Two - Way Slab Design - 2

  • Uploaded by: Arnel Dodong
  • 0
  • 0
  • January 2021
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Two - Way Slab Design - 2 as PDF for free.

More details

  • Words: 1,728
  • Pages: 8
Loading documents preview...
Prepared by : Date : PRC # : TIN # : 2S-3 Issued On: Issued At:

STRUCTURAL ENGINEERING DESIGN and CONSTRUCTION SUPERVISION

NSCP 2010 Specification Section and Equations No.

Sheet Content : Two-Way Slab Design Date : Nov. 30, 2011

Arnel H. Sinconigue, C.E Oct. 13, 2011 116853 406-365-953-000 3/24/2011 Quezon City

Project Title : Three Storey Resedential Building Location : Brgy. Banale, Pagadian City, Zamboanga Del Sur Client : Address :

Engr. Arnel H. Sinconiegue Dagat-Dagatan, Caloocan City, Metro Manila

Design Refference : NSCP Volume 1, Fourth Edition 2010 : Design of Reinforce Concrete, 2ND Edition by Jack C. McCormac : Fundamentals of Reinforced Concrete (Using USD Method, NSCP 2001) by Besavilla A. Design Criteria Materials : 28.00 28.00 413.00 24870.00

Modulus of Elasticity forslab, Ebs =

24870.00 Mpa 3 24.00 KN/m

Unit Weight of Concrete, Ȣc = Compressive block deep, β1 = Capacity Reduction factor, Ф =

Mpa Mpa Mpa Mpa

0.85 0.90

Dead Load : 1. Floor Finish Ceramic Tile = Water Proofing =

0.80 Kpa 0.10 Kpa

2. Ceilling Suspended Steel Channel = Electrical Wirings =

0.20 Kpa 0.30 Kpa

3.ConcreteHollow Blocks CHB 4" = CHB 6" =

2.10 Kpa 2.73 Kpa

4. Partition Load Parttion =

1.00 Kpa

Live Load : Residential =

2.00 Kpa

B. Design Data Long Span, L = Short Span, S = Beam width, b = Beam Deep, d =

3.00 3.00 250.00 400.00

m m mm mm

C. Design of Thickness

C

B

250 x 400

250 X 400 A

250 x 400

410.3.7.3 409.4.2.1

Compressive strenght for slab,fc' = Compressive strenght for beam, fc' = Yeild strenght, fy = Modulus of Elasticity for beam, Ebb =

3.00

D

250 x 400 3.00

SIDE A = DISCONTINOUS EDGE SIDE C = DISCONTINOUS EDGE

C-1.

Type of Slab when S/L =

C-2.

1.00

Two-Way Slab

Calculation for slab thickness Assumed Thickness for Design Purposes, h =

100.00 mm

Check if αm is greater than 2 Beam A

y x h

A1

d a A2

a

b

h

e

Dimension : h= a= b= d= e=

100.00 300.00 250.00 400.00 1625.00

mm mm mm mm mm

Centroid :

A2 =

2 30000.00 mm 2 mm 100000.00

AT =

2 130000.00 mm

A1 =

By Varignon's Theorem AT(y) = A1(h/2) + A2(d/2) y=

165.38 mm

Calculation of the Moment of Inertia Ib = ((a*h^3/12 + A1*(y-h/2)^2)) + ((b*d^3/12 + A2*(d/2 -y)^2)) 4 1877564102.56 mm

Ib = Is =

4 135416666.67 mm

e*h^3/12

Beam B

h

A1

A2

d

a A3

a

b

a

h e

Dimension :

h= a= b= d= e=

100.00 300.00 250.00 400.00 3000.00

mm mm mm mm mm

Centroid : 2 30000.00 mm 2 30000.00 mm

A1 = A2 = A3=

2 100000.00 mm

AT =

2 160000.00 mm

By Varignon's Theorem AT(y)= A1(h/2) + A2(h/2) + A3(d/2) y=

143.75 mm

Calculation of Moment of Inertia Ib = ((a*h3/12) + A1(y-h/2)2) + ((a*h3/12) + A2(y-h/2)2) + ((b*d3/12) + A3(d/2 - y)2) 4 2227083333.33 mm

Ib =

4 250000000.00 mm

Is = e*h^3/12 Beam C

y x h

A1

d a A2 a

b

h

e Dimension : h= a= b= d= e=

100.00 300.00 250.00 400.00 1625.00

mm mm mm mm mm

Centroid :

A2 =

2 30000.00 mm 2 100000.00 mm

AT =

2 130000.00 mm

A1 =

By Varignon's Therem AT(y) = A1(h/2) + A2(d/2) y=

165.38 mm

Calculation of Moment of Inertia Ib = ((a*h^3/12) + A1*(y-h/2)^2)) + ((a*h^3/12) + A2*(d/2 - y)^2)) Ib = Is = e*h^3/12

4 1877564102.56 mm 4 135416666.67 mm

Beam D

h

A1

A2

d a A3

a

b

a

h e Dimension : h= a= b= d= e=

100.00 300.00 250.00 400.00 3000.00

mm mm mm mm mm

Centroid :

A2 =

2 30000.00 mm 2 30000.00 mm

A3 =

2 100000.00 mm

AT =

2 160000.00 mm

A1 =

By Varignon's Theorem AT(y) = A1(h/2) + A2(h/2) + A3(d/2) y=

143.75 mm

Calculation of Moment of Inertia Ib = ((a*h3/12) + A1(y-h/2)2) + ((a*h3/12) + A2(y-h/2)2) + ((b*d3/12) + A3(d/2 - y)2) Ib = Is = e*h^3/12

409.1

409.1

Eqn. (409-13)

4 250000000.00 mm

Calculation of ratio of flexural stiffness of beam section to flexural stiffness of a width of a slab bounded laterally by center line of adjacent panel (if any) on each side of beam.

αA

= Eb*Ib/Es*Is

13.87

αB

= Eb*Ib/Es*Is

8.91

αC

= Eb*Ib/Es*Is

13.87

αD

= Eb*Ib/Es*Is

8.91

Average value for α for all beams on edges of a panel.

αm = (αA + αB + αC + αD)/4 409.6.3.3

4 2227083333.33 mm

11.39

Greater than 2, use Eqn.(409-13)

Since the average value is greater than 2, the thickness shall not be less than

hmin = ((ln(0.8+fy/1400))/(36 + 9β) ln = L-b β = L/s

therefore used thickness.h =

66.92 2750.00 1.00

90.00 mm

Non-Compliant

D. Design of Reinforcement by (COEFFICIENT METHOD)

Remarks

D-1.Calculation of Loadings Consideirng 1m strip, b =

1.00 m

Dead Loads :

426.409.2.1 426.409.2.1

Partition = Floor Finish = Ceiling = C.H.B wall = Selfweigth =

1.00 0.90 0.50 0.00 2.16

Kpa Kpa Kpa Kpa Kpa

DL = Live Load : LL =

4.56 Kpa

DLU = 1.4DL LLU = 1.7 LL

6.38 Kpa 3.40 Kpa

2.00 Kpa

Ultimate Load (considering 1m strip) W U = DLU + LLU

9.78 KN/m

D-2. Type of Slab m = Ls/Lb

1.00

Two-Way Slab

Coefficient for Negative Moment in Slab Ca neg. =

0.05000

Short Direction

Cb neg. =

0.05000

Long Direction

0.02700 0.02700

Short Direction Long Direction

Ca. LL =

0.03200

Short Direction

Cb.LL =

0.03200

Long Direction

D-3. Case Number : Case 4

Coefficients for Dead-Load Pos. Moments in Slab Ca. DL = Cb. DL = Coefficient for Live-Load Pos. Moment in Slab

D - 4. Negative Moment at Continous Edges Ms = Ca. neg*Wu*Ls^2

4.40 KN.m

Mb = Cb. Neg*Wu*Lb^2

4.40 KN.m

D - 5. Positive Moment along Short Direction Ms. DL = Ca.DL* DLu * Ls^2

1.55 KN.m

Ms. LL = Ca.LL * LLu * Ls^2

0.98 KN.m

MTs =

2.53 KN.m

D - 6. Positive Moment along Long Direction Mb. DL = Cb. DL*Dlu*Lb^2

1.55 KN.m

Mb. LL = Cb. LL*LL.u*Lb^2

0.98 KN.m

MTb =

2.53 KN.m

D - 7. Design of reinf. Spacing along short direction (mid-span)

Mu = Ф*fc'*b*ds^2*ω*(1-0.59ω) where : Mu = cc = ø= ds = h - cc - ø/2 b= 4.40*1000*1000 = 0.90*28*1000*74^2*ω(1-0.59ω) ω2 - 1.69ω + 0.0723 = 0 By Quadratic Equation :

4.40 20.00 12.00 64.00 1000.00

KN.m mm mm mm mm

a= b= c=

1.00 -1.69 0.0723

ω = (- b ± SQRT(b2 - 4ac))/2a

0.0439

Calculation of actual steel ratio, ρact ρact = ω*fc'/fy

0.00298

Non-Compliant

0.00339

Use for design

Calculation of min. steel ratio, ρmin ρmin = 1.4/fy Calculation of max. steel ratio, ρmax ρb = 0.85*β1*fc'*600/fy(fy+600)

0.02901

ρmax = 0.75*ρb

0.02176

Therefore used, ρact =

0.00339

Compliant

Calculation of steel area, As 2 216.95 mm

As = ρact*b*d Calculation for reinf. Spacing Use steel dia. D = 2

S = 1000*π*D /(4*As)

12.00 mm 521.00 mm

Spacing limits for Slab Reinforcement

407.7.5 407.7.5

s>h s < 3*h s < 450

90.00 mm 270.00 mm 450.00 mm

Design Spacing, S =

270.00 mm

D - 8. Design of reinf. Spacing along short direction (continous-edges)

Mu = Ф*fc'*b*ds^2*ω*(1-0.59ω) where : Mu = cc = ø= ds = h - cc - ø/2 b=

2.53 20.00 12.00 64.00 1000.00

KN.m mm mm mm mm

2.53*1000*1000 = 0.90*28*1000*74^2*ω(1-0.59ω) ω2 - 1.69ω + 0.04155 = 0 By Quadratic Equation : a= b= c=

ω = (- b ± SQRT(b2 - 4ac))/2a

1.00 -1.69 0.0416

0.0250

Calculation of actual steel ratio, ρact ρact = ω*fc'/fy

0.00169

Non-Compliant

0.00339

Use for Design

Calculation of min. steel ratio, ρmin ρmin = 1.4/fy Calculation of max. steel ratio, ρmax ρb = 0.85*β1*fc'*600/fy(fy+600)

0.02901

ρmax = 0.75*ρb

0.02176

Therefore used, ρact =

0.00339

Compliant

Calculation of steel area, As 2 216.95 mm

As = ρact*b*d Calculation for reinf. Spacing Use steel dia. D = 2

S = 1000*π*D /(4*As)

12.00 mm 521.00 mm

Spacing limits for Slab Reinforcement

407.7.5 407.7.5

s>h s < 3*h s < 450

90.00 mm 270.00 mm 450.00 mm

Design Spacing, S =

270.00 mm

D - 9. Design of reinf. Spacing along long direction (mid-span)

Mu = Ф*fc'*b*ds^2*ω*(1-0.59ω) where : Mu = cc = ø= ds = h - cc - Ø - Ø/2 b=

4.40 20.00 12.00 52.00 1000.00

KN.m mm mm mm mm

4.40*1000*1000 = 0.90*28*1000*74^2*ω(1-0.59ω) ω2 - 1.69ω + 0.10951 = 0 By Quadratic Equation : a= b= c= ω = (- b ± SQRT(b2 - 4ac))/2a

1.00 -1.69 0.10951 0.06750

Calculation of actual steel ratio, ρact ρact = ω*fc'/fy

0.00458

Compliant

0.00339

Use actual steel ratio for Design

Calculation of min. steel ratio, ρmin ρmin = 1.4/fy Calculation of max. steel ratio, ρmax ρb = 0.85*β1*fc'*600/fy(fy+600)

0.02901

ρmax = 0.75*ρb

0.02176

Therefore used, ρact =

0.00458

Compliant

Calculation of steel area, As As = ρact*b*d

2 237.96 mm

Calculation for reinf. Spacing Use steel dia. D = S = 1000*π*D2/(4*As)

12.00 mm 475.00 mm

Spacing limits for Slab Reinforcement

407.7.5 407.7.5

s>h s < 3*h s < 450

90.00 mm 270.00 mm 450.00 mm

Design Spacing, S =

270.00 mm

D - 10. Design of reinf. Spacing along long direction (continous-edges) Mu = Ф*fc'*b*ds^2*ω*(1-0.59ω) where : Mu = cc = ø= ds = h - cc - Ø/2 b=

2.53 20.00 12.00 64.00 1000.00

KN.m mm mm mm mm

2.53*1000*1000 = 0.9*28*1000*74^2*ω*(1-0.59ω) ω2 - 1.69ω + 0.04155 = 0 By Quadratic Equation : a= b= c=

1.00 -1.69 0.04155

ω = (- b ± SQRT(b2 - 4ac))/2a

0.02496

Calculation of actual steel ratio, ρact ρact = ω*fc'/fy

0.00169

Non-Compliant

0.00339

Use for Design

Calculation of min. steel ratio, ρmin ρmin = 1.4/fy Calculation of max. steel ratio, ρmax ρb = 0.85*β1*fc'*600/fy(fy+600)

0.02901

ρmax = 0.75*ρb

0.02176

Therefore used, ρact =

0.00339

Compliant

Calculation of steel area, As 2 216.95 mm

As = ρact*b*d Calculation for reinf. Spacing Use steel dia. D = 2

S = 1000*π*D /(4*As)

12.00 mm 521.00 mm

Spacing limits for Slab Reinforcement

407.7.5 407.7.5

s>h s < 3*h s < 450

90.00 mm 270.00 mm 450.00 mm

Design Spacing, S =

270.00 mm

E . Design Summary For short direction the reinforcement spacing :

Ø12mm spaced @

270.00 mm

For long direction the reinforcement spacing :

Ø12mm spaced @

270.00 mm

Related Documents


More Documents from "yunuswsa"