Resumen De Lamparas

  • Uploaded by: Patricio Astudillo
  • 0
  • 0
  • January 2021
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Resumen De Lamparas as PDF for free.

More details

  • Words: 7,347
  • Pages: 22
Loading documents preview...
UNIVERSIDAD DE CUENCA INSTALACIONES ELÉCTRICAS TEMA:LAMPARAS ELÉCTRICAS Y LUMINARIAS DE LUZ

FACULTAD DE INGENIERÍA ESCUELA DE INGENIERÍA ELÉCTRICA

LÁMPARAS INCANDESCENTES Las lámparas incandescentes fueron la primera forma de generar luz a partir de la energía eléctrica. Desde que fueran inventadas, la tecnología ha cambiado mucho produciéndose sustanciosos avances en la cantidad de luz producida, el consumo y la duración de las lámparas. Su principio de funcionamiento es simple, se pasa una corriente eléctrica por un filamento hasta que este alcanza una temperatura tan alta que emite radiaciones visibles por el ojo humano. De todas las fuentes luminosas que por lo general se usan, las lámparas incandescentes tienen el menor costo inicial, la eficacia luminosa más baja y la vida más corta. Rendimiento de una lámpara incandescente En general los rendimientos de este tipo de lámparas son bajos debido a que la mayor parte de la energía consumida se convierte en calor.

La producción de luz mediante la incandescencia tiene una ventaja, y es que la luz emitida contiene todas las longitudes de onda que forman la luz visible o dicho de otra manera, su espectro de emisiones es continuo. De esta manera se garantiza una buena reproducción de los colores de los objetos iluminados. Características de duración La duración de una lámpara viene determinada básicamente por la temperatura de trabajo del filamento. Mientras más alta sea esta, mayor será el flujo luminoso pero también la velocidad de evaporación del material que forma el filamento. Las partículas evaporadas, cuando entren en contacto con las paredes se depositarán sobre estas, ennegreciendo la ampolla. De esta manera se verá reducido el flujo luminoso por ensuciamiento de la ampolla. Pero, además, el filamento se habrá vuelto más delgado por la evaporación del tungsteno que lo forma y se reducirá, en consecuencia, la corriente eléctrica que pasa por él, la temperatura de trabajo y el flujo luminoso. Esto seguirá ocurriendo hasta que finalmente se rompa el filamento. A este proceso se le conoce como depreciación luminosa. Para determinar la vida de una lámpara disponemos de diferentes parámetros según las condiciones de uso definidas. • •



La vida individual es el tiempo transcurrido en horas hasta que una lámpara se estropea, trabajando en unas condiciones determinadas. La vida promedio es el tiempo transcurrido hasta que se produce el fallo de la mitad de las lámparas de un lote representativo de una instalación, trabajando en unas condiciones determinadas. La vida útil es el tiempo estimado en horas tras el cual es preferible sustituir un conjunto de lámparas de una instalación a mantenerlas. Esto se hace por motivos



económicos y para evitar una disminución excesiva en los niveles de iluminación en la instalación debido a la depreciación que sufre el flujo luminoso con el tiempo. Este valor sirve para establecer los periodos de reposición de las lámparas de una instalación. La vida media es el tiempo medio que resulta tras el análisis y ensayo de un lote de lámparas trabajando en unas condiciones determinadas.

La duración de las lámparas incandescentes está normalizada; siendo de unas 1000 horas para las normales, para las halógenas es de 2000 horas para aplicaciones generales y de 4000 horas para las especiales. Factores externos que influyen en el funcionamiento de las lámparas Los factores externos que afectan al funcionamiento de las lámparas son la temperatura del entorno dónde esté situada la lámpara y las desviaciones en la tensión nominal en los bornes. La temperatura ambiente no es un factor que influya demasiado en el funcionamiento de las lámparas incandescentes, pero sí se ha de tener en cuenta para evitar deterioros en los materiales empleados en su fabricación. En las lámparas normales hay que tener cuidado de que la temperatura de funcionamiento no exceda de los 200º C para el casquillo y los 370º C para el bulbo en el alumbrado general. Esto será de especial atención si la lámpara está alojada en luminarias con mala ventilación. En el caso de las lámparas halógenas es necesario una temperatura de funcionamiento mínima en el bulbo de 260º C para garantizar el ciclo regenerador del wolframio. En este caso la máxima temperatura admisible en la ampolla es de 520º C para ampollas de vidrio duro y 900º C para el cuarzo. Las variaciones de la tensión se producen cuando aplicamos a la lámpara una tensión diferente de la tensión nominal para la que ha sido diseñada. Cuando aumentamos la tensión aplicada se produce un incremento de la potencia consumida y del flujo emitido por la lámpara pero se reduce la duración de la lámpara. Análogamente, al reducir la tensión se produce el efecto contrario. Partes de una lámpara Las lámparas incandescentes están formadas por un hilo de wolframio que se calienta por efecto Joule alcanzando temperaturas tan elevadas que empieza a emitir luz visible. Para evitar que el filamento se queme en contacto con el aire, se rodea con una ampolla de vidrio a la que se le ha hecho el vacío o se ha rellenado con un gas. El conjunto se completa con unos elementos con funciones de soporte y conducción de la corriente eléctrica y un casquillo normalizado que sirve para conectar la lámpara a la luminaria.

Filamento El componente principal de la lámpara incandescente es el filamento. Al pasar corriente a través de él, puede ser calentado como resistencia hasta volverse incandescente, manteniéndose en este estado por mucho tiempo. Este filamento se fabrica en tungsteno, cuyo punto de fusión es alto: 3655 °K (grados Kelvin). Este filamento debe estar protegido en un medio que evite que se deteriore, lo cual se logra poniéndolo dentro de un bulbo, bombillo o ampolla de vidrio que este al vacío o con un gas inerte. Ampolla o bulbo La ampolla es una cubierta de vidrio que da forma a la lámpara y protege el filamento del aire exterior evitando que se queme. Si no fuera así, el oxígeno del aire oxidaría el material del filamento destruyéndolo de forma inmediata. Las ampollas pueden ser de vidrio transparente, de vidrio blanco translúcido o de colores proporcionando en este último caso una luz de color monocromática en lugar de la típica luz blanca.

Algunas formas típicas de ampollas Gas de relleno Aunque antiguamente se hacía el vacío en el interior de la ampolla, en la actualidad se rellena con un gas inerte por las ventajas que presenta. Con el gas se consigue reducir la evaporación del filamento e incrementar la temperatura de trabajo de la lámpara y el flujo luminoso emitido. Los gases más utilizados son el nitrógeno en pequeñas proporciones que evita la formación de arcos y el argón que reduce la velocidad de evaporación del material que forma el filamento. Las proporciones empleadas varían según la aplicación de la lámpara y la tensión de trabajo. Aumentando la presión del gas se consigue, además, disminuir la evaporación del filamento y aumentar la eficacia luminosa y vida de la lámpara. Casquillos. El casquillo es la pieza de la lámpara que cumple dos funciones: la de conexión eléctrica de la misma y la de su fijación al portalámparas correspondiente, el mismo consta de un cuerpo metálico de latón o aluminio en los casquillos más usuales y una base también metálica separadas por un aislante de vidrio, la designación de los casquillos más empleados se hace por medio de un sistema de letras y números que facilita su reconocimiento de la siguiente manera:

Ejemplos:

▪ E = Casquillo rosca Edison. ▪ B = Casquillo bayoneta Swan. ▪ G = Casquillo con espigas o clavijas. Casquillo E 14/25 x 17 E = Rosca Edison. 14 = Diámetro exterior de la parte cilíndrica (mm). 25 = Altura total (mm). 17 = Diámetro exterior de la falda o envase (mm).

Acontinuacion podemos observar varios tipos de casquillos para las lamparas incandecentes

Tipos de lámparas Existen dos tipos de lámparas incandescentes: las que contienen un gas halógeno en su interior y las que no lo contienen: Lámparas no halógenas Entre las lámparas incandescentes no halógenas podemos distinguir las que se han rellenado con un gas inerte de aquellas en que se ha hecho el vacío en su interior. La presencia del gas supone

un notable incremento de la eficacia luminosa de la lámpara dificultando la evaporación del material del filamento y permitiendo el aumento de la temperatura de trabajo del filamento. Las lámparas incandescentes tienen una duración normalizada de 1000 horas, una potencia entre 25 y 2000 W y unas eficacias entre 7.5 y 11 lm/W para las lámparas de vacío y entre 10 y 20 para las rellenas de gas inerte. En la actualidad predomina el uso de las lámparas con gas.

Temperatura filamento

del

Lámparas con gas

Lámparas vacío

2500 ºC

2100 ºC

Eficacia luminosa de la 10-20 lm/W lámpara Duración

1000 horas

Pérdidas de calor

Convección radiación

de

7.5-11 lm/W 1000 horas y

Radiación

Lámparas halógenas de alta y baja tensión En las lámparas incandescentes normales, con el paso del tiempo, se produce una disminución significativa del flujo luminoso. Esto se debe, en parte, al ennegrecimiento de la ampolla por culpa de la evaporación de partículas de wolframio del filamento y su posterior condensación sobre la ampolla. Ciclo del halógeno.- Agregando una pequeña cantidad de un compuesto gaseoso con halógenos (cloro, bromo o yodo), normalmente se usa el CH 2Br2, al gas de relleno se consigue establecer un ciclo de regeneración del halógeno que evita el ennegrecimiento. Cuando el tungsteno (W) se evapora se une al bromo formando el bromuro de wolframio (WBr2). Como las paredes de la ampolla están muy calientes (más de 260 ºC) no se deposita sobre estas y permanece en estado gaseoso. Cuando el bromuro de wolframio entra en contacto con el filamento, que está muy caliente, se descompone en W que se deposita sobre el filamento y Br que pasa al gas de relleno. Y así, el ciclo vuelve a empezar.

El funcionamiento de este tipo de lámparas requiere de temperaturas muy altas para que pueda realizarse el ciclo del halógeno. Por eso, son más pequeñas y compactas que las lámparas normales y la ampolla se fabrica con un cristal especial de cuarzo que impide manipularla con los dedos para evitar su deterioro. Tienen una eficacia luminosa de 22 lm/W con una amplia gama de potencias de trabajo (150 a 2000W) según el uso al que estén destinadas. Las lámparas halógenas se utilizan normalmente en alumbrado por proyección y cada vez más en iluminación doméstica.

LÁMPARAS DE VAPOR DE MERCURIO A ALTA PRESIÓN La producción de luz en las lámparas de vapor de mercurio se basa en el principio de la luminiscencia obtenida por la descarga eléctrica en el seno de mercurio gasificado. El tubo principal va situado dentro de una ampolla de vidrio con gas inerte para la refrigeración y protección de las entradas de corriente. El espectro del mercurio está formado por las cuatro radiaciones siguientes: violeta, azul, verde y amarillo. Su tonalidad es, por tanto, azul verdoso. A medida que aumentamos la presión del vapor de mercurio en el interior del tubo de descarga, la radiación ultravioleta característica de la lámpara a baja presión pierde importancia respecto a las emisiones en la zona visible (violeta de 404.7 nm, azul 435.8 nm, verde 546.1 nm y amarillo 579 nm), en estas condiciones la luz emitida, de color azul verdoso, no contiene radiaciones rojas. Para resolver este problema se acostumbra a añadir sustancias fluorescentes que emitan en esta zona del espectro. De esta manera se mejoran las características cromáticas de la lámpara. Las propiedades de las de alta presión son: gran desprendimiento de calor y de rayos ultravioletas, que el cuarzo deja pasar pero que la ampolla de vidrio retiene. Los modelos más habituales de estas lámparas tienen una tensión de encendido entre 150 y 180 V que permite conectarlas a la red de 220 V sin necesidad de elementos auxiliares o a través del balasto o un aparato de alimentación correspondiente. El tubo de descarga, además del mercurio, contiene gas argón que es necesario para la inhalación de la descarga. El vapor que se desprende vaporiza el mercurio, que aumenta la presión y la temperatura; al cabo de tres o cuatro minutos se alcanza el equilibrio y el argón deja de influir en la emisión de luz. Para facilitar el cebado se utiliza un electrodo auxiliar que está muy próximo a uno de los principales y unido al opuesto mediante una resistencia de grafito grande que va en el interior de la ampolla. La distancia entre estos dos electrodos es muy pequeña, por lo que salta el arco en forma instantánea y se inicia el cebado. Una vez que se ceba, la corriente por el electrodo auxiliar es despreciable debido a la gran resistencia del grafito.

Si se apagara la lámpara no sería posible su reencendido hasta que se enfriara, puesto que la alta presión del mercurio haría necesaria una tensión de ruptura muy alta. La temperatura de color se mueve entre 3500 y 4500 K con índices de rendimiento en color de 40 a 45 normalmente. La vida útil, teniendo en cuenta la depreciación se establece en unas 8000 horas. La eficacia oscila entre 40 y 60 lm/W y aumenta con la potencia, aunque para una misma potencia es posible incrementar la eficacia añadiendo un recubrimiento de polvos fosforescentes que conviertan la luz ultravioleta en visible.

Las lámparas de vapor de mercurio de alta presión se utilizan para la iluminación de parques y jardines, ya que realiza el colorido verde y la fondosidad. También se utiliza para observación de superficies metálicas pulidas. Constitución de las lámparas de vapor de mercurio a alta presión. La parte esencial de la lámpara es el tubo de cristal en el que se produce la descarga, además fundidos en los extremos contiene dos electrodos principales de wolframio impregnados de material emisor de electrones y uno auxiliar de encendido, conectado a través de una resistencia óhmica de alto valor. También contiene unos miligramos de mercurio puro, exactamente dosificados, y gas argón para facilitar la descarga, la ampolla exterior de forma elipsoidal y vidrio resistente a los cambios bruscos de temperatura, sirve de soporte al tubo de descarga, proporcionándole un aislamiento térmico a la vez que evita la oxidación atmosférica de las partes metálicas. El espacio comprendido entre el tubo de descarga y la ampolla exterior está relleno de un gas neutro (nitrógeno + argón) a presión inferior a la atmosférica.

LÁMPARAS CON HALOGENUROS METÁLICOS Si añadimos en el tubo de descarga yoduros metálicos (sodio, talio, indio...) se consigue mejorar considerablemente la capacidad de reproducir el color de la lámpara de vapor de mercurio. Cada una de estas sustancias aporta nuevas líneas al espectro. Los resultados de estas aportaciones son una temperatura de color de 3000 a 6000 K dependiendo de los yoduros añadidos y un rendimiento del color de entre 65 y 85. La eficiencia de estas lámparas ronda entre los 60 y 96 lm/W y su vida media es de unas 10000 horas. Tienen un periodo de encendido de unos diez minutos, que es el tiempo necesario hasta que se estabiliza la descarga. Para su funcionamiento es necesario un dispositivo especial de encendido, puesto que las tensiones de arranque son muy elevadas (1500-5000 V).

Las excelentes prestaciones cromáticas la hacen adecuada entre otras para la iluminación de instalaciones deportivas, para retransmisiones de TV, estudios de cine, proyectores, etc. Funcionamiento El tubo compacto donde se forma el arco contiene una mezcla de argón, mercurio y una variedad de haluros metálicos. Las mezclas de haluros metálicos afecta la naturaleza de la luz producida, variando correlacionadamente la temperatura del color y su intensidad (por ejemplo, que la luz producida sea azulada o rojiza). El gas argón se ioniza fácilmente, facultando el paso del arco voltáico pulsante a través de dos electrodos, cuando se le aplica un cierto voltaje a la lámpara. El calor generado por el arco eléctrico vaporiza el mercurio y los haluros metálicos, produciendo luz a medida que la temperatura y la presión aumentan. Como las otras lámparas de descarga eléctrica, las lámparas de haluro metálico requieren un equipo auxiliar para proporcionar el voltaje apropiado para comenzar el encendido y regular el flujo de electricidad para mantener la lámpara encendida. Componentes Los principales componentes de la lámpara de halúro metálico son los siguientes. Tienen una base metálica (a veces una en cada extremo), que permita la conexión eléctrica. La lámpara es recubierta con un cristal protector externo (llamado bulbo) que protege los componentes internos de la lámpara (a veces también es dotado de un filtro de radiación ultravioleta, provocada por el vapor de mercurio. Dentro de la cubierta de cristal, se encuentran una serie de soportes y alambres de plomo que sostienen el tubo de cuarzo fundido (donde se forma el arco voltaico y la luz), y a su vez este se encaja en los electrodos de tungsteno. Dentro del tubo de cuarzo fundido, además del mercurio, contiene yoduros, bromuros de diferentes metales y un gas noble. La composición de los metales usados define el color y la temperatura de la luz producida por la lámpara. Otros tipos tienen el tubo donde se forma el arco de alúmina en vez de cuarzo fundido, como las lámparas de vapor de sodio. Usualmente estos son llamados haluro metálico de cerámica o CMH (del inglés Ceramic Metal Halide) Algunas lámparas son recubiertas internamente con fósforo para difundir la luz.

Las lámparas de halogenuros metálicos tienen un amplio campo de aplicación tanto en el alumbrado interior como en el exterior así como en usos especiales, estas lámparas son las más

apropiadas para aquellas iluminaciones de calidad en las que se deseen crear un ambiente de vida y color en escenarios y al aire libre (estudios, campos deportivos, etc.)

LÁMPARAS DE LUZ DE MEZCLA Las lámparas de luz de mezcla son una combinación de una lámpara de mercurio a alta presión con una lámpara incandescente y, habitualmente, un recubrimiento fosforescente. El resultado de esta mezcla es la superposición, al espectro del mercurio, del espectro continuo característico de la lámpara incandescente y las radiaciones rojas provenientes de la fosforescencia Espectro de emisión de una lámpara de luz de mezcla. Su eficacia se sitúa entre 20 y 60 lm/W y es el resultado de la combinación de la eficacia de una lámpara incandescente con la de una lámpara de descarga. Estas lámparas ofrecen una buena reproducción del color con un rendimiento en color de 60 y una temperatura de color de 3600 K. La duración viene limitada por el tiempo de vida del filamento que es la principal causa de fallo. Respecto a la depreciación del flujo hay que considerar dos causas. Por un lado tenemos el ennegrecimiento de la ampolla por culpa del wolframio evaporado y por otro la pérdida de eficacia de los polvos fosforescentes. En general, la vida media se sitúa en torno a las 6000 horas. Una particularidad de estas lámparas es que no necesitan balasto ya que el propio filamento actúa como estabilizador de la corriente. Esto las hace adecuadas para sustituir las lámparas incandescentes sin necesidad de modificar las instalaciones. Las lámparas de luz de mezcla se utilizan en instalaciones de alumbrado de interiores y exteriores. En el interior para el alumbrado de naves de fábricas, talleres, salas de máquinas y otros lugares de trabajo. Al igual que las de vapor de mercurio a alta presión, se emplean también en alumbrado exterior de calles, plazas, vías de comunicación, etc. Al poder ser conectadas directamente a red, pueden sustituir con ventaja a las lámparas incandescentes, sobre todo en instalaciones de alumbrado existentes con estas lámparas.

LÁMPARAS DE VAPOR DE SODIO A BAJA PRESIÓN En estas lámparas se origina la descarga eléctrica en un tubo de vapor de sodio a baja presión produciéndose una radiación prácticamente monocromática. La radiación emitida, de color amarillo, está muy próxima al máximo de sensibilidad del ojo humano. Por ello, la eficacia de estas lámparas es muy elevada entre 160 y 180 lm/W. Otras ventajas que ofrece es que permite una gran comodidad y agudeza visual, además de una buena percepción de contrastes. Pero también tenemos que su monocromatismo hace que la reproducción de colores y el rendimiento en color sean muy malos haciendo imposible distinguir los colores de los objetos. Actualmente son las lámparas más eficaces del mercado, es decir, las de menor consumo eléctrico; sin embargo, su uso está limitado a aplicaciones en las que el color de la luz (amarillento en este caso) no sea relevante como son autopistas, túneles, áreas industriales, etc. Además, su elevado tamaño para grandes potencias implica utilizar luminarias excesivamente grandes.

La vida media de estas lámparas es muy elevada, de unas 15000 horas y la depreciación de flujo luminoso que sufren a lo largo de su vida es muy baja por lo que su vida útil es de entre 6000 y 8000 horas. Esto junto a su alta eficiencia y las ventajas visuales que ofrece la hacen muy adecuada para usos de alumbrado público, aunque también se utiliza con finalidades decorativas. En cuanto al final de su vida útil, este se produce por agotamiento de la sustancia emisora de electrones como ocurre en otras lámparas de descarga. Aunque también se puede producir por deterioro del tubo de descarga o de la ampolla exterior.

En estas lámparas el tubo de descarga tiene forma de U para disminuir las pérdidas por calor y reducir el tamaño de la lámpara. Está elaborado de materiales muy resistentes pues el sodio es muy corrosivo y se le practican unas pequeñas hendiduras para facilitar la concentración del sodio y que se vaporice a la temperatura menor posible. El tubo está encerrado en una ampolla en la que se ha practicado el vacío con objeto de aumentar el aislamiento térmico. De esta manera se ayuda a mantener la elevada temperatura de funcionamiento necesaria en la pared del tubo (270 ºC). El tiempo de arranque de una lámpara de este tipo es de unos diez minutos. Es el tiempo necesario desde que se inicia la descarga en el tubo en una mezcla de gases inertes (neón y argón) hasta que se vaporiza todo el sodio y comienza a emitir luz. Físicamente esto se corresponde a pasar de una luz roja (propia del neón) a la amarilla característica del sodio. Se procede así para reducir la tensión de encendido.

LÁMPARAS DE VAPOR DE SODIO A ALTA PRESIÓN Las lámparas de vapor de sodio a alta presión tienen una distribución espectral que abarca casi todo el espectro visible proporcionando una luz blanca dorada mucho más agradable que la proporcionada por las lámparas de baja presión. Las consecuencias de esto es que tienen un rendimiento en color (T color= 2100 K) y capacidad para reproducir los colores mucho mejores que la de las lámparas a baja presión. No obstante, esto se consigue a base de sacrificar eficacia; aunque su valor que ronda los 130 lm/W sigue siendo un valor alto comparado con los de otros tipos de lámparas.

La vida media de este tipo de lámparas ronda las 20000 horas y su vida útil entre 8000 y 12000 horas. Entre las causas que limitan la duración de la lámpara, además de mencionar la depreciación del flujo tenemos que hablar del fallo por fugas en el tubo de descarga y del incremento progresivo de la tensión de encendido necesaria hasta niveles que impiden su correcto funcionamiento. Las condiciones de funcionamiento son muy exigentes debido a las altas temperaturas (1000 ºC), la presión y las agresiones químicas producidas por el sodio que debe soportar el tubo de descarga. En su interior hay una mezcla de sodio, vapor de mercurio que actúa como amortiguador de la descarga y xenón que sirve para facilitar el arranque y reducir las pérdidas térmicas. El tubo está rodeado por una ampolla en la que se ha hecho el vacío. La tensión de encendido de estas lámparas es muy elevada y su tiempo de arranque es muy breve.

Este tipo de lámparas tienen muchos usos posibles tanto en iluminación de interiores como de exteriores. Algunos ejemplos son en iluminación de naves industriales, alumbrado público o iluminación decorativa.

LÁMPARAS FLUORESCENTES Las lámparas fluorescentes son lámparas de vapor de mercurio a baja presión (0.8 Pa). En estas condiciones, en el espectro de emisión del mercurio predominan las radiaciones ultravioletas en la banda de 253.7 nm. Para que estas radiaciones sean útiles, se recubren las paredes interiores del tubo con polvos fluorescentes que convierten los rayos ultravioletas en radiaciones visibles. De la composición de estas sustancias dependerán la cantidad y calidad de la luz, y las cualidades cromáticas de la lámpara. En la actualidad se usan dos tipos de polvos; los que producen un espectro continuo y los trifósforos que emiten un espectro de tres bandas con los colores primarios. De la combinación estos tres colores se obtiene una luz blanca que ofrece un buen rendimiento de color sin penalizar la eficiencia como ocurre en el caso del espectro continuo.

Las lámparas fluorescentes se caracterizan por carecer de ampolla exterior. Están formadas por un tubo de diámetro normalizado, normalmente cilíndrico, cerrado en cada extremo con un casquillo de dos contactos donde se alojan los electrodos. El tubo de descarga está relleno con

vapor de mercurio a baja presión y una pequeña cantidad de un gas inerte que sirve para facilitar el encendido y controlar la descarga de electrones. La eficacia de estas lámparas depende de muchos factores: potencia de la lámpara, tipo y presión del gas de relleno, propiedades de la sustancia fluorescente que recubre el tubo, temperatura ambiente... Esta última es muy importante porque determina la presión del gas y en último término el flujo de la lámpara. La eficacia oscila entre los 38 y 91 lm/W dependiendo de las características de cada lámpara.

La duración de estas lámparas se sitúa entre 5000 y 7000 horas. Su vida termina cuando el desgaste sufrido por la sustancia emisora que recubre los electrodos, hecho que se incrementa con el número de encendidos, impide el encendido al necesitarse una tensión de ruptura superior a la suministrada por la red. Además de esto, hemos de considerar la depreciación del flujo provocada por la pérdida de eficacia de los polvos fluorescentes y el ennegrecimiento de las paredes del tubo donde se deposita la sustancia emisora. El rendimiento en color de estas lámparas varía de moderado a excelente según las sustancias fluorescentes empleadas. Para las lámparas destinadas a usos habituales que no requieran de gran precisión su valor está entre 80 y 90. De igual forma la apariencia y la temperatura de color varía según las características concretas de cada lámpara. Apariencia de color

Tcolor (K)

Blanco cálido

3000

Blanco

3500

Natural

4000

Blanco frío

4200

Luz día

6500

Las lámparas fluorescentes necesitan para su funcionamiento la presencia de elementos auxiliares. Para limitar la corriente que atraviesa el tubo de descarga utilizan el balasto y para el encendido existen varias posibilidades que se pueden resumir en arranque con cebador o sin él. En el primer caso, el cebador se utiliza para calentar los electrodos antes de someterlos a la tensión de arranque. En el segundo caso tenemos las lámparas de arranque rápido en las que se calientan continuamente los electrodos y las de arranque instantáneo en que la ignición se consigue aplicando una tensión elevada.

LÁMPARA FLUORESCENTE COMPACTA. (CFL) La lámpara compacta fluorescente o CFL (sigla del inglés compact fluorescent lamp) es un tipo de lámpara fluorescente que se puede usar con casquillos de rosca Edison normal (E27) o pequeña (E14). También se la conoce como: • • • •

Lámpara ahorradora de energía Lámpara de luz fría Lámpara de bajo consumo Bombilla de bajo consumo

Lámpara compacta fluorescente espiral

Lámpara compacta fluorescente o CLF

En comparación con las lámparas incandescentes, las CFL tienen una vida útil mayor y consumen menos energía eléctrica para producir la misma iluminación. De hecho, las lámparas CFL ayudan a ahorrar costes en facturas de electricidad, en compensación a su alto precio dentro de las primeras 500 horas de uso. Las CFL tienen una duración media de unas 8000 horas de funcionamiento. La duración media de una lámpara incandescente está entre 500 y 2000 horas de funcionamiento dependiendo de su exposición a picos de tensión y a golpes y vibraciones mecánicas, además de la calidad de la propia lámpara. Esto mejora en los nuevos modelos. Las CFL consumen aproximadamente una cuarta parte de la potencia de las incandescentes. Por ejemplo, una CFL de 15 W produce la misma luminosidad que una incandescente de 75 W, es decir, que el rendimiento luminoso de la CFL es de aproximadamente 56-60 lúmenes/W. Colores de luz en las lámparas CFL Las lámparas de colores "blanco cálido" o "blanco suave" (2700 K – 3000 K) proporcionan un color similar al de las lámparas incandescentes, algo amarillenta, en apariencia. Las lámparas "blanca", "blanca brillante" o "blanco medio" (3500 K) producen una luz blanca-amarillenta, más blanca que la de una lámpara incandescente pero aún considerada como "cálida". Las lámparas blanco frío (4100 K) emiten un blanco más puro pero aún algo azulado, y las llamadas daylight (luz diurna, de 5000 K a 6500 K idealmente) emiten un brillo blanco, al emitir un espectro correspondiente a la temperatura del sol (~6500 K).

Las CFL son producidas también en otros colores menos comunes, como: • • •

rojo, verde, naranja, azul y rosa, principalmente para usos decorativos. amarilla, para iluminación exterior, porque repele a los insectos. "Luz oscura" o "Luz negra" (nombre vulgar de la luz ultravioleta cercana, por no ser visible pero producir fluorescencia), para efectos especiales.

Las CFL con fósforo generador de rayos UVA (radiación ultravioleta A), son una fuente eficiente de luz ultravioleta de onda larga ("luz oscura"), mucho más que las lámparas incandescentes de "luz oscura", ya que la cantidad de luz ultravioleta que produce el filamento de estas últimas es acorde a la radiación del llamado cuerpo negro y la radiación ultravioleta es solo una fracción del espectro luminoso generado. Vida Útil Los ciclos de encendido y apagado de las bombillas CFL afectan la duración de su vida útil, de manera que las bombillas sometidas a frecuentes encendidos pueden envejecer antes de lo que marca su duración teórica,[9] reduciendo por tanto el ahorro económico y energético. Esto es aplicable en lugares de uso puntual, como pasillos o aseos. Deben evitarse también las bombillas en luminarias muy cerradas, pues las altas temperaturas también reducen su vida útil.[10] La polémica se ha visto agravada por la mala calidad de muchas de las bombillas distribuidas en el mercado: un estudio de 2006 demostró que más de la mitad de las bombillas de ciertas marcas duraban menos de 100 horas, en lugar de las 3.000 u 8.000 anunciadas Otras tecnologías de CFL. Otro tipo de lámpara fluorescente es la fluorescente sin electrodos, conocida como lámpara radiofluorescente o de inducción fluorescente. A diferencia de otras lámparas fluorescentes convencionales, la iluminación se lleva a cabo mediante inducción electromagnética. Esta inducción es efectuada mediante un núcleo de ferrita con un embobinado de hilo de cobre que se introduce en el bulbo de la lámpara encapsulado en una cubierta de vidrio con figura de "U" invertida. El embobinado es energizado con corriente alterna a una frecuencia de 2,65 o 13,6 MHz; esto ioniza el vapor de mercurio de la lámpara, excitando el recubrimiento interno de fósforo y produciendo luz. La ventaja principal que ofrece esta tecnología es el enorme aumento en la vida útil de la lámpara, la cual es típicamente estimada en 60 000 horas. Otra variante de las tecnologías existentes de CFL son los bulbos o lámparas con un recubrimiento externo de nano-partículas de dióxido de titanio. Esta sustancia es un fotocatalizador que se ioniza cuando es expuesto a las radiaciones ultravioleta producidas por la CFL, siendo capaz de convertir oxígeno en ozono y agua en radicales hidroxilos, lo que neutraliza los olores y elimina bacterias, virus y esporas de moho. La lámpara de luz fluorescente de cátodo frío (CCFL, por sus siglas en inglés) es una de las formas más nuevas de CFL. Las lámparas CCFL usan electrodos sin filamentos. El voltaje que atraviesa a estas lámparas es casi 5 veces superior al de las lámparas CFL y la corriente entre sus terminales es de alrededor de 10 veces menor. Las lámparas CCFL tienen un diámetro de casi 3 mm y son usadas en la retroiluminación de los monitores delgados. Su tiempo de vida útil es de aproximadamente 50 000 horas y su rendimiento luminoso es igual a la mitad de las lámparas CFL. Actualmente, están empezando a extenderse las bombillas de LEDs blancos. Tienen un rendimiento y duración similar o incluso superior a las fluorescentes compactos y además se pueden encender y apagar (incluso cientos de veces por segundo) sin que su vida útil se vea afectada.

La tecnología T-Thin. La nueva tecnología denominada T-Thin (En homenaje a la delgadez de los tubos fluorescentes utilizados), es un desarrollo que viene a competir directa-mente con la tecnología LED, la cual tiene muchos beneficios, pero también muchas limitaciones, y con esta nueva tecnología, se consiguen prestaciones muy elevadas y bajos consumos, a costes más económicos que los existentes. A grandes rasgos, se podría resumir en que ofrece una muy alta calidad en reproducción cromática (RA>85-90), prácticamente nula radiación UV, ausencia de parpadeos, ruidos o efectos estroboscópicos, con una longevidad espectacular (más de 50.000 horas, mayor incluso que muchos LED, un consumo bajísimo de energía, una fácil sustitución o actualización (que permite aprovechar la luminaria existente en el caso de los tubos fluorescentes), sin obras (tan simple como cambiar un tubo por otro, o un simple cambio de una bombilla), y una tasa de retorno de la inversión, que hace que se amortice en la mitad de tiempo que cualquier otra tecnología similar existente de larga vida. Aunque aún no está muy difundida, será uno de los grandes avances de esta década, pues sus principios y tecnología se llevan utilizando mucho tiempo, no para iluminación directa, si no para iluminación de monitores y televisores de LCD. Tipos de lámparas CFL

LAMPARAS LED Una lámpara de led es una lámpara de estado sólido que usa ledes (diodos emisores de luz) como fuente luminosa. Debido a que la luz capaz de emitir un led no es muy intensa, para alcanzar la intensidad luminosa similar a las otras lámparas existentes como las incandescentes o las fluorescentes compactas, las lámparas de led están compuestas por agrupaciones de led, en mayor o menor número, según la intensidad luminosa deseada. Actualmente las lámparas de led se pueden usar para cualquier aplicación comercial, desde el alumbrado decorativo hasta el de viales y jardines, presentado ciertas ventajas, entre las que destacan su considerable ahorro energético y su mayor vida útil, pero también con ciertos inconvenientes como son su elevado costo inicial y mantenimiento. Los diodos funcionan con energía eléctrica de corriente continua (CC), de modo que las lámparas de LED deben incluir circuitos internos para operar desde el voltaje CA estándar. Los LED se dañan a altas temperaturas, por lo que las lámparas de LED tienen elementos de gestión del calor, tales como disipadores y aletas de refrigeración. Las lámparas de LED tienen una vida

útil larga y una gran eficiencia energética, pero los costos iniciales son mas altos que los de las lámparas fluorescentes.

Descripción de la tecnología La iluminación de propósito general necesita luz blanca. Los LED emiten luz en una banda de longitudes de onda muy estrecha, fuertemente coloreada. El color es característico de la banda prohibida de energía de un material semiconductor usado para fabricar el LED. Para emitir luz blanca es preciso combinar LED de luz roja, verde y azul, o usando fósforo para convertir parte de la luz a otros colores. El primer método (LED RGB), usan múltiples chips de LED cada uno emitiendo una longitud de onda diferente en las proximidades, para formar el amplio espectro de luz blanca. La ventaja de este método es que la intensidad de cada LED puede ser ajustada para "afinar" el carácter de la luz emitida. La mayor desventaja es su alto costo de producción. El segundo método, LED de fósforo convertido (pcLEDs), usa un LED de corta longitud de onda (usualmente azul o ultravioleta) en combinación con el fósforo, el cual absorbe una porción de la luz azul y emite un espectro más amplio de luz blanca (El mecanismo es similar a la forma de una lámpara fluorescente que emite luz blanca de un sistema de iluminación UV fósforo). La mayor ventaja aquí es el costo de producción bajo, alto IRC (índice de reproducción cromática), mientras la desventaja es la incapacidad para cambiar dinámicamente el carácter de la luz y el hecho de que la conversión de fósforo reduce la eficiencia del dispositivo. El bajo costo y el desempeño adecuado lo hace la tecnología más utilizada para la iluminación general hoy en día. Un solo LED es un dispositivo de estado sólido de baja tensión (voltaje) y no puede funcionar directamente en una corriente alterna estándar sin algún tipo de circuito para controlar el voltaje aplicado y el flujo de corriente a través de la lámpara. Una serie de diodos y resistores (resistencias) podrían ser usadas para controlar la polaridad del voltaje y limitar la corriente, pero esto es ineficiente, ya que la mayoría de la tensión aplicada se desperdicia en forma de calor en la resistencia. Una cadena única de LED en serie podrían minimizar la pérdida de la caída de tensión, pero la falla de un solo LED podría extinguir toda la cadena. Cadenas en paralelo incrementan la fiabilidad de proveer redundancia. En la práctica, tres cadenas o más son las mas usadas. Pueden ser útiles para la iluminación en el hogar o en espacios de trabajo, un número de LEDs deben ser colocados juntos en una lámpara para combinar sus efectos de iluminación. Esto es porque cada LED emite solamente una fracción de la luz de las fuentes de luz tradicionales. Cuando se utiliza el método de la mezcla de colores, puede ser difícil de lograr una distribución de color uniforme, mientras que la adaptación de LED blancos no es critica

para el equilibrio de color. Además, la degradación de LED diferentes en varios momentos en una lámpara de colores combinados puede producir una salida de color uniforme. Las lámparas de LED usualmente consisten en grupos de LEDs en una cubierta con dispositivos electrónicos, un disipador y óptica. Son muchas las ventajas que ofrece la tecnología LED, y a continuación se presenta algunas: •

Bajo consumo: Una lámpara LED se alimenta a baja tensión (12/24V) o directamente conectadas a la línea eléctrica (220V). Tanto para unas como para otras, la iluminación que se consigue (Lúmenes) por cada Watio de consumo es muy inferior a que ofrecen las lámparas convencionales. Si atendemos a la eficiencia energética de cada una, podemos deducir de forma aproximada, que luminaria LED tiene una eficiencia superior a 80 LM/W, frente a eficiencias que van desde 55 LM/W de la bombilla de ahorro energético, hasta los 10 LM/W de las convencionales.



Baja temperatura: El reducido consumo del LED produce muy poco calor. Esto es debido a que el LED es un dispositivo que opera a baja temperatura en relación con la luminosidad que proporciona. Los demás sistemas de iluminación en igualdad de condiciones de luminosidad que el LED emiten mucho más calor.



Amplia banda espectral: El LED es un dispositivo de longitud de onda fija pero que puede trabajar en una amplia banda del espectro. Para cubrir todo este ancho de banda existen en el mercado una gran gama de LED's que nos permitirán iluminar con una longitud de onda específica, o lo que es lo mismo en un determinado color (rojo, verde, azul, amarillo, blanco, blanco cálido e incluso ultra-violeta o RGB).



Mayor rapidez de respuesta: El LED tiene una respuesta de funcionamiento mucho más rápida que el halógeno y el fluorescente, del orden de algunos microsegundos. Se puede considerar que si arranque es instantáneo.



Luz más brillante: En las mismas condiciones de luminosidad que sus rivales, la luz que emite el LED es mucho más nítida y brillante.



Sin fallos de iluminación: Absorbe las posibles vibraciones a las que pueda estar sometido el equipo sin producir fallos ni variaciones de iluminación. Esto es debido a que el LED carece de filamento luminiscente evitando de esta manera las variaciones de luminosidad del mismo y su posible rotura.



Mayor duración y fiabilidad: La vida de un LED es muy larga en comparación con los demás sistemas de iluminación.

Además, si por algún caso alguno de los LED’s que componen la luminaria se estropease, ésta no dejaría de funcionar.

LUMINARIAS Las luminarias son aparatos que sirven de soporte y conexión a la red eléctrica a las lámparas. Como esto no basta para que cumplan eficientemente su función, es necesario que cumplan una serie de características ópticas, mecánicas y eléctricas entre otras. A nivel de óptica, la luminaria es responsable del control y la distribución de la luz emitida por la lámpara. Es importante, pues, que en el diseño de su sistema óptico se cuide la forma y distribución de la luz, el rendimiento del conjunto lámpara-luminaria y el deslumbramiento que pueda provocar en los usuarios. Otros requisitos que debe cumplir las luminarias es que sean de fácil instalación y mantenimiento. Para ello, los materiales empleados en su construcción han de ser los adecuados para resistir el ambiente en que deba trabajar la luminaria y mantener la temperatura de la lámpara dentro de los límites de funcionamiento. Todo esto sin perder de vista aspectos no menos importantes como la economía o la estética.

Clasificación Las luminarias pueden clasificarse de muchas maneras aunque lo más común es utilizar criterios ópticos, mecánicos o eléctricos. Clasificación según las características ópticas de la lámpara Una primera manera de clasificar las luminarias es según el porcentaje del flujo luminoso emitido por encima y por debajo del plano horizontal que atraviesa la lámpara. Es decir, dependiendo de la cantidad de luz que ilumine hacia el techo o al suelo. Según esta clasificación se distinguen seis clases.

Directa

Semi-directa

General difusa

Directaindirecta

Semi-directa

Indirecta

Clasificación CIE según la distribución de la luz Otra clasificación posible es atendiendo al número de planos de simetría que tenga el sólido fotométrico. Así, podemos tener luminarias con simetría de revolución que tienen infinitos planos de simetría y por tanto nos basta con uno de ellos para conocer lo que pasa en el resto de planos (por ejemplo un proyector o una lámpara tipo globo), con dos planos de simetría (transversal y longitudinal) como los fluorescentes y con un plano de simetría (el longitudinal) como ocurre en las luminarias de alumbrado viario.

Luminaria con infinitos planos Luminaria con dos planos de de simetría simetría

Luminaria con un plano de simetría

Para las luminarias destinadas al alumbrado público se utilizan otras clasificaciones. Clasificación según las características mecánicas de la lámpara Las luminarias se clasifican según el grado de protección contra el polvo, los líquidos y los golpes. En estas clasificaciones, según las normas nacionales (UNE 20324) e internacionales, las luminarias se designan por las letras IP seguidas de tres dígitos. El primer número va de 0 (sin protección) a 6 (máxima protección) e indica la protección contra la entrada de polvo y cuerpos sólidos en la luminaria. El segundo va de 0 a 8 e indica el grado de protección contra la penetración de líquidos. Por último, el tercero da el grado de resistencia a los choques.

Clasificación según las características eléctricas de la lámpara Según el grado de protección eléctrica que ofrezcan las luminarias se dividen en cuatro clases (0, I, II, III). Clase

Protección eléctrica

0

Aislamiento normal sin toma de tierra

I

Aislamiento normal y toma de tierra

II

Doble aislamiento sin toma de tierra.

III

Luminarias para conectar a circuitos de muy baja tensión, sin otros circuitos internos o externos que operen a otras tensiones distintas a la mencionada.

REFERENCIAS.

http://www.construmatica.com/construpedia/L%C3%A1mpara_Incandescente http://edison.upc.edu/curs/llum/lamparas/lincan.html http://es.wikipedia.org/wiki/L%C3%A1mpara_incandescente http://www.asifunciona.com/electrotecnia/af_incandesc/af_incandesc_3.htm http://es.wikipedia.org/wiki/L%C3%A1mpara_de_haluro_met%C3%A1lico http://edison.upc.edu/curs/llum/lamparas/ldesc2.html http://www.arqhys.com/contenidos/lamparas-uso.html http://thexlampara.blogspot.com/2008/09/lmparas-de-luz-de-mezcla.html http://es.wikipedia.org/wiki/L%C3%A1mpara_fluorescente_compacta http://es.ekopedia.org/L%C3%A1mpara_compacta_fluorescente http://www.asifunciona.com/electronica/af_cfl/af_cfl_3.html http://www.bhtavanza.com/es/informacion/informacionart/109-luminarias-ledcaracteristicas-led

Related Documents

Resumen De Lamparas
January 2021 1
Resumen
January 2021 3
Resumen
January 2021 2
Resumen De Soldadura
January 2021 1

More Documents from "Veronica Parrella"

Resumen De Lamparas
January 2021 1
Series De Fourier
January 2021 0
Ttr
February 2021 3
January 2021 2
Secado Madera
February 2021 1