Design Of Two Way Slab..edited

  • Uploaded by: Hanna Jeane
  • 0
  • 0
  • January 2021
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Design Of Two Way Slab..edited as PDF for free.

More details

  • Words: 1,638
  • Pages: 15
Loading documents preview...
DESIGN OF TWO WAY SLAB (Direct Design Method) Two – Way Slab: Dimension 11m x 10m L S

=

Assume h =

5.5 5

= 1.1; Two-Way Slab

ln[ ( 800+0.73 fy ) ] 36000+9000 β

longclearspan β= shortclearspan

β=

5500−55 0 50000−55 0

= 1.11

Ln = long clear span = 55000 – 550 = 4950 mm h=

( 4950 ) [ ( 800+0.73 ( 414 ) ) ] 36000+9000 (1.11)

h= 118.63 mm say 120mm The value of I is computed from that of an I-beam. This procedure is very tedious. From computer calculation, the author found that for edge beam, with slab on

one side only, I = 1.4

Ld ³ 12

and for interior beam with slab on both sides, I = 1.6

where L is the beam width and d is the total depth of beam. For interior beam: Ld ³ I = 1.6 12

Ld ³ 12

550 (800) ³ ¿ = 3.75 x 10¹⁰ mm⁴ I = 1.6 [ 12 For edge beam: Ld ³ I = 1.4 12 (55 0)(800) ³ ¿ = 3.29 x 10¹⁰ mm⁴ 12

I = 1.4[ Value of α: α=

( Ecb)(Ib) ( Ecs)(Is)

(NSCP 2010, Sec. 413.7.16, pg.

4-88) Ec b=E c s=Ec For edge beam with 11.00 m slab: 10

αa =

3.29 x 10 55 00 ( 120 ) ³ 12

= 41.54

For interior beam with 11.00 m slab:

αb =

3.75 x 1010 550 0 ( 120 ) ³ 12

= 47.35

For interior beam with 10.00 m slab width: (2 beams)

αc =

Average:

3.75 x 1010 5 000 ( 120 ) ³ 12

= 52.08

αm =

αa+ αb+αc 4

αm =

41.54+ 47.35+2(5 2.08) 4

αm = 48.26 βs =

length of continuous edges perimeter

( 5.5 ) +2(5) 2 ( 5.5 ) +2(5)

βs =

= 0.74

Ln = 5500-550 = 4950 mm 36000+5000 β( αm−0.12+ h=

1+1 ) β

ln (800+0.73 fy) ¿ ¿ 495 0( 800+0.73 ( 414 )) h=

(

36000+5000 (1.11)(48.26−0.12 1+

1 ) 1.11

)

h=58.92 but not less than hmin : h > hmin but should not be more than hmax hmax =

ln(800+0.73 fy) 36000

hmax =

(495 0)(800+ 0.73 ( 414 ) ) 36000

= 151.56 mm

h > hmin < hmax Therefore, use h = 200 mm Compute weight of slab = 23.56(0.20) = 4.712 KPa Total DL = weight of slab Total DL = 7.068 KPa LL acting on slab= 12 KPa Wu= 1.2DL + 1.6LL Wu= 1.2(4.712) + 1.6(12) = 24.8544 kPa Using 12mm bars: d = 200 -

1 2 (12) – 20 = 174 mm

Check for depth shear: L2 αc( L1 ¿ ≥ 1.0

( from NSCP

2010 P4-84, 413.2.8) 5 ¿=10.2 ≥ 1.0 (11.25)( .5 11 x=( 2 )-

0.550 2

x = 5.051 m

Taking b = 1 m Vu = qu x Area shaded

- 0.174

(OK!)

Vu = 24.8544 x 5.051 (1) Vu = 125.54 KN Vc =

1 2 (1+ ) λ √ f ' c bd 6 β

Vc =

1 2 (1+ )(1) √27.6 6 1 .11

(from NSCP 2010 P4-67, 411.13.2.1)

(1000) (174)

Vc = 426.864 KN Or Vc =

1 λ √f ' c bd 3

Vc =

1 (1) √ 27.6 (1000)(1 74) 3

Vc = 304.71 KN ФVc = 0.85 (304.71) ФVc = 259.00 KN > Vu

(OK)

Moment along the long span (11-m interior span): Mo =

( Wu L2 ) ( Ln)² 8 Ln = 5.5 – 0.550 = 4.95

Mo =

(125.54 ( 5 ) )(4.9 5)² 8

= 1922.53 KN-m

Negative factored moment = -0.65(848.90) = -551.785 KN.m Positive factored moment = 0.35(848.90) = 297.115 KN.m Distributing these moments to beam and the column strips:

L2 L1

5.5 5

=

= 1.10

α 1 = αb = 1.65 (in the direction of L1) L2 α 1( L1 ¿

= 1.10(10.23) = 11.253

According to NSCP 2010 Sec. 43.7.5.1 pg 4-84, Beams between supports shall be

L2 proportioned to resist 85 percent of column strip moments if (α 1( L1 ¿ ) is equal to or greater than 1.0. Factored Moments in Column Strips

(NSCP 2010, 413.7.4.1, pg 4-84)

(Interior Negative Factored Moments) l 2 /l 1 α 1( α 1(

l 2 /l 1 ¿

=0

l 2 /l 1 ¿ ≥1

By interpolation: Percentage =

0.5

1.0

2.0

75

75

75

90

75

45

75−45 1−2 = 75−x 1−1.1 Percentage = 72%

According to Section 5.13.6.5 (Fundamentals of RCD by DIT Guillesania). Interior Negative Moment: Column Strip: 72%( -1249.64) = -899.74 kN-m Beam: 85% (899.74) = -764.78 kN.m

Slab: 15% (899.74) = -134.96 kN.m Middle Strip: -(1249.64 - 899.74) = -349.9 kN.m Positive Moment: Column Strip: 72% (672.89) = 484.48 kN.m Beam: 85% (484.48) = 411.808 kN.m Slab: 15% (484.48) = 72.672 kN.m Middle Strip: (672.89- 484.48) = 188.41 kN.m Moment along the long span (along edge beam) 5 2

L6 =

.55 2

+

= 2.775 m

Ln = 5.5 – 0.55 = 4.95 m Mo =

( Wu L2 ) ( Ln)² 8 (24.8544 ( 2.775 ) )(4.95)² 8

Mo =

= 211.25 KN-m

Negative factored moment: -0.65(211.25) = -137.3125 KN.m Positive factored moment: 0.35(211.25) = 73.94 KN.m β1 =

EcbC 2 EcsIs

x C = Σ( 1 – 0.63 y

=

(

1−0.63

Note: Ecb = Ecs = Ec 3

x y 3

)

3

55 0 55 0 (800) 800 3

)

+

(

1−0.63

3

2 00 2 00 (55 0) 600 3

)

C = 26309.02 x

Is =

6

10 mm

2500 (2 00) ³ 12 Is = 1666.67 x 10⁶

β1 =

4

mm4

26309.02 x 106 2( 1666.67 x 106 ) β1 = 7.89

L2 L1

=

5 5.5

= 0.91

α 1 = αa = 8.97 ( for edge beam ) L2 α 1( L1 ¿

= 8.97(0.91) = 8.16

Exterior Negative Factored Moments (Fundamentals of RCD by DIT Guillesania): l 2 /l 1 α 1( α 1(

l 2 /l 1 ¿

= 0.80

l 2 /l 1 ¿=0.90

0.9

1.0

2.0

77.40

75

75

77.70

75

45

By interpolation: Percentage =

77.70−75 0.9−1.0 = 77.40−x 0.9−0.91 Percentage = 77.13%

Exterior Negative Moment: Column Strip: 77.13 %( -137.3125) = -105.91 kN-m Beam: 85% (-105.91) = -90.02 kN.m

Slab: 15% (-105.91) = -15.89 kN.m Middle Strip: (-137.125 – 105.91) = -31.4025 kN.m Positive Moment: Column Strip: 77.13% (73.94) = 57.03 kN.m Beam: 85% (57.03) = 48.48 kN.m Slab: 15% (57.03) = 8.55 kN.m Middle Strip: (73.94 – 57.03) = 16.91 kN.m

Moment along the short span (10 m end span)

L2 = 11 m

Ln = 5 – 0.55 = 4.45 m Mo =

( Wu L2 ) ( Ln)² 8

Mo =

(24.8544 ( 5.5 ) )(4.45)² 8

= 338.37 KN-m

According to NSCP 2010 Sec. 413.7.3.3 pg 4-83, In an end span, total factored static moment Mo shall be distributed as follows:

Factored Interior Negative Moment: -0.7(338.37) = -236.859 kN.m Factored Positive Moment: 0.57(338.37) = 192.8709 kN.m Factored Exterior Negative Moment: -0.16(338.37) = -54.1392 kN.m L2 L1

=

5 5.5

= 0.91

α 1 = αa = 8.97 ( for edge beam ) L2 α 1( L1 ¿

= 8.97(1.10) = 9.867

According to NSCP 2010 Sec. 43.7.5.1 pg 4-84, Beams between supports shall be

L2 proportioned to resist 85 percent of column strip moments if (α 1( L1 ¿ ) is equal to or greater than 1.0. Factored Moments in Column Strips

(NSCP 2010, 413.7.4.1, pg 4-84)

(Interior Negative Factored Moments) l 2 /l 1 α 1( α 1(

l 2 /l 1 ¿

=0

l 2 /l 1 ¿ ≥1

By interpolation: Percentage =

0.5

1.0

2.0

75

75

75

90

75

45

75−45 1−2 = 75−x 1−1.1

Percentage = 72% Interior Negative Moment: Column Strip: 72%( -236.859) = -170.54 kN-m Beam: 85% (-170.54) = -144.96 kN.m Slab: 15% (-170.54) = -25.58 kN.m Middle Strip: -(236.859– 170.54) = -66.319 kN.m Exterior Negative Moment: Column Strip: 72%( -54.1392) = -38.98 kN-m Beam: 85% (-38.98) = -33.133 kN.m Slab: 15% (-170.54) = -25.58 kN.m Middle Strip: -(54.1392– 38.98) = -15.1592 kN.m

Positive Moment: Column Strip: 72% (192.8709) = 138.87 kN.m Beam: 85% (138.87) = 118.04 kN.m Slab: 15% (138.87) = 20.83 kN.m Middle Strip: (192.8709 – 138.87) = 54.001 kN.m

Ab =

ρmin =

π 4 (12)² = 113 mm² 1.4 414

= 0.00338

0.85(27.6)(0.85)(600) ρmax =0.75 414(600+ 414)

= 0.02138

Row A & C

Row B

Mo b d Ru ρ Use ρ As N = As/Ab s Use s Position

Mo b d Ru ρ Use ρ As N= As/Ab s Use s Position

Across F -2.92 1100 162 0.112387 401 0.00027 0.00338 602.316 5.330230 088 187.6091 62 180 Top

Across A -75.89 975 174 2.856530 932 0.00738 0.00738 1252.017 11.07979 646 90.25436 556 90 Top

Across E 10.42 1100 174 0.347643 431 0.000846 0.00338 646.932 5.725061 947 174.6705 991 170 Bottom

Row D & F Across B 8.55 975 174 0.321825 53 0.000783 0.00338 573.417 5.074486 726 197.0642 656 190 Bottom

Across D -12.79 1100 162 0.492272 212 0.0012 0.00338 602.316 5.330230 088 187.6091 62 180 Top

Across C -75.89 975 174 2.856530 932 0.00738 0.00738 1252.017 11.07979 646 90.25436 556 90 Top

Across F -15.16 2750 174 0.202313 797 0.000491 0.00338 1617.33 14.31265 487 69.86823 963 60 Top

Across A -206.35 2500 174 3.029168 685 0.00786 0.00786 3419.1 30.25752 212 33.04963 294 40 Top

Across E 54 2750 174 0.720642 813 0.00177 0.00338 1617.33 14.31265 487 69.86823 963 60 Bottom

Row E Across B 111.12 2500 174 1.631215 044 0.00409 0.00409 1779.15 15.74469 027 63.51347 554 60 Bottom

Across D -66.32 2750 174 0.885056 137 0.00218 0.00338 1617.33 14.31265 487 69.86823 963 60 Top

Across C -206.35 2500 174 3.029168 685 0.00786 0.00786 3419.1 30.25752 212 33.04963 294 40 Top

Related Documents


More Documents from "Maria Cecilia Suarez Rubi"

Referat Stunting
February 2021 1
February 2021 0
February 2021 0