= 200 M = 50 M = 400 M = 80 M = 4.0 M = 0.022 = 3.2 M = 0.018 = 1100m/s = 900 M/s

  • Uploaded by: Christian Gianfranco Aviles Castro
  • 0
  • 0
  • January 2021
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View = 200 M = 50 M = 400 M = 80 M = 4.0 M = 0.022 = 3.2 M = 0.018 = 1100m/s = 900 M/s as PDF for free.

More details

  • Words: 5,364
  • Pages: 26
Loading documents preview...
Para el siguiente sistema reservorio, tubería o canal de aducción, tubería forzada y válvula en el extremo final, se pide determinar las alturas de presión y velocidades en los puntos señalados con letras (a, b, c) y números arábigos (0, 1, 2, 3, 4, 5, 6) para el caso de flujo permanente t=0 y no permanente en los dos primeros intervalos de tiempo mayor que cero. (Debe escribir todo el procedimiento de cálculo obligatorio).

L1=200 m

alfa 0=25

∆ S1 =50 m

alfa 1=60 °

L2=400 m

alfa 2=10 °

∆ S2 =80 m

alfa 3=30°

D1=4.0 m

alfa 4=0°

f 1=0.022

alfa 5=50°

D2=3.2 m

Tc=10TR

f 2=0.018

Bn=2.5

Hr=20.0 m

C 1=1100 m/s C 2=900 m/s Calculo de H 0

H 0  H r  L1Sen(alfa 0)  S 2 ( Sen(alfa1)  Sen(alfa 2)  Sen(alfa3)  Sen(alfa5)) H 0  20  200  Sen(25º )  80  ( Sen(60º )  Sen(10º )  Sen(30º )  Sen(50º )) H 0  261.1974m H  H 0  H f Hf 0 Vamos a calcular la velocidad en el conducto de diámetro D 2 ,V 2 La fórmula:

V2 

2 g H 1  K mf  K pm

Donde:

K mf 

f1 L1 D2 4 f 2 L2 ( )   K pm D1 D1 D2 2

2

 D   3.2  K pm  1  ( 2 ) 2   1  ( ) 2   0.1296 D1   4   0.022  200 3.2 4 0.018  400 K mf  ( )   0.1296 4 4 3.2 K mf  2.8302 2  9.81 261.1974 1  2.8302  0.1296 V2  35.9749m / s V2 

Por continuidad

V1  (

A2 )V2 A1

V1  (

D2 2 ) V2 D1

V1  (

D2 2 ) V2 D1

V1  (

3.2 2 )  35.9747  23.0239m / s 4

Calculo del intervalo de tiempo en cada tramo Escogemos el menor

(t1 , t2 )

t1  t2

t  t1  0.045 Determinando los valores de

H i en cada punto.

En la entrada; punto "0"

H 0t0  H 0 

(0) f1S1V12 (0)(0.022)(50)(23.0239)  261.1974  2 gD1 2(9.81)(4)

H 0t0  261.1974m En el punto " a "

H at0  H 0 

(1) f1S1V12 (1)(0.022)(50)(23.0239)  261.1974  2 gD1 2(9.81)(4)

H at0  253.7673m En el punto " b "

H bt0  H 0 

(2) f1S1V12 (2)(0.022)(50)(23.0239)  261.1974  2 gD1 2(9.81)(4)

H bt0  246.3373m

En el punto " c "

H ct0  H 0 

(3) f1S1V12 (3)(0.022)(50)(23.0239)  261.1974  2 gD1 2(9.81)(4)

H ct0  238.9072m En el punto "1E "

H1t0E  H 0 

(4) f1S1V12 (4)(0.022)(50)(23.0239)  261.1974  2 gD1 2(9.81)(4)

H1t0E  231.4771m Para el punto "1S " ,consideramos efectos de pérdidas en el mismo punto.

V2   D  H1t0S  H1t0E  2 1   2  2 g   D1  

2

   

2

35.9749   3.2  H  231.4771  1    2(9.81)   4  t0 1S

2

  

2

H1t0S  222.9283m Para el punto "2"

(1) f 2 S2V22 (1)(0.018)(80)(35.9749) H H   261.1974  2 gD2 2(9.81)(3.2) t0 2

t0 1S

H 2t0  193.2450m Para el punto "3"

H 3t0  H1t0S 

(2) f 2 S 2V22 (2)(0.018)(80)(35.9749)  261.1974  2 gD2 2(9.81)(3.2)

H 3t0  163.5617 m Para el punto "4"

H 4t0  H1t0S 

(3) f 2 S 2V22 (3)(0.018)(80)(35.9749)  261.1974  2 gD2 2(9.81)(3.2)

H 4t0  133.8784m Para el punto "5"

(4) f 2 S 2V22 (4)(0.018)(80)(35.9749) H H   261.1974  2 gD2 2(9.81)(3.2) t0 5

t0 1S

H 5t0  104.1950m Para el punto "6"

H 6t0  H1t0S 

(5) f 2 S2V22 (5)(0.018)(80)(35.9749)  261.1974  2 gD2 2(9.81)(3.2)

H 6t0  74.5117m PARA LAS ECUACIONES DE LAS CARACTERÍSTICAS:

CR   HR  Z  VR    VR  G  R  VR  VR CS   HS  Z  VS    VS  G  R  VS  VS a1 1100   112.1305 g 9.81 a tf (1100)(0.0455)(0.022) R1  1 1  =0.0140 2 gD1 2(9.81)(4)

Z1 

A1 

 D12 =12.5664m 2 4

;

a2 900   91.7431 g 9.81 a tf (900)(0.0455)(0.018) R2  2 2  =0.0117 2 gD2 2(9.81)(3.2)

Z2 

; ;

A2 

 D22  8.0425m 2 4

G1   (0.0455) sen(25)  0.0192 G2   (0.0455) sen(60)  0.0394 G3  (0.0455) sen(10)  0.0079 G4   (0.0455) sen(30)  0.0227 G5   (0.0455) sen(0)  0 G6   (0.0455) sen(0)  0.0348 PARA EL TIEMPO t=0.045 (Flujo no permanente) Punto 0:

H S  H 0to  a1

t H 0to  H a to   S1

H S  261.1974  1100 

0.0455   261.1974  253.7673 50

H S  253.7673m VS  V0to  a1

t V0to  Va to   S1

VS  23.0239  1100 

0.0455   23.0239  23.0239  50

VS  23.0239m / s Cálculo de Cs:

Cs   Hs  Z1Vs  G1Vs  R1Vs Vs Cs  253.7673  112.1305  23.0239  0.0192  23.0239  0.0140  23.02392 Cs  2320.9 Entonces:

H 0t1  H 0t 0  261.1974m Cs  H 0t1 2320.9  261.1974  Z 112.1305 t1 V0  23.0279m / s V0t1 

Punto a:

H R  H a to  a1

t  H ato  H 0to  S1

H R  253.7673  1100 

0.0455   253.7673  261.1974  50

H R  261.2048m VR  Va to  a1

t Va to  V0to   S1

VR  23.0239  1100 

0.0455   23.0239  23.0239  50

VR  23.0239m / s Cálculo de CR:

CR   H R  Z1VR  G1VR  R1VR VR CR  261.2048  112.1305  23.0239  0.0192  23.0239  0.0140  23.02392 CR  2835.009 H S  H a to  a1

t H a to  H bto   S1

H S  253.7673  1100 

0.0455   253.7673  246.3373 50

H S  246.3373m VS  Va to  a1

t  Vato  Vbto  S1

VS  23.0239  1100 

0.0455   23.0239  23.0239  50

VS  23.0239m / s Cálculo de Cs:

Cs   Hs  Z1Vs  G1Vs  R1Vs Vs Cs  246.3373  112.1305  23.0239  0.0192  23.0239  0.0140  23.02392 Cs  2328.4 Entonces:

 C  CR H a t1    S 2  t1 H a  253.3250

  2328.4  2835.00      2   

 C  CR   2328.4  2835.00  Va t1    S      2  112.1305   2 Z1  Va t1  23.0239 Punto b:

H R  H b to  a1

t H bto  H a to   S1

H R  246.3373  1100 

0.0455   246.3373  253.7673  50

H R  253.7673m VR  Vbto  a1

t Vb to  Va to   S1

VR  23.0239  1100 

0.0455   23.0239  23.0239  50

VR  23.0239m / s Cálculo de CR:

CR   H R  Z1VR  G1VR  R1VR VR CR  253.7673  112.1305  23.0239  0.0192  23.0239  0.0140  23.02392 CR  2827.6 H S  H b to  a1

t  H bto  H cto  S1

H S  246.3373  1100 

0.0455   246.3373  238.9072  50

H S  238.9072m VS  Vbto  a1

t Vb to  Vc to   S1

VS  23.0239  1100  VS  23.0239m / s Cálculo de Cs:

0.0455   23.0239  23.0239  50

Cs   Hs  Z1Vs  G1Vs  R1Vs Vs Cs  238.3373  112.1305  23.0239  0.0192  23.0239  0.0140  23.02392 Cs  2335.8 Entonces:

 C  CR H b t1    S 2  H b t1  245.8950  C  CR Vb t1    S  2 Z1 Vb t1  23.039

  2335.8  2827.6      2   

  2335.8  2827.6       2  112.1305  

Punto C:

H R  H c to  a1

t H c to  H b to   S1

H R  238.4649  1100 

0.0455   238.9072  246.3373 50

H R  246.3373m VR  Vc to  a1

t  Vcto  Vbto  S1

VR  23.0239  1100 

0.0455   23.0239  23.0239  50

VR  23.0239m / s Cálculo de CR:

CR   H R  Z1VR  G1VR  R1VR VR CR  246.4649  112.1305  23.0239  0.0192  23.0239  0.0140  23.02392 CR  2820.1 H S  H c to  a1

t H c to  H1to   S1

H S  238.9072  1100  H S  231.4771m

0.0455   238.9072  231.4771 50

VS  Vc to  a1

t  Vcto  V1to  S1

VS  23.0239  1100 

0.0455   23.0239  23.0239  50

VS  23.0239m / s Cálculo de Cs:

Cs   Hs  Z1Vs  G1Vs  R1Vs Vs Cs  238.4771  112.1305  23.0239  0.0192  23.0239  0.0140  23.0239 2 Cs  2343.2 Entonces:

 C  CR H c t1    S 2  t1 H c  238.4649  C  CR Vc t1    S  2 Z1 Vc t1  23.039

  2343.2  2820.1      2   

  2343.2  2820.1       2 112.1305  

Punto 1:

H R  H1E to  a1

t H1E to  H c to   S1

H R  231.4771  1100 

0.0455   231.4771  238.9072  50

H R  238.9072m VR  V1E to  a1

t V1E to  Vc to   S1

VR  23.0239  1100 

0.0455   23.0239  23.0239  50

VR  23.0239m / s Cálculo de CR:

CR   H R  Z1VR  G1VR  R1VR VR CR  238.9072  112.1305  23.0239  0.0192  23.0239  0.0140  23.02392 CR  2812.7

H S  H1S to  a1

t  H1S to  H 2to  S1

H S  222.9283  1100 

0.0455   222.9283  193.2450  50

H S  207.7494m VS  V1S to  a1

t V1S to  V2to   S1

VS  35.9749  900 

0.0455   35.9749  35.9749  80

VS  35.9749m / s Cálculo de Cs:

Cs   Hs  Z 2Vs  G2Vs  R2Vs Vs Cs  207.7494  91.7431 35.9749  0.0394  35.9749  0.0394  35.97492 Cs  3079.5 Hallando:

fL K  A1  a 1 1    2 gD1 2 g  A2 

2

0.022  200 0.1296  12.5664     2  9.81 4 2  9.81  8.0425  a  0.0722 a

b

a2  12.5664     143.3486 g  8.0425 

c  (Cs  Ho) c  (3079.5  261.1974) c  3340.13 De forma general:

b  b 2  4ac 2a t1 V1E  23.0336 Vp 

H1t1E    CR  Z1V1tE1  H1t1E  (2812.7  112.1305  23.0336) H1t1E  229.9522

Aplicando la ecuación de continuidad:

V1tE1 A1  V1tS1 A2 A  V1tS1  V1tE1  1   A2   12.5664  V1tS1  23.0336    8.0425  V1tS1  35.9900 H1tS1  Cs  Z 2V1tS1 H1tS1  3079.5  91.7431 35.9900 H1tS1  222.8962 Punto 2:

H R  H 2to  a2

t  H 2to  H1to  S2

H R  193.2450  900 

0.0455   193.2450  222.9283 80

H R  208.4240m VR  V2to  a2

t V2to  V1to   S 2

VR  35.9749  900 

0.0455   35.9749  35.9749  80

VR  35.9749m / s Cálculo de CR:

CR   H R  Z 2VR  G2VR  R2VR VR CR  208.4240  91.7431 35.9749  0.0394  35.9749  0.0394  35.9749 2 CR  3492.3 H S  H 2to  a2

t H 2to  H 3to   S 2

H S  193.2450  900  H S  178.0660m

0.0455   193.2450  163.5617  80

VS  V2to  a2

t  V2to  V3to  S 2

VS  35.9749  900 

0.0455   35.9749  35.9749  80

VS  35.9749m / s Cálculo de Cs:

Cs   Hs  Z 2Vs  G3Vs  R2Vs Vs Cs  178.066  91.7431 35.9749  0.0079  35.9749  0.0117  35.9749 2 Cs  3106.9 Entonces:

 C  CR H 2t1    S 2  t1 H 2  192.6789

  3106.9  3492.3      2   

 C  CR   3106.9  3492.3  V2t1    S      2  91.7431   2Z1  V2t1  35.9656 Punto 3:

H R  H 3to  a2

t H 3to  H 2to   S 2

H R  163.5617  900 

0.0455   163.5617  193.2450  80

H R  177.7900m VR  V3to  a2

t V3to  V2 to S2



VR  35.9749  900 



0.0455   35.9749  35.9749  80

VR  35.9749m / s Cálculo de CR:

CR   H R  Z 2VR  G3VR  R2VR VR CR  177.7900  91.7431 35.9749  0.0394  35.9749  0.0394  35.9749 2 CR  3464.3

H S  H 3to  a2

t  H 3to  H 4to  S 2

H S  163.5617  900 

0.0455   163.5617  133.8784  80

H S  148.3827 m VS  V3to  a2

t V3to  V4to   S2

VS  35.9749  900 

0.0455   35.9749  35.9749  80

VS  35.9749m / s Cálculo de Cs:

Cs   Hs  Z 2Vs  G4Vs  R2Vs Vs Cs  148.3827  91.7431 35.9749  0.0079  35.9749  0.0117  35.97492 Cs  3137.7 Entonces:

 C  CR H 3t1    S 2  H 3t1  163.2949

  3137.7  3464.3      2   

 C  CR   3106.9  3492.3  V3t1    S      2  91.7431   2 Z1  V3t1  35.9809

Punto 4:

H R  H 4to  a2

t  H 4to  H 3to  S 2

H R  133.8784  900  H R  168.8020m

0.0455   133.8784  163.5617  80

VR  V4to  a2

t V4to  V3 to S 2



VR  35.9749  900 



0.0455   35.9749  35.9749  80

VR  35.9749m / s Cálculo de CR:

CR   H R  Z 2VR  G4VR  R2VR VR CR  168.8020  91.7431 35.9749  0.0394  35.9749  0.0394  35.9749 2 CR  3433.5 H S  H 4to  a2

t H 4to  H 5to   S 2

H S  133.8784  900 

0.0455   133.8784  104.1950  80

H S  118.6994m VS  V4to  a2

t V4to  V5to   S 2

VS  35.9749  900 

0.0455   35.9749  35.9749  80

VS  35.9749m / s Cálculo de Cs:

Cs   Hs  Z 2Vs  G4Vs  R2Vs Vs Cs  118.6994  91.7431 35.9749  0  35.9749  0.0117  35.97492 Cs  3166.6 Entonces:

 C  CR H 4t1    S 2  t1 H 4  133.4696

  3166.6  3433.5      2   

 C  CR   3166.6  3433.5  V4t1    S      2  91.7431   2Z1  V4t1  35.9704 Punto 5:

H R  H 5to  a2

t  H 5to  H 4to  S 2

H R  104.1950  900 

0.0455   104.1950  133.8784  80

H R  202.3423m VR  V5to  a2

t V5to  V4 to S 2



VR  35.9749  900 



0.0455   35.9749  35.9749  80

VR  35.9749m / s Cálculo de CR:

CR   H R  Z 2VR  G5VR  R2VR VR CR  202.3423  91.7431 35.9749  0  35.9749  0.0394  35.97492 CR  3404.6 H S  H 5to  a2

t H 5to  H 6to   S 2

H S  104.1950  900 

0.0455   104.1950  74.5117  80

H S  89.0161m VS  V5to  a2

t  V5to  V6to  S2

VS  35.9749  900 

0.0455   35.9749  35.9749  80

VS  35.9749m / s Cálculo de Cs:

Cs   Hs  Z 2Vs  G5Vs  R2Vs Vs Cs  89.0161  91.7431 35.9749  0.0348  35.9749  0.0117  35.97492 Cs  3197.5 Entonces:

 C  CR H 5t 1    S 2  t1 H 5  103.5687

  3197.5  3404.6      2   

 C  CR   3197.5  3404.6  V5t1    S      2  91.7431   2 Z1  V5t1  35.9817 Punto 6 (válvula):

H R  H 6to  a2

t  H 6to  H 5to  S 2

H R  74.5117  900 

0.0455   74.5117  104.1950  80

H R  238.8131m VR  V6to  a2

t V6to  V5 to S 2



VR  35.9749  900 



0.0455   35.9749  35.9749  80

VR  35.9749m / s Cálculo de CR:

CR   H R  Z 2VR  G5VR  R2VR VR CR  238.8131  91.7431 35.9749  0.0348  35.9749  0.0394  35.97492 CR  3373.7 Por dato nos da un valor de B=2.5

  (1  TR 

t 2.5 ) tC

10.L a

Para nuestro caso.

TR 

2  L1 2  L2 2  200 2  400     1.2525 a1 a2 1100 900

TC  TR  10  12.5253"

  (1 

t 0.0455 )  (1  )  0.9910 tC 12.5253

 nV0  Kn 

2

H

 0.9910  35.9749   253.7673

2

 5.0085

Bkn  Kn.Z  Kn.Z 2 Bkn  446.3844  91.7431  446.3844 Ckn  Kn  CR  hf  Ckn  5.0085   3373.7  0   16415.08 Y de la fórmula:

 Bkn  Bkn 2  4Ckn Vp  2 446.3844  446.38442  4  ( 16415.08) V  2 t1 V6  34.1594m / s t1 6

En forma general:

Hp    CR  ZVP  H 6t1    3373.7  91.7431 34.1594  H 6t1  239.8195m

Para t=0.0909 Para el punto 0

Hs  H ot1 

a1 * t H 0t1  H1t1   s1

Hs  261,1974 

1100*0.0455  261.1974  253.3250  50

Hs  253.3250 a * t t 1 Vs  Vot1  1  Vo  V1t1  S1 Vs  23.0387  Vs  23.0239

1100*0.0455 *(23.0387  23.0239) 50

Cs   Hs  Z1 *Vs  G1 *Vs  R1 *Vs * Vs Cs  253.3250  112.1305*23.0239  0.0192* 23.0239  0.0140* 23.0239* 23.0239 Cs  2322,5843 H 0t 2  H 0t 1  261.1974 Vot 2 

Cs  H 0t2 2322,5843  261.1974   23.0426 Z1 112.1305

punto a

H R  H At1 

a1t ( H At1  H 0t1 ) S 1

H R  253.3250  VR  VAt1 

1100*0.0455 (253.3250  261.1974)  261.1974 50

a1t t1 (VA  V0t 1 ) S 1

VR  23.0239 

1100*0.0455 (23.0239  23.0387)  23.0387 50

CR   H R  Z1 *VR  G1 *VR  R1 *VR VR CR  261.1974  1112.1305* 23.0387  0.0192* 23.0387  0.0.140* 23.0387 2 CR  -2836,6546 H S  H At1 

a1t ( H At1  H Bt1 ) S 1

H S  253.3250  VS  VAt1 

1100 *0.0455*(253.3250  245.8950)  245.8950 50

a1t t1 (VA  VBt1 ) S 1

VS  23.0239 

1100*0.0455 (23.0239  23.0239)  23.0239 50

CS   H S  Z1 *VS  G1 *VS  R1 *VS VS CS  245.8950  112.1305* 23.0239  0.0192* 23.0239  0.0140* 23.0239 23.0239 Cs  2328,8016

(Cs  CR )   2328,8016  2836,6546)   253.9265 2 2 C  CR 2328,8016  2836,6546 VAt2  s   23.0332 2* Z1 2*112.1305 H At2 

punto b

H R  H Bt1 

a1t ( H Bt1  H At1 ) S 1

H R  245.8950  VR  VBt1 

1100*0.0455 (245.8950  253.3250)  253.3250 50

a1t t1 (VB  VAt 1 ) S 1

VR  23.0239 

1100*0.0455 (23.0239  23.0239)  23.0239 50

CR   H R  Z1 *VR  G1 *VR  R1 *VR VR CR  253.3250  1112.1305* 23.0239  0.0192* 23.0239  0.0140* 23.02392 CR  -2827,1370 H S  H Bt1 

a1t ( H Bt1  H Ct1 ) S 1

H S  245.8950  VS  VBt1 

1100 *0.0455*(245.8950  238.4649)  238.4649 50

a1t t1 (VB  VCt1 ) S 1

VS  23.0239 

1100*0.0455 (23.0239  23.0239)  23.0239 50

CS   H S  Z1 *VS  G1 *VS  R1 *VS VS CS  238.4649  112.1305* 23.0239  0.0192* 23.0239  0.0140* 23.0239 23.0239 Cs  2336,2316 (Cs  CR )   2336.2316  2827.1370)   245.4527 2 2 C  CR 2336.2316  2827.1370 VBt2  s   23.0239 2* Z1 2*112.1305 H Bt2 

punto C

punto 1

H R  H1tE1 

a1t ( H1tE1  H Ct1 ) S 1

H R  229.9522  VR  V1tE1 

1100*0.0455 (229.9522  238.4649)  238.4649 50

a1t t1 (V1E  VCt 1 ) S 1

VR  23.0336 

1100*0.0455 (23.0336  23.0239)  23.0239 50

CR   H R  Z1 *VR  G1 *VR  R1 *VR VR CR  238.4649  1112.1305* 23.0239  0.0192* 23.0239  0.0140* 23.02392 CR  -2812,2769 H S  H1tS1 

a2 t ( H1tS1  H 2t1 ) S 2

H S  222.8962  VS  V1tS1 

900 *0.0455*(222.8962  192.6789)  207.4442 80

a2 t t1 (V1S  V2t1 ) S 2

VS  35.9900 

900*0.0455 (35.9900  35.9656)  35.9775 80

CS   H S  Z 2 *VS  G2 *VS  R2 *VS VS CS  207.4442  91.7432*35.9775  0.0394*35.9775  0.0117 *35.9775 35.9775 Cs  3079,4812   D 2  k  1   2     D1    

2

2

  3.20 2  k  1    0.1296   4.00     f *L k  A1  a 1 1   2 gD1 2* g  A2 

2

2

0.022* 200 0.1296  4 2  a     0.0722 2*9.81* 4 2*9.81  3.2 2 

b

a2  A1  *  g  A2 

b

900  42  *   143.3486 9.81  3.22 

c  (Cs  Ho)  (3079.4812  261.1974) c  3340,6786 V1tE2 

b  b 2  4ac 2a

V1tE2 

143.3486  143.34862  4*(0.0722) *(3340.6786) 2*(0.0722)

V1tE2  23.0373 H1t2E  (C R  Z1 *V1tE2 ) H1t2E  (2812.2769  112.1305* 23.0373)  229.0935 V2tS2 

A1 t2 V2 E A2

V2tS2 

42 * 23.0373  35.9958 3.24

H 2t2s  C s  Z 2 *V2ts2 H 2t 2s  3079.4812  91.7432*35.9958 H 2t2s  222.8839 punto 2

H R  H 2t1 

a2 t ( H 2t1  H1tS1 ) S 2

H R  192.6789  VR  V2t1 

900*0.0455 (192.6789  222.8962)  208.1309 80

a2 t t1 (V2  V1tS1 ) S2

VR  35.9656 

900 *0.0455 (35.9656  35.9900)  35.9781 80

CR   H R  Z 2 *VR  G2 *VR  R2 *VR VR CR  208.1309  91.7432*35.9781  0.0394*35.9781  0.0117 *35.97812 CR  -3492,2741

H S  H 2t1 

a2 t t 1 ( H 2  H 3t1 ) S 2

H S  192.6789  VS  V2t1 

900 *0.0455*(192.6789  163.2949)  177.6530 80

a2 t t1 (V2  V3t 1 ) S 2

VS  35.9656 

900*0.0455 (35.9656  35.9809)  35.9734 80

CS   H S  Z 2 *VS  G3 *VS  R2 *VS VS CS  117.6530  91.7432*35.9734  0.0079*35.9734  0.0117 *35.9734 35.9734 Cs  3107,2003 (Cs  CR )   3107.2003  3492.2741)   192.5369 2 2 C  CR 3107.2003  3492.2741 V2t2  s   35.9671 2* Z 2 2*91.7432 H 2t2 

punto 3

H R  H 3t1 

a2 t ( H 3t 1  H 2t1 ) S 2

H R  163.2949  VR  V3t1 

900*0.0455 (163.2949  192.6789)  178.3208 80

a2 t t1 (V3  V2t1 ) S 2

VR  35.9809 

900*0.0455 (35.9809  35.9656)  35.9731 80

CR   H R  Z 2 *VR  G3 *VR  R2 *VR VR CR  178.3208  91.7432*35.9731  0.0079*35.9731  0.0117 *35.97312 CR  3463,7104

H S  H 3t1 

a2 t t 1 ( H 3  H 4t1 ) S 2

H S  163.2949  VS  V3t1 

900 *0.0455*(163.2949  133.4696)  148.0433 80

a2 t t1 (V3  V4t 1 ) S 2

VS  35.9809 

900*0.0455 (35.9809  35.9704)  35.9755 80

CS   H S  Z 2 *VS  G4 *VS  R2 *VS VS CS  148.0433  91.7432*35.9755  0.0227 *35.9755  0.0117 *35.9755 35.9755 Cs  3138,1036 (Cs  C R )   3138.1036  3463.7104)   162.8034 2 2 C  C R 3138.1036  3463.7104 V2t2  s   35.9799 2* Z 2 2*91.7432 H 2t2 

punto 4

H R  H 4t1 

a2 t ( H 4t1  H 3t1 ) S 2

H R  133.4696  VR  V4t1 

900*0.0455 (133.4696  163.2949)  148.7211 80

a2 t t1 (V4  V3t1 ) S 2

VR  35.9704 

900 *0.0455 (35.9704  35.9809)  35.9758 80

CR   H R  Z 2 *VR  G4 *VR  R2 *VR VR CR  148.7211  91.7432*35.9758  0.0227 *35.9758  0.0117 *35.97582 CR  -3433,2544

H S  H 4t1 

a2 t t 1 ( H 4  H 5t1 ) S 2

H S  133.4696  VS  V4t1 

900 *0.0455*(133.4696  103.5687)  118.1794 80

a2 t t1 (V4  V5t 1 ) S 2

VS  35.9704 

900*0.0455 (35.9704  35.9817)  35.9762 80

CS   H S  Z 2 *VS  G5 *VS  R2 *VS VS CS  118.1794  91.7432*35.9762  0*35.9762  0.0117 *35.9762 35.9762 Cs  3167,2098 (Cs  CR )   3167.2098  3433.2544)   133.0223 2 2 C  CR 3167.2098  3433.2544 V2t2  s   35.9725 2* Z 2 2*91.7432 H 2t2 

punto 5

H R  H 5t1 

a2 t ( H 5t 1  H 4t1 ) S 2

H R  103.5687  VR  V5t1 

900*0.0455 (103.5687  133.4696)  118.8589 80

a2 t t1 (V5  V4t1 ) S 2

VR  35.9817 

900*0.0455 (35.9817  35.9704)  35.9759 80

CR   H R  Z 2 *VR  G5 *VR  R2 *VR VR CR  118.8589  91.7432*35.9759  0*35.9759  0.0117*35.97592 CR  3404,2247

H S  H 5t1 

a2 t t 1 ( H 5  H 6t1 ) S 2

H S  103.5687  VS  V5t1 

900 *0.0455*(103.5687  239.8195)  173.2424 80

a2 t t1 (V5  V6t1 ) S 2

VS  35.9817 

900*0.0455 (35.9817  34.1594)  35.0498 80

CS   H S  Z 2 *VS  G6 *VS  R2 *VS VS CS  173.2424  91.7432*35.0498  0.0348*35.0498  0.0117 *35.0498 35.0498 Cs  3029,1514 (Cs  C R )   3029.1514  3404.2247)   187.5367 2 2 C  C R 3029.1514  3404.2247 V2t2  s   35.0619 2* Z 2 2*91.7432 H 2t2 

punto 6 (Válvula)

H R  H 6t1 

a2 t ( H 6t1  H 5t1 ) S 2

H R  239.8195  VR  V6t1 

900*0.0455 (239.8195  103.5687)  170.1458 80

a2 t t1 (V6  V5t1 ) S2

VR  34.1594 

900 *0.0455 (34.1594  35.9817)  35.0913 80

CR   H R  Z 2 *VR  G6 *VR  R2 *VR VR CR  170.1458  91.7432*35.0913  0.0348*35.0913  0.0117 *35.09132 CR  3373.8629

 t * i  n  1   tc  

2.5

 2*0.0455  n  1   12.5253  

 n *V0  kn 

2

2.5

 0.9820

 0.9820*35.9749  

2

 4.7776 H 261.1974 Bkn  kn * Z  kn * Z 2  4.7776*917432

Bkn  438.3141 Ckn  kn(CR  hf )  4.7776*( 3373,8629  0)  -16119,0490 V6t2 

 Bkn  Bkn 2  4Ckn 2

438.3141  438.31412  4 *(16119.0490)  34.1192 2 H 6t2  (Cr  Z 2 *V6t2 )

V6t2 

H 6t2  (3373.8629  91.7432 *34.1192)  243.6609

Related Documents


More Documents from "Azhvan Dasan"