Transformer Protection - Siemens

  • Uploaded by: hozipek5599
  • 0
  • 0
  • January 2021
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Transformer Protection - Siemens as PDF for free.

More details

  • Words: 3,861
  • Pages: 53
Loading documents preview...
Transformer Protection

Page 188

2007-08

Author: G. Ziegler

Copyright © Siemens AG 2007. All rights reserved. PTD SE PTI

Transformer: Function principle and equivalent circuits

I1

w1

w2

I2

Φ

U1

Xσ1

R1 U2

U1

Φ σ1 Φ σ2

I1

I ⋅ w + I ⋅ w = I µ ⋅ w1 1 1 2 2

Page 189

2007-08

RTK

I µ << I1, 2 '



R2 '

I2'

U 2'

Equivalent electric circuit

Equivalent electromagnetic circuit

At load and short-circuit:



Xσ 2'

U1

Author: G. Ziegler

X TK

I1 = I 2 '

I1⋅ w1 = I 2 ⋅ w2

U 2'

X TK = X σ 1 + X σ 2 ' RTK = R1 + R2 '

Copyright © Siemens AG 2007. All rights reserved. PTD SE PTI

Typical Transformer data

Rated power

Ratio

MVA

Page 190

kV/kV

Short-circuit voltage % UN

No-load magnetizing current % In

850

850/21

17

0.2

600

400/230

18.5

0.25

300

400/120

19

0.1

300

230/120

24

0.1

40

110/11

17

0.1

16

30/10.5

8.0

0.2

6.3

30/10.5

7.5

0.2

0.63

10/0.4

4.0

0.15

2007-08

Author: G. Ziegler

Copyright © Siemens AG 2007. All rights reserved. PTD SE PTI

Transformer Inrush current

IRush

Flux

φ

φ φRem

Inrush-current of a single phase transformer

U

Im

t

Source: Sonnemann, et al.: Magnetizing Inrush phenomena in transformer banks, AIEE Trans., 77, P. III, 1958, pp. 884-892

Page 191

2007-08

Author: G. Ziegler

Copyright © Siemens AG 2007. All rights reserved. PTD SE PTI

Inrush currents of a Y-∆-transformer Neutral of Y-winding earthed ΦT

IR

ΦS ΦR

IS

I mT

ID

IC

I mR Oscillogram:

IR

5 1 I R = ⋅ I mR − ⋅ I mC 6 6

IR

IS

1 1 IS = − ⋅ ImR − ⋅ ImT 6 6

IS

IT

5 1 IT = ⋅ ImT − ⋅ ImR 6 6

IT

Source: Sonnemann et al. : Magnetizing Inrush phenomena in transformer banks, AIEE Trans., 77, P. III, 1958, pp. 884-892

Page 192

2007-08

Author: G. Ziegler

Copyright © Siemens AG 2007. All rights reserved. PTD SE PTI

Inrush current : Content of 2nd und 3rd harmonic I m(ν ) I m(1)

%

100 B

80

B

360O 60

I m ( 2) 40

I m(3) 20

I m(1)

I m(1) 90O

17,5%

180O

270O

360O Width of base B

240O

Page 193

2007-08

Author: G. Ziegler

Copyright © Siemens AG 2007. All rights reserved. PTD SE PTI

Inrush currents of a three-phase transformer recorded with relay 7UT51

Page 194

2007-08

Author: G. Ziegler

Copyright © Siemens AG 2007. All rights reserved. PTD SE PTI

Transformer Inrush current: Amplitude and time constant

ˆI Rush

12

ˆI N

10

Rated power in MVA

time constant in seconds

8

0,5....1,0

0,16....0,2

6

1,0

0,2 .....1,2

>10

4

10

1,2 ....720

2

5

10

50

100

500

Rated transformer power in MVA

Page 195

2007-08

Author: G. Ziegler

Copyright © Siemens AG 2007. All rights reserved. PTD SE PTI

Sympathetic Inrush Wave form:

Transient currents:

I1

I

I1

I2

I2

IT IT I1

IT T1

G resistance

I2

Transformer being closed

G Transformer already closed

T2

Page 196

2007-08

Author: G. Ziegler

Current circulating between transformers

RS

IT

t

XS

I1

I2 T1

T2

Copyright © Siemens AG 2007. All rights reserved. PTD SE PTI

Transformer overfluxing

Deduction of wave form

B 1,5

Harmonic content % 100 80

Im

×104 Gauß

U

1,0

I150/I50

60

I250/I50

40

I350/I50

I50/InTr

20 0

0,5

5

Page 197

10

15 A Im

2007-08

0

20 ms

10

100

120

140

% 160 U/Un

t

Author: G. Ziegler

Copyright © Siemens AG 2007. All rights reserved. PTD SE PTI

Vector group adaptation with matching CTs Current distribution with external ph-ph fault

IR

I1

R

3

Ir r

1

IS

I2

IT

I3

S

T

Is It

s

G

t

3 /1 87T

Page 198

2007-08

87T

87T

Author: G. Ziegler

Copyright © Siemens AG 2007. All rights reserved. PTD SE PTI

Vector group adaptation with matching CTs Current distribution with external ph-E fault IR

R

Yd1

IS

S

IT

I1

Ir

I2

Is s It

I3

T

r

G

t

tm IT=3

87T

87T

87T

Ir = 3

Tg

R0 S0 T0

30O

tm

sm

Sm

Rm Page 199

= 3

tg

3 /1

Tm

It

Rg 2007-08

Sg

rg

30O sg

rm Author: G. Ziegler

tg

rm

rg

Copyright © Siemens AG 2007. All rights reserved. PTD SE PTI

Traditional I0-elimination with matching CTs Current distribution in case of an internal earth fault

L1 L1 L2 L2

G

L3

L3

!

∆Ι

∆Ι

∆Ι

• Sensitivity only 2/3 IF! •Non-selective fault indication!

Page 200

2007-08

Author: G. Ziegler

Copyright © Siemens AG 2007. All rights reserved. PTD SE PTI

Traditional I0-correction with matching CTs Current distribution with external ph-E fault

a A b B

G

c

C

3/1

87T 87T

Page 201

2007-08

87T

Author: G. Ziegler

Copyright © Siemens AG 2007. All rights reserved. PTD SE PTI

Traditional I0-correction with matching CTs Current distribution with internal ph-E fault

a A b B

G

c C

3/1

87T

Page 202

2007-08

87T

87T

Author: G. Ziegler

Copyright © Siemens AG 2007. All rights reserved. PTD SE PTI

Transformer differential protection, connection

L1

IA1

IB1

UA

L2

IA2

IB2

UB

(110 kV)

L3

IA3

IB3

(20 kV)

Digital protection contains: Adaptation to

7UT6

∆I

∆I

∆I

• Ratio UA / UB • Vector group

Software replica of matching transformers

Page 203

2007-08

Author: G. Ziegler

Copyright © Siemens AG 2007. All rights reserved. PTD SE PTI

Digital transformer protection Adaptation of currents for comparison (1) CT 1

JR-sec JS-sec JT-sec

JR-prim

Js-prim

JT-prim

Jt-prim

N o r m

I IS = N − Prim − CT 1 ⋅ I N − Transf - W1 IT

Page 204

Jr-prim

JS-prim

IR IS IT

I N −Transf − W1 =

IR

W2

W1

IR* ComI0parison elim. IS* ∆I IT* SN

Ir* Is* It*

I0elim.

Ir Is It

N o r m

I N −Transf − W2 =

3 ⋅ U N-1

J R −sec

J R −sec

J S −sec = kCT −1 ⋅ JT −sec

J S −sec

2007-08

Ir** Vector Is** group It** adapt.

JT −sec

Author: G. Ziegler

Ir

J r − sec

CT 2

Jr-sec Js-sec Jt-sec SN 3 ⋅ U N -2

I I s = N − Prim −CT 2 ⋅ J s −sec = k CT − 2 ⋅ I N −Transf -W2 It J t −sec

J r − sec J s − sec J t −sec

Copyright © Siemens AG 2007. All rights reserved. PTD SE PTI

Digital transformer protection Adaptation of currents for comparison (2) CT 1

I0 =

Js-prim

JT-prim

Jt-prim

IR IS IT

IR* Com_ I0parison elim. IS* ∆I IT*

1 ⋅ (I R + IS + IT ) 3

I R * = I R − I0 IS* = IS − I0 IT * = IT − I0

Page 205

Jr-prim

JS-prim

N o r m

JR-sec JS-sec JT-sec

W2

W1

JR-prim

Ir** Vector Is** group It** adapt.

Ir* Is* It*

I0elim.

Ir Is It

N o r m

Example Yd5: I∆−R

IR *

Ir **

I∆−S = I S * + I s ** IT * I t * * I ∆ −T

2007-08

I r ** −1 0 1 Ir * 1 I s ** = 1 −1 0 ⋅ I s * 3 It ** 0 1 − 1 It *

Author: G. Ziegler

CT 2

Jr-sec Js-sec Jt-sec

1 I0 = ⋅ (I r + Is + I t ) 3

I r * = I r − I0 Is * = Is − I0

I t * = I t − I0

Copyright © Siemens AG 2007. All rights reserved. PTD SE PTI

Adaptation of currents for comparison Relay input data Input data: •n times 30O

vector group number (only for 2nd and 3rd winding, 1st winding is reference)

Winding 1 (reference) is normally: •High voltage side

•UN (kV)

Rated winding voltage

•SN (MVA)

rated winding power

•INW (A)

Primary rated CT current

•Line or BB

direction of CT neutral

•Elimination / Correction / without

I0-treatment

•Side XX

Assignment input for REF

•INW S (A)

Primary rated current of neutral CT

•Neutral CT

Earth side connection to relay: Q7 or Q8?

Page 206

2007-08

Author: G. Ziegler

At windings with tap changer:

U max ⋅ U min UN = 2⋅ U max + U min

Copyright © Siemens AG 2007. All rights reserved. PTD SE PTI

Digital transformer protection Current adaptation, Example (1) SN = 100 MVA UN1= 20 kV 3000/5 A

Yd5

W2

UN2= 110 kV W1

600/1 A 2.400 A

7621 A

1A 5A

Page 207

2007-08

∆I

Author: G. Ziegler

Copyright © Siemens AG 2007. All rights reserved. PTD SE PTI

Digital transformer protection Current adaptation, Example (2) 20-kV-side

I N − Trafo − W2 =

100MVA 3 ⋅ 20kV

110-kV-side

= 2887A

1 ⋅13200 3 = 4,4 3 A 3000 3000 I Norm = ⋅ 4,4 3 = 4,57 3 A 2887 J r,s, t -sek =

I0-elimination: − 1 0 1 4,57 3 − 4,57 / 3 I r ** 1 1 − 1 0 ⋅ − 4,57 3 = 2 ⋅ 4,57 / 3 I s ** = 3 0 1 −1 0 It * * − 4,57 / 3

I N − Trafo − W1 =

J R,S,T -sek = I Norm =

100MVA 3 ⋅110kV

= 525A

1 ⋅ 2400 = 4,0 A 600

600 ⋅ 4 = 4,57A 525

Vector group adaptation: Yd5 Ir * 2 −1 −1 0 4,57 3 1 Is * = ⋅ − 1 2 − 1 ⋅ − 4,57 = − 2 ⋅ 4,57 3 3 It * −1 −1 2 0 4,57 3

4,57 3 − 4,57 3 I A − R = I R * +I r * * = =0 I A − S = I S * + I s * * = − 2 ⋅ 4,57 3 + 2 ⋅ 4,57 3 = 0 I A −T = IT * +I t * * = 4,57 3 − 4,57 3 =0 Page 208

2007-08

Author: G. Ziegler

Copyright © Siemens AG 2007. All rights reserved. PTD SE PTI

7UT6 Operating characteristic

5

B

I IF F =

7UT6

7 6

I DIFF >>

ST A

8

ID

IDiff/ In

I2

I1

9

IDIFF = |I1+ I2| Tripping area

IStab = |I1| + |I2|

4

e p o Sl

3

2

Stable operation

2

I DIFF >

Page 209

0 0

2007-08

Additional stabilisation for high Is.c.

1 Slope

1

1

2

3

4

5

6

Author: G. Ziegler

7

8

9

10

11

Istab / In

Copyright © Siemens AG 2007. All rights reserved. PTD SE PTI

I0-elimination / correction: Summary

Î I0- elimination necessary at all windings with earthed neutral or with grounding transformer in the protection range Earth fault sensitivity reduced to 2/3 ! Incorrect fault type indication! Î I0- correction provides full earth current sensitivity and correct phase selective fault type indication, however requires CT in the neutral-to-earth connection of the transformer. Î As an alternative, earth differential protection can be used to enhance earth fault sensitivity.

Page 210

2007-08

Author: G. Ziegler

Copyright © Siemens AG 2007. All rights reserved. PTD SE PTI

Transformer winding to earth fault Solid earthed neutral

IF per unit 10 8

UR h⋅UR

IF

6

Infeed side

4

IF

IK

2

IK 0

20

40

60

80

100

Short-circuited winding part h in %

Source: P.M. Anderson: Power System Protection, McGraw-Hill and IEEE Press (Book)

Page 211

2007-08

Author: G. Ziegler

Copyright © Siemens AG 2007. All rights reserved. PTD SE PTI

Transformer winding to earth fault Resistance or reactance earthed neutral

UR h⋅UR Infeed side

% 100

I IF

I Max IF

IK

50

IK

RE 0

h ⋅U R IF = RE U 2n h ⋅ w2 IK = ⋅ IF = h ⋅ ⋅ IF w1 U1n ⋅ 3

20

40 100 60 80 Short-circuited winding part h in %

1 U 2n U R 2 IK = h ⋅ ⋅ ⋅ 3 U1n RE

Source: P.M. Anderson: Power System Protection, McGraw-Hill and IEEE Press (Book)

Page 212

2007-08

Author: G. Ziegler

Copyright © Siemens AG 2007. All rights reserved. PTD SE PTI

Transformer winding to earth fault Earth fault in the delta winding

IK

R

IK

0%

5

20%

x In

Grid

4 33,3%

3

50%

2

100%

1

20

40

60

80

100

Location of the earth fault h in %

Page 213

2007-08

Author: G. Ziegler

Copyright © Siemens AG 2007. All rights reserved. PTD SE PTI

Transformer winding short-circuit

100

IK

10

IF , IK x In 80

8

60

6

IP x In

IF 4

40

IK 20

2

IF 0

5

10

15

20

25

Short-circuited winding part h in % Source: Protective Relays, Application Guide, GEC Alstom T&D, 1995

Page 214

2007-08

Author: G. Ziegler

Copyright © Siemens AG 2007. All rights reserved. PTD SE PTI

Restricted earth fault protection of relay 7UT6

I0* = IN I0** = I R + I S + IT = 3I0 I restr = I − I − I + I * 0

** 0

* 0

IR IS

** 0

IT

Basic operating area: IOp = I0*

(

)

for − 900 ≤ ϕ I 0* / I 0** ≤ +900 if IOp ≥ Iset Extended operating area: IOp = I 0* − k0 ·I restr

(

I>

IN ∆ IE I0*

I0**

)

for + 900 ≤ ϕ I 0* / I 0** ≤ +2700 if IOP ≥ Irestr Page 215

2007-08

Author: G. Ziegler

Copyright © Siemens AG 2007. All rights reserved. PTD SE PTI

Restricted earth fault protection of 7UT6 Operating characteristic (2)

K0

ϕ Limit

1.0

130

1.4

120

k0 =2

I*0 I 0-set

ϕ Limit=110O 4

2.0

110

4.0

100

3



90

2

I*0* I*0

=

ΣI Ph =1 IN

1

Internal fault

External fault 180O

130O 120O 110O

100O

(

90O

80O

ϕ I*0*/I*0

Page 216

2007-08

)

Author: G. Ziegler

70O

60O

50O

0O

Copyright © Siemens AG 2007. All rights reserved. PTD SE PTI

Restricted earth fault protection of 7UT6 Polar characteristic

K0= 4 100

K0= 2 120

2

80 60

1.2

I0 * ϕ (I 0 */I 0 **) ⋅e 40 I0 * *

0.8

20

1.6 140

K0= 1.4

160

K0= 1

Blocking

0.4

180

ϕ

0

Tripping +1

0

200

340

220

320 240

300 260

Page 217

2007-08

280

Author: G. Ziegler

Copyright © Siemens AG 2007. All rights reserved. PTD SE PTI

Restricted earth fault protection 87N (7UT6) Application aspects

„ Increased sensitivity with earth faults near winding neutral

Preferably used in case of resistance or reactance neutral earthing „ Sensitive to turns short-circuit „ I0 / IN amplitude and angle comparison „ 2nd harmonic stabilised „ Can protect a separate shunt reactor or neutral earthing transformer in addition to the two winding transformer differential protection „ Not applicable with autotransformers! (as only one stabilising input at transformer terminal side, -- high impedance principle to be used in this case.

Page 218

2007-08

Author: G. Ziegler

Copyright © Siemens AG 2007. All rights reserved. PTD SE PTI

Transformer HI-earth fault protection

IR

Ir

IS

Is

IT

It

ZE ∆IE>

Page 219

2007-08

IN

Author: G. Ziegler

∆IE>

Copyright © Siemens AG 2007. All rights reserved. PTD SE PTI

HI differential protection of an autotransformer

Ir

IR

Is

IS

It

IT

87

Page 220

2007-08

87

87

Author: G. Ziegler

Copyright © Siemens AG 2007. All rights reserved. PTD SE PTI

HI earth fault protection of an autotransformer

Ir

IR

Is

IS

It

IT

IN ∆I>

Page 221

2007-08

Author: G. Ziegler

Copyright © Siemens AG 2007. All rights reserved. PTD SE PTI

Transformer tank protection 64T: Principle

IE>

Insulated

Page 222

2007-08

Author: G. Ziegler

Copyright © Siemens AG 2007. All rights reserved. PTD SE PTI

Transformer protection, Relay design

Transformer Protection with Siemens SIPROTEC 7UT6

7UT612

Page 223

2007-08

Author: G. Ziegler

Copyright © Siemens AG 2007. All rights reserved. PTD SE PTI

Digital transformer protection relay 7UT613: Current inputs and integrated protective functions YN

yn0

d5

R S T

ϑ> (2)

Page 224

2007-08

ϑ> (1)

I>>, I>t

Author: G. Ziegler

∆ITE

∆IT

Copyright © Siemens AG 2007. All rights reserved. PTD SE PTI

Relay 7UT6: Application examples

∆ ∆I ∆I

Three winding transformer

Two winding transformer

Shunt Reactor

G

∆I

2007-08

Transformer bank (1-1/2-LS)

∆I

∆I

Generator / Motor Page 225

∆I

∆I

Busbars Author: G. Ziegler

Copyright © Siemens AG 2007. All rights reserved. PTD SE PTI

7UT6 Operating characteristic

B

8

I

ST A

IF F =

7UT61

7

IDIFF = |I1+ I2|

6

IStab = |I1| + |I2|

5

Tripping area

4 3

pe o l s

2

I DIFF > (1603) 0

0

1

2007-08

2

2

ot o (f

1 slope ) (1606

1

Page 226

I DIFF >> (1604)

ID

IDiff/ In

I2

I1

9

in o p

t=

1

7, 0 6

e p o sl

=

1

8 60

)

Restraining area

of 1606 slope = 1/2 e) = (1618 ) n li r e rd o b t f (le pick-up limit

Add-on restraint for high ISC 3

4

5

6

Author: G. Ziegler

7

8

9

10

11

Istab / In

Copyright © Siemens AG 2007. All rights reserved. PTD SE PTI

Advantages of digital transformer differential protection

‹ High stability against c.t. saturation provided by integrated saturation detector and add-on stabilisation ‹ High stabile against inrush currents due to advanced filter technology (Fourier analysis) and optional cross-blocking function ‹ High stability against over-excitation ( 5th harmonic blocking) ‹ Short tripping time - typically 1.5 cycles ‹ High set ∆I fast tripping < 1 cycle ‹ Sensitive earth differential protection against interturn faults and earth faults near winding neutral ‹ Integral ratio and vector group adaptation (no external auxiliary CTs required) ‹ Integral thermal overload protection ‹ External start of fault recording (e.g. by gas pressure relays)

Page 227

2007-08

Author: G. Ziegler

Copyright © Siemens AG 2007. All rights reserved. PTD SE PTI

7UT6 Integrated protection functions 87T

Transformer differential protection ‰ ∆I> ‰ Rush-stabilised (2nd harmonic) ‰ Stabilised against overfluxing (5th harmonic)

49-1 49-2

‰ ∆I>> high set element, non-stabilised

Thermal overload protection

50/51 50HS

Time overcurrent protection (IT or DT) Earth current differential protection (7UT613)

87N

Tank protection (7UT613) 64T

Page 228

2007-08

Author: G. Ziegler

Copyright © Siemens AG 2007. All rights reserved. PTD SE PTI

Application examples

Page 229

2007-08

Author: G. Ziegler

Copyright © Siemens AG 2007. All rights reserved. PTD SE PTI

Protection of a two winding transformer

7SJ600 7UT512 50

51 W1

52

87T

Bu

W1 (OS)

49

W2 (US) W2

52

Page 230

2007-08

52

Author: G. Ziegler

51

52

Copyright © Siemens AG 2007. All rights reserved. PTD SE PTI

Protection of a three winding transformer 7SJ600 50

51

52

7UT513 W1 49-1

Bu 87T

W1 W2

W3

W2 49-2

W3

51

52

Load

Page 231

2007-08

Author: G. Ziegler

Copyright © Siemens AG 2007. All rights reserved. PTD SE PTI

Restricted earth fault protection for a two winding transformer

7SJ600 7UT513 50

51 W1 49-1

52 Bu

W1 (OS)

87T W2 (US) ZE 51 87TE

52

Page 232

2007-08

52

Author: G. Ziegler

W2

52

Copyright © Siemens AG 2007. All rights reserved. PTD SE PTI

Protection of an autotransformer

52

7SJ600 51BF

51N

50 51

7UT513 87 TL Load

52

87 TH

7VH600

49 52

3Y

51 59 7RW600

Bu

50 BF

50 51 50 BF

7SJ600

7SJ600 51 N

Page 233

2007-08

Author: G. Ziegler

Copyright © Siemens AG 2007. All rights reserved. PTD SE PTI

Protection of a large transformer bank

52

52

7SA6 50 BF

49

21

7UT513 87 TL

87 TH

7VH6 (3)

49

3

Load

52 52

51 59N 7RW6

50 BF 7SJ6

Page 234

2007-08

7SA6 51N

21

49

51 BF

7SJ6

Author: G. Ziegler

Copyright © Siemens AG 2007. All rights reserved. PTD SE PTI

Differential protection of generation units

52

52

52

52

∆IT

∆IT

∆IT

∆IT

G

G G

∆IG

52

∆IG

G

Page 235

2007-08

Author: G. Ziegler

∆IG

Copyright © Siemens AG 2007. All rights reserved. PTD SE PTI

Differential protection of generation units (2)

52

∆IT 52 *) ∆IT

G

∆IG *) same ratio as generator CTs

52 Auxiliaries

Page 236

2007-08

Author: G. Ziegler

Copyright © Siemens AG 2007. All rights reserved. PTD SE PTI

Thermal protection of transformers

ΘCu

ΘOil Rth2

Rth1

Legend: PCu: Winding losses (I2·R) PFe: Core and tank losses

C1 PCu

C2 PFe ΘAmb

Lifetime of insulation depends on the winding Hot-spot temperature.

Rth1: Thermal resistance Copper-Oil Rth2: Thermal resistance Oil-Air (cooling medium) C1:

Winding thermal capacity

C2:

Thermal capacity of Oil, Core and tank

ΘCu:

Winding copper temperature

ΘOil:

Oil temperature

ΘAmb.: Ambient temperature

6 OC higher temperature increases the aging of the insulation by the factor 2!

Page 237

2007-08

Author: G. Ziegler

Copyright © Siemens AG 2007. All rights reserved. PTD SE PTI

7SA6: Temperature monitoring

RS485 Interface

Oil Temp.

Two thermo-devices can be connected to the serial service interface Monitoring of up to 12 measuring points (6 per thermo-device) One input is reserved for hot spot monitoring (measurement of oil temperature) Thermistors: Pt100, Ni100 or Ni120

The the upper oil temperature is directly measured by the use of thermoelement. The hot spot temperature is calculated by the relay using the thermal model Cu-Oil: 2

dΘ Cu 1 ⎛I⎞ 1 ⋅ (Θ Cu − Θ Oil ) = ⋅⎜ ⎟ − dt τ Th τ Th ⎝ Ir ⎠ Page 238

2007-08

Author: G. Ziegler

I = actual transformer current Ir = rated transformer current τth =time constant of the winding Copyright © Siemens AG 2007. All rights reserved. PTD SE PTI

7UT6: Temperature monitoring with hot spot calculation (1) Example: Natural cooling

Θ h = Θ O + H gr ⋅ k Y

Θh= hot spot temperature Θh= oil temperature Hgr=hot-spot-to-oil temperature gradient k= load factor I/In Y= winding exponent

Oil Temp.

Aging rate:

V=

HV LV

Aging at Θ h = 2(Θ h −98)/6 Aging at 98°C

98O is reference for the aging of Cellulose insulation

Mean value of aging during a fixed time interval: T

2 1 L= ⋅ ∫ V ⋅ dt T2 − T1 T1

Page 239

2007-08

Author: G. Ziegler

Copyright © Siemens AG 2007. All rights reserved. PTD SE PTI

7UT6: Temperature monitoring with hot spot calculation (2) Example: Natural cooling

Θ h = Θ o + H gr ⋅ k Y ≈ 73 + 23 ⋅1.151.6 = 102°C

(L)

V = 2(Θ h −98)/6 = 2(102−98)/6 ≈ 1.6

k, V, L

108°C 98°C

102°C 73°C

Θh Hot spot temp.

[°C]

Θh Θo

1.6

Θo oil temp. (from thermodevice)

k (I/In)

V (relative aging) L (mean value of V)

1.15

t

Page 240

2007-08

Author: G. Ziegler

Copyright © Siemens AG 2007. All rights reserved. PTD SE PTI

Related Documents

Transformer Protection
January 2021 1
Transformer Protection
January 2021 2
Transformer Protection
January 2021 5
Transformer Protection
January 2021 5
Transformer Protection
January 2021 1

More Documents from "supermannon"