Total Company Process Eng Design Manuall

  • Uploaded by: Chetan Patel
  • 0
  • 0
  • March 2021
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Total Company Process Eng Design Manuall as PDF for free.

More details

  • Words: 58,405
  • Pages: 312
Loading documents preview...
PROCESS ENGINEERING DESIGN MANUAL

U m l

TOTAL

1111

I

TOTAL -

Revisiot~: 0

Page Nu. :

FOREWORD TO REVISION 0

TEPIDPIEXPtSUR

Date:

2/85 I

The purpose of this manual is t o present in a practical way the process design methods to be used by TEP personnel lor quick calculations as well as detailed ones. They have been careluliy selected by the most experienced engineers of the Process and Operations Department

ITEPlDDPtDiPlEXPlSUR). The physical presentation i s different from that of the other TEP/DDP/DIP manuals i n order to get an easily transportable docurncnt as well as one whlch 1s convenient for photocopies.

I

I

Most methods are illustrated by seleeted examples.

Chapter 15 gives a selection of basic data which

is

sufficient for most calculations.

Chapters 16 and 17 consist of blank calculation sheets and Process data sheets that can easily

I

be photocopied.

I

Blank pa& :are scattered along the chapters for personal notes.

In addition, blank pages are placed a t the end of the manual.

They arc to be used !or comments

regarding the content as well as the typing and prcsentation and should be sent back to TEP/DDP/DIP/EXP/SUR in Paris to be incorporeted in the next rcvislon. Use them plea= : they

will be part of our feedback. The following persons have cooperated to the revlsion 0 of t h t manual : MM. J.L. BAGGIO,

P. BERLIN,

Ph.BOURGEOIS,

J.C.

FORESTIER,

B.K.

MARSHALL,

A.

MINKKINEN,

J.P. LUCIANI, M. LE METAIS, R. ODELLO, B. PERISSE, U. WEBER, Mmc K. COTTIN,

fl. LEGRAND

I

TOTAL ..

urnvision '

Page No. :

I N D E X Date :

TEPIDPEXPISUR

I. DESIGN CONDITIONS 2. VESSELS (vapwr-liquid separators)

.. HorizontaI Vertical

3. COLUMNS

.. Tray Packed 4. HEAT EXCHANGERS

+ tube .. Shell Air cmlers

. Plate exchangers

. Furnaces

5 PUMPS

.. Centrifugal Reciprocating 6. DRIVERS

. Gas turbines

.

, Steam turblnes

Electric drivers

7. COMPRESSORS 8. EXPANDERS

9. FLARE SYSTEMS 10.

PIPES VALVES + FITTINGS

. Line sizing

.

Piplng classes

.. AControl P through valves and fittings valves - sizing and sdection

11. PIPELINES

,

Pressure and temperature drops

12. PACKAGE UNITS

., Dehydration Refrigeration 13. UTILITIES

..

Watw Nitrogen

. Gas sweetening .

Air , Drainage

10.COMPUTER PROGRAMS 15. DATA 16. PROCESS CALCULATION SHEETS

L7. PROCESS DATA SHEETS 2 u

-

r u BML

r - r t u c t h h r l u b I I u t l r l t l N l r UtSltiN

MANUAL

TEPIDPIEXPISUR

R ~ Y ~ S ;~ O I I

Date

1. D E S I G N

CONDITIONS

: 2/85

Pave No :

TOTAL

Revls~on: 0

Page No

Date : 2fg5

1.1

DEIGN CONDITIONS

TEPIDPl€XPISUR

I. APPLICABILITY The f~llowingdesign criteria are applicable far both feasibility studies and pre-project studie:.

2. PRESSURES The design pressure of a vessel shall be taken as of the following ;

-

Operating pressure bar13 0 - 10 10 50

MOP t 10 %

50

MOP + 5 barg

)

.

-

Desinn pressure bark MOP + 1 bar

I00

LO0

MOP z Maximum Process Operating

Pressure

MOP+5%

Vesscls subject to

vacuum during operation shall be designed for

the maxlmurn external

operating pressure plus a margin of 0.15 bar. 11 the internal pressure Is 0.35 bara or less the vessel will be designed lor full vacuum.

.

Deslgn pressure for pump discharges shall be calculated by taking 120 % ofithe nvrmal pump AP)when operating at design conditions.

3-0 DESIGN TEMPERATURES

.

Design vessel temperatures shall be as lollows :

I5 *C

Maximum design temperature =

max. operating Ternp

Minimum design temperature =

min. operating Temp - 5 "C

t

or minimum ambient temperature.

.

Consideratian for t l ~rninlrnurn dcsign temperature must take

d s @ f s s a u r m 4f Lhe v t s s ~ lthat m a y (Set sectlon on flaring). 4.0 MATERIAL OF

.

GCWE

durLng e m - e r w 9r&t

lnro a a u n t W do~n.&~alhS.

CONSTRUCTION

Details of the required material of c o n s t r ~ t i o nfor various tcrnperatures are given in Table I.

.

Details on corrosion allowances and wall thirkness a r t given i n the vessel design section.

5

TOTAL TEPlDPlE>

t R e E a ENGINEERIND DPIGN MANUAL

:UR

Data

2,

1

Revision :

VESSELS

7

: 2f85

Pws No ;

TOTAL.

VAPOUR

- LIQUID SEPARATORS

TEPIDPIEXPISUR

neuisioh :0

Page NO. :

Date: 2f85

2.1

1. APPLICABILITY Virtually sll procers zchernes use phase scpararlan. The deslgn and sizing of a separator with

acceptable accuracy b required for both the feasibility and pre-projet phases.

Consideration is given in this section l o the spccifkatian of vertical and harlzontal separators for vapow-liquid and vapour-llquid-liquid separation. Details are also given concerning vessel internals,

Separation of solida from gas or Bquids is not cavcred in this design guide. Gencraliy a vendor will be cmsultcd for details af a proprlctory designed vessel. 2. SEPARATOR APPLICATIONS AND COPWOERATEONS

2.1.

2 PHASE SEPARATORS (uwaly

.

unless stated)

Compres~lra d Fwl G u KO drums

Efficient sepretbn of liquid from vapour rtqulred. Always consider a mlae elimina-. Provide sufficbmtirurge t1me)ll to 2 minutes) between ttte HLL and t r l p p i q the compressor.

. -

-

R d l d Syrm KO drum See =tian

9 4 F1are Sys%erns

Udt ~ma#oaumP R q h d u p t ~ a mof acid gas ahsorbtrs, glycol conmetors and dcrslcant bed

dehydratws. Can ba incarporated into base of towcr for weight and spa= saviw.

Always

.

USE

dcrnuter pads.

Produetian W r a t o r s (Vertical or horizontal) Liquid separation from eas not as critical as compr-lor

KO drum unless a

ewnpreswr is located immediately downstream of separator. Always stpr_t*

2.2.

--dm

C

O

~

and prvcas slu&swhen des-

3 P W E -TORS

.

3

production separators are g ~ ~ l hlo ry i ~ @ l .If good liquid-vapour dc

entraimntnt is rqulrad dmisters arc usualjy stated. Oil scparatfon kom the water.must be sufficient sa as not to overload water treatment units Chemkd additives (demulsiflers, anti-Enam, pour point dcprasants) may be added to aid m a t i o n .

9

~

W

I

PDTAL,

Revis~on: 0

-

Page NO.

.

YAPOUR LIQUID SEPARATORS

TEPIOPIEXPISUR

Date:

2/85

2.2

3. HORIZONTAL OR VERTICAL DESIGN

.

Vapwr velacity! in a horizontal drum can exceed the llquld scttIlng velocity provided

LID ) 1. Far vertical drums the velocity cannot. H

.

y

.

Horizontal drums arc more effective and geometrically more practical for a heavy liquid phase removal than vertical drums. A rising liquid level

in a

vertical drum dces not alter the vapaur f k w area.

Cmsqucntly vertical drums are preferred for compresmr and fuel gas KO drums. y

, Vtrtlcal drums utilise a smalkr plot and

arc easier to instrument with alarms and

shutdown controls. For (floating installatiom) they are preferred as less "sloshing" occurs.

.

Each design case must be evaluated separately but in general the Iollowlng can be u9ed as

-

a guideline : Qwtlcaldrums

Cm~~pre~sar KO drum

Degassing boots

Fuel gas KO drums

Absorber fctd K O drums

FCwtlfq instellatlmm '?

-

.

Horizontal drums

P r d u c t h n sqwatars HP 3-pharc separation

Reihrr drums

Flare KO drums

Try to avold v e s ~ l swith wall thickness grea#r than 100 m m as th-

require special

fabrication and can prwe expensive. I

6- CALCULATION THEORY AND EQUATIONS (for use in calcuIation sheets)

(Valid only for pure gravity settlers with no intcrnals to enhance q a r a t i o n )

4.1.

LIQUID-YAPOUR SETTLING VELOCITY s

=K

[yp

pv- liquid or yap- density kglrn3 V$ - settling velocity m/s K

(2) K ' =

0.003616(g) k

D

r

correlating parameter mls

- particle diameter -microns

- drag cocfficicnt P - vapour viscosity - centipoise C

la vs

=

o.oo3616(ff[

rv

P - PJ J

%

10 A

TOTAL

VAPOUR

- LIQUID SEPARATORS

TEPIOPIEXPISUR

Revisiori :O

Date :

2/g5

Page No. :

2.3

For medium and low pressure with gases af viscosity less than 0.01 cp Figure 1 can be used t o estimate Vs.

-

For higher pressures (> 50 bar) or viscosities i n excess of 0.01 cp it i s necessary t o calculate Vs. The drag coefficient C 1s calculated using Figure 2 (curve 2) where

CRe 2

(8)

=

t

f . ~ O ~ ~ , ~ o ~ " - ~ ~ ~ ~ ' ~ ( ~ - ~ v )

PL

Equation 3 1s then used to calculate Vs.

- 2

LIQUID-LIQUID SETTLING VELOCITY (based on Stokes law of terminal settling) The fallowing equation can be used for calculating the settling velocity of water in o i l or the upwards "settling" of o i l i n water. The important fact is to use the viscosity

of the continuous phase 1.e : for oll s e t t l i q upwards through water use the water v~scoslty,for water settling i n oil use the oil viscosity.

Ut = L

Ut =

8.D 18

a

(p--fL)

p c

I

(3)

densIty heavy fluid density light fluid

kglrn3

= D=

viscosity (continuous)

kg1m.s

particle diameter

m

rnls2

kglm3

125 microns and using more useful units gives :

( P;I?-)

Ut = O . ~ ~ O S

U t in mm/min

)& in centipoise

.

I

70

= l =

f h

*PC

Setting the particle size

4 s

E

terminal velocity gravitation accet

3

The above equatlon 1s valid lor REYNOLDS number of 0.1

- (1.3

If calculated settling velocity is > 250 rnmlmin use 250 rnax

VESSEL VOLUMES

.

Partial volumes of a l~orlzontalcylinder can be calculated using the partial valurnt charts i n Figure 3 or estimated using the following equations : (for vessels with a diameter

< 1.2

rn ignore head volumes)

TOTAL

Revision : 0 VAPOUR

- LIQUID SEPARATORS

TEPtDPlEXPlSlJR

Oste :

(see p a ~ c2.13 for sketch)

Page No. :

2/85

9-(;-h)PK"Z

A~=D'A~CCDS

HORIZONTAL CYLINDER

2 DISHED HEADS

7

Vc = A1.L

m3

Arccos

2.4 rn2

i n radians

-

Vdh = 0.21543 h2 (1.5 D h) m3

2 ELLIPTICAL HEADS

Veh = 0.52194 hZ (1.5. D

2 HEMISPHERICAL HEADS

Vhh

=

-

- h)

1.047 h2 (1.5 D h)

VOLUME UP TO BAFFLE (see page 2.23) 0.52194 hf for depth h Ielltptical heads)

(1.50-h)

my (most common)

rn3 (gives extra vol)

+ AL.B

2

.

These formula are accurate enough for general design and are easily programmed

.

on to 4 calculator for time saving. More accurate formula are available, ace ref list, but are often too complicated t o be useful for multip1e calculations.

.

For greater accuracy the l e n g t l ~L should bc the tan-tan length and not the

flowpath length between nozzles. This is especially true w i t h large vessels and a tight design. 4.4.

CALCULATION PROCEDURE VERTICAL VESSEL (vapour-liquid separation)

A guide for filling In the attached calculation sheet.

.

.

Decide i f Figure 1 can be applied i.c P

< 10 bata,

Y < 0.01

cp

lpplicable use the 500 micron curve to evaluate settling velocity (this assume? a inist eliminator will be installed) or 150 micron w i t h no mist cllrrilnator. I t is

recommended to install a mist clirninator for most applications. If not calculate Vs using equ 3.

.

Derate the calculated settling velocity by 85 % design margin to give a maximum allowable vapour velocity.

.

Calculate drum internal diameter and round t o nearest 50 mmb (further adjustment of I D : OD can be made to l u i t standard head dirncnsions).

.

Check if wall thickness i s less than I00 mm (See para b.8).

t2

-

-

TOTAL

Rev~sron: 0

VAPOUR

- LIQUID SEPARATORS

TEPIDPIEXPISUR

.

Page Mo. :

D ~ t c : 2/85

2J

calculate v e s x l height based on following criteria :

h l :max (15 % of C or 400 rnrn)

h2 r 100 rnm i f mesh selected

n hl

150 mrn for compressor KO

--

/ /;

I///

h2 7-

a

-

.

h3 : max (SO % of 0 or 600 mm)

h3 .L

I f no mesh use h l + h2 + h3

F&

= 60 % d

or 800 mm

hl

h~ : 900 mrn + dl2

ma mu -

hS

- - -nLL

h6

h7

h5 : calculate based on 1-2 minutes residence time at

maximum liquid inflow (rnin 200 rnm)

u

7

~

-

.

WL

-

h6 ! base on follow~nghold up times r (min 350)

-

he i

= inlet nozzle

-

TL

L

-

-

rcflux drums

4 min

product drums

5 min 3 rnin

heater feed

8 rnin

HP sep.

Y min

to LP sep.

with pump

no pump

h7 : 1-2 rnin residence tlme (rnin~rnurn150 mm)

h8 : 150 mrn tor bottom connected LC

300 mm for side connecred LC Note :

Far compressor suction drums that are normally dry set HLL at b 5 O mm

above tan line and u x bottom connected LC. This will reduce vessel height if required. No specific

I

a

HLL-ILL hold up

t~rnerequired.

TOTAL

Revision: 0

YAPOUR

- LlQUlD SEPARATORS

TEP~DP~EXP~SUR

4.5.

Page No. :

mate:

2/85

2.6

CALCULATlON PROCEOURE HORIZONTAL VESSEL (2 phase) A guide on how to fill in the attached calculatEon sheet.

1. Calculate settllng velocity Vs far partic4Ksize 5 0 0 ~(use Fie 1 or equ. 3.) 2. Ckrate this by F

Vm =

= 0.85

and calculate required vapour

P x Y s x (LID) mls

vclwit~Vmm/s

use LID of 3 t o 4 max (3 first est)

3- Evaluate required vapout cross sectional area, Av 4. Assume drum is 70 % full i.c h/D = .I and evaluate drum 0 to give required Av (to nearest 50

mm). For "dry" vwwls use h/D = .3>

5. For required(Jiqold surge volume) calculate vol at HLL, 1X insufficient adjust D or L (note 11 L/D changes signliicantly recheck Av using new Vm). 6. Set position of LLL in drum and confirm required surge vol between HLL-LLL, If volume & Insufficient increase 9, L or h. Include volumes in heads. 7 , When setting LLL height take into account any LSLL, LSL alarms and vortex breakers which may set mlnimum value usable. Usually 300-350 mm.

8,

~ t i o n a l i s eall heights and dimensions to nearest 10 mm.

-

NOTLA :

.

For high volumetric flows of gas with small liquld volurnes consider using split

flow arrangement. Design ia as above but with half vapour volurnc

Haw.

Normal design is with top entry, exit nozzles, However if spacc is limiting

(primarily offslrorc) head mounted nozzles can be used to increase flowpath.

.

L

i3

daignated as the flow path length i.e distance between inlet and outlet

nozzle. L' is the tangent-tangent length. For 1st estitnates L' = I + 1.5 9i + 1.5 82 02 c outlet nozzle diameter Q i = inlet nozzle diameter

-

"Normal" liquid levels are taken

as midway between the high-and low levels.

r4

-

TOTAL

VAPOUR

- LlQUlD SEPARATORS

TEPIDPlEXPISUR

4.6.

Page No. :

Datm: 2fb5

CALCULATION PROCEDURE HORIZONTAL

.

~evision:O

2.7

VESSEL 3 PHASE (See Figure 4)

Sufficient residence time to allow separation of the ail-water mixt!trc as well as the o i l surge and vapour

f l o w areas

must be provided.

1. Proceed with steps 1 t o 0 as for a two phase separation. Use L / D = 3 (1st estimate) and evaluate L.

2. Provision now has to be made ta accommodate both oil and water surge volumes.

Use Tan-Tan Jength 1'and not rrozz-nozz distance L. 3. Calculate L'LL required to give approx 4 rnins oil surge capacity (minimum). Inspection will reveal whether sufficient height exists below LLL to include the interface levels. I f not, adjust the vessel Qor L to give sufficient room.

Note:

If the water cut is very small, consideration may be given t o using a water boot instead of a baffle arrangement ace step 10.

Having dstkrnined HLL and LLL now set both position and height 01 b f f l c . Calculate terminal settling velocity of watcr droplet (equ 5 sect b.2) and settling t i m t at both HLL and LLL; Volumetric flqw of llquld h i n both cases the oll plus

the water. Calculate fall distance of a droplet across length o f the drum. Baffle height and positlon can now be set noting :

-

the baffle should be a t least 75 rnm below the

the baffle should be a t

LLL least 213 down the length of thc drum Irotn the inlet

In some cases the water droplets w i l l settle t o the f l m r in a short distance.

The baffle should s t i l l be s e t at a minimum a1 213 along the vessel.

. 6.

-

k l the HIL a t baffte height 7 5 mm. The LIL according vortex breaker + LSLL use a minimum of 300-390 mm.

t o height determined by

Check If an oil droplet will r i s e through the water layer (from drurn floor) to LIC

before reaching water outlet. Use area at

LlL

with normal oil + water flowratcs.

(Thls criteria is very rarely governing but must he checked).

7. Calculate water surge time b e t w t t n HI1 and LIL, snd residence time between NIL and outlet. Remember t o use only one head volume, and length 01 drum upto baffle. Minimum acceptable times are '4-5 rnins. I f calculated times are very long consider using a watcr boot arrangement.

8 . Rationalise all dimensions and "tidytt levels to standard values if possible i.e : 150 mm, 200,250, 300 etc. This allows use of standard displacers.

9. Rtcalcutate a l l residence times based on "tidicd" levels (if required). Note :

i n calculating the final residence times make sure that the vcsscl tantan length is used and n

g

the nozzle to nozzle distance L.

/5

i

Revision : 0

TOTAL

Page No. :

VAPOUR - LIQUID SEPARATORS

TEPIOPIEXPfSUR

Oate : 2/85

2.8

L.

10. Boot calcuIatian (See Fig. 5)

.

If the water volumetric flow is

50

$mail as to not warrant a separate belflcd

settling campartement as detailed above a water boot should be used instead. 70 design p r w e c d as follows :

1. Prmeed as previaua upto step 3. 2. Calculate settling distance of water droplet when vesstl Is operating at LLL.

Water droplet should reach floor

gf

drum before 011 w t l e t . Remember that

the all e r l t nozzle w i l l be raised above the floor as a standpipe. Adjust drum

fl or

C to achieve &ttling.

3. Check that ~ t t i i n gis aim possible when operating at HLL, droplet to fall below d r a w d f nozzle level.

4 Size water drawoff boot fl

(try to use standard pipe diameters). Celculate

rising vcloclty of the oil in water, set downward velocity of water in boot at

90 % of this and evaluate bwt q. Boot length b y inspection (use standard displacers). Note -

Boot fl must be less than 35 % of vessel 0 When heavy walled vessels are used a remote boot may be more

economical t o prevent large cuts in the main vessel.

4.7.

NOZZLE SIZING (see section 10.0 also) Inlet nozzle

Size bawd on normal volumetric Ilow + 10 % (liquid + vapour flow)

-

L i m i t inlet vclocity t o 7 13 rnls Round nozzle diameter up or down to nearest standard sire

.

Can outlet

.

Liquid outlet

+

Size an normal flow

,

Normal flaw

Velocity limit 15-30 m/s

.

Velocity limit

10 %

1-3 m/s HC 2-4 m/s water

Manholes : 450 mm or 600 4.8-

,

Min. diameter = 2" (avoid plugging)

VESSEL WALL THICKNESS

Calculate vessel wall thickness usin8 the ASME VIl1 div. I formula. The wall thlckness should be calculated immediatly after t

<

100 mm.

D is knowtr t o confirm if

I

1

Revision :O

(TOTAL[

VAPOUR

- LIQUID SEPARATORS

Date : a185

Di = diameter t

:

Page NO. :

2.9

I

mm

wall thickness

P = design pressure E = jolnt etficlency

rnm barg

ure 1 for seamless shells -85 otherwise S 3 rnax. allowable stress bar

C

z

use 1220 bar for CS plate 1000 bar for 55 plate

corrosion allowance mm

-

use 3 m m unless stated

oth,erwise by EXP/TRT

for 100 <

t C I00 mrn t < 150 mm t

>

130 mm

;

no fabrication problems

c

vendor advkc may be needed

: Major labrication problems

In order to meet standard vessel head sizes and wall thicknesses the followlns ranges shwld be observed :

- I250

n m in increments of SO m m i.e. 250, 300. 350... 1300 4000 m m in increments of 100 mm i.c. 1300, 1400, 1500

Vessel diameter : 250

Srandhrd wall thlckn=tser

:

1

...

-

- 30 mm in increments of 1 mrn

-

30 60 m m in increments of 2 rnm 60 140 rnrh in increments of 5 mm

-

i.e.

1,2, 3;4... i.e. 30, 32, 3(r, 36..,

i.e. 65, 70, 75, SO...

Vessel weights either MdsontaI or vertical can bc estimated udng Flg. 6. 'This tigurt is for the steel shell Including manholes, nozzles, Iittings etc but nut the removable internal5 or support skid. The heads can be estimated by using weight of 2 heads z e2 (m2) x wall thickness (mm) x 20 ks.

I I

I

1,

5. VESSEL INTERllALS

1.1.

MIST ELIMINATORS

,

Mist tlirninatars or

mesh pads are located under the vapwr outlet nozzles at all compressor sucrion drums and fuel gas KO drums. For production separators it is slways good practlce to install an exit mesh pad.

I

I

- ..--

TOTAL

Rru~ritrr~ : 0

YAPOUR

Page NQ.:

- LIQUIDSEPARATORS

tEPIDPIEXPlSUR

2/85

Date:

2.10

A

.

Mesh is usually made from 304 SS. YORK DATA as follows : Types of pad :

York ng

Thickness

Residual*

mm

-

entrain~nentPPM

General purpose

43 1

144

100

1.L- 1.2

High efficiency

021

192

100

.I5

- -61

115 80

1DO

Dirty service

326 931

110

.I7 1.6

-

150

-8

604

.

- 0.19 1.8

- -87

The engineer should speciiy type, diameter and thickness of pad required on

the vefisel data sheet.

.

For particle sizes of 5 microns or less use two pads spaced 300 mm apart eg : glycol contactor.

5.2.

I N L E l 'TERNALS Inlet internals can be specified l o aid feed distrlbulion and promotc uspour-liquid separation. Generally for prt-project stage dctalla are not required.

5.3.

LIQUID PHASE INTERNAL5

.

Vortex breakers should be dctalled for each oiIlcondensate nnd produced water outlet where the oulet flowdirection is vertical.

.

Vendors wlLI sometimes specify internal packs of tilted plates or baffles or other arrangements to promote phase separation.

-

Sand jetting facilities should be provided for on services where there is a rBk

of

silting or sediment build up in the vessel. Generally jetting facilities are not requlred On gas-condcnsatc systems. 6.0.

SHORTCUT METHOD FOR

HORIZONTAL DRUM SlZlNG (2 w 3 phases)

1

Y

-

2.1 1

EQUtPMENT N*

I] Calculate settling velocity V s 2) Calculate vessel diameter required lor drapltts separation :

s 3) Calculate vessel dlamcter reqdlred for sufficient liquid residence time :

"2

'

c 16 QIfres

4) Select D = max (Dl,02). Round ro upper value Qg =

gas flowrate a t P,T

m3/s

Ql

z

m?s

Vs

I

total liquid [lowrate settling velocity

D

z

m/s

vessel diameter m vessel design ratio (L/D= 3-41 security factor (0.85) -

LID = F

liquid residence tilne

ires :

5:

'7

mIL3 TOTAL IC17

SHORT CUT METHOD

T~P~OWWP~IXP~IUR

nv

1 I

CHU

I

..

PROCESS CnCCULATlON SHEET

OAT€

HORIZONTAL DRUM

1

1108 I I ~ L E

ITEM

Na IOUNO

1

REV

I

TOTA'

YAPOUR

Rovitio~l: 0

Page HI

Oat% : 2/85

2.12

- LIQUID SEPARATORS

TEPtDPIEXPISUR

7.0 REFERENCES AND USEFUL LITERATURE

7.1.

LUDWIG VOL I CHAPTER 4

7.2.

PERRY CHAPTER 6

7.3.

Program calculates partial volumes Pierre Koch

OC3 Dec. 3 1983

2u

.

CALCULATION SHEET FOR VERnCfiL TWO PHASE SEPARATOR

EQUIPMENT

1e3~

D

NO

B E W S S ; N ~&oor

Operatinp data : Pressure (operating)

bare

= ~.WI

Temperature (operating) Gas MW

'C

= 31,

Gas flow rate

kdh

Gas density

Liquid description : C l l ~ b LD;L

= 51.4

= ?PI0 k g h 3 = 3.1

(T,P)

Actual volume flow Qg

m3ts

-

6-97

r

kgh

Liquid flow rate

10290

Liquid density (T,PI kg/m3 Actual volume flow m3/min

2 10 = 0.t 3

Plrticle size

= !So

microns

c

.

Esdmate Vs usin8 Figure 1 and 500 micron curve : , If P < 50 bar and p < 0.01 u x Fig. l and 150 microns

Mesh pad

:

No

'

1. Yapour-liquid ~ t t l i n pvclocltv . :from Fig -1

. c :

VS =

&

m/~

vs =

rnls

* Delete as applicable 2. berating % = 85

=

1

Drum flow area

3. Actual volumetric.

as flow

~m

maximum velocity

0 . 57

=

Calculated drum 6 =

~ . q qm3/s

m/s

1.7

2s:

m2 mm

5. Required liquid hold-up tiines

h>:

HLA-HLL

h6:

HLL-LLL

h7:

LLL-LLA

5. Mesh pad:

1

@no

= = =

e

mi"

=

min

r

(.1cm3

~ . . / , 6 m3

thickness =

. TOTAL ma3

a

0 . L 6 d

min

30

. = =

mrn

lgoc 700

mm mm

mm

21 Sheet 1 of 2

PROCE~S CALCULATlOM S H E E T

:

IrrM:

TLFIOOP'O~P~IKP SVLl

VERTICAL YAPOUR-LIQUID SEPARATOR w,

I Y

QSrt

CHK

700

lbl1111€ I

SAM*?~L

,

.

c.".--

D I ,: i;.

101NO

RtY

1

hl :

I5 % of fl or lr00 mm (Use mar)

h2 :

mesh pad

h3 : 50 % of d or 600 mrn With mesh :h l + h l + h3 N o mesh : hJ + hZ + h3 1 60 % @ or 800 h4 a 400 mrn + d / 2 t d = inlet nozz fl

hJ

h5 a

From step 4 or 200 mrn

h6 :

From step I or 350 m m

h7 : ha :

From step 4 or 150 rnrn

-

rnm

e

5SO

mm

= =

700

mm

I

mm

150 mm for bottorn LC

I S

300 mrn for side LC

mrn

For ''dry" vessel

h6 + h7

+ h8

= $650 rnm

TOTAL VESSEL HT TANITAN L L

7. Wall thickness

.

DESIGN PRESSURE

*

CORt

P c 2.5 . C= 3

;ION ALLOWANCE

barg

Diameter

D =

?OO

mm

mm

Max st1 :s : 5 =,I220bar CS 1000 bar CS

Joint eiflciency f.85)

.

t

S = 1?r:3

E=

PxD

I

2xsxE-1.2P

+c

Z A . 1

C l.j

Vessel weight (Fig. 6) t =

5

mrn

L=

6

m

(s+I)

D = s.-I m

r

IPCO kg

Head weight =

80 kg

She11 weight

(t

x d x 20)

1340

TOTAL WEIGHT r

kg

22 TOTAL

-71

PROCESS CALCULATION SHEET

VERTICAL VAWUR-LIQUID SEPARATOR 1TEM.

TIP'DWOR.IXP.SUR Ir

cnn

NO

ma IE

l ~ O Q ~ I ~ tL I

.1:

L

.

IOU uo

!\I :.dv I

'*J.-

Sheet 2 of ..
Z

-

. atv

I

-.

2+1J CALCULATION SHEET FOR HORIZONTAL 2 PHASE SEPARATOR

I

. Head type elliptic all^ Indicate on sketch if demister mesh requlred Delete as applicable

EQUIPMENT N u ! v$oio

DESCRIPTION : I""'AS~ S f Prtplf! l o *

Omrating data :

= %a Operating temperature .C = I g Operating pressure bara

Gas density T, P

= h.,4 k d h = 14qSo kglm3 = 1f.u

~g actual vol flow

m'f5

Gas viscosiry

CP

Gas molecular

weight

Gas mass f l o w rate

L.

Vapour-lquid settling

0 ; ~ .

Liquid flowrate

kgfh

'

!?b6iu kgfln3 = 7CS

0 . !y?

~ l ~ u dendry id T,P ~1 actual vol flow

m3/rnin =

e.O\o?r

Particle size

microns

. =

Liquid nature :

z

-c

~nls

vm=

1.8

mls

a = 3.'sh

m2

v5=

*

velocity : frorn Fig. 11-

2

G.

1

C =

* Delete as applicable 2. Max. vapwrr velocity

Vm=YsxFxL

B

LID = 3 3. Actual vapour ~olurnetricflow

Q g = 6-2-77m3/5

Av

V rn

2'5 PROCESS CALCULATIONSHEET

1-

TOTAL

ITJT7

TE~~O~P,~IWEIPIZUR #I

CM*

CALCULATfOH FOR HORIZONTAL PHASE SEPARATOR

o d rt

z

,on

rlrLr

1

r oS3

' I f L ~

No

106 no

I

.-

.dl,

r

to

Sheet 1 01 3 : , r * " ' "' '

1

RIY

-

4.

Nozzle sizing I velocity limits (rnls)

8

Inlet : 7-13, Gas outlet : 15-30, liquid outlet 1 - 3

Nozzle ID =

B i : Inlet flow = 0.31' m3/s (+ 1 %) c.3b 82 : Gas c. 'let = 9.2 $ m3/s Liquid outlet = a.Ci. m3/s

8

Actual vcl =

I'

lo-5 tn/s

NozzIe ID = " Actual vcl = I T mls Nozzle ID t & " Actual vel = .'. 1 m/s

5. Drum sizing = 4 mln

For trial I t,,,

vol required = 4 x Q1 =

I Selected h/D Vapour area % fotal area {Fig. 31 Total area Liquid area

Av

17-12

At A1

m2

D

mrn

Calculated drum Selected drum

fi

-

I

I I If 1 31 I c.GrC I a.ft62 I I I 1 t I I I :ro I t c n ~ 3 I 1

m rn

LID O 41

I

L

mm

TanlTan length

L'

mm

HLL height Volume at HLL LLL height Volume at LLL Surge volume (HLL

Calculated

1

180r I 2.68 t I I I

m rn

m3

m3

I 3.3E I

I

d n

1 NOTES :

I I SELECTED DRUM : DIAMETER 0 ?o.v

1

1

1 I I 2

1

I I I

1 I I I 1lt00 I 1 l?.q% I I 350 I 1 1.36 1 I I..SC II

I

m3

tres

3

1 3 1 . C ~ j LO--3 I 1 !1'34 1 cs30

rnm

- LLL)

i0.c

.

1 a*4

mZ

Flowpath length

0

.I 1

" I

I

TRIAL

I

1 I I

I I

of.

I I I

I 1

I I I I

I

I I I I

I I

I 1 1 I

I

I I I I

I

I

I I

I I 1 I

I I 1 I

1 I I

I 1

I

I I I

I I I

I

m m x ; Z : , mrn tadtan

a1

f anltan length L' iL + l + x bi + I t 62 (ignore this correctidn if D C 1.2 m and use L for volume calcs. For trial I uae t and ignore heads). .

b)

If VOL HLL is less than required surge increase D, L or h/D or reduce ires (by

Inspection).

2 4

'

EZ3

TOTAL

1717

rEPIDDPrDIP.EXP~SuR

IY

I I

I

ID,^ m3

ctix

l

PROCESS CnlcuintloN SHEET

CALCULATION FOR HORIZONTAL 2 PHASE SEPARATOR

onrr

I

I 100 TI ~ L C

.

..n

,.

.

'rtM

-_

Sheet 2 of 3

'

Uo 100

wo

I

I

I

RLv

6. Wall thickness

, DESIGN PRESSURE , CORROSION ALLOWANCE

P=

22

barg

C= 3

Max stress

55 = 1000 bar 5 . l2:o

mrn

Joint efficiency

t.

ig

L

rC.53

D

Shell weight

m

Head weight =

rn

(t x D=X 20)

=

E=

0 .f l

= Il 0 0 0 kg

mm

TOTAL WEIGHT

CS = 1220 bar

JdaO k~

1 3 OOc

..

kg

-

PROCESS cnLCU1ATtON SHEET

ltP'DDP,DIPtt XC'SUU

CALCULATION FOR HORIZONTAL 2 PHASE SEPARATOR

, ~ ~ p . q , b!'

L,qp.pi

n o L'!:

to

5heet 3 of 3 1 f.:!

t

'

!.

,...

1

ntv 1

I-

-

TXEllfAN'tENCTH L' ;$00 FLOW PATH LENGTH L = +*am

I-

.Amend ske~ehif h o t requitad inrtwd of baffle . Indicate on sketch if mesh rqulrtd

. Heads :2 :1 elliptical EQUIPEMENT No : D 5 0 1 0 DESCRIPTION : 0F-y-

T L S 7 SLIAMT*&

Operating d a t a . Operating pressure ' Operating temperature

Ad

barn

:

'C

= so

CONDENSATE Flowrate Density T,P

PC

Mass flowrate

kglh

Density

kglm3 = 31. o

T,P

Qg Vol flow

=

PC

bi04

WATER CUT

m3/h = = 0.0I03

Y

1. Vapour-liquid s e t t l i n ~velocity

t

719.h

=6.7S

Viscosity

cp

Flowrate

kg/h

44fs

kg/m3 = S t % Vat flow TIP m31min = o. 16P Density T,P

PW Qw

rw

microns= I a:

Particle size

kdm3

Val flow T,P rn3/min x 0.3 I

Ql

CAS MW

-

= 3 1~ 3 3

kg/h

from Fig, llc-

= 17.54

cp

Viscosity

Vs = 0.17

r

1n/5

-

C

* Delete as applicable 2. Maximum vapour velocity LID = 3

Vm

= Vs x

0.85

rL I3

3. Liquid-lit: I settling

Ut = 0.110l[&lf?]

Oil in water

Utall =

rnrn/min

Pw Wa~erIn oil

&water

-

rnmlmin

\IT

mrnlmin

.--

Sheer 101 4

26

mZY

TOTAL

a

L P I W P : ~ r t Y P5ua

v

CMK

PROCESS CALCULATION SHEET

-

CALCULATION FOR HONZONTAL 3 PHASE SEPARATOR DATE

j rosrlr~t E n n r r r t i

ITEM

no

orc~~:,~

> So10

108 wo

~r

,,I

1

I

RIV

9-

2.19

I.

:qelocity

*Olz~a

,

....

I. Inlet [low : (+ I0 %)

2. Gas outlet :

3. HC outlet :

4.

outkt

Water

:

0.6 .

5. Vessel siring tres oil

trial 1

(HLL-LLL)= 4 mln

1. f 4

r

.-

1

"

OIL SECTION TRIAL

I

I I

Selected h/D

calculated (QglVm) Av as % AT (Fig. 3) Total area

Av

rn2

At

m2 mZ

A1

Liquid area

--

Calculated Q Selected P

I 0.7 1 0.38 I I 1 rr I Sr 1 r4.r I \.u+ \ 3 I n-3L I o . Z k I o-6bh I 1.383

mm , ,

D

1 I1 1ObO 6So 1

1

LlD 13

41 Flowpath length TanlTan Length

L'

HLL height Vblume' a t HLL LLL height ' Volume at LLL Surge volu~nc(HLL

1

mm mm

L h1

mm rn3

hZ

mm

I jLS0

,

I I goo

Calculated tres

.

I

I

m3

- LLL)

3

m3

I

rnin

I

I

I

11 \IIQ I I

1(

CO-Q

0

I I 1

1

1 3 . 2 I lFPo 1 io-0

1 1

I 1 I I

if00

1100

b.63

I 7.-

LOO

1 300 I II t

\.q

tlk

I

I

I

I

1 I

I I

I I

I

I

I

I

1 1 .I I I II

1 1 I

1

,-,.

I I

I I I I

I I

c=L+ H

I.,@

I

1

I 1

Notes or comments :

),

I I I 1 I

+

h)mm

- Ignore if

<

'-2

27 ~ROCESSCALCULATIOH SHEET ITEM:orftwvt

CA~.CULATIONFOR HORIZONTAL

3 PHASE SEPARATOR

If PIOOPIMI~~XP'TUR

UY

CHI:

OAT€

)tostnu

i*fiit;.r-

wo.. D iolo 100 NO

TI!'

Sheet 2 of 9 ' I.fifi**': 8 ' : a

I

Rtu

1

WATEK SECTION

B = 213 x L = 3 f 3

Trial I

mm (rounded)

T

Total liquld vol flowrate Qw

* QI

i

Baffle distance Liquid area at HLL

B A1 Vl

Horizontal vel at HLL

I

TRIAL

1

n

m2

Ut water (step 3) Verticdl fall from HLL = B X Ut/VI

rnrnlmin mrn

fSPd

HLL vertical fall

mm

I

A1 VZ

'

Selected baffle height h3 Selected HIL level hq [adjust h3 and B if necessary)

Chw.k oil r i w :

I 1 mmfrnin 1 I rnZ rnmtrnin

I??.$

1240

rnm

I I

,400

mm

[

3fo

1 I I

Horizontal vel at L L L Y2 Ut oil (step 3) Vertical rise within dist B m B x UtlV2 = max. outlet htlght

rnmlrnin 1 0 1 1 ~ rnmlmin I fk+

h5 selected LIL level

rnm

h6 selected outlet height

m rn

q l water vol at HIL (upto baffle)

m3

92 water vol at LIL (upto bmfflt)

m3

q3 water vol a t NIL (upto balfle)

m3

qU water vol at outlet (

q Eurge

1 I I I I 1

mm

1

1 2L7 I I qcT

I I 1

I I l.a\

1

I

I

I

l0.01

I 0.69 I 1-3c I 1 o I

I 1 0 . I 1 0.&5 t I I I . I

surt 'irne q surgelQw min r c s i ~ ce time q3-qQIQw rnin

..

I

I

I

I

1.s

-*a

I I I I I

I I

I

IA

Y~XC

I I 1 I I I 1 I I I I I I I I I I

I 1 I I

I 1 I I I I I I I I

I

I

I

I I I 1 I I I I I I I

I I I f

I I I I

I I I

1

I I

I I I

I

I I

I I I I I

1

I I

I I I

I

I

I

1

I

I t

I

I 1 I

I i I I

I 1

-

I I

I

I

?r

I i.17

9

calculated oil residence time (upto baffle) Yo1 (NLL NIL)/QI min

?r0

I I -0 1 1 ?.I&

I0.6L

m3

-

SO

I Za3

m3

= vol (ql - q2)

boo

I I I I I

1

I ST0 I I

1 0 0

1 I I I I

4

I

I

I n I I Clf

I I

I

I I I

I f 1 I

I95r

dl10

I

I I I

I

I tra I I a.82f 1 loC? I 1 I

I

I

CSI

I I7q.r

Q4l-t

mrn

1.Jtt

I

0

I

Liquid area at LLL Horizontal vel a t LLL UJ water (step 3) Vertical tall'from LLL = 0 x UtiV2

I

I

3

I I

IJClao

I b.S$L, I loff I 191.r 1

mmlmin

I I

2

II

OPS

I I3.Ago

mm

-

I

1

1

I

I I I

I

1

0Y

2 2?' TOTAL

m T LP'OOPlOIPltaPlIUR I

I I

CHK

I

PROCESS CALCULATION SHEET

CALCULATION FOR H O R ~ ~ O N T A L , 3 PHASE SEPARATOR oArc

1

I~

<

~ T I ~ KAI L F

r n ~

,

:1

Sheet

r ::

51

,:+t

.',

3 o f 4. 11

U O . r01o ~ ~ ,nm W-

I

aru

i

6. Wall thidntss

, DESLGN PRESSURE

P = bf.9 barg

.

C

CORROSION ALLOWANCE

= 3

Ma* stress

55 a lD00 bar

mm

5.

.

3

L=

D=

l

o

m

1.r m

Shell wclght

e

Head weight = (t x DX' 20)

lo Po0

kg

kcP

k&

TOTAL WEIGHT = 12 me)

I'll0

E = o.rJ

Joint cf llcicncy

t

CS = 1220 bar

kg

24

a

m

rc~~nnm~nmm c11n ~r~o

PROCESS CALCULATION SHEET :C~(ir.cr;.r

CALCULATION FOR HORIZONTAL 3 PHASE SEPARATOR

rva. 3

~ 0 1 3

5heet 4 of 4 Tf4T

~ C ~ P ~ ' , ~ . ~ < I L

-.

TOTAL

PROCESS ENGINEERING DESIGN MANUAL V A W U R AND

LlQUrD SEPhRATOAS

fhviliol! : U

Pmgc NO :

TOTAL

PROCESS ENGINEERING UESlLiN MAIUU-L VAPOUR

I,L~B..W~.

.

AND LIQUID SEPARATORS Date

TEPIOPJEXPISUR FIGURE 2 DRAG COEFFICIENT iCI

vs

RI or

c(

~ 4 2

: 2/85

2.23

3,

COLUMNS

Revision : 0

TOTAL

Page NO.

TRAY COLUMNS

TEPIDPRXPISUR

Oate :

2/83

3.1

1. p.pP~1chBfLlTY

It

is not expected that a hand calculatjon of a tray distillation or absorbtion column

be

performed by the engineer. For the purpose at a feasibility or pre-project rtudy any required r i g o r w s column sizing would be performed using SSI PROCESS simulator, or similar. Should, however, a quick tstlrnati~nof tower diameter and height b e required one of the most common methods of hand calculation for valve trays is the "GLITSCH

METHOD". An

example of the procedure for this method is given in Section 3. A detailed mechanical design of a tray column i s beyond the scope of this ~uide.For details

o) see packageunits. on ~ ~ l y ctowers, 2. DESCRIPTION AND NOTE5 2.1.

TRAYS

There arc basically three types of tray used Ln dl3tlllation columns ;sieve, bubble cap and valve trays. Each type has specific applications and flcxibilities dependant an the process criteria. Some of the major aspects a r t detailed as follows :

Bubble caps Operation

: V s p w r passes through "risers" i n t o the bubble cap then bubbles into

the surrounding liquid on the tray. Bubbling action effects liquidvapwr contact. The liquid exits the tray via outlet weir and

downcomer arrangement to the tray below. Capacity

i

Moderately high t l l i c i e w y (minimum 50 861 is maintained a t varying

rates due t o weir maintaining liquid head. Etficiency

: For many years was the most common type of tray-consequently many publlahed tray eifielencies are available from vendor

aources.

Note : most expensive type of tray.

Application

:

A l l major services excepts coking. pmlymer formation or other high fouling conditions. Ideal lor use i n low f l o w conditions where tray must remain flooded to maintain a v a p u r seal.

Tray spacing :

18" Is normal. Consider 24" to 36" for vacuum conditions.

2

q

-

TOTAL

~ a u i s i a:l ~ 0 f RAY

Pago No. :

COLUMNS

TEPIDPIEXPISUR

oate:

2/85

3.2

Sieve trays Wlth downcorners Operation

:

W l t h w t downcorners

Vapwr rises through 118" to 1"

Vapour rises through holes in

holes

and

and

bubbles

through

bubbles

through

liquid.

forces

liquid

through

Jarnc

liquid. Liquld flows across tray

Liquid

over weir via downcomer to

countercurrent

tray below.

holes t o tray below. Flow is

head

generally random and does not form continuous streams from

each hole.

Capacity

1

As high as or higher than bubble cap trays for design rates or down t o 60 % o i design. A t lower rates cfiiciency falls and performance

h poor. Generally unacceptable t o operate below 60 % capaclty. Efficiency

,

: As high as bubble caps at design capacity. Efficiency becomes

unacceptable below 60 % design capacity. Not5ultablc lor variable

load columns. Application

:

Syste~ns where

high capaclty near design rates are to be

maintained in continuous service. Handler wspendtd solld particles we11 flushing them down t o tray below. Can be problem to run with salting-wt sysxerns where trays run hot and dry, holes may plug.

Not recommended for oil Tray spacing :

t

gas rervice due t o paor flexibility.

15" average, 9" to 12" accep-

table.

Use 20"

to

30"

vacuum.

for

12" average, 9" to 18" acctptable. Use I S " t o 30" for vacuum.

Vaive trays/ballast cap

Generally the same aspects as [or sieve trays. Most valve trays are specialist proprietry design for specific operation problems and capacities. Specialist vendors

include GIitsch, Koch (flexitray), Nutter, Union Carbide. Best choice of tray for distillation application. Tray layouts N o t only may the type of bubble caplvalvefsieve hole be specified for a particular

design but also the tray hydrauljcs by liquid path. Common arrangements are shown i n Figure I.

0

---~~

TOTAL

Revision : 0

Page NO. :

TRAY COLUMNS

TEPIOPIEXP/~UR

Dale:

2/85

3.3

Tray eliiciencies General tray cfflclencles t o use :

Stripping

Absorbers

Hydrocarbon oils + vapour 33-50 % 15-20 %

Amine units Dlstlllatlon columns

2.2.

, 60-80 %

Hydrocarbon oils + vapour 50-80 % (Arnine towers ucually have 20 actual

trays)

CONDENSERS

.

Condensers are usually installed on the overhead of fractionation towers t o recover llquid product and provldc internal tower reftux. Design of condensers is covered i n shell

.

+ tube exchanger section.

Basically two types of overhead condcnscr txlat, partial and total. When uslng a total condenser the heat load is equal to the latent heat of the saturated overhead vapour. The resultant bubble point liquid is split with some returning as

reflux and

the remaining portion as distillate product. For a partial condenser the vapour withdrawn from the accumulator is in equillbrhm with the returning reflux arfd consequently the condenser is acting as

an "external" additional tray. The vapwr is normally withdrawn under pressure control with a l l or part 01 the llquld returning aa rttlux to the column.

2.3.

REBOILERS

.

Generally three types o f reboiler exist for light hydrocarbon iractionarars. Internal rehoiler

therrnosyphons

external "kt?tltn type external "heat exchanger" type rnmt cases the "heat exchanger".type -

.

furnace, electrical

is preferred for elficiency.

The heat cxchanger should be located 2-3 rn below the exit nozzle from the

column so that sufficient head is available lor thermal circulation.

-

Reboilera may be heated by direct lire. electrical coil, steam, closed !>eating medium or process fluid exchange.

.

Values of U overall (lncl. fouling factor) for various types 01 reboller and deslgn tnethods are given i n the heat exchanger design guides*

-

4/

TRAY CALCULArtOlJ SHEET ~ o l u m mitem :

ray number : to =

1

a b\G

Name :

8

L

Number 01 passes :

Po = I f b a r a

\AaC

I. VAPOUR AND LIQUID TO TRAY

I

I

1

I

I I

FLUID

I I

kglh

I I

1

MW I

kmolfh

I

I 1

T,:

I *K

I I PC I bera

I / I

d I5

b/mS

I 1 I

i

-

i

I

I I 1

I 1 LIQUID I

I

ii6rtoQi 31 L

VAWUR

I I TOTAL I

I

I

I I

1

I

i s

i 304 i

I I I

I

I

1 1

I I

I

I I

I I I

I I

I I

I

Comprcssibillty factor Z

Reduced temperature Tr

R e d u r ~ dPrt!shure Pr

From charts Flgure 1, 2 or 3

Z = 0.6 7

page 15- 1 5 Yapour density

DV =

12.03 x MW Z x (to

Vapour

+

xP

273)

-

12.03 r 3 1 . L

* Ld

0.6't r

actual rate

7

PROCESS CALCULATION SHEET

a 3

TRAY COLUMNS

rc ~ ' D D l ~ b l PXP.$,JR ,i BI

CHU

ITEM

Sheet 1 of 4

3 21d \ i

uo DATE

I ~ o r r ~ r ~I *tf i r f ? t C

ran NO

1

t

i

3.6

2. LlQUlO FROM TRAY to = i a

.c

use flgure 10 page 15-20

= 384 kglm3

DL at to

=kt\

kg/m3

Liquid flowrate = 4 F b s ~ kgth

--

= qgooo = 239 m3fh

C, = & k

DL

All

3. WWNCOMER DESIGN VELOCITY YO bE n

TS =\? =hfo mrn "TRAY SPACING" DL D, = 3% kg/m3

-

-

YD drgo = 3b rn3fh/rnZ From ilgure 2 P a ~ e3.10 System factor KI 1.0 from table 1 Page 3.9 VD dsg = VD dsgo Y K1 = 3 t o rn3/hlrn2 4.

Y APOUR CAPACITY FACTOR CAF T!j .,4.hmm 38 f r ~ m (Fig.3) on page 3.10 from (Table 1) page 3-9 System factor K2 = CAF 0 CAF

50

= CAF x K 2 , l

0

,u.~t.

o.IB

5. VAPOUR EFFECTIVE LOAD V L w d

.

v Load = c . J ~ = m . DL - Dv

=

x

3 r6

=I164m3/h

6. APPROXIlAATE COLUMN DIAMETER DT =!.S-m

from (Fig.4) page 3.1 1

_-__---

__II_______I----------

4Y PROCESS CALCULATION SHEE1

TOTAL

m

ITEM

~EPIWPIOIPIIIIP'SUR

6I

CUY

OhfE

TRAY COLUMNS

wo

1 IOB tart€

100 N O

<~411i-L

4 !,

st!cel 2 01 4

-.-. 3.7 3.2.

COL ,:1N HEIGHT ESTIMATION

-

7

1

i 1 62

1 '1

"a

I

.

1\

' I

[LI

I

1 I

I I

lnnlilion

a. H1 :

5 -

See design details on vertical vapour-liquld separalots. Minimum distance for H I will be one tray spacing. Minimum distance between inlet nozzk and top tray 300 mm. selected H I= 6 0 0

mm

b. HZ: H2 : Tray spacing x (number of actual trays - 11

No.actua1 trays = theoretical traysltray efficiency far tray

= 50%

efficiency see section 2.1 page 3.3. Assume

Actual trays

- if the column ht = q ( # l Note :

=

16

diameter changes over the length, the transition piece will be

long and H2 will increase by this amounl

Selected HZ = Cqro

mrn

$5 PROCESS CALCULATION SHEET

.-.....----.-.-

btrM

T R A Y COLUMNS

3:crG

___

Sheet 3 ut _ ___. --,. 4

-

.

-.

3.8 c. H3:

H3 = h l + h2 hl

=

tray

h2 = h6

spacing x 2 = 900

+ h7 + h8 (see vertical

rnrn separatar sizing]

h6 = hold up time For production flowing to :

. . . . . hb

another column

t

= 15 min 2

storage

a furnace

10

anorher unii

a

5

I

reboiler/heat exchanger

:to00 mm

h7 = ip0 mm

h8 = 300 m m

4 h2 = 2500rnrn

H3 c h i

t

h2 = 3 7 e 0 rnrn

Selected H3 = 37 0 a

TOTAL COLUMN HEIGHT = H I

t

rnm

HZ + H3 = I I 0 f 0 m m

46

Ex3 m2Y

-

TOTAL

PROCESS CALCULATION SHEET ..I _ _ _ _

I I CuK

I

_ ....- Slieet -4 of 4

> lCl<

___I_

11IM

T R A Y COLUMNS

ItPOOPrblP E I I P I S U ~

Cmv

- -

oAtr

1 ronrlttt

TNQ

irnt-*ri

1100 Ha

I

ntv

1

Hev~siurr:

TOTAL

T R A Y COLUMNS 2/85

Wale:

TEPlDPlEXPlSUR

TABLE 1

SYSTEM FACTORS Service

System Factor

.............................................................. BFj. Freon...................................................... 0.9

1.00

Non foaming, regular systems Fluorine systems, e.g.,

Moderate foaming, e.g., oil absorbers, amine and glycol regenerators.,....

.85

Heavy foamlng, e.g., nmine end glycol absorbers

.f

................................... 9 Severe foaming, e.g., MEK units........................................................... .60 Foam-stable systems, e.g-, caustic regenerators.....................................-30

TABLE 2

Minimum recommended Tray spacing :7 5 m m

Column diameter mln

< 1 zoo 1 200 C 2 100 <

I

Q

~ s q cNU. :

< a roo <

4 200

g s

4 200

43.

3.9

P R ~ L S ENGINEEH~NC YESIGN MANUAL

TOTAL

TRAY COLUmS

TEPID PI EX PIS^^^

I

lleVlsJYll

Date

: 2/85

Fig. ~ O A L L A S IT R A V O l A U C T E l (FOR

APPROYlMlTlON

PURPOSCL O U L I )

.a,. Y LO80 -=Ch

low-

*

-

mass : T t

---

21M

-*Dm

PI-

r ?-.I%

----

:

ror r w n oars r n ~ v s

--. ma4 -. -

li.-r.r

-

ISL

-

110

*$O

ODD

- ssa - ma -m v - >w 4 s

-

IOaa

a00

ZlO

-am

-

d

-

--

ISP

?W

-*

-

-

-

*

0

IW

-

w

Ism

5-

-

-

11 Dlrldr Y Lm.4 k l II LnPY LmmL h l 1, D.l.l. dl.n*lW l l r k*.L*.l h.7 Ik* 41 MWIUI,~,

LrnUlO

44

l

.ye

mru

3.11

.

TOTAL

Revision

.

0

Pege Na. :

2/%5

3.12

PACKED TOWERS

TEP/DPAXPISIJR

1. APPLICARILITY FEASIBILITY;STUDY : PRE-PROIECT

Under normal elrcumstances the deslgn of a packed tower would be detailed by a vendor based on process data supplied by the engineer. The detailed design

of packed towers is

complex and requires spcclljc information regarding both packing type and size and mass

transfer data for the fluids contacted. For the purpose of this design guide detalls are given on the general arrangement of packed towers, various types of packing and loading and pressure drop correlations. The determination of the height of a packed tower should be evaluated b y a vendor or determined by the engineer I! required using methods outlined i n design literature (set references).

A detalled description is beyond the scope of this guide end is normally

unnecessary tor Ieasibility and pre-project level. 2. PACKED TOWER DESCRIPTION + NOTES

A general arrangement of a packed tower is shown in Figure I. Packing The correct selection of a tDWe1 packing w i l l normally be made by the vendor M

d on the

required process, klowrates and fpressurt drops srated~Details on pecking are given in :

-

Table 1 Packing service applications.

NOTES AND GUIDELINES

.

Carbon steel towers rnay be lined for corrosive service with rubber, plastic or brick deptnding

an the nature at the iluids being processed and the temperatures encountered.

.

Towers are generally loaded by dumping' the packing rather then stacking. Stacking is !nore

expensive and gives inferlo; liquid distribution but smaller pressure drap. Certain packing types will be stacked at vendor request.

70

-----

TOTAL

II~vi~inll : 9

Date t

.

Packing heights per suppwt platelgrid should not cncted 12' (3,6

15-20' (4.5

..

P a q Nn. ~ .

PACKED TOWERS

TEP/DP!EXPISUR

.

---..

- 6 rn) lor other packing types.

21~5

3.13

rn) for Raschig rings a!

Individual bed heights are normally limited t o 8

column diameters or 6 m msxlmum.

.

GoOd llquld distrlbution over the packing is necesssry to promote adequate p h w cmtact

-

within the bed. The streams of llquld should enter the bed on!3" 6" square .centres for small towers with D < 36". For larger towers the number of streams s h l d not be l e g s than (01612.

.

Llquld re1

tributors should be installed after approx. 3 tower diameters for Raxhlg rings

and 5-10 d: ~netersfor other packing types. Redistributors are not generally required for stacked packing as the downward liquid flow Is vertical.

.

In order t o reduce ceramic errd carbon packing breakage accuring durlng flow surges holddown or floating 'bed limiters are installed on top of the packing. The limiter must be heavy enough t o hold down the bed and be able t o resettle as the bed mavts.

For plastic or metal packing the bed limiter i s boIted i n place and doca not rest on the packing. Packed towers are not recommended

for

dirty service fluids nor for glycol dehydration.

Packed tower should be considcrcd i n preference to tray towers tor :

il srnall columns with fl'< 2 f t ii) acids or corrosive liquids iii) highly foaming liquids iu) low hold up times

v) law pressure drop requirement

.

51

TOTAL

Revisloti

0

PageNo

2/85

3.14

PACKED TOWERS

TEPIDPIEXPISUR

Date :

6. REFERENCES AND

USEFUL LITERATURE

4.1 Applied Process Design for chemical +

LUDWIG

-

Petrochemical plants VOL I1 pp 129-239 4.2 Design I

NORTON Co.

ormation for Packed Towers

Blrllctln DC-I I 4.3 Tower Packlngs

Bulletin

Packed Tower Internqls Hy-Pack

TA-8OR MY-bO

Interlox saddles 4.4 Dcslgn Techniques

TF-78

" I.

to

CI-78

for sizing

Packtd Towers

4.5 No mystery in packed bed Design

John 5. ECKERT

Chcrn. Eng. Progress Scpt. I961 VOL 57 John S. ECKEKT Oil and Gas Journal Auk. 24 1970

4.6 Calculator Program for Deaignlng

Packed f owera

4.7 Packed column Design an a Pocket Calculator

kd Packed Columns

V,I. PANCUSKA Chcm. Eng. May 5 19110

T.J. HtXSON Chem. Eng- Fcb. 6 198U Ptrry Chemical Eng. Handbook pp 18.19 4 18.47

.

f2

J

,

TOTAL

PROCESS ENGINCt+ia~u r-f)KlrBD

%xm3

D8te

TEPIDPIE WISVR

:2/85

( 0, 0.1111

Ir twllhlhw -0

F r r l * M cnlv

mt.l.re hrplr *M Pmribdw .mu

W l u ' a hnl TUN ?h.lH b.. vtw C Irar ilk *I- I.(t*.

--

-

-wh " psk;q

eartsct t&iiney; ewient; hrr-t,

mudly, the tmdlrr

p m u r c dm? in.

TOTA

~ w ~ t:i oa

P~OCESS ENGINE~R~ND DESIGN YAWL PACKED m

P-a No :

W

Dl10

TEPIDP/EXP/SUR

;2 / 8 5

3,16

3,o

Techniques for Sizing Packed Towers Reproducer 'rom NORTW 'Design 111, -matLon for Packed muera ' B u l l e t i n DC-11

hsMIrKw

F

--.-

-

.-.00

W

01Y M

01

02

k

Packing Factors (DUMPED PACKING)

0.4 06

K

tO

ZQ

40 W

2. bnw c m k u m ~ qth. v r l w d K comull th. ElrrrmLTmd pmnw~ drop m h m n .ban. It -I! br noled that h+rm m r r.rin oc m 4 . d pavam*tm PBWLnl tRnn 0.mm 1.5 Imhlln 01 mior pusurn dmp #r lwl at pmcW d.Mh (4 rn 123 mm oi *mrar pmrwe dm@ Wr nwtu d p c h M

.

E%,w. p c m o m m *mu k Owlnod to, at nudmum uonorrJU1 pruswa dm& Th. d n s n mu-

-

n m m w a a t d n m Un b W b . l m m m W w n n h i m a p r b l hrrlrnmni n bnt m m m t rsllt i n IO*. p ~ . bun drap ban. and law clOlul Lmwh~M r*. h4h.r m m ~ can u iw imwn r p n w u wan- p . l r u n a&, O;binmriI,, ~ c h m U mn.W -1.a a m 1.0 huh d n h r o r m m dme F M I d rcW d*Wh (W mm el wrbr pr+uun amp mmtm q mchd 0mL.pth). H M h t pnsnun #OM In pn* rMn rmbMnlaimn is wcn an to mJnWm a mm~lnl mrvsrum amp. -1 rb e n and rclmmrrlan bm W m d la h m w t r bram bns g.00 opiabm, ir. IMU d w a r prrun d.l. p QI wehd kpM (17 a d SO nwn el - M u lmrm d m m d u 01 ~ J m d wptnl. mmmpk.nc w m m v n d ~ r i l h n am d..isrwd h r F..lum dr4m ai 0.50 IO 1.0 W k r rllU gr4llun d w p.r W d p l e k d Moth (a2 mn rn U mm 01 *tar pfwlun d m mr rrulm d p.ehmV dm*). Y . o l u h dhaib !Am nm U ! a c m p l r l r mnm . Ipnwn dmp mnd l a w n d u d an rh.1 tw Um .5cmpllshad .nd w M h u tk lwumbadml)k~glo*.dupnn.nor*haukk a mduer I m p n a m d s*mntan b h n m produd qua*. fhm a n y w r uu m p in m W mrt m. prumurm 8-0 parrm.hn S # J * m tho r e n u 8 l l r . d prruun drop wrmb- in in tm M rbtmr (mm d r b h r l . fh.rdorr. M n a n i g n l q ~dnrmr rlh OUn M ~ a s * .P d m 1 eom~arntlons h a m bo m-n. n & a k w l r n lk. saell[c imvltv d tM b i d h suwunn.Yr i n s ih.m tkrt

tna nublishma the aibmrt.r

01 the tmr *nich. whm lh. ).Chin[ srtuned nnd oprrrtrd r t aaaI#m lkuid earn rmf- d d*rmIb# tnr re1cet.d mnaaurr amp.

nrw ~h

4 mr arplh d h m bw r w u l r d mltl bm d m n d m t upan thr, a#prwch Ia mml m a n trOn*fnr nsurnd r l l h lW% mlr. tnnllY tfmrrlk.lly rmuMI* r b d d innnil* depth.! Rm(ara 1R.m .81 IMPS dnr8n.d 10 owmtm mt m a : nun -1 m m lr*nsIaf. In (re abwrutbn pmblam~.thm, b.d h uwmlw ~lleueyllledlmm the mala mmln c*,

*I&

c

bream4 thr d n w H from th.r u I 0 Mm Hauld ph8n. n i h m ma$¶tm-8.

Or d dnpprn# aperatan m lnrOhM h mar c v ~ r mbecanal: l

fw

-

*.

b c c m ~th ~m. d r il ~Ivq~d la rnq S # I phma. Thm M n i l k t u ol tho t e r n tor the v b v a q u m l k n l lor w nna I..r n r n f0IfC-w k m t M.U tnmia co-.mtient lb. rnom/n.a nr. ~ t m .

h m M H ~mmfn c m m d m t m. rnowlfl.)nr )I s b. tmnsRrdlHr. H n h c droth ~ of towr wchbmL ft. 4 = tcwruwar -1 wmr, Ity C r h m r r u u r h 4tmorWarn v, ;-&tr;pniu%h ItdG. cmupanmnf i itn eh.se m e h m h n of m m w m iLn

I,.

~sui#lrrivnd t h liguid bulk H a w mom lr8dm d &rnpm-d lXB X, t liqul4 ohms# WI rraetipn. eunpovnl i X.* = * I d mas* mob Irmctbn m i tornpnnmnt i I* qrriHtiurn rlth E n bulk phrra motr mmmar CpmW"."t I.I 0

3. anr* h d n # d d m i n e d tha mlu4 oi

X 1s D. mbrchu *r U.p 1 . m d uMld mn o # r r t i y wrrm amp in f e p 2. a r mku at Iha erdlrrrm. I.m q b. datnrmiw by lhr urr gT IM # a ~ n U r m dm w r e or- -Ua. Locrtm thw

-rum d me m b ~ l an s lhil ~ Cr n * . ( t ~ ~ n umtu y the p p m r prbsnum apramrtur a Centme*d: IkW m -tmlV hem rn, paint b (h. WI iund +qr d ttm ehrt m d nM ma v u w 01 w mdir~tm.1411 nkn q - I m this smuv d *.firbin:

rn~

mrrr mu rwbstriptr 1 4nd 2 n l r r to thm mp rM bonffn mi tlw wkrnn r c r p d i w * E l Thm qwllon 01 &XI. ir .n.)qOu¶

ro itm q u r ~ b r lor r av~.i l w n r m .

b a d hr dm* a r m Wmilmbh fofmalt abarDlbn and -ping omnfkm. b K l ~ 8 mIh.I a U On a h a m t b n M COI wilh ~ l u 8 t krod. Mlutlmn mm r w mmvMt* tw mm v-riaua p e w , N k ire( # all I unusual tm me ttm -10 m a I mllo in-m wunm tor orlrgn wilh whar p c Y n p 04MMr nln wn tha. W rmeh OI& inlOmtiOiOn nfltl. Pdlilnlbn unth m ganwrlb d n i p M m tM b.bh ul M T P tnaifh~.~U~Y.IWI10 I~ ~ C O I ~ @ T .I*).~ I numind. d -11. barn n w l r n m l r l studlrs h r w u u r d UI lo cMLa ihbt tnr d n # 8 apturn mu ml. a rtlh tlw H I T ? *I&. (rmacd ihmt jcd d l l t n b u t i in nmntlimd and iha WebM w m ammtao wth p m w n wow d r l hmrt 0.20 mrm @ u r a r p f n w e amp mi IW . I prkdm (17 rnm ot r ~ ornrun n amv uw m& at W e U d mpch). Mars m n s l u tmkl~##elm m p c M Oms. whmR m ) r lubrmmial amd msuvm dmp aalwF.. -11 aecw i n d m r M l * f # I r mull d brbuhnl t0-i . Ip a am %tid miner man 4 r 1 d f i s m n l 00.rvlmn gwmrwd b y Rlm mlutmnCn 11 lhm

*

dlul al r l u 8 h h n l i m n ere*# Iulha nswrty Of r M YqW, 1 l u mckhq l a c l a r m d inn nr nle a. tho viraq c4 Ihr hldd a n C. dat.rmimd FtanNm. uwrlmtm or m m r r m w a Th. W U r I n n o n d bI1 YI.L 61 naelim am i m n m tna an* on p e a 4. Orordb I W a W W U n * mmlkr Uun 1 imh .Inm 4 m t l d . d lor tw.n om trrr or s m l k r dm*-, p r h t n p 1 ,men w L'H inch in un b r ton- mr ow M lo t n m hi 10.3 a 0.9 m a w ) m Mrrnwr urd z ot 3 rwh W P I . I ~ ~ arm u n d la l a r m n Ulrn or mole In(( 0 9 m u n l in awmH N Thc d.rrlrm rnouY urn tha m m i raa of erkmn. Th.

a n d thanlora .----.-..

lk p . ~ p rp u h u n ~f m o r

10

lkrs Rst

eu .n l..M l--.

om. ma told ~ . dgmn d

hmw bt.n amtarm~md.t h damn or

~-&rhurOwr must be rstab1,shd. O1Mral(l. hdlndua4 Dtd damn D hcu 10 csIumn d ~ m e t a r rr fO *nhoucn

n..

..C.,,..lr

3. Har that mH vmrublll hew rmsqnod vrlues. O mar k clkUktW mnd me u~arnelurd ikm te-w aet.rmlnM by

C l O O l lOrw bnimmlls br* rmur4d to r*llltD 1111 lull p l e n tirlol lhm p ~ ~ u m na any .por!crlion. (3.. [email protected] rnanu.1

TA.W.1

4,

HEAT EXCHANGERS

R c v ~ s ~ o: n u

Date:

TEPIOPtEXPISUI

rry:++r

2/85

4.1

1. APPLICABILITY It

is not expected that a hand calculatian of shell and tube exchangers be performed by the

engineer. For the purpose of a feasibility or pre-project study any required rigorous calculation would be performed using computer pr%rams HTRI or HTFS.

A qulck estimation of heat exchange area, shell diameter and tube length should be h e by hand calculation. An example of the procedure is given in Section 3.

A detailed mechanical design is beyond the scope of this guide. 2. DeSCRlPTlON A N D NOTES 2.1.

DESCRIPTION The flow of fluids inside the txchanger varies according to requirements and

can be

single or multi-pass on elther tube or shell side. Figure 1 shows the types of tubular heat exchanger manufactured to TEMA standards ;

The following types are irequently found t

2.2.

-

Exchengers (Heaters)

Candenserr

Reboilers [Therrno~yphonor forced circulation)

-

Evaporators (Kettle)

Chillers luring refrigerants)

SELECTION OF SHELL OR TUBE 510L FOR THE FLUIDS a. Tube side :

-

Most of time highest pressure fluid

-

Cooling water, steam

F w l l n g or corrosive fluid Sea water (it ir always recommanded t o install the sea water on tube aide)

b. She11 side :

-

3

Evaporation (refrigerants in chiller)

- Condensatian - Lcagt fouling Iluid

Most of time lawest pressure Iluid

SELECTION OF TUBES

. .

. 2.9.

Fluid with the highest viscosity

Standard length : 12'. Ib', 201 but longer tube lengths are possible {upto 00') Diameter commonly used :3/0", 1" Pitch commonly u x d : triangular or square. E~tcrnaltube cleaning is possible with square pitch only.

TUBE SIDE VELOCITIES

.

&

.

IIK tube side velocity for most materials and services should be held bcrwecn abour 1.3 to 2.5 mls. Below 1 to 1.2

mi5

fouling w1I1 be cxcessivt, much above 2.5 m/d erosion can

become a problem, 5 q

.

Rc~lsion. 0

TOTAL

'

pap* M~ :

SHELL AND TUBE EXCHANGERS

2/89

TWIOPIEXPIW~

4.2 >

CHARACTERISTICS OF

5

TUBM BWG = BrRMlNtHAM WIRE CAGE

I1

I

I lnmM1 SECTION 1 THICKNESSl R E/ dlamcter lmml I (in el mm) II B W G j (cm) I (cm21 1 1 External 1 I I I I I I 1 l Z i n I 14 I 2.10 I 0 . U 1 0.563 1 0.0399 I 1 (12.7 mm) I 16 I 6 1 0.950 1 0.694 I I I 1 18 I I I l a 2 1 1 0.819 I I I I I I 1 I I I 3jU in I 10 1 3.40 1 I.2Zu I 1.177 1 0.0598 1 1 (19.05 mm) I 12 1 2.77 I 1.351 1 1.435 1 I I I 10 1 2.10 I 1 1 1.727 1 1 I 1 16 1 1.65 1 1.575 1 1.998 1 I f I & 1.2P I 1.6% 1 2.159 1 I I I I I I 1 I Iin 1 10 1 3.40 1 Id39 I Z.7lb 1 0.0798 1. 1 (25.4mml 1 I2 1 2.77 1 1.986 1 3.098 1 1 I I 14 I 2.10 I 2.118 1 3.523 1 1 1 I 16 I 1.6 I 2.210 I 3.136 1 I I I 18 I i.20 I 2.291 1 9.122 1 I I I I I I I I 1 1 1 I 4 i n 1 10 1 ?.PO I 2.994 1 4 0.0997 1 1 (31.75 mm) I I2 1 2.77 I 2.616 1 3 7 I I 1 4 1 2.10 I 2.743 f 5.909 I I I I I6 I 1.65 1 2.845 I 6.357 I 1 I I 18 I 1.2@ I 2.921 I 6.701 I I 1 I I I I i I I 1l/Z in 1 10 1 3.40 I 3.120 1 7.661 1 0,1197 I 1 (38.1 mml I 12 1 2.77 1 3.251 1 8.300 1 I I I I k4 I 2.10 1 3.378 L 8.962 1 I I I6 I 1-65 1 3.4110 1 9.5t2 I I 1 18 f 1 1.20 1 3.556 1 9.931 1 I I 1 I I I 2-6-

External

I

1

1 [nlond

I (kg/rnl l I

0.0266

I 0.W

I 0.0295 0.0321

0.0384 0.0424 0.0166 0.0495 0.OSZO 0.0584 0.0621 0.0665 0.0694

I I I

0.b90 0.384

I t

0397

1

1 1 I

o.orm I I 0.0783 1

I I 2.021 1 1.696 I 1.321 1 lart I 0.~11 I 2.609 2.158

23-

0.862

0.0981 0.102t 0.1061 U.1093 0.1171

I 1

3.185

1 2.635 I 2.039 1 1.622 1 1.237

I

DESIGN MARGlN 10 % on area in recommended.

PRESSURE

.

DROP

n!Jawablc

id

A P varier with the total system pressure and the phase of fluid.

pressure drops of 0.7

t o 1.0 bar per exchanger arc common. The

cquilralent gas drop is about 0.2 to 0.5 bar.

.

hrne cxchangerr have low pressure losses and as rcboiler and condenser tless than 0.1 bar) trpccially those in vacuum system.

&J

I 1

1 1 I 1.682 0.0894 I 1.340 0.0918 I I d 2 4 I 0.0822

TEMPERATURE APPROACH AND PINCH

.

1 I I

1 1.416 I 1.216 I I 0.963 1 I 0.772 I

mlnimum temperature approach 5 'C. minimum pinch for condenser or chiller 3 'C, 2.7.

II

i 1

,

li

TOTAL

SHELL AND TUBE ~XCHANGERS Oat* :2/85

~w/DP/cxPISUR

2.9.

1.3

CHOICE OF HEAT EXCHANGER TYPE (Figure 11 a. Front endstationary head types

.

. .

Type A : Used for frequent tube sldt cleaning due to the easc o f dismantling the cover.

Type B :

Cheaper than Type A but the dismantling of the bonnet is more difficult. To be used for clean products.

Type C : Cheaper than Type A for low pressure. The price increases quickly with the pressure. This type Is pracrically never used.

Type D ; Special for hlgh pressure P > 200 bar. b. She11 types

. .

Type E r . In general the most commonly used.

.

Type F : Advantage

; Fluids flow

.Disadvantage : -

at perfect counter current (F = 1).

Leakage between the longitudial befile and shell decreases in

-

-

value.

Mechanical problems from expansion. Low prcsmre drop t g : < 1 bar (risk of d a m a ~ e

01 the longitudinal baffle). This typt should be avoided. A greater number

oI Type E shells in Series is

preferred.

.

Type G 4 H :Used tor low AP J. 50 mbar as lor thermosyphon reboiler. Vertical balfics are not installed lor t h c x types and due to that the length of the shell must be limited.

,

Type 3 : Uaed for high flow or high

AP for

Type E and also sometimes on

condtnsates to avoid the use of vapor belt.

c.

. Type K : Used for vapor separation i s required ie chiller, some reboiltrs... Rear end, head types - Types L, M and N : Fixed tube sheet, used for clean fluid on shell ride and lor Iow

.

.

.

AT

< 30 ' C . i f AT > 30 * C

use other head types or install an expansion

joint on the sheil. Typc L and N will be used for dirty fluid on tube side. For the other cases the t y p e M wlll be urcd it is the cheapest. Typc P : Generally not uscd.

Type 5 : Used very frequcnlly, no restriction& Type

T : For frequent dismantling, enpensive, she11 diameter larger than t y p t

S far same number of tubes generally not used. Typc U z For ckan fluids on tubrsidc no other restrictions, low cost.

Type W : Generally not uscd. d. Conclusion

Tot most frequently uscd types are I BES, BEW, AES, BEM, divided [low,

6 1' 7

-

.

TOTAL TEPIDPIE"~~SUR

--"- ..-

-

m u . "

PROCESS ENGINEERING DESIGN HANWL

k.i*' : 0

P.g. No

SllELL htJD RlBE EXCHAWSRS a

: 2/85

4.4.

3 DETERMINATION OF ESTIMATED HEAT TRANSFER &REA

I I I

DUTY

I I

Outlci temperature T2

HOT FLUlD

I Inlet temperrturc

I I

TI

4

II

I 1 1

T2-tl

'c

I T1-tl I I TI-T2

I I I I

O.fr10

6

*C *C

13J-?S=g

I I I

I8 16

(fr-1Br+

*C

I 1 3-r I I ?&-ti=? I I st.19=16

'C

1 3b-t5-4

I

-

2/11

I I

q/l

I

=

---

-

I Ir CORRECTED - LMTD - CORR. - Ir i

HEAT TRANSFER COEFF. I TABLE 3 Page 4.10

r-----

I HEAT TRANSFER AREA

ui

.

kcal/h

i

mZ

1

A=+ U.LM D CORR

I

ESTIMATED TUBE LENGTH CT(m) ~ T ~ M A T ESHELL D DlAM Iinr(rnm)

1I I

I 1

1 ESTIMATED WEIGHT Bundle I tonnes

1

1 I 1

f

1 I I I I

I

I I I

r

T

- c-[ -II

,

- rI 7----i

I

t I I 1

-

I

I -

-

-2ifI

sea a.0 ( LOO r S.cC

20

I I

i

including foulin8

I

I I I I

F = D.111

I

(c.1 1

3 1 [tqo)

13hlI

ruh* L

' I& t dY 6

;C 17

tA*s I1

3 .C)

I

L.o

Shell

-------

1

I

----

J tannes I Total I tonne~ I I I

I I t

1

I m2 *C III factor I r ----------I I 1 I I

I I I

I

I I I

I I

~ - F T ~ - carrection !D I factor (3) t

r--

I I I

I 1

l.llf

~TNK-BFROFS ~ELLS------

I

i?

I

o,f

-,---[ L I

I

I I I I I

I

' C

I

I

I I 1

*c

I

a&

I

-C

I

NOTES :

I Indicate temperature I I

tr

I

'C

I I 1 I 1 I 1 I I I I I I I

(1)

I I P-U-tl I TI-tl I I R~TI-TZ I tZ-tl

'C

I I 1

I COLD FLUID I Inlet temperature t l I Outlet temperature t2

formula

kcallh

I I

VALUE

I

I I I

Q

I I . LMTD from I I t2-tl I

I

I I

ITEM :

--

q .o -

--_

1 __---.l

- - -

-

--

I

----

I 63

PROCESS U L C U U ~ O H SHEET ITEM ; i l - ; < . . L . , -

~WQO? MR~KP'SUI

1 I

CI.

I

SHELL AND f UBE HEAT EXCHANGER no n ~ t ri

I lnm rartr

.

a .tz ,?t

L

~ n un n

L*t*',.*

.a%.

,II!, i

rrv I

Revhion ;

TOTAL

0

Page No. :

SHELL AND TUBE EXCHANGERS 2/89

Date:

T€PR)Pf€XPlSUR

4.6

(1) Use following formula

- -- -

if T2

- t l > TI - t 2

- t2) - (T2- t l )

if T i

-

LMTD. (T2 tl) 1T1 tZ) LnT2 t l

T1-t2

LMTD

.

(TI

'12-tl

LnTt

t2

t2 > T2

- t1

Remark : If tht htat exchange curves are not linear the LMTD should be determined step by step w l t h the lintarisation of the curves and with the ponderation of the

partial LMTD by the partial duty on tach Iincar step.

(2) For total condensing TEwmnPJ .c

3y

26

5 hmpratur. *WW+h

I

I

>

I*m l

- 2

Dm

D.np.h*ariw

Eond.amlnp

I d l l Y

/r 1

0

%.tm

In this case -alculatc the heat transfer area for each zone, the sum of these areas is the

surface for the exchanger. (3) See LMTD correction factor (Figures 2 ) the number of shells should be chosen in order to have 0.8 IfF

(


0.8 add shells (2 exchangers in service)

1. ESTIMATION OF SHELL DIAMETER With the heat transfer area, selected tube sits, pitch, tubes I e n g t h ' i t is

possible to

determine the number of tubes and. w i t h table 1 or 2 hereafter the approximate shell diameter. Take maximum shell diameter abwt 60 inches.

6q

( TOTAL I

IROCESS,ENGINErnlNG DESIGN MANUAL

I

Revl$inm :

0

I

Papa No

.

SHELL AND TU8E E X C W W M

-

TEP1IOPIEXPISUR

Dltl

: 2/05

4.B

1

TOTAL

P R O C E S ENGINEEAINII DESIGN MANUAL

TE~~DP~EXP~SU~~

SHELL

R4n.m :

7WBE E ~ ~ ~ ~ G E R S

,-

OLtm

.a

: 2/05

i ayr

IVU

4.9

L

1 I

TLWLI k MI' PITCU

1 I,

u

rruusr~o r v ~ r r r sruar

s

)IDL

I

3

*

I

!I

n

10

>1

11

I

I

C I T ~ A 1-

I

I-

NVMOLIOF C

I

rumS SIDE

~

I

1

r

10

Y

I?

H

31

10

64

%

17

I?

Tb

$8

W

82

76

95

+n

az

161

104

M

IJI

LIb

146

1%

I17

111

12. 1U

131

111

lm

IS I I ~

1%

120

am

nm

13

111 21 .

11 I/* ZJ l i b 13

Z7*

??a

186

JID

MS

ln

JIJ

111

301

H1

Wl

3s

a0 I

W

$70 +Jl

111

*A

*I9

3%

JIC ILL712

119

bm

1% WI

*If

19 I 113

m

7SJ

111

477

I

IS

~fi

I?

n $1

II II

LbU

10.

1%

UY

199

a10

77:

I?> 111

111

170

I67

301

110

1071

917 1017

U Y 1011

lolb

iOJI

3lJ

LrM

ll t l

1129 1110

rni Inr

1172

1/15

t2lZ

1111

ZDI?

m9

8117

1Yl

1111 I0

111J

2JY

tW.1

a

Ib

I7 $7

>a

61 14

37

I a3

Ill

110

11Q

In

I77 115

.I IC

I 6b

nr ).I

151

I

Ma

m

,n

171

a31 117

J>l I10

*I

6lh

131

tbb

*?I

9m IO>I

YI

IIH

lola

llOI

In,

llJS IIS?

I%*

If*?

I I

TABLE I

p

.

kdh. m? Y

rnrrl* vsr.rl*rtr "h. I< l rs

(includinp foul LW factors) nrn#ndtmUq

..

C~~,SS

w-i n r r *

C&3

chlllrr d

It0

r.tsh...,n.C

11 110

.-1wsltr ' I C P

a30 - 6 1 n

1C p

x 0.2047 ' ~ ~ i p f t ~ * ~

r 1 .I62

W/m

*x

>O-)W

r n h m b - v *il

sl.~.rrr.le slE.&nr,

nx. Y'Y""~

* "C"

n.c.0.9 CP n.c. wbc-ibr

(

*imW 1 CP

1 lC P

-

I IW 13 1M m-1-

9 0

Itrsmlral*l ,U,,,,/U'bi

-- bm

H m 100

m-x4

putkmll.*

*.dlu

-w

rm. 190

I.~M HL. I wircsrlr ~I 0 3 c P v.le,..r.,e H.C 0.9 c p c vw-ill

kc.l/hrm2'~

-

W-1100 2-0 Y P

am-w w.m

TpTAL

PROCESS ENGINEERING DESIGN MANUAL

Revhion : o

pwe N. :

SHELL AWD TUBE EXCIIANCERS

Dale

TEPIDPIEXPISVR FIOURE 4 TYPE BEU

WEIOHT ESTIMATE

:2/BS

9.12

TOTAL

Revision : 0

P8gs ?Jn '

AIR COOLERS htc:

TEPtDFIEXPISUR

1.13

1. APPLICABILITY For both the feasibility and preprojcct study i t would gentrally be required to state the requlrrd duty of the air -let, the overall dimensionn yld weight and an estimate of required fan power. A calculation prmedurc sufficient for a preliminary estimatt is given I n section 3.0.

2. DESCRIPTION AND GUIDELINE NOTES Water or Alr Gaoling ?

.

Air cooling offshore is sometimes prohibited due to the modular layout 01 the platform.

This may require installation of the air cmler 1na rcrnoke from the associated equipment. Use clorcd loop watcr cooling.

.

A i r caaling ia cheaper, simple and fkxible when compared to rumter cooling. The cost and

nulsancc of water treating Ii eliminated If air coolers are used.

.

h warm climates

will not be as tffcctlve as watcr which will produce a cooler product stream. Air cooling is apprax 50-70 % as effective as water. gg&ng

Fwced on induced draft ?

.

'Forced draft, pushes the air a t lowest available temperaturc~~highcst f

hence lower

pow-. requirement.

.

Acces billty to motor and driver are better on lorced. Structural and maintenance cmts

arc lower.

.

PassIbllity with forced draft ai hat alr recirculating into suction of fan thereby reduclng efficiency.

.

Induced draft gives better air distribution due to lower inlet velocity with less chance of rtcirculatlng of hat air.

.

Indudd draft coolers can be easily installed

4 h v c piperacks or orher equipment.

Protection is given by induced draft coolers from effccts(oll rain, wind mawlpn&md tubes. Important i f fluid in tubes is sensitive to suddsn tamp change also freezing 0f tubes can occur i n cold ckirnates or heavy snowfal!.

I

0

Page No. :

2 ~ 5

S.lI

Rcvirion :

TOTAL

SHELL AND TUBE EXCHANGERS

TLP~DWEXPI~UR

Finned tube elements (see Table I)

. .

I"OD tubing t most common w i t h 0.5" to 0.625" fins* Fin spacing 7 to 11 per inch. Exten. ' surface area is 7 to 20 times bare area. Standard tube lengths from 6 f t to SO It I2 m t o 15 m). Lonser tube designs are less

costly than short ones.

.

Bundle depth may vary from smaller units. U l c

.

U as first

9

rowr so 30 rows of tubes, 4 or 6 r o w r is common l o r

estimate.

Fin material most commonly AL. Adequate vpto 400 ' C operating. Use steel for higher

.

temps. Fans and motors

.

Fans arc axial-flow large volume low OP devices U s e l o b 1 fan efficiency 65

%. Driver

efficiency 95 %.

-

Fan 0 equal to w slightly less than bundle width. Normally 2 Ians preferred. Fans have 4 to 6 blades. Max fan diameter 14'-16'.

.

Distanct between fan +.bundle 0.4-0.5 01 inn diameter. Ratio of tan ring area to bundle area must nat be less than 0.4.

.

Fans may be electric, steam, hydraulic or gssoline driven. lndlvlduaf driver site usually lirnlted t o 30 hp, (80 Kw), 3110 V.

.

Face velocity of air across a bundle is 300-700 LVmin (1.5-3.6 ms-11. A 10 % change in alr flow rate results in

* 35 % change in power used.

Temperature control (Fig. I )

.

For c l o control ~ of process outlet temperature auto-variable pitch fans, top louvers Or variable spe@

.

. -

rno.tws.are required.

Vmrlablc pltch fans are more efficient than louvers.

Louvers can be manually adjusted for winter

or

night time operation.

For p r a c l s fluids that i r e c r e or gel at temperatures above the winter amblent a recirculation system is necessary t o maintain air temp enreriw the tube bundle.

-

-

General approach temp to ambient air is 20-28 'C. Absolute min is 10-12 'C.

- Air Note

I

coolers are noisy. Keep fan speed as low as posslble and consider relative 1ayOUt

carefully.

72

TOTAL

~ P U I ~ I I I :~ I{J

AIR COOLERS

.

f EPIOPIEXPI~UI

: 2/65

4.0 REFERENCES AND USEFUL LITERATURE 5.1.

Air c w l c d heat exchangers

PERRY

pp 11.23

13.

Air cooled heat exchangers

LUDWIG

pp 1 7 7

3 .

A i r cwled heat exchangers

GPSA

1.4.

Aerial coolers

4 .

Design of air coolers

-A

b t i m a t c air cooler size

HP QICV program

- 193

chapter 9

R. BROWN

Chem. Eng, Mar 27 1978, p 109 N. SHAIKH

Chern. Eng, Dee 12 19S3, p 61-70

73 >

- 11.25

CAMPBELL pp 207-209

Prcrcedure for estimation

1.6.

I*.rcJrc d r j

4.15

4-16

OPERATING CONDITIONS AND NATURE OF PLLriD : Duty

I Q = 11 w to6

Fluid inlet temperature

ITl=l

100

Fluid outlet temperature Fluid iniet pressure Air ambiant temperature Overall k a t transfer cgeff. Table f andlor aruchcd

I T2= I

r0

1

kcaIih

,C I *C I FLUID A r t = TI

- TZ =

SO

-C

l P = 1 10 barabr I I t ] = t 3a *C IINLETPI = T I - t l s 7-0 l U = I zoo kcalfh m2 *C I

C

w w k sheer) (Based on bare tube area)

I

NOTES

STEP I

8

I

(curve N* 4) P:?.

0.8

I 1 I

{curve N. 4)

t * ~ptirnrrmnumber oi tube rows fat U selected 2 R = dt airldt m 3. TI TZ/Tl tl

IN=

4. Y = A t a i r / T i.-, t l

I Y = I 8.35 Idtair.1 1 . I t2 = I S

-

IR- I 1 'qjn 1

-

5 btair r % ( T I- t i ) 6. Exlt air temp t 2 =Atair + t1 7. Average dillerentlal temp. dtm

.*

1- Bare tube surface A

z

&-

1 Idtrn.1

I IA:

10. 11 12.

I

I I 326 I

mz

m2 1 m 1 3, 4, 1, 6 , 7.5 or 9 m are I (1" 00 tubing)

IL= I 7s fubcslrow TR = Fa/LnO.OS 1 TR = I L 8 Cooler width V=TRx0.0635 ) w I jl,l Tube length

-

1 16.

Powerllan F Q ~ N F

17.

Estimated wclsht 4.88 (36.bX9.35 NIxwxL

1 I

I

i,r

Totel lan power ~ F W . 7 9 5 ( Fp = 1 3t I, Number of fans INF*I t Fan diameter I F 0 . l 3.r

3. 4

'Ct

30.d

1 Fa = 1

(curve N' I )

I

.C

I

1 9. Bare tube areafraw Fa=AlN

*C

Q.2IA

m

1

kw

i

I m 1

1 PF r l L I M r I ilrfio I I

kW

common

man. fan diam = 4.6 rn

I (including motors)

kg(

I

Notes : Curves numbers refer t o Process Design Manual Chap. 4.

70 PROCCSS CILCUCATION SHEET H*hl&@,cr*

AIR COOLER f I t f W C Q M X L IUI.

.

av

CWN

DATE

1 INttrit

. ,L

'2

Li'-.

-

UO

LI(A~?PC~-

100NO .

REV

1

4.17

1.

rlQUUCOQLlNG LIQUlD VISCOSITY AT 1 1 + T2

i ;

GLOBAL HEAT TRANSFER COEFFICIENT r U

e

--T-

(Read curve n* I) 2. GAS COOLING MOLECULAR MASS :MU' =

GLOBAL HEAT' TRANSFER COEFFICIENT r U = (Read curve no 2) 3. TOTAL CONDENSATION

71-T2 =

'C

GLOBAL HEAT fRANSFER COEFFICIENT :U = (Read curve ng 3) 4. PARTIAL CONDENSATlON

I . w1Tnou-r L~QLJIDAT inlet gas flowratc

INLET

=

WGl

---

outlet gas flowrate WC2 outlet liq flowrate

-

WLZ

T I T2 GAS MOLECULAR WEIGHT AT T i

+

12 =

2

--

HEAT TRANSFER COEFF. Uc (Read curve n' 3) HEAT TRANSFER COEFF. Ua (Read curve n' 2) GLOBAL HEAT

I

TRANSFER COEFF.

U. W L ~ X U C + W G ~ug X prtl

m

I

SELECTED GLO8AL HEAT TRANSFER COEFF. r U

=

?z PROCESS CALCWPTION SHEET

AIR COOLERS

HEAT TRANSFER COEFFICIENT 108TITLE

ITEM

no. 100 no

rtv

I

kla

4.2.

WlTH LIQUID AT INLET

Inlet liquid flaw rate

WLI

-

kglh

outlet 11quld flow rate

WLZ

I

kglh

=

LIQUID MOLECULAR WEIGHT AT LIQUID SPECIFIC HEAT AT QL =)-I

x

CPl =

-

CPl x IT1 T2)

inlet gas flow rate WG1 outlet gar flow rate WC2

QC c (WGI

-

kcallh

-

kgh

kgrh

I

GAS MOLECULAR WEIGHT AT GAS SPECIFIC HEAT AT

kcaVkg *C

TL + TZ = 2

v. CPg

wG2) x CPg x (TI

*

kcallkg *C

- T2)

kcallh

CONDENSATlON HEAT

-

Qc=Q-QL-QC LIQUID

VISCOSITY AT T

I

kcallh

CPB

LIQUID HEAT TRANSFER COEFF. (Read curve c* 2)

UI

=

kcal/h rn2 ' C

GAS HEAT TRANSFER COEFF. (Read curve n* 2)

Ug =

kcallh rn2 *C

UC =

kcallh m 2 'C

U =

kcalfh rn2 ' C

U =

kcal/h m2 * C

CONDENSATION HEAT TRANSFER COEFF. (Read curve n* 3)

GLOBAL HEAT TRANSFER COEFF. "=

& UI

Ug

Uc

SELECTED GLOBAL HEAT TRANSFER COEFF. :

76

& -

PROCESS CALCULATION SHEET

AIR CQOLERS HEAT TRANSFER COEFFtClENf

lI?IDD?'M?lIW3VR #I

CHk

OAIE

.

10I llllt

nru

106 No

I

arv

I

TOTAL TEPIDPIEXPISUR C L r I~

P I Q E P ENGINEERING DESIGN MANUAL fix4 COOLUIS

- ceoune IIYD~WIRUOH

LIWIDS

I l m v i ~ h: 0 Date

I2/8S

P-

NO: 4,ZO

--

TOTAL

PRDSLS

ENGIWEFRINO DTSIW MAMUL

inision :

o

PW* NO

AIR COOLERS Dotr

TEPIDPIEXPISUR

I.? I

: 2/85

snr/hrft2*r - 2 Fintub. 1.h h r t-in. OD . k h * ~ l l r hl l l ( l k ~ APF. rq k/k

+

3 S8

3.60

AR, q k ~ h

tub. PI* A P Y 13 ,I4 nrrl

kb.1 h*.h)I

14.5

11.1

1 in.3

1% h

11.4

60 4

a

A 2 % in, 3 IQ I I0 1

2% m ,

11.2

80.1 1 1 1 1 107.1 I . 114.0 101.0 id15 1340 lbrrd 134.1 1 178 2 140.0 k ~ A p r t l u r t ~ u r r J w n d f i * r . k i n . ~ nA# r ni. . ~ . w u ~ I * u r b r ~ ~ 4 h ~ ~ino4 Dri . k r r r~ d. ~ d I *hid b u *.MI q R I f L APSCb l k n v r u l a m in q hrb 01 b.nd& I- w.8,

.-

I

*-

. ". .....

2r....,.

-.

U*.m I . . " , . 1m.1n-

",

I*#* -,> 98.-1.2

4-.1 r - a

I,,

-a*

u, %I,#

I

FII

_.___.I-

TOTAL

p ~ l r f E H.

GK

Revis~on: 0

Page No. .

dric d a o k m

Date: 2/gs

l~p~~~~EXPfSUn

4.29

C

1. ~~PPLICA~ILITY FEASIBIL~TYSTUDY r PRE-PROJECT

Under normal c i r c u m s t a ~ t s ,the design wl plate type exchangers wwld be detailed by a vendor b a d on process data supplied by the eqinaer.

Two types oi plate exchangers could be used z

.

. or

Plete i l n exchangers ;

Plate exchangers.

the purpose of this design guide, only a quick description and

some charseteristlcs are

sivtn. For plate fin exchsngtrs, the size could be done only by a vendor.

For plate eschanger3, the size could be estimated if some vendor {ALFA-LAVAL, APV, VICARB) inlormation are available. An estimation of the heat transfer area could be done i f the hcat tranrier coefficient is known using the same formula as lor 8hil mnd tube hcat exchanger w i t h factor

= I.

4

LMTD correction

The heat transfer coelficient is difficult to clrtimate; it depcnds on many factors

as flow rate 01 different iluids, pressure drop, plate spacing, etc,..

2. DESCRIPTION AND NOTES 2.1 PLATE FIN EXCHANGERS

Thee exchangers consist of stacked cwruyttd shrcls (lins) separated by flat plates and an outer irarne with openings for ihe inlet and outlet oi fluids. This core Is immersed In a liquid salt bath t o b r a z ~all the separate parts together. Flow in adjacent iluid passages can be coeurrent. counter current, or crossflow and Sever?

uids can be erchangin~heat at the $am time.

In case of the inlet fluid & a

two

phases flow a drum is requlrtd to separate the two

phsses in order to hsve a good distribution.

These plate iin exchangers arc used only with clean fluids.

L

81

TOTAL

Rwision : 0

Paga No.:

AIR COOLERS

TEPTZIP#XP~UR

Qstt :

~fif

1.25

Figure I ahowr *t principle of coratruction of a platelin exchanger. A large amount of

surface can be accomodatcd in a small volumt (1,000 m2/m3). Maximum design pressure r

59 bar&

Temperature range

r

- 195 'C

Size rnsx.

I

1,220

Ttmpersture approach

Applicability

2 :

t o t 6 1 'C

m m x 6 096 m m x 1 340 mm

*C

LNG, LPG recovery,

...

Prc~sur top as for shell and t u b heat exchangers. 2.2 PLATE EXCHANGERS

Plete exchangers a r t an assembly of metal plates stparated by gaskets to give a small clearance between each plate. The two fluids pass in opporha directions each thrwgh every alternate plate. Refer to flgure 2.

Tht exctmnger Is easily dismantled for cleaning ii required. A good overall heat tramfer cotfiicicnt is obtained and small tempcraturc differences can be u e d . The plates can be made from exotic malerials such as riianiurn which are redstant to

corrosion and u e used for sea water coolers. They are v t r y compact eschangerr find aeupy small i l w r area.

Maximum pressure

:

Maximum temperature

: 250 'C

10-20bars

(Need spcelal gaskets) Overall heat transfer cotfficint

-

5 000 k c a l h m2 ' C

Vatcrlwatcr

: 2 000

Maximum surface

: about 1 MO m2

Maximum ilow

: 2 500 m31h

Applicability : Sea water

.

Prtswrt b o p s

I

- service water, water-TEG, TEG-TEG,..,

allowable pressure drops vary according to the total system

pressure and the ~ r v i c otf the flulds.

-

-

water #ervict water r 0.5 to 2 &r (high transfer caeflicitnt), lor sea

lor water-TEG or TEG-TEG the dP cwId be very low such as 10 to 20 mbar.

3. REFERENCES AND USEFUL LITERATURE +

>

A P increase the overall heat

Vendors iniormatlon.

2?2

/

~0Tf\ '

-

PROCESS ENGINEERING DESIGN MANUAL

Rwision :

0'

Pwp tdo :

1

p=m U C n m C Z R S

cww

~~P~DPIExPISUR

: ?IB5

4.25

PMTE F I N EXC-ILS

!

IIWCIPU OF mnstnucTKm 1. A . u * ZV d Y 14. *.dm I.-.1

I.*m t

slaw hrm

I. LR) 1.P W W ovtW 10. El-

ih.t

i l . P * M I Z M U W ~ W *

I2.wmMbr 1b.-II

Llr**r

i

Y'3

D r n I t S OF PU'PE

TYPE EXCR*NECR

. TOTAL

--Rcvirlon : 0

Pmp. Nc. :

FURNACES D a a : 2/83

~ ~ ~ ~ o P I ~ x ~ ~ S U ~

4.27

1, UPLlCABTr'TY i s not exy. -tcd that hand calculation of furnaces be performed by t h t engineer. It is normally done by 4 manufacturer based on p r m u s data suppllcd by the cn&inecr. Furnaces are

used

to transfer heat directly to the process fluid md generally have a large

duty and produce high process tcrnpratures.

OESCRIFTION

2.L.

A iurnact consists of the Iollowlng :

. .

A cornbustibn chamber lined with refractory shd burners

Tubes which .re located within the combustion chamber and where heat is transferred to tht process fluid by radiation

. Tuber which is also . which

arc I ~ a t c dexternal to rhc cornbusion chamkr in a convcctian zone Iintd with refractory.

Stack for dirpasal of flare gas.

2.2.

.

Alr supply system by tan ar induced drajt.

+

instruments and controls.

TYPES OF FURNACE 23.1.

Cabin furnace

.

This

ifia

rectangular furnace and contain$ t u b a which can be horlzmtal or

v t r i i c ~ l .The burners are rituated in the walls o r floor, and the cmvectlon

zone is laated above the furnace.

.

Flue gaser discharge to a stadt tither directly ar arc driven by an induced

drait fan.

.

Burners are normally arranged in raws on two wails and a r t spaced SO provide a rad~atlon zone of constant tcmpcratun a d avoid

aj

to

flame

impingcment'on the Tubes. An alternative arrangement i s burners located In the floor ai the furnace as shown in Figure I .

.

The connection bsnk conbins raws of tubes acrms which the flue gas

.

leaving the lurnace 1s d i g e d to pass A small negative preswrt is maintained to prevent hat gas leskagc.

,

There

is a pressure lw in the flue 8as syste~nand this h l s to be made up

either by we ot

fan discharging to a s b r t stack or by natural bwyancy creating drait in a tall stack. +

&

$5

TOTAL

nrv~rion:

0

~ a g ~ ~ o . :

FURHACW

tEPIDPlEXPISUR

Date :

2/85

b.28

1.2.2- Cylindrical furnace (see Figure 1)

.

These furnaces arc vertlcal and contain rndistion and convection zones or

KI~CIJ

. . 2.3.

4

tadistlon zone.

The burners are h a t e d in the bottom and the radiation zone tubes can be vertlcal or hcli&~dal. The convection bank is located above the radiation zone and contains rows of horizontal tubes. Cenermlly the stack ls vertically above the convection bank wlth no f u k

BURNERS

.

Two types nf burner are used in furnaces, induced air or natural draft burners and lorccd drait burners.

2

. Induced air burners These can burn gas or fuel oil simultane~uslyor independently. Excess air required 1s 15 % to 20 % for gar and 30 % t o h 0 % lor liquidsl If fuel oI1 is burned 0.3 k@g

2

oil of steam is required for atomisi*

Pressure burners

The air far prrs8ure burners is supplied by fan. I t is therelore capable of control and the burner can operated wlth less excess air 5 to iS '16. 3. EXCESS AIR

.

Determine the excess air recommended by the burner manufacturer and the type of burner air system proposed. k t 1 2.3.

.

From thk determine the kg of flue 68s per kg of fuel fired remembering that air

contains 21 96 Vol 01 oxygen. I.f TACK GAS TEMPERATURE

This i s controlled by 2 iactors :

. .

The process fluid inlet temperature w i l l dewrminc the temperature of the gas Jeavhg I h t convection bank. Condensation is to be avoided. If sulphur 1s prcaent in the fuel the stack temperature i s raised to avoid the possibility of production 01 corrosive sulphuraus wid. This would result in a minimum e x i t temperature of about 120 ' C .

5?6

Rev~sion: 0

TOTAL

Pagc~o.. :

FURNACES Date:

ITEPIDPIEXPISUR

2/85

0.29

t

-

EFFICIENCY

\I

3 I f Hc =

-

IOD IOSWS,

-Tbb.

Hf

- HC

Hf

flue gas enthalpy at exit

Hf = enthalpy of combustion (net calorific value + sensible heat in futl and air) + heat bclng furnished by atornisalion steam if required. L a s x s include radiation and unaccounted, e.g. unburned fuel (2 % is a good figure). For a furnace which is all radiant duty the efficiency is of the order of 50 to 55 %.

.

.

A furnace with a convection bank will be from 75 to 8 1 % efficient.

P R W U R E LOSSES

Pressure is lost in :

.

.

: 3

Burner air regulation Convection bank

: 5

- I 5 mm water

- I$ mm water

.

Ducting Stack

:

variable : variable

Pressure is gained by natural buoyancfof hot stack gas. For r system using natural draft burners a low pressure loss is required across the burner and the furnace operates under negative pressure. FLUE GASES VELOCITY The flue gases should leave the stack a t LO

- 70 m/s velocity to ensure safe dispersal.

CHOICE OF TYPE OF FURNACE

.

Above

a capacity of

60 r 106 kcallh the cylindral furnace gives construction problems as

t h e maximum diameter is about 10

.

- 11 m.

A cabin furnace requires much more floor area fian a cylindrical furnace the length can b t as much as 27 m. If the tubes are horizontal then a withdrawal space for tube

replacement will also be required. However for offshore applications the gpace requirement tends not to favour the cabin furnace.

.

With a cabin furnace it is possible to obtain a uniform heat reicasc across the radiatlon Zone. The helght can be a b w t I 5 m.

-

With e cylindrical furnace it is not possible to obtain a uniform heat above release across

the radiation zone. The height can be about 25 m. For remote locations in oil field sppljcations water bath fire tube cyl~ndricalheaters a r t often used (consult vendors NATCO, 85 & B etc...)

g?

-

The I o l l o ~ ~! is lor a very preliminary sizing

D in m Qa =

absorbed heat in 106 kcalfh

9 H

Dtlinm 2.5 D in rn util radiation bank

r 5

/ TOTAL

PROCESS ENClnlERlNO DESIGN MANUAL

1 ~EPIDPIEWBUR

Aarklsn : Dmra

I

5,

PUMPS

:u85

Pwe No :

rOTAL

Revision:

0

Page Ho. :

PUMPS

-

TEPIDPIEXIISUR

Date:

2/83

XI

1.0 APPLICABILITY

For both the feasibility study and a pre-project study the engineer will be required to cvJuate a pump selection and fill ln a data sheet with the basic Information. In order t o provide the basis of a good cost and layout estimate it is important to understand the type and number of pumps-for the service in consideration, and the associated power rquirements.

2.0 DESCRIPTION AND GUIDELINE NOTES TYPES OF PUMPS

.

Generally there are three classes of pumps : Centrifugal I . Centrifugal 2. Propelkr

3. Mixed flow 4. Peripheral 5. Turbine

.

Rotary

Reciprocating

I . Cam 2. Screw 3. Gear

I. Piston 2. Plunger 3. Diaphragm

4. Vane

S Lobe

A pump select~onchart is shown in Figure 1.

GENERAL USAGE Centrifuga!

. . . .

~

U

(Process J Pumps)

Medlurn t o high capacity far low t o medium head requirements. Higher head requirements can be met by using multistage impclltrs. General service for all liquids, hydrocarbons, products, water, boiler feed.

Simple, low cost, even flow, small floor space, quiet, easy maintenance.

s/

1

Revision : 0

TOTAL

Pag4 No. :

PUMPS Data : 2/85

TEPIDPIEXP/SUR

5.2

Rotary pumps

.

. . .

Many proprietary designs available for specific services. Essentialty can handle clean fluids only with small suspended solids ifany. Can pump liquids with dissolved gases or vapwr phase.

Can handle wide range of viscosities

- upto 500 000 SSU at high pressures.

Typical fluids pumped : mineral, vegetable, animal oils, grease, ~lucose,viscose* paints*

.

molasses, alcohol, mayonaise, soap, vlnegar and tomato ketchup 1 Generally specialist pumps for specific requirtrnents.

Reciprocating pumps

.

Pumps p r d u c e virtually any discharge head upto limit of driver power and strength of

.

pbtonr:

.

.d casings.

Overall ~.Iicicncyis higher than centrifugal pumps. Flexibility is limited. Piston pumps : can be single or double acting. Used for l o w pressure light duty or intermittent services. L a s expensive than plunger design but cannot handle gritty

. .

fluids. Plunger pumps : high pressure, heavy duty or continuous service usage. Suitable tor gritty or foreign material. Expensive. Diaphragm pump : driven parts arc scaled from fluid by plastic or rubber diaphragm. Ng

seals no leakage. Ideal for toxic or hazardous rnaterlal. Can be pneumatically driven at

.

slow speeds for dellcate flulds. Triplex pumps :commonly used for TEG circulation.

4. REFERENCES

AND U S f f UL LITERATURE CHAPTER 3

4.1.

LUDWIG VOL I

b.2.

PERRY CHEM. ENG. HANDBOOK

1.3.

CAMPBELL VOL 11

4.4.

"Centrifugal pumps and system Hydraulicsn Ugor

4.5.

I.

CHAPTER 14

Karassik Chem. Engrng Oct O 1982

"New Program Speeds up Selection of r Pumping unit" M. Seaman

4.6.

CHAPTER 6

O i l and Gas J. Nov. 12 1979

"Rapid eslculation of Centrifugal-pump hydraulics" W. Blackwell

Chem. Eng. Janv. 28 1980

f2

Revision : 0

TOTAL

Page No. :

PUMPS Date :

TEPIDPIEXPISUR

21g5

5.3

1. FLU10 CHARACTERISTICS

.

Always quote at pumping temperature ie : normal suction

T.

2. SUCTION PRESSURE ,

Evaluate at pump suction flange

-

Ps = Pop + Static head line 1 0 s Pop = minimum vessel operating pressure bara. Static head :evaluate a t LLL always,take statjc head above pump centreline. s u l f ~ cravlt Static hcad (bar) :h2 (m) x w Line loss I evaluate APline for bends, fittings, e t c I for estimate use 0.1 barl100 rn.

3. NET POSITIVE SUCTION HEAD

.

NPSH available (NPSHA) is evaluated by the engineer. NPSHR required is stated by the vendor. Always try to providdp.6

.

- 1)rn NPSH more than vendor states.

Vapour correction is calculated by substracting the Vapour pressure of the fluid being pumped from the calculated suction pressure. Convert this to rn head. For a fluid a t bubble point the vapour pressure r Pop head (m)= bar x 10.197/SC. NPSHA :static hcad line loss + vapour correction

-

.

DISCHARGE PRESSURE

. .

.

Delivr pressure :use maximum Pop of destination vessel Static head h3 : height of delivery point above pump or if a submerged discharge into a vessel the height of the HLL. A P discharge line : calculation based on line length, fittings etc or use minimum of 0.5 bar. D P exchangers, heaters, etc I use allowable AP from equipment data sheets. Estimate 0.7 L.0 bar ii not available.

-

b

P

Rev~sioti: 0

TOTAL

PUMPS

TE?IOP/E)[PISUR

.

. .

Page No. :

Dale :

A P orifices I for flow meters use 0.2

2/65

5.0

- 0.4 bar.

A P control valves :use maximum value of 0.7 bar, or 20 96 of dynamic Irlction l o s x s or 10 % of pump

AP.

TOTAL DISCHARGE PRESSURE :sum of ail above A P values.

5. DIFFERENTLAL HEAD

. .

-

Differential pressure -. discharge preswre suction pressure Differential head = Dif ftrential pressure x 10.197 Spec, gr.

6. FLOWRATE

. .

.

Normal flowrate is maximum long term operating flow (rnllh) Design Ilowrate is normal flowrate + design margin.

Design margin

I

10 % for feed pumps or transfer pumps 20 % ' r reflux pumps and boiler feed water pumps

Use

7. POWER REQUIREMENTS Note :although the term "horsepowtr" i s still used,power requirements a r e given in kW for metric calculatlonr

.

Hydraulic horsepower

I

theoretical fluid HP = design flow x Diff. press136 (kW)

Brake-horsepower (BHP) = hydraulic HPi q p pump efficiency IkW)

.

Optrating load =

.

Connected load :electrical power to motor a t cated motor qize (kW1

+

Note pump s p e d are either 1 450 rpm or 2 900 rpm

electric& input to electric driver a t normal pump qxrating load = BHP/ motor efficiency k W

vrn

UO HZ electrics1 frequtficy)

8. MAXIMUM DISCHARGE PRESSURE (shut off pressure)

.

Estimated shut off pressure t max suction preswre (design pressure of upstream item head calcuiatdat HLL and SG maxi) + 120% x(norma1 pump AP) 9+ PUMP MINIMUM FLOW

.

For an estimate

use 30 % of normal flow.

10. PUMP WEIGHTS For an estimation purpose only Flgure 9 can be used to determine t h e welght of centrifugal pumv package.

.

.

$?f

a

+

-

--..

6-5 ' 5 0 4, 1

HLL

~ Kq!-i:~

.

--7 .

4,3.4 :er c

I4 m

CCL-

i ? -~ ~

rnr2

i . i~ : :-a

Pump - A .CC-.Xw

Indicate pressure, elevations and system sketch

LUlD PUMPED :Liquld : Pumping temperature T I .par pressure at T r entity at P, f dpedfic gravity a t P, T :

1

.C bara

40 i,04

305 kdm3 0,395

I I I

SUCTION PRESSURE kin. Origin Pressure. ,Static head at LLL = (rn x sg x 0.09S11 L A P suction line

PUMP TYPE : Z L I I - b Speed : 1232 Z.iV

CtuDE 3 i C

baral rn 1 bar1 bar I

I

-

TOTAL AVAILABLE NPSH

m m

m rn

MAXIMUM SUCTION PRESSURE Vessel PSV setting Static head at HLL

25

%

<8?

m3/h

.

(I):

DISCHARGE PRESSURE

I I 1 bsra 1 bar I bar bar bar bar bar

cP

I NET POSITIVE SUCTION HEAD I Static head a t LLL' L l m loss + vapour pressure correction

Design margin DcsignflowatP,T

1 APorific s) AP II dp 1 Other ; :oht:r,;r-.%l)

42

4,20

I

!,I7

I I

z

I I I

bard1

bar1

Q,5?

I

-

I

I I

I

I

I

TOT DISCHARGE PRESS bara

I

I

DIFFERENTIAL PRESSURE

1

I 1.43 11 I I I 4,5Q 1

1

.

I

bar

1

I 1

:-:;= CP {WC. cnnd 1 m3lh

I 1 Delivery pressure 1 Static head 0 3 I A P control valve(s) C , !O A P exchan efts)

I

~;r.

Viscosity at P, T ?, 2 Spccif ic gravity a1 8:: ._,_ 0 a?? Normal flow Q at P, T : 151

l ,D! 4,20

1

PUMP SUCTION PRESSURE

:

1

I

Suction pressure

bara bara

Pump AP

bar

m

1

1 I 1 1 I

I I Brake Horse- wer = (t)x(Z) k W 1 MAXIMUM DISCHARGE PRESSURE I I kW I Max. suction pressure baral 5,03 1 Estimated motor slzc I Normalpump A P x 1 2 0 % bar( 3 , 3 ~1 1 Design operating laad (4)lrlmkWI 1 L (Fis3for 9,) I net bara I I I 6,53 1 kg I I Estimated weight I 5,03

0,75

1

I

I

2,Y I 4 3.50

1 I I 1

I 4.42 11 I

I

1 POWER REQUIREMENTS

net bara 1

1,O.I 1 ,

I I I I

<.Zb 4.d?

I I 1 1 I

3.16

((2)

40,o

I I 1

1 I 2 3 1 1\31

j ~ + I , I 1

-

75

30

1141

34

H51

4230

I I

1 I I 1

PROCESS CALCULATION SHEET T X b ~ , S T E i . PLlWF

lttM.

PUMP

~EPLWliOlPltVlSUm

v

i

CHX

D~II

1 tor

~ITLE

~ - X A L : ~E:

'

NO.

JOB ~o

.

2270

A l t

I

MU

(0

TOTAL

PROCESS ENGINEERING DESIGN MANUAL

n * ~ i :~ 0~ n

wm5 TEPlOPlEXPlSUR

: 2/85

Datr

5.c

*IC* Y I l O CI*IaHUCIL .LAN-.

C"I"LC.L WICYIO*

m m

loo. nncwnw.lla= r m a n r # rwf

7

b

b-*

-_-

-*

,a

~ l l l

-.._ _ --._

..OTEY

CYYl

2 #1bGESn 3-a

a*m

. R X I Y NIYI I I I B C I Ill.Y

z Y

I.

-

+

I

I FIG. 1 - * & I

FIG. 2

I0

w

m

llD

A ~ ~ N C E0Ss I P P C I C ~ ~ I FOO~R O l f f

01-

l L l M IY'IHL

EeCnl PuuP 1 Y P U

ESTIMATlON OF CENTRIFUGAL PUMPS EFFICIENCY

a I m m m n l I m I m m I DOTTED LINE FOR PUMPS WITH H ,I

7

H III

(96

TOTAL

P A O C E U ENGINEERING DESIGN MANUAL

Revision :

Data

TEPlDPlEXPlSUR r

701

: 2/85

Pwpa NO:

-

--

OTAL

----Revision : 0

-

Page Ho. :

GAS TURBINES

WDPIEXPISUR

Date:

2/85

6.1

1. APPLICABILITY Fearlbllity and Prc-Project study :

.

The purpose o f this design guide is to give some information

to the engineer in order t o

be able t o select a suitable gas turblne.

. .

The' gas turbines do not cover the f u l l range of power and sometimes the process is adapted t o the choice of the engines. The ioca

bn is an important factor.

INDUSTRIAL APPLICAT!ONS OF GAS TURBINES

The two major industrial applicatior!s of gas turbkne drivers are power generation and gas compression. The gas turbines are also used for liquid pumping [crude oil, water injection, .I but these applications depend on thc ratio between power generation and pumping station capacities. In Industry, three types of gas turbines are available :

.

.

.

heavy-duty (one shaft, suitable for power generation not recommend for comprtswrs or two shaft3)

jet engines or aeraderivativc (two shafts) turbines light industrial

Heavyduty turbines are generally used for large onshore plants where weight and space are not a problem. Aeroderivative turbine or light industrial are predominant lor smaller installation$ offshore where compact, light-weight drivcra are required.

BRIEF DE!5CRIPTION OF THE TURBINE There arc two parts for the gas turbine : a. main system b. auxilliary system.

3.1.

MAIN SYSTEM

- Figure I(two shaft machine gas generator)

It is composed of :

..

.. .

the air filter air compressor combustion equipment

183

HP turbine LP turbine Exhaust

-

TOTAL

Revision : 0

Page No. :

Date: 2/85

61

GAS TURBINES

TEPIDPIEXPlSUR

3-2- AUXlLLlARY SYSTEMS These are :

3.2-1.

. . .

fuel gas or liquid fuel system lubrication 3yatem

. .

hydraulic system start-up system

air cooling system

Fuel aas system

.

A gas turbine i s designed for a certain heat release. It is recommended to

- 10 % magimum) of the design value. avoid large flaw fluctuatians (+

.

It i s also recommended t o provide a safety margin above the gas dew

point (generally

.

+

I5 * C ) and t o have a minimum temperature of + 5 'C.

The fuel gas pressure depends on the gas turbine, a range of 15 t o 20 bar g a t turbine inlet flange is common. For the new generation of jet engines which have high air compressor pressure ratio the pressure could be as high as 30 bar g.

.

Certain trace components must not be present i n the fuel gas in order to avoid corrosion in the hot parts of the turbine :

-

-

Vanadium : less than 1 ppm

Sodium and Potassium r less than 2 ppm Calcium (not corrosivt but causes deposits) : less than 2 ppm

Lead: less than 1 ppm

-

Remarks : a. The fuel gas quality and net heating value range to be specified to the vendor.

b. It is recommanded to install a K.O. pot and filtration (10 F) at the fuel gas turbine inIet (most of time a rafety filtration is included i n the vendor package)$the basic filtration is normally included in the fuel gas supply Skid.

3.2.2,

Llquld fuel system Filtration is required depending

on the gas

rurblne type and manufacturer.

Generally the required level of filtration has a severity higher than for diesel engines. The liquid fuel pressure at the turbine flange is about 3 to 5 bw &

10 4

-

-

TOTAL

Revision :

---

0

Page No. :

GAS TURBINES

TEPIDPIEXPISUR

3.2.3.

-*

Date :

2/85

6.3

Start-up system

A gas turbine cannot simply start-up by firing fuel i n the combustion section : for its gas expansion power after combustion t o be effective, the turbine must attain a certain starting speed first using a starting motor. There arc several kinds of drlvers whlch are used t o start the turbines:

. . . . . 4

electric motor, pneumatic expansion turbine [air or gas) diesel engine or gasoline matar hydraulic expansion turbine hydraulic motor.

OPERATING ASPECTS The powcr is generally defined in cataIogues by 13.0. that means power at

. .

t

Temperature air in take I 5 ' C Atmospheric pressure 101.3 kPa (sea level)

No loss condition on intake and exhaust ducting No auxillarics driven by the turbine (except lube oil pump required by the turbine itself) The main external criteria for the performance of a gas turbine are : the site conditions (location, air temperature) losses on intake and exhaust ducting, operation of the machine at conditions other than design, mechanical powcr to drive auxillarics.

4.1.

AIR CONDITIONS The compression powcr requirement l o r the air increases as the air temperature increases. The consequence is that the available power recovered from the LP turbine decreases as the air temperature incrcaxs (+ 1 ' C 01 air

=

0.8 % of power :average

value). See Flgurc 2 for an example* 4.2.

LOCATION

If the turbine is located above sea level, the site pressure and the available power decrease by about 1 % per 100 metres e l c v a t i m See Figure 3.

/Q6

TOTAL

I

Pbgs NO. :

Date : 2/85

6.4

CA5 TURBINES

TEPIDPIEXPISUR

4 3

Aevlrio~i: 0

LOSSES ON INTAKE AND EXHAUST DUCTING Under certain conditions plugging of the airintake t o the turbine may occur. This w i l l result i n a drop in available turbine power. A similar drop will be seen if the exhaust duct pressure also changes average figures are :

.

.

Inlet duct :pressure Increases by(l0o mm i-120)~owerfalls by 1.4 % Exit duct : pressure increases by 100 mm

H20 power falls by 0.6 %

For estimation take 100 mln HZ0 d p for inlet and exhaust ducts (2% losses)

I

4.4.

DESIGN CONDITIONS I f the power turbine Is running at 80 % of the design capacity, the reduction in efficiency is about 6 %. If the turbine 1s running at 60 % design the reduction in efficiency is about 17 96. Since fuel gas consumption is very much affected.

I

II

Fir.

tpproximate for t alnbiant

P site =

t

-

H =

P lso x

>

I5

O C

1

m~15x*1

l+O.OlH

ambiant t e m p t r a t ~ ~ in te-C elevation above sea level i n metre divided by 100

5. IELECTiON OF C M TURBINE For preliminary selection use table 1 which give 150 turbine shaft power. Table 1 gives the commonly used gas turbines but for more information consult the "GAS TURBINE WORLD

PERFORMANCE SPEC" published each year.

I

6. THERMAL EFFlClENCY AT 1-

RATUK.

Thermal efficiency depends on tlrc gas turbine but for a preliminary fuel gas estimation the followjng v'alues could be taken

t

7. REFERENCES AND USEFUL LITERATURE 7.1. 7.2.

CA5 TURBINE WORLD PCRFORMANCE SPEC VENDOR documentation

7.3.

CAMPBELL VOL 11

7.4.

"Consider Gas Turbines for ilcavy loadp

each year

- K. MOL~CHChem. Eng. August 23. L980

-.

TOTAL

P I O C E ~ ENGIHEE~ING DESIGNMANUAL

P q e NO :

GAS 'NRB1m.S

Dmte

TEPIDPIEXPISUR

1

R ~ * * i o n: 0

FIGURE 4

: 2/05

6.6

3

.

-

**

--.

--*

Revision

TOTAL

0

Page NO :

STEAM TURBINES

TEPIDPIEXPISUR

Date : 2/85

6.8

1. APPLICABILITY For either the feasibility study or the pre-project study the engineer may need to estimate

the required steam consumption of a steam turbine. Details of turbines for guidance and consumptons art detailed in section 2 and 3.

2. DESIGN NOTES

. .

Single stage turbines eenerally used for small applications, multistage for larger. Conslder using steam turbines far pump drivers if residual HPlMP steam from larger drivers (compressors, gcntcators)

.

is avallable.

a

w'

Small

1

Standard size turbines :

Medium

1 or 2

Large

2

+

.

Speed range : usual 2 000 rpm to 15 000 rpm

.

Efficiencies :

Power r a t i n ~kW

Power kW

Steam k ~ l h l k W

0.5-190

350-30

9-2980

30-9

370-7Q50

15-3

Efficiency %

kW

%

L -40

20

750-1500

60

40-250

30

1500-2250

65

250-375

40

2250-UP

70

375-750

50

3. CALCULATION OF REQUlRED STEAM LOAD 1. Theoretical

wt=

kg,hikw

(hsr860

steam load

2. Actual steam load Was Wt

r

100

= steam inlet en4halpy kcallk = steam outlet kcallkg ( ! a tboritical urntropic ph brtwun inht a d outkt WW)

EFfirienq (%I 3. Required steam Ws = Wa x kW I 4. USEFUL REFERENCES AND

4.1.

4.2.

d

wh

LITERATURE

LUDWIG VOL I11 CHAPTER 14 pp 422-435 "Use steam turbines as Process Drivers" Richard F. Neerken Chem. Eng. Aug. 25 19110

-

110

TOTAL

PR~CEP'ENGINEERING DESIGN MANUAL

I

:

P*.

NO :

ELECTRIC MOTORS

TEPIDPIEXPISUR

I

'

R v i i:

Oat*

-

, Z/ZS

6.9

1. APPLICABILITY For both feasibility and prc-poject studies the engineer will be required to estimate

electric loadings for utility consumptions. Fig. I details motor efficiencies for varioufl pomp horsepowerr.

I

I

2. POWER ESTlMATlON

I

I

.

For pumps the driver horsepower is estimated en the pump data sheet.

.

For rcsptciiying of drivers or checking purposes use Fig. 1 to rate power.

.

Power rating at 380 Y 3 phase 50 hz. ffiUPf

1

~CTRIT MOTOR* RECOMMLHOED azt a rmc~urcr (11

Pump RequCemcnr

Prab.blr

A~. t b - a..h n

Mara

~

-

Cdh?io;\r OHP

-

Norart ( I I

(11

-

nl;is

&YAW

EIflcienq

% - a l~Cull -.- LMd

Pawcr ractsr(2) S oi full Lord

BHP

Applies 14 tvtully cndor
cap4c1r)

100 -

I I

--

TOTAL

PROCESS ENGINEERING DESIGN MANUAL

TEP/DPfE)(P/sUR

Rwvirion r

08tr

7. COMPRESSORS

113

: 2/83

Paw No

;

Reviyion : 0

TOTAL

Page No. :

COMPRESSORS

TEPIDPIEXPISUR

Date :

2/85

7.1 7

1. APPLICABILITY For both ftasibility and prt-project studies the engineer w i l l be required t o evaluate a compressor selection, discharge temperature, power and complete a data sheet. To evaluate thc discharge temperature and power i t i s more accurate to use 551 instead of the manual method presented here. I n order to estimate the basis of cost and layout i t i s important t o understand the type of compressors for the service i n consideration, and the associated power requirements.

2. DESCRIPTION AND GUIDELINE NOTES 2.1,

TYPES OF COMPRESSORS The principal types used l n the 011 and gas processing industries are :

. .

reciprocating (volumetric) rotary ~volumctric)

. .

ctntrifugal

axial

A compressor selection chart is shown in Figure 1.

2.2.

GENERAL

2.2.1.

USE

Reciprocating compressors Reciprocating compressors arc widely used i n the oil and gas industry f o r s ~ d l i o medium gas flows and high carnpresrlon ratios. For example :

. .

2.2.2.

Instrument and service air compressors Low capacity/high pressure gas compression for maintain the gas l i f t capability.

re-injection of field gas t o

Rotary compressors The types o i rotary compressors most frequently employed i n the petrolcum indudtry arc as follows :

.

. . . . 2.2.3.

Lobe compressors ("ROOTS' type) Screw compressors The reliability factor is generally higher than reciprocating machines. "Roots" type compressors are used where a high flow rate wlth a relatively low-pressure is required. Screw compressors arc sometimes used in low flow gas service or for instrument and service air for instatlatlons of small t o medium size.

C e n t r i i u ~ acornpressars l

.

Thcse Centrifugal compressors have become very popular offering more pQw?r pcr gnit weight and esrcntlallv vwation-lrcc, lnitial costs normally are %than rcciprocatlng comprtswrs but efficiency Is Its? and utility c W may be higher. Frequently used in the o i l and gas process industry.

Revision : 0

TOTAL

Page NO.:

COMPRESSORS

TLPIDPIEXPISUR

Oste.

2/85

7.2

Axlal compressors

2.2.0.

Thew machines are particularly useful where a very high gas ilow at moderate pressure increase is required. Such applications remain relatively rare in the industry, the exception being LNG plants. DISCHARGE TEMPERATURE LIMITATION

2.3.

,

Discharge temperature is limited either for reasons of gas stability, gas condensation or compressor (or upstream equipment) mechanical resistance

limit.

.

For reciprocating compresxrr the maximum gas outlet temperaturc t o be d h d

is usually between 160 to 180 * C .

.

For centrifugal compreswr used in gas and oil extraction industries the discharge temperature is limited t o 1701190 *C.

.

Normally intercoolers are used t o maintain temperatures within t h t above limit$.

DESIGN MARGINS

2 4

I f the ilow is constant, no margin, but i f the flow is coming from a production eparator a margin of 10 % is recommended in order t o take i n t o account the possible slugs at the inlet of these production separators.

5. WEIGHT AND SIZE For weight and slzc wc rccomrnend to ask the manufacturer as vendor catalogues detail

only the size and weight of the compressor itself. As the compressor package also includes also the seal and lube o i l console^ control cabinet and sometimes the driver and gear box, the use of vendors catalogues could be misleading in estimating the installed weight.

Figure 4 could be used for a very preliminary estimation. It is established for the dry weight of a centrifugal compression package including :

.

.

compressor skid (aeroderivatlve gas turbine technical room

, overhead tank (seal oil) 6 REFERFNCW AND USEFUL LITERATURE 6.I.

LUDWIG

Volume3

Chapter12

6.2.

CAMPBELL Volume 2

Chapter 14

6.3.

GPSA

6.4.

SSI Program

Chapter 5

1979

f/6

+ compressor)

c(mPwss0Qs TEPIDPIEXPISUR -

-

-

_

_

_

l

_

_

_

Data _

_

l

_

_

_

l

_

_

_

_

_

_

_

I

_

C

_

_

_

_

_

_

_

:2/BS m

_

C

.

4% C .-

en

i r, 33

___________________---_-----___

3

$ 2E

A d

v n

3 v

-*- _ - __

-5 --

Y

_

5

zg

-

-

-

- - -

!m

4

~~~~~~~~~~~~~~~____

-------rO

-----------------

r?

I1

x

.-x

'-

3

E

--_---.--------------

c

2s r u

I-"

----------------

..

~8 ?Irn

N

v\

a

1.; E

x

E

11

3

z

L

E

-----

F -u =a

X

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - - - + - - - - - - - 4 - - - - - - - -

5; s

______---_-___---------------------+ B

NA 5 0 I ----------------d-------------------

-- E u

t11

C

-2

3

0

E

i;

- - - - - - - _ ----------------------

s)6

c.

-?! Y

u:5u

CI r

0

2

-------._-----d----------------d----

A

113

I

OPERATING

I I

.

7.0

IlDlTlONS

PI = 7.a bar a DISCHARGE PRESSURE P2 = 3 , O bar a

SUCTION PRESSURE

I

5'3 *C #It

SUCTION TEMP-

TI

SUCTION FLOW ACTUAL VOL F L O W

W = 5b000kbh V = 9400 m Ih

I

z

= 32:

GAS DENSITY fir SUCTION = ', 36

.,

I . GAS PROPERTIES

pe ~c

= =

45.9 230

2. POLYTROPIC EFFICIENCY

3~

=

0,79

3. AVERAGE 8 = MCp/MCp-1.99

8

=

4.

3

DLSCHARGE TEMP 12 =TI(%)

5. DETERMINE Z AVC

5UCT DlSCn

84

=

15014

21

r

0.91

22

=

0

=

AVC

bara

.

'K SEE

IdlG

E S T LTZ~ ~ ?5oU~'i r ~ dBL

*21

T2 =

.

kg/m3

REIII,hT STEP 3-Q If TZ IS D1rfI ~ R E N TFROM ONE "'I'I I IN STEP 3

K 'C

a37 0,975

6. CALCULATE GAS HORSEPOWER

C H ~ = Z X R X W X ~ X ( T ~ - T C! ) H ~ =32h0

' 11,314 k3/ kgMOLE

kW

-

MWx3600x(g-1)

7

CALC SHAFT HORSEPOWER p5 = CHP x (1

F

+ F11001 x 11 7,

taker : Fr 3 5

.

*C

4

PS im * 5.97

=

3d80

kW

C ' l l l kW ~ ~ 5.0 ~ s(ht I <( ~MW 3.1 )LO MW 1.0

'lm 0.96 0.97 0.90

8 . ESTIMATE DRIVER POWER

PS x K PO -GAS TURBINE PS x (1.14 + K) PO =

kW

ELECTRIC MOTOR

4040

kW

' 1.15

41.02 TO 0.04 WlTH

1

GEARBOX

-

3:

2 32

9. E S T ~ ~ A T EPACKAGE D WEIGHT

I

= 9° Oo6

M

COMPRESSOR-DRIVER-LUBE

($1:(1~16 4)

kg

NOTES :

CENTRIFUGAL OR AXIAL Tt?~O?mVffXMUU

-nr

JJ;~FJ

cnr

I

;&z

CoMPRWS?R O~TI

\ rornrir

.

no.. 1om WO

i~ibt

//g

XMF~~,S:~C

It. :,>I6 ItV

'

7.5 OPERATING L f4DlTIONS

SUCTiON PRESSURE PI = 0.0 bar a DfSCHARCE PRESSURE P2 = 27.0 bar a SUCTION TEMP.

T1

PRESSURE RATIO PZ/P1 =

40 *C = 3 3 +K

:

d

GAS DENSITY AT SUCTION s 7 5%

= 549 rn / h

V

?5,0

MW

W = 41DP k h

SUCTION FLOW ACTUAL VOL FLOW

STEP

kglm3

NOTES

L G A S PROPERTIES

Tc PC

2. AVERAGE 8 = MCp/MCp

3 . 33

- 1.99

-

= 247 45,s

mK bar a

8 = l12D

AESUW..~? T 2

2

It7 'C

orl

3. CALCULAT f DISCHARGE TEMP T;L

s

TI x

5. DETERMINE Z AVC

-

T2 = 383,4 'K

m)+J

(PI

=

SUCT DISCH AVG

Repeat 2 3 ti T2 differs from that used in STEP 2

44

21 22

s: s

0.97 0.45

Z

=

0.5%

3g =

O,@?

6. DETERMlNE OVERALL EFFICIENCY

'IS

See Fig 3

7. CALCULATE GAS HORSEPOWER

* *

CHP = Z ' R 5' 5 x (T2 - T I ) m W x 3 6 0 O x ( $ - 1)

8 . CALCULATE SHAFT HORSEPOWER

= 454

kW

PS=14?

kW

CHP

PS = GHPlf x r)g

R = 8.314 kJ/kgmole.*C

i = 0.96 to 0.97

9. CALCULATE DRIVER POWER Electrical Motor

Po = [.I5 K PS

#!'+#(

PROCESS CALCULAIION SHEET nLH: FUEL GAS COMPRELC3K

RECIPROCATING COMPRESSOR

I~CIWCOPPRXCI%UR II

cnu

Po + ?-Z"~W

DArc

Ilorn r ~ t i .r

E xs, M P LE

no

.

IODMO

K 7323

I arv

19

-

-

TOTAL TEPIDPIEXPISUR

PROCESS ENGlNEEAlNG DESIGN MANUAL

ddcs

Rodlion :

Dare

120

:

Pwm No :

7 a6

-~ ...

TOTAL TEPIDPIEXPISUR

P D C E S S ENGINEERING DESlGN MANUAL

Revision : 0

PW No :

~ R E S S O ~

Dale

:lies

7.'

8,

EXPANDERS

-..,..

Revision : 0

TOTAL

Pngm No. :

EXPANDERS

TEPIQPIEXPISUR

Oatc :

2/85

g.1

1. APPLICABILITY

For both the feasibility study and a pre-project study the engineer will be required to fill i n a process data sheet with the basic information and to estimate the expander horsepwer. Outlet conditions and horsepower estimation r a n be calculated accurately by computer. Hand calculations for pure component systems using a MOLLIER diagram are OK.

2. DESCRIPTION AND GUIDELINE NOTES

.

The turbc-expander i s a mechanical device which is designed according t o the laws of thermodynamics end aerodynamics. I t remover energy from a process ga; which results i n a drop in pressure and temperature of the gas. The energy removed i s converted into mechanical energy which is most often used t o drive a single stage cornprcsm.

-

.

T urbaexpanders could be used for : +

cryogenic pressure let down

.

dew point control

.

. .

CZ recovery ethylene processing, etc...

C3ICl recovery

Thermodynamical principal. See Figure I.

, Expanders efficiency The expander efficiency is the ratio of the actual energy removed to the maximum theoretical energy on Figure 1 :

-

'I=H B A A

HBI-HA

Expander efficiency depends on :

.

-

mass flow rate

-

inlet temperature

-

inlet pressure

discharge pressure gas composition speed

Generally a value of 80-85 %can be used for estimation purposes. See Figure 2. Liquid content a t the outlet of the expander varies from 10 t o 30 % (weight) Inlet gas must be free of solid particles and water (sometimes COZ), ice formation is prohibited.

.

Maximum horsepower of the manufactured turbo expanders is about f 2 000 HP. This figure should not however be considered as a limit. Turbo expanders can be used in series. Efficiency Is a f l u t e d by the variation of the design flow rate See Figure 3 for an ntlmarion.

/>'

--

"

*

TOTAL

Revision : 0

P a g l NO. :

Date : 2/85

8.2

EXPANDERS

TEPIQPIEXPISUR

3. REFERENCES AND USEFIR. LITERATURE CAMPBELL VOLUME I1 Engineer's guide to turbo expanders

HYDROCARBON PROCESSING APRlL 1970 Pagc 97...

Turbo expander applications in

JOURNAL OF PETROLEUM TECHNOLOGY

natural gas processing

May 1976 Page 6 1 1 etc...

What you need to know about gas

HYDROCARBON PROCESSING

expanders

February 1970 page 105...

Turbo cxpanders offer processors

THE 011 AND GAS JOURNAL

a way to conserve energy

Jan. 23, 1978 page 63...

Use expander cycles lor LPG

HYDROCARBON PROCESSING ~ o c 1. 9 7 ~ Page 89...

recovery

VENDOR DOCUMENTATION

i.c. : ROTOFLOW, MAFI-TRENCH..;

la 6

PROCESS EMGINEEHINU utslun MfilUUl&L

TUTAL

t$evrrroft :

rb

I

d y I~U U

EXPAtfUEW

Datr

TCPIDPIEXP18UR

: z/n<

8.3

FIGURE 1

PRESSUAE

t

H ~ l H~

PA Inlet prssaure PB Outlet prusure f Bl Outlet theoretical tsmpcrrruw

HA

TA Inlet temperature Tg Outlet temperature

ENTHALPY H A , tnlot enthalpy HB Outlet enthalpy

ktBI Outlet theoreticel tnthstpy

FIGURE 3 ESTIMATED PERFORMANCE AS A FUNCTION OF DESIGN FLOW RATE

FIGURE 2

PERCENT OF DESIGN FLOW RATE

I

APROXIMATE PLANT FLOW RATE M M X F D

.

IIUIMb

~ ~ U L C W CN~IN~LI(INV U L S I ~ NMANUHL

TEPIDPIEWISUR

9.

FLARE SYSTEMS

'2 4

HIYIIIQO

:

Date

: 2/85

r80lN O

:

TOTAL

Revision: 0

Page No. :

FLARE SYSTEM

TEPIDPIEXPISUII A

Date:

2/85

9.1

1. APPLICABILITY For the feasibility and preproject studlcs, a detsllcd design of the flare system is not needed. Required information for either study will include ;

. . . .

.

Evaluation of number and levels of flare system Determination of maximum relieving (and hence flare design capacity) Flare KO drum

Design

Estimation of height of flare stack or boom length and type of t i p required

PSV sizing (not always required, depends on project). For further more detailed specification and design requirements consult thc CFP DESIGN GUIDE ON FLARES-YENTS-RELIEF AND BLOWDOWN SYSTEMS.

2.

DEFINITIONS (see section 3 i n DESIGN GUIDE)

-

Relief system

includes any prtssurc rsjirrf valvelrupture disc downstream piping

t

and liquid separator

-

Blowdown system

I

includes any depressurlng valve, downstream piping and separator (normally the pressure relief and depressuring systems utilize common piping and separator)

-

Flare system

: a system which ensures the combustion of hydrocarbons

Vent system

:

the

rdcasc

of

hydrocarbons

to

the

atmosphere

without

combustion

-

Design pressure

:

the pressure used to design the vessel and calculate the wall thickness (see section 1.0.)

-

Set pressure

:

the pressure at which a safety device is adjusted to open under service conditions. Usually equal t o the Design Pressure

-

Accumulation

:

maximum allowable increase in vessel pressure during discharge through the safety device. Normal accumulation is 10 % but 20 %

is allowed for external fire due t o hydrwarbon liquids. For HC gas fires an accumulation of 5 % is recommended.

3. FLARE 5)'ITEM ANALYflS AND GUIDELINES This section details how t o determine the number and levels of the required flare system for a feasibility or preproject study and other guidelines.

.

-

A system of items of equipment and piping can be protected against overpressure most economically by considering it as a single unit when calculating the relieving capacity

/21

TOTAL .

Revision : O

FLARE SYSTEM

1EPIDPIEYPISLIR

. .

Page No. :

Ostc: 2183

9.2

Block valves should not be present in the system so as to isolate a unit irom its relicvine point. Special casts may warrant a car-sealed open or locked valve. However such a r r , .ements should be avoided if possible Interconnecting piping should be of adequate sire and not subject t o plugging. The system should not be of such a size that t w o separate systems would be more economical

.

tn specifying the design pressure of the individual items and safety valve setting there a r e two approaches

-

Set t h e design pressure of each item independently. Then specify safety valve

scttings to protect the weakest link in t h e group of Items

-

Study the items as a single system initially. Thls is preferable as it avoids having an unexpected "weak link" limit the operating conditions.

.

Consideration should be given to possible abnormal conditions viz :

-

Light hydrocarbon systems can reach low temperatures during depressurization Heat exchange trains may be bypassed resulting in higher than normal downstream

temperatures

.

-

Fallure of cooling medium can cause excessive downstream temperatures

-

Production separators may have a varying feed temperature, especially offshore.

I t i s often required or beneficial to provide two or more separate piping systems from

t k items of equipment t o the flarc $yatem eg I high and low temperature headers. Consideration should be given to the following

-

-

Relief gases below O°C must be kept apart Irom warm moist gases t o prevent formation of ice within the flarelines. Thia could cause a system plug up Segregated systems may be economically desirable to minimize the extent of low tcm+rarure piping

-

-

By segregating t h e flows irom high and low pressure sources into two separate flare systems greater use of the high p r e s u r t drops can be achieved without lmposing severe backpressures on the low pressure systems The molecular composition of some streams may warrant their segregation irom other streams. eg moist C02 or H2S is corrosive. I t may be cheaper t o fabricate a second smaller vent system to handle there rather than fabricate the entire system in corrosion resistant material.

02 A

---

TOTAL

Rerrs~on: 0

Page NO..

FLARE SYSTEM

TEPKlPlEXPlSUR

2/85

Dstc:

9.3

Determination of t h e flare system and levrl can be summarized in the following step by Step analysis.

I. Does the facility contain process areas with distimt pressure levels eg :HP compression, LP c o ~ -ession, atmospheric separation ? If so, c sider two or more flare levels if sufficient limitation is imposed by the LP section

2. Does gas exist at high pressure that on depressuring will fall t o below 0 vC.Lf so, it must be segregated from warm relief gas. If the temperature falls below 29.C may have to consider low temperature steel headers

-

3. ldentify any corrorlve relief sources and consider if n t e d to pipe up separately 4. Is a vent system required for tank breathers, regeneration vents etc... 5. Identify on the PFMs) the set pressures of each PSV anticipated and consequently its maximum allowable backpressure [MABP usually 10 % 01 set ~ r e s s u r e ) .Locale the "weak links" in the process i.e. :the low design pressure vessels. If only 1 or 2 exist within the

system conslder installing balanced relief valves IMABP = bD % set) so a s to incorporate them into a higher pressure flare system, or even alter the design pressure of the weak links to acheive t h e same. This may be more economical than specifying two flare levels. Having determined t h e configuration of the flare system, it is necessary to size the headers only and t h e flareline itself. For thls, an idea oI the maximum relief load gcnerattd will be required. For the studies a full "risk analysis" af upset conditions is not necessary neither 1s a listing of every relief load and condit~ons. The sizing case of t h e flare system can usually be judged by inspection. Invariably, the largest vent flow will be s full flow reliel off the first separator or compres~londrum or a total electrical failure. This may be supplemented by a simultaneous depressurization of a compressor or equipment loops resulting in a flare design flow higher than the normal plant throughput. Generally fire generated loads do not dictate the sizing of the flare system, but may influence the sizing of laterals and subheaders. A certain degree of experience will help

in identifying the possible one or two cases ihat will size the flare system without havlng to perform a fuH plant rlsk analysis. In some cases, the resulting flaring loads may be minirnised by using ESD isolation valves or autamatlc controls t o start back-up equipment.

133

Revision : 0

TOTAL

Page No. :

FLARE SYSTEM

TEP~DPIEXPISUR

Date : 2/85

9.4

I.HEAOeR SIZING 8 STACK AND TIP CHOlCE I n order to estimate the main flareline and header slzcs based on backpressures, 3 pieces ot inlotmation a r t required :

-

9.1.

Design llowratc,temptraturc,MW Length of flareboom or height of stack Type o f t i p and stack t o be used.

DESIGN FLOWRATE

TEMPERATURE AND M W

This has already been determined from the previous sectlon. 2

TYPE OF TIP + STACK T O BE USED (see section 10 in Flare Design Manuay The rhoice of stack and tip type wilI obviously be dictated by the location of the prar,

nder design.

For onshore plants in remote areas i t is usually suflicient to use a remote vertical

stack with a conventional pipeflare tip. The height of the stack will be determined by the radlation limitation on the designated sterile area round the stack. For non occupied areas, this figure could be high as 5000 BTUI~.!~~(15 700 ~ / m 2 )resulting in a short stack height. For cases where high flaring loads s t i l l result i n a tall stack,

a further reduction in height can be achieved by using a Coandaffndair or similar type high pressure sonic flare tip (see section 10 i n FLARE DESIGN MANUAL for dixusslon o f each tip type). Offshore the choice is somewhat more complex in choosing between a remote vertical

flare or similar, or an Integral 45' mounted boom itare or even on board

vertical sta&.

The decision between these is more often than not governed by

economics, structural considerations and specifics pertinent t o each platform Iocation eg r water depth. Generally, however sonic flare tips are used where pressure levels allow (2-> bars) a t the tip entry i n order to reduce stack/bom lengths, by reducing radiation levels, and associated support structure weights.

4-3.

FLAREBOOM

- FLARE STACK SIZING

The flareboom or stack (hereafter termed flare) length

Is determined by the

maximum allowabIe thermal radiation tolerable on the platlorm or surrounding area.

A detailed calculation of this value for vertical or inclined flares on or offshore under a variety of wind conditions and temperature5 can be performed using the computer program SUPERFLARE. For itasibiliry and preprojecta, however an estimate of radiation level can be determined using the method as derailed in AP 521. Set Appendix 1.

134

.

,-

TOTAL

Revision : 0

FLARE SYSTEM

TEPIDPIEXPISUR

Date : 2/85

Recor~ nnded Radiation levels are given

I1I

Condition

1

I Allowable radiation 0tulh.ftZ

I I

I

1000

I

I

I

I I I

1

Exposure

period Infinite

I

I

2000

1 I

L minute

1

I I

3000

I

(Emergency flaring only)

1

I I 1

5 seconds

I

1 1

r DO0

I I I

I I 1

I I I I

1

I

1 I

I

I I 1 1

I 1

1

I1

I

1

5000

I I

I I

1

I 1 mediate shelter i s available 1 1 I I I I Areas where personnel are not 1 I permitted during operation I I t Helideck

I

I

I I Arear where personnel may be 1 I located from which escape is I I possible and shelter is 1 1 attainable 1

I I I Areas where equipment is I located and personnel are not I normally present during opeI ration, but if present im-

9.5

below :

I1

I 1 1 Areas where personnel may be 1 located and expected to per1 form rhejr duties continuously I

I I 1

Page No. :

I

1

I I

I

I 1

D

I

I

The above figures are maximum allowable radiation lntcnsities inclusive of solar radiation t 250 BTUIhr ftZ). I t should be noted that the following recommended values o f F radiated and mach numbers at the ti^.

-

Fraction of heat

a) Pipe flare

LOWM W gas F = 0.2

-

Ethane

F

:

0.25

Propane

F

r

0.3

F

i

0.1

Mach I

F

s

0.05

Mach 1

Velocities

-

max at design relief

normal continuous

0.5 M = 0.2 M 8

b) IndairICoanda

All gases C)

Mardair

Having calculated the flare length bawd on radiation analysis and c3rabllshed both the design flare rates and tip type the main header can now be sized.

i3 i 7

Atvision : 0

TOTAL

FLARE SYSTEM 2/85

TEPIDPIEXPISUR

4 .

Page No, :

9.6

HEADER SIZING T h e major criteria governing the sizing of the header are backprtswre and gas

velocity. Flare headers must bt both large enough to prevent excessive backpressure

on the plant safety valves and to limit gas velacity and noise t o acceptable levels. Sizing procedure I)Identlfy "weak link" wlth respect t o MABP on safety valuea. (this should have been done when determining t h e levels of relief). This is the maximum upstream pressure tolerable in the rystcm2)

culatc the

4 P acrws the

flare tip for the relief design flow. For sonic type

ti1 the backpressure will be 2.0 t o 5,O barg depending on

For plpeflare tips use :

- 2.0 0.2 - 0.5 0.5 - 1.0 0.5

Flare tip Fluid seal Molecular seal

load.

-

psi

(0.034 0.lb bar)

psi

(0.014

- 0.034 bar)

psi

(0.034

- 0.07

bar)

3 Estimate the equivalent length of piping from the tip to the flare KO drum. (Allow generous margins, flare headers are complex and rarely straight). 4) Calculate the mnlc velocity of the relief gas

Vsonic

= 91.19

c -

K :CP/CV T : *K

rn/s

This will gTvt a first estimate of required pipe id based on maximum relief flow.

The stack diameter should be one or two slzes less than the tip diameter. LIMIT

VELOCITY JN STACK TO 0.85 M A T DESIGN FLOW.

AP

5 ) Using thc estimated D calculate the from tip to flare KO drum. The Conison equation is recommended for isothermal f b w : 2

P, Where :

1

:

p2

+

4 V p22 (39.4

= upstream conditions

2 = downstream p + pressure bar (a) u

=

relocity

f

fL -

9

= moody frictlon factor

1 = equivalent length rn d = pipe id inchs

= s p u l f i c vol m3/kg This calculation requires a degree of trial and error as- y

I, 9 6

2 in

"1

mls

v

+

-

lo-'

.

. TOTAL

Revision : 0

PqcNa: .

FLARE SYSTEM Oat@: 2/83

TEPlDPIEXPISUR

9.7

6)Examint the P l (calc) at the relief drum and decide if the stack + header diameter is adequate I t is PI (cak) drum approaching the maximum upstream pressure allowable at the plant ? if so increase the diameter and repeat the AP calc. 7)Oflcc sathfied with the drum-tip line,proceed can

back up the flare header and

late the next section of Une diameter.

8) Continue along the headers, adjusting flowrates as necessary if sources disappear,

untU t k '*weak link" criteria has been satisfied. 9)lf the project requires,sub headers and laterals can be egtirnated from the main line static backpressures calculated above.

EXAMPLE :

@ PS$

I

0 B

-t

Fn4 Hrbr

.

h3 1.1 br:,

0P< t.2 k3 I 1

L. l o o n

4

I a.?

0.6

I. Flare design is based an vent [low from source (1) 2. Weak link in system 1s set by PSV a t source (2)

3. System must be designed for a design flow from source (1) not giving a backpressure at point (3) of more than 1.2 barg. 4. Size line from tip to drum (1 = 150 m) to give P drum O,5 barg (say) site lint from drum to point (3) (L = 100 ml to give PI < 1.2 barg. 5 Check that source (1) can flow from (I) to (3) with pressure drop available.

73

a

.

TOTAL

Rev~sion: 0

P C ~ No. R :

FLARE SYSTEM

TEPIDPIEXPISUR

Date : 2/85

NOTE I ) :

laterals

--->

sub headers

--->

9.8

headers must increase in diameter

as the system progresses to the tip.

2)

Max velocity in a line is

3

When calculating

AP

MACH 0.7

for short duration

rdiefs only.

for flare systems isothermal flow is

assumed for each section. For high source pressures with low MW

a

AT v6 AP profile

will yield more accurate results, i.e. adlust

temp a t specific points in the system to account for accurcd.

A

P

5- FLARE K O DRUM SlZlNC A f l a r e KO d r u m Is provided to drop wt and collect t h e liquid part

of

the f l a r e vapours in

order t o :

5.1.

prevent

quid accumulation at the base of t h e f l a r e boom or tower

to mini11 e t h e risk of burning liquid [golden rain) emerging from the tip and falung on personnel t o recover and reclaim valuable product materials. DESIGN CONSIDERATIONS

-

s e p a r a t e knock o u t drums a r e generally required lor earh level of flare system installed i.e. :a n H P KO drum, LP K O drum, LLP drum

-

cold v a p w r lines Le. < O'C) can be introduced immediately upstream of inlet line to a "warm" drum providing t h e resultant temperature in the drum does not caH below design. This precludes t h e need for two independant drums.

-

FLARE KO DRUMS SHOULD BE HORIZONTAL AT ALL TIMES. Mist eliminators a r e not to be installed. Min design pressure of drum is

3.5 b a r (6)

-

Heating coils should be installed in f l a r e KO drums to prevent freezing of residual liqulds. Typical is to maintain a T min = 4.C LIQUID 3ROPLET

SIZE (per AP1521)

Recommended particle sizes are : VERT lCAL FLARE

INCLINED BOOM

REMOTE FLARES

110

> 45' < 45.

(offshore)

150

I*

boo

I,

600

ug

Revision : 0

TOTAL

Page No. :

FLARE SYSTEM bate :

TEPIOP/EXPISUR

2/85

93

DRUM SIZING

5.2.

Bawd on the above design considerations the flare KO drum can be sized using the

method outlined in section 2.0. VESSEL DESIGN.

For a flare KO drum, t h e normal liquid level should be kept in the tower part of the drum 1.e. : utHise as much space as possible for the vapor-liquid dt-entrainment. If a large diameter drum results consider using a split flow arrangement with the cxlt noz. r mounted on t h e head. This will rnaxirnise the L/D ratio and give a smaller Iighit drum. This is especially useful offshore where weight + space are a major concern. An LSHH will normally be installed in the flare drum to Initiate a plant shutdown (or wellhead shut in oiishore). RELIEF DEVICE SIZING (For more detail see API 520.521)

6.0.

6.1.

GENERAL

- Safety

valves are either termed balanced or conventional depending upon the

backpressure limitation

-

Rupture discs are less robust than an equivalent safety valve and rannot be relied on to function accurately.

6.2

It is recommended that rupture discs arc avoided

BACKPRESSURE

- Backpressure exists in two forms I

. flowlng backpressurc is

the pressure on the discharge side of a PSV that is

blowing off to the relief system

. superimposed

backpressure, or static backpressure is the p e s s u r e on the

discharge side of a PSV caused by another relief source in the system venting to flare

- For conventional valves the

Maximum Allowable Backpressure (MABP) for either superimposed or flowing is 10 86. For balanced relief valves up ra 40 % can b t allowed for without a reduction in the valve capacity.

6.3-

LIQUID RELIEF

The formula for siring liquid relief A=

gpm 27.2 Kp. K,.

Kv

valves is :

G li 7

Revision : 0

TOTAL

Page NO. :

FLARE SYSTEM 2/85

Date :

TEPIOPIEXPISUU

4-10

Where :

-

A

gPm G P

=

-

Flowrate, u.3, galIons/mIn Specific gravity a t flowing temperature

=

Capacity correction factor due to over pressure (from figure 6.5) Relieving pressure minus constant back pressure (PSI) Capacity correction factor due to back pressure when balance belows value a r e used (irom figure 6.4) Viscosity correction factor (from figure 6.3.)

"d

-

Kw

x

Kv

--

6

Effective discharge area, ins2

VAPOR RELIEF The formula for sizing vapor relief is :

W

A:

Where W

I

T

:

C

=

=

M 6.5.

C K PI Kb

Relief flow, lbslh !i = Compressibility factor Inlet vapor remperature, 'R (1.8 'K1 Coefficient (from figure 6.1, 6.2) Coefficient of discharge (0.975 unless vendor data available) Upstream pressure, psis. Set pressure x 1.1 for blodted outlet, CV failure or 1.2 for fire plus 19.7 psia Capacity correction factor (from figure 6.6)

:

K = PI = Kb

inch2

=

Molecular weight of the vapour

RELIEF FOR GAS EXPANSION DUE TO FIRE (DRY VESSEL) A. A A,

A,

4-F F'

F' =

.

0.1406

CK

effective discharge area of valve ins2 = exposed surface area of vessel ftZ

=

~1.25

~0.6506

T

= 1560-T,'R

T

= temp. a t relief pressure R ' .

C and K as in 6.4 6.6.

STEAM RELIEF

r

A=

inch2 SO

PI K&,

/ 40

-

TOTAL

FLARE SYSTEM Date: 2/85

TEPIDPIIXPISUR

PI

l

Klh

I 6.7.

1

9.11

= Set pressure x 1.03. (ASME Power) or 1.1. (ASME Unfired vesseis)

- superheat correction factor table 6.1.

STANDARD

RELIEF VALVE ORIFICE SIZES

The following table may be used for estimating tho relief valve size based

effective discharge areas calculated

6s

in paragraphs 6.3, through 6.6. :

Nozzle Orifice letter

Effective Area sq. inches

Avoid using 2 1/2 inch outlet flanges

**

Page NO. :

R e v i l i ~ n: 0

Normal size Designation

(F and C orifices)

Avoid using 2 112 inch inlet flange (3 orifice)

won the

TOTAL

FLARE SYSTEM Oatc:

TEP/DP/EXPISUR

7 .

DESlCN CUlDE Flares-Vents-Relief and Blowdown systems CFF MAY 1989 - TEPIDPIEXP

7.2.

API

520

AFI I b C

A

521

API 14E

7.3.

Page No. :

Revision : 0

9.12

2/81

Det Ncrske Veritas :Technical Notes fixed offshore installations

Norwclgen Petroleum Directorate :Guidelines for safety evaluations of platform conceptual designs.

---

-

-

YI

LIO

~ I J

111 1p2

1x1

449

141 733

WB

7 3

141

701 191 131

11+

1.2

141

39923

741 7 n

YII

197

if)

m

rlr

tro

nr

--.

TOTAL

PROCESS ENG~NEERIHGDESIGN MANUAL FU.kE

TEPIDPIEXPlSUR

AND

RELIEF

P W NO :

ierision : CI

Date

:2/05

I

9-13

Rerision : U

PROCESS ENGINEERING DESIGN MANUAL

TOTAL

F U R L UJD RTLlEF

Dl#*

TEPIDPIEXPISUR

I

:

The

lrcornlnrnJ,#

.

curre ma, k Whtn a h mrbr rot ~ h c LOIICCIU~ pigYm

. .

.

Page No :

: 2/05

9.11

NOT,: ~ h. b t d ~NW. *LOW t h r ~up to and i ~ l u d i ?LJ~pi. e*rrpl-rm, caprcilp 11 r l e c t d by L IK chbnlr m lilt. lh* cur.* rtpt#nn#rr sornp~ornirrof lhr *llWr ~ i kdri ~ h v r pr w f i i e r n . rnd hr shrnw in ow*I numb.r 01 rrlet.ralws m r n u i x l w m . This c l d df LI lh. 1 *hmn tha ma** or lb v * I w nc4 bnfiwm p,=~,.,.. A b . . 21 p ~ s e n l .csp.cily It rlllnll in o*.rplrUUIe. \nOwll. I h l ~ b n u l r r l u r tll h d d br C Q I~ IU~~~ Vrlvrr -ratin# low ovsrprruurrs und " c h ~ k r " :l ? r r r latiw for,. orarprnrur.r 01 k r c l h r n 10 p r c m l muuld br r*odcd

ar Censrant Barb.?rrssur~ Silin9 Figure for 2) plrtr"t arrrpr.,~~r. on Ilabnr.d B b l l o r s s o f a ~ ~ - l r l iVdO ~ * * S

.votiobl.

torlorI ( .

(Liquidr Only)

*I

&5

.Capocity C o r r t c l i o n l a c l o r - Due prcrlur.

Volr.1

lor

Rcli.1

ond

in l i q u i d Scrrlcr

10 0v.r. Salefy.Rrliel

I

. -.

TOTAL

Revision :

PROCESS ENGINEERING DESIGN MANUAL

0

P a ~ s N o:

: 2/~5

9.15

FLAW AND RELIEF

TEPIDPIEXPISUR

Dbrc

I

1

I;:

5

0

I P

LO

15

20

GAGE BACK PRESSURE

x

25

30

35

BACK PRESSURE

40 PSlC

45

50

,IPSIG

Norr: Thc abov curvcr trprrprnl rn romprnmlu or lhr ralun rcromnnded by a nvrnkr 01 rclicf wal*e mrnvi=rlutcr~ehd may be uwd when lhc mabr or ral-e or the aclubl trilical.l?aw presrvre p i n t I01 ihr rapor or # I 3 i5 unknown. When thc makc i l Lnom. Ihc manufacortr nhwld h comrulrd lor Ihr corrcLlion f ~ c l e t T l n r curves r r r tor rt pnrurc. of 54 pounds p l r sqvmrr #nth *oar and abort. Thty art lirniled to h c h prcnurc klm cril*alnow p*.rure ter r ~ i w n r r pwsure. Fw wbtrfilaczl.flor bmct presrurm b l o w SO paundr p r quare inch -PC. rtu manvfrctu~rr mual br cmsultcd rw ihr v r l u a of K..

I

Figure b,(k-~.r~abl. o r Conrioni 8ack.Prcrrur~Sizing Focror K. for Bolontcd Bellows Sofr!y.R*lirf pars and Gases)

VaIvrr (YO.

1 .o

0.0

09

0.4

0.2

0

0

60 70 80 90 100 BACK PRESSURE. PSI* ABSOLUTE BACKPRESSURE' SET PRESSURE OVERPRESSURE. PSIA XI00 = r X

10

./0

Figure 6 * 6 L ~ o n ' l o n i 8o.k

Only1

20

36

40

50

+

Prelrurc

Siring roctor I(* Far Convrntio,ml ~ . h ~ ~ . r ( e l i sVolver t (Vapors ond Cares

-

TOTAL

PROCESS ENGINEERING DISlQN MANUAL

R n l ~ i o n: Omtm

T EPIDPIEXPISUR

10.

Prp* NO :

: 2/83

?SPES VALVES + FITTINGS

/4Y

A

TOTAL

Revision: 0

PROCESS AND UTILITY LlNE SIZING

TEPIDPIEXPISUR

1. APPLIC,

. -

Datt ;

2/85

'UTY

For a feasibility study a quick e s t i m a t e of the line size will be required. For a pre-project study a b e t t e r estimate of the line s l z c will be required.

-

The purpose of this guide is to size only the lines in t h e process unit.

.

For t h e both the feasibility and prc-project studies a b a q w s AFTP c a n be used :

.

Pmge No. :

.

"Pour le cslcul d e s p e r t c s dc charges des liquidts dans les conduites"

.

"Pour le calcul dcs pcrtes de chargcs dcs g a z dans Its conduitcs"

The line sizing depends on t h e service :

.

F l a r e lints, pipeline end riser sizing a r e not included on this chapter.

2. LIQUID LlNES SIZING CRITERIA S e t Table 1.

3. VAPOR AND STEAM LINES SIZING CRITERIA Table 2.

See

5. T W O PHASE PLOW LINE SIZING CRITERIA The

PvZ c r i t e r i a

f

=rm

as

s t a t e d for vapor lines to be followed with : W

in kglm3

*

W =

WJ + Wv = t o t a l f k ~ wr a t e in kgfh

fl =

W1 =

liquid flow r a t e in kg/h vapor flow r a t e in kg/h

pv

Wv =

and V = Vrn =

=

liquid density in kglrn3 vap?r density in kglm3

mls

Pi = internal diameter of the Line in m. om a n d Vrn a r e respectively the apparent density and velocity of the fluid.

10.1

-- --

.- - Revision : Q

TOTAL

un,,,,

nzlnc

TEPIOPIEXPISCIR

.

Page t4o. :

Datr:

2/83

10.2

The flow regime t o be checked on the figure I for horizontal lines and on the figure 2 l o r vertical lines.

,

For horizontal lines slug and plug flow regimes should be avoided.

, For v t r t i c a l lines slug flow regime should be avoided. Remark : Flow chart fig. 1 and 2 are based on author's experimental results.

5. PRESSURE DROP CALCULATIONS 5.1.

MONOPHASIS FLLID (GAS OR LIQUID1 5.1.1

''ABAQUES AFTP" could be used w i t h the correction of the line diameter

rch as indicated on there ABAQUES.

5.1.2.

Method using MOODY or "regular" Fanning friction factors. a.

Calculate Reynolds number

. -$

R ~ fli . V

Pi

=

line internal diameter in mm

PV

= =

fluid density in kg/m3 velocity in m/s

fluid dynamic viscosity in Cpo Re is a dimensionless number

-

b. Determine the relative roughness :

See Figure 3 -3 & D

Determine i = friction factor :

See Figure 4 4 f =

c.

d. 5.2.

f *=

P=f x7 LOO ;x

&

=

%t

s

bar1100 rn

TWO PHASE FLUlD

Many correlations e x i s t to calculate the pressure drop for two phases flaw, depending of the vertical or horizontal line, ratio of vapar/liquid and pressure and temperature conditions. That is out of scope of this guide and we mention only some authors :

POETTMANfCARPENTER

FLANIGAN

EATON

BEGGSIBRILL TAITELIDUCKLER

LOCKHARTJMARTINELLE quick methods for an estimation are as follaws :

I5 .7

Revilion: O

T OTA L

unuw

PROCESS

slziwz nrtt: 2fg5

TEPIDPIEXPISL

5.2.1.

Pmg? Ha. :

10.3

"ABAQUE AFTP" for gas could be used with the correction of tht line

diameter. Takin as defined in 1 4 and the liquid viscosity as the fluid viscosity. 2 . 2

Method using MOODY or "regular" fanning friction factors.

I t is the same method as on C 5.1.2.

and V = Vm as defined on 5 9

wlth

f.=P" and the fluld viscosity taken as the liquid

viscosity.

5.2.3.

A more detailed method using the Lockhart Martinelli method i s given i n

section 11.0 PIPELINES. i. NOTES

. .

Tubes dimensions are standard and an example i s given on Table 3.

With "ABAQUE AFTP" the correction for the internal diameter must be done and an estimation of the line thickness could be done with the following formula used mainly for

high pressure.

thickness

rnm

Y =

coefficient having values for tcrritlc steels

P =

Design pressure

bar g

Be

external diameter

inch

S

allowable stress

bar

C =

corrosion allowance

mm

e

s

=

E =

:

longltvdial weld joint factor

5, E and Y are not always available so the following iorrnular could be used for an estimation.

t

r

P =

thickness in mrn design pressure in bar g

= corrosion allowance in mm K = 43 for carbon steel and low temperature

c

carbon steel de =

external diameter in inch

54 for 3.5 % Ni and stainless steel

For small diameters upto about 10" usc the thickness given by the schedule on fable 3. For

P do not 'forget to take into account the change in clevstjon for liquld and two

phase 1low.

TOTAL

Reviaion : 0

PROCESS ENGINEERING DESlGN MANUAL

Pw No:

PRCCESS WD ImXLITY

Dete

LXN~IZ~NG

T EPIDPIE XPISUR

: 2/85

30.5

_ _ _ _ _ _ _ _ _ _ _ I _ _

-

fi

9h!

? P? 0

E

4 0

1 5 9 9 N' N-

a

.-,

n

C.hC.C.CA-CICI

s>

3 EUP

NN

= a

22 E

0 0

m*

I?

_ _ l _ _ _ _ f _ _ _ _ _ _ _ _ _ _ _ - - d - - - 4 - - -

e4 &I

2u

b

rn

EC

5 .-

g;aE

9

3

V

G.2

S.$Z E

=if

5:

a

-.'

z 2: 11

0 0 0 0 0 0 O D "

*-=z

=22

+-

$

k

x:3m -___________-_______--------0

I-

i

E E

G

k

ML L U

vl UJ

d

m

w~n

0

= x:!i u OaaS 2

P

5

td

5 n z u ct

0

n < >

'-+vv V O O h a m n a

A

d

RE

w

2 U~ M

~

5oa: .snV gam, o . , .

g .-" U, .*

c

L

8u 2l .-m r a5

go N :

v,,

/3-5

8 8 NP.4 " A

U

g: yg

. ; Z

*0

58 G

E

k k EE 0 0 11 U

.. ; -5 M

4

2

f

v

P

a

..

D rd

On v

M

:

a

n

V

d,

-

.. 5 < s , > _-_________________---------I

EE

W

b 3-k u a v n dVgfi

....

3 z

0

0

A

P I

Revision : 0

f LPIDPIEXPISUR

Date:

2/85

P ~ g No. l :

10.6

7. REFERENCE5 AND USEFUL LITERATURE

,

LUDWIG

.

Flow of flulds CRANE

,

.

"Gas liquld flow in pipelines I Research regults" by A.E. DUKLER May 1969 Publ by A.G.A., API and Union of HOUSTON "Gas liquid f l o w in pipeline I1

- Design manual" by 0. BAKER, H.W.

BRAINERD, C.O. COLDREN, FLANIGAN and J.K. WELCHEN, October 1970,

published by A.G.A. and API

-

.

"Proposed correlation of data for isothermal t w o phase, two component flow in pipelines" LOCKHART, R.W. and R.C. MARTINELL1 (1949) BEGCS , H.D., and

BRILL, 3.P. Manual lor "Two phase

[Low in pipes" 1975 university of

TULSA

.

.

ABAQUES AFTP:

.

"Pour le calcul des pertes de charges des liquidcs dans lcs

-

conduitcs" "Pour le calcul des pertes d e charges des gaz dans Its condui tes"

PEPITE PKOGRAM "CHEMICAL PROCESS DESIGN ON A PROGRAMMABLE CALCULATOR"

W. WAYNE BLACKWEIL, 8.5. Page 22

.

-

"Two phase pressure drop computedqq Mafik

156

SoLirnan, Hyd. Processing April 84

-

TOTAL

PROCESS E N G l N E E R l N O D E S I G N MANUAL

Revirion :

uTmn LINE SIZING

0

.

No :

PROCESS AND

'IEPIDP/EKPfSUR

Date

10qow

:2(es

Iblnr

1

10 .7

.Flsr

rJ.L*m.

*

hvrllonlll t*e-ph~#a no* (b.& m earn hDm I", i'

as& Ha. 10, lBU, D. IhODO I

s, I,DOD

8. Bx.-

210.7

-

0.5

(gO.I66\

WG

BY =

(

0.33

1

SeC P.11.3

7.102 WC

fl V

O E z

OSHINMYO -CHARLES TWO PHIsE FLOW MAP FOR VERTICAL UPWARD f LOW a

D

- P i p Inside durnmHr, inthn

p 1- Liquid dcfisity. L ~ / F I '

xr 4

~ r ~ ~ / f i 1#53[(0, . .

.

+ o , ~ ~ m ~ u]11.5111 [ p ~1'1~0.25 ~ ~

FIGURE

P

1H.I

I TOTAL ( T EPIDPIEXPlSWR

PROCESS ENGINEERING DESIGNMANUAL PROCESS AND UTILITY

LINE SIZING

Fi y r c 3

I

tlevi~mn:

Date

- Relative

: 2/05

I

r *yn

o.tr

.

1

10 .o

rawghnas of pipe

Pip Dim&r, ia Frd -P

-

P i p Djmlel. in lKhn d

I

t

,

.

'

ror mchrdulr 10 9 < 1 4 - m r * mot used n ~ r n . 1 1 ~ mr rolloli.. a i d t . . . are nor c m m r 0 , Y O . I I 31 fox QI lo- lim dl.+rcrr i r c m a n in 2 " incrrrrml.

11

21

>

.______---~

160

2 "2..

3 I/='# 5"

~ e v ~ s i o: n 0

TOTAL

page NO..

PIPING CLASS Date:

TEPIDNEXPl5UR

2/85

10.11

1. APPLICABILITY

as shown on a PID line whtn the f . i ~ i n gmaterial class document does not exist. This is generally the case for

The purpose of this chapter is t o determine the piping class uscd

feasibility arid pre-project studies.

2. CLASS NUMBERING PRINCIPLES (From DD-5P-TCS-112 "PIPING MATERIALS CLASSES") 2.1.

GENERATION OF NUMBER The class number shall consist of a capital letter representing the ANSI series and 5 two-digit number representing the main material entering into the composition of the material used for the valve bodies, tubes, fittings and flanges of the network in question. Example :

-0

.. ............

Series 150

01

. ....,........Carbon steel +

The tables below give the letters and numbers to be uscd for numbering piping

Claases.

2.2.

LETTERS representing the series of the class Series

1 125 1 150 1 250 1 300 1 400 1 600 1 900 1 1500 2500 1 1 1 1 1 1 1 1 l I

Traring

I

Symbol

2.3.

A

B

C

D

E

F

C

3 1

Y

NUMBERS representing the main material of the class 01 t o 20 21 t o ir5

: Carbon steels (ordinary, galvanized, normalized, etc...)

56 to 70

Stainless steels : Special alloys (Monel, Hastelloy, etc...] : Other materials (Cast-iron, copper, copper alloy, t t c ..I

f l to 85 86 t o 99

:

Alloy steels

:

Glass Plastic, cement-asbestos fiber, ctc...

*

H

/61

----

TOTAL

Revision : 0

PIPlNc CLASS Date : 2/85

T EPtDPIEXPtSUR

(

Pagr No. :

10.12

1

3 P R U I U R E TEMPERATURE RATINGS The following ANNEX G is extracted from ANSI 8 16-5 1977 (AMERICAN NATIONAL STANDARD STEEL

PIPE FLANGES AND FLANGED FITTINGS).

Far pressure temperature ratings higher than series 2500 tho Iollowing is used 5000 PSI,

10000 PSI,

...(used mainly for well tubing and wellhead).

WOttS ( e l p*rm.aible bul r M rwrarnnendad lor prolanomd vr. n h r * {dl "01 tab. uwd ova, 65O.f {.I n m l t* b* uwd o7.r I M ' F (h) nol io b. uswd er.r 1000.1

m'f SI

Conv..s*n

-

Llo {go1 6 . 8 V I

plls

_

."

.

..-I-

TOTAL

Revision : 0

Page No. :

SELECTION OF TYPES OF VALVES

TEP1DPlLI(PlSU R

Date:

2/85

10.13

1. APPLICABtLlTY The purpose of this chapter is to determine the types of valves used f o r designation on the

PID.

.

valves are used tor two mains functions, isolation and control.

The following is only a guide line for selection of types oi valves which must follow the piping material class document when it exists. 2. BLOCK VALVES

The main types are :

. .

, ball plug

2.1.

gate butterfly

BALL VALVE

Ball valves can be full bore or reduced bore. 2.1.1.

Full bore u x s

.

flare system : upstream and downstream of PSV, rupture disc, flare line if

required.

.

downstream pig launcher and upstream pig receiver.

.

vents and drains on hydrocarbon equipments.

,

piping valves on instruments for hydrocarbon.

. 2.1.2.

utility except water for diameter larger than 2".

Reduced bore uses

. 2.2.

far block valves on hydrocarbon lines if the pressure drop is critical.

Block on hydrocarbon service without solid particles.

PLUG VALVE USES Plug\/alves have the same use as reduced bore ball valves when used for high pressure ( 6 0 0 ~Plug valves can be as~irnilatedto reduced ball valves, Generally, plug valves are the smaller and lighter of the two.

163

Revision : O

To

SELECTION OF TYPE5 OF VhLYeS

. TEPIDPtEXPISUR 2.3.

Page No. :

Date : 2/85

10.14

GATE VALVE USES

.

Gate valves can be used as ball valves except for downstream of pig launcher and

upstream of pig receivers. The vertical physical space requlrcd by a gate valve is greater than a ball valve.

.

T i t h t shut off for ball or plug valves is superior to that of a gate.

.

For hydrocarbon service w i t h solid particles presentor as wing valves on well

heads.

2..

+

For quick dosure purposes.

,

On utility lines tor low diameters < 2"

BUTTERFLY VALVE USES

.

On water lines for service, utility or sea water, generally for diameters larger than 2".

3. CONTROL VALVES The main types are

:.

. .

3.1.

globe butterfly special

GLOBE VALVE USED

.

Control valve used in most Q! cases except at very high A P as defined by instrument group, or on water networks, and compressor suctlon lines for throttling purposes.

3.2.

BUTTERFLY VALVE USED

.

. 3.3.

On water networks Throttling a t compressor suction

SPECIAL VALVES USED Special valves are defined by instrument grwp :

.

.

for very high A P the angle valve could be used for cornpressor anti-surge cage valves could be used.

164

Revision : 0 TEPIDPIEXPISUR

Date:

Page No. :

10.15

2/15

I. APPLICABILITY The purpose of this chapter is to calculate precisely the pressure drop in a piping network. This may be required for either study phase for situations where

A P is a critical

A PI wil

however calculation of process lint

consideration. For most proj-ts

not be

required. The pressure drop calculations are based on a summation K method. P THROUGH VALVES

2.

YALYES OPEN

2.1.

1 I

TYPE

I

K

I

I

I

I

I II 1 I I

GATE VALVE

I

0.15

GLOBE

I I I 1

VALVE

I

I

0. I

I

1,

1 I

2.4

1

P in kglcm2 : Iluld density in kg/m3

1 bar V

P 2.2.

NALlNE

CHECK VALVE

:1.02

1

kgicrn2

: fluid velocity in m/s

BALL VALVE

A P through bell valve with reduced bore : This extract of CAMERON BALL

A

P depends on the valve vendor. An

VALVE PRODUCTS is given as an example.

The example below gives aomt values of the pressure drop coefficient K Lor fittings cncounterd in cylindrical conduits. For further information, refer to "MEMENTO DE5 PERTES DE CHARGE by I.E. IDEL'CIK, EYROLLES idition, PARIS".

A P in kglcm2

PV I

fluid density in kE/rn3 : fluid velocity in mls :

A P=K

ELBOWS

K values for elbows.

I

RID

1

90'

-I

@I* 0.1 + 8

I

I I

1.5 0.17

t

2-36 f f

I

3 0.12t4.721 0.08

t

2.36 f

I I

I 1

1

5

I

0.09 + 7.87 f

II

0.06 + 3.94

f = friction factor see chapter PROCESSIUTILITY -LINE SIZING 5 5

I f

1

---

TOTAL

PROCESS ENGINEERING DESIGN MANUAL

AP

THROUGH VALVES AND

FIlTINGS

Date

TEPlDPlEXPlSUA

3.2. taLr-t

aF

A

T-l-#

:?/as

ra--~*~

S. \I.

-C

'44

Revision : 0

1

%\-

.

s,

$9

~ D H

LI-I

Y'&,= r ,

I

:A,

5

K-~'CI

- $1

-K '

Pogo No :

10,~.

-

*

TOTAL

PROCESS ENGINEERING DESIGN MANUAL

A

Revirion :

o

Page No :.

P THROUGB VALVES AND FITTINGS

TEPIDPIEXPISUR

Date

:2/B5

1 0 .I 7

.

v

3.4

trc 5,ts,

3-lr.4

Q15,

zy2 -L

p

Q

Q,

5 4

vaunl
Cr.*)

a

a)Lku.\

3-lc.2 -

5. =

V.,%.

>S.

br-h

sp++b-a

- '-'. 5.

x . ~ + ( ~ * ~ - 2 ( , . ~ ) - , . b , , ~ ( ~ )

z . l - ( r - sa),

1

.

-

TOTAL

Revmian : 0

PROCESS ENGINEERING DESIGN MANUAL

A P mrnUM

VALVES AND

F l g a No :

PI'ITlNGS

f EP/DPf EXPfSUR

: 2/85

Data

10. 10 4,

3.4 3

-

v.

+--?$ 5.

L+ .&\.

),c

J '.

5,

&=***k

O C ~ C C ~a -. l ,(

= kt

[, *($

- 2,

A --I

M.72

f b

-

K

b)

--

*($r]

~ t r . . ~ h +bic*.h

K

.-

R . [O.%

-

.

5 V.

+

2)

+* 4

~ * q * '

j v.

oql, ( I - 4,

16f

-3

2/,

I 4'. 1 C.

4'

:

0 4

h.

5 & 0.0 v. 5 Ye

)or$

TOTAL .

Revision :

PROCESS E N G I N E E R I N G DESIGN MANUAL

0

P 4 t No :

A ? THROUGH VhLVfS AND FITTING5

Dart

TEPlDPlEXPlSUR

;2/85

Resistance Coefficient. K The rtsisrrnte coclicicn ncrlculatrd by thr formub:

K= r

D

L

V a l m of 1ht Irktion fmor, 1, b r valiovr pipe sizes are lined in rablt 1.17. W l u n for LtD and C. k r Wy ~ n t valwr d were taltulared from thearetical s~nldcratiom.Vllvcl of C. for panialty open u a k u were rnripolalrd from in1 rnultJ lor rtprcrenlrtwe sizrr of brll v a k . Chrn 1 * 18 provides graphic reprcsrntation of vahn pahion *nus the percent of full O w n ires.

Table 1-47

FricIlon Factor Ill

Table 1.3 Calculated Values of t/D for Full Opening Cameron Ball Valves In Full Open Position

m ] T l -.-

.-

~

ro

dm

1.1 8,

I . 8.

I

I .

SC rn

7-

I.I I-

-

'I1 .-1 *#

.. ir

am 5-

in I*

.*

1 11

1.1

IY

1r

1 rn

m

1 Is

I Y Im

--

10.19

.

-

- -.- -- -..

TOTAL

A P THROUGH

v~LVESA m FI'ITINCS

a

TEPIDPIEXPISUA

: 2/85

t

Table 1-5 Calculated Values of L/D for Reduced Opening Cameron Ball Valves in Full Open Position

-

---.... _ --.

mw.

un.

--r

1.7

-

4 9

..1

1.1

m..

3Z.m

*I

aI 'I II5 111

I1

a. 1,s

11 1

11 1

111

11 1

ISP 11 1

I,.

nnm

111 LI

11

, I . "

P*

muu - ~ m4-=d -1

. --41111a -- , i t1 *' nb g:

u.n

I.rlI

11 1

11 1 111

ma

w v u .

-

HI+I

a a l p ~ -

m e w .

F 111m

-1011 --.-m

dI

nI

tl

rnl

n.

LI

1%

111

m*

*!I

I.

UI

*I 3.e

Ita

111

a>*

"'

1,.

11 1

it.

aI

*a

#'*

2 2 19

I. I

11 I

k* 1.1

111

74.n

P. IH

1.,

111 13'

111

I, I m.

I1 7

111 1Y 111 11' 111

In* 111

I.1

H I

I-

nn

1.1

Table 1-6

Calculated Values of L/D for

Venturi Openin Cameron Ball Valves in Full pen Position

8

-,-.

,

A

.

n.

91

Pago NO :

~ * v i ~ i o: n

~ D O C E SE~N C I ~ ~ E R ~ DESIGN NO MANUAL

.

10.20

-

I. . . I I

CONTROL VALVE SIZING

10.21

TEPIDPIEXPISUR

1. APPLICABILITY Tht purpose of this chapter is t o give some formulae to estimate the size and the number of control valves installed for one given service, and to estimate the capability o f the control valves i n case of revamping. The final sizing should be done by instrument people.

2. CONTROL VALVES CHARACTERISTICS Them are determined principally by the design of the valve trim. The three fundamental characteristics available are quick opening, linear, and equal percentage. 2.1.

QUICK OPENING

As the name implies, this type provides a large opening as the plug is first lifted from the scat with lesser flow increase as the stem opens further. The most common application i f for simple on-off control with no throttling of flow required. 2.2.

LINEAR Linear trim provides equal increaws i n stern travel. Thus the flow rate is linear with plug position throughout i t s travel.

2.3

EQUAL PERCENTAGE Provides equal percentage increases i n rate of flow for equal increments of stem travd. The characteristics provide a very small opening for plug travel near the Seat and very l a r ~ e increase toward the fully open position. As a result, a wide rangeability of flow rate b achieved.

3. CONTROL VALVE RANGEABILITY For an estimation only it is common practice t o select a valve i n which the valve opening

. .

at maximum flow is smaller than or equal to 9 1 per cent. For normal flow the valve opening should be at least 60 per cent while for minimum flow, il applicable, the opening should be larger than 10 per cent. If the inlnimurn flow is clor

.

the n

'o or smaller than 10 per cent, a smaller valve should be installed i n parallel with n valve.

For a flow rate the valve opening depends on the valve characteristics and i t is given by vendor i n their catalcgue.

4. FORMULAE

The valve area is characterized by the coeificient Cv (except lor FISHER which use Cg for the gas (see hereafter). The Cv coefficient is the number 01 U.S. gallons of water flowing during one minute through a restriction and the pressure drop through this restriction is 1 PSI. The following formulae are slmpllfied and to be used only far an estimation of the Cv. Some corrections may be necessary for the installation of reducers around the control valve. I f so, the Iormulae given by manufacturcrs i n their catalogues w i l l be used for a better Cv calculatlon.

/ 7/

-

TOTAL

2/85

Drte:

4.1.

Page No. :

CONTROL VALVE SIZING

TEPlDPlEXPlSUR

I

0

Rcvir~on:

10.22

LIQUID

A

1 1 I

- Sub critlcal flow

8

- Critical flow

P v < P Z a n d P I - P 2 < ~ f 2A P S I P I - P ~ > C ~ ~ ~ P S

I

v

. ..Q j PI - PZ

= I

=

CI

I 1

c

v

.

JEZ ~ Ps

critical flow coefficient (given by manufacturers and depends on the

type of valve and the action of valve by increase of variable) cf Pv

=

P1 P2

:

fluid vapor pressure in bar g. upstream pressure in bar g.

=

downstream pressure in bar g.

A pi

= PI

I

- (0.96 - 0.28 @ ) Pv PC

or to simplify, i f Pv < 0,s PI,

4.2.

<

-

APS

PI

- Pv

PC

=

Q

=

fluid critical pressure in bar f b w rate in m31h at upstream conditions

sg

=

specific gravity at flowing temp. (water = 1 a t 15.C)

GAS AND STEAM

I I I I

- Sub critical How PI - P2 < 0.3 cf2 PI A

I

8

- Critical flow

PI

- PI ) 0.5 ~

f P2I

1

I

,--=A 295

Cv

=

-1

GAS

-

(PI P2)(PI + PZ)

I 1 =-,

I

I I

47.2 W

1

JIPI-P~)

I I

( P ~ + Prg ~I

Q 257 Cf PI

C V = 54.5 W

ct PI

G

W = mass flowrate in t h

172

-

TOTAL

Revision:

0

Page No. :

CONlROL VALVE SIZING

TEPIPPIEXPISUR

Date:

2185

10.23

SATURATED STEAM

I Cv

I cv=- 83.7

72.4 W J(PI ~ 2 (PL 1 + ~2)'

r

-

I I I

W

Cf P I

SUPER HEATED STEAM C v = 72.4 (I

t

0.00126

I

I Cv = 83.7 (1 + 0.00126 Tos) W I Cf PI I

Tw)W

PI - P2)(P1 + PZ)'

Cg, PI, P2, Q =me definition and unit as 5 4.1.

G

= relative density (air

T

=

Z

= upstream compressibility factor

W

= =

Tos

1.0)

upstream gas temperature OK = 273

+ 'C

s t e a m weight in tlh s t e a m superheat in 'C

43. T W O PHASE FLOW For sizing, maximum

A

P

-

PI

- P2 = 0.5 ~ 1 P2I

- Without liquid vaporization

&=

I 1 B With liquid vaporization

1

-

1 cv

51.8 W

q-)

I

.

36.6 W

Cg, P I , P2 same definition and unit as 5 9.1. W =

t o t a l fluid flow. in t/h

dl =

upstream mixture density in kg/m3 d=

W x 103 WII dl1

-t-

Wlv dlv

Wll = upstream liquid dl1 = upstream liquid 1 = upstream vapor d l v = upstream vapor

172

flow in kg/h density in kg/m3 flow in kglh density in kg/m3

i

~ O T 11 A p m.ouci.

Rkvilion : 0

v,uvis

rrmNcr

d2 = downstream rnjxturr density in kg/m3 d2

=

W x 103 W21 w2v -+d2 1 d2v

W21

r

downstream liquid flow in kglh

d21

t

downstream liquid density in kg/m3

W2v t d2v

4.4.

=

downstream vapor flow in kg/h down~trcamvapor density in kg/m3

FISHER FORMULAE For gar 'FLSHER" use Cg instead of Cv

C1 = valve coefficient (given by catalogue)

-c ]

W

Cg = 0.4583

dplsin

3

dag.

W =

gas flow rate in kglh

d = gas density at upstream tanditions in kg/m3 PI : upstream pressure in bar (a1 P2 = downstream ptessurt in bar (a)

5.0

REFERENCES AND USEFUL LITERATURE

-

-

Vendors documentations

CPSA chapter 2

rPage

No. :

TOTAL

PROCESS ENGlNEERlNC DESIGN MANUAL

tEPlDPlEXPBUR

Revision :

Datw

-

/,-=

: 2/85

Plgr No :

-

-

TOTAL

Page No. :

Revision : 0

PIPELINES

. 7EPlDP/EXPISCIR

Oate:

AP

and A T calculations will may be necessary however to make an

For both feasibility and preprojcct studies, long pipeline normally be performed using PETITE or RESEAU. I t

11.1

2/85

estimate by hand. Details are glvtn below on how l o proceed on this.

I

2. PIPELINE PRESSURE DROP FORMULAE

2.1.

GAS TRANSMISSION

there exist many methods of calculating arc :

hP

for gas transmission lines. Some of these

American Gas Association Formula

Wcymouth

Panhandle 'A' and '8'

Darcy

Colebrook Below is given the Panhandle 'A' for use : r 11.1539

Where

Pi

s

P;i

=

C

=

Ts ps T

= :

L rn

=

q d Z E

r:

=

=

= =

Upstream pressure bar (a1 Downstream pressure bar (a) Specific gravity of gas K (273 K or 298 K) Base temperature Base pressure bara(l.01325 bar) Gas flowing temp K Pipeline length krn Flowrate at Ts, Ps bast m3/d (at Ts, Ps) PIPELINE DIAMETER crn Average gas compressibility Efficiency (0.92 for a clean line)

The formula does not fake into account the pipeline profile which, i f significant, can be added t o the A P calculatcd if required.

I

22.

LlQUlD FLOW IN PIPELINES

Use Darcy equation :

M

= Mass flow

kdh

F

p

=

kg/m3

E

D

= lim id

AP

z

Density

pressure drop

crn barlkrn

= '=

Moody friction factor

Absolute roughness (KC page

= viscosity

em

10.8 and 10.9) CP

.

-

1

TOTAL

Reuis~an:

Page No.:

PlPELlNES

2/83

Date:

TEPIOPlEXP~SUR

Re

0

= 35.368 x M

F = 6@lRe F

x 0

i

-----a*---

1

( 7 i ~ e I . 9+ (0.27 E/D) 0

=

2000

=[(31~d12 + i/(A+B) 3/21 1112

Ln

with : A - 2.457

<

for Re

I

11.2

for

Re > 2000

l6

(37530/~e)16

BE C A R E F U L when using friction factor charts as confusion arises

between MOODY F and FANNING F' : 2.3.

F' = 1/4 F

HORlZONTAL

T W O PHASE

Estimating 2-phase flow

A

P by hand for long pipelines

is not recommended, a8

the flow characreristics and equilibrium wUI alter along its length. However an estimate of

A P can

be hand calculated providing the phase regime is fairly

stable.

Given below is a calculation method based an LOCKHEAKT-MARTINELLI-

BAKER method. This method can be used for both longpipelines (stable regime) or process lines.

METHOD

A P2 PHASE

-

A P HORIZ

+

APVERT

1

Evaluate flow regime and adjust Pipeline @ if required

2..

. a ~ c u ~ a t eA

P ~

3. calculate &pr 4. Calculate ( ~ P ~ / P P ~ I ~ ~ ~ 5. Calculate

AP

2 PHASE

factor....

:P H

6. Calculate ApVert factor (vertical section of pipe)

For convenience pipe ids are in crn viscosity is in cp.

/7f

-

-

-

11.4

1 1 1 1 1 I

(W

Vs=

I 1 I II

+ m) W1

=(&)f

I I 6. CALCULATE LOADlNG FACTOR WS

I I

WS

I I

-

I I

I 1 II x = C.\\S

I

I I I 1 1 I

I

I

1 I

1

I

II

I I I I I I I 1

I 1 I I

1

I

1 1 I

I

I I V3 = average velocity I

VS = !-!. 0 3 ;n/s

I ws=7?123 1

W i x 0.205 A

r

I I

I I

5. CALCULATE X RATIO

x

I I 1

1 1 I

4. AVERAGE VELOCITY

1

7. CALCULATE PH FACTOR FOR HORIZONTAL FLOW L

(

TYPE OF FLOW I

I I

1 I I I

I

I I 1 II [

I I 1

I

I

W..S€D

..I

Rt

[..UP



I I

i

BUCBLE

*X

Oltl.

wbl

ANNULAR

FLOW TYPE = b;si'f52rb

b

e

. m

-

.1.*1.*

b.&-&Wd 4 3

Q

LI,.,~"

~4 1

#]I

mu.

1-3I

*'' I

-- -

I

1 I I

D+S5J

Ey+- - I

WAVE

I

fS

I

PLUG

HI.=.&

~h

WG

]A?,

II

-

A

- -

-

rk Fn * 0 . 2 1 1 1

- -

-

hhs

-

-

FLOW f YPE =

7

A PZH =

A ..

=S.t54

rn

I 1

m ~ ~ p w~ h~ ~1. >

8 . -CALL . 'LATE ~n FACTOR FOR VERTICAL SECTION

i1

Fw

-

I x I I

SECTKIN

I

I I I I I I I I I

I

. . X

V i r m h D i n cm

ra.9 "'/a (x) I I R N P . ' ~ ~ XD in D i s p r r d 1l@r

APH,.

a19

t.510

to 1-1 PH r m .

Horizontal

:

Vertical

:

TOTAL

1-r 8 1 \.St0

A PZH =bpGx PHZ

A PZ,, = ~ P xGP

&P = (ApZHx L +APzv x h)/1000 =

=

H =~

1%3 4 0

o.ri>

bar/km

I

I I

bar

1

PROCESS CACCULATlON SHEET

OAT^

TWO PHASE PIPELINES P CALCULATION

ITEM :

Ilao T I T L ~. rzniirr i

JOB NO

I

barlkm I

/SO

TIC~W?T)tC'€lP~SUR

c nx

PH z pH,=

I I I I I I I 1 I I I I I I I

I I I

9. CALCULATE TOTAL TWO PHASEAP

m@/ TOTAL IV

WAVE

3-793

bar/km

YLRTICAL

I

1 I I

I 1

I STRATIFIED I

,

I

I

I I I I

I.Pf8

=

PH

I I

Sheet 2 of 2

NO. :

Itv

TOTAL

Revision :

0

Pmgt No. :

PIPELINES

TEP/DPIEXP/SUR

Dare :

2/85

I I.5

3. TEMPERATURE PROFILE For detailed and accurate AT and hP calculations in 2 phase lines buried, subsea or in air the program PEPITE should be used. The hand calculation method presented on pages Il+6, 11.7 is accurate t o wllhln 10 96 for both gas and liquid lines. The procedure is easily adapted t o a small pragrammablo calculator and increases in reliability the greater the number of segments used. The fold #ingshould be remembered when designing pipelines,

.

For long pipelines assuming isothermal flow can result in overdesign in pipeline sire and

A P.

.

If the plpeline is constant with regard t o material, insulation and burial depth along its route a fixed thermal conductivity (k)can be assumed.

.

For gas pipelines the internal film rcsistivity is negligible - Ignore it.

.

For all steel pipelines the resistivity of the metat 1s also negligible.

. .

Small plpelines 1< 20") have a large heat flow compared to the specific heat of the flowing medium. Consequently the gas w i l l reach ~roundtseatemp in a relatively short length. For large pipelines the converse is true and a long distance is required t o reach ambient. For oil and small gas pipelines the asymptotic temperature Ta is that of the surrounding medium. For large diameter gas tines, Ta d e p n d s largely on the JwlrThompson effect.

The attached calculation sheet can be used for hot lines in cold surroundings or vice verm

For subsea pipelines, epoxy wrapped, concrete coated resting on the bed an overall heat transier caeff of U = 10 I S k c a l / h m 2 * ~is a good estimate for calculation purposes.

-

/r1

+

-

?.

11.6 Coverinn Mcdjurn :

%,?.

b

y

DATA -

AY

0

h PI

P2

AP TI J

)

Tg

Total pipeline length No of segments L e n ~ t hper segment Total elevation change Pipeline diameter Pipeline diameter Burial depth to c e n t r e

rn

= 2aa.o

m

=

ins rn

= 3= 0.16~

m

=

=&

-+ m

losoa

= a 1-a

-

GAS FLOW

I.tl

bar

=

OC

= A?

Valumetrlc flow Molecular mass M Mass flowrate Cp Speciiic heat

10

FLUID JOULE THOMSON COEFFICIENT = (set fig. I , page 11.8)

I I

-

5

I

= tkT/ln[n + (x2

I x I s 1

- l)f)

I

.at flow ratio per unit a

1

1

I

II I

I I

I

( a

c

=rrHti ~ ~ - 1

1 I 1

I I Ta=-hI°C I I I

T2 I

4. Calculate downstream temp

T2 =(Tl

I

I

- ~a)c-aL+ T a

I 1 Repeat steps 3 + b for each segment I See s h e e t 2 for stepwise spreadsheet I

m&u TOTAL m z 3 sun

I T2 =bl.kqC I

I I

kcal/kg*C* 0.6

o.ooao5)

:o-L<'~lbrr

I I I

NOTES

I

1

k

kcalhm~ I

I

1.99 0.022 0.508

I 1 1 I I I

0.30 1.49

1 1 I

I

I I I I I I

I I

f I I L is segment length I j = 426.5 & I kcal I

I I I

I I I 1

1

I

I

I I I I

I I

I I I

1

I

1 t?2 PROCESS CBlCUlATlON SHEET

BURIED PIPELINE AT CALCULATION

1

I Sheet 1 of 2

ITEM Ho.

T€PrmP*oIPEX@

CHK

m3/d (std)s ?d 0-e = tq kg/h = wcabS

:3.33 Soil = 5 keal/hm°C 1 Air I Water I Sand dry I Sand wet

I

I @@ I 1 a = r/MCp (liquid or gas1 I I 1 3. Calculate Asymptotic temperatureTa 1 1 Ta=Tg-(JbP+Aylj~p)/al

x

I I I

VALUE

I

1 1

1 1 2. Calculate .

rc *F/IOOOpsi (

s I I

I I I

07

Volumetric flown3/h = Density (av) k8/m3 = M Mass tlow kg/h Cp Specific heat kcallkg * C =

bara = L o bara = l a

Inlet pressure Exit pressure Total plpeline Initial Temperature

I

Temperature * C = \O Therm. cond. kcal/hmnC = 1 . Lq

LIQUID FLOW

I I STEP t I I 1. Calculate heat transfer Iactor 1 1 x = 2h/D

I 1 I I

k

-+ TI,?.

L

-

C

L

q

OCTE

108 TITLE

tsAdl€

100 Mo

REV

-

.

11.7

AT.

ITERATIVE CALCULATION LOG FOR A BURIED PlPELlNE

I

I

SEGMENT N*

I I

I I LENGTH I I I I

I

I

I I

1

1

I

2

I ,*eo, I

3

I

I

I

I I I I

I

I 1 1 I I

5

I

8

1 I I I

9

I

I

a

,..a

41.0

I I 1

I I

I

7

1 I 1

I

I

I

1 I I

I

I I

I +QT£.

)

b r

wrfc

a

c

t

..In1.1.c\*i

PC I I I ~ ~ C. hIs0 t u v P L t O \ * ~ ~ 3 .*,I uc~.o,. . hu

*td

I 3 ~ 16 3 0

I

I

-

I

I

I

I

I

I

I I I I 1

I I

I I

I I 1 I 1 1

I I I

I

1

1

1 1 I

I

I I I I I I I I I I I I I I ! I 1 I

1 1

I I I I I I 1 1 I 1

1 1 I I

I

I

ou

1

1

1 I

Cp -1

PP L q . 4

I I

I

I I

I I

wnrd

I I

I I I I I I 1 1 I

I I I t 1 I 1

I

I

I I

I I I 1 1 1 I

I

I

I

I I

I

I

I

I

I

1

I I I I I 1 1

I

I

I

I I

I

I I I I 1

1 I

J

.

I I 1 1 I 1

I

1

I I I I I I 1 I

1

IAI.L II -

1 1 I

I I I

I I

I 1

I

I I

I

I I I

I

I

I I I I I

I

PZ

A

I0r r

I I

I

I I I I

I I

I I

I

I

I I I 1 I

10

1 I I I I I I I

I I I 1

1 I I I

~

13s

~3

I

1

b

1

1 I I I

I

I 1 I I I PI I T I I Ta I T2 I I I I 1 I I

1 I bar a l ' C I 'C I ' C I b a r a l I 1 I I 1

-+ m

I I

m

I

4

ELEVATION

J

I

I I I

I t

I I I I

I

I I I I

I I

kl

LWU&JC

4

4

j.L~liv~

l r

&

1

<>

PROCESS CALCULATION SHEET

BURIED PIPELINE AT CALCULATION

CHK

oa~t

ITEM

uo

flP'OOP'D~?'ta~~sun

II

Sheet 2 of 2

I roo

TITLE

t s ~ ~ t * i L

JOBwo

I

ntv

I

d

r

Revirion : 0

TOTAL

Page NO. :

PIPELINES Date :

2/85

11.8

4. LITERATURE AND USEFUL INFORMATIONS

9.1.

LUDWIG YOL I chapter 2

4.2.

CAMPBEL VOL I chapter 12

4.3.

KATZ, HANDBOOK OF GAS ENGINEERING chapter 7

4.4.

CRANE MANUAL

4.5.

"Equations predict buried pipeline temperatures" GiKinp, 043 March 16, 1981

8.6.

"Two phase

Soil

hP computedM

1.19

Wet soil 4 9 Ground -> air 2.98 G r w n d --> water 29.8 Steel 38.7 Epoxy coating

0.67

Caai tar

0.22

Hydrocarbon Processin)! April 1984

R. Soliman

concrete

0.65

sand(dry1

0.30

sand (wet)

1.C9

Air

0.022

Water

0.5 10

-

1.19

'5 1

ri 2

loule-Thornson coefficient' r

m.*--

Specific heatso \

f

*

'*-.Htlwa--

4

I

0 PI

ra

Pr ~.mol*l.rollml.IDP2.OPI

-c

*

DI

-

rn

b)lm.ut411nIJPIm *

I

-

TOTAL

PROCESS EHCINEERlNC DESIGN MANUAL

TCPIDPIEXPISUR

R.risim :

bat*

4

12, PACKAGE

UNITS

: 885

P q r No :

-

-

TOTAL .

Revision : 0

Pagt No

Date : 2/85

12.1

DEHYDRATION

TEPIDPIEXPISUR

I. APPLICABILITY For many studies undertaken there wifl be a requirement i o r 8 gas or liquid dehydration unit i n ardcr to reduce the water content of the export phase to acceptable limits for pipeline transportation. Generally this design will be undrrtaken by a vendor sperialist. However the engineer should be aware 01 some o f the options available for dehydration schemes, some of

the dos and donts of design and also how t o undertake the basis slzlng of the most common unit (TEG). The majority of this section i s concerned with gas dehydration using tri-ethytene glycol contact, this being the most widely used. 2. GENERAL DEHYDRATION NOTES

(English units ate used throughout this section for convenience)

, Gas is normally dehydrated to 6 to LO lb af H20 per MMSCF in order to prevent hydrate formation in gas tranrmlssian lines, and reduce corrosion. Unless the gas is dehydrated liquid water may accumulate a t low polnts and reduce the flow capacity of the line. Methods of dehydration i n usage arc : I. Adsorption 2.

Absorption

(Alumina, silica gel, male sieve) (di- or tri-ethylene glycol)

3. Direct cooling

4. Compression followed by cooling 5. Chemical reaction (for method injection see 4.0) The last three methods have minor usage and are discussed elsewhere in literature.

.

A sumr,

y of the advantages and disadvantages

of various absorption liquids i s given in

Table 1. Tri-ethylene glycol is the preferred (mast widely used) absorption liquid. Example flawsheets of di- and tri-ethylene glycol arc given in Fig. 1 & 2.

.

In order to limit the overhead glycol losses a max practical operating temp of 38

*C(100

'PI is used. A maximum of 50 'C (50 @ F )i s recommended t o prevent problems due t o t h t glycol viscosity.

.

Glycol losses arc usually i n the order to 0.012 gaIfMMCF (0.0016

r n 3 / ~ ~ r n 3due ) to

vaporisation and loss in the overheads. Total lossea due to leakage, vaporisation, mlubility run around 0.025 gallMMCF (0.0033 r n 3 1 ~ ~ r n ~ ) .

.

Concentrations o f TEG upto 99.1 % can be acheived without the use of stripping gas. For higher purities gas w i l l be required.

if?

'

TOTAL

Page No, :

Date: 2/85

12.2

DEHYDRATION

~EPJDPIEXPISUR

.

Revision : 0

Glycol foams in the presence of light hydrocarbons. This can be minimised b y goad

feed

prescrubbing and addition of anti-foam agents.

.

Actual gas e x i t dew points are usually 10-15 ' f (5.5

-8

'C) above the theoretical

equilibrum dew point. Take this into account when setting the specification.

.

The number of trays (or packing height) is usually small I 4 trays) an excess of either is always provided i n the design. Recommended efficiencies are 25 % l o r bubble caps 33 113 % for valve trays. Use 24" tray spacing*

, Regenerator temperatures should not be above 400 'F (204 in order to prevent

#CC)at atmospheric pressure

-

glycol degredatjon. L i m i t heat flux to 5000 7000 BTUlhft2, aim tor

-

6000. Provide a t least ZOO0 BTUlgal pump capacity.

.

To prevent hydrocarbon condensation i n the glycol feed maintain at 10-15

.

'F (5.5

- 8 ' C ) abave the gas exit.

Regenerator s t i l l column should run at

220

the inlet temperature

'f (104 'C)a t top to prevent loss 01 glycol

but maximise water rejection.

.

Glycol clrculation rates should be between 2-4 gall/lb t i 2 0 removed (3 i s a good number).

3.

PRELIMINARY SIZING CALCULATLONS An exact sizing of a TEG unit will normally be performed by the vendor on request. The CFP lnhwse program "GLYCOL" also exists Ior estimating vessel sizes, circulation rates

and utility consumptions. These arc based on data from the B5+0 design guide. The following hand method can be used however t o estimate the required size :

1. Determine water content 01 inlet gas t o contactor a! required temp and pressure Fig. 7 Ibs/MM5CF, k g / ~ ~ r n 3 . 2.

Calculate total water mass in feed gar to contactor

3. Repea: nlcuiation lor exit gas using required exit dew point (add 10 "F contingency). Calcula. dew point depression 'F, 'C.

b. Calculate amount of water to be removed in contactor. 5. Use 3 galls f E G / l b H Z 0 evaluate glycol circulation rate.

6. Use Fig. 3 to determine required TEG concentration. % Use Fig. 0 t o determine required stripping gaa rate 7. Use 2000 BTUlgall TEG circulated to determine rcboiler capacity.

188'

Rewislon : 0

TOTAL

Page No. :

DEHYDRATION pate:

TEPIDPIEXPISUR

2/85

12.3

8. Use Fig. 6 t o determine number of trays required in contactor and Fig. 5 to determine contactor diameter.

9. Evaluate contactor height (set section I vessels) include integral KO pot in base of tower. Hence estimate weight of contactor. A more detailed sizing method can be found in

CAMPBELL VOL 11.

4. METHANOL IN3ECTION (HYDRATE INHIBITION)

In order to prevent hydrate formation in gar transmission lines the product is normally dehydrated in s TEG or mole sieve unit as defined in previous sections. On some occasions however (wellhead to plant) this is not possible due to the location of the source. If the minimum pipeline temperature is below the hydrate point the inhibition of water i s required. This is acheived by infection of inhibitors to depress the hydrate and freezing points.

.

. .

Common inhibitors are methanol, DEG, TEG. R ~ C Q V ofC ~inhibitors ~ a t the receiving plant ir normal, t h e liquid being then recycled. Econamics of methanol recovery are not favourable. Methanol i s adequate for any temperature. DEG not good below Limitations. Above 10 ' C better as lower vaporisation losses.

-

10 *C due to viscosity

Predict injection r a t e for hydrate depression as follows :

W =

W =

d M 100 Ki+dM

TO uw

v e equation

:

weight % inhibitor

= 'C hydrate depression M = Mol w t of Inhibitor

d

Kt =

.

-

1297 for ,Me OH 2220 for DEC, TEG

1. Predict hydrate formation temp at max. press in line TI 2 Estimate rnin flowing temperature in line T2 3. d r T I - T 2

The amount of inhibitor injected must be sufficient to depress the hydrate point as

calculated above and also provide !or vapour and liquid phase losses due to vaporiwrtion + dissolving. Adjust injection rate accordingly. For glycoI use 0.0035 r n 3 / ~ r n 3 (0.23 I ~ ~ M M S C Fvaporisation. ), For methanol use vapour pressure charts (CAMPBELL pp 159).

/ST

w

TOTAL

Rtvision :

0

Pmgs No. :

DEHYDRATION

TEPtDPlEXP/SUR

2/85

Date:

12.4

5 SOLID BED DEHYDRATION Solid bed dehydration is used when lower residual water concentrations arc tcqulrcd than the over achieved by glycol units. This is generally around the

- 40

' C mark or 1 ppm

residual water. Solid bed dehydration can be used l o r less stringent design requirements

TEG.

providing the cost is competitive when cotnpared to NOTE5 :

. .

LNG facilities always used molecular sieve dehydration t o acheive I pprn H20 or less. Available dessicant medium :

k~HZ0/100 kg bed

.

Bauxite

4-6

Alumina

4 -7

Gels

7 -9

Molecular Sieve

9-12

Beds can be severely degredated

cheapest

most expensive

by heavy oils, arnines, glycols corrosion inhibitors,

salts and Ilquids. i t i s essential t o have a good feed filter or scrubber prior t o entering the dessicant bed. ,

Bed life is usually 2-4 years depending on contamination.

-

Gas flow through the bed is generally downwards. Regeneration gas flows upwards.

This

ensures the water is stripped from the media without having to pass a l l the way t h r ~ l g h the bed. Figures 8 and 9 show a typical molecular sieve arrangement. Regeneration temperature is usually 175 " C

-

230 OC. Too high temp destroys the

media, too low results i n poor regeneration. Table I gives a summary

of operating and regeneration practices.

6. USEFUL REFERENCES AND LITERATURE 6.1.

~AMPBELLVOLIICHAPTERS~~AND~S

6.2.

HANDBOOK OF

6.3.

PERRY

6.4.

GAS DEHYDRATION

N A T U R A L GAS ENGINEERING, KATZ, Chapter "Fire tuning existing fleld installations"

D. CRAMER 63.

"Cutting glycol costs I"

- World O i l - Jan 1981

C. SIMMONS 0

+ C3

-

Sept 2 1 1981 Sept 28 19111

"Cutting glycol costs 11" 6.6.

16

"Correlation eases absorber-equilibrum dehy4ratian"W. DEHR 0 + 93NOV 7 1983

1Yo

line

cales

for

TEG

natural

gas

--

TOTAL

PROCESS ENGINEERING DESIGN MANUAL

Revirion : 0

/

Fagr N o :

DEHYDIUTION

TEPIDPIEXPISUR

Date vrn

CCYT

n

avca

12,5

: 2/05

WIMT

no. g no- *tar b h i a h y l w m glyml ddtydrerian plant i C o m M omd lwrmrw.

.

s r m u ~ ?a wm*cu IAD D r s w w w m r LtWlD

C.IC1-

MVMffiU

Chlor14.

L L ~ L I P cU.111.

U#i c.pst1ty

1.1

b . = . = . . . I . . I.*.

UI.~

k t b71rmlit14 l l m i l f kr

10-xr p*.c.nr

MU

00-11 ?.rr*.r

WC Umt-r

t-v..

wht I=l.mm.L..

.I

-tw

L o n - i m ~ cI11wL..

1.1

pu~%fi..

I . .1 .

a . ow.lln.

Di.lh,L-.

Clw-1

Lubl. SI

..lIdih

is c o 5 ~ 1 r . c d

wlrcm. IC.bI. L. p.m.-.

d .UIlrrs .I u-1 e+.r*tw ta?-mtw-. ant-

.rl

cq

I.

mwr brr-.r* Can? w n uii I

I

b*. n m l U i I ~ im .m.emcr.s*4 1 1 m t h . Bnmbb Is V.UY* 01 o r i t u . EW1.1c q a t w r u l 0p.r.t1.# i"~.t.*..... I I B h I ? hY11.rm.lc m a i l l r.ll.rmt.4 c- I t y r C"t

.

t.pemair= 1 .lY1 1 ..

Y ~-.rej.l

11.1..


-1".

D.h~dt.t..

bullltl.~I i c b e l l , Cerrmd.m ~1rrrrsl~~lc.ll~ la" I . . pll. I.p.I..II hlr*mn rdlU.'lsru 11.=1piI.Imm

.,...

1.-Y'C

e*. .IS .lalr-*arol~.

Ol?col r4doc.e

TABLE 1

DIYWUI*DU

nu, lyhlvp l ~ l l

3-10 l m r = * m *

- urarrrm rxwwr

UI"th.

C.*q l.t -11 llmh i.r v1.c 1.~~10111

sarrl n . r mlrmel.

Ciur.r

I..

rk..

r l t b rrhthrl...

L 1 d z . d 1.r i r ~ r t i s a puxpom*m l

I.

mnmr l.bllr.mim. r r himh rq.a.*.rlam chp.r*tur~. me.4.1 rmrra.1r 1 . prmblu. D.I pist d.pr.111m 1. 1hLt.l a.1 1.~. t h e lie t=bt h r l w 117~m1.

Calr, e m # w u t r l h l m r i l h t r l m t b l n a t11101. n t . Ia -1 r t r n t s a l n l r r r ir & l o t w o 4 m#.U?.

.,...,

i in I... th.. t s i m * w ~ - s mimm~ namb i m i r v l *em& k. ,.Id

.I,b

li'h l m i 1 h 1 a w l w i b i t m so- r-mi., t-d*=, is ~ t u =a . -1 Itmhr L l l t a c ~ t bIlqrli.. ~ bf ~ m l m m*IWL mu*= -ltll* b1 1 4 d d .

!

!

I

TOTAL

PROCE5S ENGINEERING DESIGN M A N U A l

Rtvision : 0

Plgb No :

DEHYDRATION Date

TEPIDPIEXP/SUR

: 2/85

12.0

a f 10unt 0 I I A Y D O R I*CI(INC RrOUIRIO TOR

I

--

-.-

II~Y~.

.

..

7 ../.

rant

unm err w m . *C ca.rm< or w m.m * r

I q4

s t u r - l -9.

OLlCOt D E H I O M T O R S

1

TOTAL

PROCESS ENGINEERING DESlON MANUAL

DEHYDRATION

I

rm Y

r

12.9

-

maw

rmwr

m m

1.r h e 1 1 1 . 1

1

I,**,warn

mllrnm

n.p

iIPi

I

I

mlo~vllt

m~*rlr..

, ~ M M

n.~.rm

!w*n mn

tu r w r * M r Sornmm-W r ~-WIII*LIC.*I. rmrlu(Wmmm

rrmln

n r m r n

!u#lanl,

r.ll"lm~*

{*I

o w

rsllmuhnu=b.r

,. Irldk r.mn Y W lawn vie

I

**I

rrn~11~m

I

a , r n w < ~ j*m11* rel="nofollow">1

rrmy ldmi

: U

: 2/85

Date

~ E P ~ D P'{SLIR ~E

I

Pngo t4a

Revision :

d w l h * l * l W y h

Y h""lhl

I* M.

I

11111.11

I.,WY*


n,, .

" * c m

I ".*imn mumw-u,,lma. *,whdId

C(m,..llw-h

w

1111 r r m n n - a e q Y l l , r * h C

Y

I

)odn

I

I11G.m h k m I I C ~h m l t

11 11 I

JI

s

1

.

~ ~1 1

~ U W IL I

".U."

-.13l

h l d r n n m *

- r .lhrtn

n

C.hnl.P11.11 IM

IU & h l evP

hkd.. r l h ~

,

wdlh

hm Drrrhadam L CFIW LV ~l#lt(wlt lhPm*l

/ a-tm >I m l l r m . 11.

'

I*ICL

'WCUID41

11*111

~nl l .ell,." 11111

I

I

8

fnml

,

ct

,

n(dl.m

I0

hlb*

llm*

R

h l m I I C ~~ k k

:

Y I W W W-a ~ Lmwlm ilmln<18

I

n(tlN

I WIHVIII

.nh

!m l l b h t

*- > I 8 ;I*IttLI. 't

1 ELM

ulw ca.nvn*h I. 1tmr8 IJI hwq I* rlrhrtrlhallr 1Irn.IICmlm"L .(

*a i r m , w IW*

I,1lblUI*lMl*

HI1d nnrmm i m l l , I..,."i.lmy

I

I

ft4r)U

3

Basic Charmtteriattc~Of Kolecular Sieve*.

om*

SAI

IECICLEO QbI CObPIlEiSDI

F,Cdkc q

I C Y t Y N K OllO.lY

O? YOLCCULLfi l l l V l fiV10.p11m

/# r

*

.

TOTAL

RevisiMl:

0

PageNo.:

GAS SWEETENINC

TEPtDPtEXPISUR

Date :

2/85

12.10

1. APPLICABILITY Generally natural gas, or associated gas contain acid components, mainly carbon dioxide :en sulfide (COS), carbon disulflde (CS2) and mercaptans.

(C02)hyi

To obtaln a commercial product, gaseous or liquefied, the gas needs to bc treated t o eliminate these sour components for safety or process reasons. An other aspect of gas sweetening is linked with the development of the C02 injection to improve oil recovery. In this case C01 is extracted by a selective process. This section details different methods available for gas sweetening and lists their advantages and disadvantages. Guidelines are glven on which system to select lor specific services. A detailed sizing method is beyond the sccpt of this section, but can be found in the

referenced literature is required.

2. UNIT The specification of treated gas can be given in grains/lOO SCF for H2s or sulfur content

1 gralnllOO SCF r 16 ppm volume 3. GAS S WEETENINC PROCESSES

Various prwrcsscs a r e available :

-

3.1.

chemical absorption

-

solid bed adsorption

phy slcal absorption cryogenic fractionation chemical conversion using catalyst the absorption process b the most utilised

CHEMICAL ABSORPTION In this type of process, the chemical solvent absorbes t h e acid components present in the feed gas by chemical reaction and releases them by heating at low pressure. T.he main chemical solvents a r e :

-

-f h t Alkanolamines

. . . -

.

Aqueous ?6 normally used -

cwt)

MEA (Monoethanolamine)

DEA ~Diethonolomlnc) DCA [R)(Diglycolamine), {FLUOR ECONAMlNE) MDEA (Methyldiethanolamine) DlPA (Diisopropanolamlne), (AD]?)

or alkaline salt solutions as potassium carbonate KzCOj

146

15-20 20-35 up to 65 15-30 30-50 25-40

.

-

TOTAL

nevirion : 0

page Ida. :

GAS SWEETENING

TEPIOPIEKPISUR

act*

!

2/15

12.11

Alkanolamincs cannot be used undiluted because :

.

I

. lo

-c t o solid s t a t e a t ambient conditions

gtability et high temperature (heating is needed to extract the absorbed acid

gases) wlth generation of highly corrosive products by decomposition. Table 1 shows the advantages and disadvantages ol these p r o c t s ~ s .

3.1.1.

MEA PROCESS ( x e figure 1) MEA solution was the first solvent used and is still widely used. Generally a

I5 % weight solutjon is utilized. a) A d v a n t a ~ e s

-

high reactivity

- good chemical stability

-

low solvent cost

-

publicly available (no licendng fees)

b) Disadvantaftcs

- irreversible degradation into corrmlon products by sulfur components such as COS, C52 - trreversible degradation lor t h e salvent by oxygen (Direct contact with -

air must be avoided) ineffectiveness for removing mercaptans

- high utility requirements - high vaporisation losses - need of reclaimcr t o purify the circulating solution - no selectivity far absorption between H z 5 C02 - foaming problem and

C)

Fields of utilization

- general use

: MEA can be utilized for gases conraining from 60 ppm to

I5 % volume acid gases without COS, CS2, mercaptans and with acid gas partial pressure up to 100 PSlA currently maximum capaclty for a MEA unit is around 250 ~ 1 0 SCFD. 6 3.1.2. DEA PROCESS

The second most wldely used gas treating process with a tcndancy t o replace the MEA process and some improved processes. Flow diagram very similar t o MEA process without rcclaimer.

14 -7

TOTAL

Rrvlrion :

0

Page NO, :

GAS SWEETENING

- TIPIDPIEXPISUA

Date : 2/15

12.12

a) Advanta~cs

-

-

no degradation by COS and CS2 (hydrolysed into C02/H25} a significant amount af the light metcaptans present on the feed gas is absorbed a good chcmlcal stability a very low absorption of hydracarbons

publicly availabIe

-

no need for a reclaimer reduced vaporisatian losses

b) Disadranta~es

-

lower reactivity compared to MEA and thus higher circulation rates

lor the conventional system (Not applicable to SNEA-DEA process)

-

-

C)

an irreversible degradation of the salvent by oxygen and HCN hlgher utilities rtquirelnents no selectivity l o r absorption between H2S and C02 foaming problems

Fields of utiiization The DEA process i s used t o treat gases containing H25, COZ and also

COS, CS2, RSH (up to a total acid gas content of 20 % volume)

Hz5 content of the treated gas lower than the normal specification

requirements 14 ppm volume) can be achcived. The CO2 content of the treated gas can be as low as to I00 ppm volume. Performance of the

process depends on the C02/bi~Sratio in the feed gas.

dl Improved DrDceSSeS I. Split flow (see figure 2 ) For sour gases w i t h high acid gas content (above 25 % mole), DEA

flow rate can be reduced. Investment cost increases significantly (more equipment, complex columns, increased regenerator height). 2. SNEA

- DEA process.

SNEA company has developed a pracess using a hlgher concentration of DEA (above 30 % wclght). The process licensor claims to give In one step, for gases containing 0 to 35 % of Hz5 and 0 to 35 % of COz, a treated gas matching the most stringent H ~ spe~iiication s (4 pprn by volume).

1qr

TOTAL

0

Page No. :

2/~5

12.13

Revision :

GAS SWEETENING 0ate :

TEPIDPIEXPISU~

3.1.3.DIGLYCOLAMINE

(DCA) PROCE55 (FLUOR ECONAMINE)

The DGA process has a limited number of units compared w i t h MEA and

DEA.

Although in the public domajne, the process was developed by FLUOR and is refered t o as the FLUOR ECONAMINE process advantages and disadvantages to compare with MEA arc :

a) Advantages

-

low solutlon circulation rate due to the concentration (same absorption

capacity as MEA)

-

low utilities consumption

- very low pour point (-b0.F)

- Plants in cold climate areas

b) Disadvantages

- needs cooling of the solution during the absorption phase -

-

high solubility hydrocarbons and aromatics are dissolved high solvent cost.

c) Criteria of selection

Like MEA, DCA reacts both w i t h C02 and CS2 and a reclaimer is required. The process i s applicable to gases with acid gas content from 1.5 to 30 % volume and CO~/HZSratios between 300/1 and O.lf1 a t operating pressures above 15 PSIC. 3.1.4. DIPA

PROCESS

This process has been developed by SHELL under the ADIP trademark name. It is characterized by the selective absorption of H2 S in presence of

Cot-

3.1.5. MDEA PROCESS As with DIPA, MDEA is characterized by its selectivity for H2S i n presence

of C 0 2 . MDEA processes arc proposed by process liccnaors :

-

-

SNEA (Dl UNlON CARBlDE : UCARSOL

lr Y

Reviston : 0

TOTAL

Paga No. :

GAS SWEETENING

TEPIDPIEXPISUII

-

Date:

2/81

12.1b

3.l.b.HOT POTASSIUM C A R B O N A T E PROCESS (see figure 31 A n activator specific t o each process licensor is added t o increase the reactivity o f the ~ l l u t i o n

- BENFIELD (amin@m d other activators) -

-

CATACARB (aminc and other activators) GIAMMARCO-VETROCOKE (arsenic and others activators)

The main characteristic of the process is that the absorber and the regenerator operate a t the same temperature (1 101115'C)

a) Advantages

-

no degradation by COS and Cs2 which are hydrolysed

- no need for a reclaimer

goodthemical stability

-

no reaction with alr

low hydrocrarbon absorption

-

low heat requirements (isothermal)

selective C 0 2 absorption (GIAMMARCO)

bJDisadvantages

-

-

licensing fees required

high water content of treated gas

- no mcrcaptan absorption

low reactivity with M2S

c) Fields of utilization Applicable mainly on gas with high C02 content. Low H2S absorption makes it difficult t o achieve specification of 4 ppm voiume.

Generally a two stage process w l l l be used

-

K2C03 for C02 removal

This dual system (amine

-

/ K2CO3)

arnine l o r H2S removal

can

be

in

some instances more

attractive cost wise than an amine process 3.1.7.

CONSTRUCTION MATERlALS

Carbon steel generally utilized in the chernical absorption units. Regenerator can have a strainloss steel cladding and trays. Rtboller tubes can be stainless, but s t i l l subject t o corrosion. Monel is an alternative by costly, copper alloys shall bc avoided. h

2 00

TOTAL

Revis8on : 0

Page No,,

GAS SWEETENING

TEPIDPIEXPISUR

Date :

2/85

12.15

Generally solutions treating gas with high C02iH25 ratio will be rnorc corrosive. When the C02/H2S ratio is high, 3tainless steel w i l l be preferred far the following

equipment : amlnelamine exchanger

tubes,

expansion

value

internals, regenerator trays and rtbailer tubes. 3.2.

PHYSICAL ABSORPTION In

i

type of process, the solvent extracts the acid components by simple physical

cofltc t and releases them by simple expansion at low pressure.

High pressure and low temperature favour the physical absorption. Table 2 l i s t s the advantages and disadvantages of physlcal solvents. These processes are applicable especially in the case of high acid gas partial pressure (above 5 bars also). Not suitable l o r sweetening at low or medium pressure (10 bars abs) gases containing large amount of heavy hydrocarbons. Can be considered for a selective absorption. The main processes a r t : 3.2.1.

WATER WASH Can be used as primary treatment. For absorbers water wash can be achieved by addition of trays

in the top section.

Because of Its low efficiency, water wash should be used mainly on gases with

a large amount of H2S. Corrosion problems for this process should be considered carefully. 3.2.2.

SELEXOL PROCESS (see figure 4)

-

developed by

NORTON CHEMICAL PROCESS can

be applied to gases

with large acid gas content.

-

has been applied for sweetening of gases containing up t o 65 % of C02 and 9 % of H2S a t pressure ranging from 25 t o 100 bars abs. treated gas specification can reach 0,02 % C02 and 1 ppm W2S. When used to absorb selectively H2S or C02 it can also dehydrate.

-

other sulfur compounds (COS, mercaptans) are also eliminated.

do 1

TOTAL

R r v i s i ~ n: 0

Prge NO. :

Date : 2/83

12.16

GAS SWEETENING

TEPIDPAXPISUII

3 . 2 3 FLUOR SOLVENT

- developed by FLUOR, propylene carbonate is used as t h e solvent

-

primarly intended for t h e removal of C 0 2 from gas containing up t o $0 % volume residual CO2 content arwnd 1 % volumc in treated gas.

-

C02 solubility is higher than t h a t obtained with MEA o r potassium

carbonate.

- c a n bc used

to treat gas containing Hz5 and C02. H2S content would

require a iinlshing t r e a t m e n t douwstrcam t o obtain 6 pprn of H25. COS and rnercaptans a l s o absorbed.

3.2.4

requires an extensive use €rotating equipment.

PURISOL PROCESS

- proposed by LURGI uses n-methyl-2-pyr-rolidone as solvent - ss t h e scrlubility of Hz5 is higher COZ can be c~nsidertda s a rclective than

precess t o r e m o v e H2S even in case of low H2SICQ2 ratio. 3.2.5.

RECTISOL PROCESS

- developed by LURttl, uses a refrigerated solution of methanol as solvent. High s e l c c t i v i t ~lor C 0 2 , primarly used on synthesis gas o r on p r e c w l t d gas (cooling by an external refrigerant c y c l e for example).

- major disadvantage of t h e process, when not integrated in a plant already equipped with refrigeration cycles, needs refrigeration a n d methanol injection.

3.2.6.

ESTASOLVAN

Developed by F. UHDE GMBH uses trl-n-butylphosphate as solvent. Selective process for H2S extraction. li C02 specifications on the t r e a t e d gas ate stringent, additional unit downstream will be required.

3.3.

PHYSIC0 3.3.1.

- CHEMICAL PROCESSES

SULFINOL this process has been developed by SHELL

- involver a physical solvent (rulfolant) and a chemically reactive agent [DIPA alkanolarnine) in aqueoLls solution.

Revision :

*

PrgeHo. :

GAS SWEETENING TEP/DPiEXPISUR .+&

------

Date :

------r*-rrrrr.....-.--

2/85

-..,.- -.

A

12.17 -.--.--

Sulfolane permits deep absorption of C 0 2 and H Z ~Arnir~e . facilitates the

-

extraction of the acld gascs from solvent during repcncration performances for selective and non selective kt25 absorption depends on operating conditions process also permits extraction of mercaptans and other sulfur cornpounds (C05). As tor physlcal absorption, absorption of heavy hydrocarbons

occurs (mainly aromatics). Does not d9hydratc the treated ias. Compared t o smine processes, SULFINOL shows a low foaming tendency

3.4.

SULFINOL solution freezes at about -2.C.

SOLID BED PROCESS

3.4

h4OLECULAR SIEVES

-

not widely used for gas sweetening can be used as a finishing treatment to remove rnercaptans absorption in molecular sieves is particularly well adapted for LPG as finishing treatment to obtain the sulfui content specifications of propane and butane

-

3.3.2.

good absorption capacity for Hz5 low for C 0 2 . They retrlove water preferentially sieve l i f e is reduced for gases with high

C02 and Hz5 content

IRON SPONGE PROCESS

-

-

-

could be also classified as absorption process or as a conversion process (Hz5 is converted to sulfur)

mainly applied t o gas with low H2S content discontinuous process, iron oxide has to be regenerated or replaced. Spontaneous combustion of the fouled product occurs w i t h air.

4

CRITERIA FOR SELECTION OF ABSORPTION PROCESSES

-

there is no multipurpose process for gas sweetening, each case

is specific and shall be

studied accordingly

-

final selection is done on the basis of ccor~ornicalcriteria from short l i s t of prwesses which seem appropriate to satisfy the treated gas specifications

d

--

c.2

-

-

-

TOTAL

Revision :

0

Psge NO. :

GAS SWEETENING

TEPIDPIEXPISUR

Date:

2/89

lLll

k

-

chemical processes are characttrizcd by their ability to absorb acid gases w i t h a Low

-

influence of the gas pressure. They require a large heat quantity for regeneralion physical processes performances are more dependent on gas pressure. A t high pressure with high acid gas partial pressure, the absorption is better than l o r

-

chemical processes

selection criteria listed herebelow can be used for preselection of sweetening processes but shall not be considered as definitive.

4.1.

C02 ABSORPTION (NO HtS 1N THE GAS) (we figure 5)

4.2.

SIMULTANEOUS ABSORPTlON OF CO2 AND H2S (see flgure 6)

Q.3.

H2S ABSORPTION (NOC02 I N THE GAS) (see figure 7)

This is not e frequent situation with natural gases. 4.b.

Hi

ELECTIVE ABSORPTION (H25AND C02 IN THE GAS) (see figure 8 )

Physical solvents are particularly welt adapted in this case. Among the chemical proccsscs, only MDEA and OlPA seem t o be adapted for this

service.

5

REFERENCES AND USEFUL LITERATURE (1)

Natural gas production transrnlssion and processing

F.W. COLE, D.L. KATZ, L.S. REID, C.H. HlNTON (2)

Gas

conditioning

and processing [volume 5)

gas

and

liquid sweetening

by

R ~ B E R TN. MADDOX edited by JOHN M. CAMPBELL.

40'1

i

i

TOTAL

PROCESS ENGINEERING DESIGN MANUAL

Revision : 0

GAS SWEETENING

Data

TEPIDPIEXPISUR

FIGURE 1 YE). P R O C E I I

?Lor

DILGRIY

.. 2/85

Page NO 12.10

TOTAL

PROCESS ENGINEER~NG DESIGN MANUAL GAS SWEETENING

ntvllloll :

Oat

T EPIDP16XPISVR

: 2/85

Pnye No :

12.20

h

TABLE

4

AOYANThGCS CNn W l A P V h H f A G t 5 OF AnwPP7KYI PUC€€S5Ef . . I CHEMICAL J O L Y L H ~

xIt#nl i . c m n e ~ tel i h r q w . r L n y p r t s r w e

~ r r n r v It ~ Lpnw!lw

i

l o a m 6 9 when ihr $alutom t i ~ ~ l l ~ l ~ d l h ~ o r f f ~ r b o n l . . ~ s w " d e d 5011d11

RiL

m rh*

v t r y slicnt ~ b g o r p t i o n01 h r w y hldroc~rbonb~a,8blv w r ~ c n 80l !he feed a l l

C o r r ~ m n mproblems r e s v l t i n ~1r.m ~elulbono.~allmbn l c m 1 1 ~ 1w l l h ,if) a irom mlvrlon ~lp*rhc.ain~hlrmng rtFtnrr*loen.

r l a r r -1 i h r I*W~%ICJ availnbb ir the mhblic o o m l m Irm trrcnMn# I t r r )

Pure

..I+,tequmrrd to dilvlr !he mlv-nl

.lcmd # a r l t o l ~ = n rt ~ u i l i b r i 4 ~.1n . IltlC~aIw.

Hilh

*.re,

.~.ll.blr

in the

H~.tin@ r m u r t d lor wlrefil 1101aEe.

i l ~ 4 ~ 0 ~cog1 b l 01 t mlrmls

TABLE 2 PHYSICAL D V '

.

SDLVLNT~

tGEI

L o w e r u r l y tequtrrment? !or

@~SADVANTAGLI

.

te#emwariam

I

. Ler

I

.

r m r r r r m l e n t of thv

!remt*d

8,s

V o healin# required lor w l r e n t ,Iarqr

c m l m l 01 l h r ~ r e a l t d 11s

n l l h i m l t b i l i l y .s a d d 81s ~ r t i a l prr~~url

.

4bim~1ia.sI h r a w hlrdrcc.~lrbom lram the 1e.d

8Ij

. Highcssr 01 lhe %ol-*nn

--

-

TOTAL

Page No

Revision : 0

PROCESS ENGINEERING DESIGN MANUAL GAS SWEETENING

12.21

: 2/85

Datr

TEPIDPIEXPlSUR

I

.el0 *.I

mamum ue"YYL.IoI

1011

8 . ~ ~ OCI 1

.,u

nut" IOI

*

.11*..1n

IlllL".!

~ 1 0N1I U V ~

IWI C I S

I

11EA"

M O T C A l l B O N L T € PROCESS

FIGURE 3

-

n2$ 6

RESIDUE G A S

AIR

COMPRESSOR 4 HEATER 4

FUEL STRIPPER

aBS0RBER

-

'ICET G A S

COMPRESSOR

SOLYEWT VENT M

O

L PROCESS FLOW FOR HlGW GOl AND MIOM HIE

FIGURE 4

PIR

-

.

.-

TOTAL TEPIDPIEXPISLIR

PROCESS ENGINEEllNG DESIGN MANUAL

Revision : W

W\S SWEETENING

Dale

: 2/85

TOTAL TEPIDPIEXPISUR P

PROCESS ENGlNEERfNG DESIGN MANUAL

Revi*ion :

o

Psgc No

GAS SWEETENING

Dale

: 2/85

12.23

:

Revision : 0

TOTAL

Page No. :

REFRIGERATION Date:

TEPiDPlEXPISUR

2/85

12.24

I . APPLICABILITY For both fea5ibility and pre-project studies, the engineer will be required to select a process scheme k c . : choice between coid frac and refrigeration system) t o estimate the power, utilities, weight af this package,

2.

DESCRIPTION

The description is based on simple cycle. A refrigeration cycle is based on the exchange between a hot source and

s cold source. The

cold source is a refrigerant, the air or rhe

water, the hot source is the gas to be refrigerated. (see figs 1, LA) Figure 1 shows such a cycle where : tl

:

Is refrigerating stream temperature

t2 P~ P2

: :

is condensed refrigerating srream temperature is vapor pressure of the refrigerating stream a t t l

r

is vapw pressure of the refrigerating stream at t2

Pd

:

compressor discharge pressure

td

:

Tl/T2

:

Compressor discharge temperature initial and final temperature of the hot source initial and final temperature of the coid source

TRlITR2 :

On the figure I A , i t is easy to explain the cycle on a pressure enthalpy diagram

A 91

:

is the duty of the process to be refrigerated

A Q2

:

is the duty of the condenser

A Q2 3- MODIFICATIONS

Q1

:

HP HP i s the power oi the compressor +

- ECONOMISER

During the. discharge of the cryogenrc refrigerant, a mixed phase is generated (vapor and liquid). Only the liquid phase participates i n the coding duty. The vapor phase being compressed from low pressure t o the high pressure without participation a t the refrigerated duty. I t is possible to remove a part of this vapor phase by addition of an intermediate pressure stage removing the vapor from the low pressure stage compressor which i s called

economiser (see figures 2 and 2A). An economiser is widely used in the industry.

a ia

-.

Revision : 0

TOTAL

REFRICERAT [ON

TEPIDPIEXPISUR

Date:

.

4.

Page No. :

2/85

12.2s

SELECTION OF THE REFRIGERANT Depends on the required final temperature of the hat source and the disponlbility of the

country where the units are installed. Tables 1 shows the performances of different refrigerants in various conditions. it

is recommcndtd that the compressor suction pressure be maintained abovt atmospheric

pressure. 5. CHOICE OF DIFFERENT PARAMETERS

5.1.

REFRIGERATlNC STREAM TEMPERATIJRE t l AND COMPRESSOR SUCTION PRESSURE P2

tl

to be

3 t o 6*C lower than the final temperature of the hot source 12.

With the selected refrigerant and t l read on the MOLLIER diagram of the selected

refrigerant the vapor pressure.

1.2.

CONDENSED REFRIGERATING STREAM TEMPERATURE t 2 AND COMPRESSOR

DISCHARGE PRESSURE Pd In first, estimation take t2 t 2 to be checked later If it

:

TRl

(initial temperature af cold swrce) + I 5 or 2 0 ' ~ .

Is compatible with the cold source flowratc

and the pinch

of the condenser [pinch are shell and tube g 3 note 2) which should be 3'c minimum. With t2 determine PZ which is the vapor pressure of the refrigerant a t t2 (read MOLLIER diagram). Cornpressar discharge pressure = Pd

: P2

+

P through the

condenser.

5.3.

PRESSURE I N THE ECONOMISER

P,

This pressure w i l l be finalized with the compressor manufacture but for an estimation take

p,

.

!

=

Pi

dI/

TOTAL TEPIDPIEXP~SUR

1

6.

7-----r Revision : 0

REFRICERATION

,

Oate :

Page No. :

-

12.26

2/g5

CALCULATION N T H ECONOMBER (a figure 2A) Step 1 Deterrnlne refrigerant circulation through the evaporator = rn2

W vapor at evaporator inlet

% liquid a t evaporator inlet

=

=

/

.

Hz

-

H3

'42

-

'45

HZ

x 100

- '43

Step 2 Determine vapor refrigerant circulation rate through the economiser = mj % vapor a t econo~niserinlet =

% liquid a t econorniser inlet =

m1=

H4

-

H4

-

HI

H4

-

H5

"I

H5

% vapor at econorniser inlet

m2

x 100

H5

% liquid a t econorniser inlet

=

m2

Step 3 Dctermine refrigerant circutation through the condenser rn=

Step 4

ml

>

HQ

=

-

-

H5 HI

m

rn2

Duty of condenser

A Q ~= Step

+

HI

x

rn

(Hd

-

HI)

Calculate the compressor discharge temperature and power (see compressor chapter).

Step 6 Check the pinch in the condenser and the cold source flowrate (if not acceptable select a new 12 and Pd and repeat the ca1culation). Step 7 Size drums evaporator and condenser (see vessels and shell and tube exchanger chapter 5).

TOTAL

Revision :

Page No. :

0

REFRIGERATION

t€PlDPlEXP/SUR

Date:

2/81

-

12.27

7. SELECTION OF MATERIAL The material selection t o be made carefully. We recommend t o take the temperature corresponding a t the vapor pressure at the atmosphere pressure (1.e. : for propane it 1s recommended to select the law temperature killed carbon steel).

.

MULTISTAGE CYCLE

If we look at the enthalpic curves of the exchanger (precess refrigerant) with or withwt economiser, it i s obvlous t o see that the area between the process stream and the refrigerant stream is proportional t o the compressor work (in a first approximation). It is possible to reduce this a r t a by addition of several pressure levels between the discharge

and the

5'

regulation)

'ion of the compressor. However, there is more equlp~nent(drums, exchangers,

d the compressor

is more complicated.

The number of pressure levels is an economical problem but the maximum i s 3 or 4 selections of these pressures: the pressure ratio between each pressure

Is for a

first

estimation.

7

=ne

n PI P2

= number of cornpresser

suction

= first compressor suction pressure condenser pressure

9. REFERENCES AND USEFUL LITERATURE 9.1.

Gas conditionning and processing volume 2 by Dr. John M. CAMPBELL

9.2.

Applied process design l o r chemical and pctrxhemical plants volume 3 by Ernest

LUDWIG

9.3.

Chemical Engineers Handbook by Robert

21% L

H. PERRYICECIL M. CHILTON

E.

-__-..-.

,

TOTAL,

PROCESS ENGINEERING DESIGN MANUAL

Revision : 0

REFSICATION

Date

TEPlDPIEXPISUR REFRIGERATION CYCLE WITH

ECONOMISER FIGURE 2

EVAPORATOR

ACCUMULATOR FIGURE 2A

: 2/85

b g e No

12.29

-

m

I*

oC

Frean12

Amnia

rcfrSgcntlon

Brrke hovscpol*r pr ton of rtfrlgerbtlm

I

~ i l w a t ~r t ton of r e f rtgcrrtta

s

Pmpylme 1.21 Propane . 1.30

W n i a h p y l a n e 5.59 5-57 to pure Frcon12 6 .

Propylac 7.49 Propane 7.47 F r e m l 2 8.09

2.91

Jamnia

0 D.YOI 0.614 0.363

5.986 1.11 0.868 0.491 -

0.716 1.13 1.2 0.641 -

0.958 1.79 1.41 0.827

1.26 2.21 1.1 1 1.63 2.69 2.16 ,

cOHPARISON OF COmON REFRICEWTS

2.095 3.31 2.63 1.64 2-02

3.M

2-65 4.00

3.27 3.72

3.33

3.22 2.95 2.89 3.23

3.87 4.33

4 3.96

0.206 0.889 0.925 2.2

2.79 2.62 2.56 2.83 1-80

1.75 1.73 1.4

1.60

1.51

1.54

1.55

2.32 2.47

2-67 2 6 2.01 1.99 2.L3

2.15

2.69

2.09

2.08 2.06 2.03 2.14

2.41

2.80

3.23 3.10 3.03 3.31

3.74 3.61 3;43 3.19 2.41 2.3L 2.26 2.47

0.197 0.798 0.807 1.96

0.200 0.199 0.830 0.812 0.853 0.830 2.05 2.00

0.202 0.848 0.875 2.11

0.204

O.871 0.898 2.16

1.33 1.30 1.31 1.37

1.78 7 4 1.75 1.83

0,767

0.780 0.789 1.91

1.12 1.09 1.11 1.16

5

1.46 1.49

1.50

0.776 1.87

0.195

0.196

5.30

5.01 4.92

6.72 6.60 1.11

1.17 1.21 2.8

3-70 3.97 3.86 7

4.24 1.45 4.S 4.66

3.27 3.50 3 . 3.57

4.60 4.78

5.85 5.46

4.38 4.71

2.54

1.11

1.07

0.219

6.25

4.96

0.221 1.10 1.15 2.63

5.32 5.18

5.68 5.96

2.7

0.223 1.13 1.19

3.13 3.66 3.59 3.61 2.48 2.73 2.68 2.74

2.84 3.09 3.03 3.12

2.U

0,215 1.41 1-04

1.81 4.11 4.06 4.18

0.217 1.03 1.07 2.47

0.835 0.830 0.800 0.W8

2.18 2.41 2.37 2.39

3.20

3-18

2.08 2.1D 2.07

1.89

2.78

3.23

1.63 1.80 1.81 1.80

1.42 1.51 1.54 1.54

2.03 2.07 0

1.90

2.54

2.79 2.81

2.92

2.19 2.41 2.43 2.41

0.211 0.210 0.203 0.957 0.234 0.912 0.980 0.953 0.925 2.15 2.27 2.21

0.940 0.895 0.925 0.970

0.464 0.498

0.591 0.633 0.753 0.791

1.32

1.22 1.33 1.32

1-77

1.12 1.11

1.03 1.16

1.38 1.55 1.50 1.49

1.63 1.78 1.77

2.10

0,206 0.875 O.BB0 2.05 0.207 0.894 0.903

0.110

-1.02

0.952 L,10 1.03

0.835 1.96

0.BU

0.204

0.366

0.342

0.362

0.360

0.925

0.761

0.977 0.821 0.933 0.788

0.865

1.24

1.25

1.16 1.31

2.01

0.205 0.857 0.857

0.483

0.483

0.W 0.485 0.49 0.490

0.699 0.694 1.10 0.647 0.622 0.668 0.623 0.619 0.716

1.41

9.03 7.58 4.99

0.648

0.112 0.7OB 1.73

0.768

0.726

1.03 1.00 1.01 1.05

1.26 1.20 1.24 1.24

7.79 6.485 4.23

6.15

0.191 0.191 0.190

3.56

5.51

5.03 6.62

0.721 6

2.97

5.68 4.64

4.11

0.193 0.192 0.153 0.139 0.756 0.739 1.81 1.79

3.31 4-82 3.86 2.46

0.213 0.980 1.01 2.33

Cmdcnaed Liquid T e m ~ r r t u r c52'~; Condenser Pressure *n U r s : L R o n i g 20.8B; R o p y l m a 21.64; Propane 17.92: F r m 12 12.68

tgm refrigerant per alnute prr tan of

3.73 3.72 4.25

h w n e Freos12

Propylmt

LRmnl*

5.10

refrigeration

Xlloultr pcr tom of

4-98

1.98

Propane

Freon12

0.913 0.958 2.28 4.47 4.3'1

Ammia Prapy3ent 5.M)

Brake hwsrpo*s* p t i tcn of refrigcrbtfon

0.655 0.513 0.271

1

W c n r c d l i q u i d T a O c r r t u r t 35%; Condmser Proswe In B*rs i9mPnir 35.58; R o p y l w 14.61; Propme 12.20; Frwn 12 8.48

0.38t5 0.198

0.4%

krsnlr R . o p y l e ~ 0.939 RDWIIC 0.990 FreolLZ 2.35

h n l a Pmpyl*lc Proplna Freon12

kqn refrigerant p t t minute p a r tan of r efrlgcratian

-

I n hrs

P~CISUN

Evamratw

Tap.

Table

0

.

..

3

..

4

0

z!

R Z

'"

m

m

9 '2

Z

z

n2

m

C)

0

v

n

TOTAL

PROCESS ENGINEERING DESIGN MANUAL

Revision : O

REFRIGERATION

Dart

TEPIDPIEXPlSUR

Refriv*ranl Wvlblr

(kR1 mlprutionl

Vapor C 1.013 lrrr

P ~ p eM a :

-1'~

I

-22

r-113

F-111

:2/85

12.31

TOTAL

PROCESS ENGINEERING DESIGN MANUAL

Revision :

-

TEPIDPIEXPISUR

13.

Omre

Page No :

: 2/85

UTILITIES

21 q

-

. Revision : O

TOTAL

Papt No. :

UTILITIES

Date : 2/85

TEP/DP/EXPl5UR

13.1

-

1. APPLlCABlLITY For both feasibility and pre-praject studies the engineer will be required to make an estimate of utility requirements both in consumptions and equiptnent required. This section details e few gutdelints and notes on the following utilities :

WATER TREATMENT UTlLlTY AND INSTRUMENT AIR INERT GAS GENERATOR5 WATER SYSTEMS FUELS 2. WATER TREATMENT

T h e following details the common used effluent water treatment equipment given in order of

effluent quality :

API gravity settler

.

Usually the first line of d e a n up. Simply a settling tank with a top skimmer to remove any floating oil or debris and a bottom skimmer to remove sludge.

,

. .

Effluent quality around 150 microns globules and 150 ppm oil. Large bulky items, cannot be used offshore, Either circular or rectangular in design.

Simple, cheap very common in onshore use.

Tilted Plate Separator (TPS), Corrugated Plate Interceptor (CPJ)

. . .

. .

Widely used both offshore and onshore. Uses plate packs, usually at 45* mounted in a tank and relies on gravity settling between ail + water within the spaces between the plates. €[flu

quality dawn to 60 micron oil globules and >0-200 ppm.

Can have problems with high solids content

it upstream settling tank i s not installed.

TPS units are usually used as the first treatment stage offshore.

Flotation units

.

Uses induced or dissolved air flotation t o remove any residual solids/oil in the cjlluent. Works in reverse to a gravity settler (small air bubbles trap debris and float to top of tank).

22 >

I

-

-,

I

TOTAL

Revision : 0

Page NO.:

UTILITIES

TEPtDPlEXPl5UR

Date : 2/85

Effluent quality better than 40 ppm. Vendors usually guarantee

13.2

< 30 pprn.

Can be used both offshore and onshore. Usually instalIcd downs~reamof a T PS unit or API separator.

Filtration (Use for Water injection systems only)

.

~ i l t r a t i o nunits either uses media beds [sand, anthracite, garnet, walnut shells) to achieve water quality or filters (fibre sccks, mesh, stainless steel cage).

.

IJrwlly not required for effluent water treatment unless very ldw residual solids content eniorced by lacal effluent standards.

.

More commonly used for water re-injection where high quality, low solids level is required. Can achieve 1-2 ppm in certaln beds, 10-15 ppm is more common. Units arc generally cornpacl but heavy due to media bed weight.

.

Good pre-filtration is required to prevent fouling up of main bed units.

Effluent standards

Listed below are maximum residual oil content in effluent water for dumping t o sea :

NORTH SEA

40 PPm

INDONESIA t MIDDLE EAST CHINA

30 pprn 20 PPm

5 pprn (European standard)

LOCAL ESTUARY (river)

Process drains, produced water, deck (site) drains [see figure 1)

.

Produced watcr may need degassing before treatment. If the amount of dissolved gas is small it may be possible to handle it i n the TPS unit.

Deck

or

site drains normally iluw to a separate sump tank before Qe-oiling. If the deck

drainage i s small or produced watcr itow is small, both streams can be combined through one TPS unit.

.

Process d r a l n ~are normally manually initiated and pass directly to the return oil slop tank. These drains are generally watcr free. Always try

3

use gravity iced between units. Pumping can cause e m u l s i o ~and make

oil-water stparatian harder. Similarly avoid fast flowing lines and turbulent pipe arrangements.

22

TOTP I

Revision : 0

Page NO. :

UT1LITIE.S

Date:

TEPIDQIEXPISU.

2h5

13.3

3- UTILITY AND INSTRUMENT AIR (see ligutc 2) C O m p r e ~ f e dair is used on plants lor instrument control, turbine a n d engine strtt-up sod utility services t g : pneumatic tools, cleaning, etc.

:

For turbinelcngine start-up 17 -25 bar supply will be required.

. .

For general instrument and utility air, compressor discharge around 9 bar is adequate. Consumption :use 0.6 scfrn 0.017 rn3lrni1-1)for each air pilot (- valve) 0.8 s c f m (0.022 m3/min) lor valve pasitioner (instrument air) generally 1 m31h per valve unit will do as first estimate. Add 25% to comprcswr capacity for design.

.

Utility a i r : consumption is intermittent and difficult t o estimate a t early project stages. Add 75-100 t c f m (130-170 m3/hJ t o compressor capacity for initial estimate.

.

. .

All plants should have 100% instrument air standby capacity. Utility and instrument air c a n be supplied from same compreswr or separate ones depending on capacity requirement. Instrument air must be dried befare use. Dew point of air b dependant on minimum air t e m p e r a t u r e in location of unit. Generally dcssicant bed driers arc used giving dew points

as low as -60°C.

.

Size air r t c c i v e r s t o give 10-15 minutes of instrument air assuming t h e compressor goes down. Pressure in the instrument air receiver should not f a l l below SO psig (I.>bar g) during this period.

.

For long air transmission headers in cold climates intermediate KO p u t s may be required.

.

An e s t i m a t e of compressor and dryer weights and power a r e given in figure 3.

4. lNERT GAS GENERATORS (N2,CO2) Inert gas i s required in all plants for purging and incrting of equipment. For small requirements Nz bottles c a n be used in racks. This hawever is not feasible for large units and so gas generators must be supplied. The main types a1 generator in use are :

- cryngeni,~distillalion of air - oxygen absorbtian on sieve

-

.

gas combustion

For nlrrging purposes estimate capacity based on 3 times the volume of the largest vcsscl to

bt

lrgtd in one hour.

-

22 :

.

Revision : 0

TOTAL

UTltlTlES

TEPlOPlEXPlSUR

.

Date: 2/85

Cryogenic

13.4

"stillation is used only for large volume requjrtments, $pecifically LNG

plants. Not

.

Page NO. :

ed offshore.

Gas combustion produces a N2, C 0 2 mixture for inerting and purging purposes. Not used

much these days except for onshore large volumes.

.

Pressure swing absorbtion is the must common used method for

N2 generation. Skid

mounted units are sometimes supplied with dedicated air compressor, or can use existing plant air compressor for supply. Air consumption is 4-5 times inert gas production rate, residual 0 2 i n gas is 1-2%-3%.

.

Details and weights of common units are given i n figures 4 and 5.

5. WATER SYSTEMS

Seawater

.

Used for coaling purposes both onshore and offshore.

Can also be used as wash water,

sanitation water and feed to potable water units.

.

Seawater is also used for fire water systems but is usually a separate system. The seawater cooling circuit is normally connected to the fire water ring lor emergency supply only.

.

Always coarse filter the seawater before circulating to the plant. This removes any

debris or rnatine life.

.

Treat with chlorine at I - 2 ppm concentration

- maintain a residual CL- level i n the

water exit a t 0.3-0.5 ppm.

.

S e a w t e r exit temperatures t o outfall canals or drain caissons shouId not be above 40'C

to prevent corrosion.

.

Once thrwgh water systems are preferred for small, cooling duties with only 3-4 exchangers. For large duties and number of units where the cost of corrosion proofing i s prohibitive conslder using a closed loop cooling medium system. Cornmon used i s

- 25% TEG

.

in water.

For cooling medium/~awater exchangers consider using titanium or similar plate exchangers. These are especially ideal offshore due l o reduced weight and space requirements.

a2 6

TOTAL

Revirion: 0

Plgc No. :

UTILITIES Date: 2/85

TEPtOPIIXPISUR

13.5

Potable water

.

Depending on location of plant potable water can be made i n sttu or supplied by tanker lor storage, or taken ditccily from a mains supply.

-

For onshore plants most common method of water supply is evaporative distillation. Problem with these units is size and weight are high and residual

T D5

(Total Oissolved

Solids) is 5-10 pprn. This results 1s a bland distilled water which is not pleasant t o drink. ,

Increasingly popular now arc Reverse Osmosis units (R01 which art lighter and need less maintenance than cvaporativt units. Water quality is 400->OD TD5 (World Health Organization TDS for drinking water i s 500-1000) operating costs of RO unit5 i s 1.5 times that of evaporative distillation.

.

Power consumptions : for a 100 gph (0.38 m3ihl unit. Evaporative Distillation unit Reverse Osmosis Vapor Compression unit

.

IEO) 3.5 kW (XO) I kW (VC)t5

kW

Most common unit ofishorc a t present is the VC unit which i s very reliable and easy t o

operate. Unit operates a t 100.C and is more susceptible t o corrosion.

. .

RO units are relatively new, operate at ambient temperature and has lew mechanical parts lor servicing. Average membrane life is 3 years. Consumption : estimate on 50-60 gallons per day per man (0.2 m 3 ) Storage

: allow 10-15 days for oiishorc units

I0 days for onshore remote artas

.

Potable water can be dosed with hypochlorite a t 0.4-0.5

ppm to inhibit bacterial growth.

U1astt water and sewage

.

Before discharging to rivet, sea, or underground sewage + waste water must be treated t o meet local health regulations prevalent in the area.

.

Limlts are imposed on BOD (Biological Oxygen Demand), COD (Chemical Oxygen Dcrnl-d), coliiorm bacteria count and 75s. Examp

Limits are r

<

bacteria

T DS

200 per 100 ml 150ppm

BOD

CL' residual

22 3

< >

100 mgll 0.5 mg/l

<

1O , mg/l

-

d

Revision : 0

TOTAL TEPlDPlLXP/SlJII

.

Page NO. :

UTILITIES

,

D a t t : 2/85

13.6

Sewage is treated by physical attrition, airation and chlorine dosing to 30-41 ppm raw sewage.

.

Provide 15-20 hr retention time for enzymic action to reduce 3 0 0 .

.

Allow 30-50 gall/day per person (0.15 m3) for sev;age, shower, laundry and kitchen wastes. Use upper limit for hot unsociable climates.

6. FUELS

Diesel . Used

for emergency generators, pump motors and air compressors, cranes, and alternative fuel lor turbines,

.

For emergency equipment pravide individual day tanks sized on providing fuel for 2@hr operation.

.

Main diesel tank [for fecd to day tanks) should hold 10-12 days supply. This is dependant

an location of plant and normal supply periods.

.

Diesel should be filtered t o

* 5 Microns.

Can be centrifuged to remove residual water

and smaller particles. This is especially recommended offshore where longer storage times, supply boat debris, seawater contact and poor supply quality can lead t o operation problems.

.

For storage use atmospheric venting tanks with vacuum-PSV pedestrals, platform legs or inter-deck space for of lshort storage.

vent. Use crane

Gas -

.

.

Fuel gas is supplied as normal fuel to generators, turbines and any gas driven motors.

Always pass FG through a scrubber before use. Filter gas supply to turbines 10 10 microns (generally turbine manulacturcr will s t a t e quality required and may InClude his own filters)

+

- do not rely on this and provide separate treatment anyway.

Maintain FG temperature at least 15'C above dew point. Minimum temperature of gas to be 5'C.

.

Common supply pressures a r t 15-20 bar fsome jet engines need 35 bar).

Size fuel g a suppiy on maximum design duty of all users operating. Allow + 10% margin.

-

FC used for flare purge and pilots, ctc., does not need t o be filtered to 10 microns

- use

gas strai, ' off scrubber overheads.

&k if

-

Ldyoul plan

I a i mn*rrsur PAhcdr 3 num,r

4 Adwbrr 5 Pmduo buLv wsul 6

sblrrrt

-

-

TOTAL

PROCESS ENGINEERING DESIGN MANUAL

TEPIDPAXPISUR

Dote

22

L

R#rlrion :

I

P q e No :

: 2/85

---

TOTAL

Revision :

0

Peg@ NO. :

2/g5

14.1

COMPUTER PROGRAMS Date :

TEPIDPRXPISUR

. AMINES : Sizing of gas sweetening unit. FUNCTION This program provides capability for the calculstion of gas sweetening p r c c e s r s using s single aminc (MEA at DEA). It also determines the main equipment characteristics of the unit for preliminary studies.

OUTPUTS Contactor bottom temperature Amine Howrate Exchanger amine/amine area Contactor diameter (3.5. CONNORS formula) and number of trays Stripper reflux drum : height and diameter Reflux ~ w f f p:power Amine pump :power

RANGE OF APPLlCATlON The temperature of the rich arnine entering into the stripper is 190 f.

The bottom temperature of the stripper is 240 F. The default pressure of the reflux drum is 20 psia. Steam saturated temperature i s supposed t o be 250 F. 2. BRILL 1 and I1 : Pressure drop profile in gas and liquid pipes FUNCTION

BRILL 1

The program predicts pressure gradients and liquid holdup occuring during the simultanews

flow of gas and liquid i n pipes; BRILL I1

This program is specially assigned t o calculate the transpdrt capacity in the case of a mixture of t w o gases.

RANGE OF APPLICATION These programs were written for the

FRIGG pipetine.

However, the)' can be used for other

lines, sptciaHy far gas w i t h condensate.

REMARKS The line can be level or not.

The r i s e r s are calculated. BRILL 1 takes into account the line temperature profile.

i

TOTAL

Revision : 0

COMPUTER PROCRAMS Date : 2/85

TEPIDPIEXPISUR

1

Page No. :

14.2

3. FLASH : Equilibrium ~ a l ~ u l a t i a r . PROCESSING The program is based around the

Peng Robinson equation

of state and the API (modified

Lee-Kessler) corr+sponding states method for thermal properties.

REMARK This program is not as robust as large commercially available batch simulators such as PROCESS, but it is very quick, cheap and easy to use.

L%nswersare instantaneous.

The program is self documented.

1-

C O M W L Y : Multi-stage compression unit

FUNCTION This program simulates a multi-stage polytropic compression unit.

PROCESSING CPSA method.

RANGE OR APPLICATION The transformation i s assumed to be polytropic,

The number of stages is fired Qr calculated (for a compression rate). It is possible t o input non-standard components. The KATZ table glving Z (Pr, Tr) is included in the program.

I

5

GLYCOL :Sizing of gar dehydrating unit

FUNCTlON This program simulates a gas dehydrating unit using tri-ethylene glycol. PROCESSING

The gas is countercurrent dehydrated in the absorber using a triethylene glycol solution which is then regenerated by stripping in a packed column. RANGE OF APPLICATION Gas input pressure into the absorber must be between 200 and 2000 PSIA.

Gas input temperature into the absorber must be between 40 and 160 F. Gas dewpoint temperature must be >

- OD F.

. Revision : 0

TOTAL

Page No. :

COMPUTER PROGRAMS

TEP!DPIEXP/SUR

Date : 2/85

14.9

6. GULF : Sizing of petroleum ptatlorms

FClNCTlON Estimates and simulates pttroleum platforms. For preliminary studies, it calculates :

.

. .

size and weight of equipment5 [ p r ~ e s utilities, s drilling quarters)

size and weight of structure and substructure cost of the construction

PROCESSlNG

The equation of state used is a modified version of SOAVE REDLICH KWOWG. REMARK Oil flowrate can vary trom 3000 to 300 000 BOPD. The program i s specially adapted for compact platforms [drilling, quarters, production) but can also be used for production platform only. The accu

y

-

of the weight and cost estimations is respectively about + 15 % and + 20 %.

7. HANLEY : Density, thermal conductivity and viscosity calculations

FUNCTION This program uses the HANLEY equation t o calculate density, thermal conductivity and viscosity of hydrocarbons and hydracarbon mixtures.

INPUTS

The program w i l l handle a 20 component mixture. Library data is available for C1 thru' Cl7' Nitrogen, Carbon Dioxide, Hydrogen Sulphide and Water. Pseudo components can be dcflned

-

in the input file r if they are used, thermal conductivity will not be calculated. A datafile i s required. For each pseudo component, the following properties are needed.

. . .

critical pressure, atm critical volurnt, ~ r n 3 / ~ - r n o l e critical temperature, Kelvin

. .

.

Acentric factor Molecular weight Normal Boiling Point, Kelvin.

This empirical equation is believed t o be the best correlation currently available for

estimating liquid and vapour densities a t pressures above LOO aim. Vapour densities calculated using this method a r t believed to accurate up t o 680 atm. The viscosity correlation is very accurate !or the vapwr phase, but not as reliable for

liquids. The best available method is probably the Chung-Lee-Starting equation, with an average deviation 01 24 %.

The thermal conductivity correlation is included for completeness, but i t s accuracy has not been assessed.

2 p s

Revisron : 0

TOTAL

COMPUTER PROGRAMS

Tf PlOPlEXPlSUR

8 . L l B P R 0 0 :Fluid

Page NO. :

0ate :

14.4

2/85

physical properties calculations

GENERAL

The LIBPROD iibrary encloses

FORTRAN subroutines for calculating various properties.

FUNCTION Subrwtine ASTM

:

stock tank oil viscosity at a certain temperature by the ASTM

correlation. Subroutine CALBO :

Oil Formation Volume Factor by the STANDING correlation.

Subroutine CALFRI :

Friction Factor by the MOODY diagram

Subroutine CALSIG : Subroutine CHEW :

Gas-oil surface tension by the BAKER and SWERDLOFF correlation 01 viscosity by the CHEW and CONNALY correlation

Subroutine LEE :

Gas viscosity by the

Subrwtine RSOUPB:

Solution Gas Oil ratio by the STANDINC A N D LASATER correlation Gas compressibility factor by the STANDING and KATZ correlation

Subroutine ZED :

LEE-ET-AL correlation

9. MASBAL :Creation of mass a n energy balances resulting from PROCESS program. FUNCTION The "MASBAL" program generates mass and energy balance tables, in conjunction with the

SSI program, according t o the user's specifications. The program uses %heoutput of SSI program and generates mass and energy balance tables which can readily go into a report.

PROCESSING The tables can be generated either in Metric or in English dimensional units system as i t

.

may be the case in the 551 program. The clasaificatlon of components defined in the 551 program can be reduced for mass and energy balance tables (components up to C20 for SSI program can be classified up to C[o+ in mass balanccl. Printout of cnthalpy is optional.

The stream composition can be expressed in the four different ways : rnolal flow rate, molal percentage, mass flow rate, mass percentage. Each table contains 8 streams maximum.

P 3d >

-

-

..

TOTAL

Revision : 0 COMPUTER PROGRAMS Dale:

TEPIOPfEXPfSU4

I

Page NO. :

2f>

14.5

LO. MONOAGA : Pressure drop profile in dry gas pipes

I

FUNCTION Calculation of pressure lossscs for steady flow in dry gas pipes. PROCESSING MONOAGA uses the A G A method which is based on the general equation for compressible

fluid in pipes, whatever their profile may be.

OUTPUTS Any af the lollowing five variables can be calculattd :

.

flowrate

.

length inlet pressure

.

.

.

outlet pressure inside diameter

RANGE OF APPLICATION This program can also be used to predict the behaviour of gas with very low condensate contents (less than 50 crn3/~rn)). The profile of the ground can be f l a t or otherwise.

The tern--raturt profile can be fixed.

I

1l.F'EPITE : Pressure drop and temperature profiles in gas and liquid pipes

FUNCTION This program calculates the profile of pressure, temperature and hold-up liquid along pipes carrying single or two-phase fluids. PROCESSING

This program user the most efficient correlations which exist at the present time for single or two-phase flow, whether the ground be flat or otherwise.

Pressure losses for two-phase flow are based on the research work carried out in BOUSSENS. The calculations methods used are commented in the note "Two-phase flow in pipelines" written by Mr LAGIERE, and included in the 1982 Surface Seminar.

OUTPUTS The program can determine, at any point of a pipeline, the pressure, the temperature, the flow pattern, the liquid content and the other hydrodynamic characteristics.

..

T

TOTAL

Revision:

Page NO. :

COMPUTER PROGRAMS Date : 2/85

TEPIDPIEXPISUII

14.6

R A N G E OF APPLICATION The many tests run under various conditions show that PEPITE is definitely better than

other models. The good results arc obtained by PEPlTE 80 t o 90 % of the time, whereas traditional models only provide acccptablc results 50 % of the time.

The least effective results obtained by PEPITE are those for steep uphill slopes. This drawback is on the point oi being solved. On a whole, the accuracy of the calculations i s in lint with that of the accuracy of the measurements themselves. REMARKS In addition to pressure and temperature calculations the PEPITE program will define the flow pattern. The user can do ten dif ierent calculations with a single run. The results can be either summarized or detailed, on request. Either starting on finishing conditions can be given as inputs lor the PEPlTE program.

12. PETREL :Pressure drop profile in gas and liquid pipes FUNCTION Calculation of the pressure losses and liquid content of the pipes, for condensate gar, oil and gas, oil gas and water flows in horizontal, slight slope pipes.

INPUTS Temperature profile o r average temperature. Physical properties af the fluid. Line profile. Some physical opertles can be predicted with correlations included in the program. PROCES51NG

The PETREL program offers several caiculations methods corresponding to different fields of application. Methods available in PETREL include : DUKLER, HUGHhlARK, EATON, BONNECAZE and FLANIGAN.

OUTPUTS Anyone of the following parameters can be calculated : inlet pressure line length outlet pressure

. .

.

RANGE OF APPLlCATION This program does not calculate risers. The calculation of liquid contents is doubtful in the case of condensates gases.

.

a3't

-

TOTAL

Revision : 0

page NO. :

COMPUTER PROGRAMS 0ate:

TEPlOPlEXPlSUR

2/85

-

14.7

I

13. RESEAU : Combination of PROCESS and PEPITE programs

I

GENERAL

This program i s the combination of the PEPITE and PROCESS programs.

FUNCTION This program calculates pressure drop and temperature profiles using the results of the proctss program. PROCESSING Fluid physical properties needed in the PEPITE program are interpolated into tables generated by

PROCESS program.

INPUTS

Input data is composed with : Process input data Unit called "US 14" (name, inlet and outlet stream numbers)

1

Options of the calculation Pipeline ~haracteristics RANGE OF APPLICATION Pressure must be included between 1 and 7 250 PSIA Temperature must be included between - 200 and + 200 'C Only tv-nty "US 14" r a n be calculated per run.

The PRC

'SS options r OUTDIMENSION, SCALE and SEQUENCE cannot be used.

The PROCcSS option "CALCULATION TRANSPORT

= 2" is compulsory.

lib. THERM :Pressure drop in liquid piper

FUNCf ION The TERM program computes heat and pressure loss calculations in liquid pipelines f o r Newtonian or non-Newtonian flow. It can

alsa predict the restarting pressure after a shut d ~ w n .

I t also allows pump calibration.

Revision:

TOTAL

0

Page No. :

COMPUTER PROGRAMS

TEPIDP!€XPISUR

Date:

2/65

14.8

INPUTS

Physical properties of liquid :

, viscosity versus temperature (for Newtonian flow)

. . . . .

viscosity versus temperature a t dltferent shear rates (for non-Newtonian flow) ylcld strength versus temperature density versus temperature

specific heat versus temperature thermal conductivity versus temperature. Some of the above properties can be predicted, but it is preferable to obtain viscosity and yield strength of liquid from laboratory measurements. OUTPUTS

Three artput formats may be selected by the user "finite clement length" "percent length increment"

. . .

:

"preselected finite element length"

In the third case, the program also computes the restart pressure as a function a1 time after shut down.

15. UPFLARE :Flare calculations

FUNCTION Radiation level calculations for an oriented pipeflare or

a Coanda flare tip.

INPUTS Boom and tip characteristics.

Gas characteristics (flowrate, gross heating value) Climatic conditions (wind, sun) Calcvlatim

ions

PROCESSING The calculatjon methods a r e API RP 521 or KALDAIR.

OUTPUTS Flame profile

Radiation levels a t given points or isopleihs {lines ol constant flux).

REMARKS The method used [API RP 521) has been extended to three dimensions and any flare tip orientation.

a ro C

-.

.-

-

l

-

TQTAL

PROCESS ENGINEERING QESIGN MANUAL

TEPIDP/EXP/SUR

Rarision :

Dmtr

"..

Z YI

: 2/83

Pbg?

Ma :

-

Revision :

TOTAL

0

Page No. :

DATA SECTION

T EP!DPlfXPlsi!R

Date:

2/85

15.1

-

PAGE

2 3-9

General data Converslon tables

I0

PSEUDO CRITICAL5 AND OIL PROPERTIES

11-14 15 16

Figs. 1-3 9

5 17 18

6

7 8

19

20 Z1

10 11

22 23

12

24

13

25 26 27 28 29

30 31 32 33

18

19 20 21 22

23 24 36 37 38

25

39

26 27

40 4I 42

28 29

k3

30 31

32 44 45 16

47

48

DENSITY -density of petrolturn fractions VS T Relative density of petroleum fractions VS MABP

VlSCOSITY Viscosities of hydrocarbon gases V i s c ~ i t i e sof hydrocarbon liquids ASTM viscosity chart

VAPOUR PRESSURES 14 15 16 17

3Cr 35

Phy slcal properties of hydrocarbons Camprtssibility factors of natural gas Pseudo critical pressure VS. MW Critical constants for gases and fluids Critical temperature VS. normal boiling point Characterised boiling points d petroleum Fractions Molecular mass, BP, and.denslties of fractions

33

31 35 36

Low temperature vapour pressures High temperature vapour pressures True vapour pressures of petroleum products and oil Hydrate formation pressures SPECIFIC HEATS Specific heats of hydrbcarbon vapours at 1 AT M Heat capacity correction factors Specific heat capacity ratios a t IA T M Specific heat capacity of hydrocarbon liquids THERMAL CONDUCTlVlTY Thermal conductivtty of natural gases Thermal conductivity ratio for gases Thermal conductivity of hydrxarbon liquids LATENT HEATS OF VAPORISATION Latent heats af various liquids Latent heats o f hydrocarbons Heat of combusion of liquld petroleum fractions

SURFACE TENSIONS - MlSCELLANEOU5 Surface tensions of hydrocarbons Dew points of natural gases Solubility of natural gas in water and brine Sobbility of methane in water Solubility of natural gas in water Solubility of water in hydrocarbons Temperature drops for expanding gas Temperature drops for expanding gas Physical properties of gas treating chemicals Physical properties of water Physical properties of air

2 93 7

I

-

4

TOTAL .

, J.; ~o~.~~~'*."'*~rdr-

~ ~ l ~ it,. . , *,Ck~**,,,~~.n.~o.C.J

-**(

-"

T.~,..~.,. r,.~.. a

J r* d n*

.-

L . 0

I L

C.. b.1.m'

L1.r

T

1 .L*. -

1 -I .D . I

bn*

bur

.I* bnJ

b-d

b

K

M1

L

i d

I

own m- M e i?rn

I

h

Y,

,

* . I .

h' hJ

Llh'

"g.*,;.m l

*I*.

.I

ems l a 5 6.

~.~6...11. lo8 .."pl..

,d.cb,

lo

brwr Bmuml or A.P.1. Th. rrl.bmn Gmtiry erprrrd by the 1 0 i b d n r formuln: F~~ (i+d. lighter than w o w ~ ) r ~ Bmumb ~ t m =

h*.m LW.h

.a

I,.,

.

-

Specific I

-g - 130

-

m w wuVL..

IYM

+ D e v c ~ SA.P.I.

-

G

145

-

-

5/9

~egress Bwmb

51 prrfi.rr id Mvl~lptiallaf1ct.n: Pr.(br

he weight

HH

I@

i~

1cJ

nrP ti10

ot m i x l u r ~ dl d*n'!ty = velum. p r ~ p o n of ~ ~oil n dion o i l of dz d e n ~ l t r s Volume pmPq & = #+ficGr.vlt~ or d t " + ~ of ?" &, specific Gravity or drnnsty of n

,

h

10-1

pnLi

0-1

milli mW

.a

pia

P

LO-'

I**

,

-

ta * drd

18 10'

lo-'

D e Denlily or SpICL.ncCr.vity

S ~ b d T

1

lo'

by m i ~ i w o i 1 8 0(if. f

md, + ndg ,+n

J

10." I *

e

I

m

1 1

a114

-

-I

USEFUL WTU

nr

ldrlhId:Ucb.~'

N.

hrq1droc"U"'

,R/moL

.

*!

-

101 :U

'.02212.

01 4w~i11

vdooip 01r".'"d in

321

= *F+ 468.61 - 1.8 K

.T.VI~Y

Dt

-

I

145

S ~ i h GrnvitY c a, @- ~.h~.nheilto ol*rahr .I B[r F*hrenh*it.

{ermt grrvitin:

PF

., .

~~-c+n3.1$-5/9R

.t th. w e i l h l 01 given

0.c.ndi.m

11.111 11.b)L

n'

-F L 915 (me)+ 32

145

,,,,lmi,,.t~.r~lg

y(

D*.-

15.I.C

('D.,

*C

~ Bnnmb ~ s ~115 ~7 I

~=&.tiorr

>,*..I ~1'

13.~.C

0.c

r4 -1.

liquids heavier l h ~ Mkr: n

,

bra

1O .$I

Ir u .

0-c

141.5

131.5

-

#')I.'

l4lJ - 131.5. 7

Dcrrec. h.P.1.'

-

OOD54lW tlR.3

l * llnl

L,O ,l.

G 1 130 + D e ~ r t aErumk

G v.Lum,

O . w 2110

**

lb

140

D

\.HI1

DW

.I

L d

V P1.1113 I I?

kl

-1

6''d.'

I.*%* 1.1111

w*

15i3.3 1.3144

41

b*

.mlwim

w

i.'*h. R

Irn.rm1

1

lo.?=

blka

-2

15

k=*!*L.*d

L*M.+M

I

b -.I Ib ad

53a.n

P&grNo :

:~ / B S

R

C d b r*

zrnl~

hb

nrnp

u4

1'-

1.rnp~lur.

n*

OOOlllAL 0.1301a

ha ha

r.*e~*a.d

rol

OM1 15. 0.01.18.

",I

i14

-1

b2

lit.,

*

n 11

.muJr

11.a37

cm'

m a *a

4 L -*I LnJ

A

C*.

I

R in TV

tonbionl

m o ma 057 m

Y-lrm*

.m

I

d.

~srm

GENERAL DATA

TEPIDPIEXP/SUR

&,,*

Ravision :

~ R O C ENGINEERING E ~ DESIGN MANUAL

IOU rn44eJ-d

.

*.&I mt*= )I.I? frls2

=

, t,,l .

.I*

% , +*.

.f

*J .

/

~

r

TOTAL

PROCESS ENG~NEERINGDESIGN MANUAL DATA SECTION

TEPIDPIEXPISUR

2

1

cenrimitn

I . ~ ~ D D ~ rE ~ Z

Data

2

Page NO : 5

15

-4

AREA

I

LENGTH

I

1 , M Y ) o O O L ~ Z 1 . O m W E W 1.6d0000EtiO

mitre

Revisien : o

3.937wO€+01

t . 0 m ~ t y w 1 . ~ ~ 1 0 ¶0, ~03 1~0 m ~€ - 0 1

VELOCITY

TEPlDPlEXPlSUR

DATA SECTION

DENSITY

5.)8? 037 t -04

TOTAL

PROCESS ENGINEERING OESlGN MANUAL DATA SECTION

TEPIDPIEXPISUR

.

Pan* No

I5

: 2/65

Date

VISCOSITY (Kinematic)

n i t r m ad Wr

u d *

mnu'nokwr

I r t

pw wand

,quan feet @r bru*

1

I

1

munr.

Revision : 0

-7

-

1

I

~.WOWO~+OF

1.076 3ni E+OI

3.835 091) E fbr

\ w o O Q l E Q

I

1.016 391 1-05

3.11 75 008.5 -02

9.290 304 E-02

e . m lor r +ol

I

a.6m ~ o Eo*a3

?.6806*0 €4

2.W1180 €+Of

3.117)78E-M

,

I

TOTAL

PROCESS ENGlNEERlNG DESIGN MANUAL DATA SECTION

TEPIDPIEXPISUR

Revision : 0 Dale

: 2/85

5PEClFIC HEAT CAPACITY

THERMAL CONDUCTIVlTY Cr*IDUCIIY,Il

I*€sY'Om

rwr-.'c

WIC.~

m , m, ,-4

muw

N-'

ern.*

ha.**,. 4-4t.kir

,"

1

1101rn 1-01

I H I 1I1I41

% . i t 1l?lIiQO

I

4 . 7 1 s 1 U € -01

~ . ~ e r n t r s

1 . . 1 ~ 1 ~ 1 * 0 0

hr+dIm

..

Mi!hulArrk. I,.-w

F h W h

waw*.h:#

HEAT TRANSFER COEFFICIENT

FORCE

Paw No : 15

-8

--

7

TOTAL T EPlOPJEXPlSUR

I

PROCESS ENGINEERING DESIGN MANUAL DATA SECTION

Revision : o

Date

; 2/85

Pagr ffo :

15

HEAT CAPACIT Y/ENTROPY €NICI#IEt

carrcilt

~UERMIW%

JIK

1

LWIK

I

POWERlHEAT FLOW RATE

ktd'~

9

TOTAL .

Revision :

,

TwtnP/Ewnutt

0

Page No. :

1/15

15.10

DATA SECTION

'

:

PSEUDO-CRITICAL5 AND OfL PROPERTIES

.

Deflnitionr :

True vapour pressure

-

I

actual vapwr pressure of a crude oil a t the actual

temperature of the fluld.

Reid vapour p r c w e temperature of I00

r

- reference vapour

*F (used as a basis for

Mom average bo-

pint :

-

pressure of an oil at a controlled

product specification).

equal to t h t Sum of the mole fractlcm of tach

component x i t s atmospheric boiling point

Volume average b o U i ~point r VABP :

OR.

- average temperature at whlch the ASTM

10 %,30 %,50 % , T O 96 and 90 % volumes boil. VABP. T I 0 % + 730 % + TJO % + T7O % + T90 %

5 M e a n averrEe bailing polnt :MABP I

- the slope of the AST M distillation curve i s used

to c a r r u t the VABP t o give MABP. See

Fig. 7

-

Cubic average boULng point z CABP : another corrected form of VABP. llOP K or WATSON CHARACTERISATION FACTOR

KS~!!!!

i g at 60/60 CABP in ' R

Sg

Thfs lssued as a characterisation factor when defining crude oUs. I t is required for variws other data evaluations.

dS3

-

TOTAL TEPIDPIEXPISUA b

1

PROCESS ENGINEERING DESIGN MANUAL DATA SECTION

Pagm N o .

Dare

: 2/05

15

-11

7

TOTAL TEPIDPIEXPISUR

I

PROCESS ENGINEERING DESIGN MANUAL

Revision : 0

I

DAth SECTION I

Dam

PHYSICAL CONSTANTS OF HYOROCARBONS(27)

: 2/85

PW No : 15

- 12

.

-

7

TOTAL

PROCESS ENGINEERING DESIGN MANUAL DATA

TEP/DP/EXP/SUR I

5a NUII NO

-

-.-

Revision : 0

SECTION

Date

Pagr

: 2/85

15

10.

1

12.

I l ~

H U I ~ WIW. 15 *c'

i

13

;

Flarnnyb~la~v

ASTM

tumuls. "01 % ~nb+r rniw!u<~

hrmw

DCI~W

I

1

cmwum

-

-

37.691 33938 I wrnmr 68.032 51.58bh 1s 4 5 b 1 Elham 60.395 86,453 93972 Y 1 . W 25 39Ib 3 Prmw 4 n.Eulwt 112.391 121.>19 49.158" 247ll)L l12'.0Jl 121.4X 49.DUb 27621. ' 5 lr~qrl1n . ' I=,= 149664 . 8 . ~ 7 PIw a nPtnlarr 7 lwpntm# 13,0114 149.31S 48.570 90333 137 465 I 4 L 7 S . 8 4 2 f h 281L064 I Nmantrnr 1Sr.402 l 7 t . W ' 4.W 32091 9 n.Mbrw 10 2 ~ l l l v l ~ n l w lbr076 171.22P 46313 9 1 7 4 2 11 3Umhrlmnlbm 1 w . 1 ~1 7 1 . ~ 1 #.m 3 31 512 1 7 6 1 1 I 2 keoh*=m 161 0% 171.170 40.1W B 1st 13 2.3.Dm~thvibutalu 14 n4ilotrn 1m.m ~ 0 6 4 3 1 48.101 m a s 190,099 205.132 4E.m) l 2 l O O 15 Z*Hlthwlhm.M IW,243 m . 2 7 6 u . 0 ~ 2 3 3 2 4 ~ 16 3.M.lhvihr.*~ 35m6 17 1Eihvlmn1mr 1555327 205.3S -.rot 1896XI KY.m 479b4 I@~ ~ ~ l m l h u l p . n t b n I n 2,44vnr1n*lpn1an IBP.W3 20..d% 1B.W 32501 4 1 33. I 20 3.30imlhrlo.nnn I I W W 71Y.722 47Sa2 33319 f l Triolm 318174 2132M 47PtB 33166 22 nOtlmm 215,191 2 3 1 7 m 47la32 33 312 23 Diirobrl~b 315.732 232.644 A7.843 PlZPD 4 Ismclan 342.389 =;.I= 47.7B3 M 4 5 25 *-NDIW 2 8 9 ~47.8'10 ~ ~ %PBS 21 n-D.onn 131.114 tW.KP 41955 35225 z7 Cvf~oafiram ?I W t n v l h ~ l ~ m n ~ r r *1S6.757 IM.033 46.8Z3 JJ 270 S497 46.1580% 167.29 C~rcbhesaw 1E1,%7 1 9 4 . I M 46.5n J5Wt 3 wm,lc,ck,n.bm 50.10Q 55.042 31 C l h r r lflhvbml 07.11G 11.402 n P ~ o D . ~ i.rr-l..wl l 0 7 . 4 n 114.991 .80814 Zn9leh 33 18ul.N I~UWIHI 107.191 114.701 47.027h P ~ S L 34 ri1.2.0urw 1 W M 7 114.473 4 7 M a " 19 lMh 35 t~.ru.1.€lucmr 106.755 114.211 4 7 . 7 W =feen 3 ltarrrr ~ 133465 lumo 47.71~) m 37 I*UIUUM 101.118 1a.755 4Y .W* 31 21011 JI l I . & r w m r * 29242h 101,017 1 0 7 5 8 41.P I . Z h w i ~ 1273m iIY.141 aL4m 31 62d 40 IVCPYP70 53cw 41 Aolvllr* rY,OSS 139691 4t.843 3642 Bvru*rr 159531 107.MO a2450 DOOO 43 Tolunr lE%,s% lV4.DS 43.014 37478 44 Ethvlhnr.rr 165.002 194.407 42WO 37 935 15 a.Xvl*rr 1%5,0;10 194.415 42.M1 37 245 40 m.xrl47 #.XvIer* lll5,OSO 191.445 4 2 W l 37 131 1@0,?PO 1 8 7 . W 42.213 3 8 4 8 4s Slyrru 443.410 375Q1 211.324 1 ) 2 r # imp.opv~brny*ru 3 Z W . 2 2 . a I 8 067 . 28 ? Za CIu.1hVl.lcYW2 W.WS OQ.107 23513 51 Elh*l .*&I 11.9% ll.SS 52 Clrmmmwmm& 0 0 53 Clrbon d i o d e 21.912 23.791 Y n v ~ , w wit* 55 Sullur dm141 1 p . m ~ 10.1ai 54 4vmonib I 7 Air 12.a1 10.230 5d Mvdl-n ;

-

_

_

-

I

-

- - -

59 Omvw 60 M t r m

- - -

81 Chlarbn

0

6 2 W11.r

63 MrIium 4 nvdrep.-chlarldb

1.879

-

-

A

-

-

- - - - -

0

0

-

~ 8 48Q.M 42573 38556 =LO 7 2 Y23D 3 H Y m B 1

m1.U ~31511

-24 1 316.33 307.17

-91

ID103 84#1 Z9S.07

2Bll.W YIlI6

285.89 27154 2

nsos

S9.m 35.51 55545 31703 482.77 437,gl

6 1214 0 4 ~ 1,219135~ 1.33?0*.

-

1m24 1 -6

1311 46 13lllt 1.3m 18 1.371 5 1 1.377 9 1 . 3 I~I 138743 1 a 1 19 1.38594 1,38475 I

1.31342 1.391 W 1 W @ I 1.S4BB 193P2 1.407 73 I 1 1.r11027 1.412 UI I.42llS2 1.42566

-

m.m

-

416.10 2s

zs

14a.61

1410.7) 1115.21

333.32 360.14

WPII WdO

342.47 Y.02 1351131 31125 107547

bcO.54

215.70 5 $48.01 7 . 7 I*. 214. 450.4 11%

?W

0 1257.

-

431.5

.

~ .nrai

-

%.425%

l.SM31 1.lOP73 1JWS 1-3 95 1.4wM. 149B9s 1.998 I lB4u) 1.m1.38345 1.~m30 I.WO*O 1.mOl IPOP w I.-%

-

1,m13

100027 10m18 13R71t 1~33347 lDDDDj I

42

9 9 16.70

50

~

~~~

-

I50 130

2.9

2

23.86

18 1.8 1.4 1.4 1.4 11 11 lr.21 1.2 l1.N

52.9

la

5

I,4

84 s.3 1831 1B.31 7. 17.71

n.11

I711 17.71 .

1141

llal

51.-

2

llOI

51.50 $1.50

11.ot 1111 (1.01 tl.OI

U.W 5250 5

0.W

J9M

I0.98I I,O

66.81 7397

0.87'

5Q65

10

17.01 17.01 17.01 17.01 17.01 17.01 17.01

29

2.6 1141 11.21 428 . 42.W 13 7.8 5011 1.2 Y O 1 4 . 2.7 10.0 3140 - 2 0 21.63 16 2 I1 61 H.83 11.61 11.81 2 1.4 BY a.25 11.0) 112.1 11.5' . 2.0 m.41 11.51 11.93 2.5 80, Jb.79 1.9 1.F 42% M.11 o~W 1.1' m.11 1.1' S.11 N.11 1.1' 47~72 5 51.21 7.14 1.12(51 X.93 14.33 328151 1815 7430 2 . p 12.WlSl

0.7~

=.ID

A

A

Ah'

-

I

93 # -0.rd.f

.

s1.r B23 85 5 24.9 73.4 74 5 018

90.3 80.2 28.0 135 7.1 934 94.3 0.0 48,4

+o# 0.0

41.4 S2,O ~ 5 0 9 2 ~ s3.1 80.0 +lsf 1

%,a

wj

95.6

838 88J

if

-

+ ,

552

55.7

-

m

B(I0 77.3 71,) 756

1

-0.1'

[

74 8

I

- 0 ~ f1

-

46.60

2

IEla

27M

-

14.10

4.xrtSl

______-__--.--

4ODl5l

-1 - w.1

11.0

- -

n9 3

r2.1'

- - - - - - - - - -

-

7.16

1.3

-1

09.b' 970

- 03.5 - 77- 00s -

n.m

-

- -

1

31.02 31.02 . I 1 3810 45.3 45.Y 45.24 45.3 4S.Y

3 s& --~

13

-

PHYSICAL CONSTANTS OF HYDROCARBONS(~$)

Nlt

No

No :

-

.

a

A

A

..-

7-

1

--

DESIGN MANUAt

HWKHBSCES #El1nmn.u*..1 C"1lr.l hur 111 llld#nan. -llnnAbnl ul Chrmwrr mnd r h y n o ~ " .BLd dill*. IUC 13Jm. C l r m I r c . I l * . at. I in,fi..Y. U la.rmrdrn.nr P.n.1n.. u(r..*-: U".l..-.n*.

- I.&. llldd ~mY.+ n . ~ . . w . kI.. A S A S * rrr.r.*r R I ~ ~ T I ~ . rtr ISI d u n k . 8.2.s,~..n. 61 u. Mrl'mny, R 11.: H.nl.). H. J. M mr II.* PI^. U S r,rr .*I, N. 140. I V ~ ,231 Vmlua El h 6tm.rbn..

c u n mrd

1.19. -rr. r*c!d

n.mC..

L hbln *I Lhr T h r m u d ~ s r n n M irr.rb,n hum ibmmwrlr A H b * . n h d IL ~ 1 . n lr, th. rmmlnln# ?vo.anh.

u r m k u l a d Lm d.1.

-...

IP

kr..m+r &mur h a . n 44) a n m h n 10-M. r k d n c.Icu~.ad 11 lk Thrrd,n.mirr L r r a r t h Cenkr

I.-

W m ~rthrn.bln

n.1. Rl)n arbuli.l.4 t4h"r". iZLl Lmru. S . ~rmmarun,. n,.4. web. li Y Fd. " M r ~ h r r * lmlw m.wm-I l b d , m a ~ ~ T . b k . d ~FLv!dK..u-l": hr P.r~.nwm Fb-: hid.1971 rr.1 Anrml, S. trm.lruna. n. de h l . c. H..Ed.. ttlnurn.ln-l +h.*dyn.mm Tab*. of Ih. F1.Y % . ~ - h h y * n . . lm": bl.rrr.nb Landam. 1974 L.Call.rhn.3. S.J. rhrl.Cham.M.ml. l*ll.t U. *I l r - r . 1311~ n l ~ n A. # ~rurk.W. M ,~ r n n ~ m nUg ., Edr -NI 1~urn.1T l u r d nmmr f.b*rdrh. ) 7 d %iulrn-~~,~I.Wa P.M.: D I M . lt7k "H.l,u., L""rn.li.~*iTk"lr I S 1 *,,,"I.,$.. dr hw. K Y,.

lm H.r.

t

s.

d . . . ~ tab*,

.IA. n u ,suu-r..

?....nu h n : 0.M.

r ..CrbLII

11

f 1-

un

r.eIw. ..

nu- -..1w-

wc

r.lw~wr.ptyrruvn~ Th.~.rublll,f~d,*r".

..d ir

~u.1." z # p I7

1 lk 5.mo,0 +4 a. *ul su nlv,.e w .r i.Yl~UuWr.vl T~..*L~~*.~..I.I.YULI."O)~ TI. .Co& d . " .I.. *..I ,r #7 .#.

-

*

.+ xr

wr

l'b4.u i.r. V ( J . c l # u V V k u b d m..l 1 r r " k".,.", I. h &I(., r.. -.l.k.d t." uw -.&vwvw mJ.r k m t r a c n t .n w rein .~rr nu. -.n r r k u d Col&. nol-... ..nuom d C L I * . Th. I d L I 1-. r*. U.lll 1.dq.DAO.I Lua re .mar a n d n r d h u .-.nu1 -...r.. unu .II.MYI L.b- lb'C.I* v.lu"#twmamG~M 8

...ad,

"

FHI 3 U..Z "c."%.d...-'....

r.,"

. .

.rCUL"md,UI

I6 T h b w . r

belr

lr

"Q

*#.awe

.f*.I,."4

-,

.r uv o%a.lr,

."r.r.r,.r.d

.I n n k . h

u h y f h )Y mUn4.d .UV mL 18% .C ** cr...u. *Ire , " I . . . . . u . . m u dl rt Ibl.8-b %?I mL.1 F r a r r d r*.n l h h . l r u CdiaOkSIPlr. wnrhnvnmrru c.n.%s,wha. I ..,I - h +; + IIW,) .COIGI>. I-

)I

)U

-<

-

T EPlDPlEXPISUR

DATA

Ps.ud.

SecrIm critical ptrrnurr

Dale FIB. 4

: 2/85

15

- 16

TOTAL TEP/DP/EXP/SUR

PROCESS ENGINEERING DESIGN MANUAL DATh

SECTION

Ctirical Irrnpmralur*S N o m d boitinp point. *C

Revision : 0

brtr

: 2/05

P b y NO:

15

- 13

-

TOTAL

PROCESS ENGINEERING DESIGN MANUAL DATA SECTION

TEPIDPIEXPISUR

as-u

o Y smna IP t-

Revision : 0 Oat,

: 2/05

PIOI No :

IS

- 18

.C.hlara mr-M

cular mass, botllng d relative densltles

100

200

4 00

300

Mean awlaye boililly fminl. O

C

26 I

-

TOTAL

0

Revision :

page NO. :

DATA SECTION

TEPIOPIEXPISUII

Data :

2/85

15.15 M

DENSITY

VAPOUR DENSITY

Yapour densities or molar volumes can be caiculated from the equation :

Specific gravity of a gas

a

MWalr = 28.967

r

LIQUID DENSITY

The density of a multi component mixture can be calculated utng the summation af the component densities :

Wl= mass component = density component

P'

liquid densities for hydrocarbon mixtures can be estimated using. Figures 10, 1 1 in this section.

-

262

.

--

-

-

TOTAL

-PROCESS ENGlNeCRlNG DESIGN MANUAL DATA

TEPIDPIEXPISUR

SECllON

Pw Na :

Revision : 0

Date

; 2/85

15

F16. 18 kppeomimate t c t t i v n density of pelrslrum frotiionr

I.mp.l.l"l*

-.---

.~

----

26 3

.L

-20

TOTAL

Reuision :

0

Page NO. :

DATA SECTION Date :

TEPlDPlLXPlSUU

2/85

1S.U

VISCOSITY

UNm : Dynamic vlscoslty

r

I centipooc

=

0.01 dyne.rlcrn2 e

=

0.01 ern2/s

Kinematic viscosity : 1 centistake

Other quoted units for kinematic viscosity arc

Saybolt universal Saybolt fur01

r

0.000672 1bfft.s

Dynar&icv:yit

y

i

Redwood

Engler

conversion charts are sited in literature

VAPOUR VISCOSITY

. Use .

figure 12 in this section or

Calcolatt using :

i) r m =

Zp- 1:

fl

~~6

mlxturt viscosity

P= y; = component viscosity nw: = component mol.wt

ii)

3:

rn = A exp l0f)

Az

0-

(q.4 * *.Ql w) -r!.r (CW 4 14 n.ru,,-r) \a4

-

9tc +

3 .

0.01

MU

= component mo1.frac accuracy 2 5 %

T in

L o L T L kCo

@F

7-

C = ?.A )7J.

P'sRT

PL !oo.o

0.1 b

I A . ~L

P

R = L65.P

a+'

pr:%

LIQUID VUCOSlTY

. .

.

Use Figurt 13 in this stetion or :-

Calculate using :

1)

/-'a

[-

(y

The viscosity of crude oils with an API

> 30

hf

X; =

component m o l . f r ~ c

(sg = 0.88) can be estimated using :

-

logy- a (0.035HAPI) .C I a

centipoise

I

where

3%

54 71 88 104

.

1 1 1 1 ]

2.05

1.113 1.55 1.30 1.08

Corrcldtiolrs for tiquid vi~cosltypusscsa u general rclidbillty or

- 15 t

%

[ TOTAL 1 TEPIDPICXPISUR

I

I

PROCESS ENGINEERING DESIGN MANUAL DATA SECTION

Revision : D Date

: 2/85

VISCOSITY OF NATURAL GASES

Papa No :

15

- 23

.?LC

I

TEPIDPIEXPISUR

DATA SECTION I

Date

: 2/85

TOTAL TEPIPPIEXP/SUR

PROCESS ENGINEEAINO DESIGN MANUAL DATh S E C T I N

rcmpcrature 'F

QSTR VISCOSfTV CHWlT

96'6

Rsrisbn ; 0

Datr

: 2/65

P.01 No :

15

35

( TOTAL 1 TEP/DP/EXP/SUR I

PROCESS ENGINEERING DESIGN MANUAL DATA

SECTION

I

Revision : Date

O

: 2/85

FIG. 14

I1 15-26 I

TOTAL

P R O C E U E N G I N E E R I N G D E S I G N MANUAL DATA

TEPIDPIEXPISUR

SECTION

Ptrml~rlblmmzprnrlbn of 4 0.7 rtlrtivr density

Revision : 0

Date

: 2/85

Plpr

I5

NO :

- 29

~ P e r m l ~ ~ li~panrlon blr O l I 0.8 rrlatlvb dmnrlly

Prrmlrrlblr mapanrlon of r 0.6 rmlrtlrt density

a

I

10

II

T n n w r a i u r 'C

n

w

FIG.

17

rn

2 D M 3W04000 6W3 I D 0 Flnbl vrmssurn. hPb (ab.1

MmO

HYDRATE FORMATION

2TJ

-

TOTAL

0

Revision :

Pap.

:

DATA SECTION

TLPtDPlEXPlSUR

Date :

2/85

SPEClFlC HEATS

(HEAT CAPACITY)

1 BTUllb .F

BTU/lb O F kJ/kg *C

UNITS :

I BTU1lb.F

=

4.19 k3lkg -C

= 1callg.C

VAPOUR MiXTURES

.

Use figs 18, 19 in this section

.

Cp* Is a fuctlan of ternper*tlue and can be calculated ualng r Cp*

s

A + BT + C T ~

where A, 0, C are constants dependant on system composition

and T h In * R [K) Values of A, 0, C are cited In Kern, or Perry.

.

Cp* can be corrected for preswre if Pr and Tr are known uslng Figure

.

K = ratio of specific heats

8

this should also be ~ M r K t e d for pressure If required.

LIQUID MIXTURES

, Use Figure 21

in this section or :

, Calculate using Cpl Cpl

NO.

= =

- 1.34 G + T (0.00620 - 0.002349) 0.68 - 0.31 G + T (0.00082 - 0.0003 191 2.96

G

=

liquid specific gravity

(accuracy t 5 %)

1 rt3

k3)kG * C (T in 'C)

BTUllb

O F

(Tin *F)

CAMPBELL

15.30

TOTAL

PROCESS ENGlNEERlND DESIGN MANUAL

T EPIPPIEXP/SUR

DATA SECTION

Revision : o

Dae

Pagm No :

: 2/85

FIG. 18 SPECIFIC HEAT OF HYDROCARBON YAPOURS AT 1 ATM (NOTE UNITS ARE BTU/LB/*F)

TOTAL TEPlDPIEXPlSUR

PROCESS ENGINEERING DESIGN MANUAL

phra SECTSON

Rnision : 0

Dale

: 2/05

PW ND:

15

-32

8

Ut4~~D 4 0l l % b V . ~

a01

02

FIB.

0 6 01 ID

01 a4

P # # * c *~r e > w * , 4

=

8

19 HEAT CAPACITY CORRECTION FACTORS (NOTE UNITS ARE BTU/LB

M O L E / * F ) (8t attnospheric prtswre)

2 ?S

--

Revisiorr :

0

pagt N@r:

2/85

I>.%

DATA SECTION Date :

TEPIDPIEXPtSUR

THERMAL CONDUCT1VITy

BTU/lb *F

UNITS :

VAPOUR MIXTURES

.

Use figs 22,23 in this section

.

Low pressure thermal conductivities of pure gases and vapours can be estimated

ushg

:

k=

r(=r

I-Af

accuracy 2 8 %

k

-

y Cp -

B1Wh.ft.F

lblh-ft BTUIJb 'F

llp~as

. .

Usc fig 24 In this section or : Liquid hydrocarbon mixtures can b t estimated uslng :

a = WE' [ I =g

-

accuracy + 12 %

- on003 (r- 32)] k

rg

- BTU/h.ftaF

- specific

gravity

7 -OF

< > -93 32 < > 392 .78

mLl!3S

.

See Perry of Kern for details of metals, earths and building materials.

277 --!

1

mTnk TEP/DPIEXP/SUR

F I O C E S ENGINEERING DESIGN MANUAL DATA SECTIQN

vision : 0

Orte

: 2/85

Pagr No :

15 -35

lhcrrnol ronductiwity r o r i o lor goran

t.1m.d

f HERMAL CONDUCTiVlTIES OF HYDROCARBON L I Q U ~ D S Ft6. 24

r*..nr..?a

Revision :

0

Page NO. :

DATA SEtTtON

-

TEPIDPIEXPrSUR

Oatr :

2/85

15.36

LATENT HEAT OF VAPORISATION

UNITS s

BTUflb

1 BTUllb = 0.5556 kcallkg

kcallkg

. .

Use figures r 25, 26

Estimate using Trwtons rule :

A-2 l - ~ hcallgma~c accuracy 2 20 %

.

Tb s boiling point *K

For relief valve calculations use 50 BtU/lb If actual Lt.ht i s not known.

, Detailed estimation methods in Perry :pp 238

2 74

TOTAL TEPIOPIEXPISUR

,

PROCESS ENGINEERIN5 OESIGN MANUAL DATA SECTION

Revison : 0

a

: 2/85

Page NO:

15

-33

E3 PRECISION : 10%

L

LATENT HEATS OF V A P O R I Z A T I O H O F VAAlOUS LlbUlDS

FIG.

a 2 &-0

-

>

TOTAL

PROCESS ENGINEERING DESIGN MANUAL DATA SECTION

TEPIDPIEXPISUR

CPl

W2

QO4 Q05 03

0.2

0.4 C5 PRESSURE

!

Revision : - 0 :, Oatr

1

: 2/85

P w No :

15 -38

2

- ATM

LATENT HEAT OF VAPOURlSAflON OF

HYDROCARBONS

F I ~ .26

-

.2g

TOTAL TEPIDPIEXPISUR

PROCESS ENGIIIEEIING DESIGN MWWLL

DATA ACTTON

Date

: 2/85

Pago No :

(5

-39

5 K)/WmF . '

1.10

Rmwuan : 0

.no

7

TOTAL

Revision :

0

DATA SECTION

TEP!DPIEXPISUR

Date :

2/85

SURFACE TENSIONS

.I dyntlcrn = 10-3 ~ l m

Dymfcrn

UMTS :

N/m

. .

For surface tenslons of paraffins use fig. 28 To estimate surface tensions for hydrocarkn Iiquida/gas

a-.

'[nu . "-PI

use

4

(2.A

w r c e r baker

accuracy :2

=

1U %

18.07 + 2.996 M W for paraffins with M W < 100 = 278 + 2-55 (MW 100) for paraffins wiik MV > 100

P

c

Parachor

PI

r

liquid density iblft3

-

pv = . vapour density lb/ft3

.

papa NO. :

For oilagar mixtures can also use 0 . .

-..a*?

T

=

temperature in O F

P

=

pressure in psia

7

-

0.

zc1

A?L)

-

Lrp

source B e g s ' + Brill

2

r3

(- 6 . 0 . 0 ) 7)

U.40

.

PROCESS ENGlNEERlNG DESIGN MANUAL

.

TEPIDPIEXPISUR

DATA SECTION

Revision : 0

ma

:Z/ES

Pw No : IS

-41

TOTAL TEPIDPIEXPISUR

7

PROCESS ENGlNEERlNG DESIGN MANUAL

RarNon :. o

DATA SECfTQN

-

Ontc

: 2/85

Paw No :

15

- 44

FI6. 55 solubllny of watar In hydroearbonr

Z? 7 --

"

U

g a

I.

0

o

-.

0

-

.-C . .-> d

2 3

z

2 z CI

0

3 .

.

.

I

a v

-

\n'

* 2 .. 0

.-

8

z

-.

0

4

s- E3 . - 2

Y1 LU

.z 0

2

W

8 W

0

0

K

Q

. a

.

.

;S

E

Il ~Utt'l

.

r 1.9

3.m id1IWI XOOLeL.'o 3.051 +.'I LWI rclj

.%oc %OOI~SLS

1COl

.

3.0~~ C O L .

>.I'1F

2-02 0 co WC.IOI

WL'I rpc I 616 ~5

I'd

1st

LII-

ut-

X S L P B'S

J'S2

J.E I L W L

3 . c ~ IWIO '

3.s~

3 . CC

, -CU011 WZ

*

r ,*.mq,.r(y.wg 3 .I-.*-

.

3.M 1+'I

eUI'O

CLZ'O 13.01-*$1 Dl?'& LIIL'O WI

OIL

OS~C

1.um3 . Lral

mlna

rW IOEG H O ~ H ~

.-~-wrs

'

-

'Ulrrr LC1 LOLI'I

3.001 1LI'O 3.a * F L L O as'? >.st- Q 8'01

--

rm

~

aW ~ D

**I C.IO&

>.(rl COI'I

W'l L'TMI

--

C~P-

ZH ~

WZ4I c

--4r,lrtUYl

. ~~

LH r&r I

...&?LC

>WIUOI WICIOI

1Ll.t

0.r t P*ZL Cl? rbez

.-

-

U C r I

CC I

90

a WI

.~.

PPI bCEr' I

LC1 US?'&

LUl-

a . 7 ~ 1r w ml-

.

Lumlvwm

. . Crl

u?~'L

.~ . .

911

Pltrl

).0Ci4.0Z

r s W~E.IOI*QM

5sll.l

1.~511

""4.""

....

..fDdy...

-4!-wA

-

.*+V*U

qqq4

#.W4 :#,OH

%WPUW

""

bD . r,n

........ .................

'"'

a,(3..~q)R~'Ir!aod*r

*lmWdmrP

I*

qulq*

w d

I rn-4

.4,!W*

IIUWIO

.

' I V ! ~"!ZBU~

'e*rwdwrl 'mci#*q lonvr~

'Mu.? 3.Ot

.ryml.r

i . 4 ~

IW-SL

rayW e W

I-

..................................3 .................................. s~n w w ow113 w ww a1fll .....3-02 lwh..r~'llr '&u!3.r~~ q!ds "".."".."""

lq('9nlndl

).QLIS.Ol ...................... 1UIQ ........................ x ...................... 1 q m ) o& -nu........................... 3. .............

g.--4

".."."........................

lu(md

3. CIOL1 ......................... ....norn,rp,**W

"

~

puy~

P l~

......................,..*Y

''N

................................. & . Z %>'# ......................*.+-.-. 3.M "

'"...'...'.h-8. r q I- Btrrr

'Irpodw rv*v em05 -&!'.P mAwpu

..............lrDvr

@r

'wed

WWma

'mm8orrdur*l

EWIQ~

'3.04 a h u - a ................................. 3. ............................... 119e) *ry '-a44 .................................... P W J 3. Oqzbud ...................... 3. '119.1 9'101 **!@a ........................

m-'-'"m-"'-

LWO l*t)r.pa~~r ".. .........3.a. h 9 . q b li.n4J/rq IC'C .. ..m.-..o.,wuh......... 3.0~t3.w ...............................

ru~r~

1wtv

KI.HtMn

ELldl

ELC

c111

WQL

.

roi VOdl

W.I9

'W,,,4)CW

.IV+ Odyq l* 'mrpu! v*pwr)*a

>.'303 ...................3.w 'w

"... ."" ".." ",. ........................-" ........................

Cb

LSV'L

3.ua

W m --All ILI 9111'1

. nuauw 3.a IWC

Luo!wr

.

1111 101 LSPI ISrL

zl.voL

HrlO,H'J~H

'

su

l-40 *-I1wm tll

.I.-

CCSl'l

r

~.OL*CIOI CWIIad-

3 . 0 8 19tE'C

-1 C ' I O I @VEm '.'(@90) %34e

.I3 U'd &W9 MC'O

#to1

SEE

-I

LIS'Z bOCfOE)4&4Vt

OSC

6PC ? I'SOI

PEL'O lWL

SUll

Y I E'LOL d O I E W I C . t O l

w o

WC':

~ ~ ~ e 4 .3.08 o I L'SP WFLOI **I? ~ir~ot+o ~ 9 r 1 . LIC'O >.PS' I .)6tL'Q W.2 ~C~I'I

cr II or CMC

EvKlLLC Lac L C ~ ~ I 11'osl H ~ I O W ~ ,,qD.H'3)O" ~

>.St& >-PC 3.w

-

mdl(PlraI

-

'

WOwh-4~ W o -WIW

.

Z??

a??z

OCf l'l *111 CiE

SMS

zue

r'zz

,",,,,.n(Xrn)

---

'

CLLC

out

21-.

b1'911

. w tv

,,qmrj0

p s ~ 121 1i'SOt

(nm.odwoa.O)

4IZ

4++,r( , , , 6 ~)n

CI'CCI ,,,,t(tncm) I

..*-

.IPY.(UYIw I

O

..IYUIwII

3mQC1U I ' C ' IdC.2 3.0ClSP 1WQ 2150'1 3mOC.4bb ?.Ptl&IEOI MI . to1

V

qmlul*yr k l l r n a r ~l o 6 (m rmlr*dord 10-

i

!

.

.

DATA StmlON

PHYSlCAL PROPERTIES QF WATER

,

Il-mkn..

m.4

r+ T l l C

tim

4 wmr a d Skim.

.ruan.J('W

,

,

,

PROCESS ENGINEERING DESIGN MANUAL

'

~ e v i s i o h: 0

----

I

btntm a1 a b n r m & r l . ~u rn Iunetimo Fw tk d 1h ~IM, U.''In~#rm.LiomJ Cljef.J .T&-," vd. 8. M;' b Tim 011 snd 2-34.

I..

' h p k d h r E ~ b ,sc td,h n $1 ~m. hm W' lo 1Yn.L. 1 h. IW b.n. h V-mn. L.r,~cL&r. ad bbwd 5bmpkr*t*l m n n d rm id ira c a m . - WF. W. and ?.E-SSf tnr TI a m . 1C1. rru -n -I-. Irwl- d PF.IM

IWC,

nt K l '

I t .

.

n a XI Im

1

. P q b No :

PHYSICAL PROPERTIES OF AIR

P

Revision : 0

Page No. :

PROCESS CALCULATION SHEETS TEPlOPfEXPfSUR

Date :

EQUIPMENT CALCULATION SHEETS

AIR COOLER

SHELL AND TUBE EXCHANGER

PUMP CENTRIFUGAL OR AXIAL COMPRESSOR RECIPROCATING COMPRESSOR

TRAYED COLUMN VERTICAL LIQUID GAS SEPARATOR

HORIZONTAL TWO PHASE SEPARATOR ' HORIZONT A 1 3-PHASE SEPARATOR

PIPELINE TWO

PLPELlNE

PHASEAP CALCULATlON

AT CALCULATION

2/85

16.0

OPERATING CONDlTlONS AND NATURE OF FLUID I Duty

.IQ= I

Fluid inlet temperatwe Fjuid outlet temperature Fluid inlet pressure Air arnbiant temperature Overall heat transfer coeff. l ~ e Table e 2 and/or a t t a e a

IT1 ITZ=

1

kcrl/h I aC 1

-

'C

-

*C

*C I FLUID AT^ = T l T 2 IF= bar abs 1 Itl= I 'C I INLET ATL TI t l = I'U = i kcal/h m2 *C I

I I

-

work sheet)

I

(Based on bare tube area)

1

NOT@

STEP 1.Optimum number of tube rows for U selected 2. R = At air/ t m 3. T1 TZ/TI tl 4.Y =At air/Tl t l . 5. Atair s Y x (TI tl) 6. Exit air temp t2 =&air + tl 7. Average differential temp. At, = dtalr

-

-

-

!N=

I

I

(N~VC

N* 4)

lR=

1 I

I

(curve

N* b)

1

*c I I *C I

IY= I

-

I I t2 m I I 1 km* 1 T . 1 . I 8. Bare tube surface A r LA= 1 Ux tm I I 9. Bare tube areatrow Fa=AIN I Fa = 1 LO. Tube length IL- I 1 1 . Tubeslrow TR = FdLlt0.08 ! TR 1 12. Cooler width W=TRxO.O635 1 W 1 13. Total fan power =Fa*0.795 1 Fp I 19. Number of tam I NF I IS. Fan diameter I FD I 16. Powcrfian Fp/NF I PF I 17. Estimated weight 1-M I 4.88 (36.4X9.35 NIxWxL 1 1 IAtair

-92

*C

I 1

'C

1 I I

rn2

(curve Na 5)

I m2 I m

5

1 3, 4 , 5 , 6 , 7.5 or 9 m are common I (I" OD tubing)

rn 1

kW I

t

max. fan dlam = 4.6 m

kW

1 1.

kg

I

m

(including rnotars)

I

Notes : Curves numbers refer to Process Dedgn Manual Chap. 4.

246

EZU 4223

PROCESS ~ ~ L C U U ~ SHEET O N

TOTAL

ITEM:

AIR COOLER

T€*mO?QIC E X P I U I

sv

1

r nr

- DATE

I

101

~mt

b.! 1406 he..

I

urvl/

. 1,

LIQUID COOLING LIQUID VISCOSLTY AT

s

T2

+

2

GLOBAL HEAT TRANSFER COEFFICIENT :U = (Read curve n* 1)

2. GAS COOLlNG

MOLECULAR MASS :Mw'=

GLOBAL HEAT TRANSFER COEFFICLENT (Read curve n4 2)

:U =

3. TOTAL CONDENSATION

Tl-T2

=

*C kcallh rn2 ' C

GLOBAL HEAT TRANSFER COEFFICIENT :U = (Read curve n* 3) Ir.

PARTIAL CONDENSATION WITHOUT LIQUID AT INLET

4.1.

WGl

-

outkt gas flowrate WG2

-

inlet gas f lowrate

outlet liq flowrate

Tl

s

VL2

- T2

C

GAS MOLECULAR WEIGHT AT

y,

HEAT TRANSFER COEFF. Uc

=

kcauk rn2 *C

(Read curve n* 3) kcal/h m2 'C

:

HEAT TRANSFER COEFF. Ug (Read curve no 2)

GLO~AL HEAT TRANSFER COEFF. kcallh rn2 *C

SELECTED GLOBhL HEAT TRANSFER COEFP. t

=

u

Curves refer to PDM Chptr. 4.

a4 7

L

m

TOTAL

-r

TEI1WP:DV:E X W U *

I*

cnu

1

PROCESS CALCULATION ,SHEET

AIR COLERS

HEAT TRANSFER COEfflClENT OATS I ( 101ilnt

ITIW :

w.. 101No

I

ntv

1 ;

2

WITH LlQUlD AT INLET'

inlet liquid flow rate

WLl

-

kglh

outlet liquid flow rate

Wtt

-

kgfh

LlQUlD MOLECULAR WEIGHT AT T1

+

f2 =

7

LIQUID SPECIFIC HEAT AT

QL

-

t

v

T1 + r2 CP1= --?-

) x CPI x [Tl

- T2)

=

outlet gas flow rate WGZ

-

GAS MOLECULAR MIGHT AT-

=

'

inlet gas flow rate WG1

GAS SPECIFIC HEAT AT

kcal/h

kglh R%h

T 2 CPg =

kcallkg ' C

2

= f W C l +2WC2) x CP& x (TI - TZ)

QG

kcallkg f C

=

kcallh

CONDENSATION HEAT Pc=Q-QL-% LIQUID VlSCOSlTY

kcal/h cpg

AT 71 T2 +

2

LIQUlD HEAT TRANSFER COEFF. (Read curve n92)

Ur =

kcalfh rn2 *C

GAS HEAT TRANSFER COEFF.

U8

kcalfh m2 *C

Uc =

kcal/h rn2 *C

. (Read curve n* 2)

CONDENSATION HEAT TRANSFER COEFF. (Read curve n. 3) GLOBAL HEAT TRANSFER COEFF.

U=

A

$+F+$

SELECTED GLOBAL HEAT fRANSFER COEFF. r -

&y TE?~OCV~PIZ~?ISU(I

6

*

I

CHI

OATE

.

U =

kcallh m2 'C

=

kcal/h m2 *C

U pq Y

PROCESS CALCULATION SHEET

AIR CoOLeRS HEAT TRANSFER COEFFICIENT

4

1 lO# T111f

nzM: ~o

.

100 ho

I

I

l t ~

-

1 I

! ITEM: I

I I I

I

Q

DUTY

II

I I I I I I I I

I T2-tl

I

Inlet remperature TI Outlet temperature T2

COLD FLUID 1n:et temperature tl I Outlet temperature t 2

I I LMTD from formula(l) I

I I I I I I I I I I

.

I

I I I

I I

t2-tl

-

I I 1

TI tl TI-T2

1 1 1 1 I 1

p=t2-tl

rl-tl R=Tl-T2

m

I I

keal/h

NUMSER OF SHELLS F = LMTD correction I factor (3)

I I I I

NOTES : II I I I I Indicate temperature I I I

1

I 1

'C 1 ' C . 1

I

'C 'C

-c

1 1 I I1

1 1 I II

'C

I

I I I

I 'C

I

'C

I

*C

1

I I

I I I I I I I I

I I

-

rn2

1

I

Shell

I

-

I I

I

I I I

I

1

I

I 1

I I

I 1 1

2

I I

1

II

I I I I

I I I I

I I I

I I 3

f I

I 1 I

4

I

I I

I

I

Including fouIing

1 I I I

I

I

I 1

1 U.LMTD ORR I I ESTIMATED TUBE LENGTH FTlrn) 1 ESTIMATED SHELL DlAM I inr(mm)'l I I I I I ESTIMATED WElGHTBundlc 1 - tonnes I

1

I I

I

I

I I I I I I

.c

1 Fig. 2 I ' L 1 I CORRECTED LMTD CORR. I I I I HEAT TRANSFER COEFF. U I kcallh 1 TABLE 3 P a ~ e4-10 I m2'C

I I HEAT TRANSFER AREA I 1 A'.+.

+! I

VALUE

I

I

I HOT FLUID

I I I I I

I

I I

factor

'

I I I I I

I

I

I I I I

1 tonnc~ 1 1 tonne* 1 1 I

1

t 1 1

I 1 I

1 I I

247

i!i&

PROCESS CALCULATION SHEET ITEM:

StPIDD?'D~P~ X P ~ S U U

av {

t

cnx

I

SHELL AND TUBE HEAT EXCHANGER

oat€

JOB nnr

N,

ror NO

.

I

REV

I

-

lndicstc pressure, elevations and system sketch

PUMP TYPE r Speed t

FLUID PUMPED r Liquid : Pumping temperature T r Vapor pressure at T I Density at P, T I Specific gravity at P, T r

'

I

.

SUCTION PRESSURE

Min. Origin Pressures + Static head at LLL = (m x sg x 0.0981) A P suction line

-

-

baral m bar t bar1

2

1 Othu I '

l

+ vapwr pressure correction . m 1

I

TOTAL AVAILABLE NPSH

m

MAXIMUM.SUCTION PRESSURE Vessel

I II

Statlc head at HLL

%

I

. 1

bara bar

bar

bar br bar bar

1

DlFFERENTlAL PRESSURE

1I

1 I

1 I I 1

I

1

r ---

I

..*---

*I

300 PROCESS CALCULATION SHEET

I

CHI

.

1

I I I

I 1 (2)

1

I

,

I

'

I 1 (31 I 1 1 141 I !((I

I 1 I I

-

.

-

ITEM :

PUMP

TECWoPXWP'tI(P I V

I

P ~ W L RREQUIREMENTS

I * .

TOTAL

11 1

I

I Estimated weight

Em7 sun

I

I I bara I bara I I bar I m I

I 4Fig3for 1,)

-1

I I I

1

Design operating load i411qmkWI

I

net bar.

I

I

I I Brake Horse- ower = (l)x(2) kW I MAXIMUM DISCHARGE PRESSURE !I+ 7si. . I P1 1 bard I Estimated mator size kW 1 Max. suction pressure Normal pump AP x 120 % bar1 I I I

I I 1 1

bar I

PRESS bara

1

net bara

II

*

TOT MSWARCE

Suction pressure

~ b d ]

m3/h

I

1 Discharge pressure I I pump 'A P 'I

bar 1

cP

I I

bara I

PSV setting

m3/h

Delivery pressure

m 1 m

Design margin : Design llow at P,T (1) :

I Static head f d P control valve(s) I A P txchan cds) I A P orific 51 1 AP 1 OP lint 105s

I

Line loss

(reL

I I DISCHARGE PRESSURE I

1 I

I I PUMP SUCTION PRESSURE 1 I NET POSlTlVE SUCTION HEAD 1 Static head at LLL

..

Viscosity at P, T Specif ic.gravity Normal flow Q at P,T :

*C

bara kglm3

OAT€

10.

rant

He.

I 0 0 lro

1

rtv

I

r 1

OpER4TING CONDITIONS SUCTION PRESSURE PI = DISCHARGE PRESSURE P2 =

bar a bar a

TI =

SUCTION TEMP*

'C

i

SUCTION f LOW ACTUAI. VOL FLOW

PRESSURE RAT10 P2/Pl

W + V =

*K

MW

kgir m lh

GAS DENSITY AT

a

SUCTION =

kg/rn3

NOTES

STEP

PC

1. GAS PROPERTIES 2. POLYTROPlC EFFICIENCY

3. AVERAGE 8 = MCplMCp-1.99

=

9~

=

SEE FIG. 2

8

=

ESTIMATE T2

3

4. DISCHARGE TEMP ~2 = ~ l ( a )

5. DETERMINE Z AYC

~2

SUCT

2 1

DlSCH AVG

bar a

Tc

'K

K

t

C

=

REPEAT STEP 3-4 IF ~2 IS DIFFERENT FROM ONE USED IN STEP 3

=

Z2

=

Z

r

6. CALCULATE GAS HORSEPOWER G H P = Z X R X W ~ ~ X ( T ~ - T~ If )j p

k

R = 8.314 kJlkgMOLE .*C

kW

tHP<800 kW 8 0 0 < < 10 MW > I D MW

M W x 3600x(X- 1). 7. CALC SHAFT HORSEPOWER PS = GHP x (1 +

FIlOO) x I /. ,q

PS

8 r ESTIMATE DRIVER POWER

ELECTRJC MOTOR PS x K PO PO GAS TURBINE PS x (1.14 + K)

=

- --

kW kW

k

=

F

'Im

5.0

0.96

3.)

0.97

.

0.98

1.0

K = 1.15 K s 0.02 TO 0.04 WITH GEARBOX

9. ESTIMATED PACKAGE WEIGHT

COMPRESSOR-DRIVER-LUBE

NOTES I

M

=

--

kg

(SEE FIG 4 )

- . 301

&2.Lb

TOTAL

ED3

1IPIPW~lhlXI~IUR -(.CUK

j

PROCESS C&LCUCATION SHEf T

CENTRIFUGAL OR AXIAL COMPRESSOR DATE

f JODrrne

lllY :

wo. : 10s mu

1

UIV

1

-

t OPERATING CONDITIONS

SUCTION PRESSURE P1 = DlSCHARGE PRESSURE P2 =

TI

SUCTION TEMP.

V

PRESSURE RATIO P21PI =

bar a C

o

MW

K

=

W

SUCTION FLOW ACTUAL VOL FLOW

bar r

,

z

kgjh m /h

c

GAS DENSITY AT SUCTION =

STEP

NOTES TC =

1. GAS PROPERTIES

PC =

-

2. AVERAGE 8 = MCplMCp 1.99

*K

bar r

II =

.

3. CALCULATE DISCHARGE TEMP Tlx

l-2.

(E)Y

T2

= m

5. DETERMINE t AVG

kdm3

SUCT

Z2

AVG

Z

Repeat 2

- 3 if T2 differs

from that used In STEP 2 ".

*

Zl

DlSCH

'K *C

=

= 7

6. DETERMINE OVERALL EFFICIEN&

'le

s n FQ 3

'lg =

7. CALCULATE GAS HORSEPOWER CHP =

Z x R x W * 11 x ( T 2 - T I ) M W x 3600 x i 1 1)

-

8. CALCULATE SHAFT HORSEPOWER

GHP=

kW

PS =

kV

R = 8.314 kJ/kgmoldC

PS+ GHPlf x v g

f = 0.96 t o 0.97

9. CALCULATE DRIVER POWER Electrical Motor

Po = 1.15 x PS.

Po =

kW

30 2

PROCESS aLcumnoN SWEEI

lmm

TOTAL

ITEM :

EEu

RECLPROCATING COMPRESSOR

TICmwmMXCnVn

mv

cut

O~TI

JOBnnr :

:. IOWUO.

:

IIV

1

TRAY CALCULAnON SHEET

Name :

Columm item :

Number a! passes r

Tray number : to =

.*c

PQ =

bar .a

1. VAWUR.AND LIQUID T O TRAY

I HYDROCARBON :I I .LIQUID I I VAPOUR 1

I TOTAL

-I

I

I

1

I

1

1

I I

I

I

I -1 I

I ! I

I

1

I

I

7 -

-

'I

I

I

I I

' 1

I ---

I

Compressibility factor Z

Kcduccd Pressure Pr

Reduced temperature Tr

From charts Figure 1,2 or 3 page 15-15

?pour actual rate

I ~'

--

Cv=k&= Dv h.

.$W

I 'IEP'DWrDlP'tlCSUR my

OLTt

CUE ,

.

&

m3h

309. PROCESS ULCULATION SHEET

Sheet 1 of 4

ITEM:

TRAY COLUMNS

!

1 Ion tlm,.

WO. :

.

.

10s no

r

REV

I

2. LlQUlD FROM TRAY to =

D15

.C

'

Use figure 10 page 15-20

kg/m3

Liquid flowrats =

DL a t to r

kg/m3

k&

3. DOWNCOMER DESIGN YELOClTY YD bg

TS : = DL-O":

m m T R A Y SPACING" kdm3

m3/h/rnZ From figure 2 Page 3.10 v D dsgo = from table 1 Page 3.9 System factor Kl rn31hlrn2 . VD dsg = VD dsgo x Kl = 4.

V A P ~ U CAPACITY R F A f f O R CAF

.

TS:

mrn CAF 0 = from (Fig.3) on page 3.10 from (Table 1) page 3.9 .System factor KZ = .. C A F = CAF , x K 2 , = 5.

VhPOUR E F F E m V E LOAD V Load

6. APPROXIMATE COLUMN DIAMETER DT =

D m ,

30Y PROCESS CALCULATION SHEET

TOTAL

Em3

TtP'DDCPC.TXP~SUR

rn f r m Vlg.4) page 3.1 1

Sheet Z of 4

REM:

TRAY COLUMNS

*o. ;

1

riv,:,

COLUMN HEIGHT ESTIMATION

I

I

_

1 "a

I

a. HI : See design details on vertical vapour-liquid separators. Minimum distance for H1 will be one tray spacing. Minimum distance between

inlet nozzle and top tray 300 mm.

HZ :trayspacing x (number of actual trays - 1) No actual trays = theorctjcal traysltrray efficiency

= 50%

for tray efficiency see section 22. page 3.3. Assume

Actwl trays a

Note.: ifthe column diameter changes over the length, the transition piece will be h*

~

= @0l

- (2)

long and t i 2 r i l l increase by this amount Selected H2

I

*-

..

TO~AL

,

PRQCE%$ CALCULAnON SHEET . , .. IttM.

TI~AYCOLUMP~S T CP.~bP#Pl@*txt~SUt B

cur

1

'

.

DATE

I

...

!I O B T I ~ L ~,

5

mm

Sheet 3 of 4

no..

1 ror no

I

ttu

I

..

c.

..

H3 r H3 s h l + h2 hl = tray spacingx 2 =

.

mm

h2 = h6 + h7 + h8 (see vertical separator sizing) h6 = hold up time

..

.

For

production flowing to I

.

anothci column

. . . .

. t

r

2

storage

10 5

a furnace

another unSt . reboller/heat exchanger

h6 =

15 rnh

rnm

h7 =

5

rnm

+h2='

Hf = h l + h2 r

mm

h8 :

rnm

.

mm

. TOTAL COLUMN HEIGHT

. rnrn

Selected H3 =

e

HI + H2 + H3 =

mm

~.

p

6.

PRDCESS CALCULATION SHEET ~ h & t4 of

TOTAL

1EPrDDP:DIPJELHSUI

I

C ~ Y

.

~ E M :

Bf.1 81

4

PATI

/

TRAY COLUMNS

ma:

IoRTITLt :

lOrnN0..

.

]

REV

i

:

CALCULATlON SHEET FOR VERTICAL TWO PHASE SEPARATOR

EOUIPMENT N* Operating data :

,

'

Pressure (operating]

bara

r

Temperature (operating) Gas MW Gas flow rate Gas density (f,P) Actual volume flow Qg

'C

=

Mesh pad

Yes No

: :

--

.

Liquid flow rate Liquid density (T,P) Actual volume flow Particle size

kg/h a kdm3 = m3/s

. .

.

Liquid description :

=

=

kg/h kg/m3

=

m3Irnln r microns =

Estimate Vs using Fisure 1 and 100 micron curve If P < 50 bar and )J < 0.01 use Fig. 1 and f 50 microki f > 0.01 use calculation for Vs ~f ~ > ' 1 0 b a r o r

1. Vapour-liquid settling velocity :from Fig l/calculated

Vs a

c =

'

vs =

m/r

m/s

Delete as applicable maximum velocity

2. Derating % = 85

-

Vm

=

m/s

= Calculated drum fi =

Drum flow area

3. Actual volumetric gas flow

m3/1

m2

mm

mm

SELECTED DIAMETER = 4. Required liquid hold-up timer

h5 : HLA

- HLL

h7 : LLL

-

5. Mesh pad:

LLA Yes/no

r

min

=

m3

=

mifi

=

rn3

thickness -s .

mm

. m

mm

rnm ,

Em2

&jetY;[

PROCESS aLCULATION SHEET

I

E ~ C A vAwuR-Wu1o L SEPARATOR

I .-.CII.

30? .

ItTM. YO

Sheet 1 of 2

6. Hci~h:calculation

=

mm

1

U

h4

-

mm mm

h3 :

=

mm mm

h5

-

-

.-

=

mm mm

-

mm

rnm

300 mm for side LC

=

rnm

h6 + h7 + h8

F

mm

TOTAL VESSEL HT TAN#AN

=

-

For "drymvessel

-

A.

'

s

.WLL

LtL

=

mm

h8 :

.I:

-

5

h7t

N

h6

50 % of @ or 600 mm

From step 4 or 350 mrn FromstepIorlSOmrn 150 mm for bottom LC

h6 r

% I

4:

bl

=

With mesh :hl + h2 + h3 No mesh 2 hl + h2 + h3 8 60 % d or 800 h9 : 400 mm + dl2 r d = inlet not2 P hS : From step 4 or 200 mm

I+

L

t 5 % of 0 or 400 mm [Use mad h2 : mesh pad

hl :

TL

ua

I d

mm

t

7. Wall thickness

. .

P= c=

DESIGN PRESSURE CORROSION ALLOWANCE

mm

Max stress : 5 = 1220 bar CS

LO00 bar CS Joint efficiency (.a51

mm

Diameter D =

hrg

t

S=

= Z X SPXx ED- I ~ Z +P C

E=

-

tmin = Df800 + C

mrn

8. Veswl weinht (Flg. 6) t=

mm

L=

m

Dr

m

shell \eight = Head weight = (t x 201

b

ks

dx

TOTAL WEIGHT =

h 30 S T

1OTAL

m.

VER'llCAL YAPOUR-LlQUID SEPARATOR

IEC'DDC'D(PIEXMUR I

I

1

I

----

-

"., . -

.

Sheet 2 of 2

PROCESS CALCUUnON SHEET ntw :

-

. .-.. "

I

..

I4

~ of

CALCULATION SHEET FOR HOMZONTAL 2 PHASE SEPARATOR TANnAN fL' )

t

.

:; .@ 0

HLL

0=

LLL

ht

. h2;

3

EQUIPMENT N * : DESCRIPTION r

Head type cllipticallhcmispherlcal Indicate on sketch if 2emlstcr mesh required +

* Delete as applicable Operating data r Operating pressure bara Opcrating temperature ' C = Gas molecular weight

x

Gas mass flow rate k d h

=

Q g actual val f b w

m3/5

= =

Gas vlseodity

CP

=

Gasdensity

T, P

kg/m3

Liquid nature : Liquid flowrate Liquid density T,P Q1 actual vol flow partide size

I. Vapour-liquid settling velocity : from Fig. I/calculated C

kg/h kg/m3

Vs =

*

=

m3/min = microns = mls

=

* Delete as appliabIe

-

2. Max. vabour'velofity

Vm=VsxfxL

LID 3 3. Actual vapwr volumetrlc flow Qg =

m3/s

mlr

Vmr

b

*" = %=

m2

30 7 PROCESSCALCULATION SHEET

Em3

-

&?P)

CALCULATION FOR HORlZONTAt

2 PHASE SEPARATOR

IEPIOOP UIPIE~PLSUR

BY

C ~ K

DATE

IOD TlTLl

.

Sheet 1 of 3

ITEM : WO.

:

JO@ no

RlV

4. Nozzle sizlng Ivelocity limits (rnfs) = Inlet r 7-13, Gas outlet :15-30, liquid outlet 1-3 i

lnlcr flow =

;

Actual vel =

n

Nozzle ID =

m3/s

mlr

(+ 10 96)

!J2 : Gas outlet = Li@d outlet =

m3/s Nozzle ID = m3fs Nozzle ID = w

n

Actual vcl

mls

a

Actual vel =

mla

5. Drum sizing For trid I t,,

= 4 min

voL

required r b x Ql =,

I TRHL Selected h/D Vapwr area Av % Total area (Fig. 3) Total area At Liquid arcs Al

a

Calculated drum # Selected drum 0

m2

m2 m2

mm 0

-

mm

LID (3 4) Flowpath length

L

rnrn

Tan/Tan length

L1

mm

HLL hclght Volume at HLL

mrn m3

LLL height

mm

Volume a t LLL Surge volume (HLL

- LLL)

Calculated treS

m3 d min

I

I

I 1 1 1 1 I I i 1 1

I

I I I 1 I I I I I I

I I I I I I I

.

I I I I

I I I

I I I I

1

1 1 1 . 1 1 1 I 1 I 1

I I I I

I I ,1

1 , I I I I I 1 1 , I I

1

II -

t

I

I L

I

I

I I

I

I 1

I I

1

I

mm

r

m m tanltm

d

T m / t a n l e n g t h L 1 = L + If x l l + 14 g2 (ignore this correction if D < 1.2 m and use L for volume calcs. For trial 1- use &d ignore heads).

b)

If VOL HLL is less than rquired surge i n c r e a ~D, L or h/D or reduce inspection).

I

1

1 I SELECTED DRUM t DUMeTER

I

'

I I I

I

I

1

.

I

I I I I I I I

I

I I I

I I 1 I I

I

1 I I

I 3

I I I

I

1

1

NOTES r

m3

L

trcs (by

3 l0

FvZa

&qJJ

PROCE5S LnLCULLITlON SHEET

CALCULATION FOR H O R I Z m M

2 PHASE SEPARATOR

TE~QOP*RV XP'~IUI

BY

cnr

D L ~ E

101 TITLE.

sheet 2 of 3

nt~: 116.: IOI YO

.

I

REV

'1

I

L

6

Wall thickness

. +

DESIGN PRESSURE CORROSION ALLOWANCE

P=

barg Max stress

C=

mm

CS = 1220 bar

SS = 1000 bar

5=

Joint efficiency E =

=

p-

PxD

+C

mm

5

8. Vessel Vfei~htFig. 6)

L=

rnm m

Shell weight = Head weight =

D=

rn

It x $r 20)

t=

kg kg

k*'

TOTAL WEIGHT =

.3 PROCESS CALCULATION SHEET

L q T J -'

TOTAL

CALCULATION FOR HORIZONTAL

E a 3

TIPIDDPOIP IXPISUR

BY

CWK

A

T

I

2 PHASE SEPARATOR

] 101TIT11

Sheet 1 of 3

"EM :

Ha' 101No

1

mtv

-

-

II;

f ANITAN LENGTH L' FLOW PATH LENOTH L

-

1

Or

t

TO

.

Amend rkateh if boot requited instead of bfflr .indicate on sketch

HLL

if mesh r.quir+d

.Heads :2 :1 slliptical /hemisphsricaf

EaUlPEMENT No : DESCRIPTION :

1 0. Operating data i Operating pressure a = Opcratlng temperature 'C =

-flowrate

PC Ql I."

GAS MW

= kgfm3 =

Mass

kglh F Density T,P kg/rn3 Vol flow T,P m3/rnin =

CONDENSATE Flowratc

=

Viscosity

cp

Flowrate Density T,P VoI flow T,P Viscosity

kglh

kg/h

Dtnslty T,P Qg Vol flow

m3/h

P

Particle size

WATER CUT

--

PW Qw

microns=

P "'

r

I. Vapour-liquid settling vclwitr: from Fig. Ilcelculatcd C

*

Vs =

-

kg/m3 =

m3/rnin = ep =

ds

,

5

Delete as applicable 2. Maximum vapour velocity

YmrVsxOd5xL

b

LID = 3

3. Liquid-liquid settling

Ut = 0 . 5 1 ~ 8 [ ~ ~ - f ~rndrnin ]

Oil in water

U+il=

mmlmin

Utwater =

mmlmin

)c. I J =~ 0.1 101[-.]

Water in oil

rnrnlrnh

re

31s PROCESS C&LCUCATION SHEET

TOTAL

m

CALCULATION FOR HoRIZONT&

T~F,DOF.~)I~~~P'SUR

-

67

I CHK 1

OAT€

I

3 PHASE SEPARATOR 101 TITLE

-

Sheet 1 0 i 4

1 7 ~ : NO.: to6 lto

.

ltlv

rr. Nozzle sizing r velocity limits (mi$)= Inlet ! 7-13, Gas outlet 11-30, Liquid outlet 1.3

m3/s :.

nozzle 10

actual vel m/s

1. Inlet flow I (+ 10 %I 2. GM outlet I 3. HC outlet r 4. Water outlet r 5. V e s x l sizIng For t r i d 1 use

tresoil

[HLL-LLL) = 4 min

OIL SECTION

I TRIAL Selected h/D Calculated (Qg/Vm) Av as % AT (Fig. 3) Total area Liquid area

Av

At A!

-

Calculated @ Selected I

m2

Flowpath length

L

TanlT an length

L'

HLL height Volume at HLL LLL height Volume at LLL Surge volume {HLL

h1

LID U 5)

h2

- Ltt]

Calculated t,,

m2 m2 mm

I 1

mm mm

mm m3 mm

m3

m3

I I

I I 1 I

tan-tan length Lo=

I I I I I I 1 I 1 I I

I I I I I 1 1 I

I I

1 I I I I

3

1

1 I I I I

I L + Ij x

1

I 1

1

I I I

I I .I 1 I I I

-

+ 02) mrn Ignore if

.

I

1 I I

1 I I I I

I I

I I

I I I

I 1 I I

I

I I I

I

I I I I I I

I

I I I

I I 1

I -1

I a)

I * I 1 1 1 I I I

1

min

Notes or comments r

1

I mm

D

I

I

I

I I I

I

I I t I

I

I

1

I

I

I

D < 1.2 rn

-

- $3

ky>m

Ff OTAL Jrn

T~PDDHQ~FTXPSUR

.i.w

I

I

ewe

I

PROCESS ULCULATION SHEET

CALCULATION FOR HORIZONTAL 3 PHASE SEPARATOR 1 inn rlrm

'TtM:

Sheet 2 of 4 .--

no : IMw e

I

UIV

1

WATER SECTION

Trial 1

= 213 x L r

8

rnrn [rwndcd)

11 Rl AL 4 1 I m3lmin I I I I I

Total liquid vol f lowrate Qw

+

QI

I

8

Baffle distance Liquid area at HLL Horizontal vcl at HLL Ut water b t e p 3) Vertical fall from HLL =BxUt/Vi HLL vertical fall

A1

m2

V1

rnrnlmin mrnlmin

-

i

i

I

i

I

I I

mrn

mm

vz

rnmfrnin

mrnlmin .

mm

hS selected LIL level

mm

h6 selected outlet height

mm

ql water vol at H E (upto baffle)

m3

LlL (upto baffle)

m3

q3 water voi at NIL (upto baffle)

VOI

i

mrn

Horizontal vel at LLL Ut oil (step 3) Vertical rise within dist B * 0 X UtfV2, = mex. outlet height

q surge =

I

rnZ rnrnlmin mmlmin

A1 VZ

Check oil rise r

94 water voI at outlet (

I

mm

Selected baffle height . h3 Selected HIL level . h4 (adjust h3 and B if necessary)

q2 water vol at

I

mrn

Liquid area at LLL Horizontal v t l at LLL Ut water (step 3) Vertical fail from LLL = B x UtlV2

'

I

rnm

I'

-

(ql q21

. ,

i

3

I

rn3

'i

m3

i

I

I I I

min min

swge time q surge/Qw

residence time q3qb/Qw

calculated oU residence time (upto baffle) Vol (NLL NIL)/Ql min

-

I I J

I

I

I

I I

1 1

I

I

I

1 I

I

1

I

'

I I I I 1

34-

Em3 TOTAL

PROCESS CACCUUTlON SHEET

nEm '

CALCULAf ON FOR HORIZONTAL 3 PHASE SEPARATOR

TE?.WC OR,I X M U I m

a

I

I 4""

?ST, r

Sheet 3 of 4

..

ne.: +

I

~

L

Y

~

I

nru 1

6. Wall thickness

. .

DESIGN PRESSURE CORROSlON ALLOWANCE

P=

k g

C=

mr(r

Max stress

CS = 1220 bar 55 = 1000 bar

s= Joint efficiency t

=

PxD

+C

73izlm,

=

E=

mm,

8. Vessel weight (Fig. 61 t

=

Shell weight = Head weight (t x D\ 20)

mm

L*

m

I3 =

m

kg

k!!

1OTAL MIGHT =

tfg

..

-31 5 <

i f

PROCESSaLcuanoH SHEET CALCULATION FOR HOWOmhL "'M-

3 PHASE SEPARATOR

tf P DDPRIP'EXPISUI UT

cnr

01Tf

101t a t .

Sheet 4 of 4

wa: 10s Nn

MV

-

OPERATING DATh

-

GAS FLOWRATE DENSITY

Wg

VISCOSITY

Yg

kglh = kg/m3 = .. cp

Dg

*C

=

PIPELINEDIAMETER D cm LNTERNAL AREA A m2

=

f

k&

DENSITY

VISCOSITY

W1 01 Vl

SURF TEN

st dynestcrn

FLOWRATE

-

FLOWING TEMP

LiQUiD kg/m3 =

cp

m = m =

PIPELI~SE

LENGTH L Vertical change Ah

s

STEP

Wg

Bx + 210.3

I

I I BY r 1

I

I

dmxvel

r

~1213

11

.

2. CALCULATE Apgas

I

I Re = I I

35.368 x W E Vg x D

I Friction factor ( ~ o o d y ) I I ~ P =G 6.254 x f x,wg2 I

D

I

gxD

3. CALCULATE ApLlQ

1 Re = 31.368 x W1 Vlx D I I

I

I A P L 36.254 x f x ~ 1 I Dl x D> I

'

I I

I I I Rex' ! I

I I I I I 1 1 I I

I

I F

I

ldPG I

.-

a

bsrlkrn

r - r n

%LF~DPd'TilP.T XP.%UR CCtK

1-JL

Ohti

1

()osntir ~ * * f i r c ~

40.7

I

I

scr

rf

10-9

I t

I

I

1 I I

I

I I I I

I

1

I I

bar/km

1 II I II I 1

I I I

J I -1 I

pAOCESS a L C U t 4 T I O N SHEET

TWO PHASE PlPELwE P CALCULAnON

CC

1 I

I I I Re= I l f = I I A P= ~ 1

rcr

I

I

z z v --

f TOTAL

i

1

1 I

3 16

-

?

I

I I

=

I

11

I

I

I '-I1

REGIME FROM BAKER CHART

1

I

1

ma*

I

1

=

st I

7.087 x W

I

I

I

1. DETERMINE FLOW REGIME

I I

-

NOTES I -

-

1

= =

Sheet

' ' of

nim. Ma:

I

108 NO..

..

*EV

I ;

. I 1

I 1

4. AVERAGE VELOClTY

I

. \

Y,.

I I I

1 1

3.537

(

1 I v,=

3)

+

I I

x

I I 1

I I

* (w)

I X =

I 1

1

mw-

1

.mnu

1

L I

I

'

m a

I I I 1 I

--'TAVE

.

E.u .

* I . mu7~ #

.I,IN

rn b

I

1

I I

I

I I t I

s

*

r.n-ou3

-

PH

1

LII*

I

d

aY>.&*d

I

l u d t U m U

II I I I I I I

VS

iZ&~

vs

I

- L"_ 1 q # 3

t

I

_. -nt -

-

r h

-

=o;llrr

c

~

H

- -X

FLOW TYPE + WAVE

c - -

FH

.c2

P~D'

I

h-3

WGflC

I

PZH3,

~ulaer

1

I

berlkm

'

8. CALCULATE VER-

I

iI rn

Y -

I X , .

I

I I 1

1

I I I

M

prlh . c . t ~

1 I 1

(

I

!J,q&2

, ,

1

I

1 I 1 I I

1 I 1. 1

I mmIE0 1 d q - L

1 I1

I

I

FLOW TYPE z

I I-4 I

~wt-

I I

WS=

1

-K

mwnb.!

I I I

)

I

I I 1 I

7. CALCULATE PH FACTOR FOR HORlZONTAL FLOW

,

I

.

I W I x 0.205

WS=

1

I VS + average veloclty I I I I I 1 1 1

mlr

I

= APL

1 6. CALCULATE LOADING FACTOR WS 1 I I - I 1 i I

I I

I

5. CALCULATE X RATIO

I

1

1 Iw

I I I I I 1 I 1

PH FACTOR FOR VERTICAL 5EC710N

.

18.2

rlm

vm+Din

a 1n5

PHv =

aJYW@W X .

x,,~nDirpcrrQm~wt.wPn-

1

I I I

'

9. CALCULATE TOTAL TWO PHASE F

HorIzmtaI

:

PH =

Vertical

:

pHV=

I P~H=.PCXPH~= ~2~ = PG x PH$ =

PC=

1 I 1

bar

P = ( P ~ xHL + PZv x h)/lD00 =

TOTAL

barlkm 1 barkm I

'

21 7 P w m

J7 J --r?ofAL

-

PROCESS C A L C U ~ A ~ OWEET N

TWO pime PLPELWES P CALCULATlON

1tPfDOPIMPI~XP~SUI m

BY.

cur

DATE

JO~T~TLE

.

Sheet 2 ~f 2

ITEM: NO.:

108 no,

. atv

J

/

Covering Medium r

rP

b

I

4 1,

~g Ttmpcrature .C = k Thcrm. cond. kcal/hm*C r

L

p'

* 7'!?L

DATA -

LlQU?D FLOW

Total pipeline length rn = No of stgrncnts Length per segment m = Total tltvation change ; rn =

Volumetric flow m3/h Density (av) ke/rn3 M Mass flow kg/h Cp Specific heat kcal/kgmC

-

L Ih Y D

Pipetire diameter

Pipslim diameter Burial depth to centre m

PJ

Inlet pressure

~2

~ x i pressure t

Total pipeline lnitjal Temperature

T1

>

bar

=

'C

'=

kg/h = Cp Specific heat kcal/kgmC =

Molecular mass M Mass flowrate

Covering

1 1 % = I s = 1 1

x t 2h/D s = 2k / h [ x + (x2- ~ ) f ]

kca1fhrn.C

lennth

1.

a

t

I I

3. Calculate Asymptotic tempsrature Ta Ta =Tg (JAP + A y/jCp)/aL

-

1

I

Ta =

-

L is segment length

'C

1 1 = 4263

1

1

I 1

I I

PROCESS CalCULATlON SHEET Sheet

(

CHK

-

'

--

d t CALCULATlON

-

W9.:

TIPmDP'DIP't XPfOUP 81

kk?

I

21 8

BURIED PIPELIhiE

1

12 : C

1 Repeat stcps 3 + Q for each segment I See sheet 2 for stepwise spreadsheet I

FEZ7

I

T2

T2 s(T1 ~a)e-aL* Ta

i'-m TOTAL

I 1

I

I

m-1

I 9. Calculrte downstream temp

1.09

0.022 0.508 0.30 1.09

::

1

I

kca1Thrn~I

-

2. Calculate heat flow ratio wr unit a = dMcp (liquid or gas)

k

I

I 1 SOU 1 Air 1 Water

I

I

*C/bar

NOTES -

s

I *

-

aF/I,OOOpsi ( x 0.00805) =

VALUE

I

I

mj/d (std)

Volumetric flow

1. Calculate heat transfer factor

I I 1

=

bara = bara =

STEP -

I

5

GAS FLOW

r

FLUID YOUtE THOhiSON COEFFICIENT = [see fig. 1, page 11.81

3

=

ins = m =

h

AP

t

DATE

1

101TITLE

100 co

REV

-

7.

%

lTERA71VE CALCULATIQN LOG FOR A BURIED PIPELINEAT.

LENGTH

I

II

I

I

m

1 I

SEGMENT Na

I

I I I I 1 I I I . I 1

I I I I I

I

1

I

I I

2

1 I I I I

3 4 5

I I I I

b 7

1 1

I

L

9

I I

I I

10

I I

I

I I

1 I I I

I I

I

.

~~~ JBL

ltP~VDP.VLP'EXPrSUR #V

(

1CH~

-

I I I I t i

I I I I I

I

I

1 1

1

I

I

I I I 1 1 I

I

I I I I

I

I

I I I I

I

I

I. I

1

I I I

I

1

II

1

1

I I

I 1 1 I I I 1

I I

I I I

I I I I I 1

I

I I

I

31 9

.

&-

1

I

1 1

g

I

I 1 I 1 7 i 1 I ELEVATION 1 PI 1 TI 1 Ta T2 I PZ l 1 1 1 I I 1 I 1 I +m 1 b a r a l ' C 1 'C I *C I baral I 1 I I I I 1 I 1 I I I I I I I I I I I I I I 1 I I I I I I I I 1 I I I ! - II I I 1 I I I I I I 1 I I I I I I I I I I I 1 I I I I 1 I 1 1 I I 1 I I I I I I 1 I I I L I I I I I 1 I I 1 I I 1 I I I I I I I I I I 1 I I I I I I I I 1 I I I I I I I I I I I I I I I 1 1 I ! 1 I I 1 I t I I I 1 I I I I I I I I I I 1 I I I I I I I 1 I

PROCESS CALCULATION SHEET

BURIED PlPElINE DATE

[

101TITLE :

Af

Sheet 2 of 2

nru: CALCULATlON 10V NU

UtV

-

TOTAL

PROCESS ENGINEERING DESIGN MANUAL

Dno

TEPIDPIEN'ISUR

32

.

Rovisien :

a

. 2/85

?-

No :

. ,

iP&3T'k.

Revision:

Date:

PROCESS DATA SWEETS :

AIR COOLER EXCHANGER

PUMP COMPRESSOR TRAYED COLUMN PACKED COLUMN

FURNACE

FILTER VESSEL

SllMMAtUES OF EQUIPMENT CHARACTERISTICS

COLUMNS

PUMPS

HEAT EXCHANGERS COMPRESSORS - TURBO-EXPANDERS AIR COOLERS FURNACES

P~~INO.:

PROCESS DATA SHEETS

TEPIDPIEXPISUR

DRUMS

0 2/85

17.0

.I

@En

1

PROCESS D A T A SHEET

E?iL. 1

TLPlDDP! VvLI 8et~lc.:

2

:

AIR-COOLER

cCP

.

PIE

Jab : ~ r r v i e e:

: llem :

Unli

I

ma

1

ha

11

1.111

d r r t l o p ~lu11ue :

1

d

mam

CHARACTERISTICS

2

n

CONSTRUCTION Tbrl p i r r ~ v n

21

0,Blgn lmnprnlun

14 4

TUB6 MATERIAL

.

b.r? bar g

-

C

.

EpE73

TGTAL

5D.3 -

.

I

Job :

krvicr :

1

8111 SUII. per urn#

1

a

35

a 37

38

a# 10

43

Unit : lltm :

.

ttP* Cnerh p r l unlt

I

1

PERFORMANCE

C.lllng Surlmce p r ek.11

DATA

CONSTRUCTION

SI

y

...

EXCHANGER

C F P

TEPIDDPI.

Pagr :

PROCESS D A T A SHEET

T u b r b r e l r -Sl.taonrrl B ~ f t l ecma.

Bwwlw lorq ' t u b ~UWMB Ganitts CO(Ln*cllol@ shall In : charmel In : Carrorlon a t + a r n r . ahall crdt ~ W U I - ~ ~ ~ S Wwlghl 40Ch *hall

fl ~ l l n q - :

: TIPI

:

llw .

tpbclng : Spaclnp :

I

nm

I h l c h ~ r t r:

SvbcIm~:

I

m

T b I ~ t n l l 8: Oul :

5mrltr : Scrlm~: SI*

I

Thlfklnmmm : T h l s k n t ~ l:

IVA

mn

I nn kr1.n : @run : mm

I

t e m ~clan* :

. -4

Full 01 ~ 1 1 1 1

kg

L

BfJZ rnAL

Pmlr :

PROCESS D A T A SHEET

GAY3

PUMP

CFP

I

Job : Smrvitr :

TEP/DOP/

1

Unit : llrm : L

FLUlD HANDLED

1 Flu14 clrrvlrlrd

2 1

Puaplnt trmper*lut?

4 I

Vlrcorltp 11 P.T.

I I

Spuilie q r r r l l r 1 6 / 4 fi*tllic ymvily r l P.T.

*C rg

Vlpor pralrutr *I .T.

.

k r l

J

J

OPERATIHQ CONDITIONS

I C~prelly O i ~ r h r r l epratrun L d i a n bn*nurr ~n ~ t i * * s n t ~nr m l sfuf*

I 10

..

49

4s

math

I

I

brr s bar a bar r

-

I I

I

1

1

PUMP 1

n

.

.. ,

.>

DRIVER

,

I

ir

Tn.

25

nfllns

kw

k

Wwa

I/ ma

27

OprrrI%n( lord Canarcltd lewd

n,

, ,.

-

kwh

kW

-

.

L

D"13

TOTAL

HiwD

COMPRESSOR

C F P

1EP.'DOP/

b

Pn9r

PROCESS D A T A SHEET

$0:

Srrvrce

.

-

Unit :

I llrm :

f LutD

1

7

-

HANDLED

t

OPERATING CONDITIONS Capacily OqC. 1 AT*

. - ,

tlrn3fh

Capacill (sucllan P.7.)

m31 h

Sve11on prcssur~

bm

Discharge prrlsut* C ~ n l p r r ~ ~ if O r l ino

bin g

f

C

COMPRESSOR -3

1 TP*

84

Nurnbc~

P5

~ S I Q OCPP,CI~V

26 87

Ellicimcy L1.1. brake h ~ r s e p o w c r

.1 28

~pcra

NmW b

k hW I/M

Uabri~ls

'

DRIVER T ypr Rating Conneclrd load

kwh kW

Swrd

tImn

Opbraling load

.

LW

. ..-a -

-

-.

--

,

.

KRVICE

*

UTEIIIIL

-

CQKihSUoY AUWAWCE

rn

NOTI!# ;

.. RLVIIIOH

8-?.95'

Vm&L

is^^ C F P

BOUIPUEWT CHARACTERlSTlCS SUMhthRY

~ ~ C I D D 'P ~

AIR

on u*

DRAWING

-

COOLERS

nr

SHEET

w

UYITS

CK~PAC~ERIITICS

--

--

1T€Y M' NUYWR

SERVICE

I# 0 i A e T E M

mm

L C Y S J ~SETWEENTL

null

t

W I Z O M T A L :M L ? V

COSITLOw

MIST L L I W I U T O R

mmu. .OOT

nu

matm

Rrn

6CTWEEY L.t.

wzluil~a

~LFPURE

~rmnrruit~

comlf mu

.

MUM

C

hrg

~

.C

HEmtmE TEWPZ l M T V ~M

fl 'C

.UTCRAL

-

Wltn T H l C X R I

m

COI#DOTm CLLOrAuaE

m

t WTr N O W r

S

rmTIl:

I

*

.

I

w mnaL IIEWSW

I

I

&ZrT

EOUIPMENT CH&AACTERIST~CJSULIIIARV

CFP

DRUMS

TEPIODPI DATE

J0a nm

. 22q

DRAWIWO W

SnEtT

w

-

-

UNITS

CMRhCtER3tTICS

r

-

f t t Y II*

2

HWlLll I

!

SCRVlCE

f LUiO

M L L HOE

-CllCULATLD

TUBL ClDC

.

wr

.

HEAT EXCWGED

kdlb

c

LY1.0. tYPt

ti

3z -

W I L OF ~ SCELU

xw *

:-

CC

LYIQ C O ~ V ~ L C T ~

OWERILL M L l l ? W E 1 1 UTE

ESTIM&TED A OPERI~~WO

-

-

d

m

------

COUDlT!WS

#ii

Csrrrr

MIEWE

bu

PRElWRE

CWITIQNS

"

*C

Tf%P€UTURE

DESION

I

)r

l

'C

TEYP€MTVRS TYPE

YAtEAIAL

ChRQBIQW

nu

ALLOIUICE PRLOSURE

DPEwLtlNC

LI

E I

-

c~olllons

I

1

PRESURE

ComDlTlOns

3

I I

TNPEUTVIIE

--

DESIGN

cl A

ht

I

m

T E M PR ~ A T ~ ~ € *c

1

II

I

TVPE

YATERHL

CORRP61011

I

mm

ALLQ*AHCE

1

I

I

MOTES :

.

I

I nEWS10M

E3:m

rnAL

-

-

flksz

ObPf - --7 E P l-RC v --. -* +

,OA r i

-

-- - --

.--*

*---_C

EOU~PMENTC H A ~ A C T E U I S T I C SSUMMARY

MEAT

-

-, 4 0 0 H'

~

~ -

A -

A

Y

I

-- -3 3 a -

W* H

~lxcn~nti~s O : M E E T n* .-.

--

...

- -. IC-

7

- -.

.-

c n ~ n ~ C t E R l ICS St

---

---1

UNITS

.- -

--

17EU ND

- . I .

.

- -- * . ----- --,

1

-

A -

--A,-,

NWBCR

pnVlCE

. !

o

m

3L

-

WJuR€

YOLECVLAR 1ElCnl - - kfif k

MG ....

fi VILUE CP/CV

4

: =

CCr3nfSslBlLltl

z

FACTOR

D

S

WECtFIC W V I T I

x

PnES'*

i

h f .

T E W EM T W E

O P E M T ~ K FLO. ~ A T L DLUGll

$LO* U T E

DILOIAME COYPIIENIW

w

P(I E W n E

*C

rslh

.V

d / C b r r

arno

YL'l ERlAL

TYPE C m P R C m m R A t t Y G LOlD

W

TYPE DRIVER

COUWECTEO LOAD

n

1

YOtES :

L I I

*

,

RLWCtON

fi3 2 2 7mAL L%3z'

EOUIPMEMf CHARACT R I f T r c r StJMMARv

C F P TE P/DDP/

COMPRESSORS JOB N*

-

TURBO-EXPANDERS

1 DR111RG M*

h

3 s

CHARAC I E R I S T I C S

UNIT5

I

.

t f E U W' NUYBER

SERVICE

.

-. IN. DIAM. BDTTDYI MlDDLCl TOP

m

TOTAL LENGTH T l l T L

1111

TVPE

m-'

E-

NUUSER BQTTQIIUlObLE/ TOP

-

. m

T ~ A YSPACING BQTIClYNLDDLEnOP

PREWRE

OPERAT~WG

..

eg~ay~ml

-we

TEMP. D O T T W / TOP

*C

DLSlGM

PhEWhE

&a

COWDITIWS

TELIPEIIATVRE

'

*C

,

*.

M A T E R I A L B H E L U TRAYS

SMELL CLLC. THfCIII*Y

~~LLCORAO~OHALLOIAYCE

M

mm

w

4

E S T l V r T t D lElGHT ( f Y p T V I

.

T

HOTES : IWrrch)

. REYlIlOll

.

fT&TD

---

RIYAL-

am C F P

tE P / ODP DATE

EOUIPUEHT CHARACTERISTICS SUMMAPY

JOB k'

tQLL'ltrUS

DIIAMWG n-

3 3 9

SHEETU~'

CHARAC.TERISTICS

UNITS

.

1

# T E Y )1'

1

<

..

wuuaEK

! lERVlCE

. .

I? .

J

u

FLUID ClRCVL*TED

i3

.

...

3#C

JEUFZRATURL

t.

I

kg/ n)

FLOW RATE

8 '

-P

t

SPECIFIC OP.&VITY A T SO. F

I

*C

PRESSURE

h a

8PEC lFlC GRAVITY

b#l d

r

8 .

.VIXCIIt*

cP.

WPSH AVAILABLE

m

OESIEW FLOW RATE

nslhr

-DISCWARDL PRES5uRE

brr

.DlFFLREMT1Ab PRESSURE

&r

YATERIAL .TIP€'

%

EFFlClLUCl

.PUMP

OPERATING LOAO ,

-

I8

.TVPE

&RIVER

.

CWWEC'ICD LOAD

'h

kOlLl:

llEVlSlON

EOUIPYENT CHARACT ERlSTlCS SUMMARY I E P I D P I PCOCZ

PUMPS 101 W 9

ORAWIHO N*

S H E E f W*

.

b

~

i

~

WTAL

3

PROCESS D A T A SHEET

~m

'

PACKED COLUMN

C f P

TEP/ POP/

.

Scrvica* :

3 4

Packkg IyW

8

Item : ~-

COLUMN CHARACTERlStlCS Erlnlng l a w n :y. l n ~ l d od l l d n l ~ r Pneklng dlam*ul

~

or no

1

I

,

.

.

"

mm

a

m T

%

1 Unit : .

Jab

1

*

1 plpc

Numbr ml h a s

PACKINQ CHARACTERtStlCS

Ea3

P R O C E S S D A T A SHEET

m A L

DL33 cFP TE P /

Job:

DDP/

FURNACE 1 ~ n r :l j

s*rvlc- :

ltrm :

1 Pro8 :

1

1

I 3

*

id Kcallh

Ahorb4 bml

Mar. ~ I l ~ w w b tbma l l

IIUZ

i#KC~IIII

j

OPERATING CONDITIONS

1

s L I

a 10

n I2 13 14 1I l*

t?

*a 1I 20

COHSTRUCTION

n m a l y , ~ m u u n

.

13

&llorrbla p r * a a u n drcg

t4

tubrmlarlml

25 %

X

Fual

mdlm~lmmalnr ~ D ~ V . C I I D I It o n u

art g k r

-

I

Dm3 M 3

.

I

Job : Setvice

I

Murnbmr

1

3 1

Nstur* of H u l d

S 6

S p r e l w a u i l y d 15/4 S p c l l k grrvily r T

7

Virroaity m 'I P

1

Fr+ealng poinl Mature 08 I n ~ p u r l l i ~ r

Flttrmtion lrnlrntyrr

P

.

LC

cp

OPERATING CONDITIONS

10

.

I

Prtrrure

Flow

12 13 I - . -

bar* nr3/ h

u p ~ ~ l r l l n l / i o n

P

-

bar

Y r i . prrsrur? drop

DESIGN

15

16 17

I

Drsign I*mpetatun b e l g n prtasvrm

CONDITIONS

ec brp.

I

1

.r

MATERIAL

18

40 41

REVISION

42

dale

4 44

~ n f :i 1t.m :

FILTEREO FLUID

2

14

I

:

TYPO

11

'

FILTER

CCP

T E P I DQP/

P.@.

P R O C E S S DATA SHEET

TOTAL

,

7

0

by Checked

l

3Yd

1

2

3

4

Related Documents


More Documents from "Yohanes Silaen"