulating Glass (IG), Long Duration Load Lite No. 1 Monolithic Glass or Laminated Glass Type AN HS FT

Lite No. 2 Monolithic Glass or Laminated Glass Type AN

HS

FT

GTF1

GTF2

GTF1

GTF2

GTF1

GTF2

0.45 1.25 2.85

0.45 0.5 0.5

0.5 1.25 2.85

1.25 1.25 1.25

0.5 1.25 2.85

2.85 2.85 2.85

TABLE 4 Minimum Glass Thicknesses Nominal Thickness or Designation mm (in.) 2.5 (3⁄32) 2.7 (lami) 3.0 (1⁄8) 4.0 (5⁄32) 5.0 (3⁄16) 6.0 (1⁄4) 8.0 (5⁄16) 10.0 (3⁄8) 12.0 (1⁄2) 16.0 (5⁄8) 19.0 (3⁄4) 22.0 (7⁄8)

Minimum Thickness mm (in.) 2.16(0.085) 2.59(0.102) 2.92 ( 0.115) 3.78 ( 0.149) 4.57(0.180) 5.56(0.219) 7.42(0.292) 9.02(0.355) 11.91(0.469) 15.09(0.595) 18.26(0.719) 21.44(0.844)

3.2.3.2 thickness designation for laminated glass (LG), n—a term used to specify a LG construction based on the combined thicknesses of component plies. (a) Add the minimum thicknesses of the two glass plies and the interlayer thickness. For interlayer thicknesses greater than 1.52 mm (0.060 in.) use 1.52 mm (0.060 in.) in the calculation. (b) Select the monolithic thickness designation in Table 4 having the closest minimum thickness that is equal to or less than the value obtained in 3.2.3.2(a). (c) Exception: The costruction of two 6 mm (1⁄4 in.) glass plies plus 0.76 mm (0.030 in.) interlayer shall be defined as 12 mm (1⁄2 in.). 3.2.4 Glass Types: 2

Page 104

E 1300 – 03 TABLE 5 Load Share (LS) Factors for Insulating Glass (IG) Units

NOTE 1—Lite No. 1 Monolithic glass, Lite No. 2 Monolithic glass, short or long duration load, or Lite No. 1 Monolithic glass, Lite No. 2 Laminated glass, short duration load only, or Lite No. 1 Laminated Glass, Lite No. 2 Laminated Glass, short or long duration load. Lite No. 1

Lite No. 2

Monolithic Glass Nominal Thickness

Monolithic Glass, Short or Long Duration Load or Laminated Glass, Short Duration Load Only 2.5 (3⁄32)

2.7 (lami)

3 (1⁄8)

4 (5⁄32)

5 (3⁄16)

6 (1⁄4)

8 (5⁄16)

10 (3⁄8)

12 (1⁄2)

16 (5⁄8)

19 (3⁄4)

mm

( in.)

LS1

LS2

LS1

LS2

LS1

LS2

LS1

LS2

LS1

LS2

LS1

LS2

LS1

LS2

LS1

LS2

LS1

LS2

LS1

LS2

LS1 LS2

2.5 2.7 3 4 5 6 8 10 12 16 19

(3⁄32) (lami) (1⁄8) (5⁄32) (3⁄16) (1⁄4) (5⁄16) (3⁄8) (1⁄2) (5⁄8) (3⁄4)

2.00 1.58 1.40 1.19 1.11 1.06 1.02 1.01 1.01 1.00 1.00

2.00 2.73 3.48 6.39 10.5 18.1 41.5 73.8 169. 344. 606.

2.73 2.00 1.70 1.32 1.18 1.10 1.04 1.02 1.01 1.01 1.00

1.58 2.00 2.43 4.12 6.50 10.9 24.5 43.2 98.2 199. 351.

3.48 2.43 2.00 1.46 1.26 1.14 1.06 1.03 1.01 1.01 1.00

1.40 1.70 2.00 3.18 4.83 7.91 17.4 30.4 68.8 140. 245.

6.39 4.12 3.18 2.00 1.57 1.31 1.13 1.07 1.03 1.02 1.01

1.19 1.32 1.46 2.00 2.76 4.18 8.53 14.5 32.2 64.7 113.

10.5 6.50 4.83 2.76 2.00 1.56 1.23 1.13 1.06 1.03 1.02

1.11 1.18 1.26 1.57 2.00 2.80 5.27 8.67 18.7 37.1 64.7

18.1 10.9 7.91 4.18 2.80 2.00 1.42 1.23 1.10 1.05 1.03

1.06 1.10 1.14 1.31 1.56 2.00 3.37 5.26 10.8 21.1 36.4

41.5 24.5 17.4 8.53 5.27 3.37 2.00 1.56 1.24 1.12 1.07

1.02 1.04 1.06 1.13 1.23 1.42 2.00 2.80 5.14 9.46 15.9

73.8 43.2 30.4 14.5 8.67 5.26 2.80 2.00 1.43 1.21 1.12

1.01 1.02 1.03 1.07 1.13 1.23 1.56 2.00 3.31 5.71 9.31

169. 98.2 68.8 32.2 18.7 10.8 5.14 3.31 2.00 1.49 1.28

1.01 1.01 1.01 1.03 1.06 1.10 1.24 1.43 2.00 3.04 4.60

344. 199. 140. 64.7 37.1 21.1 9.46 5.71 3.04 2.00 1.57

1.00 1.01 1.01 1.02 1.03 1.05 1.12 1.21 1.49 2.00 2.76

606. 351. 245. 113. 64.7 36.4 15.9 9.31 4.60 2.76 2.00

1.00 1.00 1.00 1.01 1.02 1.03 1.07 1.12 1.28 1.57 2.00

6.12.5 The load resistance of the IG unit is the lower of the two calculated LR values. 6.13 For Insulating Glass (IG) with One Monolithic Lite and One Laminated Lite, Under Long Duration Load: 6.13.1 The load resistance of each lite must first be calculated for that load acting for a short duration as in 6.11, and then for the same load acting for a long duration as given in 6.13.2-6.13.5.

6.13.3 Determine GTF1 for lite No.1 and GTF2 for lite No. 2) from Table 3 for the relevant glass type. 6.13.4 Determine LS1 for lite No. 1and LS2 for lite No. 2 from Table 6 for the relevant lite thickness. 6.13.5 Multiply NFL by GTF and by LS for each lite to determine LR1 for lite No.1 and LR2 for lite No. 2 of the insulating glass unit, based on the long duration load resistance of each lite, as follows:

NOTE 3—There are some combinations of IG with laminated glass where its monolithic-like behavior under a short duration load gives the IG a lesser load resistance than under the layered behavior of long duration loads.

LR1 5 NFL1 X GTF1 X LS1 and LR2 5 NFL2 X GTF2 X LS2

6.13.6 The load resistance of the IG unit is the lowest of the four calculated LR values LR1 and LR2 for short duration loads from 6.11.4 and LR1 and LR2 for long duration loads from 6.13.5.

6.13.2 Determine the values for the NFL1 for Lite No.1 and NFL2 for lite No. 2 from the upper charts of Figs. A1.1–A1.12 and A1.27–A1.33 (see Annex A2 for examples).

TABLE 6 Load Share (LS) Factors for IG Units

NOTE 1—Lite No. 1 Monolithic glass, Lite No. 2 Laminated glass, long duration load only. Lite No. 1

Lite No. 2

Monolithic Glass

Laminated Glass

Nominal Thickness

5 (3⁄16)

6 (1⁄4)

8 (5⁄16)

10 (3⁄8)

12 (1⁄2)

16 (5⁄8)

19 (3⁄4)

mm

( in.)

LS1

LS2

LS1

LS2

LS1

LS2

LS1

LS2

LS1

LS2

LS1

LS2

LS1

LS2

2.5 2.7 3 4 5 6 8 10 12 16 19 22

(3⁄32) (lami) (1⁄8) (5⁄32) (3⁄16) (1⁄4) (5⁄16) (3⁄8) (1⁄2) (5⁄8) (3⁄4) (7⁄8)

3.00 2.16 1.81 1.37 1.21 1.12 1.05 1.03 1.01 1.01 1.00 1.00

1.50 1.86 2.24 3.69 5.75 9.55 21.3 37.4 85.0 172 304 440

4.45 3.00 2.39 1.64 1.36 1.20 1.09 1.05 1.02 1.01 1.01 1.00

1.29 1.50 1.72 2.56 3.75 5.96 12.8 22.1 49.7 100 176 256

11.8 7.24 5.35 3.00 2.13 1.63 1.27 1.15 1.06 1.03 1.02 1.01

1.09 1.16 1.23 1.50 1.88 2.59 4.76 7.76 16.6 32.8 57.2 82.5

20.0 12.0 8.68 4.53 3.00 2.11 1.47 1.26 1.11 1.06 1.03 1.02

1.05 1.09 1.13 1.28 1.50 1.90 3.13 4.83 9.84 19.0 32.8 47.2

35.2 20.8 14.8 7.34 4.60 3.00 1.84 1.47 1.20 1.10 1.06 1.04

1.03 1.05 1.07 1.16 1.28 1.50 2.19 3.13 5.92 11.0 18.7 26.7

82.1 48.0 33.8 16.1 9.54 5.74 3.00 2.11 1.48 1.24 1.13 1.09

1.01 1.02 1.03 1.07 1.12 1.21 1.50 1.90 3.07 5.23 8.46 11.8

147 85.5 60.0 28.1 16.4 9.54 4.60 3.00 1.87 1.43 1.24 1.17

1.01 1.01 1.02 1.04 1.07 1.12 1.28 1.50 2.15 3.35 5.15 7.02

5

Page 105

E 1300 – 03

FIG. A1.6 (upper chart) Nonfactored Load Chart for 6.0 mm (1⁄4 in.) Glass with Four Sides Simply Supported (lower chart) Deflection Chart for 6.0 mm (1⁄4 in.) Glass with Four Sides Simply Supported

12

Page 106

E 1300 – 03

FIG. A1.7 (upper chart) Nonfactored Load Chart for 8.0 mm (5⁄16 in.) Glass with Four Sides Simply Supported (lower chart) Deflection Chart for 8.0 mm (5⁄16 in.) Glass with Four Sides Simply Supported

13

Page 107

E 1300 – 03

FIG. A1.8 (upper chart) Nonfactored Load Chart for 10.0 mm (3⁄8 in.) Glass with Four Sides Simply Supported (lower chart) Deflection Chart for 10.0 mm (3⁄8 in.) Glass with Four Sides Simply Supported

14

Page 108

E 1300 – 03

FIG. A1.9 (upper chart) Nonfactored Load Chart for 12.0 mm (1⁄2 in.) Glass with Four Sides Simply Supported (lower chart) Deflection Chart for 12.0 mm (1⁄2 in.) Glass with Four Sides Simply Supported

15

Page 109

E 1300 – 03 APPENDIXES (Nonmandatory Information) X1. PROCEDURE FOR CALCULATING THE APPROXIMATE CENTER OF GLASS DEFLECTION

X1.2.2 The aspect ratio (AR) of a glass plate is found by dividing the glass length by the glass width as follows:

X1.1 The first optional procedure presented in this appendix gives the determination of the approximate lateral deflection of a monolithic rectangular glass plate (note the special procedures for laminated and insulating glass) subjected to a uniform lateral load. In development of this procedure, it was assumed that all four edges of the glass are simply supported and free to slip in the plane of the glass. This boundary condition has been shown to be typical of many glass installations.5,7,8 X1.1.1 This procedure can be used for laminated glass under short-term loads using the laminated glass thickness designation. X1.1.2 For laminated glass under long-term loads and for symmetrical IG units under long or short-term loads, the approximate lateral deflection is the single lite deflection at half of the design load. X1.1.3 For IG units under uniform lateral load both lites will deflect by almost equal amounts. The deflection is calculated using the load carried by either lite from Table 5 or Table 6, load share (LS) factors. The total load divided by the LS factor for either lite gives the approximate load carried by that lite for deflection calculations.

AR 5 a/b

where: a = plate length (long dimension), mm (in.), and b = plate width (short dimension), mm (in.). X1.2.2.1 The aspect ratio is always equal to or greater than 1. The aspect ratio is plotted along the horizontal axis of the deflection chart. X1.2.3 The nondimensional load, q, is calculated using the following equation: q 5 qA2 / Et4

(X1.3)

where: q = applied load, kPa (psi), t = true glass thickness, mm (in.), E = Modulus of elasticity of glass, kPa (psi), and A = area of the rectangular glass plate, mm2 (in.2). X1.2.3.1 For practical purposes, the value of E for glass can be taken to be 71.7 3 106 kPa (10.4 3 106 psi). All quantities must be expressed in consistent units. X1.3 The contour lines plotted on the deflection chart in Fig. X1.1 present the variation of the natural logarithm of the nondimensional loads as a function of the nondimensional deflection and aspect ratio.

X1.2 The Vallabhan-Wang nonlinear plate analysis was used to calculate the relationship between the nondimensional load, the nondimensional deflection, and the glass plates aspect ratio.8 The resulting relationship is depicted in the deflection chart presented in Fig. X1.1. Because the information presented in Fig. X1.1 is nondimensionalized, Fig. X1.1 can be used with either SI or inch-pound units. X1.2.1 The nondimensional maximum deflection wˆ is found by dividing the maximum lateral deflection of the glass, w , by the true glass thickness, t , as follows: wˆ 5 w/t

(X1.2)

X1.4 The following procedure can be used to determine the maximum lateral deflection (w) for a particular case. X1.4.1 Calculate the aspect ratio (AR) of the glass using Eq X1.2. Locate this point on the horizontal axis of the deflection chart and project a vertical line. X1.4.2 For monolithic glass and laminated glass under short duration loads, calculate the nondimensional load using Eq X1.3, find its natural logarithm (ln), and interpolate between the contour lines on the deflection chart to locate the corresponding position on the vertical line projected in X1.4.1. X1.4.2.1 For IG units, calculate the load carried by one lite by dividing the total load by the LS factor. Use this value to

(X1.1)

The nondimensional maximum deflection is plotted along the vertical axis of the deflection chart. When the actual thickness of the glass is unknown, use the minimum thickness from Table 4 to calculate the deflections.

52

Page 110

E 1300 – 03

FIG. X1.1 Deflection Chart

X1.5.1.3 Project a horizontal line from the point located in X1.5.1.2. The corresponding nondimensional maximum lateral deflection (wˆ) is thus seen to be approximately 2.2. X1.5.1.4 Calculate the maximum lateral deflection of the glass as follows:

calculate the nondimensional load for that lite using Eq X1.3, find its natural logarithm, and interpolate between the contour lines on the deflection chart to locate the corresponding position on the vertical line projected in X1.4.1. X1.4.3 Project a horizontal line from the point located in X1.4.2. The nondimensional maximum deflection (wˆ) of the glass is given by the intersection of this horizontal line and the vertical axis of the chart. X1.4.4 Calculate the maximum deflection (w) of the glass by multiplying the nondimensional deflection (w ˆ ) by the true glass thickness.

w 5 ~2.2! ~5.6 mm! 5 12.3 mm

X1.5.2 Example 6: Lateral Deflection Calculation in InchPound Units—Determine the maximum lateral deflection associated with a vertical 50- by 60- by 1⁄4-in. rectangular glass plate subjected to a uniform lateral load of 38 psf. The actual thickness of the glass is 0.220 in. as determined through direct measurement. X1.5.2.1 Calculate the aspect ratio of the glass as follows:

X1.5 Examples 5 and 6 illustrate this procedure as follows: X1.5.1 Example 5: Lateral Deflection Calculation in SI Units—Determine the maximum lateral deflection (w) associated with a vertical 1 200- by 1 500- by 6 mm rectangular glass plate subjected to a uniform lateral load of 1.80 kPa. The actual thickness of the glass is 5.60 mm as determined through direct measurement. X1.5.1.1 Calculate the aspect ratio of the glass as follows: AR 5 ~1 500 mm! / ~1 200 mm! 5 1.25

(X1.5)

AR 5 60 in./50 in. 5 1.2

(X1.6)

Locate this point on the horizontal axis of the deflection chart presented in Fig. X1.1 and construct a vertical line. X1.5.2.2 Calculate the natural logarithm of the nondimensional lateral load from Eq X1.3 as follows:

(X1.4)

= (38 lbf/ft2) (1⁄144 psi/psf) = 0.264 psi, = (50 in.) (60 in.) = 3 000 in.2, = (0.264 psi) (3 000 in.2)2/ [(10.4 3 106 psi) (0.22 in.)4], q = 97.5, and ln(q) = ln (97.5) = 4.58. Locate the point corresponding to ln(q) = 4.58 on the vertical line drawn in X1.5.2.1 by interpolating between the contour lines for ln(q) = 4.5 and 5.0. X1.5.2.3 Project a horizontal line from the point located in X1.5.2.2. The corresponding nondimensional maximum lateral deflection is thus seen to be approximately 2.4. X1.5.2.4 Calculate the maximum lateral deflection of the glass as follows: q A q

Locate this point on the horizontal axis of the deflection chart presented in Fig. X1.1 and construct a vertical line. X1.5.1.2 Calculate the natural logarithm of the nondimensional lateral load from Eq X1.3 as follows: q A q

= 1.80 kPa, = (1 500 mm) (1 200 mm) = 1 800 000 mm2, = (1.80 kPa) (1 800 000 mm2) 2 (71.7 3 106 kPa) (5.6 mm)4, q = 82.7, and ln(q) = (82.7) = 4.42.

Locate the point corresponding to ln(q) = 4.42 on the vertical line drawn in X1.1 by interpolating between the contour lines for ln(q) = 4.0 and 4.5.

w 5 ~2.4! ~0.22 in.! 5 0.53 in.

53

Page 111

(X1.7)

E 1300 – 03 X2. ALTERNATE PROCEDURE FOR CALCULATING THE APPROXIMATE CENTER OF GLASS DEFLECTION

X2.2.2 a = 1 500 b = 1 200 From Eq X2.2 r0 = −2.689 X2.2.3 From Eq X2.3 r1 = 2.011 X2.2.4 From Eq X2.4 r2 = 0.213 X2.2.5 q = 1.80 E = 71.7 3 10 6 t = 5.60 From Eq X2.5 x = 1.490 X2.2.6 Therefore from Eq X2.1 the maximum center of glass deflection is: w = 5.6 exp (−2.689 + 2.111 3 1.490 + 0.213 3 1.490 2) w = 12.2 mm X2.2.7 Example 8: Lateral Deflection Calculation in InchPound Units Using Method X 2—Determine the maximum lateral deflection (w) associated with a 50- by 60- by 1⁄4-in. rectangular glass plate subjected to a uniform lateral load of 38 psf. The actual thickness of the glass is 0.220 in. as determined through direct measurement. X2.2.8 a = 60 b = 50 From Eq X2.2 r 0 = −2.612 X2.2.9 From Eq X2.3 r1 = 1.938 X2.2.10 From Eq X2.4 r2 = 0.227 X2.2.11 q = 38 E = 10.4 3 106 t = 0.220 From Eq X2.5 x = 1.527 X2.2.12 Therefore from Eq X2.1 the maximum center of glass deflection is: w = 0.220 exp (−2.612 + 1.938 3 1.527 + 0.227 3 1.5272) w = 0.53 in.

X2.1 Maximum glass deflection as a function of plate geometry and load may be calculated from the following polynomial equations by Dalgliesh9 for a curve fit to the Beason and Morgan7 data from: w 5 t 3 exp~r0 1 r 1 3 x 1 r2 3 x 2!

(X2.1)

where: w = center of glass deflection (mm) or (in.), and t = plate thickness (mm) or (in.). r0 5 0.553 2 3.83 ~a/b! 1 1.11 ~a/b!2 2 0.0969 ~a/b!3 2

(X2.2)

3

r1 5 22.29 1 5.83 ~a/b! 2 2.17 ~a/b! 1 0.2067 ~a/b!

(X2.3) 2

3

r2 5 1.485 2 1.908 ~a/b! 1 0.815 ~a/b! 2 0.0822 ~a/b!

(X2.4) x 5 ln$ln@q~ab!2 / Et4 #%

(X2.5)

where: q = uniform lateral load (kPa) or (psi), a = long dimension (mm) or (in.), b = short dimension (mm) or (in.), and E = modulus of6 elasticity of glass (71.7 3 106 kPa) or (10.4 3 10 psi). X2.2 Examples 7 and 8 illustrate this procedure as follows: X2.2.1 Example 7: Lateral Deflection Calculation in SI Units Using Method X2— Determine the maximum lateral deflection (w) of a vertical 1 200- by 1 500- by 6-mm rectangular glass plate subjected to a uniform lateral load of 1.80 kPa. The actual thickness of the glass is 5.60 mm as determined through direct measurement. 9 Dalgliesh, A. CGSB 12.20 Structural Design of Glass for Buildings, NRC National Research Council of Canada.

X3. OPTIONAL PROCEDURE FOR ESTIMATING PROBABILITY OF BREAKAGE FOR ANNEALED GLASS PLATES

X3.1 is acceptable providing that the calculated probability of breakage is less than 0.05 (50 lites per thousand).

X3.1 The purpose of the optional procedure presented in this appendix is to provide a method to estimate the probability of breakage, Pb, of rectangular annealed glass subjected to a specified design load. This is accomplished using the following approximate relationship: Pb 5 k~ab!12m~Et2!meJ

X3.2 The steps involved in this optional procedure to evaluate the probability of breakage for an annealed glass plate are listed in X3.2.1-X3.2.5. X3.2.1 Determine the nondimensional lateral load (q) using Eq X1.3 in Appendix X1. Locate this point on the vertical axis of Fig. X3.1 and extend a horizontal line to the right. X3.2.2 Determine the aspect ratio of the glass (AR) using Eq X1.2 in Appendix X1. Locate this point on the horizontal axis on Fig. X3.1 and extend a vertical line upward until it intersects the horizontal line drawn in X3.2.1. X3.2.3 Use interpolation along the vertical line to estimate the value of J corresponding to the intersection of the two lines. X3.2.4 Use Eq X3.1 to estimate the probability of breakage of the glass.

(X3.1)

where: = the probability of breakage, Pb k and m = surface flaw parameters, a and b = the rectangular dimensions of the glass, E = the modulus of elasticity of glass, t = glass thickness, e = 2.7182, and J = the stress distribution factor. Fig. X3.1 presents values of J as a function of glass aspect ratio, AR, and nondimensional lateral load (q). The use of Eq 54

Page 112

11.0 Drawing References

Page 113

Page 114

Page 115

Page 116

Related Documents


More Documents from "Alin Catinean"